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Abstract

This thesis presents a concept of mid-air tangible interaction and a system called ZeroN
that was developed to enable this interaction. Through this research, I extend the table-
top tangible interaction modalities which have been confined to 2D surfaces into 3D space
above the surface. Users are invited to place and move a levitated object in the mid-air
space, which is analogous to placing objects on 2D surfaces. For example, users can place
a physical object that represents the sun above physical objects to cast digital shadows, or
place a planet that will start revolving based on simulated physical conditions.

To achieve these interaction scenarios, we developed ZeroN, a new tangible interface el-
ement that can be levitated and moved freely by computer in a three dimensional space. In
doing so, ZeroN serves as a tangible representation of a 3D coordinate of the virtual world
through which users can see, feel, and control computation. Our technological development
includes a magnetic and mechanical control system that can levitate and actuate a perma-
nent magnet in 3D space. This is combined with an optical tracking and display system that
projects images on the levitating object. In this thesis, I present interaction techniques and
applications developed in the context of this system. Finally, I discuss initial observations
and implications, and outline future development and challenges.

Thesis Supervisor: Hiroshi Ishii
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Chapter 1

Introduction

"The ultimate display would, of course, be a room within which the computer can

control the existence of matter. A chair displayed in such a room would be good

enough to sit in. Handcuffs displayed in such a room would be confining, and a

bullet displayed in such a room would be fatal. With appropriate programming

such a display could literally be the Wonderland into which Alice walked."

'Ultimate Display', Ivan Sutherland, 1965 [26]

1.1 Journey to the Ultimate Display

The development of computer graphics has made it possible for computers to render scenes

free from the constraints of the physical world, visualizing a range of computer simulations.

While this has greatly enhanced the scope of human-computer interactions based on visual

experiences, we are still far from realizing the 'ultimate display' illustrated in Sutherland's

article [Sutherland]: full sensory experience of virtual environments such that people can

feel the existence of digital information. Despite the efforts of researchers to broaden the

channels of communication between the physical world and cyberspace, Graphical User

Interfaces (GUIs) that rely on mice and screens have been the dominant HCI paradigm



for the last several decades. GUIs allow users to manipulate graphical representations of

abstract data with simple metaphors and present many scalable models for HCI. However,

they fall short in embracing the rich interaction modalities between people and the physical

environment [8].

The concept of tangible interfaces has appeared as a solution to bridge the gap between the

physical environment and the digital representation of information [8]. In tangible interfaces,

physical objects represent digital information such that users can manipulate digital media

by controlling those objects. The objects are treated as physical embodiments of digital

information: users alter the digital state of data by moving or modifying the objects. TUIs

have demonstrated compelling applications in many domains such as design, optimization,

learning and creative activities by taking advantage of physical affordances of objects.

1.2 Motivation

Constraints of these tangible interfaces come from the very properties that make them

compelling: physical properties. Unlike weightless pixels, behaviors of physical objects are

pre-programmed by gravity. Governed by newtonian physics, they inherently 'fall' and 'stay

at rest' on the surface. Therefore, the data that tangible objects can represent are limited

to surfaces on which they lie. This might not appear to be a constraint for many tabletop

interfaces when contents are mapped to surface components. However, I believe there is an

exciting potential in re-inventing physical objects to make them stay mid-air to represent

3D information.

Imagine a physical object that can float through the air, seemingly unconstrained by gravity.

What would it be like to take a physical object off the surface and place it at a spot in

the air, representing a light that casts the virtual shadow of an architectural model? What

would it be like to simulate how planets move by simply placing a physical object that can

float and move freely? My motivation is to create such a 3D space, where the computer can

control the position and movements of physical objects that represent digital information,

unconstrained by gravity.



This thesis presents the interaction with such a physical object levitated in mid-air space

and the technological development of such anti-gravity space. I call it mid-air tangible

user interaction. Conceptually, the goal of the research is to allow users to take physical

components of a tangible system off the surface and place them in the air, enabling tangible

interaction with 3D information.

1.3 Thesis Goal and Outline

This thesis attempts to develop the concept of Mid-air Tangible Interaction in two comple-

mentary respects. First, the thesis develops interface models for Mid-air Tangible Interac-

tion: design solutions by which a levitated object moved freely by computer may be used to

interact with 3D information. Second, this thesis describes the design and development of

our prototype ZeroN, a system that embodies Mid-air Tangible Interaction by being able to

levitate and move a physical object in 3D space. This system includes a hardware and soft-

ware infrastructure for a computer to magnetically levitate and position a physical object

in mid air, and to sense the users' manipulation of the object.

I will first situate this research in the context of supporting theory and past related work,

Figure 1-1: A levitated object can represent a 3D coordinate of the virtual world. A user is
placing the object that represents the sun in mid air casting the virtual shadow of a block.



discuss the evolution of the concept of mid-air tangible interaction, and the variety of

hardware and software design decisions involved in the construction of our prototype system

ZeroN.

In the rest of the chapter I describe the underlying technology of the ZeroN system, and

evaluate its performance in light of my design criteria, and describe the interaction language

and application scenarios. Finally, I suggest future directions of design and technological

development, and discuss the implications of mid-air tangible interaction

A significant portion of the engineering components, particularly magnetic levitation, were

implemented in collaboration with Rehmi Post, a visiting scientist at the MIT Center for

Bits and Atoms. The applications and conceptual frameworks were developed under the

guidance of my advisor, Professor Hiroshi Ishii. Therefore, the pronoun we in this thesis

refers to myself, Rehmi Post, and Professor Hiroshi Ishii, as this was a collaborative project

throughout most of its technological development and design.



Chapter 2

Related Work

This thesis aims to push the envelope of tangible interfaces such that mid-air 3D space

can be employed in the tangible interaction. It draws upon the literature of Tangible

Interfaces, 3D display and interaction techniques and already assumes the important role

of the psychological and practical benefits of tangible interfaces and motivation towards

achieving 3D input and output. Therefore, this thesis does not go into great detail in

discussing these areas. However, I will touch upon some key supporting principles and

discuss how they can be used to argue the benefits of mid-air tangible interfaces. In the

rest of the chapter, I discuss several related projects involving interactive tabletop surfaces,

and movements towards employing actuation and 3D space in human computer interaction.

Finally I discuss and compare various technologies for positioning a physical object in the

3D space.

2.1 Mind, Objects, Space, and Body

Tangible user interfaces find support in the psychology of 1) kinetics - the role of the

physical actions of the human body, and 2) spatial reasoning - how people use space in

thinking, in cognitive processes.



Zhang's research explores how the external representation of information affects problem

solving [29]. He uses the term external representation to mean representing embedded

abstract information in intuitively understandable forms such as shapes or objects. His

series of experiments show that the physical properties of theses objects, such as shape,

weight or size, severely affect task performances. Zhang particularly emphasizes the impact

of the objects' affordances on problem solving.

Kirsch explores various ways that people use the space around them to think [10]. He

argues that spatial arrangements of physical objects simplify users' perceptions and thought

processes. Kirsch's experiments have shown that subjects who had a means of distributing

a portion of computational tasks to tangible objects performed simple tasks with reduced

error rates and shorter completion times.

Klemmer et al. provides an excellent summary of the roles of bodies in human cognition pro-

cesses as well as their implications for designing user interfaces [11]. The studies show how

body gestures help people to solve problems that they cannot easily solve merely through

symbolic thinking. A variety of researchers have particularly recognized that the ability

to use two hands while interacting with an interface can lead to significant performance

improvements.

Such research supports both the practical and psychological benefits of utilizing tangible

interfaces. They motivate and guide the design of our system based on the assumption that

the principles are applicable to mid-air tangible interaction.

