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Evaluating one-shot tournament predictions
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Abstract. We introduce the Tournament Rank Probability Score (TRPS) as a measure to evaluate and compare pre-tournament
predictions, where predictions of the full tournament results are required to be available before the tournament begins. The
TRPS handles partial ranking of teams, gives credit to predictions that are only slightly wrong, and can be modified with
weights to stress the importance of particular features of the tournament prediction. Thus, the Tournament Rank Prediction
Score is more flexible than the commonly preferred log loss score for such tasks. In addition, we show how predictions
from historic tournaments can be optimally combined into ensemble predictions in order to maximize the TRPS for a new
tournament.
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1. Introduction

Predicting the winner of a sports tournament has
become an ever increasing challenge for researchers,
sports fans and the growing business of bookmak-
ers. Before the start of major tournaments such as the
FIFA World Cup 2018, Rugby World Cup, or Wim-
bledon 2019, the world press is debating, comparing
and summarising the various tournament predictions
and the quality of these predictions is evaluated and
scrutinised after the tournaments end.

Several recent research papers have been published
that predict the outcome of full tournaments in foot-
ball, basketball, and tennis involving techniques from
statistics (Groll et al., 2018, Neudorfer and Rosset,
2018; Gu and Saaty, 2019), machine learning (Huang
and Chen, 2011) and operational research (Dyte and
Clarke, 2000), respectively. The overall quality of
these full tournament predictions is usually evaluated
on an overly simplistic basis: how well was the actual
tournament winner ranked, or how well did the high-
est predicted teams perform in the end? Whilst natural
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at first glance, such comparisons are very limited: if,
for example, a prediction stated that Germany was
the most likely country to win the 2018 World Cup
with a probability of 13.5% then this will be seen
as a bad prediction given the fact that Germany left
the tournament in the first round. However, the same
prediction also reflects that Germany was predicted
not to win the tournament with probability 86.5%
which puts a lot of confidence on the actual outcome
of the tournament. Focussing solely on the predic-
tion of the winner of the tournament is too restrictive
a viewpoint for evaluation and comparison of full
tournament predictions.

There exist good-practice ways to compare tourna-
ment predictions on the basis of individual matches,
allowing for prediction updates after every played
game/round of the tournament. For example, many
websites launched online competitions for the FIFA
World Cup 20181 where participants could enter the
chances of winning, drawing and losing for every
single match. Based on a scoring rule, participants
earned points for their educated guesses after every
match. Similarly, several research papers compare
different prediction methods on a match basis by

1E.g., fifaexperts.com
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using the log-loss or the rank probability score (RPS)
as loss functions (Constantinou and Fenton 2012;
Baboota and Kaur, 2018; Hubácek, Šourek, and
Železny, 2019). However, nice and useful as they are,
these match-based approaches are not adequate for
the following reasons:

� By their very nature, match-based approaches
are tailored to compare the prediction abilities
for single matches, but not the overall tour-
nament outcome prediction from before the
tournament, which is what many people and
mostly the press are interested in.

� Since the match-by-match based approaches
allow models to be updated as the tournament
progresses, they can adapt and proceed with
an unexpected winner for the remainder of the
tournament at a small loss. For example, the
initial (but wrong) high confidence in Germany
winning the World Cup in 2018 was diluted as
the match-based methods adapt to actual results
as the tournament progresses.

� They favour those predictions who can make
updates during a tournament (or where the peo-
ple behind the methods take time to do it) over
those where this is harder. By contrast, we seek
an approach that puts a strong penalty on even
a single very wrong guess, depending on the
predicted stage of the unexpected loser.

� For tournaments such as the Tour de France
in cycling or Track and Field competitions in
Olympic Games, there are no single matches
involved, hence these approaches cannot com-
pare predictions of such competitions.

While match-based approaches often play a central
part in producing tournament predictions they do not
summarise and make it possible to compare the final
overall standing of all tournament participants and the
underlying predictions by themselves. To our knowl-
edge, there does not exist a scientifically sound way
to compare predictions made before the start of a big
tournament to its final outcome.

