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Abstract

In this paper, we study the role played by queue length information in the operation of flow control and server

allocation policies. We first consider a simple model of a single server queue with congestion-based flow control.

The input rate at any instant is decided by a flow control policy, based on the queue occupancy. We identify a

simple ‘two threshold’ control policy, which achieves the best possible exponential scaling for the queue congestion

probability, for any rate of control. We show that when the control channel is reliable, the control rate needed to

ensure the optimal decay exponent for the congestion probability can be made arbitrarily small. However, if control

channel erasures occur probabilistically, we show the existence of a critical erasure probability threshold beyond

which the congestion probability undergoes a drastic increase due to the frequent loss of control packets. We also

determine the optimal amount of error protection to apply tothe control signals by using a simple bandwidth

sharing model. Finally, we show that the queue length based server allocation problem can also be treated using

this framework, and that the results obtained for the flow control setting can also be applied to the server allocation

case.

Index Terms

Congestion control, resource allocation, queue length information, buffer overflow probability, large deviations.

I. I NTRODUCTION

Network control plays a crucial role in the operation of modern communication networks, and consists of several

functions, such as scheduling, routing, flow control, and resource allocation. A primary goal of network control

is to ensure stability [10], [12]. Furthermore, network control is used to provide QoS guarantees on metrics such

as throughput, delay and fairness. These objectives are usually accomplished through a combination of resource

allocation and flow control. The control decisions often take into account the instantaneous channel quality of the

various links, the queue backlogs, and the quality of Service (QoS) requirements of the different flows. In this

paper, we study the role played by queue length information in flow control and resource allocation policies.

Flow control and resource allocation play an important rolein keeping congestion levels in the network within

acceptable limits. Flow control involves regulating the rate of the incoming exogenous traffic to a queue, depending
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on its congestion level, see [9] for example. Resource allocation, on the other hand, involves assigning larger

service rates to the queues that are congested, and vice-versa [10], [12]. Most systems use a combination of the

two methods to avoid congestion in the network, and to achieve various performance objectives [7], [9].

The knowledge of queue length information is often useful, sometimes even necessary, in order to perform these

control tasks effectively. Almost all practical flow control mechanisms base their control actions on the level of

congestion present at a given time. For example, in networksemploying TCP, packet drops occur when buffers are

about to overflow, and this in turn, leads to a reduction in thewindow size and packet arrival rate. Active queue

management schemes such as Random Early Detection (RED) aredesigned to pro-actively prevent congestion

by randomly dropping some packetsbeforethe buffers reach the overflow limit [2]. On the other hand, resource

allocation policies can either be queue-blind, such as round-robin, first come first served (FCFS), and generalized

processor sharing (GPS), or queue-aware, such as maximum weight scheduling. Queue length based scheduling

techniques are known to have superior delay and queue overflow performance than queue-blind algorithms such

as round-robin and processor sharing [1], [8], [13].

Since the queue lengths can vary widely over time in a dynamicnetwork, queue occupancy based flow control

and resource allocation algorithms typically require the exchange of control information between agents that

can observe the various queue lengths in the system, and the controllers which adapt their actions to the varying

queues. This control information can be thought of as being apart of the inevitable protocol and control overheads

in a network. Gallager’s seminal paper [3] on basic limits onprotocol information was the first to address this

topic. He derives information theoretic lower bounds on theamount of protocol information needed for network

nodes to keep track of source and destination addresses, as well as message starting and stopping times.

This paper deals with the basic question of how often controlmessages need to be sent in order to effectively

control congestion in a single server queue. We separately consider the flow control and resource allocation

problems, and characterize the rate of control necessary toachieve a certain congestion control performance in

the queue. In particular, we argue that there is an inherent tradeoff between the rate of control information, and

the corresponding congestion level in the queue. That is, ifthe controller has very accurate information about the

congestion level in the system, congestion control can be performed very effectively by adapting the input/service

rates appropriately. However, furnishing the controller with accurate queue length information requires significant

amount of control. Further, frequent congestion notifications may also lead to undesirable retransmissions in packet

drop based systems such as TCP. Therefore, it is of interest to characterize how frequently congestion notifications

need to be employed, in order to achieve a certain congestioncontrol objective. We do not explicitly model the

packet drops in this paper, but instead associate a cost witheach congestion notification. This cost is incurred

either because of the ensuing packet drops that may occur in practice, or might simply reflect the resources needed

to communicate the control signals.

We consider a single server queue with congestion based flow control. Specifically, the queue is served at a constant

rate, and is fed by packets arriving at one of two possible arrival rates. In spite of being very simple, such a
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system gives us enough insights into the key issues involvedin the flow control problem. The two input rates may

correspond to different quality of service offerings of an internet service provider, who allocates better service

when the network is lightly loaded but throttles back on the input rate as congestion builds up; or alternatively

to two different video streaming qualities where a better quality is offered when the network is lightly loaded.

The arrival rate at a given instant is chosen by a flow control policy, based on the queue length information obtained

from a queue observer. We identify a simple ‘two-threshold’flow control policy and derive the corresponding

tradeoff between the rate of control and congestion probability in closed form. We show that the two threshold

policy achieves the best possible decay exponent (in the buffer size) of the congestion probability for arbitrarily

low rates of control. Although we mostly focus on the two threshold policy owing to its simplicity, we also point

out that the two threshold policy can be easily generalized to resemble the RED queue management scheme.

Next, we consider a model where erasures may occur on the control channel, possibly due to wireless transmission.

We characterize the impact of control channel erasures on the congestion control performance of the two threshold

policy. We assume a probabilistic model for the erasures on the control channel, and show the existence of a critical

erasure probability, beyond which the losses in receiving the control packets lead to an exponential worsening of

the congestion probability. However, for erasure probabilities below the critical value, the congestion probability

is of the same exponential order as in a system with an erasure-free control channel. Moreover, we determine

the optimal apportioning of bandwidth between the control signals and the server in order to achieve the best

congestion control performance.

Finally, we study the server allocation problem in a single server queue. In particular, we consider a queue with a

constant input rate. The service rate at any instant is chosen from two possible values depending on the congestion

level in the queue. This framework turns out to be mathematically similar to the flow control problem, so that

most of our results for the flow control case also carry over tothe server allocation problem. Earlier versions of

this work appeared in [5], [6].

The rest of the paper is organized as follows. Section II introduces the system model, and the key parameters of

interest in the design of a flow control policy. In Section III, we introduce and analyze the two threshold policy.

In Section IV, we investigate the effect of control channel erasures on the congestion control performance of the

two threshold policy. Section V deals with the problem of optimal bandwidth allocation for control signals in an

erasure-prone system. The server allocation problem is presented in Section VI; and Section VII concludes the

paper.

II. PRELIMINARIES

A. System Description

Let us first describe a simple model of a queue with congestionbased flow control. Fig. 1 depicts a single server

queue with a constant service rateµ. We assume that the packet sizes are exponentially distributed with mean

1. Exogenous arrivals are fed to the queue in a regulated fashion by a flow controller. An observer watches the
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Fig. 1. A single server queue with input rate control.

queue evolution and sends control information to the flow controller, which changes the input rateA(t) based on

the control information it receives. The purpose of the observer-flow controller subsystem is to change the input

rate so as to control congestion in the queue.

