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Abstract

In this paper, we study the role played by queue length inébion in the operation of flow control and server
allocation policies. We first consider a simple model of agkErserver queue with congestion-based flow control.
The input rate at any instant is decided by a flow control pplimased on the queue occupancy. We identify a
simple ‘two threshold’ control policy, which achieves thesbpossible exponential scaling for the queue congestion
probability, for any rate of control. We show that when thatcol channel is reliable, the control rate needed to
ensure the optimal decay exponent for the congestion pildgatan be made arbitrarily small. However, if control
channel erasures occur probabilistically, we show thetemxé® of a critical erasure probability threshold beyond
which the congestion probability undergoes a drastic amsedue to the frequent loss of control packets. We also
determine the optimal amount of error protection to applythe control signals by using a simple bandwidth
sharing model. Finally, we show that the queue length baseeksallocation problem can also be treated using
this framework, and that the results obtained for the flowtr@brsetting can also be applied to the server allocation

case.

Index Terms

Congestion control, resource allocation, queue lengtbrinétion, buffer overflow probability, large deviations.

I. INTRODUCTION

Network control plays a crucial role in the operation of medeommunication networks, and consists of several
functions, such as scheduling, routing, flow control, arsbuece allocation. A primary goal of network control
is to ensure stability [10], [12]. Furthermore, network trohis used to provide QoS guarantees on metrics such
as throughput, delay and fairness. These objectives a@lysiccomplished through a combination of resource
allocation and flow control. The control decisions oftenetaikto account the instantaneous channel quality of the
various links, the queue backlogs, and the quality of Ser¢@@oS) requirements of the different flows. In this

paper, we study the role played by queue length informatiofioiv control and resource allocation policies.

Flow control and resource allocation play an important linl&eeping congestion levels in the network within

acceptable limits. Flow control involves regulating theeraf the incoming exogenous traffic to a queue, depending
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on its congestion level, see [9] for example. Resource atioa, on the other hand, involves assigning larger
service rates to the queues that are congested, and vise{dd)], [12]. Most systems use a combination of the

two methods to avoid congestion in the network, and to aehi@rious performance objectives [7], [9].

The knowledge of queue length information is often usefoinstimes even necessary, in order to perform these
control tasks effectively. Almost all practical flow contrmechanisms base their control actions on the level of
congestion present at a given time. For example, in netwemksloying TCP, packet drops occur when buffers are
about to overflow, and this in turn, leads to a reduction inwledow size and packet arrival rate. Active queue
management schemes such as Random Early Detection (RE@)esigned to pro-actively prevent congestion
by randomly dropping some packdieforethe buffers reach the overflow limit [2]. On the other handotece
allocation policies can either be queue-blind, such asdeawobin, first come first served (FCFS), and generalized
processor sharing (GPS), or queue-aware, such as maximightveeheduling. Queue length based scheduling
techniques are known to have superior delay and queue ovgricformance than queue-blind algorithms such

as round-robin and processor sharing [1], [8], [13].

Since the queue lengths can vary widely over time in a dynamateork, queue occupancy based flow control
and resource allocation algorithms typically require tkkehange of control information between agents that
can observe the various queue lengths in the system, anathmliers which adapt their actions to the varying
gueues. This control information can be thought of as beipgraiof the inevitable protocol and control overheads
in a network. Gallager’s seminal paper [3] on basic limitspyotocol information was the first to address this
topic. He derives information theoretic lower bounds on a@hgount of protocol information needed for network

nodes to keep track of source and destination addresseslaasamessage starting and stopping times.

This paper deals with the basic question of how often contressages need to be sent in order to effectively
control congestion in a single server queue. We separataigider the flow control and resource allocation
problems, and characterize the rate of control necessaaghieve a certain congestion control performance in
the queue. In particular, we argue that there is an inheradeoff between the rate of control information, and
the corresponding congestion level in the queue. That theifcontroller has very accurate information about the
congestion level in the system, congestion control can bepeed very effectively by adapting the input/service
rates appropriately. However, furnishing the controlléhvaccurate queue length information requires significant
amount of control. Further, frequent congestion notifmasimay also lead to undesirable retransmissions in packet
drop based systems such as TCP. Therefore, it is of interestaracterize how frequently congestion notifications
need to be employed, in order to achieve a certain congestintiol objective. We do not explicitly model the
packet drops in this paper, but instead associate a costeaith congestion natification. This cost is incurred
either because of the ensuing packet drops that may occuadatige, or might simply reflect the resources needed

to communicate the control signals.

We consider a single server queue with congestion based fiotwad. Specifically, the queue is served at a constant

rate, and is fed by packets arriving at one of two possiblevarrates. In spite of being very simple, such a



system gives us enough insights into the key issues invalvétk flow control problem. The two input rates may
correspond to different quality of service offerings of amernet service provider, who allocates better service
when the network is lightly loaded but throttles back on thpuit rate as congestion builds up; or alternatively

to two different video streaming qualities where a bettealify is offered when the network is lightly loaded.

The arrival rate at a given instant is chosen by a flow contobtp, based on the queue length information obtained
from a queue observer. We identify a simple ‘two-threshdlov control policy and derive the corresponding
tradeoff between the rate of control and congestion praibaln closed form. We show that the two threshold
policy achieves the best possible decay exponent (in thiersize) of the congestion probability for arbitrarily
low rates of control. Although we mostly focus on the two #ireld policy owing to its simplicity, we also point

out that the two threshold policy can be easily generalipecesemble the RED queue management scheme.

Next, we consider a model where erasures may occur on theotohainnel, possibly due to wireless transmission.
We characterize the impact of control channel erasures@ndhgestion control performance of the two threshold
policy. We assume a probabilistic model for the erasurefierontrol channel, and show the existence of a critical
erasure probability, beyond which the losses in receivirggdontrol packets lead to an exponential worsening of
the congestion probability. However, for erasure proliigsl below the critical value, the congestion probability

is of the same exponential order as in a system with an erdieecontrol channel. Moreover, we determine

the optimal apportioning of bandwidth between the contighals and the server in order to achieve the best

congestion control performance.

Finally, we study the server allocation problem in a singlever queue. In particular, we consider a queue with a
constant input rate. The service rate at any instant is chivee two possible values depending on the congestion
level in the queue. This framework turns out to be matherabyisimilar to the flow control problem, so that
most of our results for the flow control case also carry ovethtoserver allocation problem. Earlier versions of
this work appeared in [5], [6].

The rest of the paper is organized as follows. Section Ibihitices the system model, and the key parameters of
interest in the design of a flow control policy. In Section We introduce and analyze the two threshold policy.
In Section IV, we investigate the effect of control chanmaseires on the congestion control performance of the
two threshold policy. Section V deals with the problem ofimyatl bandwidth allocation for control signals in an
erasure-prone system. The server allocation problem septed in Section VI; and Section VII concludes the

paper.

