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ABSTRACT

Interdigitated electrodes are currently being used as sensing components in microfluidic
lab-on-a-chip devices. The Daktari Diagnostics system uses these electrodes to measure
the change in impedance of a fluid in an assay chamber. In order to improve quality
assurance, a new testing method was developed and validated to characterize the sources
of potential defects in the electrodes. In the new test, the electrodes are used to measure
the impedance when placed in solutions of different known conductivities. The data was
used to estimate the linear relationship between the inverse of the measured impedance to
the solution conductivities. The repeatability tests found an average slope of 1.438x10-s
cm/characteristic length with a standard deviation of 8.52x10 8 cm/characteristic length. It was found that
the number of defective fingers or bending the electrodes significantly changes the
electrode performance with a 95% confidence interval.
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Chapter 1: Introduction

This research focuses on the reliability of microfluidic technology that could contribute to

the timely treatment of HIV patients who are hindered by the lack of resources for

traditional flow cytometry to get CD4 cell counts.

1.1 HIV & AIDS

Human immunodeficiency virus (HIV) is a lentivirus that hides in the human body cells for

long periods of time and attacks a key part of the immune system - the CD4 cells. CD4 cells

are essential for the body in order to fight infections and diseases; however HIV can

progressively destroy so many of the CD4 cells that the body loses this ability to fight. This

condition is called Acquired Immunodeficiency Syndrome (AIDS). The history of HIV and

AIDS is a short one. As recently as the 1970s, no one was aware of this deadly illness. [1],

[2]

The HIV epidemic has become a major global public health challenge, with a total of

approximately 33.4 million people living with HIV worldwide. Each year 2.6 million people

become newly infected with HIV and around 1.8 million die of AIDS. The worst affected

region is sub-Saharan Africa, where more than one in five adults are infected with HIV in

some countries. [2], [3], [4]

1.2 Importance of Monitoring

In 2006, the United Nations Member States committed to scaling up services and

interventions towards the goal of universal access to HIV prevention and antiretroviral

therapy (ART) [4], [5], the main treatment for HIV. In order to achieve this objective, it is

critical to escalate efforts in identifying eligible patients, effectively managing waiting lists,

and closely monitoring any delays in initiation of antiretroviral therapy. [3], [6]



CD4 counting using flow cytometry is a critical component of the AIDS treatment process.

It is used to identify the candidates eligible for ART, as well as monitoring of the immune

system and the disease progression. [7], [8] Declining CD4-cell counts are considered to be

an alarm for the progression of HIV infection. In HIV-positive people, AIDS is officially

diagnosed when this count drops below 200-cells/mm 3 and antiretroviral therapy should

be started. [3]

1.3 Monitoring Challenges

The standard laboratory equipment for CD4 testing is often compromised by under

resourced facilities, lack of skilled health workers, deficiencies in infrastructure, and high-

costs, despite the urgent need for scaling up care services in impacted areas. [6], [9]

Furthermore, in decentralized hospitals in resource-limited settings, many diagnostic tests

simply cannot be performed and are beyond the reach of many HIV-infected people. [10]

This has resulted in CD4 tests becoming a significant barrier in the efforts to scale up HIV

prevention and reaching the planned treatment target in the most affected areas. [6]

The World Health Organization (WHO) and other health organizations have urged the

development of simple-to-use, affordable point-of-care CD4 cell counting system to

monitor HIV-infected patients in resource-limited settings. [9], [11] Microfluidic devices

have been advertised as a key candidate to accomplish point-of-care (POC) diagnostics.

The technology could permit rapid tests on site, lowering the wait times for results while

substantially reducing the cost to the patients. [12], [13], [14]

1.4 Use of Microfluidics

Microfluidics, and specifically lab-on-a-chip (LOC) technology, as a sub-field of MEMS/MST

(Micro Electromechanical Systems/ Microsystems Technology) is an emerging technology

that enables the manipulation of tiny volumes of fluid (typically in the micro to nano-liter

range) in micrometric diameter channels. [12], [15] Since their introduction 15 years ago,



microfluidic devices have shown potential for providing a wide range of point-of-care

(POC) applications. At Daktari Diagnostics they are developing an assay to count specific

blood cells. The typical microfluidics application that is discussed in this thesis is an assay.

[3], [12], [16]

Despite their potential, microfluidic POC platforms are not yet widely used outside of

research laboratories. In order to market such devices and keep pace with increasing

interest and demand, process optimization is essential. Their performance will also need

to be thoroughly evaluated and validated in the field using clinical trials. [13], [17], [18]

1.5 Point-of-Care Development

Many medical diagnostic organizations such as Inverness, Abbott Point of Care, Daktari

Diagnostics, Claros, and Diagnostics 4 All, are taking advantage of these developments and

are actively involved in further advancing the development of lab-on-a-chip technology.

[19], [20]

Daktari Diagnostics as a new entrant in the medical device industry has designed a simple

and cost-effective point-of-care device for CD4 cell testing. The device, DAKTARI CD4,

utilizes microfluidic technology for sample preparation and electrochemical sensing for

measuring the CD4 cell concentration that could effectively overcome the barriers of the

flow cytometry techniques. [9] DAKTARI CD4 is currently undergoing performance

evaluation and optimization, and is en route to clinical trials to obtain patient results. Full

scale manufacturing for the product is in development.

1.6 Development Challenges

Some of the challenges being addressed in the current manufacturing development process

are: understanding the physical processes of different parts; identifying opportunities for

quality control improvement; optimizing the current design; understanding the



manufacturing processes and gaining the ability to predict expected behavior; developing a

system for registering the data from patients; and identifying manufacturing processes and

robust materials for the full scale manufacturing stage. The performance of a component,

the electrode foil, is affected in many ways by manufacturing variation and process

parameters.

In this thesis, the quality control of the electrode foil has been investigated. The foil is

PMMA and has an interdigitated layer of conductive material on the surface. This electrode

foils is how the CD4 cell count is performed in Daktari's system.

1.7 The Masters of Engineering Capstone Project

This document is a thesis for the Masters of Engineering in Manufacturing program

through Massachusetts Institute of Technology's Laboratory for Manufacturing

Productivity. A team of students from the program worked on research projects with a

local company. Each student focused on a different challenge. Different methods were

used to understand the effects of different factors in the production of the foil and

investigate opportunities to improve the design of the part. The author of this thesis,

Jacklyn Holmes, focused on a new testing method and the robustness and repeatability of

the electrodes. The other team members Kasra Namvari and Linda Donoghue focused on an

optical system to measure the output dimensions of the electrodes [21], and the impact of

design on repeatability of the electrodes and ease of quality assurance [22] respectively.

The three theses in combination describe the work done by the students at Daktari

Diagnostics in 2011. The majority of the first half of this document, Chapters 1-3, was

written collaboratively with the other team members due to the similar nature of the

projects.



1.8 Thesis Overview

Now that some background has been given about the AIDs crisis, the next chapter focuses

on Daktari's product and the problem statement in Chapter 2. Chapter 3 will present the

state-of-the-art for microfluidics, lab on a chip technology, CD4 cell monitoring, and the

current manufacturing issues facing these technologies. Then, in Chapter 4, the methods

used to approach the problem will be explained. The results and the discussion will be in

Chapter 5. Chapter 6 contains the conclusion and recommendations, and Chapter 7

outlines the future work needed.
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Chapter 2: Product and Project Overview

2.1 Company Background

Daktari Diagnostics is a medical diagnostic device company located in Cambridge,

Massachusetts, focusing on developing diagnostic tests. The company is currently in the

process of developing a CD4 cell counter for patients with HIV. The CD4 cell counter will be

used in the developing world. The device is designed to be portable, robust, cost effective,

and deliver results quickly as a point-of-care method. Quickly getting results will allow

doctors to identify the candidates eligible for ART, and to monitor the immune system and

the disease progression of the patients.

