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ABSTRACT

An instrumented four-wheeled robot was constructed to investigate steering-induced tip-up and
rollover of four-wheeled vehicles, and the possibility of stabilizing and driving while balanced
on two wheels. Using an analogy to a cart-pole controller, an energy shaping controller was
developed to drive the vehicle's roll energy to a fixed value and stabilize the vehicle in a
tipped-up position. The controller was implemented on experimental hardware, which included
an ARM7-based FEZ Domino microcontroller and a MicroStrain 3DM-GX2 inertial
measurement unit. Data logged during experimental trials were analyzed in MATLAB to assess
the stability and effectiveness of the controller. Experimental results indicate the controller is
capable of driving the vehicle to the tipped-up balancing position. The addition of a steering
angle sensor and tachometer are suggested to improve the effectiveness of the controller.
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Introduction

When cornering at high speeds in a four-wheeled vehicle, vehicle rollover is a major

concern, particularly in the case of vehicles with a high center of gravity such as SUVs and

trucks. However, stunt car drivers have been able to balance vehicles while they are tipped-up

and drive on two wheels on the same side. The ability to slow rollover and stabilize in the tilted

position has numerous applications in vehicle safety and robot mobility.

The primary goal of this project was to modify a radio-controlled vehicle to autonomously

initiate rollover maneuvers. Once rollover has been initiated the vehicle self-balances and

continues driving on two wheels on the same side, a stunt known as "skiing". Although a self-

balancing car-type robot that drives while "skiing" has been created [1], the complete problem of

tip-up and balancing has not been carried out to the author's knowledge. The ability to

autonomously react to impending rollover and stabilize has applications in both vehicle safety

and augmented mobility for vehicles and robots.

Model

L Cart-Pole Mechanics

A close approximation of the mechanics of a vehicle balancing while "skiing" is the cart-

pole model, illustrated in Figure 1.
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Figure 1: A diagram of a cart-pole system. The cart has mass M, and the pole has
mass m and moment of inertia I. The pole is connected to a cart through a pivot
located a distance I away from the center of mass.

The cart-pole system consists of a cart with mass M connected through a free pivot to a

pendulum with mass m, length 1, and rotational inertia I. A force F is applied to the cart, but the

pivot is not actuated.

The dynamics of the cart-pole system are given by the system of equations

M + m M1 -mOz co ] [0 m16 sin 0 0 _F-M1z COS]0 1 +[L M120n ] [ ] + [-mgl sino] 0= ['
where x is the horizontal position of the cart and 0 is the angle of the pendulum [2].

II. Vehicle in Rollover

In the event that a vehicle enters rollover its dynamics can be approximated using a cart-pole

model so long as one set of wheels remains on the ground. The system is equivalent to a cart-
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pole system with a massless cart, with the horizontal driving force created from steering

dynamics applied at the tire-ground interface, as seen in Figure 2.

L___ ____-

V _

Figure 2: An illustration of the similarity between the cart-pole problem and
vehicle tip-up.

As the tire forces on a vehicle are generated by friction, there is a practical limit on the

available driving force F such that

-pN F pN, (2)

where p is the coefficient of static friction between the tires and the driving surface and N is

the contact force between the tires and the ground.

The net force vector formed by the combination of the friction force and normal force makes

an angle a with the vertical. At the limits of friction, this angle is equivalent to tan'(u), as

illustrated in Figure 3.
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Figure 3: An illustration of the friction cone formed by the normal force and
maximum friction force. If the c.g. of the vehicle is within this friction cone, tip-
up is possible.

The area between the limiting angles is known as the friction cone. The line of action of all

possible combinations of the friction and normal forces lies within the friction cone. If the c.g. of

the vehicle lies outside the friction cone, frictional forces are unable to rotate the vehicle away

from the ground, preventing the vehicle from tipping up and rolling over. However, if the

vehicle's c.g. is moved within the friction cone, tip-up becomes possible again. This may be

accomplished by driving the vehicle on an angled surface or a sudden vertical impulse to one

side of the vehicle, as might happen when a vehicle travels over a bump. Additionally, if the

vehicle has suspension, the center of mass of the vehicle may sway into the friction cone during

travel over uneven ground or due to lateral forces during turns.
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Hardware Design

I. Chassis

As this research intends to simulate the effects of tip-up and subsequent stabilization in a

typical 4-wheeled vehicle, a suitable model had to be chosen. The robot is based on the chassis

of an HPI Racing Wheely King 1/12 scale RC monster truck, seen in Figure 4.

Figure 4: The robot used in the study. The sides have been padded with foam to
cushion the vehicle during rollover.

The vehicle's is an ideal candidate for investigating tip-up, as its relatively high center of

gravity makes tip-up maneuvers easier to perform. Additionally, the vehicle is four-wheel-drive

with front wheel steering, giving it similar control characteristics to full-sized vehicles. This
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particular vehicle was inherited from a previous study on balancing vehicles in the tipped-up

position [1].

II. Chassis Modifications

For the purposes of this project, several modifications were made to the vehicle. First, the

decorative "shell" of the vehicle was removed; this was replaced with an acrylic cover supported

on 4 threaded rods. The cover protects the vehicle's electronics from impacts, dust, and weather

conditions. The edges of the cover were padded to cushion the vehicle against rollover impacts.

The vehicle's radio antenna protrudes through a small hole in the protective cover. The cover is

held in place with wing nuts; these can be easily removed in the event the cover needs to be

removed to service the vehicle electronics.

Additionally, the compliant shock absorbers of the vehicle were replaced with solid rods,

"locking" the suspension, as seen in Figure 5. This modification removed the additional degrees

of freedom created by the suspension system, simplifying dynamic analysis of the vehicle and

the balancing task.

