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Abstract
In this paper, we introduce operators that are represented by upper triangular 2 × 2 block 
matrices whose entries satisfy some algebraic constraints. We call them Brownian-type 
operators of class Q, briefly operators of class Q. These operators emerged from the study 
of Brownian isometries performed by Agler and Stankus via detailed analysis of the time 
shift operator of the modified Brownian motion process. It turns out that the class Q is 
closely related to the Cauchy dual subnormality problem which asks whether the Cauchy 
dual of a completely hyperexpansive operator is subnormal. Since the class Q is closed 
under the operation of taking the Cauchy dual, the problem itself becomes a part of a more 
general question of investigating subnormality in this class. This issue, along with the anal-
ysis of nonstandard moment problems, covers a large part of the paper. Using the Taylor 
spectrum technique culminates in a full characterization of subnormal operators of class Q. 
As a consequence, we solve the Cauchy dual subnormality problem for expansive opera-
tors of class Q in the affirmative, showing that the original problem can surprisingly be 
extended to a class of operators that are far from being completely hyperexpansive. The 
Taylor spectrum approach turns out to be fruitful enough to allow us to characterize other 
classes of operators including m-isometries. We also study linear operator pencils associ-
ated with operators of class Q proving that the corresponding regions of subnormality are 
closed intervals with explicitly described endpoints.
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1  Introduction

Given two complex Hilbert spaces H and K, we denote by B(H,K) the Banach space of all 
bounded linear operators from H to K . The kernel, the range, the adjoint and the modulus 
of an operator T ∈ B(H,K) are denoted by N(T), R(T), T∗ and |T|,  respectively. We regard 
B(H) ∶= B(H,H) as a C∗-algebra. The identity operator on H is denoted by IH, or simply 
by I if no ambiguity arises. Recall that an operator T ∈ B(H) is said to be quasinormal if 
TT∗T = T∗TT , or equivalently if T|T| = |T|T . We say that T is subnormal if there exist a 
complex Hilbert space K and a normal operator N ∈ B(K) such that H ⊆ K (an isometric 
embedding) and Th = Nh for all h ∈ H. It is well known that quasinormal operators are 
subnormal (see [19, Proposition II.1.7]). We refer the reader to [19] for more information 
on these classes of operators.

Let T ∈ B(H) . We say that T is a 2-isometry if T∗2T2 − 2T∗T + I = 0. We call T a 
Brownian isometry if T is a 2-isometry such that ΔTΔT∗ΔT = 0, where ΔT = T∗T − I. If 
ΔT ⩾ 0 and ΔTT = Δ

1∕2

T
TΔ

1∕2

T
, we say that T is ΔT-regular. By a quasi-Brownian isometry 

we mean a ΔT-regular 2-isometry. It is well known that any 2-isometry is left-invertible1 
and ΔT ⩾ 0 ([42, Lemma 1]). The notion of a 2-isometry was invented by Agler in [2], 
while the notion of a Brownian isometry was introduced by Agler and Stankus in [3–5]. 
The class of 2-isometric operators emerged from the study of the time shift operator of 
the modified Brownian motion process from one side [3–5], and from the investigation 
of invariant subspaces of the Dirichlet shift from the other [42]. The class of ΔT-regular 
2-isometries were investigated in [12, 38] and in [7, 8] under the name of quasi-Brownian 
isometries.

Given a left-invertible operator T ∈ B(H), we set T � = T(T∗T)−1. Following [44], we 
call T ′ the Cauchy dual operator of T. Recall that if T is left-invertible, then so is T ′ and 
T = (T �)�. Athavale noticed that the Cauchy dual operator of a completely hyperexpansive 
injective unilateral weighted shift is a subnormal contraction (see [11, Proposition  6] with 
t = 1 ), but not conversely (see [11, Remark   4]). The Cauchy dual subnormality prob-
lem asks whether the Cauchy dual operator of a completely hyperexpansive operator (see 
Sect. 9 for the definition) is a subnormal contraction (see [17, Question 2.11]). As shown 
in [7], the answer is in the negative even for 2-isometries, that is, there are 2-isometries 
whose Cauchy dual operators are not subnormal (recall that each 2-isometry is completely 
hyperexpansive and that the Cauchy dual operator of a completely hyperexpansive operator 
is always a contraction). However, as proved in [7, Theorem  4.5], the Cauchy dual opera-
tor T ′ of a quasi-Brownian isometry T is a subnormal contraction (see also [12, Theorem  
3.4] for a recent generalization of this result to the case of completely hyperexpansive ΔT

-regular operators). This leads to the question of why this phenomenon can happen. We 
will try to answer it by regarding quasi-Brownian isometries as elements of a larger class 
of operators which is closed under the operation of taking the Cauchy dual (note that the 
class of quasi-Brownian isometries is not closed under this operation). As a consequence, 
in the larger class of operators, the Cauchy dual subnormality problem becomes a part of 
the more general question of finding necessary and sufficient conditions for subnormality.

1  In this paper, left-invertibility and invertibility of an operator T ∈ B(H) refer to the algebra B(H).
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Let us recall that nonisometric Brownian and quasi-Brownian isometries have upper 
triangular 2 × 2 block matrix representations with entries satisfying some algebraic con-
straints (see the remark just after Definition 1.1). For the purposes of our paper explained 
in the above discussion, we introduce a wider class of operators consisting of the so-called 
Brown-type operators.

Definition 1.1  We say that T ∈ B(H) is a Brownian-type operator if it has the block 
matrix form

with respect to a nontrivial2 orthogonal decomposition H = H1 ⊕H2 , where the operators 
V ∈ B(H1), E ∈ B(H2,H1) and Q ∈ B(H2) satisfy the following conditions:

Moreover, if

we call T a Brownian-type operator of class  Q and write T =
[
V E
0 Q

]
∈ QH1,H2

; to simplify 
the terminology, we say that T is an operator of class Q . By analogy, if Q is isometric 
(resp. unitary, normal, etc.), then T is called an operator of class I  (resp. U , N, etc.). If K is 
a complex Hilbert space and H = K⊕K (understood as an external orthogonal sum), then 
we abbreviate QK,K to QK.

In Definition 1.1, we have decided to exclude the case when one of the summands H1 or 
H2 is absent because otherwise the operator T is quasinormal. Moreover, by (2) and (3), the 
hypothesis that E ≠ 0 excludes the case when H1 is finite-dimensional. Notice also that by 
the square root theorem [45, Theorem 2.4.4], the equality (4) is equivalent to Q|E| = |E|Q. 
One can deduce from [4, Proposition 5.37 and Theorem 5.48] (resp., [38, Proposition  5.1]) 
that a nonisometric operator T ∈ B(H) is a Brownian isometry (resp., a quasi-Brownian 
isometry) if and only if T is of class U (resp., of class I  ) (to avoid injectivity of E postu-
lated in [4, Proposition  5.37] and [38, Proposition  5.1], consult [7, Theorem  4.1]). This 
means that Brownian isometries are quasi-Brownian isometries. In view of [7, Exam-
ple 4.4], the converse implication is not true in general.

It is worth pointing out that upper triangular 2 × 2 block matrices appear in different 
parts of operator theory and functional analysis on the occasion of investigating variety of 
topics; for example, the hyperinvariant subspace problem [24, 34–36], the Halmos similar-
ity problem for polynomially bounded operators [26, 40], the task of finding models for the 
time shift operator for modified Brownian motion process [3–5], the question of character-
izing invertibility of upper triangular 2 × 2 block matrices [31], the task of searching for a 

(1)T =

[
V E

0 Q

]

(2)V is an isometry, i.e., V∗V = I,

(3)V∗E = 0,

(4)QE∗E = E∗EQ.

(5)Q is quasinormal,

2  Nontriviality means that H1 ≠ {0} and H2 ≠ {0}.
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model theory for 2-hyponormal operators [22], the problem of determining a complete set 
of unitary invariants for the class of Cowen-Douglas operators realized as upper triangular 
2 × 2 block matrices [33], and many others.

We state now the main result of this paper which characterizes subnormality of opera-
tors of class Q in terms of the Taylor spectrum �(|Q|, |E|) of the pair (|Q|, |E|). The spectral 
region for subnormality of operators of class Q is described by Theorem 1.2(iii) and illus-
trated in Fig. 1. We refer the reader to Sect. 2 for the necessary definitions and notations.

Theorem 1.2  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Let P ∈ B(H2) be the orthogonal projection 
of H2 onto M ∶= R(|E|). Then the operators |Q|,  |E| and P commute, M  reduces |Q| and 
|E|,  and the following conditions are equivalent: 

	 (i)	 T is subnormal,
	 (ii)	 𝜎♯(|Q|, |E|) ⊆ �̄+, where 𝜎♯(|Q|, |E|) ∶= 𝜎(|Q|, |E|) ∩ (ℝ+ × (0,∞)),

	 (iii)	 𝜎(|Q|, |E|) ⊆ 𝔻̄+ ∪ (ℝ+ × {0}),

	 (iv)	 (|Q|P, |E|) is a spherical contraction,
	 (v)	 (|Q|||M, |E|||M) is a spherical contraction,
	 (vi)	 𝜎(|Q|||M, |E|||M) ⊆ �̄+.

Moreover, if T is subnormal, then

The proof of Theorem 1.2 is fairly long, and it occupies most of Sects. 3, 4 and 5. The 
theorem itself has many applications spread over Sects. 5, 6 and 10. In particular, we show 
that contractions of class Q are subnormal (see Corollary 5.2), we solve the Cauchy dual 
subnormality problem for expansive operators of class Q in the affirmative (see Corol-
lary  6.2) and, what is more important, we completely characterize subnormality of the 
Cauchy-duals of left-invertible operators of class Q (see Theorem 6.1). The study of linear 
operator pencils associated with operators of class Q provides a useful test of the applica-
bility of the main theorem (see Theorems 10.1 and 10.2).

The Taylor spectrum approach developed in this paper for the purpose of investigat-
ing subnormality turns out to be efficient when studying other collections of operators 
of class Q including m-contractions, m-isometries, etc. (see Sect.  9). In fact, it appears 
to be effective even in providing explicit formulas for the norm of operators of class Q 
(see (17) in Sect. 3) and for the right endpoints of the intervals of subnormality of linear 
operator pencils associated with operators of class Q (see (75) and (79) in Sect. 10). The 

𝜎(|Q|, |E|) ⊆
(
𝔻̄+ ∪ (ℝ+ × {0})

)
∩
(
𝜎(|Q|) × 𝜎(|E|)

)
.

Fig. 1   Spectral region for sub-
normality of operators of class Q
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Taylor spectrum technique is also applied to characterize quasi-Brownian and Brownian 
isometries of class Q in Sects. 7 and 8, respectively. Unexpectedly, the Brownian case is 
essentially more complicated. The reader has to be aware of the fact that quasi-Brownian 
(and so Brownian) isometries are always of class Q, however relative to properly selected 
orthogonal decompositions (of the underlying Hilbert spaces), which are not necessarily 
easy to be determined in concrete cases.

We conclude Introduction by pointing out that the overwhelming majority of the charac-
terizations of selected subclasses of the class Q that appear in this paper consist in finding 
for a given subclass a minimal universal subset of the Euclidean plane having the property 
that an operator T =

[
V E
0 Q

]
∈ QH1,H2

 belongs to the subclass if and only if the Taylor spec-
trum �(|Q|, |E|) of the pair (|Q|, |E|) is contained in the aforementioned subset. The univer-
sality of this subset lies in the fact that it does not depend on the choice of the orthogonal 
decomposition H1 ⊕H2 of the underlying Hilbert space H relative to which a given opera-
tor T ∈ B(H) is of class Q, i.e., T has the block matrix form (1) with V,  E and Q satisfying 
(2)–(5). What is more interesting, there may exist different orthogonal decompositions of 
H relative to which the given operator T is of class Q and the Taylor spectra �(|Q|, |E|) of 
the corresponding pairs (|Q|, |E|) are significantly different (see Example 7.3). It turns out 
that the class of Brownian isometries is the only subclass of Q considered in this paper 
which cannot be characterized by the Taylor spectrum �(|Q|, |E|) of the pair (|Q|, |E|) (see 
Remark 8.5).

2 � Prerequisites

In this section we fix notation and terminology and give necessary facts. Let ℤ , ℝ and ℂ 
stand for the sets of integers, real numbers and complex numbers, respectively. Denote by 
ℕ the set of positive integers. Set

Given a set X, we write �� for the characteristic function of a subset � of X. The �-algebra 
of all Borel subsets of a topological space X is denoted by �(X) . For x ∈ X, �x stands for 
the Borel probability measure on ℝ supported on {x}.

Let H be a complex Hilbert space. We call an operator T ∈ B(H) a contraction (resp., an 
expansion) if ‖Th‖ ⩽ ‖h‖ for all h ∈ H (resp., ‖Th‖ ⩾ ‖h‖ for all h ∈ H ), or equivalently 
if T∗T ⩽ I (resp., T∗T ⩾ I ). The contractivity of T can also be characterized by requiring 
that ‖T‖ ⩽ 1 (however ‖T‖ ⩾ 1 does not characterize expansivity of T). Obviously, T is an 
isometry if and only T is simultaneously a contraction and an expansion. We write �(T) 
for the spectrum of T. If G is a regular Borel spectral measure on a topological Hausdorff 
space X, then suppG denotes the closed support of G,  i.e., X ⧵ suppG is the largest open 
subset � of X such that G(�) = 0. Recall that if T ∈ B(H) is a selfadjoint operator and G is 
the spectral measure of T,  then �(T) = suppG. The following elementary fact will be fre-
quently used in this paper.

ℤ+ = {n ∈ ℤ ∶ n ⩾ 0}, ℝ+ = {x ∈ ℝ ∶ x ⩾ 0},

𝔻+ = {(s, t) ∈ ℝ2
+
∶ s2 + t2 < 1}, 𝕋+ = {(s, t) ∈ ℝ2

+
∶ s2 + t2 = 1},

𝔻̄+ = 𝔻+ ∪ 𝕋+.
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We refer the reader to [15, Chapter 6] for more details on spectral theory of Hilbert space 
operators.