2.2 Product Description

The product currently in development at Daktari Diagnostics is a CD4 T-Cell counter that is

needed for patients with HIV. The CD4 counter provides information to the caregivers

about the concentration of CD4 cells in the patient's blood. This level shows how strong the

patient's immune system is and can guide the caregivers as to when and how much anti-

retroviral drugs (ARV) to prescribe. Measuring the CD4 cell count overtime shows how fast

the disease is progressing or responding to treatment. Figure 1 shows how Daktari's

system is used to get a CD4 T-Cell count. The assay process has three main stages. The

stages are: (A) The blood sample flows through the assay chamber and CD4 cells stick to

the antibody. (B) Other cells are washed out of the chamber. (C) CD4 cells' cell membranes

are ruptured, or lysed by a high-impedance solution, and the difference in impedance is

measured. [19]
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Figure 1: Assay Process Diagram [19]

This product would typically be used by a trained operator carrying the portable

instrument and a supply of disposable cartridges to patients in remote locations. The

device will be used where a flow cytometer is not easily accessible. The operator will prick

the patient's finger with a lancet and allow the blood to flow into the sample entry port of

the card. Once a sufficient amount of blood has entered the card, the operator caps the

card, which seals the cartridge, and helps the patient with a Band-Aid to reduce the risk of

exposure. The capped card then goes into the instrument, and the test would start.

Solenoids in the instrument drive the fluid reagents, which are stored in blisters on the

card, out of the blisters in a controlled manner. Actuation of valves guides the sample

through an assay chamber. Antibodies that were deposited to the electrode foil capture the

CD4 cells. The captured cells' cell membranes are ruptured, or lysed by a high-impedance

solution. The contents of the cells reduce the impedance of the solution. This reduction of

impedance is then used to measure the concentration of CD4 cells in the blood sample;

subsequently the concentration is displayed on the instrument's LCD display.



2.2.1 The Instrument

The battery-powered instrument is designed for portability. It contains the actuators for

driving the reagents and operating the valves. The instrument connects to the electrode in

the cartridge to read the impedance measurements in the assay chamber. The

measurements are used to determine the CD4 cell count in the sample, and the rest of the

electronics needed to display the results and drive the actuators are contained in the

instrument. The instrument is also the user interface while a test is being performed.

Figure 2 shows how the disposable cartridge will go into the unit. Inserting the cartridge is

similar to how a cassette goes into a cassette player. All of the tasks are met by the

subassemblies listed below.

Figure 2: Daktari Instrument [22]

1. Frame - the structural element of the instrument. All of the other subassemblies are

located using the frame.

2. Door Subassembly - locates the cartridge, punctures a vent hole and ensures no

deformation of the card.



3. Actuator Subassembly - holds the actuators perpendicular to the frame.

4. Solenoid Subassembly - holds the valve actuators perpendicular to the frame.

5. Outer Casing - protects the internal components from impact and debris and also

provides an aesthetic appeal.

2.2.2 The Cartridge

The cartridge is the consumable for the test. The cartridge is a microfluidic device with

reagents and the sensing mechanism to measure the amount of CD4 cells in a sample of

blood. Figure 3 shows a recent iteration of the design. Each cartridge contains the

following 7 parts:

Figure 3: Daktari Cartridge with all Seven Components Labeled [22]

1. Backbone - an injection molded PMMA (polymethyl methacrylate) card with

microfluidic channels.

2. Lid foil - a transparent PMMA sheet that is laser welded to one side of the backbone

to seal the microfluidic channels on the backbone.



3. Functionalized electrode foil - a PMMA foil that covers the 'assay chamber' where

the CD4 cell count is performed. This foil has an electrode layer on it. It is then

coated with antibody solution, which is used to trap the desired CD4 cells.

4. Blister pack - the three semispherical objects in Figure 3 contain the three liquid

reagents that perform tasks as they flow through the system.

5. Valve cover- a layer of polymer used to create a seal on the valves that are used to

direct flow through the system.

6. Housing - an injection molded PMMA element that protects the blister pack and

functionalized foil.

7. Cap - a polymer component that seals the blood entry port after the blood is

sampled and also closes vents that were necessary to allow capillary flow of blood

into the card.

2.3 Problem Statement

In 2011, Daktari Diagnostics was in the process of industrializing the manufacturing processes

for production of the cartridges for the clinical trials and preparing for product

commercialization. This transition requires focus on the production processes and capabilities in

order to efficiently produce parts and maintain the quality required for the final product.

In the course of this transition, Daktari has encountered several problematic areas where the

manufacturing processes were unable to deliver parts as needed for the development process.

These setbacks were due in combination to current process limitations as well as assay

limitations, whereby making the part more easily manufacturable would affect the operation of

the final product. In many cases, these issues, such as molding the microfluidic backbone, were

solved by minor design alterations or further development and optimization of the existing

processes. Others required significant research and development to reach by new design

features, new materials, or the development of a new process.

The overlying theme of all challenges in the scale-up process is quality control and mitigation of

variation for the final product and assay results. This theme was adopted as the main focus of



the projects at Daktari, with the goal of identifying sources of variation, determining allowable

tolerances to this variability, and offering solutions to monitor and control the manufacturing

quality.

In 2010, Linares [24] and Selvakumar [19] performed a survey that highlighted the most critical

manufacturing challenges facing Daktari at the time. The survey included potential failures of

individual parts as well as part interactions that were critical to operation. The next sections will

discuss the progress made in the past year, outstanding challenges, and some additional

considerations that have influenced the focus of this project. Based on these observations, the

main focus of this project is the robustness and repeatability of the electrode foils.

2.3.1 Manufacturing Challenges

In this section a range of manufacturing challenges for the components of the cartridge as

well as the interactions of these components with the instrument are described.

a. Blister Pack Production and Instrument Interaction

Previous research on the formation of the reagent blister packs and modeling the flow behavior

in order to determine the effects of formed geometries and instrument alignment on both the flow

characteristics and assay performance. [19], [24] Additionally, instrument and cartridge

interactions at the valves and electrode pads were also analyzed. This work provided extensive

information on component behavior during product operation. Conclusions from this work have

led to the optimization of blister geometry, as well as continued work on valve design and flow

analysis.

Recent challenges in regards to blisters and fluid flow are valve leakage and an occurrence of

post flow. Valve leakage is one potential cause for unexplained fluid behavior, and prompted a

redesign of the valve seat geometry, a change of valve material from blister foil to a polymer,

and experimentation on the instrument actuator tips. These design changes successfully reduced

the risk in the operation of these parts. Further design modifications will continue if the problem

resurfaces.
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Post flow is a phenomenon where fluid flow continues, sometimes for minutes, after stopping

actuation of the blisters. This occurrence appeared to be a response in which stored energy

caused fluid to continue to flow into the system after the forced actuation. In the end, a

minor redesign to the blister system eliminated this problem.

b. Electrode Foil Production:

As described in Section 2.2, the electrode foil consists of an interdigitated electrode pattern on a

PMMA substrate. The electrode is critical to the operation of the Daktari CD4 system, which

relies on the electrical readings from the electrode to determine the cell count. The nature of the

impedance reading makes it sensitive to minor variations in the electrode, which has previously

been a fragile part. Daktari is currently developing and validating a new manufacturing process

to produce robust parts. To assure accurate assay results, it is critical to understand the

production variability and to ensure repeatability in electrode manufacturing.