2.2 Tabletop Tangible Interfaces

Among many, the most durable and scalable class of tangible interface systems has been

tabletop tangible interfaces. Such systems track the position and movement of physical

objects on a surface and respond to users' physical manipulation of these objects with

graphical output. The objects are treated as physical embodiments of digital information:

users can adjust the digital state of a data item by moving or rotating the objects.



2.2.1 Urp: Early Tabletop Tangible Interface

Underkoffler has studied how the collaborative manipulation of tangible input elements can

enhance task performance in architectural planning [27] [27]. In his URP project, physical

models of buildings cast digital shadows, which are graphical projections around the model.

The position and orientation of the models are sensed by the system, changing visualization

of light and wind around the buildings in real time. Through controlling tangible objects,

the user can control computer simulations.

In Urp, while physical models allow the user to directly specify the position of the buildings,

the user needs to rotate a physical time-dial to indirectly control lighting of the environ-

ments. However, the trajectory of the sun varies by regions and changes over time. In

this case, a person may desire to take a physical object that may represent a light source

and place it on a desired spot, relying on their spatial memory of where the sun or a light

source was located. This motivates us to look into the potential of utilizing mid-air space

in tangible interaction.

As in Urp, early research in tangible interfaces has attempted to use objects that have

(a) John Underkoffler, Urp, 1999 (b) James Patten, Sensetable, 2002

Figure 2-1: In tabletop Interfaces, physical objects represent digital information, coupled
with graphical projection. The system tracks the position and movement of physical objects
on a surface and changes graphical projection as a response to the user's manipulation of
objects.



application-specific shapes to maximize advantages of physical affordances and tend to sup-

port specific applications. However, there has been a movement to make tangible interface

platforms more generally applicable to multiple scenarios.

2.2.2 Sensetable: TUIs Using Objects of General Shapes

Sensetable brought new levels of flexibility to tabletop tangible interfaces. Instead of phys-

ical objects with particular shapes such as the model of buildings??. Sensetable employed

cylindrical pucks overlaid with graphical projections. This system allowed for a wide range

of compelling applications such as system dynamics simulation and musical compositions.

Additional controls such as physical modifiers and dials can be added to manipulate vari-

ables associated with the pucks. While sacrificing affordances implied by various shapes,

this approach broadened the applicability of tabletop tangible interaction. Reactable [5],

AudioPad [6], or Datatiles [7] are other examples that demonstrate compelling qualities of

bimanual interaction that involve dynamically arranging digital items such as images and

sound.

Discussion of these trade-offs between general and specific shapes of interaction elements

provides insight for design of the ZeroN system. Since the current aim of the research is

to find a scope of applications, rather than solving a specific problem in one application,

we decided to use an object that has a general shape (sphere) with graphical projections

imposed on the shape.

2.3 Actuation

2.3.1 Actuation as Dynamic Representation of Digital Information

There has been research into employing actuation of physical objects in interfaces to repre-

sent dynamic digital data. In previous tabletop tangible interfaces, while users can provide

input by manipulating physical objects, in most cases output occurs only through graphical



projection. Therefore, inconsistency between physical objects and digital information may

occur when the state of the underlying digital system changes, and is not reflected as up-

dates in position of physical objects on the table. Adding planar actuation to an interface,

such that states of physical objects are coupled with dynamically changing digital states

will allow the computer to maintain consistency between the physical and digital states of

data objects.

In Actuated Workbench [15], an array of computer-controlled electromagnets actuates phys-

ical objects on the surface, which represent the dynamic status of computation. Planar

Manipulator [23] or Augmented Coliseum [25] achieved similar technical capabilities. Re-

cent examples of such actuated tabletop interfaces include madget, a system that has the

capability of actuating complex tangibles composed of multiple parts [28].

Patten's PICO [16] has demonstrated how physical actuation can enable users to improvise

mechanical constraints to add computational constraint in the system. In PICO, users can

control the high level structure of a software process with a mechanical process representing

dynamic computation. Users can employ their physical intuition about the way physical

objects interact with each other to understand how everyday objects, such as a ruler or a

rubber band might be used to create constraints in the underlying computational processes.

(a) Gian Pangaro, et al., Actuated Workbench, 2002 (b) James Patten, PICO, 2007

Figure 2-2: Planar actuation technologies enable bidirectional tangible interfaces. A com-
puter updates the position of tangible objects to reflect changes in underlying computation.



(a) A user grabs and moves the (b) Curlybot repeats the exact mo- (c) Kinetic memory al-
Curlybot tion lows users to design

high level motions with
their gestures

Figure 2-3: Actuated objects can represent human gestures. (a),(b): Phil Frei, Curlybot,
2000, and (c): Hayes Raffle and Amanda Parkes, Topobo, 2004

2.3.2 Actuation as Embodiment of Human Gestures

In an attempt to employ body gestures as scalable interface components, a class of kinetic

interfaces has been researched. They capture and play-back motion directly from the gesture

of the human body. Curlybot is a toy that can record and repeat physical motions of users

on a two dimensional surface [4]. Curlybot remembers how it has been moved and can replay

the same movements' pauses, accelerations and the shaking of the users' hands. Then it

repeats the motion indefinitely creating mathematical patterns . The Curlybot inspired

Topobo [22], an assembly robot with kinetic memory which allows users to sculpt organic

motion using their gestural language. Their organic movements can embody high-level

concepts of physics and mathematics and even algorithmic simulation. This work inspired

the design of the ZeroN system, informing us of the power of using body gestures as tangible

interface components in learning and creative tasks.

2.4 From Surface to 2.5D Shape and Deformable Surfaces

One approach to the transition of 2D modalities to 3D has been using deformable surfaces

as input and output. Illuminating Clay [18] and Sandscape [7] from the MIT Media Lab



(a) Feelex, Hiroo (b) Ivan Poupyrev, Lumen, 2004 (c) Art+Com, Kinectic Sculpture
Iwata, 1997

Figure 2-4: Through vertical actuation of pin arrays, computers can create various de-
formable surfaces.

employs deformable physical material as a medium of input where users can directly ma-

nipulate the state of the system. In Lumino, stackable tangible pucks are used to express

discrete height as another input modality [2]. While in this system the computer cannot

modify physical shape, there has been research in adding height as another component

to RGB pixels using computer controlled actuation. Poupyrev, et.al provide an excellent

overview and taxonomy of shape displays [21]. To actuate deformable surfaces, Lumen [20]

and FEELEX [9] employ an array of motorized sticks that can be raised. Art+coms kinetic

sculpture actuates multiple spheres tethered with string to create the silhouette of cars [1].

Despite their compelling qualities as shape display, they share two properties in common

as interfaces. First, input is limited by the push and pull of objects, whereas more degrees

of freedom of input may be desired in many applications; users might also want to push or

drag the displayed object laterally. More importantly, because the objects are physically

tethered, it is difficult for users to reach under or above the deformable surface in the

interactive space.
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Figure 2-5: Framework for Tabletop Interfaces: Being the first system to allow users to
place a physical object at a 3D coordinate in the space above the tabletop surface, ZeroN
holds a unique position in tabletop tangible interfaces

2.5 Interaction in Space above the Tabletop Surface

Hilliges and et al. show that 3D mid-air input can be used to manipulate virtual objects

on a tabletop surface using the Microsoft's SecondLight infrastructure [6]. Grossman et.al

introduced interaction techniques with a 3D volumetric display [5].

While they demonstrate a potential approach of exploiting real 3D space as an input area,

the separation of a user's input from the rendered graphics does not afford direct control as

in the physical world, and may lead to ambiguities in the interface. A remedy for this issue of

I/O inconsistency may come from technologies that display free-standing volumetric images,

such as digital holography. However these technologies are not yet mature, and even when



they can be fully implemented, direct manipulation of these media would be challenging

due to their lack of a persistent tangible representation.