A pair (T1, T2) of commuting operators T1, T2 ∈ B(H) is said to be a spherical contrac-
tion (resp., spherical expansion) if T∗

1
T1 + T∗

2
T2 ⩽ I (resp., T∗

1
T1 + T∗

2
T2 ⩾ I ). If (T1, T2) 

is simultaneously spherical contraction and spherical expansion, that is T∗
1
T1 + T∗

2
T2 = I , 

then (T1, T2) is called a spherical isometry (see [10]).
For a pair (T1, T2) of commuting operators T1, T2 ∈ B(H) , we denote by �(T1, T2) the 

Taylor spectrum of (T1, T2), and by r(T1, T2) the geometric spectral radius of (T1, T2), that 
is,

The reader is referred to [18, 21, 39, 50, 52] for the definitions and the basic proper-
ties of the Taylor spectrum and the geometric spectral radius (of commuting n-tuples of 
operators). In particular, the Taylor spectrum �(T1, T2) is a nonempty compact subset 
of ℂ2 whenever H ≠ {0}. Moreover, it has the following projection property (see [50, 
Lemma 3.1]; see also [21, Theorem 4.9]):

where �1,�2 ∶ ℂ2
→ ℂ are defined by �1(z1, z2) = z1 and �2(z1, z2) = z2 for (z1, z2) ∈ ℂ2. 

The following fact follows directly from the projection property of the Taylor spectrum.

Note that under the assumption of (8), �(T1, T2) = �(T1) × �(T2) if �(T1) = {�} or if 
�(T2) = {�} . However, the first equation may not hold even for positive operators (see (56) 
in Example 6.4).

For a given pair (T1, T2) of commuting selfadjoint operators T1, T2 ∈ B(H) , there exists 
a unique Borel spectral measure G ∶ �(ℝ2) → B(H) , called the joint spectral measure of 
(T1, T2), such that

where as usual ℂ[x1, x2] stands for the ring of polynomials in indeterminates x1, x2 with 
complex coefficients (similar notations are used throughout the paper with no further 
explanation). The joint spectral measure G is the product of the spectral measures of T1 and 
T2 (see [15, Theorem 6.5.1]). As shown below, in this particular case, the Taylor spectrum 

(6)
Suppose that T ∈ B(H) is selfadjoint. If a, b ∈ ℝ are such that a ⩽ b, then

𝜎(T) ⊆ [a, b] if and only if aI ⩽ T ⩽ bI. Moreover, if T ⩾ 0 and

0 ∉ 𝜎(T), then min 𝜎(T) = ‖T−1‖−1 and max 𝜎(T) = ‖T‖.

r(T1, T2) = max
{
(|z1|2 + |z2|2)1∕2 ∶ (z1, z2) ∈ �(T1, T2)

}
.

(7)�j(�(T1, T2)) = �(Tj), j = 1, 2,

(8)
Suppose that H ≠ {0} and 𝜆 ∈ ℂ. Then 𝜎(T1, T2) ⊆ {𝜆} × ℂ if and only

if 𝜎(T1) = {𝜆}. Moreover, if 𝜎(T1) = {𝜆}, then 𝜎(T1, T2) = {𝜆} × 𝜎(T2).
The symmetric version with ℂ × {𝜆} in place of {𝜆} × ℂ holds as well.

(9)p(T1, T2) = ∫
ℝ2

p(t1, t2)G(dt1, dt2), p ∈ ℂ[x1, x2],
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�(T1, T2) coincides with the closed support of the joint spectral measure G; this yields the 
spectral mapping theorem for continuous functions.3

Theorem 2.1  Suppose that T1, T2 ∈ B(H) are commuting selfadjoint operators with the 
joint spectral measure G. Then the following assertions are valid: 

	 (i)	 �(T1, T2) = suppG; moreover, if T1, T2 are positive, then 𝜎(T1, T2) ⊆ ℝ2
+
,

	 (ii)	 for any continuous function � ∶ �(T1, T2) → ℝ,

where �(T1, T2) ∶= ∫
�(T1,T2)

� dG,
	 (iii)	 for any continuous function � = (�1,�2) ∶ �(T1, T2) → ℝ2,

where �(T1, T2) ∶= (�1(T1, T2),�2(T1, T2)).

Proof  First observe that by (7) we have

so if additionally T1 and T2 are positive, then 𝜎(T1, T2) ⊆ ℝ2
+
.

(i) First note that the Taylor spectrum �(T1, T2) coincides with the left spectrum 
of (T1, T2) (see [21, Proposition  7.2]). It is a routine matter to show that the left spec-
trum of (T1, T2) coincides with the approximate point spectrum of (T1, T2) (this is true 
for an arbitrary pair of commuting Hilbert space operators). Hence, for (�1, �2) ∈ ℝ2 , 
(�1, �2) ∉ �(T1, T2) if and only if there exists c ∈ (0,∞) such that

or equivalently, by [15, Theorem 6.5.3], if and only if (�1, �2) ∉ suppG . Combined with 
(10), this proves (i).

(ii) Note that

where (∗) follows from [15, eq. (13), p. 158].
(iii) By [15, Theorem 6.6.4], G◦�−1

j
 is the spectral measure of �j(T1, T2) for j = 1, 2. Let 

G̃ be the product of these measures (see [15, Theorem 5.2.6]). Since

we deduce from the uniqueness part of [15, Theorem 5.2.6] that G̃ = G◦�−1. Hence G◦�−1 
is the joint spectral measure of the pair �(T1, T2). This yields

�(�(T1, T2)) = �(�(T1, T2)),

�(�(T1, T2)) = �(�(T1, T2)),

(10)𝜎(T1, T2) ⊆ 𝜎(T1) × 𝜎(T2) ⊆ ℝ2,

‖(T1 − �1I)h‖ + ‖(T2 − �2I)h‖ ⩾ c‖h‖, h ∈ H,

�(�(T1, T2)) = �

(

∫�(T1,T2)

� dG

)
(∗)
= �(suppG)

(i)
= �(�(T1, T2)),

G̃(�1 × �2) = G(�−1
1
(�1))G(�

−1
2
(�2)) = G(�−1(�1 × �2)), �1,�2 ∈ �(ℝ),

3  Note that Theorem 2.1 remains true for commuting normal operators with ℂ in place of ℝ. We refer the 
reader to [51, Theorem  4.8] (see also [21, Theorem  5.19] and [39, Corollary  IV.30.11]) for the spectral 
mapping theorem for the Taylor functional calculus.
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(To get (∗) adapt the proof of [48, Lemma 3.2].) This completes the proof. 	�  ◻

As a consequence of Theorem 2.1, we obtain the following.

For this, note that 𝜎(T1, T2) ⊆
(
ℝ × {0}

)
∪
(
{0} ×ℝ

)
 if and only if p(�(T1, T2)) = 0, 

where p(s, t) = s ⋅ t. Hence, applying Theorem 2.1(ii) gives the former equivalence in (11). 
The latter is a matter of routine verification.

The following lemma is surely folklore. For self-containedness we sketch its proof 
(the reader can easily formulate a version for commuting normal operators).

Lemma 2.2  Let T1, T2 ∈ B(H) be commuting selfadjoint operators on a nonzero complex 
Hilbert space H. Then

where 𝔻 ∶=
{
(s, t) ∈ ℝ2 ∶ s2 + t2 < 1

}
. Moreover, T2

1
+ T2

2
 is invertible if and only if {

𝛿 ∈ (0,∞) ∶ 𝜎(T1, T2) ⊆ ℝ2 ⧵ 𝛿 ⋅ 𝔻
} ≠ � ; if this is the case, then

Proof  Since the proofs of (12) and (13) are similar, we justify only (13). Suppose T2
1
+ T2

2
 

is invertible. If � ∈ (0,∞) is such that 𝜎(T1,T2) ⊆ ℝ2 ⧵ 𝛿 ⋅ 𝔻, then by Theorem 2.1(ii) with 
�(x1, x2) = x2

1
+ x2

2
 , we have

which implies that T2
1
+ T2

2
 is invertible and

Reversing the argument with � = ‖(T2
1
+ T2

2
)−1‖−1∕2 , we obtain the converse implication 

and (13). This completes the proof. 	�  ◻

We now describe the Taylor spectrum of an orthogonal sum of pairs of commuting 
selfadjoint operators.

Proposition 2.3  Suppose that for every n ∈ ℕ, (T1,n, T2,n) is a pair of commuting selfadjoint 
operators on a nonzero complex Hilbert space Hn. For j = 1, 2, let Tj =

⨁∞

n=1
Tj,n. Then 

(T1, T2) is a pair of commuting selfadjoint operators such that

�(�(T1, T2))
(i)
= suppG◦�−1 (∗)

= �(suppG)
(i)
= �(�(T1, T2)).

(11)
If T1, T2 ∈ B(H) are commuting and selfadjoint operators, then

𝜎(T1, T2) ⊆
(
ℝ × {0}

)
∪
(
{0} ×ℝ

)
if and only if T1T2 = 0, or equivalently

if T1 = 0⊕ �T1 and T2 = �T2 ⊕ 0 relative to H = N(T1)⊕R(T1).

(12)r(T1, T2) = ‖T2
1
+ T2

2
‖1∕2 = min

�
𝛿 ∈ ℝ+ ∶ 𝜎(T1, T2) ⊆ 𝛿 ⋅ 𝔻̄

�
,

(13)‖(T2
1
+ T2

2
)−1‖−1∕2 = max

�
𝛿 ∈ (0,∞) ∶ 𝜎(T1, T2) ⊆ ℝ2 ⧵ 𝛿 ⋅ 𝔻

�
.

𝜎(T2
1
+ T2

2
) = 𝜎(𝜓(T1, T2)) = 𝜓(𝜎(T1, T2)) ⊆ [𝛿2,∞),

�2 ⩽ min �(T2
1
+ T2

2
)
(6)
= ‖(T2

1
+ T2

2
)−1‖−1.

(14)�(T1, T2) =

∞⋃

n=1

�(T1,n, T2,n).



889Taylor spectrum approach to Brownian-type operators with…

1 3

Proof  Set T = (T1, T2) and Tn = (T1,n, T2,n) for n ∈ ℕ. Denote by GT and GTn
 the joint spec-

tral measures of T and Tn, respectively. Let GTj
 and GTj,n

 be the spectral measures of Tj and 
Tj,n, respectively, where j = 1, 2 and n ∈ ℕ . It is clear that

This implies that

Combined with the uniqueness of joint spectral measures, this yields

In view of Theorem 2.1(i), it suffices to show that

For this, take (s, t) ∈ ℝ2. If (s, t) ∉ suppGT , then there exists an open set � in ℝ2 such that 
(s, t) ∈ � and GT(�) = 0. Therefore by (15), GTn

(�) = 0 for all n ∈ ℕ, which implies that 
(s, t) ∉ suppGTn

 for all n ∈ ℕ. As a consequence, 
⋃∞

n=1
suppGTn

⊆ suppGT , which shows 
that the right side of (16) is contained in the left side. In turn, if (s, t) ∉

�⋃∞

n=1
suppGTn

�−
, 

then there exists an open set � in ℝ2 such that (s, t) ∈ � and � ∩
�⋃∞

n=1
suppGTn

�−
= �. 

Hence, GTn
(�) = 0 for all n ∈ ℕ, which together with (15) implies that GT(�) = 0. As a 

consequence, (s, t) ∉ suppGT . This completes the proof. 	�  ◻

Corollary 2.4  If �  is an arbitrary nonempty compact subset of ℝ2 (resp. ℝ2
+
 ) and H is 

a separable infinite-dimensional complex Hilbert space, then there exists a pair (T1, T2) 
of commuting selfadjoint (resp. positive) operators T1, T2 ∈ B(H) such that � = �(T1, T2).

Proof  Since ℝ2 is separable metric space, so is � . Hence, there exists a sequence 
{(x1,n, x2,n)}

∞
n=1

⊆ 𝛤  which is dense in � . The proof is completed by applying Proposi-
tion 2.3 to Hn = ℂ, T1,n = x1,nIℂ and T2,n = x2,nIℂ and by observing that according to (8), 
�(T1,n, T2,n) = {(x1,n, x2,n)} for all n ∈ ℕ.

Remark 2.5  A closer inspection of the proof reveals that Proposition  2.3 remains valid 
for families (of arbitrary cardinality) of pairs of commuting normal operators. As a conse-
quence, Corollary 2.4 remains true if selfadjoint operators are replaced by normal opera-
tors and ℝ by ℂ. What is more, using only the definition of the Taylor spectrum, one can 
show that (14) holds (certainly without the closure) for any finite number of pairs of com-
muting operators (cf. [20]). 	� ◻

GTj
(�) =

∞⨁

n=1

GTj,n
(�), � ∈ �(ℝ), j = 1, 2.

GT1
(�1)GT2

(�2) =

∞⨁

n=1

GTn
(�1 × �2), �1,�2 ∈ �(ℝ).

(15)GT(�) =

∞⨁

n=1

GTn
(�), � ∈ �(ℝ2).

(16)suppGT =

∞⋃

n=1

suppGTn
.
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3 � Fundamental properties of operators of class Q

In this section we prove some basic properties of operators of class Q that are needed in 
this paper. We begin by showing that the operators of class Q form a huge class which 
can be parameterized in a sense by arbitrary pairs of commuting positive operators.

Proposition 3.1  Let H = H1 ⊕H2 be a nontrivial orthogonal decomposition of a complex 
Hilbert space H. Then the following assertions are valid:

	 (i)	 if T =
[
V E
0 Q

]
∈ QH1,H2

, then |Q| and |E| are commuting positive operators such that 

dimR(|E|) ⩽ dimR(V)⟂,

	 (ii)	 if V ∈ B(H1) is an isometry and A,B ∈ B(H2) are commuting positive opera-
tors such that dimR(B) ⩽ dimR(V)⟂, then there exists E ∈ B(H2,H1) such that 
T =

[
V E
0 A

]
∈ QH1,H2

 and |E| = B.

Moreover, if T =
[
V E
0 Q

]
∈ QH1,H2

, then there exists Ẽ ∈ B(H2,H1) such that 
[
V Ẽ
0 |Q|

]
∈ QH1,H2

 and |Ẽ| = |E|.