The controller chooses the input process at any instantt to be a Poisson processes of rateA(t). We assume that

the input rate at any instant is chosen to be one of two distinct possible values,A(t) ∈ {λ1, λ2}, whereλ2 < λ1

and λ2 < µ. Physically, this model may be motivated by a DSL-like system, wherein a minimum rateλ2 is

guaranteed, but higher transmission rates might be intermittently possible, as long as the system is not congested.

Moreover, [11] showed that in a single server system with flowcontrol, where the input rate is allowed to vary

in the interval [λ2, λ1], a ‘bang-bang’ solution is throughput optimal. That is, a queue length based threshold

policy that only uses the two extreme values of the possible input rates, is optimal in the sense of maximizing

throughput for a given congestion probability constraint.

The congestion notifications are sent by the observer in the form of information-less control packets. Upon

receiving a control packet, the flow controller switches theinput rate from one to the other. We focus on Markovian

control policies, in which the input rate chosen after an arrival or departure event is only a function of the previous

input rate and queue length. We will show that Markovian policies are sufficient to achieve the optimal asymptotic

decay rate for the congestion probability.

B. Markovian Control Policies

We begin by defining notions of Markovian control policies, and its associated congestion probability.

Let t > 0 denote continuous time. LetQ(t) andA(t) respectively denote the queue length and input rate (λ1 or

λ2) at timet. DefineY (t) = (Q(t), A(t)) to be the state of the system at timet. We assign discrete time indices

n ∈ {0, 1, 2, . . .} to each arrival and departure event in the queue (“queue event”). Let Qn andAn respectively

denote the queue length and input rate just after thenth queue event. DefineYn = (Qn, An). A flow control

policy assigns service ratesAn after every queue event.

Definition 1: A control policy is said to be Markovian if it assigns input ratesAn such that

P{An+1|Qn+1, Yn, . . . , Y0} = P{An+1|Qn+1, Yn}, (1)

∀n = 0, 1, 2 . . . .
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For a Markovian control policy operating on a queue with memoryless arrival and packet size distributions, it

is easy to see thatY (t) is a continuous time Markov process with a countable state space, and thatYn is the

imbedded Markov chain for the processY (t). A Markovian policy is said to be stabilizing if the processY (t)

is positive recurrent under the policy. Thus, if a policy is stabilizing, the steady-state distribution of the queue

length, denoted byQ, exists. In other words,Q is the distributional limit ofQ(t) as t → ∞. The congestion

probability under a stabilizing Markovian policy is definedusing the limiting distributionQ as follows.

Definition 2: Let M > 0 be a congestion limit. The congestion probability is definedasP{Q ≥ M}.

C. Throughput, congestion and rate of control

We will focus on three important parameters of a flow control policy, namely, throughput, congestion probability,

and rate of control. There is usually an inevitable tradeoffbetween throughput and congestion probability in a

flow control policy. In fact, a good flow control policy shouldensure a high enough throughput, in addition to

effectively controlling congestion. In this paper, we assume that a minimum throughput guaranteeγ should be

met. Observe that a minimum throughput ofλ2 is guaranteed, whereas any throughput less thanmin(λ1, µ) can

be supported, by using the higher input rateλ1 judiciously. Loosely speaking, a higher throughput is achieved by

maintaining the higher input rateλ1 for a longer fraction of time, with a corresponding tradeoffin the congestion

probability.

In thesingle threshold policy, the higher input rateλ1 is used whenever the queue occupancy is less than or equal

to some thresholdl, and the lower rate is used for queue lengths larger thanl. It can be shown that a larger value

of l leads to a larger throughput, and vice-versa. In particular, the throughput obtained under the single threshold

policy is given by
(ρl+1

1
−1)(1−ρ2)

ρ
l+1

1
(ρ1−ρ2)−(1−ρ2)

(λ1 − λ2) + λ2 for ρ1 6= 1,

l+1
l+1+ 1

1−ρ2

(λ1 − λ2) + λ2 for ρ1 = 1,
(2)

whereρ2 = λ2

µ
, andρ1 = λ1

µ
. Thus, given the throughput requirementγ, we can determine the corresponding

thresholdl to meet the requirement. Once the thresholdl has been fixed, it can be shown that the single threshold

policy minimizes the probability of congestion. However, it suffers from the drawback that it requires frequent

transmission of control packets, since the system may oftentoggle between statesl and l + 1. It turns out that

a simple extension of the single threshold policy gives riseto a family of control policies, which provide more

flexibility with the rate of control, while still achieving the throughput guarantee and ensuring good congestion

control performance.

III. T HE TWO THRESHOLD FLOW CONTROL POLICY

As suggested by the name, the input rates in the two thresholdpolicy are switched at two distinct thresholdsl

andm, wherem ≥ l + 1, and l is the threshold determined by the throughput guarantee. Aswe shall see, the

position of the second threshold gives us another degree of freedom, using which the rate of control can be fixed

at a desired value. The two threshold policy operates as follows.
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Fig. 2. The Markov processY (t) corresponding to the two-threshold flow control policy.

Suppose we start with an empty queue. The higher input rateλ1 is used as long as the queue length does not

exceedm. When the queue length grows pastm, the input rate switches to the lower valueλ2. Once the lower

input rate is employed, it is maintained until the queue length falls back tol, at which time the input rate switches

back toλ1.

We will soon see that this ‘hysteresis’ in the thresholds helps us tradeoff the control rate with the congestion

probability. The two threshold policy is easily seen to be Markovian, and the state space and transition rates for

the process are shown in Fig. 2. In what follows, we assume that the congestion limitM is much larger than the

thresholdsl andm. Since the two threshold policy switches to the lower rate forqueue lengths larger thanm, it

is clear that the system is stable, and the steady-state queue lengths exists.

Definek = m− l to be the difference between the two queue length thresholds. We use the short hand notation

l + i(1) and l + i(2) in the figure, to denote respectively, the states(Q(t) = l + i, A(t) = λ1) and (Q(t) =

l+ i, A(t) = λ2), i = 1, . . . , k−1. For queue lengthsl or smaller andm or larger, we drop the subscripts because

the input rate for these queue lengths can only beλ1 andλ2 respectively. Note that the casek = 1 corresponds

to a single threshold policy. As we shall see later, the throughput of the two threshold policy fork > 1 cannot

be smaller than that of the single threshold policy. Thus, given a throughput guarantee, we can solve for the

thresholdl using the throughput expression (2) for the single threshold policy, and the throughput guarantee will

also be met fork > 1. We now explain how the parameterk can be used to tradeoff the rate of control and the

congestion probability.

A. Congestion probability vs. rate of control tradeoff

Intuitively, as the gap between the two thresholdsk = m − l increases for a fixedl, the rate of control packets

sent by the observer should decrease, while the probabilityof congestion should increase. It turns out that we

can characterize the rate-congestion tradeoff for the two-threshold policy in closed form. We do this by solving

for the steady state probabilities in Fig. 2. Defineρ2 = λ2

µ
, ρ1 = λ1

µ
, andη1 = 1/ρ1. Note that by assumption,

we haveρ2 < 1 andρ1 > ρ2.