2.6 Haptic Interfaces

Studies with haptic devices, such as Phantom, have shown how accurate force feedback

can increase task performance in the context of medical training and 3D modeling [13].

Most of these systems were used with a single monitor display or head-mounted display,

Plesniaks system lets users directly touch a 3D holographic display to obtain input and

output coincidences [19]. Tethered devices constrain the degree of freedom in user input.

In addition, constraining the view angle often isolates the user from real world context, and

restricts multi-user scenarios.

2.7 Technologies for positioning an object at a 3D coordinate

In this section, I briefly review technologies and mechanisms for the 3D actuation of a

physical object that we considered using in order to enable mid-air tangible interaction.

Actuation technologies for positioning a physical object in 3D space have been researched

in industry and an academic context.

(a) Tovi Grossman, Interaction with (b) Otmar Hilliges, Interaction in the air, 2009
Volumetric Display, 2004

Figure 2-6: 3D interaction occurring in mid-air 3D space. Achieving I/O coincidence may
be challenging: sensed input and output are not in contact



(a) Phantom device used with an additional mon- (b) Immersive haptic devices com-
itor screen. bined with head-mounted display.

Figure 2-7: Haptic interfaces have shown that accurate force feedback increases task perfor-
mances in interacting with virtual environments. Achieving input and output coincidences
requires users to wear a head mounted display, which may isolate them from the real world
context

Robotic Arm

A mechanical arm can be used to grab a physical object and place it at a 3D coordinate

of the physical space. This technique is often used in industrial fabrication facilities

such as milling machines. Negroponte's Architecture Machine Project is an exam-

ple of using this technique to create computers that can reconfigure 3D objects [14].

While this approach enables the stable positioning of the object, the mechanical ar-

mature may hit the users' body and restrict the of movements of users, which makes

it challenging to be used for tangible user interfaces.

Using Air Control

Controlling air pressure can be used to levitate and position a light physical object at

a desired position. According to Bernoulli's principle, air flowing around a physical

object can create an area of lower pressure where the object can remain stable. Becker

et al. have conducted experiments of moving a physical object along 3D trajectory

using this technique [3]. With similar principles, properly controlled modular heli-

copters can be used as a volumetric pixel that can be located at a 3D coordinate of

the space. The Senseable City group at MIT has demonstrated an interesting concept

of using flying helicopters as volumetric pixels to render 3D scenes in mid-air [24].



(a) Nicholas Negroponte, (b) Aaron Becker et al. Pneu- (c) MIT Senseable City, Concept of
Seek, 1970 matic Ball-Levitation, 2009 Firefly, 2010

Figure 2-8: Technologies for positioning a physical object at a 3D coordinate

While these techniques may be further developed to serve an interesting display, it may

be difficult to appropriate these techniques for tangible interaction with the object,

since users' hands will interrupt with air flow and make the object fall when trying

to reach out to the object. In addition, they are not stable enough to provide haptic

sensations of touching the object at a fixed point in the 3D space.

This analysis of various mechanisms led us to desire implementing untethered and stable

3D actuation mechanism to enable mid-air Tangible Interaction.

2.8 Magnetic Levitation

Magnetic Levitation Technology has been researched and widely utilized in research into

haptic interfaces, robotics and transportation, as well as kinetic art projects. It increases

mechanical performances by eliminating friction between surfaces of objects such as bearings

and allowing for increased degrees of freedom of movements of physical devices. Birklmann

and et al. developed high-performance magnetic levitation haptic interfaces to enable the

user to interact with simulated environments [22] [25]. The system was able to achieved

low-latency force feedback. Most of them were used with a single monitor as visual output,

rather than collocating graphical projections with physical input.



Outside academic research, magnetic levitation has been used in a series of kinetic art

projects. Levitated objects that are seemingly unconstrained by gravity provide people

with a provocative perception of space and time. A recent example includes a Levitating

Light bulb by Lieberman [12]. The light bulb floating in mid air and can be powered through

wireless transfer of electricity.

(a) P.J. Berklmann, Magnetic Levitation Haptic (b) Jeff Lieberman, Levitating Light
Interface, 1995 Bulb, 2005

Figure 2-9: Magnetic Levitation Technology in (a) Haptic Interfaces, and (b) art projects.



Chapter 3

Mid-Air Tangible Interaction

In this chapter, I introduce the development and evolution of the concept of mid-air tangible

interaction, and initial approaches that I have taken in the course of its development.

3.1 Analysis of Properties of Tangible Interfaces

Since it first appeared challenging to appropriate tabletop tangible interfaces to use them in

the 3D mid-air space, I first considered whether it might be possible to emulate properties

of tangible interfaces in other mechanisms for 3D interaction as discussed in the previous

chapter. To think about this possibility and define the desired interaction properties of our

system, I identified three further concepts that characterize tangible interaction.

e Input and output coincidence: This defines the extent to which the input and output-

rendered graphics or tangible objects that represent data-are spatially collocated in

an interface system. Our design goal is to keep this input and output as collocated as

possible.

e Bidirectional physical interaction: This measures the extent to which the physical

representation of the interface can be coupled with the digital state. The computer



actuation technology should be able to move physical objects or devices when the

digital system is updated. This way, it can maintain a digital-physical consistency

with objects or devices that the user manipulates simultaneously.

e Required wearable equipment: This measures to what extent users must be equipped

with mechanical or optical devices to use the interface. An important goal of our

system was to require minimal instrumentation, similar to existing 2D tangible inter-

faces.

With these properties as metrics, I plotted the existing literature of 3D interaction to analyze

preliminary approaches and trends of research for interacting with 3D digital media (figure

3-1).

As researchers move towards exploiting 3D space above the surface, interactions tend to

lose I/O coincidence or require users to be instrumented with mechanical or optical devices.

Mechanical & Haptic Devices VO CouplingOptical Equipment with a Monitor

Virtual Reaty \\O

Haptic Devices Magnetic Levitation Haptic Device
Combined with HMD G

Beyon<

Intera n with Volumetric Display
leraction in the Air

Physical Feedback

Figure 3-1: 3D Interfaces



Interacting with dynamic, 3D digital media as in the real world (green color in figure 3-1)

remains challenging. If we can program the 3D position of physical objects, we may begin

exploration of this new space. However, 3D mid-air physical space is not suited for 'storing'

data or objects since the objects will not stay put there.

3.2 Prior Exploration: Beyond - Physical object submerging

into the virtual 3D space

While physical space has this constraint, virtual objects can be placed at an arbitrary 3D

coordinate if the computer displays 2D projection of 3D objects properly on the surface.

This way, computers can 'place' objects composed of pixels underneath the table, and the

user perceives the existence of this virtual 3D space below the surface as an extension of the

space above. My initial hypothesis was that if the physical objects on the surface can be

seamlessly connected to such 3D information projected beneath the surface, users will be

able to perceive and control 3D information with similar interaction modalities of tangible

interfaces.

How can physical objects reach into the virtual 3D space? This question led me to create the

0 Physical Object 0

Virtual 3D Space

Figure 3-2: The concept of submerged physical objects implies thinking of the virtual 3D
space below the flat surface as an extension of the space above.



(a) The first version of Beyond implemented (b) The final version of Beyond interface implemented
with Vicon System'. 3D Scene in the picture with Wacom Tablet
was rendered based on the cameras perspec-
tive instead of the users to illustrate how it
looks from the users point of view.

Figure 3-3: Beyond interface creates an illusion of a physical object submerging into the 3D
virtual space and digitally extending into the virtual space.

concept of submerged interfaces: the idea of allowing tangible tools to physically collapse

and digitally extend into the virtual space. To explore this idea, I designed and developed

Beyond, a collapsible input device. When pressed against a screen, the Beyond device

collapses in the physical world and extends into the digital space of the screen, so that users

have an illusion that they are inserting the tool into the virtual space. Beyond enables users

to interact directly with 3D media without having to wear stereo glasses or a head-mounted

display.