Figure 5: Solid rods (center) used to replace the vehicle's shock absorbers (right).
A U.S. quarter is included for scale.
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Finally, the steering servo has been moved, as seen in Figure 6. This modification had been

previously carried out by the authors of a previous study from which this vehicle was inherited

[1]. The servo was initially mounted high on the vehicle chassis and controlled the steering via a

series of linkages. To avoid excessive compliance in the vehicle's steering system the servo was

attached instead to the front differential and connected to the steering via a much shorter single

steering link. This change has the additional benefit of decoupling the actions of the vehicle's

steering and suspension systems, in the event that a compliant suspension is reintroduced on the

vehicle.

Figure 6: Close-up of the modified steering servo assembly. This image also
shows the solid rods of Figure 5 mounted to the vehicle.
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III. Electronics Mounting

Due to the irregular shape of the vehicle's chassis, which was designed to emulate the

appearance of a frame made of welded steel tubes, flat areas for mounting sensors and

electronics were limited. Therefore, -inch acrylic sheets were mounted to various parts of the

chassis to provide flat surfaces; the electronics were in turn mounted to these acrylic sheets.

Electronics

L Inertial Measurement Unit

The vehicle is equipped with an Inertia-Link* 3DM-GX2* inertial measurement unit (IMU)

manufactured by MicroStrain, Inc [3]. The 3DM-GX2 features a three-axis accelerometer,

gyroscope, and magnetometer, as well as a temperature sensor and an onboard processor that

merges data from these sensors. The sensor is powered by and transmits data via a USB 2.0

connection. The sensor was chosen due to its small size, flexibility, and ability to communicate

over USB.

II. Microcontroller

The robot is controlled by a GHI Electronics FEZ Domino microcontroller [4]. The FEZ

Domino is based around 72 MHz ARM7 processor and incorporates USB host functionality,

enabling it to connect to the 3DM-GX2. Additionally, the FEZ Domino features a Micro SD card

connector, allowing for easy data logging. The data can then be transferred to a computer for

later analysis without the need to connect the robot to a computer.
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III. Radio and Motor Controller

The robot features a commercial hobby radio control system. This system is used to send

throttle and steering commands to the FEZ Domino. The pulse-width modulation (PWM) signals

output by the radio receiver are read using interrupt pins on the FEZ Domino. The throttle signal

is echoed to a M.sonik-4 Electronic Speed Controller (ESC), allowing remote control of the

vehicle's forward speed.

IV. Wiring

The entire vehicle is powered by a single onboard 7.2 battery. The battery is a commercial

six-cell rechargeable NiMH battery intended for use with radio-controlled vehicles. Power is

supplied directly to the vehicle's electronic speed controller and to the FEZ Domino, which in

turn supplies filtered power to the IMU, radio, and steering servomotor. A simplified wiring and

information-flow diagram can be seen in Figure 7.
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Steering Servo 3DM-GX2 (IMU)

R PWM pulses

RE:

IPWMcontrol Battery
signals

IFEZ Domino

7.2V unregulated
Receiver

Motor Controller

Figure 7: Diagram showing power and information flow on the robot.
Unregulated battery power is supplied to both the speed controller and the FEZ
Domino, which then produce regulated 5V power for the other onboard
electronics.

Software

I Software Environment

The robot is programmed in C# using Microsoft's Visual Studio development environment.

The FEZ Domino runs Microsoft's .NET Micro Framework with a library extension created by

GHI Electronics for the FEZ Domino.

I. Program Architecture

The robot's program is based around a master thread and a control thread. The master thread

is responsible for overall program flow control, including the starting and stopping of data
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logging. The control thread reads sensor and command data and outputs control signals to the

steering servo in order to tip-up and control the vehicle. In addition, interrupt signals capture

throttle and steering commands from the radio and handle connection to the IMU over USB.

Algorithm

L Lateral Force Controller

The lateral forces on a vehicle are the result of friction dynamics while steering. In particular,

steering forces are strongly affected by the difference between the steering angle and the

direction of travel of a moving vehicle, an quantity known as the slip angle [5]. As the actual

lateral force as a function of steering angle and vehicle speed was not known, the steering rate

was controlled using a proportional controller of the form

6 = K6(ad - alat), (3)

where 6 is the steering rate, K5 is a gain, ad is the desired lateral force, and ala, is the measured

lateral force. Using this controller, the steering angle 6 will stabilize when ala, = ad. The

maximum steering rate is clamped to values actually realizable with the steering actuator

mounted on the vehicle.

However, the controller is required to track a constantly changing alat. Therefore, the phase

lag that results from using a simple proportional controller was reduced with the addition of a

feedforward term predicted using a no-slip model to approximate the vehicle mechanics. In this

study the vehicle was driving on asphalt, a surface with a relatively high coefficient of friction.

Thus, the radius of the vehicle's turn r is approximated using the formula

r = (4)
sin 6'
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where L is the length of the vehicle's wheelbase and 6 is the steering angle, as seen in the

"bicycle model" diagram in Figure 8.

Figure 8: Diagram of a two-wheeled vehicle in a turn. Using this bicycle model
as an approximation for a four-wheeled vehicle, the turn radius r can be derived
from the steering angle ( and the wheelbase length L.

In this approximation the center of the vehicle is assumed to follow the path of the turn. In

this case, the centripetal, and hence lateral, acceleration of the vehicle is given by

V 2  
V v 2 sin 8

ac= = L= , (5)

where ac is the centripetal acceleration and v is the forward velocity of the vehicle. This forward

velocity was estimated by first mapping the commanded throttle pulse to a velocity, then

gradually increasing an internal simulated velocity towards this commanded velocity. The

mapping between commanded throttle pulses and velocity was determined experimentally.

Using this model, a "naive" desired steering angle was predicted using the equation

6n ; ad, (6)
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with saturation limits to keep 6n within physical limits. This angle was then combined with the

desired steering angle from the proportional controller,

S, = 4 - At, (7)

where S is the steering rate defined in (3) and At is the time step of the controller, equal to the

inverse of the controller frequency. This combination yields a controller with the diagram seen in

Figure 9.

arngle
saturaion4 6

ad5p vehicle

+L +n

dynamics

Figure 9: Diagram of the lateral force controller.