Let us denote the steady state probabilities of the non-superscripted states in Fig. 2 bypj , wherej ≤ l, or j ≥ m.

Next, denote byp(1)l+i (p(2)l+i) the steady state probability of the statel+ i(1) (l+ i(2)), for i = 1, 2, . . . , k− 1. Let
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us now solve for the steady-state probabilities of various states in terms ofpl. For the states0 ≤ i ≤ l, the local

balance equations imply that

pi = plη
l−i
1 , 0 ≤ i ≤ l.

Next, for the set of statesl + i(1), i = 1, 2, . . . , k − 2, the balance equations read1

p
(1)
l+1+i − (1 + ρ1)p

(1)
l+i + p

(1)
l+i−1ρ1 = 0, i = 1, 2, . . . , k − 2.

For the statem− 1(1), we have

p
(1)
m−1(1 + ρ1) = p

(1)
m−2.

Using the last two relations, we can recursively obtain the steady-state probabilitiesp(1)l+i, i = 1, 2, . . . , k − 1 in

terms ofpl.

p
(1)
m−j =







1−η
j
1

1−ηk
1

pl, η1 6= 1,

j
k
pl, η1 = 1,

j = 1, 2, . . . , k − 1,

Similarly, the statesl+ i(2), i = 1, 2, . . . , k − 1, satisfy

p
(2)
l+1(1 + ρ2) = p

(2)
l+2,

and

p
(2)
l+1+i − (1 + ρ2)p

(2)
l+i + p

(2)
l+i−1ρ2 = 0, i = 1, 2, . . . , k − 1.

From the last two relations, we obtain

p
(2)
l+j =

1− ρj2
1− ρ2

p
(2)
l+1, j = 1, 2, . . . , k.

To write the above in terms ofpl, note thatp(2)l+1µ = p
(1)
m−1λ1, and thatp(1)m−1 is already known in terms ofpl.

Therefore,

p
(2)
l+j = ρ1

1− ρj2
1− ρ2

p
(1)
m−1, j = 1, 2, . . . , k.

Finally, for the states beyondm, straightforward local balance yields

pj = ρj−m
2 pm = ρj−m

2 ρ1
1− ρk2
1− ρ2

p
(1)
m−1, j ≥ m.

The value ofpl, which is the only remaining unknown in the system can be determined by normalizing the

probabilities to 1:

pl =



















[

k(1−ρ2η1)

η1(1−ηk
1
)(1−ρ2)

− η
l+1

1

1−η1

]−1

η1 6= 1,

[

l + k+1
2 + 1

1−ρ2

]−1

η1 = 1.

(3)

Using the steady-state probabilities derived above, we cancompute the congestion probability as

P{Q ≥ M} =
∑

j≥M

pj = ρM−m
2 ρ1

1− ρk2
(1− ρ2)2

p
(1)
m−1. (4)

1We use the conventionp(j)
l

= pl for j = 1, 2.
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We define the control rate simply as the average number of control packets transmitted by the queue observer

per unit time. Since there is one packet transmitted by the observer every time the state changes fromm− 1(1)

to m or from l + 1(2) to l, the rate (in control packets per second) is given by

R = λ1p
(1)
m−1 + µp

(2)
l+1.

Sinceλ1p
(1)
m−1 = µp

(2)
l+1, we have

R = 2λ1p
(1)
m−1 =







2λ1(1−η1)

1−ηk
1

pl η1 6= 1,

2λ1pl

k
η1 = 1,

(5)

wherepl was found in terms of the system parameters in (3).

It is clear from (4) and (5) thatk determines the tradeoff between the congestion probability and rate of control.

Specifically, a largerk implies a smaller rate of control, but a larger probability of congestion, and vice versa.

Thus, we conclude that for the two threshold policy, the parameterl dictates the minimum throughput guarantee,

while k trades off the congestion probability with rate of control packets.

As we mentioned earlier, the thresholdl is computed based on the throughput guaranteeγ, using the throughput

expression (2) for the single threshold policy. The throughput obtained under the two threshold policy can be

computed using the steady-state probabilities derived above. The throughput expression (forη1 6= 1) is given by
(

k(1− η1)− ηl+1
1 (1 − ηk1 )

)

η1(1 − ρ2)

k(1− η1)(1 − ρ2η1)− ηl+2
1 (1− ηk1 )(1 − ρ2)

(λ1 − λ2) + λ2. (6)

By direct computation, it can be seen from the above expression that the throughput fork > 1 is no smaller than

the throughput obtained under the single threshold policy (i.e., k = 1). Thus, the two threshold policy satisfies

the throughput guarantee for allk > 1.

B. Large deviation exponents

In many simple queueing systems, the congestion probability decays exponentially in the buffer sizeM. Fur-

thermore, when the buffer size gets large, the exponential term dominates all other sub-exponential terms in

determining the decay probability. It is therefore useful to focus only on the exponential rate of decay, while

ignoring all other sub-exponential dependencies of the congestion probability on the buffer sizeM. Such a

characterization is obtained by using the so called large deviation exponent (LDE). For a given control policy, we

define the LDE corresponding to the decay rate of the congestion probability as

E = lim
M→∞

− 1

M
logP{Q ≥ M},

when the limit exists. We now compute the LDE for the two threshold policy.

Proposition 1: Assume thatk scales withM sub-linearly, so thatlimM→∞
k(M)
M

= 0. The LDE of the two

threshold policy is then given by

E = log
1

ρ2
. (7)
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The above result follows from the congestion probability expression (4) since the only term that is exponential

in M is ρM−m
2 = ρM−l−k

2 . Note that oncel has been determined from the throughput requirement, it does not

scale withM. Whenk grows sub-linearly inM, it should not be surprising that the two thresholds are ‘invisible’

in the large deviation limit. We pause to make the following observations:

• If k scales linearly withM ask(M) = βM for some constantβ > 0, the LDE becomesE = (1−β) log 1
ρ2
,

for ρ1 ≥ 1 andE = (1− β) log 1
ρ2

+ β log 1
ρ1

for ρ1 < 1.

• The control rate (5) can be made arbitrarily small, ifk(M) tends to infinity. This implies that as long as

k(M) grows to infinity sub-linearly inM, we can achieve an LDE that is constant (equal to− log ρ2) for

all rates of control.

• As k becomes large, the congestion probability will increase. However, the increase is only sub-exponential

in the buffer size, so that the LDE remains constant.

In what follows, we will be interested only in the LDE corresponding to the congestion probability, rather than

its actual value. The following theorem establishes the optimality of the LDE for the two threshold policy.

Theorem 1:The two threshold policy has the best possible LDE corresponding to the congestion probability

among all flow control policies, for any rate of control.

This result is a simple consequence of the fact that the two threshold policy has the same LDE as an M/M/1

queue with the lower input rateλ2, and the latter cannot be surpassed by any flow control policy.

C. More general Markovian policies and relationship to RED

In the previous section, we analyzed the two threshold policy and concluded that it has the optimal congestion

probability exponent for any rate of control. This is essentially because the input rate switches to the lower value

deterministically, well before the congestion limitM is reached. In this subsection, we show that the two threshold

policy can be easily modified to a more general Markovian policy, which closely resembles the well known RED

active queue management scheme [2]. Furthermore, this modification can be done while maintaining the optimal

exponent behavior for the congestion probability.