This visual connection between a physical object and the virtual 3D space improved per-

ceived directness of manipulation. However, the result of several user observations did not

support the hypothesis that such a connection would provide rich interaction modalities

tabletop tangibles provided. The system did not allow users to employ the dexterity of

their fingertips to manipulate images, nor did it allow multiple users to perceive 3D infor-

mation at the same time. These facts severely affected the usability and scope of potential

applications.



Figure 3-4: How can we represent a 3D coordinate of the virtual space in the physical 3D
space?

3.3 Tangible Interaction in Mid-Air

The focus of my research was shifted to the 3D physical space above the tabletop surface. If

the tangible interaction can happen here, one could use the dexterity of one's fingertips to

directly manipulate or arrange 3D information, and share the visual and tangible experience

with multiple users. To do so, one would want the 3D data to gain a physical form that is

displayed in this space. This way, 3D components of existing interfaces, such as the flight

path of an airplane, the orbits of planets, or a camera path through an architectural model,

can be visualized and easily controlled by the users through tangible manipulation.

Can we make the position of a tangible object represent 3D information in mid-air space?

To do so, computers need to re-program the behavior of physical objects such that they

can be placed at arbitrary 3D coordinates in mid-air. Examining interaction with physical

objects that can be freely moved by a computer in 3D space can become the first step

towards exploring design space that fulfills the goal that we set at the beginning of this

chapter.
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Chapter 4

ZeroN - A Levitated Object as

Tangible Representation of a 3D

Virtual Coordinate

In this chapter, I describe the development of a ZeroN system to achieve tangible interaction

in the mid-air. The system includes a new tangible interface element that can be levitated

and moved freely by computer in a three dimensional space. I first describe the design

criteria that we set at the beginning, and I then present the final prototype.

Figure 4-1: A Levitated object freely moved by computers in a 3D space can represent
dynamic 3D information in virtual space.



4.1 Design Criteria

To achieve tangible interaction in mid-air space, we chose to implement the system that can

levitate and actuate a physical object and place it at 3D coordinates. Considering inter-

action that we discussed above, we set the following design criteria of such a 3D actuation

mechanism as follows:

Stability:

The actuated physical object should remain at the 3D location at which it is placed.

Users should be able to touch and grab the object, feeling mechanical detente between

the object and a fixed point.

Untethered-ness:

To allow users to freely place, move, and interact with objects with maximized degrees

of freedom, the system should not be firmly tethered to the ground or to mechanical

devices. This approach also minimizes visual distraction of users from perceiving data

itself and maximizes compatibility with the existing tangible interfaces setup.

Graphical Projection:

As in existing tabletop tangible interfaces, graphical images can be projected onto the

object to integrate physical input and graphical output in the same space. To achieve

this, the object should have large, continuous, white surfaces suited to displaying

graphical images.

Compatibility with tangible tabletop interfaces:

While this thesis focuses on 3D tangible interaction in mid-air, mixed 2D and 3D

elements can be combined to create functional user interfaces. Therefore, from both

design and technological perspectives, the actuation mechanism should be able to

incorporate 3D elements into existing 2D tabletop interfaces.

Smooth Motion:

To use system to display dynamic 3D data such as the position of orbiting planets or

flight paths of an airplane, smooth motion will be a significant requisite to have.



Ability to Sense Users' intent:

The system should be able to respond to users' input in real time, and to do so, the

system should be able to understand the users' intent, such as whether the user is

trying to move the object to a different position.

After considering several design options as discussed in the section 2.7, I decided that

magnetic levitation was the most promising approach for moving and placing an object at

3D coordinates in a stable manner. We implemented our first prototype with computer

controlled magnetic levitation technology. We call this system ZeroN, since the sum of

gravitational force and magnetic force on a static object is zero Newtons (ON). In the

following discussion, we will refer to the levitated object simply as ZeroN and the entire

ensemble as the ZeroN system.

4.2 Final Design Scheme

The ZeroN system operates over a volume of 15x15x3.5 inches, in which it can levitate,

sense, and control the 3D position of the ZeroN object, a 1.25 spherical magnet covered

with plastic onto which digital imagery can be projected. As a result, the digital information

bound with a physical object can be seen, felt, and manipulated in the operating volume

without requiring users to be tethered by mechanical armatures or to wear optical devices.

Due to the current limitation of the levitation range, I made the entire interactive space

larger than this 'anti-gravity' space, such that users can interact with ZeroN with reasonable

freedom of movement. In the following discussion, I will refer to the levitated object simply

as ZeroN and the entire ensemble as the ZeroN system.

The current prototype comprises four key elements, illustrated in figure ??.
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Figure 4-2: Overview of the ZeroN system.

" A single-axis magnetic levitator that suspends a magnetic object and is capable of

changing the object's vertical suspension distance on command.

* A 2-axis linear actuation stage that laterally positions the magnetic levitator

" Stereo cameras that track ZeroN's 3D position in real time.

" A depth camera to detect users' hand poses.

" A tabletop interface displaying a scene coordinated with the position of the suspended

object and other objects placed on the table.



4.3 Displaying 3D Point and Path

ZeroN serves as a dynamic tangible representation of a 3D coordinate, without being teth-

ered by mechanical armature. The 3D Position of ZeroN may be updated upon computer

commands to present dynamic movements or curved lines in the 3D space such as flight

paths of the airplane or orbits of planets. These graphical images or icons may be projected

upon the white surface of ZeroN levitating, such as cameras, flying airplanes or the pattern

of a planet. These graphical images can be animated or 'tilted' to display change of orien-

tation. This complements the limitation of current prototype systems that can only control

the 3D position of a magnet, but has little control over its orientation. In the following

chapter, I describe the technical details of the ZeroN system.

Figure 4-3: ZeroN can represent a 3D coordinate of the virtual world. Ex. displaying an
orbit of a moving planet.
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Chapter 5

Technical Implementation

The design and implementation of the ZeroN system have brought forth significant inno-

vations in the computer controlled movement of objects. It is the first system that utilizes

the 3D positioning of a physical object in mid-air in human computer interaction, using

external forces without any physical attachment to the object. This chapter contains a de-

tailed description of the prototypes we implemented between February 2010 and May 2011.

It discusses the electronic, mechanical, and optical components used and the data-handling

sequence between the computer and these components.

5.1 Untethered 3D Actuation Technology

In our first prototype, 3D actuation of the magnet was achieved by combining 2D me-

chanical actuation with vertical magnetic actuation. While this magnetic vertical control

demonstrated promising implications in magnetic propulsion technology, the vertical range

was limited: when the permanent magnet got too close to the electromagnet it became at-

tached to the electromagnet even when the coils were not energized. In the final prototype,

we chose to implement a 3D mechanical actuation system that can move the coil and the

levitated object in the 3D space.



(a) The first prototype of 3D actuation system. 2D mechan- (b) The final prototype includes three-
ical actuation combined with 1D magnetic vertical actuation axis actuators that can mechanically
creates 3D paths of a levitated magnet. move the coil in a 3D space

Figure 5-1: Untethered 3D actuation

Given a 3D path as input, the system first projects the path on each dimension, and linearly

interpolates between the points to create a smooth trajectory. Then the system calculates

the velocity and acceleration of each actuated axis as a function of time. With this data,

the system can actuate the object along a 3D path similar to the input 3D path.