IL Analogy Between Vehicle in Rollover and Cart-Pole

In order to treat vehicle rollover as a cart-pole problem a conversion must be made between

the two. The cart is reduced to a massless contact point between the wheels and the ground, and

the driving force is provided by ground forces generated by steering. The body of the vehicle is

analogous to the pendulum; however, there is a discontinuity in the angle of the pendulum,

owing to a change in mode between balancing on the left wheels and the right wheels, as

illustrated in Figure 10.
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Figure 10: A discontinuity in the equivalent pendulum angle for the vehicle
occurs as the vehicle roll angle passes through zero.

The mapping between vehicle roll angle and effective pendulum is resolved with the

equations

o = t + Winternal - 9 0', V) > 0
(90* + 0 - Tinternai, 1 < 0'

(8)

where 0 is the effective pendulum angle, V is the roll angle, and 'pinteral is the "internal angle" of

the vehicle's center of mass, such that

Pinternal = tan-1 (n), (9)

where ycg and zeg are measured in the vehicle frame as shown in Figure 11.
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Figure 11: Diagram showing location of vehicle c.g. and related measurements
(pinter-na and 1.

These equations create the mapping shown in Figure 12.

6

Figure 12: Mapping between roll angle and equivalent pendulum angle. y/ is
defined as positive counterclockwise from the ground plane and 0 is defined as
positive counterclockwise from vertical.
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III. Energy Shaping Controller

For certain mechanical systems, such as the cart-pole, a constant energy curve produces a

homoclinic orbit that passes through points of unstable equilibrium. Thus, by driving the

system's energy to that constant value, the system will be driven to the unstable equilibrium

point. In the case of a vehicle in rollover, this constant energy curve produces a homoclinic path

rather than an orbit, as the equivalent pendulum angle is discontinuous. Regardless, the energy

shaping method may still be used to drive the vehicle towards a tipped-up position.

Given the mapping between roll angle and effective pendulum angle, the roll energy is

found to be

E = mgl cos O + (I + m1 2)62, (10)
2

where m is the mass of the vehicle, g is the gravitational acceleration, I is the rotational inertia of

the vehicle about its center of mass, and 1 is the effective length of the "pendulum", found to be

l=jycg2 + Zcg 2 . (11)

In this study, I was found to be relatively small compared to ml2 , and was neglected to simplify

analysis.

Using this definition of roll energy, the roll energy error is defined to be

P = E - Edes = E - mgl, (12)

because at tip-up, 0= 0 and 6 = 0, so Eds,, = mgl cos 0= mgl. Taking the derivative of the roll

energy error yields

E = $ = -mgle sin0 + m126i. (13)

The equations of motion for the cart-pole yield

ml cos 0 i = ml26 + ml sin 0. (14)

Combining (13) and (14) yields
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E = mlb0cos. (15)

Using the control law

k = = -K,6 cos 0 E, (16)

where K is a gain, results in

k = -Kimle 2 cos 2 6 5, (17)

a stabilizing controller for E. To stabilize at the unstable equilibrium point of tip-up then requires

-K1 cos OE, |@|1 @transition
Xd K2 n9nerai , 1 1 < @transition' (18)

where K2 > 1 to produce an acceleration sufficient to tip up the vehicle.

In an attempt to slow the process of rollover and improve its controllability, a

countersteering term was added of the form

kcs = -Kcs cos4@. (19)

The roll dependence is used to reduce the effect of the countersteer term as the vehicle nears the

balancing angle. The countersteer and energy shaping terms are then combined to produce a

desired lateral acceleration, which is then fed to the lateral acceleration controller.

Results

L Experimental Results

The control system outlined in the section above was implemented on the vehicle hardware.

During these experiments, the throttle command to the vehicle was controlled by the operator via

the radio transmitter. While the control system was able to tip the vehicle onto two wheels, it was

unable to support the vehicle there for more than 1 second. Figure 13 shows the roll angle during

an unsuccessful run.
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Figure 13: Vehicle steering and roll angles during a tip-up attempt. The vehicle
rolls to one side and stabilizes briefly about the balancing angle before rolling
back down on to four wheels.

Initially, the vehicle is given a desired acceleration command sufficient to initiate tip-over.

As a result, the vehicle begins driving in a tight clockwise circle. The throttle command is then

gradually increased by the operator until the vehicle began to tip up. At t=-6s, the vehicle's lateral

acceleration becomes sufficiently large and it begins to tip up. The roll angle rises smoothly to

the balance angle of 47*, and the vehicle pauses there momentarily. However, the vehicle then

begins to roll further, prompting a countersteer that brings the vehicle back down on four wheels.

The ensuing bounce of the vehicle off the ground causes it to roll over onto its side. The

vehicle's roll energy during this maneuver can be seen in Figure 14:
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Figure 14: Vehicle roll energy during the trial shown in Figure 13. The dashed
line represents the equilibrium energy value when the vehicle is balanced.

Initially, the energy fluctuates as the vehicle drives in a tight circle. Then, as the vehicle

begins to tip up the energy rises rapidly until it is stabilized at the equilibrium energy value by

the controller. The controller maintains this value for about a second before the vehicle begins to

roll further just before t=8s. The controller then over-compensates, causing the energy level to

overshoot the desired value before dropping sharply as the vehicle returns to four wheels.

A plot of roll rate against roll angle reveals additional information, as shown in Figure 15.
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Figure 15: Roll angle and roll rate during the tip-up attempt shown in Figure 13.
For clarity, this figure only spans the time from t=6 to t=8.

The vehicle begins in at the right hand side of the figure. As tip-up begins, the roll and roll

rate begin to increase. When the roll angle reaches approximately -30*, the roll rate levels off,

then drops, stabilizing the vehicle at the equilibrium roll angle of -47*. When control diverges,

the roll angle again increases until the vehicle rolls over entirely.