Recall that RED preemptively avoids congestion by startingto drop packets randomly even before the buffer is

about to overflow. Specifically, consider two queue thresholds, sayl andm, wherem > l. If the queue occupancy

is no more thanl, no packets are dropped, no matter what the input rate is. On the other hand, if the queue length

reaches or exceedsm, packets are always dropped, which then leads to a reduction in the input rate (assuming

that the host responds to dropped packets). If the queue length is betweenl andm, packets are randomly dropped

with some probabilityq.2

Consider the following flow control policy, which closely resembles the RED scheme described above:

For queue lengths less than or equal tol, the higher input rate is always used. If the queue length increases to

m while the input rate isλ1, a congestion notification is sent, and the input rate is reduced toλ2. If the current

2Often, the dropping probability is dependent on the queue length.
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Fig. 3. The Markov process corresponding to the control policy described in Section III-C that approximates RED.

input rate isλ1 and the queue length is betweenl andm, a congestion notification occurs with probability3 q

upon the arrival of a packet, and the input rate is reduced toλ2. With probability 1 − q, the input continues at

the higher rate. The Markov process corresponding to this policy is depicted in Fig. 3.

We can derive the tradeoff between the congestion probability and the rate of congestion notifications for this policy

by analyzing the Markov chain in Fig. 3. Once the lower threshold l has been determined from the throughput

guarantee, the control rate vs. congestion probability tradeoff is determined by bothq andm. Further, since the

input rate switches to the lower valueλ2 when the queue length is larger thanm, this flow control policy also

achieves the optimal LDE for the congestion probability, equal to log 1
ρ2
. We skip the derivations for this policy,

since it is more cumbersome to analyze than the two thresholdpolicy, without yielding further qualitative insights.

We focus on the two threshold policy in the remainder of the paper, but point out that our methodology can also

model more practical queue management policies like RED.

IV. T HE EFFECT OF CONTROL ERASURES ON CONGESTION

In this section, we investigate the impact of control erasures on the congestion probability of the two threshold

policy. We use a simple probabilistic model for the erasureson the control channel. In particular, we assume that

any control packet sent by the observer can be lost with some probability δ, independently of other packets. Using

the decay exponent tools described earlier, we show the existence of a critical value of the erasure probability,

say δ∗, beyond which the erasures in receiving the control packets lead to an exponential degradation of the

congestion probability.

A. The two-threshold policy over an erasure-prone control channel

As described earlier, in the two threshold policy, the observer sends a control packet when the queue length

reachesm = l+ k. This packet may be received by the flow controller with probability 1− δ, in which case the

input rate switches toλ2. The packet may be lost with probabilityδ, in which case the input continues at the

3We can also let this probability to depend on the current queue length, as often done in RED, but this makes the analysis more difficult.
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Fig. 4. The Markov processY (t) corresponding to the erasure-prone two-threshold policy.Only a part of the state space (withm − 1 ≤

Q(t) ≤ M ) is shown.

higher rateλ1. We assume that if a control packet is lost, the observer immediately knows about it4, and sends

another control packet the next time an arrival occurs to a system with at leastm− 1 packets.

The processY (t) = (Q(t), A(t)) is a Markov process even for this erasure-prone two threshold policy. Fig. 4

shows a part of the state space for the processY (t), for queue lengths larger thanm−1. Note that due to control

erasures, the input rate does not necessarily switch toλ2 for queue lengths greater thanm − 1. Indeed, it is

possible to have not switched to the lower input rate even forarbitrarily large queue lengths. This means that the

congestion limit can be exceeded under both arrival rates, as shown in Fig. 4. The following theorem establishes

the LDE of the erasure-prone two threshold policy, as a function of the erasure probabilityδ.

Theorem 2:Consider a two threshold policy in whichk grows sub-linearly inM. Assume that the control

packets sent by the observer can be lost with probabilityδ. Then, the queue is stable for allδ < 1, and the LDE

corresponding to the congestion probability is given by

E(δ) =



















log 1
ρ2
, δ ≤ δ∗,

log 2

1+ρ1−
√

(ρ1+1)2−4δρ1

, δ > δ∗,

(8)

whereδ∗ is thecritical erasure probabilitygiven by

δ∗ =
ρ2
ρ1

(1 + ρ1 − ρ2). (9)

Before we give a proof of this result, we pause to discuss its implications. The theorem shows that the two

threshold policy over an erasure-prone channel has two regimes of operation. In particular, for ‘small enough’

erasure probability (δ < δ∗), the exponential rate of decay of the congestion probability is the same as in an

erasure-free system. However, forδ > δ∗, the decay exponent begins to take a hit, and therefore, the congestion

probability suffers an exponential increase. For this reason, we refer toδ∗ as the critical erasure probability. Fig. 5

4This is an idealized assumption; in practice, delayed feedback can be obtained using ACKS.
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Fig. 5. LDE as a function ofδ for ρ1 > 1.

shows a plot of the decay exponent as a function of the erasureprobabilityδ, for ρ1 > 1. The ‘knee point’ in the

plot corresponds toδ∗ for the stated values ofρ1 andρ2.

Proof: We first need to prove that the Markov chain is positive recurrent for all δ < 1, so that the congestion

probability is well defined. To do this, we will write out the balance equations, and obtain one possible set of

‘candidate’ steady-state probabilities. According to Theorem 3 in [4, Chapter 5], if a set of positive, normalized

numbers that satisfy the balance equations are found, then the solution is unique, and the irreducible Markov chain

(with countable state-space) is positive recurrent. We will also be able to obtain the desired LDE expression, once

we derive the steady-state probabilities.

As before, we will first express all the steady-state probabilities in terms ofpl. The balance equations for the

states with queue length less thanm are as in the erasure-free case. Thus,

pi = plη
l−i
1 , 0 ≤ i ≤ l. (10)

Next, for the set of statesl + i(1), i = 1, 2, . . . , k − 1,

p
(1)
l+1+i − (1 + ρ1)p

(1)
l+i + p

(1)
l+i−1ρ1 = 0, i = 1, 2, . . . , k − 1.

Using the above, we can expressp
(1)
l+i, i = 2, . . . , k in terms ofp(1)l+1 andpl as

p
(1)
l+i = p

(1)
l+1

1− ρi1
1− ρ1

− pl
ρ1 − ρi1
1− ρ1

, i = 2, . . . , k. (11)

Similarly, for the statesl + i(2), i = 2, . . . , k, we have as before,

p
(2)
l+i =

1− ρi2
1− ρ2

p
(2)
l+1, i = 2, . . . , k. (12)

The balance equations for the top set of states in Fig. 4 can bewritten as
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p
(1)
i+1µ− (λ1 + µ)p

(1)
i + δλ1p

(1)
i−1 = 0, i = m,m+ 1, . . . (13)

Solving the second order recurrence relation above, we find that the top set of states in Fig. 4 (which correspond

to arrival rateλ1) have steady state probabilities of the form

p
(1)
m−1+i = As(δ)i +Br(δ)i, i = 1, 2, . . . , (14)

where

s(δ) =
1 + ρ1 −

√

(1 + ρ1)2 − 4ρ1δ

2
, (15)

and

r(δ) =
1 + ρ1 +

√

(1 + ρ1)2 − 4ρ1δ

2
.