5.1.1 Magnetic Levitation and Vertical Control

We have developed a custom electromagnetic suspension system (illustrated in figure 5-2)

to provide robust sensing, levitation, and vertical control. It includes a micro-controller im-

plementing a proportional-integral-derivative (PID) control loop with parameters that can

be set through a serial interface. In particular, ZeroN's suspension distance is set through

this interface by the UI coordinator. The PID controller drives the electromagnet through a

coil driver using pulse-width modulation (PWM). The field generated by the electromagnet

imposes an attractive (or repulsive) force on the suspended magnetic object. By dynam-

ically canceling gravity by exerting a magnetic force on ZeroN, the control loop keeps it

suspended at the desired distance from the electromagnet. This distance is determined by

measuring the magnetic field immediately beneath the solenoid. The levitation circuit used

in the final prototype was designed by Rehmi Post.



Magnetometer

Levitated object

Figure 5-2: A simplified version of magnetic range sensing and levitation circuit.

Pulse-Width Modulation (PWM)

PWM is a widely used technique for driving electrical motors or coils at certain speeds

by sending them pulses of various duty cycles depending on the speed at which one

wants them to turn. In our implementation, PWM drives the coils with an average

current depending on a voltage signal coming from a hall-effect sensor to balance the

gravity and magnetic forces posed on the permanent magnet.

Voltage(V)
0

25ms SOms 75ms 1OOms
tms

Voltage(V

0

~1~*

~ _
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Figure 5-3: An example of PWM Signal to enable levitation. The duty of the pulse (top)
changes according to the voltage signal from the hall-effect sensor to compensate for the
vertical oscillation of a levitating magnet.
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5.1.2 Magnetic Range Sensing with Hall-Effect Sensor

Properly measuring the distance of a spherical magnet is the key component in stable

levitation and vertical control. Since the magnetic field drops off as the cube of the distance

from the source, it is challenging to properly convert the strength of the magnetic field to the

vertical position of the magnet. To linearize the signals produced by the hall-effect sensor,

we developed the two-step logarithmic amplifier shown in figure 5-2. It logarithmically

amplifies the signal with two different gains, based on whether the signal exceeds a threshold

value.
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Distance Distance

Figure 5-4: Raw Signal (left) and signals after com- pensation and amplification.

5.1.3 Designing ZeroN Object

We chose a sphere as the shape of the ZeroN object for technical reasons and affordances

of the shape. Our original goal was to allow users to not only move but also rotate the

object in the air with 6 degrees of freedom. However, tilting the permanent magnet will

create distortion in a stable magnetic field, which will make the magnet fall. My solution

to enable this feature is to cover a magnet with a plastic layer loosely covering the magnet

such that users can tilt the layer to express rotation without changing the orientation of the

permanent magnet. To enable this feature, the magnet should take on a spherical shape



which is radially symmetrical from all angles. Adopting a spherical shape also provides

right affordances that imply the freedom of movement of the system, since users are allowed

to move the ZeroN in an omnisymmetrical direction. The permanent magnet used in our

system weighs 4.430 oz and it has 1.25inch diameter.

LUWOP The PN Magnet

Figure 5-5: Design of ZeroN object.

5.2 Tracking Technology

The ZeroN system implements machine vision techniques for determining the 3D position

of a levitated object. To enable even more robust tracking and to resolve occlusion issues,

electromagnetic 3D tracking was proposed. However, we chose to implement a computer

vision-based system as we encountered preliminary difficulties in appropriating electromag-

netic sensing for 3D tracking within our timeframe.

5.2.1 Stereo Tracking of 3D position

I used two modified Sony PS3Eyecams to track the 3D position of the ZeroN object using

computer vision techniques with a pair of infrared images as shown in figure 5-6 X. At



Figure 5-6: Tracking and Projection System of ZeroN.

the beginning of our design stages, we encountered the following two technical constraints.

First, to maximize the white surface area on the ZeroN object for projecting images, fiducial

markers, if placed, should be very small or invisible. Second, although we can achieve stable

magnetic levitation after adding weight up to 60g, the weight should be distributed evenly

over the spherical object. This makes it challenging to add active electronic components to

the ZeroN object. Filtering images with color or depth to extract the contour of the object

is a possible approach; however, it is hard to distinguish the contour of the ZeroN object

from users' hands while it is being manipulated.

To resolve these issues, I chose to apply a stripe of retro-refiective tape to the surface of

ZeroN and let the stereo cameras see the reflected infrared light. I developed vision-based

tracking software that converts and smoothes out the grayscale images of the stereo cam-

eras into binary images and employs standard blob-analysis techniques to find the largest

horizontal segments. The software then correlates the two binary images coming from the

stereo cameras to compute the 3D position of the object.



5.2.2 Tracking Orientation

Stereo cameras can track the rough 1D rotation of its plastic surface. While our original

plan was to extract the 3D orientation of the object by placing continuous patterns on the

surfaces similar to those used in a VICON motion capture system, we were only able to

detect the approximate tilt of a horizontal stripe pattern of retro-reflective tape.

Figure 5-7: As the users tilts the outer plastic layer, the system senses the orientation and
updates the projected images, while the spherical magnet stays in the same orientation.

5.2.3 Calibration of 3D Sensing, Projection, and Actuation

To ensure real time interaction, careful calibration between the cameras, projectors and 3D

actuation system is essential in our implementation. After finding correspondences between

two cameras with checkerboard patterns, we register the cameras with the coordinate frame

of the interactive space. We position the ZeroN object at each of four fixed, non-coplanar

points. Similarly, to register each projector to real-world coordinates, we match the ZeroN

positioned at the four calibration points and move the projected image of a circle towards

the ZeroN. When the circular image is overlaid on the ZeroN, we increase or decrease the

size of the circle image so that it matches the size of ZeroN. This data is used to find

two homogenous matrices that transform raw camera coordinates to real world coordinates
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Figure 5-8: Calibration between stereo cameras, real world coordinates and a projector.

of the interactive space, and the real coordinates to the projector's x, y position and the

inverse of the radius of the circle.
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I have not attempted to optimally determine the focal plane of the projected image: focusing

the projectors roughly in the middle of the interactive space is sufficient.

5.2.4 Detecting Manipulation

It is important to determine the user's intent, since the system has to constantly sense and

update the position of the ZeroN object to realize mid-air tangible interaction. I created

modes of interaction based on whether and how long the user is holding the object. A depth



camera (Microsoft Kinect1 ) is used to determine if users' hands are grabbing the levitated

object or not. The software extracts binary contours of objects at a predefined depth range

and finds the blob created between the user's hands and the levitated object as in figure

5-9.

Figure 5-9: The Kinect camera can sense whether the user is holding the levitated object
or not.

5.3 Putting Together

5.3.1 Engineering 'Anti-Gravity' Space

These various sensing and actuation techniques coordinate to create a seamless 'anti-gravity'

I/O space. When the user grabs the ZeroN and place it within the defined space of the

system, the system tracks the 3D position of the object, and determines if the user's hand

is grabbing ZeroN. The electromagnet is then moved to the 2D position of ZeroN by the

2-axis actuators, and is programmed to reset a new stable point of suspension at a sensed

vertical position. As a result, this system creates what we will call a small 'anti- gravity'

space, wherein people can place an object in a volume. A challenge in implementing this

anti-gravity space with the current prototype is to determine if ZeroN is being moved by

lhttp://www.xbox.com/en-US/kinect



a user, or is naturally wobbling. When levitating, ZeroN sways laterally, and the system

can misinterpret this movement for user input and continue to update a new stable point

of suspension. This causes ZeroN to drift around. To resolve this issue, we classified three

states of operation (free, grabbed, and grabbed for a long time) based on the user's hand

pose sensed by the depth camera, such that the system only updates the stable position

when ZeroN is grabbed by the user.

Position X1, Y1 Position X2, Y2
Levitation Range: 2.8 inches New Levitation Range: 1.7 inches

Figure 5-10: The system can update the stable point of suspension when the user moves
the ZeroN to an- other position.