Proof  (i) That |Q| and |E| commute follows from (4) and the square root theorem. Let 
E = U|E| be the polar decomposition of E. Then U maps R(|E|) unitarily onto R(E). Since 
by (3), R(E) ⊆ R(V)⟂, we are done.

(ii) Since dimR(B) ⩽ dimR(V)⟂, there exists a closed subspace M of R(V)⟂ such that 
dimR(B) = dimM. Let U ∈ B(H2,H1) be a unique partial isometry with the initial space 
R(B) and the final space M. Define E ∈ B(H2,H1) by E = UB. Since U∗U is the orthogo-
nal projection of H2 onto the initial space R(B) of U,  we get

By the uniqueness of the square root, we deduce that |E| = B . It is easily seen that 
T =

[
V E
0 A

]
∈ QH1,H2

.

The “moreover” part is a direct consequence of (i) and (ii). This completes the proof. 	�  ◻

Corollary 3.2  Suppose that H2 is a nonzero complex Hilbert space and A,B ∈ B(H2) are 
commuting positive operators. Then there exist a nonzero complex Hilbert space H1, an 
isometry V ∈ B(H1) and an operator E ∈ B(H2,H1) such that T =

[
V E
0 A

]
∈ QH1,H2

 (rela-
tive to H = H1 ⊕H2 ) and |E| = B.

Proof  If B = 0, then we can apply Proposition 3.1(ii) to any nonzero complex Hilbert space 
H1 and an arbitrary isometry V ∈ B(H1). In turn, if B ≠ 0, then we can take an infinite-
dimensional complex Hilbert space H1 such that dimR(B) ⩽ dimH1. Then there exists an 
isometry V ∈ B(H1) such that

Applying Proposition 3.1(ii) completes the proof. 	�  ◻

|E|2 = E∗E = B(U∗U)B = B2.

dimR(B) ⩽ dimH1 = dimR(V)⟂.
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The theorem below is crucial for our further investigations because the overwhelm-
ing majority of results of this paper are stated in terms of the Taylor spectrum of the pair 
(|Q|, |E|).

Theorem  3.3  Suppose that �  is an arbitrary nonempty compact subset of ℝ2
+
 and H2 

is a separable infinite-dimensional complex Hilbert space. Then there exists a nonzero 
complex Hilbert space H1 and T =

[
V E
0 Q

]
∈ QH1,H2

 (relative to H = H1 ⊕H2) such that 
�(|Q|, |E|) = � .

Proof  It follows from Corollary  2.4 that there exists a pair (A,  B) of commuting posi-
tive operators A,B ∈ B(H2) such that �(A,B) = � . Applying Corollary 3.2 completes the 
proof. 	�  ◻

As shown below the norm of an operator of class Q can be expressed in terms of the 
geometric spectral radius of the pair (|Q|, |E|).

Proposition 3.4  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

. Then

Proof  Let G be the joint spectral measure of the pair (|Q|, |E|) and let G- ess sup� stand for 
the essential supremum of a Borel function � ∶ ℝ2

+
→ ℝ+ with respect to the measure G. It 

follows from Definition 1.1 that

Combined with the hypothesis that the spaces H1 and H2 are nonzero, this implies that

where (∗) follows from Theorem 2.1(i) and the continuity of the function (s, t) ↦ (s2 + t2)1∕2 
on ℝ2

+
. This completes the proof. 	�  ◻

Remark 3.5  It follows from Proposition 3.4 that if T ∈ B(H) is of class Q and ‖T‖ > 1 , 
then the geometric spectral radius r(|Q|, |E|) does not depend on the choice of an orthogo-
nal decomposition H = H1 ⊕H2 of H relative to which T has a block matrix representa-
tion (1) with entries V,  E and Q satisfying the conditions (2)–(5). We refer the reader to 
Example 7.3 for a detailed discussion of the question of the existence of different orthogo-
nal decompositions of the underlying Hilbert space H relative to which a given operator 
T ∈ B(H) is of class Q. 	�  ◻

(17)‖T‖ = max{1, r(�Q�, �E�)}.

(18)T∗T =

[
I 0

0 Q∗Q + E∗E

]
.

‖T‖ = ‖�T�‖ =
�����

�
I 0

0 (�Q�2 + �E�2)1∕2
������

= max
�
1, ‖(�Q�2 + �E�2)1∕2‖

�

= max
�
1,G- ess sup

(s,t)∈ℝ2
+

(s2 + t2)1∕2
�

(∗)
= max

�
1, max

(s,t)∈�(�Q�,�E�)
(s2 + t2)1∕2

�
,

= max{1, r(�Q�, �E�)},
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Next we characterize contractive, isometric and expansive operators of class Q.

Proposition 3.6  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then the following conditions are 
equivalent:

	 (i)	 T is a contraction (resp., an isometry, an expansion),
	 (ii)	 (|Q|, |E|) is a spherical contraction (resp., a spherical isometry, a spherical expan-

sion),
	 (iii)	 𝜎(|Q|, |E|) ⊆ �̄+ (resp., 𝜎(|Q|, |E|) ⊆ �+ , 𝜎(|Q|, |E|) ⊆ ℝ2

+
⧵ 𝔻+).

Moreover, if T is a contraction, then ‖T‖ = 1.

Proof  By Proposition 3.1(i), (|Q|, |E|) is a pair of commuting positive operators. The equiv-
alence (i) ⇔  (ii) follows from (18). Next by applying Theorem 2.1(ii) to the polynomial 
�(x1, x2) = x2

1
+ x2

2
, we get

which together with (6) and 𝜎(|Q|, |E|) ⊆ ℝ2
+
 yields the equivalence (ii) ⇔ (iii).

The “moreover” part is a direct consequence of Proposition 3.4. 	�  ◻

For self-containedness, we state the following result whose straightforward proof is 
left to the reader.

Proposition 3.7  The class Q is closed under the operation of taking orthogonal sums, i.e., 
if {T�}�∈J is a uniformly bounded family of operators of class Q, then 

⨁
�∈J T� is an operator 

of class Q.

The following lemma provides a sufficient condition for the product of two quasinor-
mal operators to be quasinormal.

Lemma 3.8  Suppose that Q1,Q2 ∈ B(H) are commuting quasinormal operators such that 
Q1 commutes with Q∗

2
Q2 and Q2 commutes with Q∗

1
Q1 . Then Q1Q2 is quasinormal. Moreo-

ver, any positive integer power of a quasinormal operator is quasinormal.

Proof  We leave the simple algebraic proof of the first part to the reader. The “moreover” 
part follows from the first part by applying the formula

which is valid for any quasinormal operator Q. 	� ◻

Our next goal is to give a sufficient condition for the product of two operators of class Q 
to be of class Q.

Proposition 3.9  Suppose T1 =
[ V1 E1

0 Q1

]
∈ QH1,H2

 and T2 =
[ V2 E2

0 Q2

]
∈ QH1,H2

 are such that

�(�(|Q|, |E|)) = �(|Q|2 + |E|2),

(19)Q∗nQn = (Q∗Q)n, n ∈ ℤ+,

QkQ
∗
l
Ql = Q∗

l
QlQk and QkE

∗
l
El = E∗

l
ElQk for all distinct k, l ∈ {1, 2}.
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Then T1T2 =
[
V E
0 Q

]
∈ QH1,H2

, where V = V1V2 , E = V1E2 + E1Q2 and Q = Q1Q2.

Proof  First notice that

Clearly, V1V2 is an isometry, while by Lemma  3.8, Q1Q2 is a quasinormal operator. 
Routine computations show that (V1V2)

∗(V1E2 + E1Q2) = 0 and Q1Q2 commutes with 
(V1E2 + E1Q2)

∗(V1E2 + E1Q2) meaning that T1T2 is of class Q . 	�  ◻

It turns out that the operation of taking positive integer powers is inner in the class Q. 
The class Q is also closed under the operation of taking the Cauchy dual. Furthermore, we 
discuss the questions of when an operator of class Q is ΔT-regular and when it satisfies the 
kernel condition introduced recently in [7].

Proposition 3.10  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then

	 (i)	 Tn =
[
Vn En

0 Qn

]
∈ QH1,H2

     for any n ∈ ℤ+, where

	 (ii)	 T∗nTn =
[
I 0
0 �n

]
∈ QH1,H2

     for any   n ∈ ℤ+, where

	 (iii)	 T is left-invertible if and only if �1 is invertible, or equivalently there exists � ∈ (0,∞) 
such that 𝜎(|Q|, |E|) ⊆ ℝ2

+
⧵ 𝛿 ⋅ 𝔻+ ; if this is the case, then

	 (iv)	 if T is left-invertible, then T � ∈ QH1,H2
 and

	 (v)	 T is ΔT-regular if and only if T is an expansion,
	 (vi)	 T satisfies the kernel condition, i.e., T∗TN(T∗) ⊆ N(T∗), if and only if 

(|Q|2 + |E|2 − I)E∗h1 = 0 for every h1 ∈ N(V∗) such that E∗h1 ∈ R(Q∗).

Proof  (i) Using induction, one can verify that

where

T1T2 =

[
V1V2 V1E2 + E1Q2

0 Q1Q2

]
.

(20)En =

�
0 if n = 0,∑n

j=1
Vj−1EQn−j if n ⩾ 1,

(21)�n =

�
I if n = 0,

E∗E
�∑n−1

j=0
(Q∗Q)j

�
+ (Q∗Q)n if n ⩾ 1,

(22)max
�
𝛿 ∈ ℝ+ ∶ 𝜎(�Q�, �E�) ⊆ ℝ2

+
⧵ 𝛿 ⋅ 𝔻+

�
= ‖𝛺−1

1
‖−1∕2,

(23)T � =

[
V E�−1

1

0 Q�−1
1

]
,

Tn =

[
Vn En

0 Qn

]
, n ∈ ℤ+,
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By induction, (24) implies (20). Clearly for any n ∈ ℤ+ , Vn is an isometry and, by 
Lemma 3.8, Qn is a quasinormal operator. Since V is an isometry, we infer from (3) and 
(20) that V∗nEn = 0 for any n ∈ ℤ+ . Employing (24), we see that

Using induction and (4), we deduce that Q commutes with E∗
n
En for all n ∈ ℤ+ . This 

implies that Tn is of class Q for any n ∈ ℤ+.
(ii) It follows from (i) and (19) that

Using induction, (25) and (4), we conclude that

Combined with (26), this yields (ii).
(iii) It is clear that T is left-invertible if and only if T∗T  is invertible, which by (ii) with 

n = 1 is equivalent to the invertibility of �1. The remaining statement in (iii) is a direct 
consequence of Theorem 2.1(i) and Lemma 2.2.

(iv) It is a routine matter to show that (23) holds and then to verify that T ′ is of class Q.

(v) The “only if” part is obvious. To prove the “if” part, notice that by (ii),

Since T is an expansion, we see that �1 − I ⩾ 0 and

Knowing that Q commutes with �1 and using the square root theorem, we deduce that 
Q commutes with (�1 − I)1∕2 , and consequently by (27), Δ1∕2

T
TΔ

1∕2

T
= ΔTT  , which means 

that T is ΔT-regular.
(vi) Since T∗ =

[
V∗ 0
E∗ Q∗

]
, we easily verify that

To prove the “if” part, suppose that

If h1 ⊕ h2 ∈ N(T∗) , then in view of (28) and (29), we have

(24)E0 = 0 and En+1 = VEn + EQn for n ∈ ℤ+.

(25)
E∗
n+1

En+1

(2)&(3)
= E∗

n
En + Q∗nE∗EQn

(4)&(19)
= E∗

n
En + (Q∗Q)nE∗E, n ∈ ℤ+.

(26)T∗nTn =

[
I 0

0 E∗
n
En + (Q∗Q)n

]
, n ∈ ℤ+.

E∗
n
En = E∗E

n−1∑

j=0

(Q∗Q)j, n ∈ ℕ.

ΔT =

[
0 0

0 �1 − I

]
.

(27)Δ
1∕2

T
=

[
0 0

0 (�1 − I)1∕2

]
.

(28)N(T∗) = {h1 ⊕ h2 ∈ H ∶ h1 ∈ N(V∗) and E∗h1 + Q∗h2 = 0}.

(29)
(
|Q|2 + |E|2 − I

)(
(E∗

N(V∗)) ∩R(Q∗)
)
= {0}.
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Hence by (ii) with n = 1 and (28), T∗T(h1 ⊕ h2) ∈ N(T∗) , which justifies the “if” part. The 
“only if” part goes by reversing the above argument. This completes the proof. 	�  ◻

Corollary 3.11  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

 satisfies the kernel condition, E ≠ 0 and 
R(Q∗) = H2. Then

	 (i)	 1 is an eigenvalue of  |Q|2 + |E|2,
	 (ii)	 �(|Q|, |E|) ∩ �+ ≠ �.

Proof  (i) Suppose, on the contrary, that 1 is not an eigenvalue of the operator |Q|2 + |E|2. 
Then by Proposition 3.10(vi), N(V∗) ⊆ N(E∗). This implies that R(E) ⊆ R(V). Since by 
(3), R(E) ⊆ R(V)⟂, we see that E = 0, a contradiction.

(ii) By (i) and Theorem 2.1(ii) applied to the polynomial �(x1, x2) = x2
1
+ x2

2
, we have 

1 ∈ �(�(|Q|, |E|)) = �(�(|Q|, |E|)), so there exists (s, t) ∈ 𝜎(|Q|, |E|) ⊆ ℝ2
+
 such that 

�(s, t) = 1, which completes the proof. 	�  ◻

4 � Moment theoretic necessities

In this section we prove a series of lemmata concerning Hamburger and Stieltjes 
moment problems needed in subsequent sections of this paper. We state some of them 
in a more general context, namely for the multi-dimensional moment problems, because 
the proofs are essentially the same.