In this paper, we intend to fill this gap. More pre-
cisely, we introduce the Tournament Rank Probability
Score (TRPS) as a tournament prediction perfor-
mance measure as a way to evaluate the quality of
each pre-tournament prediction by comparison to the
observed final ranking, and the best prediction is
the one that most closely resembles the outcome of
the full tournament. To avoid any potential misun-
derstandings with comparison of prediction methods
based on single matches, we stress again that the word

tournament predictions stands here for the prediction
of the outcome of the entire tournament before the
tournament starts. Thus, the proposed Tournament
Rank Probability Score acts as a complement and
not as a competitor to the match-based approaches
as they serve different purposes. An interesting con-
sequence of the novel TRPS is the second main goal
of this paper, namely an ensemble prediction strategy
where, based on previous tournaments, we optimally
combine tournament predictions based on different
analytical strategies by assigning weights to each
prediction in such a way that the TRPS becomes
maximal.

The paper is organized as follows. In Section 2 we
set up the notation, present the TRPS and discuss why
it is a natural choice for evaluating tournament pre-
dictions. Section 3 shows extensive simulations that
illustrate the behaviour of the TRPS and how it is
influenced by different tournament systems. In Sec-
tion 4, we outline and discuss how the TRPS can be
used to construct ensemble predictions that improve
the overall predictions. In Section 5 we apply the
proposed score approach to evaluate and compare dif-
ferent predictions from the 2018 FIFA World Cup and
combine earlier predictions to create a simple ensem-
ble prediction model. The proposed tournament rank
probability score and the data used for the example
have been implemented as an R package socceR
which can be found at CRAN.

2. Evaluating tournament predictions

2.1. The Tournament Rank Probability Score

Let X ∈ R
R×T represent a tournament prediction

where T teams (or players) are able to attain R ≤ T

possible ranks. The elements of the matrix X contain
the prediction probabilities that a team (the columns
in the matrix) will obtain a given rank. Each ele-
ment in X is a conditional probability and is therefore
restricted to [0, 1], and by construction each of the
columns sum to 1, i.e.,

∑R
r=1 Xrt = 1 for all t ∈

{1, . . . , T }. Without loss of generality we assume that
the ranks are ordered such that r = 1 is the best rank
(first place winner) while r = R is the worst rank.

If individual rankings of all teams are possible then
the number of ranks equals the number of teams,
R = T , but many tournaments only provide proper
rankings of the teams at the top of the score board
(e.g., first place, second place, etc.) while only par-
tial ranking is available further down the score board
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(e.g., quarter finalist, 8th finalist, etc.). The tourna-
ment prediction, X, should fulfill that the row sum
of each rank corresponds exactly to the number of
teams that will end up being assigned the given rank.
For example, in the recent 2018 FIFA World Cup,
there were 32 teams, and the seven possible ranks
were 1st place, 2nd place, 3rd place, 4th place, 5th-
8th place, 9th-16th place, and 17th-32nd place (the
group stage) each containing 1, 1, 1, 1, 4, 8, and 16
teams, respectively.

When evaluating the quality of a tournament pre-
diction we wish to take the distance between the ranks
into account; we want to reward a prediction if it
predicts a high probability of, say, a team obtaining
rank 1 and the team in reality ranks second while
penalising a prediction if it provides a high prediction
probability of rank 1 and the team ranks 6th.

The Rank Probability Score (RPS) is a proper scor-
ing rule that preserves the ordering of the ranks and
places smaller penalty on predictions that are closer
to the observed data than predictions that are further
away from the observed data (Epstein 1969; Mur-
phy 1970; Gneiting and Raftery 2007; Constantinou
and Fenton 2012). The RPS has mostly been used to
evaluate the outcome of single matches with multiple
ordered outcomes such as win, draw, loss, and it is
defined for a single match as

RPS = 1

R − 1

R−1∑
r=1

⎛
⎝ r∑

j=1

(oj − xj)