5.3.2 Entire Installation

These components are built into two wooden boxes to maximize the use of interactive space.

The upper box hanging from a truss contains the mechanical and electromagnetic hardware

for levitation, and the bottom box contains a vision-based tabletop interface setup. We used

a Reactivision 2 platform to detect the position and orientation of physical objects placed on

the tabletop. The space in between the two boxes is the anti-gravity space used for mid-air

tangible interaction, with four sides open to ease multiple users' access (figure 5-11).

2http://reactivision.sourceforge.net/



Figure 5-11: Entire Setup of the ZeroN system, installed at the 3rd floor of the MIT Media
Laboratory

53



54



Chapter 6

Interaction Techniques

In this chapter, I introduce a language for 3D tangible interaction. In addition to extending

language for interacting with physical objects on a 2D surface, - put, move, rotate, and

drag- to 3D, I implemented a symbolic vocabulary that enables the users to attach digital

items or functions to a ZeroN object. We identify design issues and technical challenges

unique to interaction with an untethered, levitated object. We list the new vocabulary of

our interaction language below:

Computer Actuaton

PlaceHod

Hori
Record

Play Back

Figure 6-1: Vocabulary for Tangible Interaction in mid-air : (a) Users can place ZeroN in
the air; (b) Computer can actuate ZeroN and users can intervene with the movement of
ZeroN; (c) Attaching Digital item to ZeroN; (d) Translation and rotation in the air; (e)
Long hold to record and play back.

7



6.1 Basic Vocabulary

Place and Remove : One can place ZeroN in the air, suspending it at an arbitrary 3D

position within the interactive space. Similarly, one can always remove the ZeroN

from the 3D system to 'unregister' the data from the system.

Translate : The user can move ZeroN to another position in the anti-gravity space without

disturbing its ability to levitate.

Rotate : When the user rotates the plastic shell covering the spherical magnet, digital

images projected on the ZeroN will rotate accordingly.

Computer Actuation : ZeroN can also be actuated by a computer in this anti-gravity

space. The movement represents dynamic change in the underlying digital system.

6.2 Symbolic Vocabulary

Hold : The user can hold or block ZeroN to impede computer actuation. This can be

interpreted as computational constraints.

Long Hold : A long-hold gesture can be used to initiate a specific function. For example,

in a video recording application, we might have an interaction where the user could

hold the ZeroN for longer than 2.5 seconds to initiate recording, and release it to enter

playback mode.

6.3 Attaching Digital Information to the ZeroN

We borrowed a gesture for attaching and detaching digital items from existing tabletop

interfaces such as Sensetable [17]. It is challenging to interact with multiple information

clusters, since the current system can only levitate one object. For instance, in the appli-

cation of urban planning simulation [3], users might first want to use ZeroN as the sun to

control lighting, and then as a camera to render the scene. Users can attach ZeroN to a



digital item projected on the tabletop surface just by moving the ZeroN close to the digital

item to which it is to be bound.

6.4 Interaction with Tabletop Tangible Interfaces through

Digital Shadow

In incorporating ZeroN system into existing tabletop tangible interfaces, one of the chal-

lenges is to provide the users with a semantic link between the levitated object and the

tabletop tangible interfaces on the surface. Since ZeroN is not physically in contact with

the tabletop system, it is hard to recognize the relative position of the levitated object to

the objects placed on the ground. To address this issue, I designed several types of inter-

active digital projection to provide the users with visible links between ZeroN and other

part of the tabletop tangible interfaces. In applications where the users may want to use

tabletop surface as a reference point, ZeroN casts its digital shadow whose size is mapped

to the height of the ZeroN (see figure 8-2). For applications where the users may want

to use tangible elements as reference points, the digital shadow can be rendered to show

the geometric relationship between ZeroN and objects of the tabletop system (see figure 6-3).

Figure 6-2: The size of the digital shadow is mapped to the height of ZeroN.



(a) (b)

Figure 6-3: Different types of digital shadow that imply geometric relationship between
ZeorN and other objects used in interfaces.



Chapter 7

Applications

In this chapter, I explore the previously described interaction techniques in the context

of several categories of applications described below. While the physics and architecture

simulation allow the user to begin using ZeroN to address a practical problem, the proto-

typing animation and tangible pong applications are proof of concepts that demonstrate

the interactions one might have with ZeroN.

7.1 Physics Simulation and Education

ZeroN can serve as a tangible physics simulator by display-ing and actuating physical ob-

jects under computationally controlled physical conditions. As a result, dynamic computer

simulation can turn into tangible reality, which had previously been possible only in the

virtual world. More importantly, the user can interrupt or affect the simulation process by

blocking actuation with their hands or by introducing other physical objects in the ZeroN

space.

Understanding Kepler's Law

In this application, the user can simulate a planet's movement in the solar system by

placing at the simulation's center a static object that represents the center of mass as



(a) When placed near an object (b) The user can grab the orbiting (c) ZeroN snaps to another orbit,
that represents the center of mass ZeroN and move it farther from reducing its speed confirming Ke-
, ZeroN revolves around like a the center pler's 2nd law
planet

Figure 7-1: Application for Physics Education

the Sun, around which the ZeroN will revolve like a planet. The user can change the

distance between the Sun and the planet, which will make the ZeroN snap to another

orbit. Resulting changes can be observed and felt in motion and speed of the ZeroN.

Digital projection shows the area that a line joining a ZeroN and the Sun sweeps out

during a certain period of time, confirming Kepler's 2nd law.

3-body problem

In this application, users can generate a gravity field by introducing multiple passive

objects that represent fixed centers of gravity. A ZeroN placed next to the object

will orbit around based on the result of the 3-body simulation. The users can add or

change the gravitational field by simply placing more passive objects, which can be

identified by a tabletop interface setup (see figure 7-6).



(a) Introducing a center of mass.

(c) ZeroN will revolve around the center of (d) Introducing another center of mass will
mass. change the orbit of the ZeroN, simulating

and visualizing a 3-body problem

Figure 7-2: Visualizing 3-body problem

7.2 Architectural Planning

While there has been much research exploring tangible interfaces in the space of archi-

tectural planning, some of the essential components, such as lights or cameras, cannot be

represented as a tangible object that can be directly manipulated. For instance, Urp system

[Underkoffler:1999:ULW:302979.303114] allows the user to directly control the arrangement

of physical buildings, but lighting can only be controlled by rotating a separate time-dial.

While it is not our goal to stress that direct manipulation outperforms indirect manipu-

lation, there are certainly various scenarios where having direct manipulation of tangible

representation is important. We developed two appli-cations for gathering the users' feed-

back.

(b) Introducing ZeroN.



Lighting Control We developed an application for controlling external archi-tectural light-

ing in which the user can grab and place a Sun in the air to control the digital shadow

cast by physical models on the tabletop surface. The computer can simulate changes

in the position of the lighting, such as chances over the day, and the representative

Sun will be actuated to reflect these changes.

Figure 7-3: The user can place the 'sun' above physical models to cast its digital shadow

Camera Path Control Users can create 3D camera paths for rendering virtual scenes

using ZeroN as a camera. Attaching ZeroN to the camera icon displayed on the surface

turns the ZeroN into a camera object. The user can then hold the ZeroN for a number

of seconds in one position to initiate a recording interaction. When the user draws a

3D path in the air and release the ZeroN, the camera is sent back to initial position and

then moved along the previously recorded 3D trajectory. On an additional screen, the

user can see the virtual scene of their model taken by the camera's perspective in real

time. If the user wants to edit this path, they can intervene with the camera's path

and start from the exact current position of the camera to redraw another path. The

user will naturally hope to control the orientation of the camera, however we could not

incorporate the full orientation control feature in the application for the time being.

We instead fix the orientation of the camera to the center of the interactive space.