Below we use the standard multi-index notation, that is, if d ∈ ℕ, 
� = (�1,… , �d) ∈ ℤd

+
 and x = (x1,… , xd) ∈ ℝd, then we write x� = x

�1
1
⋯ x

�d
d
. A complex 

Borel measure � on ℝd is said to be compactly supported if there is a compact subset K 
of ℝd such that |�|(ℝd ⧵ K) = 0, where |�| denotes the total variation measure of �. We 
write supp� for the closed support of a finite positive Borel measure � on ℝd (the sup-
port exists because such � is automatically regular, see [43, Theorem 2.18]). We say that 
a multi-sequence {𝛾𝛼}𝛼∈ℤd

+
⊆ ℝ is a Hamburger moment multi-sequence (or Hamburger 

moment sequence if d = 1 ) if there exists a positive Borel measure � on ℝd, called a rep-
resenting measure of {��}�∈ℤd

+
, such that

If such � is unique, then {��}�∈ℤd
+
 is said to be determinate. If (30) holds for some positive 

Borel measure � on ℝd supported in ℝd
+
, then {��}�∈ℤd

+
 is called a Stieltjes moment multi-

sequence (or Stieltjes moment sequence if d = 1).

Lemma 4.1  Let d ∈ ℕ. Suppose that �1 and �2 are compactly supported complex Borel 
measures on ℝd such that

E∗h1 + Q∗(|Q|2 + |E|2)h2
(4)&(5)
= E∗h1 + (|Q|2 + |E|2)Q∗h2

= (I − |Q|2 − |E|2)E∗h1 = 0.

(30)�� = ∫
ℝd

x�d�(x), � ∈ ℤd
+
.
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Then �1 = �2.

Proof  Since |�1 − �2|(�) ⩽ |�1|(�) + |�2|(�) for all Borel subsets � of ℝd, the complex 
Borel measure � ∶= �1 − �2 is compactly supported, that is supp |𝜇| ⊆ [−R,R]d for some 
R ∈ ℝ+, and

Let f be a continuous complex function on ℝd vanishing at infinity. By the Stone–Weier-
strass theorem, there exists a sequence {pn}∞n=1 ⊆ ℂ[x1,… , xd] such that

Since

we deduce from (32) that ∫
ℝd fd� = 0. Applying [43, Theorems   6.19 and 2.18] yields 

� = 0, or equivalently, �1 = �2. 	�  ◻

Remark 4.2  Concerning Lemma 4.1, it is worth mentioning that any sequence {𝛾n}∞n=0 ⊆ ℂ 
has infinitely many representing complex measures. For this, note that there exists a com-
plex Borel measure � on ℝ such that (see [16, 25, 41])

Let {sn}∞n=0 be an indeterminate Hamburger moment sequence with two distinct represent-
ing measures �1 and �2 (see [13, 46]). Then � ∶= �1 − �2 is a signed Borel measure on ℝ 
such that

As a consequence, we have

Moreover, the mapping ℂ ∋ � ⟼ � + �� is an injection. 	�  ◻

Lemma 4.3  If d ∈ ℕ, R = (R1,… ,Rd) ∈ ℝd
+
 and � is a complex Borel measure on ℝd such 

that supp |𝜇| ⊆ [−R1,R1] ×⋯ × [−Rd,Rd], then

∫
ℝd

x�d�1(x) = ∫
ℝd

x�d�2(x), � ∈ ℤd
+
.

(31)∫
ℝd

p d� = 0, p ∈ ℂ[x1,… , xd].

(32)lim
n→∞

sup
x∈[−R,R]d

|f (x) − pn(x)| = 0.

|||∫
ℝd

fd�
|||
(31)
=

|||∫
ℝd

(f − pn)d�
||| ⩽ ∫[−R,R]d

|f − pn|d|�|

⩽ |�|([−R,R]d) sup
x∈[−R,R]d

|f (x) − pn(x)|, n ∈ ℕ,

�n = ∫
ℝ

xnd�(x), n ∈ ℤ+.

∫
ℝ

xnd�(x) = 0, n ∈ ℤ+.

�n = ∫
ℝ

xnd(� + ��)(x), n ∈ ℤ+, � ∈ ℂ.
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Proof  Since |x�| ⩽ R� for all � ∈ ℤd
+
 and x ∈ supp |�| , we get

	�  ◻

Lemma 4.4  Let d ∈ ℕ, � be a compactly supported complex Borel measure on ℝd and 
�� = ∫

ℝd x
�d�(x) for � ∈ ℤd

+
. Then the following conditions are equivalent:

	 (i)	 {��}�∈ℝd is a Hamburger moment multi-sequence,
	 (ii)	 � is a positive measure.

Moreover, if (i) holds, then {��}�∈ℝd is determinate.

Proof  (i) ⇒ (ii) Let � be a representing measure of {��}�∈ℤd
+
. By Lemma 4.3,

where R1,… ,Rd are as in Lemma    4.3. Thus, by [43, Exercise   4(e), p.   71] (see also 
[45, Problem 1(a), p. 332]), supp 𝜈 ⊆ [−R1,R1] ×… × [−Rd,Rd] . Hence by Lemma   4.1, 
{��}�∈ℝd is determinate, � = � and so � is a positive measure.

The implication (ii) ⇒ (i) is trivial. 	�  ◻

We state now the following fact which we need in the proof of Lemma 4.6. It can be 
proved by induction on the degree of the polynomial in question.

Lemma 4.5  ([23, Exercise 7.2]) If p ∈ ℂ[x] is of degree k ∈ ℤ+ , then

where Δ ∶ ℂℤ+ → ℂℤ+ is the linear transformation given by (Δ�)n = �n+1 − �n for n ∈ ℤ+ 
and � ∈ ℂℤ+ , p̌ ∈ ℂℤ+ is given by p̌n = p(n) for n ∈ ℤ+ and p(m)(0) stands for the mth 
derivative of p at 0.

As shown below, a nonconstant polynomial perturbation of a Hamburger moment 
sequence is never a Hamburger moment sequence.

Lemma 4.6  Let {�n}∞n=0 be a Hamburger moment sequence having a compactly supported 
representing measure � and let p ∈ ℝ[x]. Then the following conditions are equivalent:

	 (i)	 the sequence {�n + p(n)}∞
n=0

 is a Hamburger moment sequence,
	 (ii)	 p is a constant polynomial and �({1}) + p(0) ⩾ 0.

|||∫
ℝd

x�d�(x)
||| ⩽ |�|(ℝd)R� , � ∈ ℤd

+
.

|||∫
ℝd

x�d�(x)
||| ⩽ ∫

ℝd

|x�| d|�|(x) ⩽ |�|(ℝd)R� , � ∈ ℤd
+
.

lim
n→∞

(
∫
ℝd

x2n
j
d�(x)

)1∕2n

= lim
n→∞

|||∫
ℝd

x2n
j
d�(x)

|||
1∕2n

⩽ Rj, j = 1,… , d,

(Δmp̌)n = p(m)(0), n ∈ ℤ+, m ⩾ k,
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Moreover, if (ii) holds, then � + p(0)�1 is a compactly supported representing measure 
of {�n + p(n)}∞

n=0
.

Proof  Without loss of generality we may assume that the polynomial p is nonzero, that is 
k ∶= deg p ⩾ 0.

(i) ⇒ (ii) Define {𝛾̃n}∞n=0 by

Let 𝜇̃ be a representing measure of {𝛾̃n}∞n=0. Applying Lemma 4.3 to {�n}∞n=0 and using the 
fact that supn∈ℤ+

|p(n)|e−n < ∞ , we deduce that the measure 𝜇̃ is compactly supported (see 
the proof of Lemma  4.4). Since, by Lemma 4.5, (Δkp̌)n = p(k)(0) for all n ∈ ℤ+, applying 
Δk to both sides of (33) yields

Together with Lemma 4.1, this implies that

If k ⩾ 1, then by substituting � = {1}, we get p(k)(0) = 0, which gives a contradiction. 
Therefore, p must be a constant polynomial. Substituting k = 0 into (34), we get (ii).

The implication (ii) ⇒ (i) and the “moreover” part are obvious. 	�  ◻

The following is an immediate consequence of Lemma  4.6 applied to �n = 0 and 
� = 0.

Lemma 4.7  For p ∈ ℝ[x], the following conditions are equivalent:

	 (i)	 {p(n)}∞
n=0

 is a Hamburger moment sequence,
	 (ii)	 {p(n)}∞

n=0
 is a Stieltjes moment sequence,

	 (iii)	 p is a constant polynomial and p(0) ⩾ 0.

Remark 4.8  The implication (i) ⇒ (iii) of Lemma 4.7 can be proved more directly. Let � be 
a representing measure of {p(n)}∞

n=0
. Clearly, p(0) = �(ℝ) ⩾ 0. Suppose, on the contrary, 

that k ∶= deg p ⩾ 1. By the Schwarz inequality, we have

Denote by a the leading coefficient of p. The above inequality implies that

which contradicts the fact that a ≠ 0. Therefore, p is a constant polynomial. 	�  ◻

For the sake of completeness, we provide a proof of the following lemma which will be 
used in subsequent parts of this paper.

(33)𝛾̃n = 𝛾n + p(n), n ∈ ℤ+.

∫
ℝ

xn(x − 1)kd𝜇̃(x) = ∫
ℝ

xn(x − 1)kd𝜇(x) + p(k)(0), n ∈ ℤ+.

(34)∫𝛥

(x − 1)kd𝜇̃(x) = ∫𝛥

(x − 1)kd𝜇(x) + p(k)(0)𝛿1(𝛥), 𝛥 ∈ �(ℝ).

p(n)2 =
(
∫
ℝ

x0xnd�(x)
)2

⩽ ∫
ℝ

x0d�(x)∫
ℝ

x2nd�(x) = p(0)p(2n), n ∈ ℤ+.

a2 = lim
n→∞

p(n)2

n2k
⩽ lim

n→∞

p(0)p(2n)

n2k
= 0,
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Lemma 4.9  Let G ∶ �(X) → B(H) be a regular spectral measure on a topological Haus-
dorff space X with compact support, � ∶ X → ℂ be a continuous function and � be a rela-
tively open subset of suppG. Then the spectral integral ∫

�
�dG, which is a bounded opera-

tor, is positive if and only if 𝛴 ⊆ {x ∈ X ∶ 𝜑(x) ⩾ 0}.

Proof  Since supx∈suppG |𝜑(x)| < ∞, ∫
�
�dG ∈ B(H). To prove the “only if” part, assume 

that ∫
�
�dG ⩾ 0. Then ∫

�
�(x)⟨G(dx)h, h⟩ ⩾ 0 for all h ∈ H. Substituting G(�)h in place 

of h with � ∈ �(�) , we see that ∫
�
�(x)⟨G(dx)h, h⟩ ⩾ 0 for all � ∈ �(�) and h ∈ H. Com-

bined with [9, Theorem 1.6.11], this implies that 
⟨
G
(
K�)h, h

⟩
= 0 for all h ∈ H, where 

K� ∶= {x ∈ � ∶ �(x) ∈ ℂ ⧵ℝ+}. Since K� is a relatively open subset of suppG and 
G(K�) = 0 , we conclude that K� = �, which means that 𝛴 ⊆ {x ∈ X ∶ 𝜑(x) ⩾ 0}. The “if” 
part is obvious. 	�  ◻

Lemma 4.10  Let G ∶ �(X) → B(H) be a regular spectral measure on a topological Haus-
dorff space X with compact support and let �n ∶ X → ℝ, n ∈ ℤ+, be continuous functions. 
Then the following conditions are equivalent:

	 (i)	 {�n(x)}
∞
n=0

 is a Stieltjes moment sequence for every x ∈ suppG,

	 (ii)	 {∫
X
�n(x)⟨G(dx)h, h⟩}∞n=0 is a Stieltjes moment sequence for every h ∈ H.

Proof  As in Lemma 4.9, ∫
X
�dG ∈ B(H) whenever � ∶ X → ℂ is continuous.

(i) ⇒ (ii) This can be easily deduced from [14, Theorem 6.2.5] (see also [7, Lemma 3.2]).
(ii)  ⇒  (i) Fix n ∈ ℤ+ and � = (�0,… , �n) ∈ ℂn+1. Define the continuous function 

�� ∶ X → ℂ by

Applying the implication (iii) ⇒ (i) of [14, Theorem 6.2.5], we see that

Hence ∫
X
��dG ⩾ 0, so by Lemma 4.9, ��(x) ⩾ 0 for all x ∈ suppG, that is

A similar argument shows that

Finally, by applying the implication (i) ⇒  (iii) of [14, Theorem  6.2.5], we complete the 
proof. 	�  ◻

𝛷�(x) =

n∑

k,l=0

𝜑k+l(x)𝜆k𝜆̄l, x ∈ X.

∫X

𝛷�(x)⟨G(dx)h, h⟩ =
n�

k,l=0
∫X

𝜑k+l(x)⟨G(dx)h, h⟩𝜆k𝜆̄l ⩾ 0, h ∈ H.

n∑

k,l=0

𝜑k+l(x)𝜆k𝜆̄l ⩾ 0, x ∈ suppG.

n∑

k,l=0

𝜑k+l+1(x)𝜆k𝜆̄l ⩾ 0, x ∈ suppG.
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Before concluding this section, we recall the celebrated criterion for subnormality of 
bounded operators essentially due to Lambert (see [37]; see also [47, Proposition 2.3]).

The following general characterization of subnormal operators fits nicely into the scope of 
the present investigations. It will be used to provide the second proof of Corollary 5.2.

Theorem 4.11  Suppose that �n ∶ X → ℝ, n ∈ ℤ+, are continuous functions on a topo-
logical Hausdorff space X of the form

where each �x is a compactly supported complex Borel measure on ℝ+. Furthermore, 
assume that T ∈ B(H) is an operator for which there exists a regular spectral measure 
G ∶ �(X) → B(H) with compact support such that

Then T is subnormal if and only if �x is a positive measure for every x ∈ suppG.

Proof  By (35) and (37), the operator T is subnormal if and only if the sequence 
{∫

X
�n(x)⟨G(dx)h, h⟩}∞n=0 is a Stieltjes moment sequence for every h ∈ H. By Lemma 4.10, 

the latter holds if and only if {�n(x)}
∞
n=0

 is a Stieltjes moment sequence for every 
x ∈ suppG, which in view of (36) and Lemma 4.4 is equivalent to the fact that �x is a posi-
tive measure for every x ∈ suppG. 	�  ◻

5 � Proof of the main result and some consequences

Before proving Theorem 1.2, which is the main result of this paper, we make the following 
useful observation being a direct consequence of (8) and (10).

where 𝜎♯(|Q|, |E|) = 𝜎(|Q|, |E|) ∩ (ℝ+ × (0,∞)).