It is easy to show thats(δ) < 1 < r(δ) for all δ < 1. Since we are looking for probabilities that decay to zero,

the growing termr(δ)i is inadmissible. Therefore, we setB = 0 in (14), and obtain the form

p
(1)
m−1+i = s(δ)ip

(1)
m−1, i = 1, 2, . . . , (16)

which satisfies (13). We now use the relationp
(1)
m = s(δ)p

(1)
m−1 in Equation (11) to write

p
(1)
l+1

1− ρk1
1− ρ1

− pl
ρ1 − ρk1
1− ρ1

= s(δ)

(

p
(1)
l+1

1− ρk−1
1

1− ρ1
− pl

ρ1 − ρk−1
1

1− ρ1

)

,

from which we can obtainp(1)l+1 in terms ofpl :

p
(1)
l+1 = pl

[

1− ηk−1
1 − s(δ)(η1 − ηk−1

1 )

1− ηk1 − s(δ)(η1 − ηk1 )

]

. (17)

We next use the relationpl = η1(p
(1)
l+1 + p

(2)
l+1) to obtainp(2)l+1 in terms ofpl :

η1p
(2)
l+1 = pl

[

(1− η1)(1 − η1s(δ))

1− ηk1 − s(δ)(η1 − ηk1 )

]

. (18)

Finally, let us deal with the statesp(2)i , i = m+ 1,m+ 2, . . . . The balance equations for these states read

p
(2)
i+1µ− (λ2 + µ)p

(2)
i + λ2p

(2)
i−1 + (1− δ)λ1p

(1)
i−1 = 0, i = m,m+ 1, . . . .

Sincep(2)m , p
(2)
m−1, andp(2)l+1 have already been determined in terms ofpl, we can use the above recursion to obtain

p
(2)
m+i =







p
(2)
m ρi2 − p

(2)
l+1s(δ)

s(δ)i−ρi
2

s(δ)−ρ2
s(δ) 6= ρ2,

p
(2)
m ρi2 − p

(2)
l+1iρ

i
2 s(δ) = ρ2.

(19)

Thus, among equations (10), (17), (18), (11), (12), (16), and (19), we have expressed the probabilities of all

states in terms ofpl. The value ofpl can finally be obtained by normalizing the probabilities. Sinceρ2 < 1, and

s(δ) < 1 for δ < 1, the infinite summations converge, andpl is obtained as a positive number. We have thus

obtained a set of normalized numbers that, by construction,satisfy the balance equations. Using Theorem 3 in

[4, Chapter 5], we conclude that the chain is positive recurrent, and that the steady-state probabilities that we

obtained above are unique.
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Let us now proceed to obtain the LDE of the congestion probability. From (16) and (19), we can deduce that the

congestion probability hastwo terms that decay exponentially in the buffer size:

P{Q ≥ M} = Cs(δ)M−l−k +DρM−l−k
2 , (20)

whereC,D are constants. In order to compute the LDE, we need to determine which of the two exponential

terms in (20) decays slower. It is seen by direct computationthat s(δ) ≤ ρ2 for δ ≤ δ∗, whereδ∗ is given by

(9). Thus, for erasure probabilities less thanδ∗, ρ2 dominates the rate of decay of the congestion probability.

Similarly, for δ > δ∗, we haves(δ) > ρ2, and the LDE is determined bys(δ). This proves the theorem. 2

B. Repetition of control packets

Suppose we are given a control channel with probability of erasureδ that is greater than the critical erasure

probability in (9). This means that a two-threshold policy operating on this control channel has an LDE in the

decaying portion of the curve in Fig. 5. In this situation, adding error protection to the control packets will reduce

the effective probability of erasure, thereby improving the LDE. To start with, we consider the simplest form of

adding redundancy to control packets, namely repetition.

Suppose that each control packet is transmittedn times by the observer, and that alln packets are communicated

without delay. Assume that each of then packets has a probabilityδ of being lost, independently of other packets.

The flow controller fails to switch to the lower input rate only if all n control packets are lost, making the effective

probability of erasureδn. In order to obtain the best possible LDE, the operating pointmust be in the flat portion

of the LDE curve, which implies that the effective probability of erasure should be no more thanδ∗. Thus,

δn ≤ δ∗, so that the number of transmissionsn should satisfy

n ≥ log δ∗

log δ
(21)

in order to obtain the best possible LDE oflog 1
ρ2
. If the value ofδ is close to1, the number of repeats is large,

and vice-versa.

V. OPTIMAL BANDWIDTH ALLOCATION FOR CONTROL SIGNALS

As discussed in the previous section, the LDE operating point of the two-threshold policy for any givenδ < 1,

can always be ‘shifted’ to the flat portion of the curve by repeating the control packets sufficiently many times

(21). This ignores the bandwidth consumed by the additionalcontrol packets.

While the control overheads constitute an insignificant part of the total communication resources in optical

networks, they might consume a sizeable fraction of bandwidth in some wireless or satellite applications. In

such a case, we cannot add an arbitrarily large amount of control redundancy without sacrificing some service

bandwidth. Typically, allocating more resources to the control signals makes them more robust to erasures, but

it also reduces the bandwidth available to serve data. To better understand this tradeoff, we explicitly model the

service rate to be a function of the redundancy used for control signals. We then determine the optimal fraction of
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bandwidth to allocate to the control packets, so as to achieve the best possible decay exponent for the congestion

probability.

A. Bandwidth sharing model

Consider, for the time being, the simple repetition scheme for control packets outlined in the previous section.

We assume that the queue service rate is linearly decreasingfunction of the number of repeatsn− 1:

µ(n) = µ

[

1− n− 1

Φ

]

. (22)

The above model is a result of the following assumptions about the bandwidth consumed by the control signals:

• µ corresponds to the service rate when no redundancy is used for the control packets (n = 1).

• The amount of bandwidth consumed by the redundancy in the control signals is proportional to the number

of repeatsn− 1.

• The fraction of total bandwidth consumed by each repetitionof a control packet is equal to1/Φ, where

Φ > 0 is a constant that represents how ‘expensive’ it is in terms of bandwidth to repeat control packets.

Thus, withn − 1 repetitions, the fraction of bandwidth consumed by the control information is n−1
Φ , and the

fraction available for serving data is1− n−1
Φ .

Let us denote byf the fraction of bandwidth consumed by the redundancy in the control information, so that

f = n−1
Φ , or n = Φf + 1. From (22), the service rate corresponding to the fractionf can be written as

µ(f) = µ[1− f ].

In what follows, we do not restrict ourselves to repetition of control packets, so that we are not constrained to

integer values ofn. Instead, we allow the fractionf to take continuous values, while still maintaining that the

erasure probability corresponding tof is δΦf+1. We refer tof as the ‘fraction of bandwidth used for control’,

although it is really the fraction of bandwidth utilized by the redundancyin the control. For example,f = 0 does

not mean no control is used; instead, it corresponds to each control packet being transmitted just once.