⎞
⎠

2

, (1)

where R is the number of possible outcomes (the
possible ranks of the match result), oj is the empir-
ical probability of outcome j (thus oj attains the
value 1 if the match resulted in outcome j and 0
otherwise), while xj is the forecasted probability of
outcome j. The RPS is similar to the Brier score,
but measures accuracy of a prediction when there
are more than two ordered categories by using the
cumulative predictions in order to be sensitive to the
distance. The RPS is both non-local and sensitive to
distance, so it uses all prediction probabilities and not
just the one corresponding to the observed outcome
and it takes “adjacent” predictions into account and
as such it is reminiscent of the Kolmogorov-Smirnov
test for comparing two cumulative distributions (Kol-
mogorov, 1933). We wish to extend and adapt the rank
probability score to accommodate full tournament
predictions.

Fig. 1. Comparison of cumulative prediction probabilities of
obtaining at least rank k (shown by the circles) and the actual
observed cumulative prediction function (shown by the step func-
tion). Here, the team in question obtained rank 5 which is why the
empirical distribution jumps for that rank.

Let Xrt = ∑r
i=1 Xit be the cumulative prediction

that team t will obtain at least rank r and let Ort be
the corresponding empirical cumulative distribution
function. Ort is readily available after the tournament
ends and only attains two different values, 0 and 1:
a column t in Ort is 0 until the rank which team t

obtained in the tournament, after which point it is
1. Figure 1 shows an example where the cumulative
prediction probabilities and the empirical cumulative
prediction are compared.

We define the tournament rank probability score
(TRPS) for a full tournament prediction, X, with
actual outcome O as

TRPS(O, X) = 1

T

T∑
t=1

1

R − 1

R−1∑
r=1

(Ort − Xrt)
2.

(2)
A perfect prediction will result in a TRPS of 0 while

the TRPS increases when the prediction becomes
worse. In the definition (2), we follow the defini-
tion of (1) and only sum to R − 1 since ORt −
XRt = 0 for all teams because the probability that
each team will obtain at least the worst ranking, R,
will be 1.

Note that the TRPS (2) - just like the RPS - uti-
lizes the ordering of the ranks through the cumulative
distribution function. This ensures that the measure
is sensitive to rank distance, since the individual
cumulative prediction probability comparisons at
each rank are oblivious to other parts of the dis-
tribution. Thus, we also implicitly assume equal
distances between the ranks when computing the
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Fig. 2. TRPS for flat predictions, i.e., where each team has the
same probability of obtaining each rank. The dashed line shows
the TRPS when a full ranking is available for all teams, the solid
line shows the TRPS when only the first two teams can be fully
ranked, and the remaining teams are grouped together into a single
rank corresponding to "third or higher place", and the dotted line
shows the TRPS for a knockout tournament, where each rank size
is doubled (1st place, 2nd place, 3rd-4th, 5th-8th etc).

score. This can be improved by adding weights to
the individual ranks which also allows putting greater
weights on specific predictions, for example if it is
especially important to determine the winner (see
Section 2.3).

Figure 2 shows the behaviour of the TRPS for com-
pletely flat predictions, i.e., random guessing where
each team is assigned equal probability of each ranks.
When each team can be assigned a unique rank then
the TRPS converges to a level around 0.17. This
level decreases steadily as a function of the num-
ber of teams when only partial ranks are possible.
When a large number of teams are grouped into a
single (partial) rank then it becomes easier to obtain
a lower TRPS since most teams will be correctly
assigned to the rank comprising many teams. In prac-
tice, any real tournament prediction should reach a
value lower than the flat TRPS in order to provide
some additional information about the outcome of the
tournament.

2.2. Examples

Example 1. Consider a tournament with 4 teams that
are ranked into 3 categories: 1st place, 2nd place, and
3rd-4th place. Two predictions are available prior to
the start of the tournament as shown by the matrices
X1 and X2 below. Note that for each prediction matrix
the columns sum to 1 and the rows sum to the number
of teams that will obtain each rank.