Proof of Theorem 1.2  (i) ⇔ (iii) In view of Proposition 3.1(i), (|Q|,  |E|) is a pair of com-
muting positive operators. Let G be the joint spectral measure of (|Q|, |E|). Then, by Theo-
rem 2.1(i) and [43, Theorem 2.18], the measure G is compactly supported and regular. It 
follows from (9) and (21) that

where �n ∶ ℝ2
+
→ ℝ+ is the continuous function defined by

(35)
An operator T ∈ B(H) is subnormal if and only if for every h ∈ H,

{‖Tnh‖2}∞
n=0

is a Stieltjes moment sequence.

(36)�n(x) = ∫
ℝ+

tnd�x(t), n ∈ ℤ+, x ∈ X,

(37)T∗nTn = ∫X

�n(x)G(dx), n ∈ ℤ+.

(38)If T =
[
V E
0 Q

]
∈ QH1,H2

, then E ≠ 0 if and only if 𝜎♯(|Q|, |E|) ≠ �,

(39)�n = ∫
ℝ2

+

�ndG, n ∈ ℤ+,
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Notice that by Proposition  3.10(ii) and (35), the operator T is subnormal if and only if 
{⟨�nh, h⟩}∞n=0 is a Stieltjes moment sequence for every h ∈ H2. Hence in view of 
(39) and Lemma  4.10, T is subnormal if and only if suppG ⊆ 𝛯, where � is the set of 
all points (s, t) ∈ ℝ2

+
 for which {�n(s, t)}

∞
n=0

 is a Stieltjes moment sequence. Therefore, 
according to Theorem 2.1(i), to get the equivalence (i) ⇔  (iii), it is enough to show that 
𝛯 = 𝔻̄+ ∪

(
ℝ+ × {0}

)
. For this purpose, take (s, t) ∈ ℝ2

+
 and consider two cases.

case 1 s = 1.

Then by (40), we have �n(s, t) = 1 + nt2. Applying Lemma 4.7 to p(x) = 1 + t2x , we see 
that (1, t) ∈ � if and only if t = 0.

case 2 s ≠ 1.

Then by (40) we have

This implies that

where �s,t ∶ �(ℝ+) → ℝ is the signed measure of the form

Using Lemma 4.4, we conclude that (s, t) ∈ � if and only if the measure �s,t is positive, or 
equivalently if and only if

If t = 0, then (44) holds. If t ≠ 0, then (44) holds if and only if (s, t) ∈ �̄+. Thus (s, t) ∈ � if 
and only if (s, t) ∈

(
𝔻̄+ ∪

(
ℝ+ × {0}

))
⧵ {(1, 0)}.

Summarizing Cases 1 and 2, we conclude that 𝛯 = 𝔻̄+ ∪
(
ℝ+ × {0}

)
, which gives the 

desired equivalence (i) ⇔ (iii).
(ii) ⇔ (iii) This is obvious due to the fact that 𝜎(|Q|, |E|) ⊆ ℝ2

+
 (see Theorem 2.1(i)).

Before proving the equivalence (ii)  ⇔  (iv), we make necessary preparations. Set 
K = �(|Q|, |E|). Let G|Q| and G|E| be the spectral measures of |Q| and |E|,   respectively. 
Since P is the orthogonal projection of H2 onto H2 ⊖N(|E|) and N(|E|) = R(G|E|({0})), 
we see that

By Proposition 3.1(i), |Q| commutes with |E| so it commutes with G|E|. As a consequence, 
the operators |Q|,  |E| and P commute. Combined with Theorem 2.1(i), this yields

(40)�n(s, t) =

�
1 if n = 0,

t2
�∑n−1

j=0
s2j
�
+ s2n if n ⩾ 1,

(s, t) ∈ ℝ2
+
.

(41)�n(s, t) =
t2

1 − s2
+

(
1 −

t2

1 − s2

)
s2n, n ∈ ℤ+.

(42)�n(s, t) = ∫
ℝ+

xn�s,t(dx), n ∈ ℤ+,

(43)�s,t =
t2

1 − s2
�1 +

(
1 −

t2

1 − s2

)
�s2 .

(44)0 ⩽
t2

1 − s2
⩽ 1.

(45)P = G|E|((0,∞)).
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(ii) ⇒ (iv) Suppose that (ii) holds. Then by (46), we have

which means that (|Q|P, |E|) is a spherical contraction.
(iv) ⇒  (ii) Suppose now that (iv) holds, i.e., (|Q|P)2 + |E|2 ⩽ I. Since IH2

− P is the 
orthogonal projection of H2 onto N(|E|), we deduce that

Observe now that

Combined with (46) and (47), this leads to

Since 𝜎♯(|Q|, |E|) is a relatively open subset of �(|Q|, |E|), we infer from Theorem 2.1(i) 
and Lemma 4.9 that 𝜎♯(|Q|, |E|) ⊆ �̄+.

(iv) ⇔ (v) That M = R(|E|) reduces |Q| and |E| follows from the fact that P commutes 
with |Q| and |E|. Combined with the equations (|Q|P)|N(|E|) = |E|||N(|E|) = 0, this leads to 
the desired equivalence.

(v) ⇔ (vi) This equivalence can be proved in the same way as the equivalence (ii) ⇔ (iii) 
of Proposition 3.6.

The “moreover” part is a direct consequence of (iii) and (10). This completes the proof. 	
� ◻

In the rest of this section we record some consequences of Theorem 1.2. We begin 
with the following corollary which is immediate from Theorem 1.2(v).

Corollary 5.1  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

 and z = (z1, z2, z3) ∈ ℂ3 is such that 
|z1| = 1 and |zj| ⩽ 1 for j = 2, 3. Then Tz ∶=

[ z1V z2E

0 z3Q

]
∈ QH1,H2

. Moreover, if T is subnor-
mal, then so is Tz.

(46)

∫𝜎♯(|Q|,|E|)
(s2 + t2)G(ds, dt) = ∫K∩

(
ℝ+×(0,∞)

)(s2 + t2)G(ds, dt)

= ∫
ℝ+×(0,∞)

(s2 + t2)G(ds, dt)

= ∫
ℝ+

s2G|Q|(ds)G|E|((0,∞)) + ∫(0,∞)

t2G|E|(dt)

= |Q|2G|E|((0,∞)) + |E|2.
= (|Q|P)2 + |E|2.

(|Q|P)2 + |E|2 = ∫𝜎♯(|Q|,|E|)
(s2 + t2)G(ds, dt) ⩽ G(𝜎♯(|Q|, |E|)) ⩽ I,

(47)(|Q|P)2 + |E|2 ⩽ P.

G(𝜎♯(|Q|, |E|)) = G
(
K ∩

(
ℝ+ × (0,∞)

))

= G(ℝ+ × (0,∞)) = G|E|((0,∞))
(45)
= P.

∫𝜎♯(|Q|,|E|)

(
1 − (s2 + t2)

)
G(ds, dt) ⩾ 0.
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The next corollary follows from Proposition 3.6 and Theorem 1.2 (recall that by Propo-
sition 3.4 the contractions of class Q are of norm 1).

Corollary 5.2  Any contraction of class Q is subnormal.

As shown below, Corollary 5.2 can also be deduced from Theorem 4.11.

Second Proof of Corollary 5.2  Assume that T is a contraction. Let G̃ be the joint spec-
tral measure of (|Q|, |E|). Set X = �̄+. It follows from Proposition 3.6 that 𝜎(|Q|, |E|) ⊆ X. 
Hence, by Theorem 2.1(i), the function G ∶ �(X) → B(H) defined by

is a spectral measure. In view of Proposition 3.10(ii) and (39), the condition (37) holds 
with �n as in (40). Moreover, by (42) and (43), the condition (36) holds, where �x is the 
positive Borel measure on ℝ+ given by (43) for x = (s, t) ∈ X ⧵ {(1, 0)} and �(1,0) = �1. 
Hence, by Theorem 4.11, T is subnormal. 	�  ◻

Below we indicate two subclasses of Q for which subnormality is completely character-
ized by contractivity.

Corollary 5.3  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

, where E = �U, � ∈ ℂ ⧵ {0} and 
U ∈ B(H2,H1) is an isometry. Then the following conditions are equivalent:

	 (i)	 T is subnormal,
	 (ii)	 ‖Q‖2 + ���2 ⩽ 1,

	 (iii)	 T is a contraction.

Proof  By (8), we have

Since

we deduce from (48) that

(i) ⇔ (ii) Using the assumption that � ≠ 0 and applying Theorem 1.2, we deduce from (48) 
and (50) that T is subnormal if and only if ‖Q‖2 + ���2 ⩽ 1.

(ii) ⇔ (iii) This is a direct consequence of (50) and Proposition 3.6. 	�  ◻

The following is a variant of Corollary 5.3 with essentially the same proof.

Corollary 5.4  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

, where Q = �U, � ∈ ℂ and U ∈ B(H2) is an 
isometry. If E ≠ 0, then the following conditions are equivalent:

G(𝛥) = 𝛿(1,0)(𝛥)IH1
⊕ �G(𝛥), 𝛥 ∈ �(X),

(48)�(|Q|, |E|) = �(|Q|, |�|IH2
) = �(|Q|) × {|�|}.

(49)max �(�Q�) = ‖�Q�‖ = ‖Q‖,

(50)𝜎(�Q�, �E�) ⊆ 𝔻̄+ if and only if ‖Q‖2 + �𝛼�2 ⩽ 1.
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	 (i)	 T is subnormal,
	 (ii)	 ���2 + ‖E‖2 ⩽ 1,

	 (iii)	 T is a contraction.

6 � A solution to the Cauchy dual subnormality problem in the class Q

We begin by providing a complete answer to the question of when the Cauchy dual of an 
operator of class Q is subnormal.

Theorem 6.1  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

 is left-invertible. Then T ′ is subnormal if 
and only if 𝜎(|Q|, |E|) ⊆

(
ℝ2

+
⧵ 𝔻+

)
∪
(
ℝ+ × {0}

)
.

Proof  Since T is left invertible, we infer from Proposition 3.10(iii) that �1 is invertible and

Therefore, the function � ∶ �(|Q|, |E|) → ℝ2 given by

is well defined and continuous. By Proposition 3.10(iv), T � ∈ QH1,H2
 and

where Ẽ ∶= E𝛺−1
1

 and Q̃ ∶= Q𝛺−1
1
. It is easily seen that

Using the Stone-von Neumann functional calculus and Theorem 2.1(iii), we obtain

Applying Theorem 1.2(iii) to T ′ in place of T and using (51), (52) and (53), we complete 
the proof. 	�  ◻

We now show that within the class Q the Cauchy dual subnormality problem has an 
affirmative solution. What is more surprising is that we can solve it affirmatively even if 
complete hyperexpansivity is replaced by expansivity. For a more detailed discussion of 
this question, see Proposition 9.6 and Example 9.7. The solution is given in Corollary 6.2 
below which is a direct consequence of Proposition 3.6 and Theorem 6.1. Another way of 
obtaining Corollary 6.2 is to apply Proposition 3.10(iv), Corollary 5.2 and the well-known 
and easy to prove fact that the Cauchy dual of an expansive operator is a contraction.

Corollary 6.2  The Cauchy dual of an expansive operator of class Q is a subnormal 
contraction.

(51)𝜎(�Q�, �E�) ⊆
�
(s, t) ∈ ℝ2

+
∶ s2 + t2 ⩾ ‖𝛺−1

1
‖−1

�
.

�(s, t) =
(

s

s2 + t2
,

t

s2 + t2

)
, (s, t) ∈ �(|Q|, |E|),

(52)T � =

[
V Ẽ

0 Q̃

]
,

|Q̃| = |Q|(|Q|2 + |E|2)−1 and |Ẽ| = |E|(|Q|2 + |E|2)−1.

(53)𝜎(|Q̃|, |Ẽ|) = 𝜎(�(|Q|, |E|)) = �(𝜎(|Q|, |E|)).
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Below we recapture the affirmative solution to the Cauchy dual subnormality problem 
for quasi-Brownian isometries.

Corollary 6.3  ([7, Theorem 4.5]) The Cauchy dual of a quasi-Brownian isometry is a sub-
normal contraction.

Proof  Let T ∈ B(H) be a quasi-Brownian isometry. If T is an isometry, then T � = T  is sub-
normal. If T is not an isometry, then by [38, Proposition  5.1], T has the block matrix form 
(1) with entries satisfying the conditions (2), (3) and (4), Q being an isometry. Since each 
isometry is quasinormal, we deduce that T is an operator of class Q and Q∗Q + E∗E ⩾ I . 
Combined with Proposition 3.6 and Corollary 6.2, this implies that T ′ is a subnormal con-
traction, which completes the proof. 	�  ◻

Regarding Corollaries  5.2 and  6.2, it is worth pointing out that there are subnormal 
operators of class Q that are not contractive, and nonexpansive left-invertible operators 
of class Q whose Cauchy dual operators are subnormal. This can be deduced from Theo-
rems 1.2(iii) and 6.1 and Propositions 3.6 and 3.10(iii) via an abstract nonexplicit proce-
dure given in Theorem 3.3. Explicit instances are given in Example 6.4 below which will 
be continued in Sects. 9 and 10 under different circumstances.

Example 6.4  Our goal in this example is to show that 

1◦	� for any � ∈ (1,∞), there exists a subnormal operator T of class Q such that ‖T‖ = �,
2◦	� for any  � ∈ (0, 1), there exists  T =

[
V E
0 Q

]
∈ QH1,H2

 such that T is left-invertible, T ′ is 
subnormal and  ‖�−1

1
‖−1 = � (cf. (21) and  (22)).