Il. PRELIMINARIES
A. System Description

Let us first describe a simple model of a queue with congedtamed flow control. Fig. 1 depicts a single server
gueue with a constant service rate We assume that the packet sizes are exponentially distdbwith mean

1. Exogenous arrivals are fed to the queue in a regulateddiadhy a flow controller. An observer watches the
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Fig. 1. A single server queue with input rate control.

queue evolution and sends control information to the flowtradler, which changes the input rat&(t) based on
the control information it receives. The purpose of the obseflow controller subsystem is to change the input
rate so as to control congestion in the queue.

The controller chooses the input process at any instémtbe a Poisson processes of rat@). We assume that
the input rate at any instant is chosen to be one of two disginssible valuesd(t) € {\1, A2}, wherel, < \;
and A\, < p. Physically, this model may be motivated by a DSL-like systevherein a minimum rate\; is
guaranteed, but higher transmission rates might be intenmtly possible, as long as the system is not congested.
Moreover, [11] showed that in a single server system with ftmmtrol, where the input rate is allowed to vary
in the interval[)2, \1], a ‘bang-bang’ solution is throughput optimal. That is, a upiéength based threshold
policy that only uses the two extreme values of the possifghaiti rates, is optimal in the sense of maximizing
throughput for a given congestion probability constraint.

The congestion notifications are sent by the observer in ¢ fof information-less control packets. Upon
receiving a control packet, the flow controller switchesitiput rate from one to the other. We focus on Markovian
control policies, in which the input rate chosen after aivator departure event is only a function of the previous
input rate and queue length. We will show that Markoviange$ are sufficient to achieve the optimal asymptotic

decay rate for the congestion probability.

B. Markovian Control Policies
We begin by defining notions of Markovian control policieadats associated congestion probability.

Let ¢t > 0 denote continuous time. L&}(¢) and A(t) respectively denote the queue length and input rateof
A2) at timet. DefineY (t) = (Q(¢), A(t)) to be the state of the system at timéMe assign discrete time indices
n € {0,1,2,...} to each arrival and departure event in the queue (“queuet’@veet @, and A,, respectively
denote the queue length and input rate just afterrtfequeue event. Defing, = (Q,, A,). A flow control
policy assigns service rates, after every queue event.

Definition 1: A control policy is said to be Markovian if it assigns inputes.4,, such that

P{An+l|Qn+1a Yo, .o, YO} = P{An+l|Qn+la Yn}v (1)

vn=0,1,2....



For a Markovian control policy operating on a queue with mertess arrival and packet size distributions, it
is easy to see that (¢) is a continuous time Markov process with a countable staéeespand thal, is the
imbedded Markov chain for the proce¥g¢). A Markovian policy is said to be stabilizing if the procesgt)

is positive recurrent under the policy. Thus, if a policy talslizing, the steady-state distribution of the queue
length, denoted by, exists. In other words@ is the distributional limit ofQ(¢) ast — oo. The congestion
probability under a stabilizing Markovian policy is definading the limiting distributior) as follows.

Definition 2: Let M > 0 be a congestion limit. The congestion probability is defias®{Q > M }.

C. Throughput, congestion and rate of control

We will focus on three important parameters of a flow contaliqy, namely, throughput, congestion probability,
and rate of control. There is usually an inevitable tradéeffween throughput and congestion probability in a
flow control policy. In fact, a good flow control policy shou@hsure a high enough throughput, in addition to
effectively controlling congestion. In this paper, we amssuthat a minimum throughput guarantgeshould be
met. Observe that a minimum throughput)of is guaranteed, whereas any throughput less thar(\, 1) can

be supported, by using the higher input ragejudiciously. Loosely speaking, a higher throughput is aebd by
maintaining the higher input ratk, for a longer fraction of time, with a corresponding traddnfthe congestion
probability.

In the single threshold policythe higher input rate; is used whenever the queue occupancy is less than or equal
to some threshold, and the lower rate is used for queue lengths larger thitrcan be shown that a larger value
of [ leads to a larger throughput, and vice-versa. In particthar throughput obtained under the single threshold

policy is given by

pﬁ(fllﬂfl)(lipﬂ (A1 —=A2) + A2 for p1 #1,

(p1=p2)—(1=p2) @
Hlln%%pz()‘l —X2) + A2 for p; =1,

where p, = %,

andp; = % Thus, given the throughput requirementwe can determine the corresponding
threshold to meet the requirement. Once the threshidiés been fixed, it can be shown that the single threshold
policy minimizes the probability of congestion. Howeversiuffers from the drawback that it requires frequent
transmission of control packets, since the system may détggle between statdsandi + 1. It turns out that

a simple extension of the single threshold policy gives tsa family of control policies, which provide more
flexibility with the rate of control, while still achievinghe throughput guarantee and ensuring good congestion

control performance.

IIl. THE TWO THRESHOLD FLOW CONTROL POLICY

As suggested by the name, the input rates in the two thregiwidy are switched at two distinct thresholts
andm, wherem > [ + 1, and! is the threshold determined by the throughput guaranteavéshall see, the
position of the second threshold gives us another degreeefldbm, using which the rate of control can be fixed

at a desired value. The two threshold policy operates asvisl|



Fig. 2. The Markov proces¥ (¢) corresponding to the two-threshold flow control policy.

Suppose we start with an empty queue. The higher inputXxatis used as long as the queue length does not
exceedm. When the queue length grows past the input rate switches to the lower valig. Once the lower
input rate is employed, it is maintained until the queue tbriglls back tol, at which time the input rate switches
back to\;.

We will soon see that this ‘hysteresis’ in the thresholdpsals tradeoff the control rate with the congestion
probability. The two threshold policy is easily seen to berké®ian, and the state space and transition rates for
the process are shown in Fig. 2. In what follows, we assunietiieacongestion limit\/ is much larger than the
thresholdd andm. Since the two threshold policy switches to the lower ratedioeue lengths larger than, it

is clear that the system is stable, and the steady-stateedargths exists.

Definek = m — [ to be the difference between the two queue length threshdldsuse the short hand notation

I +iM andl +4® in the figure, to denote respectively, the stat€gt) = I + i, A(t) = \;) and (Q(t) =
I4+i,A(t) = X\2),i=1,...,k—1. For queue lengthsor smaller andn or larger, we drop the subscripts because
the input rate for these queue lengths can only\b&and A, respectively. Note that the cage= 1 corresponds

to a single threshold policy. As we shall see later, the thhput of the two threshold policy fot > 1 cannot

be smaller than that of the single threshold policy. Thusegia throughput guarantee, we can solve for the
threshold! using the throughput expression (2) for the single threkpolicy, and the throughput guarantee will
also be met foik > 1. We now explain how the parametkrcan be used to tradeoff the rate of control and the

congestion probability.