X1 =

⎡
⎢⎣

1 0 0 0

0 1 0 0

0 0 1 1

⎤
⎥⎦ X2 =

⎡
⎢⎣

0.7 0.1 0.1 0.1

0.1 0.5 0.2 0.2

0.2 0.4 0.7 0.7

⎤
⎥⎦

The first prediction, X1, is confident that team 1
(first column) will obtain rank 1, team 2 will get
2nd place and the remaining two teams will fill out
the final rank. Prediction X2 leans towards the same
teams as the first prediction but is not quite as confi-
dent about the specific rankings: it assumes that team
1 will rank 1st with probability 70% and that team 2
will get rank 3 with probability 40%, and so on.

If the outcome of the tournament was that team 1
came first and team 2 came second then the TRPS for
predictions X1 and X2 would be 0 and 0.063, respec-
tively. X1 made a perfect prediction and obtained a
score of 0 while the uncertainty in the X2 prediction
increased the TRPS slightly. A completely flat pre-
diction would in this case have resulted in a TRPS of
0.219.

Had the outcome of the tournament instead been
that team 2 came first and team 1 came second then
the TRPS of X1 and X2 would be 0.25 and 0.213,
respectively, and prediction X2 would obtain the best
TRPS. Despite not getting the prediction entirely cor-
rect, prediction X2 still fared better because it was not
so confident about a wrong prediction as X1 was. In
fact, prediction X1 is so poor (because it is both con-
fident and wrong) that it is worse than just random
guessing.

Example 2. Here we consider two predictions repre-
senting a fairly confident prediction that teams 1 and
2 will rank 1st and 2nd (X3), and a completely flat
prediction where each team has equal probability of
obtaining each rank (X4).

X3 =

⎡
⎢⎢⎢⎣

0.75 0.25 0 0

0.25 0.75 0 0

0 0 0.75 0.25

0 0 0.25 0.75

⎤
⎥⎥⎥⎦ X4 =

⎡
⎢⎢⎢⎣

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

⎤
⎥⎥⎥⎦

If the actual outcome of the tournament is that
teams 1-4 rank 1-4 respectively, then the TRPS
becomes 0.0208 and 0.2083 for X3 and X4, respec-
tively. Had the ranking of the teams been 2, 1, 4,
and 3 then X3 and X4 would result in TRPS of 0.188
and 0.2083, respectively. Thus prediction X3 still per-
forms better than the flat prediction because of the
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non-locality of the TRPS. Had we instead used the
log loss - which is local and only uses the prediction
probability exactly matching the outcome - then we
would find that X3 obtained the same log loss as the
completely flat prediction X4 despite being able to
identify that teams 1 and 2 should rank at the top, and
teams 3 and 4 should rank at the bottom.

2.3. Weighted TRPS

In some instances it may be of particular interest to
put emphasis on certain parts of the prediction, e.g.,
if it is only of interest to find the winner, or if it only is
of interest to evaluate the prediction of which teams
will make it past the group stages in a tournament.
The TRPS can be adjusted with weights to stress the
importance of particular rank predictions.

Let w = (w1, . . . , wR−1) be a vector of non-
negative weights — one for each rank except the last
— that sum to R − 1. We shall define the weighted
TRPS as

wTRPS(O, X) = 1

T

T∑
t=1

1

R − 1

R−1∑
r=1

wr(Ort − Xrt)
2,

(3)
where the assumption that

∑R−1
r=1 wr = R − 1 is

made to ensure that the scale of the weighted TRPS
is comparable to the standard TRPS (2). Note that it
is not necessary to specify a weight for the last rank,
R, since all teams will at least reach the last rank, and
the TRPS is a special case of the wTRPS where the
weights are all set to one.

Weight wi should be interpreted as the (relative)
importance of predicting the teams that reach at least
rank i. For example, setting w = (R − 1, 0, 0, . . . , 0)
ensures that we only consider the prediction of
the winner to be important, while weights w =
(0, . . . , 0, R − 1) place all the emphasis on predict-
ing the teams that make it past the initial group stage
without considering their final ranks.