The previous method of electrode production employed Chemical Vapor Deposition (CVD) to

sputter gold over the entire surface of the PMMA substrate, followed by laser ablation to strip

away unnecessary gold, leaving the electrode pattern behind. The gold electrodes were fragile,

required delicate handling, and created risk for an assay that relies on the exact finger

configuration and continuity to produce repeatable results. In addition to the risk of damaging

the electrodes post-production, the ablation process itself introduced variability. During ablation,

gold particulates redeposit onto the substrate, texturing the surface and making the foil more

difficult to weld to the backbone.

Daktari Diagnostics has recently developed a new process for the production of the electrode

foils. The new process is currently being patented and the details will not be discussed in this

thesis. These new parts are far more robust as well as faster and less expensive to produce.

While initial observations indicate the viability of these new parts in the product, validation is

required before the gold electrodes can be abandoned. To get to the point of abandoning the gold

electrodes, Daktari must eliminate or understand how to control any risks associated with the



new product. The large majority of these risks relate to the quality of the parts produced and the

variability that may affect the performance of the CD4 assay.

2.3.2 Project Objectives

The main goals the team has developed are:

- Verify the performance of the new electrodes

- Investigate sensitivity to shipping, handling, and defects

- Quantify the variability in the new electrode production

e Understand the process parameters used to produce the electrodes

- Propose design changes to improve the performance of the new electrodes.

- Identify quality control methods for large-scale production

2.3.3 Individual Focus

In this project, the author was tasked with understanding the robustness and repeatability

of the new electrodes. The project had three main goals. The first goal was to develop and

characterize a testing method to quickly measure the expected performance of an electrode

and find the relationship between the testing methods. The second goal was to prove that

the electrodes are in fact robust and can maintain performance after shipping and

handling. The final goal was to evaluate the impact of defects on electrode performance.



Chapter 3: Background Research

This chapter introduces the state of the art for microelecto-mechanical systems. From

there, the uses and advantages of microfluidics will be discussed. More information will be

given on the components and structures necessary in microfluidics specifically for the use

in Lab-on-a-Chip technologies. Also in this chapter, the reasons for CD4 counting and the

current methods for performing the count are presented. Cell Lysate Impedance

Spectroscopy is an alternative to the current methods of counting, with unique

manufacturing challenges. Finally a brief review of statistical process control will

introduce the methods used in this thesis to test the electrodes and verify results.

3.1 MEMS

A major drive in modern technology over the past several decades has been

miniaturization. The field of microelecto-mechanical systems (MEMS) was founded three

decades ago when scientists began making leaps forward in miniaturization. MEMS

technologies include many variations of electromechanical devices in the hundreds of

micrometer to sub-micrometer scale. Devices range from gears to full electrostatic motors

and micro-engines. These small-scale systems are much like integrated circuits, with their

ability to offer integrated operations and functionalities on a single chip. Commonly used

as sensors, MEMS can be produced and incorporated in product designs to handle

detection, analysis, and signal processing in a small and repeatable package.

As a research tool, MEMS are instrumental in taking measurements and observations that

were previously impossible due to difficulty in operating at that scale, such as quantum

behavior and sub-molecular phenomena. MEMS are also beneficial to modeling macro

behavior for miniaturization purposes as well as resource availability, process control,

repeatability of experiments, and degree of observational details. Properly mimicking

macro behavior and responses can be a challenge because of the inflation of effects that are



negligible or relatively small at the macro level but significant in the micro range, such as

adhesion.

3.2 Microfluidics

A specific focus spun off from MEMS research is microfluidics, the study of fluid flows

through micro-scale structures. These systems are utilized for many purposes including

micropumps, microvalves, and micromixers. Microfluidic devices can function

independently or form an integrated system of channels, mixing chambers, nozzles,

etcetera, which perform entire processes. This full integration capability, carried over from

MEMS development, lends many of the same advantages specified to MEMS. These and

other advantages of microfluidics, as highlighted by Land [25], are as follows:

- Efficient use of reagents, minimizing resources and expenses

- Flexible and modular devices which can be combined for scaling

- Faster analysis, with potential for nearly real-time results

- Tighter control of processes through precision with small volumes (especially in use

of droplets)

- Low cost of production per unit

Microfluidics are especially attractive for system because the elimination of moving parts

simplifies production by integrating many elements. As also stated for the general realm

of MEMS technology, one of the challenges is accounting for the different dynamics of the

small scale. Even moving a fluid through a simple channel must be reconsidered at this

scale. Adhesion forces, fluid particle size, boundary conditions, and other phenomenon

must be examined to determine the importance of each. [25], [26]

3.2.1 Components of Microfluidics

As previously stated, microfluidic devices perform a range of functions, often in

combination with each other. The main components which form these building blocks can

be generalized into three main categories, as described by Tabeling [27]: fluidic

interconnects, control elements, and fluid injection.
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Fluidic Interconnects: Interconnects serve as connectors to microfluidic channels from

other microfluidic channels, external input, or fluid injection components.

Control Elements: These components, such as pumps and valves, allow the flow of fluid to

be controlled and regulated as desired.

Fluid Injection: Injection components, such as microneedles and capillary channels,

facilitate the sample preparation and introduction into the microfluidic system.

The components listed above describe the construction of and basic fluid flow within

microfluidics. Many more features and tools can be employed for operation, fluid

manipulation, and specific fluid processes. The wide array of microfluidics can include

microvalves, micropumps, microneedles, and microseparators. [28]

Each of these can be described as multi-purpose tools, bridging the general categories

above, and are available for a number of applications through integration in microfluidic

platforms.

3.2.2 Microfluidic Device Structure

Microfluidic devices are composed of different layers, each performing a specific function.

The typical arrangement of a microfluidic device is shown in Figure 4; it is comprised of a

central layer or a "backbone", external layers, and additional components for flow control

and sensing applications.



Additional Component

Central Layer

External Layer

Figure 4: Microfluidic Layered Architecture [24]

Central Layer

The central layer, or backbone, is the core of microfluidic devices. The backbone contains

all the microfluicic channels, valves, vents and waste channels and all other elements are

mounted to it. This central layer can have varying levels of complexity with the channels

depending on the application.

The backbone developed at Daktari contains all of the features mentioned above and is

manufactured as a plastic injection molded component using PMMA (polymethyl

methacrylate). Other components of the Daktari CD4 cartridge, including the electrode foil

and the blister packs, are mounted to the backbone.

External Layer

The external layer acts as a cover for the central layer and seals the microfluidic channels.

At Daktari, this layer is a transparent PMMA film laser welded to the backbone. This film

seals the channels with no additional functionality. The electrode film performs the same

function over the assay chamber on the reverse side of the cartridge. The PMMA substrate



is welded around the channel, serving as the external layer and providing the seal, while

also performing the critical electric sensing function of the assay.

Additional components

Depending on the application, additional components are added to the external layers.

These components typically perform fluid flow control or sensing.

Fluidflow control mechanisms are features on the central layer, such as valves, or external

components for directing or implementing fluid flow within the central layer. At Daktari,

the blister pack containing the three reagents is an additional component that allows for

the delivery of reagents to the central layer and drives the reagents through the system.