A. Congestion probability vs. rate of control tradeoff

Intuitively, as the gap between the two threshalds m — [ increases for a fixed, the rate of control packets
sent by the observer should decrease, while the probabfligongestion should increase. It turns out that we
can characterize the rate-congestion tradeoff for thethweshold policy in closed form. We do this by solving
for the steady state probabilities in Fig. 2. Define= %,pl = %, andn; = 1/p;. Note that by assumption,

we havep, < 1 andp; > po.

Let us denote the steady state probabilities of the nonrsappted states in Fig. 2 y;, wherej <[, or j > m.

Next, denote b)pl(}r)i (pl(i)i) the steady state probability of the state i() (1+:), fori =1,2,...,k—1. Let



us now solve for the steady-state probabilities of varidates in terms of;. For the state$ < ¢ < I, the local
balance equations imply that

pi=pmi ", 0<i<l

Next, for the set of stateks+i(!), i =1,2,...,k — 2, the balance equations réad

P — (L p)p 4 o =0,i=1,2,... k-2
For the staten — 1), we have

Using the last two relations, we can recursively obtain tieady-state probabilitieg(}r)i, i=1,2,...,k—1in
terms ofp;. ‘
o, A1
pglj = 1_,771 7 ’ = 1721 ak_la
%plv m= 17

Similarly, the state$ +i(®), i =1,2,... k — 1, satisfy

2 2
pl(_,_)l (1+p2) = pl(+)2v

and

pl(i)l-i-i - (1 + p2)pl(_2|_)l +pl(.2|_)7,_1p2 = 07 1= 17 27 RS k—1.

From the last two relations, we obtain

1_j
(2) _ P2 (2) ,]:12

l+j_1_p2pl+17 ) 7"'7k'

To write the above in terms qf;, note thatpl(i)lu = pﬁ,ll)_l)\l, and thatp(l) is already known in terms qf;.

m—1
Therefore, .
(2) l-p )
= =1,2,...,k.
pl+j pll—pzpmil’ j )<y I
Finally, for the states beyonab, straightforward local balance yields

. . 1— pk 1 )
pj=p5 Pm=p " P1 1_—pzpfn)_1, j=m.

The value ofp;, which is the only remaining unknown in the system can be deted by normalizing the

probabilities to 1:

14171
[nl(li(jr;fp)z(rl]:)m) - fim} m# L
P = ()
[+ 52+ 2] o=
Using the steady-state probabilities derived above, weccampute the congestion probability as
Mem 1= p5
P{Q > M} = Z Pj=pP2 Pl 5Pmo1 (4)

bt (1—p2)

IWe use the conventiopl(j) =p; forj=1,2.



We define the control rate simply as the average number ofaopéckets transmitted by the queue observer
per unit time. Since there is one packet transmitted by treemier every time the state changes from- 1(1)

to m or from 1+ 1(® to [, the rate (in control packets per second) is given by

R = /\1pfi),1 + le(i)l-

SinceAip't. | = upl>,, we have

R=2\p}

m

®)

2\1p;

221 (1—
) }(T{“)pz m # 1,
—1 —
% m=1,

wherep; was found in terms of the system parameters in (3).

It is clear from (4) and (5) that determines the tradeoff between the congestion probahitid rate of control.
Specifically, a largek implies a smaller rate of control, but a larger probabilifycongestion, and vice versa.
Thus, we conclude that for the two threshold policy, the peai@r/ dictates the minimum throughput guarantee,
while & trades off the congestion probability with rate of contratkets.
As we mentioned earlier, the threshdlés computed based on the throughput guaranteesing the throughput
expression (2) for the single threshold policy. The thrqughobtained under the two threshold policy can be
computed using the steady-state probabilities derivedeabbhe throughput expression (for # 1) is given by
(R(L=m) =0 (1 =) m(1 = po)
k(L —nm)(1 = pam) — Uﬁz(l —m)(1 = p2)
By direct computation, it can be seen from the above expedbiat the throughput fot > 1 is no smaller than

(A1 — A2) + Ao (6)

the throughput obtained under the single threshold poliey, ¢ = 1). Thus, the two threshold policy satisfies
the throughput guarantee for &ll> 1.

B. Large deviation exponents

In many simple queueing systems, the congestion probaliéitays exponentially in the buffer sizd. Fur-
thermore, when the buffer size gets large, the exponergiah tdominates all other sub-exponential terms in
determining the decay probability. It is therefore usefulfécus only on the exponential rate of decay, while
ignoring all other sub-exponential dependencies of thegestion probability on the buffer siz&/. Such a
characterization is obtained by using the so called largé&tien exponent (LDE). For a given control policy, we

define the LDE corresponding to the decay rate of the corgesgtiobability as
1
E A}lir(lm logP{Q > M},

when the limit exists. We now compute the LDE for the two thidd policy.
Proposition 1: Assume thatk scales withM sub-linearly, so thatimp;_, .. % = 0. The LDE of the two
threshold policy is then given by

1
E =log —. (7
P2



The above result follows from the congestion probabilitpression (4) since the only term that is exponential
M—m

in M is py = pé”‘l"“. Note that once has been determined from the throughput requirement, it doé¢
scale withM. Whenk grows sub-linearly inV/, it should not be surprising that the two thresholds are §ifote’
in the large deviation limit. We pause to make the followirtgservations:
o If k scales linearly with\/ ask(M) = M for some constant > 0, the LDE become# = (1— ) log piz,
for py > 1 andE = (1 — §)log -~ + Blog -~ for py < 1.
« The control rate (5) can be made arbitrarily smallk{f\/) tends to infinity. This implies that as long as
k(M) grows to infinity sub-linearly inM, we can achieve an LDE that is constant (equaktvg ps) for
all rates of control.
« As k becomes large, the congestion probability will increaseweler, the increase is only sub-exponential
in the buffer size, so that the LDE remains constant.
In what follows, we will be interested only in the LDE corresyling to the congestion probability, rather than
its actual value. The following theorem establishes thénmgdity of the LDE for the two threshold policy.
Theorem 1:The two threshold policy has the best possible LDE corregjmgnto the congestion probability
among all flow control policies, for any rate of control.
This result is a simple consequence of the fact that the tweshold policy has the same LDE as an M/M/1

gueue with the lower input rate,, and the latter cannot be surpassed by any flow control policy.

C. More general Markovian policies and relationship to RED

In the previous section, we analyzed the two threshold pditd concluded that it has the optimal congestion
probability exponent for any rate of control. This is ess#lyt because the input rate switches to the lower value
deterministically, well before the congestion lindif is reached. In this subsection, we show that the two thrdshol
policy can be easily modified to a more general Markoviangyplivhich closely resembles the well known RED
active queue management scheme [2]. Furthermore, thisficettin can be done while maintaining the optimal

exponent behavior for the congestion probability.