Often, it is more important and relevant in a tour-
nament to be able to predict the winner and top
ranks than being able to predict the lower ranks. The
emphasis on predicting the top ranking teams may be
stressed by modifying the weights of the top ranks.
For tournaments with partial rankings we can give
equal weight to each rank rather than each team by
using the inverse of the number of teams in each rank
category as a relative weight. In the definition of the
wTRPS we sum over each team so a rank that con-
tains multiple teams is automatically given relatively

more weight. For example, if we have eight teams that
are ranked in four categories as 1st place, 2nd place,
3rd–4th, and 5th-8th place then the relative weights
would be 1, 1, 1

2 , 1
4 , respectively, which would trans-

late into actual weights w = ( 6
5 , 6

5 , 3
5 ) since the sum

of the weights for the first 3 ranks should be 3.
To assign a weighting scheme to the prediction

intervals, we may borrow the “doubling” concept
utilized in NCAA basketball (ESPN, 2019). Here,
the last interval containing the teams with the worst
finishing places, which is also the largest interval,
receives a weight of 1. From there, each ensuing
interval receives a weight which is double that of
its predecessor. Therefore, in the context of a 32-
team tournament such as the World Cup, the relative
weights for the intervals will be: 16, 8, 4, 2, and 1.
Again, these relative weights would translate in actual
weights w = ( 32

15 , 16
15 , 8

15 , 4
15 ), which places emphasis

on the actual winner of the tournament, and a rela-
tively low importance on identifying low-performing
teams in a tournament.

In 2026, the FIFA World Cup will be introducing a
new format with an expanded pool of 48 teams. The
teams will be split up into 16 groups consisting of 3
teams each. The last-placed team in each group will
be eliminated, and the rest will move on to the “Round
of 32”, where teams will play a knockout format
until a single winner is found. The aforementioned
weighted scoring system can be implemented all the
same, where the lowest interval, composed of teams
who fail to advance out of the group stage, receives
a relative weight of 1, and each subsequent interval
successively doubles the weight. Thus, the complete
scoring system for the 2026 World Cup tournament
consisting of 48 teams could use relative weights of
32, 16, 8, 4, 2, and 1.

3. Simulations

We used simulations to investigate the TRPS as
a performance measure of tournament predictions.
For the simulations we assumed a simple Bradley-
Terry model (Bradley and Terry, 1952), which sets
the chance for team A to win against team B to

βA

βA + βB

,

where βA and βB reflect the strengths of teams A
and B, respectively. In the simulations we compare
three different tournament types that are often used in
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various sports tournaments: a knockout tournament,
a single round robin tournament, and a double round
robin tournament.

� For the knockout tournaments, we assume that
we have N rounds, 2N teams and N + 1 differ-
ent rank categories. A team proceeds to round
n + 1 if it wins against its opponent in round
n. For example, we can have N = 4 such that
there are 16 teams and 5 different ranks (eight
finals, quarter finals, semi-finals, final, winner).
This setup reflects many tournaments such as
Grand Slams in tennis and also the second part
of the FIFA World Cup.

� In the single round robin tournament, each team
plays each other team once. When a team wins
it gets one point and otherwise it gets none. We
disregard the possibility of a draw and when two
teams have equal points, the rank is determined
randomly. This type of tournament resembles
the group stages of the FIFA World Cup.

� The double round robin tournament is set up
similarly to the single round robin tournament,
but now each team plays twice against each of
the other teams. This is the type of tournament
seen for example in the English Premier League
or the German Bundesliga.

In our simulations we sampled the strengths
β1, . . . , βT of the T teams in the competition from
a log-normal distribution with shape parameter σ.
We vary σ, which represents the spread of the team
strengths, and the number of teams in each tourna-
ment (considering sizes of 8, 16, or 32).

We compare the TRPS for the following three
generic tournament predictions:

True strength prediction: We assume that the true
strength of each team is known and use these
latent strengths to estimate the probabilities
that a team will attain a specific rank. In
practice, these true probabilities are derived
from the Bradley-Terry model by taking the
mean of S = 10000 simulations using the
true team strengths in order to count how
often a team reaches a given rank.
The true strength prediction reflects the opti-
mal prediction we could make prior to the
start of the tournament.