 For this purpose, let K be an infinite-dimensional complex Hilbert space and �, � be com-
plex numbers such that � ≠ 0. Take a nonunitary isometry V ∈ B(K) and a quasinormal 
operator Q̃ ∈ B(R(V)). Define the operators Q� ,E� ∈ B(K) by

where P ∈ B(K) is the orthogonal projection of K onto N(V∗). Then the operator Q� is qua-
sinormal. It is easily seen that T�,� ∶=

[ V E�

0 Q�

]
∈ QK (see Definition 1.1). The operators |Q� | 

and |E�| can be represented relative to the orthogonal decomposition K = N(V∗)⊕R(V) 
as  follows:

Since N(V∗) ≠ {0}, we infer from (8) and Remark 2.5 that

According to (6), (54) and (55), the following chain of equivalences holds

Q𝜏 = 𝜏IN(V∗) ⊕ Q̃ and E𝜂 = 𝜂P,

(54)|Q𝜏 | = |𝜏|IN(V∗) ⊕ |Q̃|, |E𝜂| = |𝜂|IN(V∗) ⊕ 0.

(55)
𝜎(|Q𝜏 |, |E𝜂|) = 𝜎(|𝜏|IN(V∗), |𝜂|IN(V∗)) ∪ 𝜎(|Q̃|, 0)

= {(|𝜏|, |𝜂|)} ∪
(
𝜎(|Q̃|) × {0}

)
.
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Combined with (55), Theorem 1.2(ii) implies that

Since by (54),

we deduce from Proposition 3.10(iii) that

In turn, Theorem 6.1 and (55) together yield the following:

It follows from Proposition 3.4 and (55) that (cf. (49))

We are now ready to justify 1◦ and 2◦ . If � ∈ (1,∞), (|𝜏|, |𝜂|) ∈ �̄+ and Q̃ is chosen so that 
‖Q̃‖ = 𝜃, then in view of (57) and (61), T�,� is a subnormal operator of class Q such that 
‖T�,�‖ = �, which proves 1◦ . In turn, if � ∈ (0, 1), (|�|, |�|) ∈ ℝ2

+
⧵ 𝔻+ and Q̃ is chosen to be 

invertible with4 ‖�Q̃�−1‖2 = 𝜗−1 , then in view of (58), (59) and (60), T�,� is a left-invertible 
operator of class Q such that T ′

�,�
 is subnormal and ‖(E∗

�
E� + Q∗

�
Q� )

−1‖−1 = �, which yields 
2◦ . 	�  ◻

7 � Quasi‑Brownian isometries of class Q

In this section we provide a few characterizations of quasi-Brownian isometries of class Q. 
Given an isometry V ∈ B(H), we say that H = H1 ⊕H2 is the von Neumann-Wold decom-
position of H for V if H1 =

⋂∞

n=0
Vn(H) and H2 =

⨁∞

n=0
VnN(V∗) ; recall that H1 reduces 

V to a unitary operator and H2 reduces V to a unilateral shift of multiplicity dimN(V∗) (see 
[49, Theorem I.1.1] for more details). It is clear that

Theorem 7.1  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then the following conditions are equivalent:

(56)�(|Q� |, |E�|) = �(|Q� |) × �(|E�|) ⟺ �(|Q� |) = {|�|} ⟺ |Q� | = |�|I.

(57)T𝜏,𝜂 is subnormal if and only if (|𝜏|, |𝜂|) ∈ �̄+.

(58)E∗
𝜂
E𝜂 + Q∗

𝜏
Q𝜏 = (|𝜏|2 + |𝜂|2)IN(V∗) ⊕ |Q̃|2,

(59)T𝜏,𝜂 is left-invertible if and only if |Q̃| is invertible.

(60)
if T�,� is left-invertible, then T �

�,�
is subnormal if and only if

(|�|, |�|) ∈ ℝ2
+
⧵ 𝔻+.

(61)‖T𝜏,𝜂‖ = max
�
1,
√
�𝜏�2 + �𝜂�2, ‖Q̃‖

�
.

(62)H2 =

∞⨁

n=0

Vn
N((V|H2

)∗).

4  Appropriately translating and rescaling an arbitrary quasinormal operator does the job.
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(i)	 T is a quasi-Brownian isometry,
(ii)	 T is a 2-isometry,
(iii)	 (|Q|2 − I)(|Q|2 + |E|2 − I) = 0,

(iv)	 𝜎(|Q|, |E|) ⊆ 𝕋+ ∪
(
{1} ×ℝ+

)
,

(v)	 there exists an orthogonal decomposition H2 = Hi ⊕Hsi (zero summands are allowed) 
such that

(a)	 Hi and Hsi reduce both Q and |E|, 
(b)	 Q|Hi

 is an isometry and 
(
Q|Hsi

, |E|||Hsi

)
 is a spherical isometry.

Moreover, if Hi and Hsi are as in (v) and Hi = Hu ⊕Hs is the von Neumann–Wold 
decomposition of Hi for Q|Hi

 , then Hu and Hs reduce both Q and |E|,  Q|Hu
 is a unitary 

operator, and Q|Hs
 is a unilateral shift (of finite or infinite multiplicity).

Proof  (i) ⇔  (ii) If T is 2-isometric, then by [42, Lemma 1], T∗T ⩾ I. This together with 
Proposition 3.10(v) shows that (i) and (ii) are equivalent.

(ii)  ⇔  (iii) This equivalence is a straightforward consequence of (4) and 
Proposition 3.10(ii).

(iii) ⇔ (iv) Apply Theorem 2.1(ii) to �(x1, x2) = (x2
1
− 1)(x2

1
+ x2

2
− 1) and use (6).

(iii) ⇒ (v) Since Q is quasinormal, |Q|2 − I commutes with Q and so Hi ∶= N(|Q|2 − I) 
reduces Q to an isometry. Set Hsi = H2 ⊖Hi = R(|Q|2 − I) . Clearly, H2 = Hi ⊕Hsi and 
Hsi reduces Q. Since |Q|2 − I commutes with |E|, we see that Hi, and consequently Hsi, 
reduces |E|. Notice that

which implies that |Q|2 + |E|2 is the identity operator on Hsi . This shows that 
(
Q|Hsi

, |E|||Hsi

)
 

is a spherical isometry.
(v) ⇒ (iii) This implication is a matter of routine verification.
We now prove the “moreover” part. Let Hi = Hu ⊕Hs be the von Neumann-Wold 

decomposition of Hi for Q|Hi
. Since Hu and Hs reduce Q|Hi

 and Hi reduces Q,  we deduce 
that Hu and Hs reduce Q,  the operator Q|Hu

 is unitary and the operator Q|Hs
 is a unilateral 

shift (of finite or infinite multiplicity). Because Hu =
⋂∞

n=0
Qn(Hi), |E|(Hi) ⊆ Hi and Q 

commutes with |E|,  we see that

which implies that Hu reduces |E|. Since Hsi also reduces |E|,  we conclude that Hs reduces 
|E|. This completes the proof. 	�  ◻

Below we show that there are operators of class Q with injective E,  which are not 2-iso-
metries (the case when E = 0 is obvious due to the fact that quasinormal 2-isometries are 
isometric; see [27, Theorem 1 in §2.6.2] and [32, Theorem 3.4]).

Corollary 7.2  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

, where E is an isometry. Then the following 
conditions are equivalent:

	 (i)	 T is a 2-isometry,
	 (ii)	 Q = 0⊕ U, where U ∈ B(H2 ⊖N(Q)) is an isometry.

(|Q|2 + |E|2)(|Q|2 − I) = (|Q|2 − I)(|Q|2 + |E|2) (iii)
= |Q|2 − I,

|E|(Hu) ⊆

∞⋂

n=0

Qn|E|(Hi) ⊆ Hu,
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Proof  In view of the equivalence of (ii) and (iii) in Theorem  7.1, T is a 2-isometry if and 
only if (Q∗Q)2 = Q∗Q . Hence, by [30, Problem  127], T is a 2-isometry if and only if Q is a 
partial isometry. Since Q is quasinormal, we infer from [30, Problem  204] that Q is a par-
tial isometry if and only if Q = 0⊕ U, where U ∈ B(H2 ⊖N(Q)) is an isometry. 	�  ◻

Taking any quasinormal operator Q which is not of the form as in the condition (ii) 
of Corollary 7.2 (e.g., when ‖Q‖ ∉ {0, 1} ), we get an operator of class Q which is not a 
2-isometry.

The key role which plays the Taylor spectrum �(|Q|, |E|) in the present paper raises the 
question of the existence of different orthogonal decompositions of the underlying Hilbert 
space H relative to which a given operator T ∈ B(H) is of class Q, i.e., T has the block 
matrix form (1) with V,  E and Q satisfying (2)-(5). This question is discussed in the fol-
lowing example.

Example 7.3  Set Y = 𝕋+ ∪
(
{1} ×ℝ+

)
. Let �  be any nonempty compact subset of Y such 

that

Set � = max{t ∈ ℝ+ ∶ (1, t) ∈ � }. By (63), 𝛼 > 0. It follows from Theorem 3.3 that there 
exists T =

[
V E
0 Q

]
∈ QH1,H2

 such that

Since 𝛤 ⊆ Y , we infer from Theorem 7.1 that T is a quasi-Brownian isometry. According to 
(63) and Proposition 3.6, T is not an isometry. Thus using [38, Proposition 5.1], we see that 
T =

[
Ṽ Ẽ
0 Q̃

]
∈ QH̃1,H̃2

 relative to an orthogonal decomposition H = H̃1 ⊕ H̃2, where Q̃ is an 
isometry. Consequently,

In view of (63), (64) and Proposition 3.4 (see also Remark 3.5), we have

where

This, together with (65), implies that

Since by (66), (1, �) ∈ �(|Q|, |E|), we infer from (7) that � ∈ �(|E|). Consequently,

We now consider two important cases. First, if �+ ⊆ 𝛤 , then by (64) and (65) we obtain the 
two block matrix representations of T, namely

(63)� ∩
(
{1} × (0,∞)

) ≠ �.

(64)�(|Q|, |E|) = � .

(65)𝜎(|Q̃|, |Ẽ|) = 𝜎(IH̃2
, |Ẽ|) (8)

= {1} × 𝜎(|Ẽ|).

‖T‖ = r(�Q�, �E�) = r(�Q̃�, �Ẽ�) =
√
1 + 𝛼2,

(66)� = max{t ∈ ℝ+ ∶(1, t) ∈ �(|Q|, |E|)}.

(67)𝛼 = max 𝜎(�Ẽ�) = ‖�Ẽ�‖ = ‖Ẽ‖.

(68)‖E‖ = ‖�E�‖ = max 𝜎(�E�) ⩾ 𝛼
(67)
= ‖Ẽ‖.
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and

such that

where Z ∶= �+ ⧵ {(1, 0)}. Second, if 𝛼 > 1, then using (68), the inclusion 𝛤 ⊆ Y  and 
(7), we deduce that � = max �(|E|); hence � = ‖�E�‖ = ‖E‖ which by (67) yields 
𝛼 = ‖E‖ = ‖Ẽ‖. 	�  ◻

8 � Brownian isometries of class Q

The aim of this section is to give a deeper insight into the structure of Brownian iso-
metries of class Q . We begin by proving two preparatory lemmata which are of some 
independent interest.

Lemma 8.1  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then the operators |Q|, |E| and |Q∗| commute 
and the following conditions are equivalent:

	 (i)	 T is a Brownian isometry,
	 (ii)	 (|Q|2 − I)(|Q|2 + |E|2 − I) = 0 and (|Q∗|2 − I)(|Q|2 + |E|2 − I)2 = 0.

Proof  That the operators |Q|, |E| and |Q∗| commute can be deduced from (4) and 
(5) via the square root theorem (cf. Proposition  3.1(i)). Hence, by the equiva-
lence (ii) ⇔  (iii) of Theorem  7.1, it suffices to show that ΔTΔT∗ΔT = 0 if and only if 
(|Q∗|2 − I)(|Q|2 + |E|2 − I)2 = 0. It is a routine matter to verify that

where �1 = |Q|2 + |E|2. As a consequence, we get the desired equivalence. 	�  ◻

Lemma 8.2  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

 is a quasi-Brownian isometry. Let 
H2 = Hi ⊕Hsi be an orthogonal decomposition of H2 (zero summands are allowed) sat-
isfying the conditions (a) and (b) of Theorem 7.1 and let Hi = Hu ⊕Hs be the von Neu-
mann–Wold decomposition of Hi for Q|Hi

. Then T is a Brownian isometry if and only if 
|E|||Hs

= 0.

T =

[
V E

0 Q

]
∈ QH1,H2

relative to H = H1 ⊕H2

T =

[
Ṽ Ẽ

0 Q̃

]
∈ QH̃1,H̃2

relative to H = H̃1 ⊕ H̃2,

Z ⊆ 𝜎(|Q|, |E|) and Z ∩ 𝜎(|Q̃|, |Ẽ|) = �,

ΔTΔT∗ΔT =

[
0 0

0 (�1 − I)(|Q∗|2 − I)(�1 − I)

]

=

[
0 0

0 (|Q∗|2 − I)(�1 − I)2

]
,
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Proof  Suppose T is a Brownian isometry. Then by Lemma 8.1, we have

where As ∶= |E|||Hs
 and P ∈ B(Hs) is the orthogonal projection of Hs onto N(Q∗

s
) 

with Qs ∶= Q|Hs
 (by the moreover part of Theorem  7.1, Hs reduces Q and |E|). 

Because (PAs)
∗ = PAs , we infer from (69) that PAs = 0. As a consequence, we see 

that R(As) ⊆ N(Q∗
s
)⟂ . Since Qs commutes with As, so does Q∗

s
 and consequently 

As(N(Q∗
s
)) ⊆ N(Q∗

s
). Putting all of this together, we see that As(N(Q∗

s
)) = {0}. Therefore, 

because Q commutes with |E|,  we deduce that |E|QnN(Q∗
s
) = {0} for all n ∈ ℤ+. Since by 

(62), Hs =
⨁∞

n=0
QnN(Q∗

s
) , we conclude that |E|||Hs

= 0.

To prove the converse implication, assume that |E|||Hs
= 0. It follows from Theorem  7.1 

that H2 = Hu ⊕Hs ⊕Hsi , the spaces Hu, Hs and Hsi reduce both Q and |E|,  Q|Hu
 is uni-

tary, Q|Hs
 is a unilateral shift and 

(
Q|Hsi

, |E|||Hsi

)
 is a spherical isometry. Now, straightfor-

ward calculations show that the condition (ii) of Lemma 8.1 holds. Hence by this lemma, T 
is a Brownian isometry. This completes the proof. 	�  ◻

We are now ready to characterize Brownian isometries of class Q.