Recall that RED preemptively avoids congestion by startmglrop packets randomly even before the buffer is
about to overflow. Specifically, consider two queue thredtiadayl andm, wherem > [. If the queue occupancy
is no more thari, no packets are dropped, no matter what the input rate is. ©ottier hand, if the queue length
reaches or exceeds, packets are always dropped, which then leads to a redugtidimei input rate (assuming
that the host responds to dropped packets). If the queughlénbetweerl andm, packets are randomly dropped

with some probabilityy.?

Consider the following flow control policy, which closelysembles the RED scheme described above:
For queue lengths less than or equal tehe higher input rate is always used. If the queue lengtheases to

m while the input rate is\;, a congestion notification is sent, and the input rate is reduo \,. If the current

20ften, the dropping probability is dependent on the quengtte
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Fig. 3. The Markov process corresponding to the controlcgatiescribed in Section IlI-C that approximates RED.

input rate is\; and the queue length is betwegmndm, a congestion notification occurs with probabifity
upon the arrival of a packet, and the input rate is reduces,tdNith probability 1 — ¢, the input continues at
the higher rate. The Markov process corresponding to thlisypis depicted in Fig. 3.

We can derive the tradeoff between the congestion probaaiid the rate of congestion notifications for this policy
by analyzing the Markov chain in Fig. 3. Once the lower thaddli has been determined from the throughput
guarantee, the control rate vs. congestion probabilityetndf is determined by both and m. Further, since the
input rate switches to the lower valug when the queue length is larger than this flow control policy also
achieves the optimal LDE for the congestion probabilityjado log piz. We skip the derivations for this policy,
since it is more cumbersome to analyze than the two thregiadidy, without yielding further qualitative insights.
We focus on the two threshold policy in the remainder of thegpabut point out that our methodology can also

model more practical queue management policies like RED.

IV. THE EFFECT OF CONTROL ERASURES ON CONGESTION

In this section, we investigate the impact of control erasuwn the congestion probability of the two threshold
policy. We use a simple probabilistic model for the eraswreshe control channel. In particular, we assume that
any control packet sent by the observer can be lost with saoteapility ¢, independently of other packets. Using
the decay exponent tools described earlier, we show théeexis of a critical value of the erasure probability,
say ¢*, beyond which the erasures in receiving the control paclesdtd to an exponential degradation of the

congestion probability.

A. The two-threshold policy over an erasure-prone contlf@mmel

As described earlier, in the two threshold policy, the obseisends a control packet when the queue length
reachesn = [ + k. This packet may be received by the flow controller with pralitgbl — 4, in which case the

input rate switches to\,. The packet may be lost with probability in which case the input continues at the

3We can also let this probability to depend on the current guength, as often done in RED, but this makes the analysig mhifficult.
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Fig. 4. The Markov proces¥ (t) corresponding to the erasure-prone two-threshold polisyly a part of the state space (with — 1 <
Q(t) < M) is shown.

higher rate\;. We assume that if a control packet is lost, the observer inmelgl knows about f; and sends

another control packet the next time an arrival occurs toséesy with at leastn — 1 packets.

The process’ (t) = (Q(¢), A(t)) is a Markov process even for this erasure-prone two thrdspolicy. Fig. 4
shows a part of the state space for the prodé@s, for queue lengths larger than — 1. Note that due to control
erasures, the input rate does not necessarily switch.téor queue lengths greater than — 1. Indeed, it is
possible to have not switched to the lower input rate everafbitrarily large queue lengths. This means that the
congestion limit can be exceeded under both arrival raeshawn in Fig. 4. The following theorem establishes
the LDE of the erasure-prone two threshold policy, as a fonabf the erasure probability.
Theorem 2:Consider a two threshold policy in which grows sub-linearly inM. Assume that the control
packets sent by the observer can be lost with probalilifihen, the queue is stable for all 1, and the LDE
corresponding to the congestion probability is given by
log p%, 6 < 6%,
E(%) = (8)
log 1+p1—\/(pf+1)2—45p1 , 0>0%,

whered™ is thecritical erasure probabilitygiven by

5 =214 p1 = pa). ©)
P1

Before we give a proof of this result, we pause to discussnitglications. The theorem shows that the two
threshold policy over an erasure-prone channel has twenesgjiof operation. In particular, for ‘small enough’
erasure probabilityd < §*), the exponential rate of decay of the congestion prolighigi the same as in an
erasure-free system. However, #r> §*, the decay exponent begins to take a hit, and therefore, thgestion

probability suffers an exponential increase. For thisoaawe refer tad* as the critical erasure probability. Fig. 5

4This is an idealized assumption; in practice, delayed faekllwan be obtained using ACKS.
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py=3, =02

Fig. 5. LDE as a function ob for p; > 1.

shows a plot of the decay exponent as a function of the erggotmbility §, for p; > 1. The ‘knee point’ in the
plot corresponds té* for the stated values gf; and ps.

Proof: We first need to prove that the Markov chain is positive resntrfor all § < 1, so that the congestion
probability is well defined. To do this, we will write out theallance equations, and obtain one possible set of
‘candidate’ steady-state probabilities. According to dieen 3 in [4, Chapter 5], if a set of positive, normalized
numbers that satisfy the balance equations are found, tieesofution is unique, and the irreducible Markov chain
(with countable state-space) is positive recurrent. Wealslo be able to obtain the desired LDE expression, once
we derive the steady-state probabilities.

As before, we will first express all the steady-state prdiids in terms ofp;. The balance equations for the

states with queue length less thanare as in the erasure-free case. Thus,
pi=pmy ", 0<i<l (10)

Next, for the set of states+ iV, i =1,2,....k —1,

P — (L p)p 4+ =0, i=1,2,.. . k1.

Using the above, we can exprq#ér)i, i1=2,...,kin terms ofpl(i)1 andp; as

(1) 1 1—pi p1— P}
P — Pl )
Prei =Pray—p, L—p1

Similarly, for the state$ +:(?), i =2,....k, we have as before,

i=2,... k. (11)

(2)f1_pé 2 ,_
;= Py, 1 =2
I+ 1— ps I+1

The balance equations for the top set of states in Fig. 4 camritien as

.ok (12)
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pl(-}r)l,u - (M + u)pl(-l) + 6/\1p§17)1 =0,i=m,m+1,... (13)

Solving the second order recurrence relation above, we ffiatthe top set of states in Fig. 4 (which correspond

to arrival rate);) have steady state probabilities of the form

p) L, = As(8) + Br(o), i=1,2,..., (14)
where
s(9) = A VLEP A0 (15)
and
r() = L1 +\/(12+”1)—2_4p15.