Sensing components are used for measuring changes in different properties such as

temperature, pressure and electrical properties. Daktari's electrode foil is utilized to

measure the impedance change in the assay chamber.

3.3 Lab-on-a-Chip Technology

A study by Korb [18] sought to identify potential applications for microfluidics; many of

these applications fell into the biochemistry and other related fields. The ability to

combine microfluidic processes with other MEMS technology led to the development of

lab-on-a-chip devices, which complete portions of or full chemical and biochemical

processes. These processes include drug delivery systems, assays, genomics, cytology, and

surface patterning, among many others.

Typical laboratory operations will include individual stages for sample preparation, pre-

treatment, separation, and reactions, in addition to measurements, observations, and the

interpretation of results. With careful design, complete lab-on-a-chip devices can

incorporate all of these procedures and produce results from the input of a small raw

sample. In addition to the simplicity of the test, the rate can be much faster due in

combination to the small samples requiring reactions and the elimination of preparation



and material handling steps. Rates can reduce from hours or days of processing to minutes

or hours respectively. [25]

The Daktari CD4+ system utilizes microfluidic channels in the cartridge to flow blood and

reagents that are controlled by actuators and solenoids in the instrument. The design of

the product takes a fixed volume of blood, collects the desired cells, and processes the

sample to determine and report on the concentration of CD4 cells. This use of microfluidics

takes advantage of a small sample size, minimal sample preparation, and the processing

and delivery of results by a single device. This was achievable by the integrated system of

fluid introduction, channels and valves, and processing of the sample and reagents. This

lab-on-a-chip process supplies a result in a few minutes and does so with a portable

instrument, eliminating the need for elaborate laboratory equipment and training.

3.4 CD4 Testing

The CD4 concentrations allow doctors to assess the relative health of a person with Human

Immunodeficiency Virus (HIV) or Autoimmune Deficiency Syndrome (AIDS). The cell count

in a patient's blood sample is used to determine when the patient should begin a treatment

regime of antiretroviral therapy (ART). Treatment is initiated when the cell count drops

below a certain level, which varies depending on available resources. WHO standards call

for treatment when CD4 levels fall below 350 cells/ptL, although this is often reduced to

200 cells/ptL (the official level at which a patient is declared to have AIDS) in resource

limited regions such as those of Daktari's focus. During treatment, additional CD4+ tests

are conducted to monitor the effectiveness of treatment and the overall health of the

patient in terms of their immune system. [29]

Traditional testing for CD4 cell concentrations is performed through flow cytometry. This

process involves marking CD4 cells from a blood sample with a fluorescent marker, flowing

cells past an excited light source, and utilizing a photomultiplier to detect the changes in

wavelength as each cell passes. This allows the absolute CD4 cell count to be determined

for the given sample. The equipment involved is very large, complex, and the test is time



consuming, and must be performed by trained personnel at stationary laboratories.

Additionally, they require larger samples and sample preparation prior to CD4 counting.

This preparation and testing process can take 18-24 hours to complete, not including other

delays. Flow cytometry processes are often in high demand, resulting in long lead times

before receiving results. [29]

3.4.1 Cell Lysate Impedance Spectroscopy

Flow cytometry is a well-known cell counting procedure but the machine can be difficult to

maintain and few machines are available in the developing world. The Daktari CD4 system

takes a different approach to CD4 testing, using cell lysate impedance spectroscopy. In this

process, antibodies in the assay channel retain the CD4 cells as blood is flowed through the

microfluidic channels. Reagents wash out the other cells and ions in the blood and lyse the

remaining white blood cells, causing a drop in the measured electrical impedance in the

channel. The assay, which determines the concentration of CD4 cells, is completed with an

electrochemical sensor, which takes the change in electrical impedance after lysing to

determine the concentration in a small sample of blood. The magnitude of the impedance

drop has a linear relationship to the number of cells lysed, allowing the number of cells to

be determined by converting the change in impedance to the number of cells based on the

relationship. In testing, these results compare closely to the traditional flow cytometry

method.

3.5 Manufacturing

There are a multitude of ways to make microfluidic devices and even more new techniques

being developed with a wide array of materials and properties. The manufacturing

technique chosen by any microfluidic designer greatly depends on the material and

tolerances required in the design.



3.5.1 Backbone Manufacturing Options

Daktari Diagnostics chose to use polymethyl methacrylate (PMMA) for the microfluidic

backbone because it interacts well with the fluids and chemical components in the assay.

This material choice was carried through with other plastic components in the card in

order to maintain compatibility and consistency in material properties.

Polymers, such as PMMA, can be processed in either serial or parallel processes. Serial

processes are less desirable due to the response of the polymer to intense localized energy,

such as those that occur in milling processes. The long chains that make the polymer can

reorient when energized and crystallize in an undesirable form. Therefore, most

processing of polymers for microfluidic applications is a parallel process where the entire

surface is patterned at once with the use of a mold. Molding applications available include

injection molding, micro-casting, and micro-forging. [18]

The polymer is formed around the mold to get the desired shape. This molding is generally

a standard process; however, the processes used to make the mold are diverse. Many

techniques have been adapted from other industries such as semiconductor manufacturing.

[18]

One such technique is to apply a photoresist to a substrate and cure the negative of the

microfluidic pattern. This mold is relatively quick to manufacture, but cannot produce a

large amount of parts. Similarly, using a photoresist and etching process to make the mold

out of silicon can create a more robust mold but requires more processing steps.

Electroplating and Electro-Discharge Machining (EDM) are additional options.

Electroplating is commonly used in conjunction with physical vapor deposition (PVD).

Physical Vapor Deposition is used to create the initial layer and the electroplating grows on

top to create the mold. Electro-Discharge Machining (EDM) electrically erodes away

unwanted material from the mold. [18]



Daktari uses traditional machining methods to create molds for the plastic injection

molding of the backbone, cap, and housing. The mold is expensive and not infinitely

flexible to design changes, but each mold can create many parts and does not vary much

from part-to-part. This process was also chosen for the speed that injection molding could

produce parts in production. Daktari's partner, who produces the injection-molded parts,

can meet the necessary dimensions and tolerances with this process.

3.5.2 Electrode Foil Manufacturing Options

The electrode foil performs multiple duties in the Daktari cartridge and requires several

steps to produce a complete part. A complete electrode consists of a PMMA substrate,

electrode-sensing layer, and antibody solution with a protective layer. The process to

produce complete and functionalized electrodes starts with a sheet of extruded PMMA.

This sheet will first have the electrode layer put on the surface before the antibody and

protective coating are applied onto the surface by spotting, which is the deposition of small

drops of solution.

There are two methods Daktari is using to apply the electrode to the substrate. The first

method is to use PVD to sputter coat the PMMA entirely with gold, followed by a laser

ablation of the excess gold from the surface. Gold was chosen due to its conductivity

properties and resistance to corrosion. The ablation process is done by raster (a serial

process) or excimer (a parallel process) laser methods, each of which presents its own

challenges. The rastering laser textures the surface while the excimer process causes some

amount of gold to redeposit on the surface. Both side effects complicate the laser welding

process and affect the properties of the electrode. An additional challenge with the gold

electrodes is the poor adhesion between the gold and PMMA substrate. The poor adhesion

causes the electrodes to be fragile and susceptible to damage, resulting in broken electrical

connections and variability in the measurement of the assay.