B. Optimal fraction of bandwidth to use for control

The problem of determining the optimal fraction of bandwidth to be used for control can be posed as follows:

Given the system parametersρ1, ρ2 andΦ, and a control channel with some probability of erasureδ ∈ [0, 1),

find the optimal fraction of bandwidthf∗(δ) to be used for control, so as to maximize the LDE of the congestion

probability.

Let us define

ρi(f) =
λi

µ(f)
=

ρi
1− f

, i = 1, 2, (23)
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as the effective server utilization corresponding to the reduced service rateµ(f). Accordingly, we can also define

the effective knee point as

δ∗(f) =
ρ2
ρ1

(

1 +
ρ1 − ρ2
1− f

)

, (24)

which is analogous to (9), withρi(f) replacingρi, i = 1, 2.

First, observe that for the queueing system to be stable, we need the effective service rate to be greater than the

lower input rateλ2. Thus, we see thatλ2 < µ[1− f ], or f < 1− ρ2. Next, we compute the LDE corresponding

to a given probability of erasureδ, and fractionf of bandwidth used for control.

Proposition 2: For anyδ ∈ [0, 1) andf ∈ [0, 1− ρ2), the corresponding LDE is given by

E(δ, f) =



















log 1
ρ2(f)

, δΦf+1 ≤ δ∗(f),

log 1
s(f,δ) , δΦf+1 > δ∗(f),

(25)

where

s(f, δ) =
1 + ρ1(f)−

√

(ρ1(f) + 1)2 − 4δΦf+1ρ1(f)

2
.

The derivation and expression forE(δ, f) are analogous to (8), except thatρi is replaced withρi(f), i = 1, 2,

andδ is replaced with the effective probability of erasureδΦf+1.

Definition 3: For any givenδ ∈ [0, 1), the optimal fractionf∗(δ) is the value off that maximizesE(δ, f) in

(25). Thus,

f∗(δ) = argmaxf∈[0,1−ρ2)E(δ, f). (26)

Recall that the value of1/Φ represents how much bandwidth is consumed by each added repetition of a control

packet. We will soon see thatΦ plays a key role in determining the optimal fraction of bandwidth to use for

control. Indeed, we show that there are three different regimes forΦ such that the optimal fractionf∗(δ) exhibits

qualitatively different behavior in each regime as a function of δ. The three ranges ofΦ are: (i) Φ ≤ Φ, (ii)

Φ ≥ Φ, and (iii) Φ < Φ < Φ, where

Φ =
ρ2 − δ∗

log(δ∗)(1 + ρ1 − ρ2)
,

Φ =







1
ρ1−1 ρ1 > 1

∞ ρ1 ≤ 1
. (27)

It can be shown thatΦ < Φ for ρ2 < 1.

We shall refer to case (i) as the ‘smallΦ regime’, case (ii) as the ‘largeΦ regime’, and case (iii) as the ‘intermediate

regime’. We remark that whether a value ofΦ is considered ‘small’ or ‘large’ is decided entirely byρ1 andρ2.

Note that the largeΦ regime is non-existent ifρ1 ≤ 1, so that even ifΦ is arbitrarily large, we would still be in

the intermediate regime.

The following theorem, which is our main result for this section, specifies the optimal fraction of bandwidth

f∗(δ), for each of the three regimes forΦ.
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Theorem 3:For a givenρ1 andρ2, the optimal fraction of bandwidthf∗(δ) to be used for control, has one of

the following forms, depending on the value ofΦ:

(i) Small Φ regime (Φ ≤ Φ): f∗(δ) = 0, ∀ δ ∈ (0, 1).

(ii) Large Φ regime (Φ ≥ Φ):

f∗(δ) =







0, δ ∈ [0, δ∗]

f̂(δ), δ ∈ (δ∗, 1)
,

wheref̂(δ) is the unique solution to the transcendental equation

δΦf̂+1 =
ρ2
ρ1

(

1 +
ρ1 − ρ2

1− f̂

)

. (28)

(iii) Intermediate regime (Φ < Φ < Φ): there existδ′ and δ′′ such thatδ∗ < δ′ < δ′′ < 1, and the optimal

fraction is given by

f∗(δ) =































0, δ ∈ [0, δ∗]

f̂(δ), δ ∈ (δ∗, δ′)

f̃(δ), δ ∈ (δ′, δ′′)

0, δ ∈ (δ′′, 1)

,

wheref̂(δ) is given by (28) andf̃(δ) is the unique solution in(0, 1− ρ2) to the transcendental equation

δΦf̃+1[Φ(1− f̃) log δ∗ + 1] = s(f̃ , δ). (29)

The proof of the above theorem is not particularly interesting, and is postponed to the appendix. Instead, we

provide some intuition about the optimal solution.

C. Discussion of the optimal solution

1) Erasure probability less thanδ∗: In all three regimes, we find thatf∗(δ) = 0 for δ ∈ [0, δ∗]. This is because,

as shown in Fig. 5, the LDE has the highest possible value of− log ρ2 for δ in this range, and there is nothing

to be gained from adding any control redundancy.

2) SmallΦ regime: In case (i) of the theorem, it is optimal to not apply any control redundancy at all. That is,

the best possible LDE for the congestion probability is achieved by using a single control packet every time the

observer intends to switch the input rate. In this regime, the amount of service bandwidth lost by adding any

control redundancy at all, hurts us more than the gain obtained from the improved erasure probability. The plot

of the optimal LDE as a function ofδ for this regime is identical to Fig. 5, since no redundancy isapplied.

3) LargeΦ regime: Case (ii) of the theorem deals with the largeΦ regime. Forδ > δ∗, the optimalf∗(δ) in this

regime is chosen as the fractionf for which the knee pointδ∗(f) equals the effective erasure probabilityδΦf+1.

This fraction is indeed̂f, defined by (28). Fig. 6(a) shows a plot of the optimal fraction(solid line) as a function

of δ. In this example,ρ1 = 1.2, ρ2 = 0.3, andΦ = 10. The resulting optimal LDE is equal tolog 1−f̂(δ)
ρ2

for

δ > δ∗. The optimal LDE is shown in Fig. 6(b) with a solid line.
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Fig. 6. (a) Optimal fractionf∗(δ) for the largeΦ regime, and the fraction for the naı̈ve strategy (b)The corresponding LDE curves

4) Comparison with näıve repetition: It is interesting to compare the optimal solution in the large Φ regime to

the ‘naı̈ve’ redundancy allocation policy mentioned in equation (21). Recall that the naı̈ve policy simply repeats

the control packets to make the effective erasure probability equal to the critical probabilityδ∗, without taking

into account any service bandwidth penalty that this might entail. Let us see how the naı̈ve strategy compares

to the optimal solution if the former is applied to a system with a finiteΦ. This corresponds to a network with

limited communication resources in which the control mechanisms are employed without taking into account the

bandwidth that they consume.
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The fraction of bandwidth occupied by the repeated control packets can be found using (21) to be

f =
1

Φ

(

log δ∗

log δ
− 1

)

,

where we have ignored integrality constraints on the numberof repeats. A plot of this fraction is shown in Fig. 6(a),

and the corresponding LDE in Fig. 6(b), both using dashed lines. As seen in the figure, the naive strategy is more

aggressive in adding redundancy than the optimal strategy,since it does not take into account the loss in service

rate ensuing from the finiteness ofΦ. The LDE of the naı̈ve strategy is strictly worse forδ > δ∗. In fact the

naı̈ve strategy causes instability effects for some valuesof δ close to1 by over-aggressive redundancy addition,

which throttles the service rateµ(f) to values below the lower arrival rateλ2. This happens at the point where

the LDE reaches zero in Fig. 6(b). The naı̈ve strategy has even worse consequences in the other two regimes.