While testing the vehicle it was noted that the controller's behavior seemed to be influenced

by the state of the battery. Switching to a freshly charged battery after the run shown in Figures

13 and 14 reduced the controller's effectiveness, as seen in Figure 16.
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Figure 16: Vehicle steering and roll angles during another tip-up attempt. The
vehicle tips up briefly before rolling back down on to four wheels.

In this trial, the vehicle once again begins to tip up at t=1.5s. The roll angle increases

smoothly up to and past the stabilizing roll angle of 470, but a strong countersteer forces the

vehicle back down on to four wheels. The vehicle roll energy during this trial can be seen in

Figure 17.
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Figure 17: Vehicle roll energy during the trial shown in Figure 16. The dashed
line represents the equilibrium energy value when the vehicle is balanced.

In this case, the controller does not stabilize at the desired energy value, but instead

overshoots, oscillates, and then drops back down to baseline levels.

Figure 18 shows the roll rate plotted against roll angle for this trial.
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Figure 18: Roll angle and roll rate during the tip-up attempt shown in Figure 16.

In this trial, the roll angle and roll rate once again increase in magnitude smoothly as the

vehicle begins to tip up. However, unlike in Figure 15, the roll rate does not level off, but instead

only begins decreasing when the roll angle nears -40* degrees. As a result, the vehicle fails to

stabilize at the equilibrium angle and returns to 4 wheels.

II Discussion

In the example shown in Figures 13 and 14, energy and roll angle stabilization were

achieved for a period of about 1 second before instabilities caused the vehicle to fall back on to

four wheels. As the energy shaping controller is designed to drive the vehicle's roll energy to a

fixed value, but not to stabilize about the equilibrium point, it was expected that the vehicle

would not be able to remain balanced in the tipped-up position.

Justin Lan 5/4/2011



Once possible explanation for the controller performance is the presence of outside

disturbances. Owing to the nature of the controller, the vehicle would drive in a circle until tip-up

began, at which point it would drive in an approximately straight line as it attempted to drive the

roll energy to the desired value. Due to this algorithm, the vehicle had to be tested outdoors in an

open area. Attempts to test indoors failed as the floor surface did not supply sufficient friction to

cause tip-up. Although the driving surface outdoors was relatively flat, fluctuations in the surface

roughness may have transmitted disturbances to the vehicle. Additionally, the vehicle used tires

with a relatively large tread pattern, which may have resulted in periodic disturbances to the

vehicle proportional to the vehicle's speed.

Another explanation is that the controller was insufficiently robust, owing in part to the

limited number of sensors aboard the vehicle. Inspection of the Figures 13 and 16 reveals large

steering angles prior to the divergence of the vehicle from the desired roll angle. Possibly, the

gains for the countersteer term or steering controller are too large, resulting in the rapid steering

that causes the vehicle to roll back down on to four wheels. However, experiments with lower

values for these gains resulted in the vehicle rolling over entirely. In particular, the

countersteering term in (19) is necessary to slow the tip-up process so that the controller may

react before rollover. The roll-rate/roll-angle plots in Figures 15 and 18 in particular suggest that

the controller may need to react sooner in order to reduce the roll rate to allow stabilization at the

equilibrium angle.

The lack of sensors aboard the robot may also contribute to the instability of the controller.

From the perspective of the microcontroller, the RC hobby servo used for the steering actuator is

an open-loop controller, as a steering pulse is commanded with no indication of the actual

steering angle. Currently, the microcontroller cannot sense if the commanded steering angle is
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being accurately reproduced by the steering actuator. The addition of a potentiometer to sense

the actual steering angle would allow for improved estimation of the vehicle's behavior.

Another place in which sensing could be improved is the estimation of the vehicle's forward

velocity, as evidenced by the change in behavior of the controller when the vehicle's battery was

changed. The vehicle's forward velocity is currently estimated based on the throttle pulse sent to

the vehicle's motor controller. However, the correlation used was derived empirically from a

limited number of trials, and did not take into account changing battery voltages. In particular,

although the vehicle's motor controller is labeled as an "Electronic Speed Controller", the device

actually operates by outputting a square wave with a duty cycle dependent on the command

pulse. As a result, the motor controller produces an output voltage that is proportional to the

supplied battery voltage and does not actually control speed in a closed-loop manner. As the

magnitude of lateral steering forces generated depends on the magnitude of the vehicle's forward

velocity, an inconstant forward velocity can cause the control algorithm to fail. One possible

remedy is the addition of a tachometer to measure the rotational speed of the wheels; due to the

vehicle's construction, mounting a Hall-effect or optical tachometer to the vehicle's longitudinal

driveshaft may be easiest. This simple change would allow for a significantly more accurate

measurement of the vehicle's forward velocity, improving the effectiveness of the controller.

Additionally, the current motor controller and steering may be replaced with one that does not

interface with the FEZ Domino via the RC hobby PWM standard, allowing for more responsive

control.
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Conclusions

An instrumented 4-wheeled robot was built using the chassis of a 1/12-scale radio control

vehicle. The robot included a 3DM-GX2 inertial measurement unit and a FEZ Domino

microcontroller, which read PWM signals sent from a radio transmitter, logged sensor data, and

implemented control laws by outputting commands to the vehicle's motor and steering actuator.