The second method was developed at Daktari Diagnostics and the electrodes produced are

the focus of the 2011 thesis projects. The electrodes fashioned by this process are much



preferred from a manufacturing and durability standpoint. They are faster to produce,

configurable for flexible design changes, and are more resistant to physical damage than

the gold electrodes.

Once the conductive electrode layer is complete, the antibody and a protective coating are

applied to the PMMA with the electrode by spotting. The spotter deposits small drops of

antibody solution to the surface of the electrode in the area shown in Figure 5. The spotter

then deposits a layer over the antibody as a protective coating. There is a spotting machine

located at Daktari's facility in Cambridge Massachusetts and one at Daktari's partner in

Germany. The exact pattern of the antibody will depend on the characteristics of the final

electrode process and pattern.

Figure 5: Electrode with Antibody Range in Blue

It is the goal of these thesis projects to validate the sensing performance of these electrodes

and justify the commitment of future electrode manufacturing with the new process.

3.6 Statistical Quality Control

This section outlines the statistical tools used in the analysis of the data collected for this

thesis. The two following topics were the most widely used statistical tools.

3.6.1 Student's t-test

Some inferences needed to be made about the process quality. For this project, the author

assumed that results were normally distributed. However, the mean and standard

deviation for the tests done in this thesis were not known. Because of that, the Student's t-

distribution was used. The Student's t-test, or t-test for short, was used to assess the
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statistical significance between the means of two sample populations. A confidence

interval of 95% was used for the experiments. [30]

3.6.2 Design of Experiments (DoE)

Designed experiments methodology helps the user find results through a systematic way of

changing the inputs. Replicates are used to deal with random behavior. The experimental

objectives can included identifying which variable are most influential on the output, meet

a required output, or reduce noise in the output. These experiments are used to actively

make changes to the input and then observe the resulting change in the output. [30]

To analyze the data, the software called JMP was used. [31] The software was designed to

do statistical analysis. The author used this software to also help design the DoE. This

software was used to interpret this data, performs residual analysis, and verity the validity

of resulting models. The JMP software was extensively used to create the analysis of

variance (ANOVA).
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Chapter 4: Methodology

As mentioned in the previous section, Daktari Diagnostics had developed a new

manufacturing process for the production of the electrode foils. The new process was

being patented. Because of the patent process, no information about the process could be

released in this thesis. Although this process seemed to be producing viable parts, further

validation was required to ensure the quality and the consistency of produced parts. This

thesis investigated a new electrode testing method, and the electrodes' robustness to

shipping, handling and production defects. The projects undertaken by the team were

determined after investigation of the physics of the electrodes. A brief review of the

physics of interdigitated electrodes is given before the details of the testing.

4.1 Electrode Review

The electrode foil is part of the cartridge that is used to measure the number of captured

CD4 cells. The pattern used for the testing, which is not to scale, is shown in Figure 6.

Figure 7 shows a subassembly of an electrode and backbone. The electrode foil also

performs two structural tasks when it is welded to the backbone. The foil forms the ceiling

of the 'assay chamber' where the CD4 cell count is performed and is spotted with antibody

solution, which is used to capture the CD4 cells.

Figure 6: Electrode Foil Pattern



Figure 7: Electrode and Card Subassembly [21]

During operation, the electrode foil measures the electrical impedance within the assay

chamber, both before and after lysis, or bursting, of the captured CD4 cells. The measured

electrical impedance drops due to the release of ions from the cells and is directly

proportional to the number of CD4 cells from the sample. Pads at the end of the electrode

establish contacts with the electric connector pins in the instrument. The instrument takes

the measured impedance change and converts it to a cell count to display to the user. The

cell count is determined based on a predicted linear relationship between the impedance

drop and cell count.

The quality of the new electrodes and the constancy in the dimensions of the fingers and

the side rails are vital in the performance of the electrode foils. Impedance measurements

are sensitive to the sensing area of the electrode. This sensing region is the space between

opposing electrode rails. An interdigitated electrode, such as Daktari's, increases the

sensing region for a given area by utilizing interlocking fingers. These fingers create a

sensing region that winds through the electrode fingers, as indicated by the dotted line

below in Figure 8.
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Figure 8: Sensing Region Between Interdigitated Electrode Fingers [32]

With a constant gap width throughout the electrode, the sensing region can be modelled

based on the characteristic length (the total length of the dotted line) and gap along the

sensing area. The proportion of length over gap (L/g) is inversely proportional to the

impedance. Reduction in the length or increasing the gap between fingers will increase the

impedance. This relationship makes the repeatability of finger width and spacing critical to

the repeatability of the impedance drop measurements. Even small variations to finger

dimensions or defects have affected the proportion of length and gap, and therefore the

resulting impedance drop measurements.

The rest of this chapter describes how the testing methods were performed, and how the

electrodes' robustness tests to'*Shipping, handling, and production defects were performed

and analyzed. The tests were designed to investigate the impact of defects and handling on

the sensing area, and therefore the repeatability of the electrodes.

4.2 Testing

At Daktari, testing with solutions of known conductivity was necessary to calibrate the

design of the electrode pattern. Before this work, there were two setups to test the

behavior of the electrodes. These tests were designed to emulate the behavior of the

electrode in the final system without needing a completely finished cartridge to test



4.2.lTesting Methods:

The first testing method was the assay development platform (ADP). This was a clear

injection molded PMMA chip with a die cut adhesive. The adhesive is used to form the

assay chamber and attach the electrode to the chip. Solutions of known conductivity were

flowed through the assay chamber at a rate of 20 pl/min with the assistance of a syringe

pump. Figure 9 shows the ADP Testing Setup. The details of the ADP chip are easier to see

in Figure 10.

Figure 9: ADP Chip Testing Setup



Figure 10: Up-Close of ADP Chip and Electrode

The impedance is read from a meter attached to the connector pads on the electrode. Once

the impedance stabilizes, the flow is stopped for two minutes, and the impedance is

recorded. Using different solutions a linear relationship can be found between inverse of

the impedance and the solution conductivity. Throughout the remainder of this document

the slope of the linear fit is used to characterize the relationship and variability between

electrodes.

This testing method can be rapidly assembled. The shape of the assay chamber is similar to

the production system. But this method does have disadvantages. The adhesive used to

create the assay chamber and attach the electrode to the ADP chip adds noise to the output

reading in the form of ions. Ions leach out of the adhesive into the chamber and change the

conductivity of the input solution. The ions from the adhesive requires that initial cleaning

step before the test can be performed. The cleaning step must be done overnight by

running deionized water through the chip at a rate of 5 1d/min to flush out the ions from

the adhesive.

A second testing method uses a subassembly of the cartridge. The electrode and a lid foil

are laser welded to the backbone. Tape is used to seal unnecessary openings and vents.

Solutions of known conductivity are plumbed through the assay chamber at a rate of 20



pl/min. Similar to the ADP chip, the impedance is read from a meter attached to the

connector pads on the electrode. Once the impedance seems stable, the flow is stopped for

two minutes and the impedance is recorded. Using different solutions, the slope of a linear

relationship can be found between the inverse of the impedance and the solution

conductivity.

Figure 11: Card Subassembly Test Setup
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Assay Chamber & Electrode

Figure 12: Up-Close View of the Card Subassembly

This method is a subassembly of the cartridge with only the necessary components to test
the electrode foil. The electrode and lid foil are welded to the backbone so there is no
adhesive to add ions to the system. There is no need to run a cleaning solution overnight.
Therefore, data is faster to obtain than the ADP chip method after the cards are produced.