However, we point out that the repetition strategy approaches the optimal solution asΦ becomes very large.

5) Intermediate regime:Case (iii) in the theorem deals with the intermediate regime. For δ > δ∗, the optimal

fraction begins to increase along the curvef̂(δ) exactly like in the largeΦ regime (see Fig. 7). That is, the effective

erasure probability is made equal to the knee point. However, at a particular value of erasure probability, sayδ′,

the optimal fraction begins to decrease sharply from thef̂(δ) curve, and reaches zero at some valueδ′′. Equation

(29) characterizes the optimal fraction for values ofδ in (δ′, δ′′). No redundancy is applied forδ ∈ (δ′′, 1). For

this range of erasure probability, the intermediate regimebehaves more like the smallΦ regime (case(i)). Thus,

the intermediateΦ regime resembles the largeΦ regime for small enough erasure probabilitiesδ < δ′, and the

small Φ regime for large erasure probabilityδ > δ′′. There is also a non empty ‘transition interval’ in between

the two, namely(δ′, δ′′).

VI. QUEUE LENGTH INFORMATION AND SERVER ALLOCATION POLICIES

In this section, we discuss the role of queue length information on server allocation policies in a single server

queue. We mentioned earlier that queue aware resource allocation policies tend to allocate a higher service rate

to longer queues, and vice-versa. Intuitively, if the controller is frequently updated with accurate queue length

information, the service rate can be adapted to closely reflect the changing queue length. However, if the queue

length information is infrequently conveyed to the controller, we can expect a larger queue length variance, and

hence a higher probability of congestion. We study this tradeoff between the probability of congestion and the

rate of queue length information in a single server queue.

Fig. 8 depicts a single server queue with Poisson inputs of rate λ. An observer watches the queue evolution and

sends control information to the to the service rate controller, which changes the service rateS(t) based on the

control information it receives. The purpose of the observer-controller subsystem is to assign service rates at each

instant so as to control congestion in the queue.

For analytical simplicity, we assume that the service rate at any instant is chosen to be one of two distinct values:

S(t) ∈ {µ1, µ2}, whereµ2 > µ1 andµ2 > λ. The control decisions are sent by the observer in the form of
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Fig. 7. (a) Optimal control fractionf∗(δ) for the intermediate regime (b) The corresponding LDE

information-less packets. Upon receiving a control packet, the rate controller switches the service rate from one

to the other. As before, we only focus on Markovian control policies, which are defined analogously to (1).

Note that if there is no restriction imposed on using the higher service rateµ2, it is optimal to use it all the time,

since the congestion probability can be minimized without using any control information. However, in a typical

queueing system with limited resources, it may not be possible to use higher service rate at all times. There could

be a cost per unit time associated with using the faster server, which restricts its use when the queue occupancy

is high. Alternately, one could explicitly restrict the useof the faster server by allowing its use only when the

queue occupancy is over a certain threshold value. In this paper, we impose the latter constrain, i.e., when the



21

 
S t 

Observer

Control Information

Fig. 8. A single server queue with service rate control.

Fig. 9. The Markov process corresponding to the two-threshold server allocation policy.

queue length is no more than some thresholdl, we are forced to use the lower service rateµ1. If the queue length

exceedsl, we are allowed to use the higher rateµ2 without any additional cost until the queue length falls back

to l.5

It turns out that this model is, in a certain sense, dual to theflow control problem considered earlier in this paper.

In fact, for every Markovian flow control policy operating onthe queue in Fig. 1, it is possible to identify a

corresponding server allocation policy which has identical properties. For example, we can define a two threshold

server allocation policy analogously to the flow control policy as follows:

The service rates are switched at two distinct queue length thresholdsl and m. Specifically, when the queue

length grows pastm, the service rate switches toµ2. Once the higher service rate is employed, it is maintained

until the queue length falls back tol, at which time the service rate switches back toµ1. The Markov process

corresponding to the two-threshold server allocation policy is depicted in Fig. 9.

Evidently, the Markov chain in Fig. 9 has the same structure as the chain in Fig. 2, and therefore can be analyzed

in the same fashion. In particular, we can derive the controlrate vs. congestion probability tradeoff, along the

same lines as equations (4) and (5). The following result regarding the two threshold server allocation policy, can

be derived along the lines of Proposition 1 and Theorem 1.

Theorem 4:Suppose thatk goes to infinity sub-linearly in the buffer sizeM, in a two threshold server allocation

policy. Then, the LDE can be maintained constant at

E = log
µ2

λ
,

5Recall that in the flow control problem, the thresholdl was derived from a throughput constraint.
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while the control rate can be made arbitrarily small. Further, the two threshold policy has the largest possible

congestion probability LDE among all server allocation policies, for any rate of control.

The above result shown the optimality of the two threshold policy with respect to the congestion probability

exponent. Next, if the control signals that lead to switching the service rate are subject to erasures (as detailed in

Section IV), we can show that the LDE behaves exactly as in Theorem 2.

In essence, we conclude that both the flow control and resource allocation problems in a single server queue lead

to the same mathematical framework, and can thus be treated in a unified fashion.

VII. C ONCLUSIONS

The goal of this paper was to study the role played by queue length information in flow control and resource

allocation policies. Specifically, we deal with the question of how often queue length information needs to be

conveyed in order to effectively control congestion. To ourknowledge, this is the first attempt to analytically study

this particular tradeoff. Since this tradeoff is difficult to analyze in general networks, we consider a simple model

of a single server queue in which the control decisions are based on the queue occupancy. We learned that in the

absence of control channel erasures, the control rate needed to ensure the optimal decay exponent for the congestion

probability can be made arbitrarily small. However, if control channel erasures occur probabilistically, we showed

the existence of a critical erasure probability threshold beyond which the congestion probability undergoes a drastic

increase due to the frequent loss of control packets. Finally, we determine the optimal amount of error protection

to apply to the control signals by using a simple bandwidth sharing model. For erasure probabilities larger than

the critical value, a significant fraction of the system resources may be consumed by the control signals, unlike in

the erasure-free scenario. We also pointed out that allocating control resources without considering the bandwidth

they consume, might have adverse effects on congestion. We also observed that the sever allocation problem and

the flow control problem can be treated in a mathematically unified manner.

APPENDIX

GivenΦ andδ we want to find the fractionf that satisfies (26). As shown in figure 5, the LDE curve forf = 0

is flat and has the highest possible value of− log ρ2 for δ ∈ [0, δ∗]. Indeed, forδ in the above range, using any

strictly positive fractionf would reduce the LDE tolog 1−f
ρ2

. This implies that the optimal fraction

f∗(δ) = 0, δ ∈ [0, δ∗].