A steering control law and energy shaping controller for tip-up stabilization were developed and

implemented on the experimental hardware. Initial experimental results demonstrate that the

controller is able to drive the roll energy and roll angle to stabilizing values and maintain them

for up to one second. Analysis of data collected during tip-up attempts suggests that instability in

the controller may be caused by a need for additional sensing aboard the vehicle. Further work

could include the addition of steering angle and forward velocity sensors, as well as an extension

of the controller algorithm to allow balancing once the vehicle has stabilized in the tipped-up

position.
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Appendix A: Source code
What follows below is the C# source code for the program used to implement the tip-up and
stabilization routine on the vehicle.

using System;
using System.IO; // allows directories
using System.Threading;
using System.Text;

using Microsoft.SPOT;
using Microsoft.SPOT.IO;
using Microsoft.SPOT.Hardware;

using GHIElectronics.NETMF.FEZ;
using GHIElectronics.NETMF.Hardware;
using GHIElectronics.NETMF.IO;
using GHIElectronics.NETMF.System;
using GHIElectronics.NETMF.USBHost;

namespace USBTest

class Program

static USBH SerialUSB serialUSB;
static Thread readUSBThread;

static PersistentStorage sdcard;
static bool devConnected; // device connected?
static bool writing; // not currently recording data
static bool doneLogging; // finished log?
static DateTime lastpress;

static OutputPort LED;

// drive control variables
// steering: DilO
// Throttle: Di9

// steering in (ch2): Dil
// throttle in (chl): DiO
static PWM servo;
static PWM throttle;
static uint servstate;
static uint throtstate;
static DateTime servpulsup;
static DateTime throtpulsup;
static uint servopulse = 1482;
static uint throttlepulse = 1500;
static uint servoread; // read-in servo pulse from receiver
static uint throttleread; // read-in throttle pulse from receiver
static uint twentyms = 20 * 1000 * 1000;

static float pi = (float) System.Math.PI;

public static void Main()
{

// Subscribe to USBH events.
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USBHostController.DeviceConnectedEvent += DeviceConnectedEvent;
USBHostController.DeviceDisconnectedEvent += DeviceDisconnectedEvent;
devConnected = false;

// set up LED
LED = new OutputPort((Cpu.Pin)FEZPin.Digital.LED, false);

// set up LDR button
InputPort LDR = new InputPort((Cpu.Pin)FEZPin.Digital.LDR, true,

Port.ResistorMode.PullUp);

// filter adjust
// need this or else the filter will filter out all the servo pulses!
Microsoft.SPOT.Hardware.Cpu.GlitchFilterTime = new

TimeSpan(TimeSpan.TicksPerMillisecond);

// set up servo and throttle
servo = new PWM((PWM.Pin)FEZPin.PWM.DilO); // steering servo
throttle = new PWM((PWM.Pin)FEZPin.PWM.Di9); // throttle

// set up reading for steering
InterruptPort servin = new InterruptPort((Cpu.Pin)FEZPin.Interrupt.Dil,

true, Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeBoth);

servin.OnInterrupt += new NativeEventHandler(servo pulseget);

// set up reading for throttle
InterruptPort throtin = new InterruptPort((Cpu.Pin)FEZPin.Interrupt.DiO,

true, Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeBoth);

throtin.OnInterrupt += new NativeEventHandler(throttlepulseget);

servopulse = 1500;
throttlepulse = 1500;

// Sleep forever
//Thread.Sleep(Timeout.Infinite);

writing = false;
doneLogging = false;

while (!devConnected)

Debug.Print ("waiting for device...");
Thread.Sleep(1000);

}

// neutral pulse
servo.SetPulse(twentyms, 1500 * 1000);
throttle.SetPulse(twentyms, 1500 * 1000);

// wait for button press
while (LDR.Read() == true)

{
Thread.Sleep(20);

}
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LED.Write (true);
Thread.Sleep(1000);
writing = true;
Debug.Print("beginning write!");

// writing
while (LDR.Read() true)
{

//Debug.Print("pretending to write data");
Thread.Sleep(20);

}
writing = false;
doneLogging = true;

// neutral pulse
servo.SetPulse(twentyms, 1500 * 1000);
throttle.SetPulse(twentyms, 1500 * 1000);

Debug.Print ("done!");

Thread.Sleep(3000);
LED.Write(false);
readUSBThread.Suspend();

static void DeviceConnectedEvent(USBH Device device)

Debug.Print ("Device connected...");
Debug.Print("ID: " + device.ID + ", Interface: " + device.INTERFACEINDEX

+1 ", Type: " + device.TYPE);

USBH Device siLabs = new USBHDevice(device.ID, device.INTERFACEINDEX,
USBH DeviceType.Serial SiLabs,
device.VENDOR ID, device.PRODUCTID,
device.PORT NUMBER);

serialUSB = new USBHSerialUSB(siLabs, 115200, System.IO.Ports.Parity.None,
8, System.IO.Ports.StopBits.One);

serialUSB.Openo;
readUSBThread = new Thread(SerialUSBReadThread);
readUSBThread.Start();

devConnected = true;

static void DeviceDisconnectedEvent(USBHDevice device)

Debug.Print ("Device disconnected...");
Debug.Print("ID: " + device.ID + ", Interface: " +
device.INTERFACEINDEX + ", Type: " + device.TYPE);

//readUSBThread.Suspend();
devConnected = false;

static void SerialUSBReadThread()
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byte[] accbuf = new byte[31]; // buffer for reading accelerations
byte[] eulerbuf = new byte[19]; // buffer for reading euler angles
byte[] stabbuf = new byte[43]; // buffer for reading stabilized acc.
byte[] cmdgetAcc = { OxC2 }; // command to send to get accelerations
byte[] cmdgetEuler = { OxCE }; // command to send to get euler angles
byte[] cmdgetStab = { OxD2 }; // command to get gravity vector
byte[] timebuf = new byte[4]; // buffer used to convert time for logging
byte[] cmdbuf = new byte[4]; // buffer used to convert steering and

// throttle commands for logging
byte[] convbuf = { 0, 0, 0, 0 }; // buffer for conversions

float accelX=O, accelY=O, accelZ=O;
float roll=O, pitch=0, yaw=O;
float rolloffset = 0, pitchoffset = 0, yaw-offset = 0;

float rollrate=0, pitchrate=0, yawrate=0;
float stabAccX=0, stabAccY=O, stabAccZ=0;

float compAccX=O, compAccY=O, compAccZ=O; // subtracted out gravity

// control law variables
float theta true; // true tilt angle of the vehicle's COM
float theta-err;

float PHIINT = 43*pi/180.0f; // "angle" of internal pendulum of the
//vehicle's COM

float L INT = 0.19825f; // internal "radius" of vehicle's COM
float L WB = 0.24f; // length of wheelbase between axles
float ROLLMARGIN = 5*pi/180.0f; // angle of tilt before tip-up routine