Unfortunately, there is a long lead-time because the backbone must be molded, and the
electrode and lid are attached to the backbone with a laser weld in Germany.

4.2.2 Dip Test Method:

The first goal of the thesis project was to develop a new method that can speed up testing.
The previous test methods required excessive time either to be cleaned or to be produced.

The new method needed to be quick and easily done at Daktari's facility.

The "Dip Test" is performed by taking an electrode rinsed with deionized (DI) water and

submerging it in solutions of known conductivity to the level where the electrode would



come in contact with the fluid in the assay chamber. The electrode is left in the solution for

10 seconds before the impedance reading is recorded from the meter attached to the pads

on the electrode. The electrode is dipped in DI water between each solution. The following

figures show an electrode being dip tested and the level where the fluid enters the assay

chamber on one design.

Figure 13: Dip Test Method Setup



Figure 14: Level of Solution Entry in the Assay Chamber

The dip test was used in this thesis because an electrode can be tested without being

attached to another component. Each data point can be measured within seconds so this

allows for larger sample sizes. However, the electrode is being dipped into a larger volume

of water, results from the dip test do not equal the results seen from other testing methods.

Therefore, the dip test is used as a preliminary testing procedure to get a qualitative

understanding about the electrodes because the dip test isn't quantitatively the same as

other testing methods.

Because the dip test was a new testing method, the repeatability of the test had to be

determined. The repeatability tests were performed by dip testing a single electrode ten

times in the same solution. This test was repeated for five solutions of increasing

conductivities. This procedure estimates how accurate a single impedance measurement

was for a given solution conductivity.

Most of the work for this thesis was concerned with the accuracy of the slope of the inverse

of the measured impedance divided by conductivity, a single electrode was dip tested with



all five solutions going from low conductivity to high conductivity. The electrode was

washed with fresh DI water after each set of five solutions. The series of five solutions was

repeated ten times. The variability of the slopes was then determined. This experiment

was used to determine the lowest possible standard deviation possible in the slopes for the

dip test.

Because initial dip tests were giving different slopes than the other two methods, a

relationship between the dip test and the card subassembly test was investigated. Two

different electrode designs were dip tested and welded to a backbone. The intercept of

inverse of the measured impedance divided by conductivity relationship was forced

through zero for both tests. From the results a relationship was determined. Close-ups of

the two patterns used are shown in Figure 15 and Figure 16 below. The two different

patterns were used to insure that the pattern wasn't a factor in the relationship. These

patterns have fingers that run perpendicular to each other and have different slopes.

The first pattern is the one used for the rest of the tests in this thesis. This design was used

because it was the most optimized design with the new production method, and this

pattern is similar to the pattern of the gold electrodes.

Figure 15: Close-Up of Short Finger Design [22]

48



Figure 16: Close-Up of Long Finger Design [22]

4.2.3 Test Accuracy

Error was measured as percent cell equivalent error. This metric is how two electrodes

with different slopes and variations were compared. The way the instrument uses the

slopes is as follows:

An unknown input number of cells proportionally relates to an input conductivity.

1. The actual electrode doing the measurement reads the input conductivity.

2. The inverse of the impedance is measured with the actual electrode.

3. The inverse of the measured impedance is used with the average value line.

4. The output conductivity is then measured.



Actual line

Expected line

IM
E

Input output

Figure 17: Procedure for Determining % Cell Equivalent Error

Using the equation of a line y = mx+b and both the actual and expected lines go through

zero so b=O.

1
= InPUtonductiv , x M measured = O tputconducii, x M expected (1)

impedance

OUtPUtonductivi, = IfPUtonduetivi,, x Mmeasured (2)
Mexp ected

%CellError =1 M measured (3)
Mexp ected



The measured slope can be steeper or shallower than the expected slope. Ideally if all the

electrodes have the same slope the percent cell error would be zero. However, the actual

slopes will give positive or negative percent cell error.

4.3 Electrode Robustness

The new process made electrodes that were more robust than the gold version. The

following testing was performed on the new electrodes to quantify the robustness to

handling, shipping, and defects.

4.3.1 Shipping and handling

The new electrodes are qualitatively more robust than the gold electrodes, but

quantitatively investigating the robustness to physical abuse is necessary to develop

tolerances and guidelines for shipping and handling.

There were five types of physical abuse that were identified as areas of concern. The first

two were shipping methods. Shipping was simulated for loose electrodes in two containers

by shaking the containers. The two containers were a cardboard box and a plastic Petri

dish. The slope and percent cell error for these two methods was compared to the control

electrodes that did not go through a shipping simulation.

The next three types of handling were bending, twisting, and rubbing the electrodes.

Bending the electrode means bending it about an axis parallel to the width shown in Figure

19. Twisting the electrode is putting the electrode in torsion by ±180 degrees about the

centerline down the length of the electrode. The twisting motion is shown in Figure 19.

The final type of abuse was rubbing two electrodes together with force of 1.47 N shown in

Figure 20.



Figure 18: Bending the Electrode

Figure 19: Twisting the Electrode



Figure 20: Rubbing Electrodes Together

The production order is shown in Table 1 along with the testing order. The testing order

was randomized to eliminate any potential variance because of trends during production

or testing. The codes of letters and numbers indicate the markings that were used to

identify the electrodes. A total of 25 electrodes were tested.



Table 1: Production and Testing Order for Shipping and Handling Tests

Production Order
Control C1
Card Board CB1
Plastic Dish PD1
Bend B1
Twist T1
Control C2
Card Board CB2
Plastic Dish PD2
Bend B2
Twist T2
Control C3
Card Board CB3
Plastic Dish PD3
Bend B3
Twist T3
Control C4
Card Board Box CB4
Plastic Dish PD4
Bend B4
Twist T4
Control C5
Card Board Box CB5
Plastic Dish PD5
Bend B5
Twist T5

Testing
Bent
Card board
Control
Bent
Control
Card board
Control
Twist
Card board
Plastic Dish
Twist
Card board
Twist
Bent
Plastic Dish
Control
Plastic Dish
Card board
Twist
Control
Twist
Plastic Dish
Plastic Dish
Bent
Bent

4.3.2 Robustness to Defects

The variability caused by defects was examined, and a Design of Experiments (DoE)

methodology was used to explore four factors. The first factor was the type of defect:

production errors or scratch errors. The production error is when a connection is never

produced. Scratch errors come from handling. The second factor was the location of the

defect on the finger. The defects were either half way down the length of the finger or

between the finger and the side rail. The third factor was the defect location in the

electrode. The defects were in the half close or in the half away from the connection pads.

The fourth factor was the number of defects. The number of defects was 5, 10, 15, or 20.

Table 2 shows the testing order for the DoE. The experiment tested 32 electrodes with five

solutions of different conductivities to determine the conductivity slope.