It is easy to show tha$(d) < 1 < r(d) for all § < 1. Since we are looking for probabilities that decay to zero,

the growing term(§)* is inadmissible. Therefore, we s&t= 0 in (14), and obtain the form
pg)flJri = S(é)ipgrll)—l’ t=12,..., (16)

which satisfies (13). We now use the relat'p)gé) = s(d)pgll in Equation (11) to write

w Lot et (o LA
l+11_p1 1_p1 1+1 1_p1 1_p1 ’

from which we can obtaim;l(fr)1 in terms ofp; :

W 1=t =s()m —nf Y
P =Dl [ 1 _177{6 —s(6)(m — 77%) . 0

We next use the relatiop, = m; (pl(}r)1 +p(2) ) to obtainp(2) in terms ofyp; :

+1 I+1
@ _ { (1 =n)(d —ms(9)) ]
mp =D . (18)
a L—nf = s(8)(m —nf)
Finally, let us deal with the statqflz), i=m+1,m+2,.... The balance equations for these states read

pgi)lu — (Ao + ,u)pgz) + )\gpl(-z)l +(1- 6)/\1p(1)1 =0,i=mm+1,....

71—

Sincepgﬁ), pgll, andpl(;‘?1 have already been determined in termggfwe can use the above recursion to obtain
2) 4 2 s(8)' —pk
2 pgn)Pz _pl(+)13(5) s(((s))fpp; s(0) # p2, (19)
Pmti = @ @) 5) —
P Py — D105 s(d) = pa.

Thus, among equations (10), (17), (18), (11), (12), (16Y &10), we have expressed the probabilities of all
states in terms of;. The value ofp; can finally be obtained by normalizing the probabilitiesic®ip, < 1, and

s(6) < 1 for 6 < 1, the infinite summations converge, apdis obtained as a positive number. We have thus
obtained a set of normalized numbers that, by constructiatisfy the balance equations. Using Theorem 3 in
[4, Chapter 5], we conclude that the chain is positive resnttrand that the steady-state probabilities that we

obtained above are unique.
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Let us now proceed to obtain the LDE of the congestion prdiatfrrom (16) and (19), we can deduce that the

congestion probability hasvo terms that decay exponentially in the buffer size:
P{Q > M} = Cs(6)M~1=F 4 Dp} ==k, (20)

where C, D are constants. In order to compute the LDE, we need to determvhich of the two exponential
terms in (20) decays slower. It is seen by direct computattiah s(0) < po for § < §*, whered* is given by
(9). Thus, for erasure probabilities less th@n p, dominates the rate of decay of the congestion probability.

Similarly, for § > 0*, we haves(d) > p2, and the LDE is determined by(J). This proves the theorem. O

B. Repetition of control packets

Suppose we are given a control channel with probability @fsered that is greater than the critical erasure
probability in (9). This means that a two-threshold poligyeaating on this control channel has an LDE in the
decaying portion of the curve in Fig. 5. In this situationdand) error protection to the control packets will reduce
the effective probability of erasure, thereby improving ttDE. To start with, we consider the simplest form of

adding redundancy to control packets, namely repetition.

Suppose that each control packet is transmittdanes by the observer, and that allpackets are communicated
without delay. Assume that each of thepackets has a probabilityof being lost, independently of other packets.
The flow controller fails to switch to the lower input rate wiifl all » control packets are lost, making the effective
probability of erasuré™. In order to obtain the best possible LDE, the operating pminst be in the flat portion
of the LDE curve, which implies that the effective probailof erasure should be no more thah. Thus,
0™ < 6%, so that the number of transmissionshould satisfy

< log 6*
~ logd

(21)

in order to obtain the best possible LDE log; ,le- If the value of§ is close tol, the number of repeats is large,

and vice-versa.

V. OPTIMAL BANDWIDTH ALLOCATION FOR CONTROL SIGNALS

As discussed in the previous section, the LDE operatingtpafithe two-threshold policy for any gives < 1,
can always be ‘shifted’ to the flat portion of the curve by r&p®y the control packets sufficiently many times

(21). This ignores the bandwidth consumed by the additionatrol packets.

While the control overheads constitute an insignificantt drthe total communication resources in optical
networks, they might consume a sizeable fraction of banthnid some wireless or satellite applications. In
such a case, we cannot add an arbitrarily large amount ofaamdundancy without sacrificing some service
bandwidth. Typically, allocating more resources to thetaarsignals makes them more robust to erasures, but
it also reduces the bandwidth available to serve data. Tiehenderstand this tradeoff, we explicitly model the

service rate to be a function of the redundancy used for obsignals. We then determine the optimal fraction of
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bandwidth to allocate to the control packets, so as to aehiee best possible decay exponent for the congestion

probability.

A. Bandwidth sharing model

Consider, for the time being, the simple repetition scheorecbntrol packets outlined in the previous section.

We assume that the queue service rate is linearly decrefsigton of the number of repeats— 1:

u(n)=u[1—n;1] (22)

The above model is a result of the following assumptions abie bandwidth consumed by the control signals:
« u corresponds to the service rate when no redundancy is usebdefa@ontrol packetsn(= 1).
« The amount of bandwidth consumed by the redundancy in th&ralmignals is proportional to the number
of repeatsn — 1.
» The fraction of total bandwidth consumed by each repetitbra control packet is equal to/®, where
® > 0 is a constant that represents how ‘expensive’ it is in terfisamdwidth to repeat control packets.
Thus, withn — 1 repetitions, the fraction of bandwidth consumed by the mdribformation is 231, and the

fraction available for serving data is— ”le.

Let us denote byf the fraction of bandwidth consumed by the redundancy in th&rol information, so that

= "Tfl, orn=®f + 1. From (22), the service rate corresponding to the fracficzan be written as

p(f) = p[l - f.

In what follows, we do not restrict ourselves to repetitidncontrol packets, so that we are not constrained to
integer values ofi. Instead, we allow the fractiorf to take continuous values, while still maintaining that the
erasure probability corresponding fois §®/*1. We refer tof as the ‘fraction of bandwidth used for control’,
although it is really the fraction of bandwidth utilized Hyetredundancyin the control. For examplef, = 0 does

not mean no control is used; instead, it corresponds to eatiad packet being transmitted just once.

B. Optimal fraction of bandwidth to use for control
The problem of determining the optimal fraction of bandwitlth be used for control can be posed as follows:

Given the system parametess, p» and @, and a control channel with some probability of eraséire [0, 1),
find the optimal fraction of bandwidt}i*(4) to be used for control, so as to maximize the LDE of the congest
probability.

Let us define

pilf) == =——i=12, (23)
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as the effective server utilization corresponding to tteuoed service ratg(f). Accordingly, we can also define

the effective knee point as

5*(f)_%<1+pi:;2>, (24)

which is analogous to (9), with;(f) replacingp;,i = 1, 2.
First, observe that for the queueing system to be stable,egd the effective service rate to be greater than the
lower input rateh,. Thus, we see thaXs < p[l — f], or f < 1 — p2. Next, we compute the LDE corresponding
to a given probability of erasurg and fractionf of bandwidth used for control.
Proposition 2: For anyé € [0,1) and f € [0,1 — p3), the corresponding LDE is given by

log 77, 6/H < 6% (f),

E(6, f) = (25)
log Wl'-ﬁ)’ SO > 54 (f),

where

15 = L0 = VED =0

The derivation and expression fdé#(, f) are analogous to (8), except thatis replaced withp;(f),i = 1,2,
and§ is replaced with the effective probability of erasu®/+!.