Theorem 8.3  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then the following conditions are equivalent:

	 (i)	 T is a Brownian isometry,
	 (ii)	 (|Q|2 − I)(|Q|2 + |E|2 − I) = 0 and (|Q∗|2 − I)(|Q|2 + |E|2 − I) = 0,

	 (iii)	 there exists an orthogonal decomposition H2 = Hu ⊕Hs ⊕Hsi (zero summands are 
allowed) such that

(a)	 Hu, Hs and Hsi reduce both Q and |E|, 
(b)	 Q|Hu

 is a unitary operator and Q|Hs
 is a unilateral shift (of finite or infinite multi-

plicity),
(c)	

(
Q|Hsi

, |E|||Hsi

)
 is a spherical isometry,

(d)	 |E|||Hs
= 0.

Proof  (i) ⇒  (iii) Since any Brownian isometry is a quasi-Brownian isometry, it follows 
from Theorem  7.1 that there exists an orthogonal decomposition H2 = Hi ⊕Hsi (zero 
summands are allowed) satisfying the conditions (a) and (b) of Theorem  7.1(v). Let 
Hi = Hu ⊕Hs be the von Neumann–Wold decomposition of Hi for Q|Hi

. By the moreover 
part of Theorem 7.1, the orthogonal decomposition H2 = Hu ⊕Hs ⊕Hsi satisfies the con-
ditions (a), (b) and (c). Applying Lemma 8.2, we conclude that (d) holds.

(iii) ⇒ (ii) This can be shown by straightforward calculations.
(ii) ⇒ (i) This implication is a direct consequence of Lemma 8.1. 	�  ◻

The following corollary is a consequence of Theorem 7.1, Lemma 8.2 and the unique-
ness part of [49, Theorem I.1.1] (see also the proof of Theorem 8.3).

Corollary 8.4  Suppose T =
[
V E
0 Q

]
∈ QH1,H2

. Then the following conditions are equivalent:

	 (i)	 T is a quasi-Brownian isometry which is not a Brownian isometry,
	 (ii)	 there exists an orthogonal decomposition H2 = Hu ⊕Hs ⊕Hsi (zero summands are 

allowed) such that

(69)0 = (I − |Q∗|2)(|Q|2 + |E|2 − I)2|Hs
= PA4

s
= (PAs)

4,
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(a)	 Hu, Hs and Hsi reduce both Q and |E|, 
(b)	 Q|Hu

 is a unitary operator and Q|Hs
 is a unilateral shift (of finite or infinite multi-

plicity),
(c)	

(
Q|Hsi

, |E|||Hsi

)
 is a spherical isometry,

(d)	 |E|||Hs
≠ 0.

As shown below, the class of Brownian isometries is the only subclass of Q considered 
in this paper which cannot be characterized by the Taylor spectrum �(|Q|, |E|) of the pair 
(|Q|, |E|).

Remark 8.5  Notice that the condition (ii) of Theorem 8.3 is equivalent to the conjunction 
of the following two inclusions

where �(|Q|, |E|, |Q∗|) stands for the Taylor spectrum of (|Q|, |E|, |Q∗|) (recall that the 
operators |Q|, |E| and |Q∗| commute; see Lemma 8.1). In view of Theorem 7.1, it remains 
to show that the equation (|Q∗|2 − I)(|Q|2 + |E|2 − I) = 0 is equivalent to the second inclu-
sion in (70). However, this is immediate from (6) and the spectral mapping theorem applied 
to the polynomial p in three variables given by

We conclude this remark by reexamining [7, Example  4.4]. Let V ∈ B(H1), E ∈ B(H2,H1) 
and Q ∈ B(H2) be isometric operators such that Q is not unitary and V∗E = 0. As shown in 
[7, Example  4.4], the operator T defined by (1) is a quasi-Brownian isometry (obviously of 
class Q ) which is not a Brownian isometry. Clearly, the first inclusion in (70) holds. Hence 
by the above discussion the second one does not hold. The latter also follows directly from 
the equality �(|Q|, |E|, |Q∗|) = {1} × {1} × {0, 1} which is a consequence of the projec-
tion property of the Taylor spectrum. Regarding Corollary 8.4, note that H2 = Hu ⊕Hs, 
Hsi = {0}, Hs ≠ {0} and |E|||Hs

≠ 0. Summarizing, the operator T is a quasi-Brown-
ian isometry which is not a Brownian isometry and �(|Q|, |E|) = {(1, 1)}. On the other 
hand, if T̃  is any nonisometric Brownian isometry, then it is a Brownian-type operator of 
class U (see the remark just after Definition 1.1), i.e., T̃ =

[
Ṽ Ẽ
0 Q̃

]
∈ QH̃1,H̃2

 relative to an 
orthogonal decomposition H̃1 ⊕ H̃2, where Q̃ is a unitary operator. As a consequence, 
𝜎(|Q̃|, |Ẽ|) = {(1, 1)}. This means that Brownian isometries cannot be characterized by the 
Taylor spectrum �(|Q|, |E|). 	�  ◻

9 � m‑isometries and related operators of class Q

In this section we characterize m-contractions, m-isometries and m-expansions of class Q 
by using the Taylor spectrum approach.

Given an integer m ⩾ 1 and an operator T ∈ B(H), we write

(70)
𝜎(|Q|, |E|) ⊆ 𝕋+ ∪ ({1} ×ℝ+),

𝜎(|Q|, |E|, |Q∗|) ⊆
(
𝕋+ ×ℝ+

)
∪ (ℝ2

+
× {1}),

p(s, t, r) = (r2 − 1)(s2 + t2 − 1).
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Recall that an operator T ∈ B(H) is

•	 m-contractive if Bm(T) ⩾ 0,

•	 m-expansive if Bm(T) ⩽ 0,

•	 m-isometric if T is m-contractive and m-expansive, that is Bm(T) = 0,

•	 completely hyperexpansive if T is m-expansive for all m ⩾ 1.

The above-mentioned concepts can be attributed to many authors, such as Agler [1] 
(m-contractivity), Richter [42] (2-expansivity), Aleman [6] (complete hyperexpansivity for 
special operators), Agler [2] (m-isometricity) and Athavale [11] (m-expansivity and com-
plete hyperexpansivity). It is well known that a 2-isometry is m-isometric for every integer 
m ⩾ 2 (see [3–5, Paper I, §1]). Combined with [42, Lemma 1(a)], this implies that each 
2-isometry is completely hyperexpansive. On the other hand, Agler proved in [1, Theo-
rem 3.1] that an operator T ∈ B(H) is a subnormal contraction if and only if it is completely 
hypercontractive, i.e., T is m-contractive for every positive integer m.

The expression Bm(T) for an operator T of class Q can be described as follows.

Lemma 9.1  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

. Then

where �m ∶ ℝ2
+
→ ℝ are polynomial functions defined by

Proof  For m ∈ ℕ, we set �m =
∑m

j=0
(−1)j

�
m

j

�
�j, where �j are as in (21). In view of Propo-

sition 3.10(ii), we have

Let G be the joint spectral measure of (|Q|, |E|). It follows from (39) and (40)  that

where 𝜓̃m ∶ ℝ2
+
→ ℝ are continuous functions defined by

Now we show that 𝜓̃m = 𝜓m for any m ∈ ℕ. For this, note that

Bm(T) =

m∑

j=0

(−1)j
(
m

j

)
T∗jTj.

Bm(T) =

[
0 0

0 �m(|Q|, |E|)

]
, m ∈ ℕ,

(71)�m(s, t) =
(
1 − s2 − t2

)
(1 − s2)m−1, (s, t) ∈ ℝ2

+
, m ∈ ℕ.

(72)Bm(T) =

[
0 0

0 �m

]
, m ∈ ℕ.

(73)𝛬m = ∫
ℝ2

+

𝜓̃mdG, m ∈ ℕ,

𝜓̃m(s, t) =

m∑

j=0

(−1)j
(
m

j

)
𝜑j(s, t), (s, t) ∈ ℝ2

+
, m ∈ ℕ.
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Hence, we get

In turn if s ≠ 1 , we can argue as follows:

Putting all this together we see that 𝜓̃m = 𝜓m for all m ∈ ℕ. Combined with (9), (72) and 
(73), this completes the proof. 	�  ◻

We are now in a position to characterize m-contractivity, m-isometricity and 
m-expansivity of operators of class Q . The spectral regions for m-contractivity and 
m-expansivity of operators of class Q are illustrated in Figs. 2 and 3 (for the case m = 1, 
see Proposition 3.6).

Theorem 9.2  Assume that T =
[
V E
0 Q

]
∈ QH1,H2

 and m ⩾ 2 is an integer. Then the following 
assertions hold:

	 (i)	 T is m-contractive if and only if

	 (ii)	 T is m-expansive if and only if

	 (iii)	 T is m-isometric if and only if 𝜎(|Q|, |E|) ⊆ 𝕋+ ∪
(
{1} ×ℝ+

)
.

Proof  Since the proofs of (i) and (ii) are similar, we justify only (i). Let G be the joint 
spectral measure of the pair (|Q|,  |E|). Observe that by (9) and Lemma 9.1, Bm(T) ⩾ 0 if 
and only if ∫

ℝ2
+
�mdG ⩾ 0. By Theorem 2.1(i) and Lemma 4.9, the latter holds if and only if

Using (71), we verify that

𝜓̃m(1, t)
(40)
= t2

m∑

j=1

(−1)j
(
m

j

)
j = −mt2

m−1∑

j=0

(−1)j
(
m − 1

j

)
, t ∈ ℝ+, m ∈ ℕ.

𝜓̃m(1, t) =

{
−t2 if m = 1,

0 if m ⩾ 2,
t ∈ ℝ+.

𝜓̃m(s, t)
(41)
=

m∑

j=0

(−1)j
(
m

j

)(
t2

1 − s2
+

(
1 −

t2

1 − s2

)
s2j
)

=

(
1 −

t2

1 − s2

) m∑

j=0

(−1)j
(
m

j

)
s2j

= (1 − s2 − t2)(1 − s2)m−1, (s, t) ∈ (ℝ+ ⧵ {1}) ×ℝ+, m ∈ ℕ.

𝜎(|Q|, |E|) ⊆
{

𝔻̄+ ∪
(
{1} ×ℝ+

)
if m is odd,

𝔻̄+ ∪
(
[1,∞) ×ℝ+

)
if m is even,

𝜎(|Q|, |E|) ⊆
{

ℝ2
+
⧵ 𝔻+ if m is odd,(

ℝ2
+
⧵ 𝔻+

)
∩
(
[0, 1] ×ℝ+

)
if m is even,

(74)𝜎(|Q|, |E|) = suppG ⊆
{
(s, t) ∈ ℝ2

+
∶ 𝜓m(s, t) ⩾ 0

}
.
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Combined with (74), this yields (i). Finally, (iii) can be deduced from (i) and (ii). This 
completes the proof. 	�  ◻

Corollary 9.3  Assume that T =
[
V E
0 Q

]
∈ QH1,H2

 and m ⩾ 2 is an integer. Then the following 
assertions hold:

(i)	 if m is odd (resp., even), then T is m-contractive if and only if T is 3-contractive (resp., 
2-contractive),

(ii)	 if m is odd (resp., even), then T is m-expansive if and only if T is expansive (resp., 
2-expansive),

(iii)	 T is m-isometric if and only if T is 2-isometric,
(iv)	 T is completely hypercontractive if and only if T is contractive,
(v)	 T is completely hyperexpansive if and only if T is 2-expansive.

Proof  Use Theorem 9.2 and additionally Proposition 3.6 in the cases (ii), (iv) and (v). 	�  ◻

The example below illustrates Theorem 9.2.

{
(s, t) ∈ ℝ2

+
∶ 𝜓m(s, t) ⩾ 0

}
=

{
𝔻̄+ ∪

(
{1} ×ℝ+

)
if m is odd,

𝔻̄+ ∪
(
[1,∞) ×ℝ+

)
if m is even.

Fig. 2   Spectral region for m-contractivity of operators of class Q

Fig. 3   Spectral region for m-expansivity of operators of class Q
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Example 9.4  (Example 6.4 continued) Let T�,� be as in Example 6.4. Assume that m ⩾ 2. 
Using (55), Proposition 3.6 and Theorem 9.2, we get the following: 

1◦	� if m is odd, then the operator T�,� is m-contractive if and only if Q̃ is contractive and 
(|𝜏|, |𝜂|) ∈ 𝔻̄+ ∪

(
{1} ×ℝ+

)
,

2◦	� if m is even, then the operator T�,� is m-contractive if and only if 
(|𝜏|, |𝜂|) ∈ 𝔻̄+ ∪

(
[1,∞) ×ℝ+

)
,

3◦	� if m is odd, then the operator T�,� is m-expansive if and only if T�,� is expansive, or 
equivalently if and only if Q̃ is expansive and (|�|, |�|) ∈ ℝ2

+
⧵ 𝔻+,

4◦	� if m is even, then the operator T�,� is m-expansive if and only if Q̃ is an isometry and 
(|�|, |�|) ∈

(
ℝ2

+
⧵ 𝔻+

)
∩
(
[0, 1] ×ℝ+

)
,

5◦	� the operator T�,� is m-isometric if and only if Q̃ is an isometry and 
(|�|, |�|) ∈ 𝕋+ ∪

(
{1} ×ℝ+

)
,

6◦	� the operator T�,� is completely hypercontractive if and only if Q̃ is a contraction and 
(|𝜏|, |𝜂|) ∈ �̄+,

7◦	� the operator T�,� is completely hyperexpansive if and only if Q̃ is an isometry and 
(|�|, |�|) ∈

(
ℝ2

+
⧵ 𝔻+

)
∩
(
[0, 1] ×ℝ+

)
. 	�  ◻

Remark 9.5  Note that in view of [29, Theorem 2.5], if m ⩾ 2 is even, then any m-expansive 
operator is (m − 1)-expansive, while if m ⩾ 3 is odd, then any m-contractive operator is 
(m − 1)-contractive. Using the assertions 1◦– 4◦ of Example 9.4 one can easily show that 
none of these implications can be reversed. It is well known that quasi-Brownian isometries 
are 2-isometric, 2-isometries are completely hyperexpansive, complete hyperexpansions 
are 2-expansive, and finally 2-expansions are expansive (see [42, Lemma 1]). In general, 
none of these implications can be reversed. Using Remark 8.5, Theorem 7.1, Corollary 9.3 
and Example 9.4, one can show that in the class Q , these relations take the following form:

We refer the reader to Fig.  4 describing spectral regions for the above-mentioned sub-
classes of the class Q (except for Brownian isometries, cf. Remark 8.5). 	�  ◻

A recent result due to Badea and Suciu (see [12, Theorem  3.4]), which states that a 
ΔT-regular 2-expansive operator T is completely hyperexpansive if and only if its Cauchy 
dual T ′ is subnormal, solves in the affirmative the Cauchy dual subnormality problem 
in the class of ΔT-regular 2-expansions (see [7, Theorem  4.5] for an earlier solution of 
this problem in the class of ΔT-regular 2-isometries). It is well known and easy to prove 
that the relation T ⟷ T ′ is a one-to-one correspondence between expansive operators 
and left-invertible contractions. When restricted to operators of class Q, this correspond-
ence becomes a bijection between expansions and left-invertible subnormal contractions 
(see Corollary 6.2). In view of Proposition 3.10(v), expansions T of class Q are always ΔT

-regular. This suggests that there may exist ΔT-regular operators outside of the class of 
completely hyperexpansive ones for which the Cauchy dual subnormality problem has an 

{
Brownian isometries in Q

} ⊊ {
quasi-Brownian isometries in Q

}

=
{
2-isometries in Q

}

⊊ {
complete hyperexpansions in Q

}

=
{
2-expansions in Q

}

⊊ {
expansions in Q

}
.
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affirmative solution. This is really the case as shown in Example 9.7 below which is based 
on Proposition 9.6. The proposition itself is a direct consequence of Propositions 3.6 and 
3.10(v), Corollary 6.2 and Theorem 9.2(ii).