54

Order
B4
CB2
C4
B3
C1
CB4
C2
T1
CB5
PD4
T4
CB1
T5
B2
PD5
C5
PD2
CB3
T3
C3
T2
PD3
PD1
B1
B5



Table 2: Defect DoE

Finger
Type Location Quantity Electrode Location
Production defect Base 5 Towards connectors
Scratch Middle 5 Away from connectors
Production defect Base 20 Away from connectors
Scratch Middle 20 Away from connectors
Production defect Middle 20 Towards connectors
Production defect Middle 5 Towards connectors
Scratch Middle 15 Towards connectors
Scratch Base 20 Towards connectors
Scratch Middle 5 Away from connectors
Production defect Middle 20 Towards connectors
Production defect Base 10 Towards connectors
Scratch Base 5 Away from connectors
Scratch Base 10 Away from connectors
Production defect Base 20 Away from connectors
Scratch Base 5 Away from connectors
Production defect Middle 15 Away from connectors
Production defect Middle 10 Away from connectors
Production defect Base 15 Away from connectors
Scratch Middle 15 Towards connectors
Production defect Middle 5 Towards connectors
Scratch Middle 10 Towards connectors
Production defect Base 15 Away from connectors
Scratch Middle 20 Away from connectors
Production defect Middle 15 Away from connectors
Scratch Base 10 Away from connectors
Scratch Base 15 Towards connectors
Scratch Middle 10 Towards connectors
Production defect Base 10 Towards connectors
Production defect Middle 10 Away from connectors
Scratch Base 15 Towards connectors
Production defect Base 5 Towards connectors
Scratch Base 20 Towards connectors

After the initial testing, more investigation was done on the defect location within the

electrode and the type of defect. The first six fingers and last six fingers were produced

without a connection to the side rail. Removing the fingers from each end of the electrode

was done to characterize an extreme failure case. The patterns tested are shown below in

Figure 21 and Figure 22.



Fingers close to connectors removed

Figure 21: Missing Fingers Close to the Connectors

Fingers away from the connectors removed

Figure 22: Missing Fingers away from the Connectors

There was concern that all scratches may not actually sever fingers. To verify that

scratches do have the same effect as a production error, good electrodes had the first six or

last six fingers severed from the side rail. The same fingers were scratched in the same

place as the production error and verified as a complete break under the microscope. The

slopes were measured with the dip testing method and compared. This test was done in

collaboration with the previous test. The testing order for is shown in Table 3.



Table 3: Testing Order of Defect Type & Defect Location on the Electrode

Testing
Order
SA 5
PA 3
PA 4
C 1

PT 1
ST 1
SA 2
PT 2
C 2

ST 4
PA 1
SA 4
SA 1
PA 5
ST 2
ST 5
PA 2
SA 3
PT 3
PT 4
C 4
C 3

ST 3
PT 5
C 5

The first letter stands for the type of defects. Scratch defects are noted with an S, and print

defects are noted with a P. The second letter indicates if the defect was away (A) or

towards (T) the connector pads. Control electrodes are identified with C. The numbers

represent the production order.

The final concern that was investigated was the impact of broken finger remnants on

variation in the electrode slopes. Electrodes were produced with the same fingers broken

or completely missing. The two types of electrodes were dip tested to find the slopes. The

testing order is shown in Table 4 and also the codes and electrode description.



Table 4: Missing vs. Broken Fingers Testing Order

Code Electrode Description
2d Missing Finger Electrode 4
1c Broken Finger Electrode 3
2c Missing Finger Electrode 3
le Broken Finger Electrode 5
2e Missing Finger Electrode 5
2b Missing Finger Electrode 2
2a Missing Finger Electrode 1
la Broken Finger Electrode 1
if Broken Finger Electrode 6
lb Broken Finger Electrode 2
1d Broken Finger Electrode 4
2f Missing Finger Electrode 6

The slopes were compared, using a t-test, to see if there was a significant difference

between them. Below in Figure 23 and Figure 24, the patterns of broken and missing finger

electrodes that were tested are shown. The same 15 fingers are defective in both patterns.

The only difference between the electrodes is the finger remnant after the break.

.lI=

Figure 23: Electrode with Broken Fingers
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Figure 24: Electrode with Missing Fingers

Broken Fingers



Chapter 5: Results & Discussion

5.1 Dip Test Repeatability

The electrode tested for the repeatability of the slope measurement had an average slope of

1.44x10-5 cm/characteristic length with a standard deviation of 8.5x10-8 cm/characteristic length. For this

specific electrode pattern, the repeatability of the dip tests was found to be ±1.8% cell

equivalent error. The percent cell equivalent error depends on the conductivity slope for

the particular electrode. The data from this test is shown in Figure 25.

Repeatability of the Dip Test
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Figure 25: Dip Test Repeatability Data

The slope variability is much lower than the variability in each measurement point because

the slope is determined with many measurements and some errors will cancel out. The

meter attached to the electrode measures the resistance in kW. The variability in the

resistance measurement is different at different input conductivities. Table 5 shows a

summary of the results. Single data points were observed as far as ±10% away from the

average measurement at low conductivities and about ±3% for higher conductivities.



Table 5: Single Point Repeatability

Average input
conductivity (pS/cm) 1.716 4.105 6.95 8.625 10.35
Average resistance (kQ)
measured 34.41 16.072 9.915 8.083 6.776
Standard Deviation of
Resistances (k2) 0.899 0.081 0.104 0.045 0.053

5.2 Relationship Between Tests

A clear relationship between the dip test and the subassembly test was found. The two

different patterns, shown in Figure 15 and Figure 16, were tested using both the welded

card subassembly method and the dip method. The pattern with long fingers gave the

purple data with the highest slope when it was dip tested and the red squares when tested

with the subassembly. The pattern with short fingers gave the green triangle data when

dip tested and the blue diamonds when tested with the card subassembly. The dip test

gave a slope that was twice as steep as the card subassembly test for both patterns. The

dip test method uses a much larger volume of fluid than the welded card method. The

extra fluid has ions near the electrode that reduce the impedance by increasing the size of

the electric field. All of the intercepts are fixed at zero. Figure 26 shows the data graphed.

The result means that the dip test slope results can be used to predict the slope in the

welded card subassembly.
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Figure 26: Dip Test & Welded Subassembly Data

5.3 Electrode Robustness

5.3.1 Shipping & Handling

The tests for electrode robustness to physical abuse resulted in only one treatment that is

significantly different from the control electrodes with a 95% confidence interval. Figure

27 shows where the slope of each electrode lies within its treatment. The bending raised

the average slope and clustered the data points closer together. This result was

unexpected because defects in the electrode usually cause the slope to drop, or for the

results to have a wider spread in the slopes.
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Figure 27: Shipping & Handling Results

One theory to explain the electrodes' response is that the bending introduces microcracks

on the electrodes' surface. Microcracks may aid in the wetting process and remove leftover

conductive material from the production method. Unfortunately, Daktari may not be able

to take advantage of this behavior because the electrodes need to lie flat when the antibody

solution is applied. Bending the electrodes should be avoided because it changes the slope

and may prohibit the application of antibody solution with the current antibody application

method.

Another theory is that bending the electrodes causes the material to stretch. Stretching can

also help remove the leftover conductive material without making the electrodes bowed.

This should be tested in the future to see of the company can take advantage of the

behavior seen in the bending case.

The only treatment that resulted in a nonperforming electrode was the cardboard shipping

simulation. One electrode had a small scratch along the side rail that wasn't noticed during

the initial visual quality inspection under the microscope. These new electrodes may be



robust, but some care should be taken to immobilize the electrodes during shipping to

reduce the possibility for damage.

5.3.2 Robustness to Defects

The results of the next set of testing tell if the electrode performance is susceptible to

various defects. Information from this set of testing can be used to establish appropriate

tolerances for quality control. The DoE used for this test was not a full factorial. Sixteen

unique populations were tested with one replicate for a total of 32 electrodes tested.