Definition 3: For any givens € [0,1), the optimal fractionf*(d) is the value off that maximizesE(d, f) in
(25). Thus,

f7(0) = argmaxfe[oJ_pz)E(é, 7 (26)

Recall that the value of /® represents how much bandwidth is consumed by each addetitioepef a control
packet. We will soon see that plays a key role in determining the optimal fraction of baiditv to use for
control. Indeed, we show that there are three differentmegifor® such that the optimal fractiofi*(0) exhibits
qualitatively different behavior in each regime as a fumetdf §. The three ranges ob are: (i) @ < @, (ii)

® > @, and (i) @ < ® < ®, where

o = p2 =0

- log(6*)(1 + p1 — p2)’

_ ! >1

T = { m1 70 (27)
oo p1<1

It can be shown tha® < @ for py < 1.

We shall refer to case (i) as the ‘sméllregime’, case (ii) as the ‘large regime’, and case (iii) as the ‘intermediate
regime’. We remark that whether a value ®fis considered ‘small’ or ‘large’ is decided entirely by and p-.
Note that the larg® regime is non-existent if; < 1, so that even i is arbitrarily large, we would still be in

the intermediate regime.

The following theorem, which is our main result for this sewt specifies the optimal fraction of bandwidth

f*(9), for each of the three regimes far.
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Theorem 3:For a givenp; and p,, the optimal fraction of bandwidttf*(4) to be used for control, has one of

the following forms, depending on the value ®f

(i) Small ® regime @ < @): f*(§) =0, V € (0,1).

(i) Large ® regime @ > ®):
0, § €10,0%]
fr(6) = { . ;
f(6), b€ (6%,1)

wheref(&) is the unique solution to the transcendental equation
sr+ = 2 <1 + B2 ’T“) : (28)
p1 1—f
(iii) Intermediate regime® < ® < ®): there exists’ and §” such thats* < ¢’ < §” < 1, and the optimal

fraction is given by

0, 4&€0,6%
F(8), &€ (6,6
RO A
f(8), &€ (8,8
0, de(8,1)

wheref(&) is given by (28) andf(é) is the unique solution irf0, 1 — p2) to the transcendental equation
§PTHB(1 — flogs™ + 1] = s(f,6). (29)

The proof of the above theorem is not particularly interegtiand is postponed to the appendix. Instead, we

provide some intuition about the optimal solution.

C. Discussion of the optimal solution

1) Erasure probability less thaé*: In all three regimes, we find thgt*(6) = 0 for ¢ € [0, §*]. This is because,
as shown in Fig. 5, the LDE has the highest possible value bfg p, for § in this range, and there is nothing
to be gained from adding any control redundancy.

2) Small® regime: In case (i) of the theorem, it is optimal to not apply any cohtedundancy at all. That is,
the best possible LDE for the congestion probability is eebd by using a single control packet every time the
observer intends to switch the input rate. In this regime, dmount of service bandwidth lost by adding any
control redundancy at all, hurts us more than the gain obthfrom the improved erasure probability. The plot
of the optimal LDE as a function af for this regime is identical to Fig. 5, since no redundancgpsglied.

3) Large® regime: Case (ii) of the theorem deals with the lar§aegime. Ford > §*, the optimalf* () in this
regime is chosen as the fractignfor which the knee poing*(f) equals the effective erasure probabilit}/+!.
This fraction is indeedf, defined by (28). Fig. 6(a) shows a plot of the optimal fractsalid line) as a function
of 4. In this examplep; = 1.2, po = 0.3, and® = 10. The resulting optimal LDE is equal th»g%;(‘” for

0 > 6*. The optimal LDE is shown in Fig. 6(b) with a solid line.
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p,=1.2, p,=0.3, ¢=10

— Optimal fraction |

0Bk — — — Maive strategy |'[ |

o5t ! .

04 i E

0.3t ! .

(a)
p,=1.2, p,=0.3, &=10

Optirnal fraction |
o4l — —— Maive strategy |

Fig. 6. (a) Optimal fractionf*(§) for the large® regime, and the fraction for the naive strategy (b)Theesponding LDE curves

4) Comparison with nive repetition: It is interesting to compare the optimal solution in the &aflg regime to

the ‘naive’ redundancy allocation policy mentioned in &idpn (21). Recall that the naive policy simply repeats
the control packets to make the effective erasure prolalgjual to the critical probability™*, without taking
into account any service bandwidth penalty that this migitié Let us see how the naive strategy compares
to the optimal solution if the former is applied to a systenthva finite ®. This corresponds to a network with
limited communication resources in which the control medsias are employed without taking into account the

bandwidth that they consume.
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The fraction of bandwidth occupied by the repeated contagkpts can be found using (21) to be
1 [logd*
f_g(log(S _1)’

where we have ignored integrality constraints on the nurabezpeats. A plot of this fraction is shown in Fig. 6(a),

and the corresponding LDE in Fig. 6(b), both using dashesklit\s seen in the figure, the naive strategy is more
aggressive in adding redundancy than the optimal stratgge it does not take into account the loss in service
rate ensuing from the finiteness ® The LDE of the naive strategy is strictly worse for> ¢*. In fact the
naive strategy causes instability effects for some vahiesclose tol by over-aggressive redundancy addition,
which throttles the service rate(f) to values below the lower arrival rate,. This happens at the point where
the LDE reaches zero in Fig. 6(b). The naive strategy has em@gse consequences in the other two regimes.
However, we point out that the repetition strategy appreadhe optimal solution a& becomes very large.

5) Intermediate regimeCase (iii) in the theorem deals with the intermediate regifar 6 > §*, the optimal
fraction begins to increase along the cuf\(é) exactly like in the largeb regime (see Fig. 7). That is, the effective
erasure probability is made equal to the knee point. Howetem particular value of erasure probability, S8y

the optimal fraction begins to decrease sharply fromﬁh‘e curve, and reaches zero at some valtieEquation
(29) characterizes the optimal fraction for valuesiah (¢’,4”). No redundancy is applied far € (6”,1). For

this range of erasure probability, the intermediate regiraeaves more like the small regime (case(i)). Thus,
the intermediated regime resembles the large regime for small enough erasure probabilities: ¢, and the
small ® regime for large erasure probabilify> ¢§’. There is also a non empty ‘transition interval’ in between

the two, namely(d’,6"”).