Figure 7-4: Users can create and edit 3Dcamera paths above the physical model and see
the cam- era flying along the path (Cameraview orientation is constrained to the center of
the interactive space).

7.3 3D Motion Prototyping

Creating and editing 3D motion for animation is a long and complex process with conven-

tional interfaces, requiring expert knowledge of the software, even for simple prototyping.

With record and play-back interaction, the user can easily prototype the 3D movement of

an object and watch it playing back in the real world. The motion can possibly be mapped

to a 3D digital character moving accordingly on the screen in dynamic virtual space. As

a result, the user can not only see, but also feel the 3D motion of the object they created.

They can go through this interaction through a series of gestures; long-hold and release.



(a) Record (b) Play-back

Figure 7-5: Record and Playback: the color tone of graphical projection turns from red to
green, informing which mode the user is in.

(a) The user creates a flight path of an airplane (b) When released, the airplane goes back to
the initial position and flies along the path that
a user created. The user can move another ob-
ject that represents camera around the flying
airplane to create dynamic scenes

Figure 7-6: Prototyping the motion of a flying airplane, and filming it with a virtual camera.



7.4 Entertainment: Tangible 3D Pong in the physical space

Being able to arbitrarily program the movement of a physical object, ZeroN can be used for

digital entertainment. We partially built and demonstrate Tangible 3D Pong application

with ZeroN as a pingpong ball. In this scenario, users can play computer-enhanced pong

game with a floating ball whose physical behavior is computationally programmed. The

users can hit or block the movement of ZeroN to change the trajectory of the pingpong ball.

They can add computational constraints in this game by placing a physical object in this

interactive space as in figure 7-7. This application is only partially implemented as a proof

of concept and demonstrates interesting challenges; users cannot smash the ZeroN as in the

real world. However it suggests a new potential infrastructure for computer entertainment,

where human and computation embodied in the motion of physical objects are in the tight

loop of interaction.

Figure 7-7: Tangible Pong in the physical space.



7.5 Other Application Domains

Ghostly Presence

An intriguing application is to collect the physical motions of people in this medium

to preserve and play them back indefinitely. This will allow a unique, tangible record

of a user's physical presence and motion.

Tangible Oscilloscope and Sound Synthesizer

I am excited about exploring the possibility of using ZeroN as a tangible oscilloscope

where physical motion of levitated objects can represent dynamic signals. This princi-

ple can be also applied to musical synthesizing applications. Characteristics of sound

forms can be translated to subtle motions of ZeroN and likewise, the user can create,

edit, remix new sound and effects by creating or modifying motions of levitated ob-

jects. One possible performance scenario involves performers record a musical piece

composed of multiple sound sources. Each of these wavelengths can be translated

to the vertical motion of each ZeroN object, making them move with a different fre-

quencies and wavewidths. Performers can not only hear but feel the sound form by

grabbing the moving levitated objects. They can amplify the signals by giving a larger

motion to ZeroN or zoom in or out with their gestures or additional controllers to feel

and view the sound form in more detail. Multiple performers can spatially rearrange

levitated objects embodying each sound sources to remix, and change the original

sound track.

Combination with Other Interaction Modalities

In the area of interaction techniques, I plan to continue the investigation of how ZeroN

can be combined with other approaches to the user interface, such as GUIs, existing

TUIs, and gestural interfaces. Hopefully, as I continue this investigation, I will find a

reasonable role division and transition of the interaction styles that will allow the user

to take advantage of each approach. One interesting aspect of this exploration is the

use of ZeroN system and a display screen in which a user could transition between using

GUI for precision requiring tasks, and ZeroN system for intuitive tangible simulation.

In this scenario, a user can design a mechanical components such as a spring with



2 0

Figure 7-8: Tangible Oscilloscope.

GUI-based CAD system. As the user designs the spring, its physical reaction under

certain physical conditions is calculated and is represented by the movement of ZeroN

with which the user can feel and control the spring.

Figure 7-9: Combination and role-division with other interface modalities.
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Chapter 8

User Observation and Discussions

I demonstrated our prototype to users to gather initial feedback. During the Media Lab

Sponsor week of 2010 and 2011, ZeroN was demonstrated to and tested by approximately

150 visitors. The purpose of this demonstration was to evaluate our design, rather than to

exemplify the practicality of each application. Here, we further discuss several interesting

unique issues that we observed.

Figure 8-1: ZeroN demonstrated to visitors during the Media Lab Sponsor week.



8.1 Leaving a Physical Object in the Air

Users were impressed with the fact that they can leave a physical object in the mid-air,

and interact with them. In the camera path control application, users appreciated the

fact that they can review and feel the trajectory in the real world, which otherwise would

have been only visible in the virtual space otherwise. In the lighting control application,

a user commented that they could better discuss with a collaborator using the object that

maintains its position in the air.

8.2 Dropping the Object Issue

A confusing part of the current system design is that the 'anti-gravity' space only covers

the upper part of the interactive space. Even with instruction, users tended to try to move

ZeroN to anywhere in the whole interactive space. I plan to address this issue by changing

the color of the graphical projection on the tabletop surface: as ZeroN tries to move out of

'anti-gravity' space, the color of the surface will turn to red to notify users that they are

about to drop the ZeroN object.Many users also commented that latency in electromagnet's

Figure 8-2: Having a physical representation of a 3D point helps multiple users to discuss
the data



updating stable position (between the user's displacement of the object and electromagnets

updating the stable position) caused confusions. The participants also pointed out the issue

of lateral oscillation, which we are working to improve.

8.3 Interaction Legibility

In the physics education application, users were excited about the fact that 3D computer

simulations can have a tangible form that they can touch, feel and modify with their hands.

A few users commented that not being able to see physical relationships between planets

make them more difficult to anticipate how they should interact with this system, or what

would happen if they touch and move the objects.

Being able to actuate an object without mechanical linkages in free space allows for a more

degrees of freedom and access from all orientations. On the other hand, this decreases

the legibility of interaction by making the mechanical linkages invisible. By contrast to a

historical orrery (figure 8-3) machine in which the movements of planets are constrained by

mechanical connections, in ZeroN users can immediately understand the freedom of move-

ment that the mechanical structure affords. One of the possible solutions to compensate for

this loss of legibility is to rely on graphical projections or subtle movements of the objects

to indicate the constraints of the movement. Carefully choosing an application where the

(a) Physical Orrery (b) The ZeroN displaying an orbit of
a planet

Figure 8-3: Physical Orrery and ZeroN: hiding mechanical structures increases degrees of
freedom, but decreases legibility of interaction



gain of freedom outweighs the loss of legibility was our criteria for choosing application

scenarios.



Chapter 9

Technical Evaluation

9.1 Maximum Levitation Range

The maximum range of magnetic levitation is limited by several factors. While our circuits

can handle higher currents than are now used, an increased maximum range is limited by

the heat generated in the coils. We used a 24V power supply, from which we drew 2A.

Above that power, the heat generated by the electromagnet begins to melt its form core.

The current prototype can levitate up to 2.8 inches measured from the bottom of the hall-

effect sensor to the center of our spherical magnet. To scale up the system, a cooling system

needs to be added on top of the electromagnet.

9.2 Speed of actuation

The motor used in the prototype can carry the electromagnet with a maximum velocity of

30.5cm/s and a top acceleration of 6.lm/s 2. The dynamic response of ZeroN's inertia is the

main limit on acceleration. Because of the response properties of this second-order system

(e.g. the electromagnet and ZeroN), larger accelerations fail to overcome ZeroN's inertia

and would lead to ZeroN being dropped. The result of experiments measuring maximum

intertia shows 3.9m/s 2 of the lateral acceleration can drop the ZeroN.
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Figure 9-1: (a) Maximum force that can be applied to ZeroN without dropping. (b) Forces
were measured from various angles using a spring scale.