Proposition 9.6  If T =
[
V E
0 Q

]
∈ QH1,H2

 is such that 𝜎(|Q|, |E|) ⊆ ℝ2
+
⧵ 𝔻+ and 

�(|Q|, |E|) ∩
(
(1,∞) ×ℝ+

) ≠ �, then T is a ΔT-regular expansion which is not 2-expansive 
(so not completely hyperexpansive) and whose Cauchy dual T ′ is a subnormal contraction.

To have a concrete example of an operator satisfying the assumptions of Proposition 9.6, 
we revisit Example 6.4 again.

Example 9.7  (Example  6.4 continued) Let T�,� be as in Example  6.4. Suppose that Q̃ is 
expansive and (|�|, |�|) ∈ (1,∞) × (0,∞). Applying (6) and (55), we see that the opera-
tor T�,� satisfies the hypothesis of Proposition 9.6. As a consequence, T�,� is a ΔT�,�

-regular 
expansion of class Q such that the Cauchy dual T ′

�,�
 of T�,� is a subnormal contraction but 

T�,� itself is not 2-expansive (so not completely hyperexpansive). 	�  ◻

10 � Linear operator pencils built over the class Q

In this section we study linear operator pencils that are associated with operators of class 
Q. By a linear operator pencil (see [28]) we mean a mapping

where A,B ∈ B(H). Given T =
[
V E
0 Q

]
∈ QH1,H2

, we define the linear operator pencil T†(�) 
by

Clearly, T†(�) ∈ QH1,H2
 for every � ∈ ℂ. Observe that T†(�) can be regarded as the pertur-

bation of the quasinormal operator 
[
V 0
0 Q

]
 by the nilpotent operator �

[
0 E
0 0

]
 . It is worth point-

ing out that the operators 
[
V 0
0 Q

]
 and 

[
0 E
0 0

]
 do not commute in general (they commute if and 

� ∶ ℂ ∋ � ⟼ A + �B ∈ B(H),

T†(�) =

[
V �E
0 Q

]
=

[
V 0

0 Q

]
+ �

[
0 E

0 0

]
, � ∈ ℂ.

Fig. 4   Spectral regions for some subclasses of the class Q
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only if VE = EQ. ) Note that by Corollary 5.1, T†(�) is subnormal if and only if T†(|�|) is 
subnormal. This justifies why we concentrate on describing the set S †

(T) given by

If, moreover, E ≠ 0 and 𝜎♯(|Q|, |E|) ⊆ [0, 1] × (0,∞), then we define �†(T) ∈ ℝ+ by (cf. 
(38))

Using �†(T) we can describe the set S †
(T) explicitly.

Theorem 10.1  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

 and E ≠ 0. Then the following assertions 
hold:

	 (i)	 0 ∈ S
†(T),

	 (ii)	 S
†(T) ⧵ {0} ≠ � if and only if 𝜎♯(|Q|, |E|) ⊆ [0, 1] × (0,∞) and 𝛽†(T) > 0,

	 (iii)	 if S †(T) ⧵ {0} ≠ �, then

Moreover, if 𝜎♯(|Q|, |E|) ⊆ [0, 1] × (0,∞), then

Proof  First observe that T†(0) is a quasinormal operator and thus by [19, Proposi-
tion II.1.7], T†(0) is subnormal, which yields (i). In view of (i) and Theorems 2.1(iii) and 
1.2(ii), we have

It is now a routine matter to show that for any � ∈ S
†(T), [0, 𝛼] ⊆ S

†
(T).

(ii) and (iii) Suppose that � ∈ S
†(T) ⧵ {0}. Then by (77), we have

As a consequence, 𝜎♯(|Q|, |E|) ⊆ [0, 1] × (0,∞) and 0 < supS †
(T) ⩽ 𝛽†(T). Clearly, by 

(77), �†(T) ∈ S
†(T) ⧵ {0}. Hence, in view of the discussion in the previous paragraph, 

(76) holds.
In turn, if 𝜎♯(|Q|, |E|) ⊆ [0, 1] × (0,∞) and 𝛽†(T) > 0, then as above we verify that 

�†(T) ∈ S
†(T) ⧵ {0}.

The “moreover” part follows from (i) and (ii). This completes the proof. 	� ◻

There is another possibility of associating a linear operator pencil with an operator of 
class Q. Namely, given T =

[
V E
0 Q

]
∈ QH1,H2

, we define the pencil T†(⋅) by

S
†(T) =

{
� ∈ ℝ+ ∶ T†(�) is subnormal

}
.

(75)𝛽†(T) = inf
(s,t)∈𝜎♯(|Q|,|E|)

√
1 − s2

t2
.

(76)S
†
(T) =

[
0, �†(T)

]
.

S
†
(T) = {0} ⟺ �†(T) = 0.

(77)S
†(T) = {0} ∪

{
𝛼 ∈ (0,∞) ∶ s2 + 𝛼2t2 ⩽ 1, ∀(s, t) ∈ 𝜎♯(|Q|, |E|)

}
.

𝛼2 ⩽
1 − s2

t2
, (s, t) ∈ 𝜎♯(|Q|, |E|).
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and the corresponding set S†(T) by

As before, by Corollary 5.1, T†(�) is subnormal if and only if T†(|�|) is subnormal, so we 
can concentrate on describing the set S†(T) . Obviously, T†(�) ∈ QH1,H2

 for every � ∈ ℂ. 
The operator T†(�) can be regarded as the perturbation of 

[
V E
0 0

]
 by the quasinormal operator 

�
[
0 0
0 Q

]
 (in view of Theorem 10.2(i), 

[
V E
0 0

]
 is subnormal provided S†(T) ≠ � ). Note also that

Indeed, the former equivalence is a consequence of straightforward calculations, while the 
latter follows from the identities:

where (∗) is a consequence of Proposition 3.1(i).
We are now in a position to describe the set S†(T).

Theorem 10.2  Suppose that T =
[
V E
0 Q

]
∈ QH1,H2

. Set

Then the following assertions hold:

	 (i)	 S†(T) ≠ � if and only if ‖E‖ ⩽ 1,

	 (ii)	 if  ‖E‖ ⩽ 1 and 𝜎♭(|Q|, |E|) = �, then S†(T) = ℝ+,

	 (iii)	 if  ‖E‖ ⩽ 1 and 𝜎♭(|Q|, |E|) ≠ �, then S†(T) = [0, �†(T)], where5 

Proof  It follows from Theorems 2.1(iii) and 1.2(ii) that

Recall that the set 𝜎♯(|Q|, |E|) may be empty (see (38)). It is easily seen that

(i) In view of (38) and (80), there is no loss of generality in assuming that 
𝜎♯(|Q|, |E|) ≠ �. Suppose that S†(T) ≠ �. Then, by (7) and (80), 𝜎(|E|) ⧵ {0} ⊆ [0, 1], 
hence by (6), ‖E‖ ⩽ 1. Conversely, if ‖E‖ ⩽ 1, then by (6), (7) and (80), 0 ∈ S†(T).

T†(�) =

[
V E

0 �Q

]
=

[
V E

0 0

]
+ �

[
0 0

0 Q

]
, � ∈ ℂ,

S†(T) =
{
� ∈ ℝ+ ∶ T†(�) is subnormal

}
.

(78)
[
V E
0 0

]
and

[
0 0
0 Q

]
commute ⟺ EQ = 0 ⟺ |Q||E| = 0.

(|Q||E|)2 (∗)
= Q∗QE∗E

(4)
= (EQ)∗EQ,

𝜎♭(|Q|, |E|) = 𝜎(|Q|, |E|) ∩
(
(0,∞) × (0,∞)

)
.

(79)𝛽†(T) ∶= inf
(s,t)∈𝜎♭(|Q|,|E|)

√
1 − t2

s2
.

(80)S†(T) =
{
𝛼 ∈ ℝ+ ∶ 𝛼2s2 + t2 ⩽ 1, ∀(s, t) ∈ 𝜎♯(|Q|, |E|)

}
.

(81)[0, 𝛼] ⊆ S†(T) whenever 𝛼 ∈ S†(T).

5  It follows from ‖E‖ ⩽ 1, (6) and (7) that 𝜎♭(|Q|, |E|) ⊆ (0,∞) × [0, 1], which implies that �†(T) is well 
defined.
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(ii) Since ‖E‖ ⩽ 1, we infer from (6) that 𝜎(|E|) ⊆ [0, 1]. Hence, if 
(s, t) ∈ 𝜎♯(|Q|, |E|) ∩ ({0} ×ℝ+), then by using (7) we see that �2s2 + t2 ⩽ 1 for all � ∈ ℝ+. 
By assumption

and consequently, by (80), S†(T) = ℝ+.

(iii) Suppose that ‖E‖ ⩽ 1 and 𝜎♭(|Q|, |E|) ≠ �. If � ∈ S†(T), then by (80), we have

which implies that supS†(T) ⩽ �†(T). Now we prove the opposite inequality. As in (ii), we 
see that if (s, t) ∈ 𝜎♯(|Q|, |E|) ∩ ({0} ×ℝ+), then �2s2 + t2 ⩽ 1 for all � ∈ ℝ+. In turn, if

then the inequality �2s2 + t2 ⩽ 1 holds for � = �†(T). Therefore, by (80), �†(T) ∈ S†(T). 
Combined with (81), this implies that S†(T) = [0, �†(T)], which completes the proof. 	�  ◻

Remark 10.3  Concerning Theorem  10.2, it is worth mentioning that according to the 
assertions (11) and (78) we have

In other words, the set 𝜎♭(|Q|, |E|) is empty if and only if the perturbation T†(�) of 
[
V E
0 0

]
 

commutes with the perturbing operator �
[
0 0
0 Q

]
 for some � ∈ ℂ ⧵ {0}. 	�  ◻

We now show that for an arbitrary b ∈ ℝ+, there exists T =
[
V E
0 Q

]
∈ QH1,H2

 such that 
S

†
(T) = [0, b]. Similarly, for a given b ∈ ℝ+ ∪ {∞}, we can find T =

[
V E
0 Q

]
∈ QH1,H2

 
such that S†(T) = [0, b] ∩ℝ+.

Example 10.4  (Example 6.4 continued) Let T�,� be as in Example 6.4. We begin by show-
ing that for every b ∈ ℝ+, there exist � ∈ ℂ and � ∈ ℂ ⧵ {0} such that S †

(T�,�) = [0, b]. 
Indeed, it follows from (55) that 𝜎♯(|Q𝜏 |, |E𝜂|) = {(|𝜏|, |𝜂|)}. Assume additionally that 
|�| ⩽ 1. Combined with (75), this gives

First, suppose that b = 0. Then by considering the case |�| = 1 we infer from the moreover 
part of Theorem 10.1 that S †

(T�,�) = [0, b]. Let now b > 0. Then by taking into account 
the case |𝜏| < 1 we deduce from (82) and Theorem 10.1 that S †

(T�,�) =
[
0, �†(T�,�)

]
. This 

together with (82) shows that there exists � ∈ ℂ ⧵ {0} such that �†(T�,�) = b.

Similarly, using Theorem 10.2, one can show that for every b ∈ ℝ+ ∪ {∞}, there exist 
parameters � and � such that S†(T�,�) = [0, b] ∩ℝ+. We leave the details to the reader. 	�  ◻

We conclude this paper by commenting the contents of this section. In view of Theo-
rem 9.2, the technique of using the Taylor spectrum developed here can also be applied 
to describe the sets of the form

𝜎♯(|Q|, |E|) ∩
(
(0,∞) ×ℝ+

)
= 𝜎♭(|Q|, |E|) = �,

𝛼2 ⩽
1 − t2

s2
, (s, t) ∈ 𝜎♭(|Q|, |E|),

(s, t) ∈ 𝜎♯(|Q|, |E|) ∩ ((0,∞) ×ℝ+) = 𝜎♭(|Q|, |E|),

𝜎♭(|Q|, |E|) = � ⟺ |Q||E| = 0 ⟺

[
V E

0 0

]
and

[
0 0

0 Q

]
commute.

(82)�†(T�,�) =

√
1 − |�|2
|�|2

.
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where C  is one of the classes of operators appearing in Sect. 9 including m-contractions, 
m-expansions, etc. As the number of cases to be considered is large (in particular depends 
on the parity of m) and each of them requires separate treatment, we decided not to include 
details in this paper.
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