// kicks in
float ARRMARGIN = 15 * pi / 180.0f; // angle of tilt when countersteer

// kicks in

float energy = 0; // energy associated with the roll axis
float energyerr; // difference between actual and desired energy
float energy prev; // roll energy on the previous iteration
float edot_pred = 0; // predicted rate of change of energy
float MGL = 3.lf * 9.8f * L_INT; // desired energy = m * g * 1
float ML2 = 3.lf * LINT * LINT; // ML^2 = m * 1 * 1

float smoothedLat = 0; // smoothed lateral force
float prevlat = 0; // previous value of lateral force, used to calculate

// rate of change
float smoothRatio = 0.5f; // smoothing average for lateral force

// calculation
float ades_prev = 0;
float ades = 0; // desired lateral acceleration
float ades dot = 0; // change in desired lateral acceleration
float smoothedyawrate = 0; // smoothed yaw rate
float smoothed rollrate = 0;

float vest = 0; // estimated forward velocity
float vestprev = 0; // previous estimated forward velocity

float delta = 0; // steering angle in radians
float DELTA MAX = 18 * pi/180; // maximum steering angle
float DELTADOTMAX = 5 * pi / 180; // maximum rate of change of delta

// (estimated from servo datasheet)

float deltadotdes=0; // desired rate of change of steering angle
float delta naive = 0; // desired steering angle based on no-slip model
float Kd = 2f;// gain for anti-rollover

Justin Lan 5/4/2011



float simAc = 0; // simulated lateral force

float smoothedAc = 0; // smoothed true centripital acceleration
float smoothedAcprev = 0; // previous smoothed Ac

float mergeAcprev; // previous mergeAc;
float mergeAc = 0; // better estimate for lateral force, by merging simAc

// with smoothedAc
float mergeAcdot = 0; // change in mergeAc

float K1 = 5; // energy gain for tip-up

float atip = ll.5f; // acceleration to tip-up = 1.l*9.8/tan(phi)

float ctrl mode = 0; // which mode is the control in

bool logging;
// create SD card to write to
if (PersistentStorage.DetectSDCardo)
{

sdcard = new PersistentStorage("SD");
sdcard.MountFileSystem();
Debug.Print("Mounted SD card");
logging = true;

}
else
{

Debug.Print("ERROR: No SD card detected. Skipping log.");
logging = false;

}

// create log file
FileStream fs;
if (logging)
{

string rootdir = VolumeInfo.GetVolumes()[0].RootDirectory;
string[] files = Directory.GetFiles(rootdir);

// assume there are only IMU log files
string logname = @"\SD\IMU log" + (files.Length+l).ToString() +

".dat";

Debug.Print("New file shall be: " + logname);
fs = new FileStream(logname, FileMode.Create);

Debug.Print("created file");

else

//logfile = null;
fs = null; // avoids complaints

Thread.Sleep(2000);

// set euler angle offsets
if (getData(cmdgetEuler, eulerbuf, 19) == 0)
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// successfully read euler angles

// pitch
convbuf[01 = eulerbuf[4];
convbuf[1] = eulerbuf[3];
convbuf[2] = eulerbuf[2];
convbuf[3] = eulerbuf[1];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

pitchoffset, convbuf, 0);

// roll
convbuf[0] = eulerbuf[8];
convbuf[l1] = eulerbuf[71;
convbuf[2] = eulerbuf[6];
convbuf[3] = eulerbuf[5];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out rolloffset,

convbuf, 0);

// yaw
convbuf[0] = eulerbuf[12];
convbuf[1] = eulerbuf[11];
convbuf[2] = eulerbuf[10];
convbuf[3] = eulerbuf[9];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out yawoffset,

convbuf, 0);

DateTime logstart = DateTime.Now; // begin timing

TimeSpan diff;
float currsecs;

//byte[] testingbuf = new byte[4*9+10];

while (true)

//Thread.Sleep(10); // sampling rate = 1000/sleep

if (writing)

if (getData(cmdgetEuler, eulerbuf, 19) == 0)

// successfully read euler angles
// pitch
convbuf[0] = eulerbuf[4];
convbuf[l] = eulerbuf[3];
convbuf[2] = eulerbuf[2];
convbuf[3] = eulerbuf[1];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

pitch, convbuf, 0);
pitch = pitch - pitch_offset;

// roll
convbuf[0] = eulerbuf[8];
convbuf[l] = eulerbuf[7];
convbuf[2] = eulerbuf[6];
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convbuf[3] = eulerbuf[5];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

roll, convbuf, 0);
roll = roll - roll-offset;

// yaw
convbuf[0] = eulerbuf[12];
convbuf[1] = eulerbuf[11];
convbuf[2] = eulerbuf[10];
convbuf[3] = eulerbuf[9];
GHIElectronics.NETMF. System.Util.ExtractValueFromArray(out yaw,

convbuf, 0);
yaw = yaw - yawoffset;

}

if (getData(cmd_getAcc, accbuf, 31) == 0)

// successfully read accelerations
// accelX
convbuf[0] = accbuf[4];
convbuf[1] = accbuf[3];
convbuf[2] = accbuf[2];
convbuf[3] = accbuf[1];
GHIElectronics. NETMF.System.Util.ExtractValueFromArray(out

accelX, convbuf, 0);

// accelY
convbuf[0] = accbuf[8];
convbuf[1] = accbuf[7];
convbuf[2] = accbuf[6];
convbuf[3] = accbuf[5];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

accelY, convbuf, 0);

// accelZ
convbuf[0] = accbuf[12];
convbuf[1] = accbuf[ll];
convbuf[2] = accbuf [10];
convbuf[3] = accbuf[9];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

accelZ, convbuf, 0);