Thus, the problem of finding the optimalf∗(δ) is non-trivial only for δ ∈ (δ∗, 1). We begin our exposition

regarding the optimal fraction with two simple propositions.

Proposition 3: For any givenδ ∈ (δ∗, 1), the optimal fractionf∗(δ) is such that the effective erasure probability

δΦf∗+1 cannot be strictly lesser than the knee point of the curveE(δ, f∗). That is,δ∗(f∗) ≤ δΦf∗+1, δ ∈ (δ∗, 1).

Proof: Suppose the contrary, i.e, for someδ ∈ (δ∗, 1), the optimalf∗ is such thatδ∗(f∗) > δΦf∗+1. The

optimal LDE would then beE(δ, f∗) = − log ρ2(f
∗) = log 1−f∗

ρ2
. Continuity properties imply that∃ ξ > 0
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for which δ∗(f∗ − ξ) > δΦ(f∗−ξ)+1. Thus, if we use the smaller fractionf∗ − ξ for control, the LDE would

be E(δ, f∗ − ξ) = log 1−f∗+ξ
ρ2

. Since this value is greater than the “optimal value”E(δ, f∗), we arrive at a

contradiction. 2

Proposition 4: For a givenδ ∈ (δ∗, 1), there exists a unique fraction̂f(δ) ∈ (0, 1− ρ2) such that the knee point

δ∗(f̂) equals the effective erasure probabilityδΦf̂+1. Furthermore, the optimal fractionf∗(δ) lies in the interval

[0, f̂(δ)].

Proof: The knee point corresponding to any fractionf is given by (24). Therefore, if there exists a fractionf̂ for

which δ∗(f̂) = δΦf̂+1, then f̂ satisfies

δΦf̂+1 =
ρ2
ρ1

(

1 +
ρ1 − ρ2

1− f̂

)

. (30)

The transcendental equation in (30) has a solution in(0, 1− ρ2) for any givenδ ∈ (δ∗, 1). This can be shown by

applying the intermediate value theorem to the difference of the right and left hand side functions in the equation.

The uniqueness of̂f follows from the monotonicity properties of the right and left hand side functions. 2

To prove the second statement, suppose thatf∗ > f̂. Since the knee point (24) is monotonically strictly increasing

in f, we haveδ∗(f∗) > δ∗(f̂) = δΦf̂+1 > δΦf∗+1. This contradicts Proposition 3. 2

The above proposition shows that the optimal fraction lies in the interval[0, f̂(δ)]. Thus, for a givenδ > δ∗,

we seekf∗(δ) ∈ [0, f̂(δ)] for which s(f, δ) (defined in Proposition 2) is minimized. In particular, ifs(f, δ) is

monotonically decreasing in[0, f̂(δ)] for someδ, then clearly,f∗(δ) = f̂(δ). The following proposition asserts

the condition under whichs(f, δ) is monotonically decreasing.

Proposition 5: For someδ > δ∗, suppose the following inequality holds

δΦf̂+1[Φ(1− f̂) log δ + 1] ≤ ρ2

1− f̂
. (31)

Then,f∗(δ) = f̂(δ).

Proof: Fix δ > δ∗. By direct computation, we find that

s′(f, δ) ≤ 0 ⇐⇒ δΦf+1[Φ(1− f) log δ + 1] ≤ s(f, δ).

However, since the left side of the inequality above is strictly increasing inf, we find thats(f, δ) is monotonically

decreasing whenever

δΦf̂+1[Φ(1− f̂) log δ + 1] ≤ s(f̂(δ), δ) =
ρ2

1− f̂
,

where the last equality follows from the definition of̂f. Thus, if (31) is satisfied for a particularδ, s(f, δ) is

decreasing inf , and hence the optimal fraction is given byf∗(δ) = f̂(δ). 2

Now, suppose thatΦ > Φ. Upon rearrangement, this implies thatδ∗[Φ log δ∗ + 1] < ρ2. In other words, (31) is

satisfied with strict inequality, atδ = δ∗. By continuity, we can argue that there exist a rangeδ ∈ (δ∗, δ′) for

which (31) is satisfied. By Proposition 5, we havef∗(δ) = f̂(δ), δ ∈ (δ∗, δ′), which partially proves part (iii) of

the theorem. Note thatδ′ is the smallest value of the erasure probability, if any, forwhich the strict monotonicity
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of s(f, δ) (as a function off ) is compromised. As argued in Proposition 5, this implies (31) holds with equality.

A simple rearrangement yields a transcendental equation for δ′

ρ1

ρ1 − ρ2 + 1− f̂(δ′)
= 1 + Φ(1− f̂(δ′)) log δ′ (32)

Using basic calculus, it is possible to show that there always exists a solutionδ′ < 1 to (32) if ρ1 < 1. However,

if ρ1 > 1, there exists a solution iffΦ < 1
ρ1−1 = Φ. In particular, ifΦ > Φ, we have thats(f, δ) is monotonically

decreasing inf for all δ, so thatf∗(δ) = f̂(δ) for all δ ∈ (δ∗, 1]. This proves part (ii) of the theorem.

On the other hand suppose thatΦ < Φ < Φ. (It is straightforward to show thatΦ < Φ.) Then a solutionδ′ < 1 to

(32) exists, and forδ > δ′, the optimal fraction is no longer equal tôf(δ). It can also be shown that the existence

of δ′ < 1 guarantees the existence of anotherδ′′ > δ′ such thats(f, δ) is increasingin f for eachδ ∈ (δ′′, 1). In

such a case,f∗(δ) would be equal to zero.

Proposition 6: For someδ > δ∗, suppose the following inequality holds

δ[Φ log δ + 1] ≥ 1 + ρ1 −
√

(1 + ρ1)2 − 4δρ1
2

. (33)

Then,f∗(δ) = 0.

The proof is similar to Proposition 5. The value ofδ′′ is obtained as a solution to the transcendental equation

δ′′[Φ log δ′′ + 1] =
1 + ρ1 −

√

(1 + ρ1)2 − 4δ′′ρ1
2

(34)

Again using basic calculus, we can show there exits a solution δ′′ < 1, to (34) if Φ < Φ, which is the same

condition as for the existence ofδ′. Thus, in the intermediate regime, there exists (i)δ′ ∈ (δ∗, 1) such that

f∗(δ) = f̂(δ) for δ∗ < δ < δ′, and (ii) δ′′ > δ′ such thatf ∗ (δ) = 0 for δ ≥ δ′′. For δ ∈ (δ′, δ′′), the function

s(f, δ) has a minimum in(0, f̂), so that the optimum fraction is obtained by settings′(f, δ) to zero. This condition

is the same as (29), and part (iii) of the theorem is thus proved.

We finally show that it is optimal to not use any redundancy in the smallΦ regime.

Proposition 7: For Φ ≤ Φ, s(f, δ) is monotone increasing inf ∈ [0, f̂(δ)] for eachδ > δ∗.

Proof: Simple rearrangement shows that the conditionΦ ≤ Φ is equivalent to saying thatδ′′ ≤ δ∗. Since no

redundancy is used for values of erasure probability greater thanδ′′, it follows that no redundancy is used in the

smallΦ regime. 2
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