9.3 Resolution and Oscillation

If we frame our system as a 3D volumetric (physical) dis-play in which only one cluster of

volumetric pixels can be turned on at a time, we need to define the resolution of the system.

Our 2D linear actuators can position the electromagnet at 250,000 different positions on each

axis, and there is also no theoretical limit to the resolution of vertical control. However,

vertical and horizontal oscillation (wiggling) of the levitated object makes it difficult to

define this as the true system resolution. In the current prototype, ZeroN oscillates within

0.5 inches horizontally and 0.25 inches vertically around the set position when moved. We

call the regions swept by oscillation "blurry" with a "focused" area at its center. We discuss

the remedy for lateral oscillation in the technical limitation section.

9.4 Robustness of magnetic levitation

Robust magnetic levitation is a key factor for providing users with the sensation of an

invisible mechanical connection with a fixed point in the air. We have conducted a series

of experiments to measure how much strength can be posed on ZeroN without displacing it



from a stable point of suspension. For these experiments, we attached the levitated mag-net

to a linear spring scale that can measure up to 100g of weight. We pulled it towards the

direction of 0(horizontal), 150, 300, 450, 600, 75*, and 90'(vertical). We conducted these

experiments under two different levitation ranges (1.8, 2.7 inches). We measured 5 times

for each case and plotted the average. The camera feedback system was disabled during all

the measurements. We plot the result in figurefigure 9-1. Levitation is more robust along

the vertical axis than along the horizontal axis. It is interesting to note that ZeroN can

stand 70g of the vertical force, which shows that simple electronics, such as a small OLED

display and battery, can be mounted on the levitated object.



76



Chapter 10

Technical Limitations and Future

Improvements

In this chapter, I identify the limitations of the current ZeroN systems and outline the

directions of future development of technologies for scaling up mid-air tangible interaction.

Lateral Oscillation

Lateral oscillation was reported as the primary issue to correct in our application

scenarios. We plan to implement satellite coils around the main electromagnet which

can impose a magnetic force in a lateral direction. This will provide improve haptic

feedback.

Number of Levitated Objects

While the current prototype can only levitate and actuate one object, we are currently

designing a system that can levitate and control movements of multiple ZeroN objects.

This will be enabled by replacing a single solenoid carried by linear actuators with an

array of multiple solenoids that have more control over the entire magnetic field.

Vertical Range of Levitation

Another limitation with the current prototype is the limited vertical actuation range.



This can be addressed by carefully designing the magnetic controller with better range

sensing capabilities and choosing a geometry for the electromagnet that increases the

range without overheating the coil.

Magnetic 3D Tracking

A desirable extension is to use magnetic sensing technology in 3D tracking. We orig-

inally planned to implement an array of hall-effect sensors attached to the ceiling of

the interactive space to track the 3D position and orientation of the spherical mag-

net. While this technology would have provided more robust and low-latency object

tracking without occlusion, we encountered difficulties using hall-effect sensor arrays

in conjunction with our magnetic levitation system because of the strong magnetic

field distortions caused by our electromagnets. We believe that this problem can be

overcome in the future by subtracting magnetic fields generated by electromagnets

through the precise calibration of dynamic magnetic fields. To avoid these difficulties

in the short term, we added vision tracking to our system prototype. This limits the

hand input to areas that do not occlude the view of the camera.



Chapter 11

Conclusion and Future Direction

This thesis presents a novel concept of mid-air tangible interaction and ZeroN, a system

that is developed to enable this interaction. Through this research, we extend the tabletop

tangible interaction modality that has been confined to 2D surfaces to 3D space above the

surface. To support this interaction, we designed and developed the ZeroN system which

presents significant innovations in computer-controlled actuation. It is the first system that

utilizes the 3D positioning of a physical object in mid-air in human computer interaction,

using external forces without any physical attachment to the object. The technology in-

cludes stable long-range magnetic levitation combined with interactive projection, optical

and magnetic sensing, and mechanical actuation.

We augmented and appropriated interaction vocabulary for tabletop tangible interfaces to

employ mid-air 3D space in tangible interaction. To explore the interaction techniques, we

developed applications that include architectural modeling, physics simulation, and educa-

tion and 3D motion prototyping. While the current prototype presents many interesting

challenges, we are encouraged by what is enabled by the system and will continue to de-

velop scalable mid-air tangible interfaces. Our observations throughout the past months

have given us insights into the future implications of the mid-air tangible interaction and the

mechanism of untethered 3D actuation of physical objects. I discuss those in the following

sections.



11.1 Pervasive Display : Displaying Information between

and around objects and people

The approach of untethered 3D actuation of objects implies that the data can be displayed

at any point within a 3D space, even between or around human bodies and objects. Further

research into this aspect could develop an infrastructure to convey information in a pervasive

way, filling out unexplored mid-air space with information.

Displaying Around Body

Immersing human bodies and objects in computational 3D display mediums has long

been featured in science fiction films. The closest example would be a scene from

the film 'Iron Man', 2008, where the lead character places his hands in a holographic

display of armor. This feature can be implemented with ZeroN. For example, users

choosing clothes on the internet could place their arm in a ZeroN space, and levitated

objects could revolve rapidly around the arm to indicate the size and 3D shape of the

clothes.

Displaying Around Objects

With the proposed mechanism, a ZeroN object can also be programmed to fly around

everyday objects to convey information in a pervasive way. For example, ZeroN flying

around a Jenga-tower could provide users with hints about the order in which they

should take off the blocks to minimize the risk of the towers collapsing. In another

scenario, a novice tennis player may be able to use the ZeroN system to learn how to

hold and use a tennis racquet. For instance, a ZeroN object can be arranged around

a racquet placed in the ZeroN system to indicate a user' grasp and move in space to

demonstrate the motion of an ideal swing.



11.2 From Representation Toward Reality

How is the ZeroN's approach fundamentally different from actuated interfaces on 2D surfaces

[16], [15]? When using 2D actuated tabletop interfaces, users seem to be able to differentiate

the system from the 3D world that they inhabit. As soon as they stop working on the

computer and lift their fingertips off the surface, users feel that they are detached from

the 2D surfaces where dynamic computations happen. Since this dimensional transition is

possible, users can easily distinguish the 'interface system' and the real world.

However, this transition does not happen when interacting with ZeroN that can move in a

3D space. The behavior of the users' body adapts to the movement and behavior of the

ZeroN object, and the users find it hard to distinguish the interface system from the rest of

the real world. I assume that this is due to the fact that the users' body and physical output

of computers belong to the same dimensional space and can symmetrically interact with

each other. The users therefore tend to recognize the ZeroN object as a part of reality rather

than merely as a representation of information (even though it also represents information).

From this, I deduce that it will be worth looking deeper into how this feature affects users'

cognitive processes.

The Zero-pong application is a direct example of such phenomena. When the computer

program of the pingpong ball's physical behavior was changed, the user's behavior and

responses were also directly affected: they tried to adapt their bodily reaction. In another

scenario, one could imagine the ZeroN system to be used as a tool for simulating responses

of machinery. The levitated object may be connected to a part of working machinery and

be actuated by computers to apply a certain motions or forces to test the system.

11.3 A Final Challenge

In closing, I propose a challenge to future researchers of tangible user interfaces. If behaviors

and properties of physical objects become programmable by computers, as supported by the

recent movements of human computer interaction, will the benefit of tangible interfaces still



hold? Observations of ZeroN suggest that affordance - one of the most important qualities in

tangible interfaces - can change when physical objects move or behave in unexpected ways.

In such interfaces, providing proper visual or physical feedback may play more important

roles than physical affordances in guiding users through interface systems . Designers of

such interfaces may have to carefully contemplate what they gain or lose by making physical

objects actuated and programming their behaviors.
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