// pitchrate
convbuf [0] = accbuf [16];
convbuf[1] = accbuf[15];
convbuf[2] = accbuf[14];
convbuf[3] = accbuf[13];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

pitchrate, convbuf, 0);

// rollrate
convbuf[0] = accbuf [20];
convbuf[1] = accbuf [19];
convbuf[2] = accbuf[18];
convbuf[3] = accbuf[17];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

rollrate, convbuf, 0);

// yawrate
convbuf[0] = accbuf[24];
convbuf[1] = accbuf[23);
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convbuf[2] = accbuf[22];
convbuf[3] = accbuf[21];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

yawrate, convbuf, 0);
yawrate = -yawrate; // sign needs to be flipped

}

if (getData(cmd-getStab, stabbuf, 43) == 0)

// successfully got stabilized accelerations?
// stabAccX
convbuf[0] = stabbuf[4];
convbuf[1] = stabbuf[31;
convbuf[2] = stabbuf[2];
convbuf[3] = stabbuf[1];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

stabAccX, convbuf, 0);

// stabAccY
convbuf[O] = stabbuf[8];
convbuf[1] = stabbuf[7);
convbuf[2] = stabbuf[6];
convbuf[3] = stabbuf[5];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

stabAccY, convbuf, 0);

// stabAccZ
convbuf[0] = stabbuf[12];
convbuf[1] = stabbuf[ll];
convbuf[2] = stabbuf[10];
convbuf[3] = stabbuf[9];
GHIElectronics.NETMF.System.Util.ExtractValueFromArray(out

stabAccZ, convbuf, 0);

diff = DateTime.Now - logstart;
currsecs = ((float)diff.Ticks) / TimeSpan.TicksPerSecond;

compAccX = accelX - stabAccX;
compAccY = accelY - stabAccY;
compAccZ = accelZ - stabAccZ;

// ========= CONTROL LAW GOES HERE

prevlat = smoothedLat; // update
smoothedLat = accelX * smoothRatio + smoothedLat *

(1 - smoothRatio); // calculate smoothed lateral force

smoothedAcprev = smoothedAc; // update
smoothedAc = 0.8f * smoothedAc + 0.2f * 9.8f *

(compAccX * cos(roll) - compAccZ * sin(roll));
// calculate smoothed centripital acceleration

// smooth yaw rate
smoothedyawrate = 0.8f * smoothedyawrate + 0.2f * yawrate;

// smooth roll rate
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smoothed rollrate = 0.6f * smoothed rollrate + 0.4f * rollrate;

// delta from servo pulses
delta = servopulse* (DELTAMAX / 140f) - 1445*(DELTAMAX / 140f);

throttlepulse = throttleread; // echo throttle input
// scale throttle according to tilt
throttlepulse = (uint) (1540 + 0.5f*(l+cos(roll))*

(throttleread - 1540f));

// calculate theta true ( true roll angle)
if (roll > 0) thetatrue = roll + PHIINT;
else thetatrue = pi + roll - PHIINT;

// roll error
thetaerr = thetatrue - pi / 2;

// estimate forward velocity
v_estprev = vest; // update
v est = v est + 0.08f * (1.5f * ((float)throttlepulse - 1540f) /

170f - vest); // = prevv + 0.1 * (est. maxv - prevv)

// get an estimate of the lateral force
simAc = v est * v est * sin(delta) / 0.24f; //v^2*sin(delta)/l
mergeAcprev = mergeAc; // update
mergeAc = 0.3f * simAc + 0.7f * smoothedAc; // merge with

// measurement
mergeAc_dot = mergeAc - mergeAcprev;

// calculate roll energy
energyprev = energy; // update
energy = MGL * sin(thetatrue) + 0.5f * ML2 * smoothedrollrate *

smoothed rollrate; // with smoothed rollrate
energyerr = energy - MGL;

// predict the rate of change of energy
e_dot pred = energy - energy prev; // discretized

ades_prev = ades;
//ades = -4; // constant
//ades = -6 * sin(2*pi*currsecs); // sinusoidal 1/2 second period
//ades = -2 * (int) (currsecs%2.0); // stepwise 2 second period

// energy controller here
if (roll > ROLLMARGIN || roll < -ROLLMARGIN) // tipping up

// calculate desired energy using smoothed roll rate
ades = -K1 * smoothedrollrate * sin(thetatrue) * energyerr;

// anti-rollrate term
if (roll > ARRMARGIN || roll < -ARRMARGIN)

ades += -Kd*cos(roll) * smoothed rollrate;

}

ctrl mode = 1;

else // not yet tipped up; circling

ades = -atip; // circle to the right
ctrl mode = 0;
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adesdot = ades - ades_prev;

// steering controller
if (v est != 0)

delta dot des = 0.lf * (ades - mergeAc);

// delta naive prediction
delta naive = L WB * ades / (v est * v est);

deltanaive = clamp(delta naive, -DELTAMAX, DELTAMAX);

// average deltadotdes and naive delta
delta dot des = (delta dot des + delta-naive - delta) / 2.0f;

// clamp steering rate
delta dot des = clamp(deltadotdes, -DELTADOTMAX,

DELTA DOT MAX);

delta += delta dot des;
}
else

// set to zero
delta = 0;

// clamp steering angle
delta = clamp(delta, -DELTAMAX,

// convert back to pulses
servopulse = (uint) (1445 + 140 *

DELTAMAX);

delta / DELTAMAX);

// clamp throttle
if (throttlepulse > 1960) throttlepulse = 1960; // clamp
else if (throttlepulse < 1000) throttlepulse = 1000; // clamp

// clamp steering output
if (servopulse > 1665) servopulse = 1665;
else if (servopulse < 1225) servopulse = 1225;

// echo control pulses
servo.SetPulse(twentyms, servopulse * 1000);
throttle.SetPulse(twentyms, throttlepulse * 1000);