The number of defective fingers significantly correlates to the drop in the electrodes' slope.

There was no significant difference between 10 and 15 breaks and between 15 and 20

breaks according to the t-test at a 95% confidence interval. It was expected that the

number of breaks would be proportional to the drop in the slope of the electrodes, and this

trend was seen in the data from the DoE. The trend appeared to be approximately linear.

Figure 28 shows the results from the DoE for the number of fingers. There is variation in

the data because the DoE was testing four factors, but a trend can be seen, and t-tests

confirm that there is a significant difference.
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Figure 28: Number of Finger Break Results

Table 6 relates the percent drop in the average slopes between the populations and

compares it to the percent drop in the number of fingers. When looking at the comparison

the percent drop in slope seems closer to the percent drop in number of fingers when there

are 5 fingers with defects. The defective fingers were chosen at random. Since the fingers

are chosen at random some fingers were broken close together, and when the fingers are

broken close together the impact of each break is reduced. This reduction of the impact

explains why the percent drop in slope does not increase as fast as the percent drop in the

number of fingers.

Table 6: Drop in Slope and Drop in Number of Fingers

% Drop in the
% Drop in Slope Number of Fingers

From 5 defects to 10 defects 3.91% 3.97%
From 10 defects to 15 defects 2.26% 3.97%
From 15 defects to 20 defects 3.38% 3.97%
From 5 defects to 15 defects 6.08% 7.94%
From 10 defects to 20 defects 5.56% 7.94%
From 5 defects to 20 defects 9.25% 11.900/a



Statistically significant results were not obtained for the break location on the finger.

However, looking at the results there seems to be a slightly greater reduction in slope

because of the breaks at the side rail. This response is expected because a break at the side

rail and the finger removes more sensing area from the electrode than a break in the

middle of the finger. This effect is minor because the difference in the sensing area is not

changed enough to give significant results. Figure 29 shows the results from the DoE.

Student's t
0.05

Figure 29: Defect Location on the Finger Results

Production defects were found to drop the slope significantly more than the scratch defects

according to the results from the DoE shown in Figure 30. This result is understandable

because scratches may not always sever the finger. The gold electrodes also experienced

scratches that didn't cause an electrical break. The scratches, under further examination,

looked like perforations instead of a clean cut. The impact of complete scratches that broke

electrical continuity was explored more in the next set of testing.
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Figure 30: Defect Method Results

The difference between the break locations on the electrodes was not significant. However

the results suggest that defects closer to the connection pads cause less damage to the

performance of the electrode. The results can be seen in Figure 31. The cause of this

behavior is unknown, but was investigated in the next set of testing.
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Figure 31: Defect Location on the Electrode Results

5.3.3 Further Testing

After the DoE was completed, the "Further Testing" experiments were performed to focus

on questions that arose from the previous results. The new test suggested that production

defects were not as sever as scratch defects, which is the opposite conclusion from the

earlier testing. The difference in the conclusions is shown comparing Figure 30 and Figure

32. In Figure 32 the scratch defects seemed to drop the slope more than the production

defects. The likely cause of this is that while insuring that the scratches severed a finger,

extra minor damage could have been done to the electrodes. This result suggests that any

defect that severs electrical continuity changes the behavior of the electrodes in the same

way.
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Figure 32: Further Testing Results

In the DoE, defects towards the connectors and defects away from the connectors were on

random fingers in the respective zones. In further testing, the first six fingers or last six

fingers have defects to maximize the difference between the two conditions. In Figure 32 it

can be seen on both the production and scratch defects that the defects further away from

the connectors have a slight effect on the slope. This result from further testing agrees with

the previous DoE. The cause of the difference between defects close or away from the

connectors isn't verified. The probable cause of this difference is that there is less current

further down the electrode so the defects disrupt the electrode more than close to the

connection pads where the current is stronger. However, currently this impact isn't

significant enough to warrant a design change. If this effect significantly degrades the

ability of the electrode to perform well in the cartridge, the design can change to be

symmetric so one end isn't closer to the connectors than the other end.

In the final test, the broken fingers and missing fingers were compared; there is no

significant difference between the two populations. In Figure 33 it can be seen that the

data points and trend lines are clustered with respect to each other. This agrees with other

results that there is no difference between a small break or scratch and a missing finger. A



t-test was performed on the data and there is no significant difference between the

populations. If electrical continuity is broken, it can be modeled as if there was no finger

produced.
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Figure 33: Missing Finger vs. Broken Finger Data
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Chapter 6: Conclusion & Recommendations

In conclusion, the dip test was found to be a useful and accurate rapid testing method. The

accuracy of the test is high enough to obtain useful results that allow the user to draw

conclusions from the data about how the electrode will perform in the cartridge. Because

the new production method is so flexible this testing method is fast enough to help guide

Daktari Diagnostics to produce the best electrode possible.

However, the dip test does not replace the card subassembly test for understanding how

the actual system will function. In the full system there are concerns with the assay

chamber filling and antibody function. The dip test only gives insight with electrical

performance and relative scale of the slope.

This thesis project found that the most significant defect was the number of defective

fingers in the electrode. The more defects present the more the electrode performance

deviates from the expected slope.

Bending the electrodes was also found to affect the slope and may cause problems with the

process steps to apply the antibody and weld the electrode to the backbone. Bending

should be avoided during production and in any handling steps after, unless there is a way

to process the electrodes before the addition of antibody to insure that the electrodes will

remain flat for the final processing steps.

The new process is producing robust electrodes compared to the old process, but care

should still be taken in order to insure that defects are avoided and the test gives the most

accurate results possible.

The testing was completed to understand the robustness of the electrodes to defects,

shipping, and handling should be repeated specifically for the final electrode pattern that



will be used in the cartridge. It is unknown at this point if the pattern can affect the

durability of the electrode.



Chapter 7: Future Work

7.1 Process Parameter Optimization

Work was done by Donoghue and Holmes [33] in early 2011 to optimize the process

parameters. This work should be expanded on to optimize the parameters for the

electrode design that Daktari Diagnostics moves forward with for the clinical trials or very

low volume production.

7.2 Robustness of New Designs

The new manufacturing process is flexible and new designs were explored by Donoghue

[22]. The robustness of these designs to defects, shipping, and handling should be

characterized before moving to development of a quality control device in order to identify

significant defects.

7.3 Functionalization

The ability to adhere the antibody to the electrode and achieve acceptable cell capture is

vital for the performance of the device. The functionalization process needs to be tested

and confirmed that it is attaching the antibody to the electrode foil. This adhesion must be

done without degrading the antibody's ability to capture the CD4 cells.

7.4 Flow Characteristics

Once the functionalization process is performing at an acceptable level, the flow

characteristics of the blood and reagents must be observed through the assay chamber.

Proper filling of the chamber is necessary for cell capture and the elimination of air

bubbles. Design changes may need to be made to the shape of the assay chamber or the

location of the antibody on the electrode foil in order to achieve proper filling.

7.5 Ageing Study

The final step before the new electrodes can replace the gold electrodes, an ageing study

must be done to insure that the component remains viable and accurate throughout the



duration of its shelf life. This should be done by accelerated ageing in an oven designed for

ageing tests with samples monitored on a regular basis throughout the duration of the test.

7.6 In-Line Quality Control

Once production is ramped up for these electrodes an in-line quality control testing method

should be in place to monitor the electrodes. This device will depend on the electrode

production method, electrode pattern, and type of test it will perform.
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