VI. QUEUE LENGTH INFORMATION AND SERVER ALLOCATION POLICIES

In this section, we discuss the role of queue length infoiznabn server allocation policies in a single server
gueue. We mentioned earlier that queue aware resourcatdiogolicies tend to allocate a higher service rate
to longer queues, and vice-versa. Intuitively, if the colir is frequently updated with accurate queue length
information, the service rate can be adapted to closelyctetiee changing queue length. However, if the queue
length information is infrequently conveyed to the corleglwe can expect a larger queue length variance, and
hence a higher probability of congestion. We study thisdodfdbetween the probability of congestion and the

rate of queue length information in a single server queue.

Fig. 8 depicts a single server queue with Poisson inputstefxaAn observer watches the queue evolution and
sends control information to the to the service rate colaroihich changes the service raiét) based on the
control information it receives. The purpose of the obseoamtroller subsystem is to assign service rates at each

instant so as to control congestion in the queue.

For analytical simplicity, we assume that the service ra@ng instant is chosen to be one of two distinct values:

S(t) € {p1,p2}, wherepus > py andpuz > A. The control decisions are sent by the observer in the form of
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p,=0.8, p,=0.3, $=5

(a)
p,=0.8, p;=0.3, &=5

Fig. 7. (a) Optimal control fractiorf* (&) for the intermediate regime (b) The corresponding LDE

information-less packets. Upon receiving a control pacttet rate controller switches the service rate from one

to the other. As before, we only focus on Markovian contrdigies, which are defined analogously to (1).

Note that if there is no restriction imposed on using the aigdervice rateu,, it is optimal to use it all the time,
since the congestion probability can be minimized withogihg any control information. However, in a typical
gueueing system with limited resources, it may not be ptssibuse higher service rate at all times. There could
be a cost per unit time associated with using the faster semrgch restricts its use when the queue occupancy
is high. Alternately, one could explicitly restrict the uséthe faster server by allowing its use only when the

gueue occupancy is over a certain threshold value. In thiepave impose the latter constrain, i.e., when the
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N |||||—> S0

Observer

Control Information

Fig. 8. A single server queue with service rate control.

Fig. 9. The Markov process corresponding to the two-thrieskerver allocation policy.

gueue length is no more than some thresliplde are forced to use the lower service raie If the queue length
exceedd, we are allowed to use the higher rate without any additional cost until the queue length falls kbbac

to 1.5

It turns out that this model is, in a certain sense, dual tdltve control problem considered earlier in this paper.
In fact, for every Markovian flow control policy operating dhe queue in Fig. 1, it is possible to identify a
corresponding server allocation policy which has idehticaperties. For example, we can define a two threshold
server allocation policy analogously to the flow controlipplas follows:

The service rates are switched at two distinct queue lertggsholds! and m. Specifically, when the queue
length grows pastn, the service rate switches jo,. Once the higher service rate is employed, it is maintained
until the queue length falls back 9 at which time the service rate switches backuto The Markov process

corresponding to the two-threshold server allocationgyoi depicted in Fig. 9.

Evidently, the Markov chain in Fig. 9 has the same structgréha chain in Fig. 2, and therefore can be analyzed
in the same fashion. In particular, we can derive the comtxtd vs. congestion probability tradeoff, along the

same lines as equations (4) and (5). The following resukindigg the two threshold server allocation policy, can

be derived along the lines of Proposition 1 and Theorem 1.

Theorem 4:Suppose that goes to infinity sub-linearly in the buffer size, in a two threshold server allocation

policy. Then, the LDE can be maintained constant at
E =log &,

5Recall that in the flow control problem, the threshéldias derived from a throughput constraint.
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while the control rate can be made arbitrarily small. Funtiiee two threshold policy has the largest possible
congestion probability LDE among all server allocationigiek, for any rate of control.

The above result shown the optimality of the two thresholticgowith respect to the congestion probability
exponent. Next, if the control signals that lead to switghihe service rate are subject to erasures (as detailed in
Section V), we can show that the LDE behaves exactly as irofidm 2.

In essence, we conclude that both the flow control and resallacation problems in a single server queue lead

to the same mathematical framework, and can thus be treatadunified fashion.

VII. CONCLUSIONS

The goal of this paper was to study the role played by queugtheimformation in flow control and resource
allocation policies. Specifically, we deal with the questmf how often queue length information needs to be
conveyed in order to effectively control congestion. To koowledge, this is the first attempt to analytically study
this particular tradeoff. Since this tradeoff is difficult &nalyze in general networks, we consider a simple model
of a single server queue in which the control decisions ased@n the queue occupancy. We learned that in the
absence of control channel erasures, the control rate dée@asure the optimal decay exponent for the congestion
probability can be made arbitrarily small. However, if amhithannel erasures occur probabilistically, we showed
the existence of a critical erasure probability thresha&gdnd which the congestion probability undergoes a drastic
increase due to the frequent loss of control packets. Finalt determine the optimal amount of error protection
to apply to the control signals by using a simple bandwidthrisiy model. For erasure probabilities larger than
the critical value, a significant fraction of the system teses may be consumed by the control signals, unlike in
the erasure-free scenario. We also pointed out that altmcabntrol resources without considering the bandwidth
they consume, might have adverse effects on congestionld&eobserved that the sever allocation problem and

the flow control problem can be treated in a mathematicallfiachmanner.

APPENDIX

Given ® andé we want to find the fractiorf that satisfies (26). As shown in figure 5, the LDE curve for 0
is flat and has the highest possible value-dbg p- for 6 € [0,0*]. Indeed, foré in the above range, using any

strictly positive fractionf would reduce the LDE tdog lp_—zf. This implies that the optimal fraction
f7(6) =0, 6 €[0,6%].

Thus, the problem of finding the optimgr(§) is non-trivial only for§ € (6*,1). We begin our exposition
regarding the optimal fraction with two simple propositon

Proposition 3: For any givens € (6*, 1), the optimal fractionf*(§) is such that the effective erasure probability
6%/"+1 cannot be strictly lesser than the knee point of the cu#¢& f*). That is,d* (f*) < 6®/ +1, § € (6*,1).
Proof: Suppose the contrary, i.e, for somec (6*,1), the optimal f* is such thats*(f*) > 6*/"*1. The
optimal LDE would then beE(d, f*) = —logp2(f*) = log

1;2f*. Continuity properties imply thal € > 0
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for which 6*(f* — ¢) > §2U" =941, Thus, if we use the smaller fractiofi — ¢ for control, the LDE would
be E(6, f* — &) = log %. Since this value is greater than the “optimal valug(s, f*), we arrive at a
contradiction. O
Proposition 4: For a givens € (6*,1), there exists a unique fractiof() € (0,1 — p,) such that the knee point
5*(f) equals the effective erasure probabil&l‘?f“. Furthermore, the optimal fractiofi*(d) lies in the interval
[0, /(8)]-
Proof: The knee point corresponding to any fractipris given by (24). Therefore, if there exists a fractiprior
which 6*(f) = §®/+1, then f satisfies

gefr1 = P2 (1 + u) . (30)

P1 1—f

The transcendental equation in (30) has a solutiof®ji — p3) for any givend € (6*,1). This can be shown by
applying the intermediate value theorem to the differerfab® right and left hand side functions in the equation.
The uniqueness of follows from the monotonicity properties of the right andt leand side functions. O
To prove the second statement, suppose fhat f. Since the knee point (24) is monotonically strictly inciegs
in f, we haves*(f*) > 6*(f) = §*/+1 > §*/"+1_This contradicts Proposition 3. O
The above proposition shows that the optimal fraction lieshie interval[O,f(zS)]. Thus, for a giveny > §*,
we seekf*(6) e [0, f(8)] for which s(f,) (defined in Proposition 2) is minimized. In particular,siff, §) is
monotonically decreasing ift, f(5)] for somes, then clearly,f*(5) = f(6). The following proposition asserts
the condition under whick(f, ) is monotonically decreasing.