// ===========-END CONTROL LAW

if (logging)
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GHIElectronics.NETMF.System.Util.InsertValueIntoArray(currsecs,
convbuf, 0);

// flip endian for time
timebuf[0] = convbuf[3];
timebuf[1] = convbuf[2];
timebuf[2] = convbuf[l];
timebuf[3] = convbuf[0];
fs.Write(timebuf, 0, 4); // write the time

// convert steering command

GHIElectronics.NETMF.System.Util.InsertValueIntoArray(servopulse, convbuf, 0);
// flip endian
cmdbuf[0] = convbuf[3];
cmdbuf[l] = convbuf[2];
cmdbuf[2] = convbuf[1];
cmdbuf[3] = convbuf[0];
fs.Write(cmdbuf, 0, 4); // write the steering command

// convert throttle command

GHIElectronics.NETMF.System.Util.InsertValueIntoArray(throttlepulse, convbuf, 0);
// flip endian
cmdbuf[0] = convbuf[3];
cmdbuf[1] = convbuf[2];
cmdbuf[2] = convbuf[1];
cmdbuf[3] = convbuf[0];
fs.Write(cmdbuf, 0, 4); // write the throttle command

fs.Write(eulerbuf, 1, 12); // write euler angles
fs.Write(accbuf, 1, 24); // write accelerations and angles
fs.Write(stabbuf, 1, 12); // write stabilized accelerations
fs.Flusho;

// write ades
GHIElectronics.NETMF.System.Util.InsertValueIntoArray(ades,

convbuf, 0);
// flip endian
cmdbuf[0] = convbuf[3];
cmdbuf[l] = convbuf[2];
cmdbuf[2] = convbuf[1];
cmdbuf[3} = convbuf[0];
fs.Write(cmdbuf, 0, 4); // write the ades command

// write ctrl-mode

GHIElectronics.NETMF.System.Util.InsertValueIntoArray(ctrl mode, convbuf, 0);
// flip endian
cmdbuf[0] = convbuf[3];
cmdbuf[1] = convbuf[2];
cmdbuf[2] = convbuf[1];
cmdbuf[3] = convbuf[0];
fs.Write(cmdbuf, 0, 4); // write the ades command

}
else
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else
// not writing

// Debug.Print("waiting for button");
if (doneLogging)

Debug.Print ("done logging!");
if (logging)

sdcard. Dispose();
//logfile.Closeo;

fs.Close(;

break;
}

}

} end of while loop

}

// writes cmd to USB, then reads bytesToRead bytes into databuf. Returns -1 on
write failure, -2 on read failure

static int getData(byte[] cmd, byte[] readbuf, int bytesToRead)

int retval = 0;
try
{

retval = serialUSB.Write(cmd, 0, cmd.Length);

catch (System.Exception) // occurs after disconnect
{

retval = 0;

I

if (retval ==cmd.Length) //successful write

retval = serialUSB.Read(readbuf, 0, bytesToRead);
if (retval == bytesToRead) // successful read

return 0;
}
else // read failure
{

return -2;
}

}
else // write failure

return -1;

}
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// shorthand for sin
static float sin(float f)

return ((float)GHIElectronics.NETMF.System.MathEx.Sin(f));
}

// shorthand for cosine
static float cos(float f)

return ((float)GHIElectronics.NETMF.System.MathEx.Cos(f));
}

// absolute value function
static double abs(double d)

return (d > 0) ? d : -d;
}

// clamping
static float clamp(float f, float min, float max)
{

if (f < min) return min;
else if (f > max) return max;
else return f;

}

// read servo pulse
static void servopulseget(uint port, uint state, DateTime time)

if (state == 1 && servstate == 0) // rising edge

{
servpulsup = time; // start timing

}
else if (state == 0 && servstate == 1) // falling edge

{
long temp = ((time.Ticks - servpulsup.Ticks) * 1000 /

TimeSpan.TicksPerMillisecond); // end timing, measure pulsewidth
// filter 1000 < pulsewidth < 2000
if (temp > 1000 && temp < 2000)
{

//Debug.Print("servo pulse of " + servopulse + " us");
servoread = (uint)temp;

}
}
servstate = state;

}

// read throttle pulse
static void throttlepulseget(uint port, uint state, DateTime time)

if (state == 1 && throtstate == 0) // rising edge

I
throtpulsup = time; // start timing

}
else if (state == 0 && throtstate == 1) // falling edge

long temp = ((time.Ticks - throtpulsup.Ticks) * 1000 /
TimeSpan.TicksPerMillisecond); // end timing, measure pulsewidth

// filter 1000 < pulsewidth < 2000
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if (temp > 1000 && temp < 2000)

//Debug.Print("throttle pulse of " + throttlepulse + " us");
throttleread = (uint)temp;

}

throtstate = state;

}

// SD insert/remove
static void RemovableMediaInsert(object sender, MediaEventArgs e)

Debug.Print("Storage \"" + e.Volume.RootDirectory + "\" is inserted.");
Debug.Print("Getting files and folders:");

sdcard = new PersistentStorage("SD");
sdcard.MountFileSystem();

if (VolumeInfo.GetVolumes()[0].IsFormatted)

string rootDirectory = VolumeInfo.GetVolumes()[0].RootDirectory;
Debug.Print("Root directory: " + rootDirectory);

string[] files = Directory.GetFiles(rootDirectory);
string[] folders = Directory.GetDirectories(rootDirectory);

Debug.Print("Files available on " + rootDirectory + ":");

for (int i = 0; i < files.Length; i++)
Debug.Print(files[i]);

Debug.Print("Folders available on " + rootDirectory + ":");
for (int i = 0; i < folders.Length; i++)

Debug.Print(folders[i]);

else

Debug.Print("Storage is not formatted. Format on PC with FAT32/FAT16
first.");

sdcard.Dispose();
}

static void RemovableMediaEject(object sender, MediaEventArgs e)
{

Debug.Print("Storage \"" + e.Volume.RootDirectory + "\" is ejected.");
}
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