Proposition 5: For somed > §*, suppose the following inequality holds

S B(1 — Plogd +1] < 1p2f. (31)

Then, f*(5) = f(9).
Proof: Fix § > §*. By direct computation, we find that

§'(f,0) <0 <= §*THD(1 - f)logs + 1] < s(f, ).

However, since the left side of the inequality above is 8yrimcreasing inf, we find thats(f, §) is monotonically
decreasing whenever

5 B(1 — f)log s+ 1] < s(f(5),6) = 1”2 7

where the last equality follows from the definition ¢f Thus, if (31) is satisfied for a particula s(f,9) is

decreasing inf, and hence the optimal fraction is given B¥(6) = f(4). O
Now, suppose thad > ®. Upon rearrangement, this implies thE{® log §* + 1] < p2. In other words, (31) is
satisfied with strict inequality, ai = 6*. By continuity, we can argue that there exist a raige (6*,4’) for
which (31) is satisfied. By Proposition 5, we haf&(8) = f(8), & € (6*,48'), which partially proves part (iii) of

the theorem. Note thak is the smallest value of the erasure probability, if anyMich the strict monotonicity
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of s(f,d) (as a function off) is compromised. As argued in Proposition 5, this impliek) (3olds with equality.

A simple rearrangement yields a transcendental equatiot’ fo

P 41— f(8)logd 32
ot 170 +@(1 - f(0")) log (32)

Using basic calculus, it is possible to show that there adnaists a solution’ < 1 to (32) if p; < 1. However,

if p1 > 1, there exists a solution ifp < pl%l = ®. In particular, if® > @, we have that(f, §) is monotonically
decreasing inf for all 4, so thatf*(6) = f(d) for all § € (6*,1]. This proves part (ii) of the theorem.

On the other hand suppose tiat ® < @. (It is straightforward to show thak < ®.) Then a solutiony’ < 1 to
(32) exists, and fob > ¢’, the optimal fraction is no longer equal foﬁd). It can also be shown that the existence
of ¢’ < 1 guarantees the existence of anotfér> §’ such thats(f, d) is increasingin f for eachd € (§”,1). In
such a casef*(4) would be equal to zero.

Proposition 6: For somed > ¢*, suppose the following inequality holds

L+p1—+/(1+p1)? —4dp;
5 .

o[@logd + 1] > (33)

Then, f*(§) = 0.
The proof is similar to Proposition 5. The value &f is obtained as a solution to the transcendental equation

Lty O TP =3
2

8" ®logd” +1] = (34)

Again using basic calculus, we can show there exits a solutfo< 1, to (34) if ® < ®, which is the same
condition as for the existence @f. Thus, in the intermediate regime, there existsé(i)e (6*,1) such that
f*(6) = f(6) for 6* < & < &, and (ii) 6” > &' such thatf x (§) = 0 for § > 6. For é € (¢’,4”), the function
s(f,8) has a minimum ir(0, f), so that the optimum fraction is obtained by settigf, §) to zero. This condition
is the same as (29), and part (iii) of the theorem is thus mtove

We finally show that it is optimal to not use any redundancyhia small® regime.

Proposition 7: For ® < &, s(f, ) is monotone increasing ifi € [0, f(6)] for eachs > §*.

Proof: Simple rearrangement shows that the conditioi< @ is equivalent to saying that’ < §*. Since no
redundancy is used for values of erasure probability greas: ", it follows that no redundancy is used in the

small & regime. |

REFERENCES

[1] D. Bertsimas, I. Paschalidis, and J. Tsitsiklis, “Asywtic buffer overflow probabilities in multiclass multiplers: An optimal control
approach,”IEEE Transactions on Automatic Controlol. 43, no. 3, pp. 315-335, 1998.

[2] S. Floyd and V. Jacobson, “Random early detection gatsviar congestion avoidance EEE/ACM Transactions on networkingol. 1,
no. 4, pp. 397-413, 1993.

[3] R. Gallager, “Basic limits on protocol information in @acommunication networks|EEE Transactions on Information Theomyol. 22,
no. 4, pp. 385-398, 1976.

[4] ——, Discrete stochastic processesKluwer, 1996.



(5]

(6]
(7]

(8]

El

[10]

[11]

[12]

(23]

25

K. Jagannathan, E. Modiano, and L. Zheng, “Effectiveotgse allocation in a single-server queue: How much corigrolecessary,” in
Forty-Sixth Annual Allerton Conference on CommunicatiGontrol, and Computing, Monticello |L2008.

——, “On the trade-off between control rate and congesiio single server systems,” iEEE INFOCOM 2009, pp. 271-279.

X. Lin, N. Shroff, and R. Srikant, “On the connectiongvstability of congestion-controlled communication netis,” IEEE
Transactions on Information Theqryol. 54, no. 5, pp. 2317-2338, 2008.

M. Neely, “Order optimal delay for opportunistic schéidg in multi-user wireless uplinks and downlinkdEEE/ACM Transactions on
Networking vol. 16, no. 5, pp. 1188-1199, 2008.

M. Neely, E. Modiano, and C. Li, “Fairness and optimal cdtastic control for heterogeneous networdEEE/ACM Transactions on
Networking (TON)vol. 16, no. 2, pp. 396-409, 2008.

M. Neely, E. Modiano, and C. Rohrs, “Dynamic power a#ition and routing for time varying wireless networks,”IlEEEE INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEEpGmmand Communications Societie®l. 1, 2003.

J. Perkins and R. Srikant, “The role of queue length rimfation in congestion control and resource pricing,"IHEE Conference on
Decision and Contrglvol. 3, 1999, pp. 2703-2708.

L. Tassiulas and A. Ephremides, “Stability propertiéonstrained queueing systems and scheduling policiesié&ximum throughput
in multihop radio networks,IEEE Transactions on Automatic Contralol. 37, no. 12, pp. 1936-1948, 1992.

——, “Dynamic server allocation to parallel queues witmdomly varying connectivity,IEEE Transactions on Information Theory
vol. 39, no. 2, pp. 466-478, 1993.