Flat prediction: Each team has equal chance to
reach any of the ranks.

Confident prediction: For the confident prediction
we know the ordering of the true team

strengths but we do not know their rela-
tive difference. The team with the highest
strength will be given a 100% chance of
obtaining rank 1, the team with the second
highest strength will be a certain prediction
of rank 2, etc. Consequently, we assume that
the order of the teams will provide a perfect
prediction of the final results.

The summary of the behaviour of the TRPS for
10000 simulated predictions for each combination
of tournament type, number of teams, team strength
variances and prediction method are shown in Table 1.
The table clearly shows some trends in the behaviour
of the TRPS:

� The larger the number of rounds (and conse-
quently also ranks and matches) the lower the
average TRPS for all three generic predictions.
This is similar to what we saw in Figure 2.

� The mean TRPS depends on the tournament
structure. Tournament structures with more
matches (the single and double round robin
tournament types) will lead to a lower TRPS for
both the true strength predictions and the con-
fident predictions. This is as expected as larger
number of matches will allow the team rank-
ings to converge to a more stable result of their
relative strengths.

� The larger the spread of the team strengths
(higher σ), the lower the TRPS for the true
strength prediction and the confident predic-
tions. This is also as expected, since larger
variation in team strengths will make it easier
to discriminate between the teams.

� The larger the number of rounds/ranks/teams,
the better the TRPS is able to distinguish good
predictions (close to the true probabilities) from
flat predictions.

It is also worth noting that the confident predictions
based on ranks fare remarkably bad in knockout tour-
naments when the variance of the team strengths is
low. This is perhaps not surprising since the teams
are more or less equal in strength and it is harder
to determine an obvious winner. However, the con-
fident prediction on average performs worse than a
simple flat prediction. Making confident (but wrong)
predictions has a price!

Recall that the primary purpose of the TRPS is
to compare different predictions for one tournament
rather than compare a single prediction across dif-
ferent tournaments. While the TRPS can be used to
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Table 1

Average TRPS (and SD) for various combinations of tournament type, number of teams, team strength variance, and prediction model based
on 10000 simulations. The final two columns show the probabilities that the optimal prediction (TSP = true strength prediction) yields a

better (smaller) TRPS than both a flat (FP = flat prediction) and a confident prior-rank-based prediction (CP = confident prediction)

Tour- TRPS
nament (average ± standard deviation)
type Teams σ True Flat Conf P(TSP < FP) P(TSP < CP)

Knockout 8 1 0.129±0.048 0.18 0.255±0.065 0.85 1.00
16 1 0.111±0.026 0.15 0.188±0.059 0.92 0.98
32 1 0.089±0.019 0.13 0.165±0.03 0.96 1.00
8 2 0.083±0.066 0.18 0.204±0.062 0.91 1.00
16 2 0.083±0.027 0.15 0.141±0.046 0.98 1.00
32 2 0.062±0.019 0.13 0.123±0.019 1.00 1.00
8 3 0.04±0.04 0.18 0.132±0.056 0.99 0.97
16 3 0.055±0.027 0.15 0.115±0.039 0.99 1.00
32 3 0.038±0.015 0.13 0.098±0.016 1.00 1.00

Single round robin 8 1 0.098±0.035 0.19 0.138±0.06 0.99 0.90
16 1 0.075±0.016 0.18 0.11±0.027 1.00 0.99
32 1 0.059±0.009 0.17 0.087±0.015 1.00 1.00
8 2 0.082±0.028 0.19 0.12±0.052 1.00 0.89

16 2 0.058±0.011 0.18 0.089±0.022 1.00 0.99
32 2 0.044±0.006 0.17 0.064±0.01 1.00 1.00
8 3 0.049±0.024 0.19 0.066±0.039 1.00 0.77
16 3 0.047±0.011 0.18 0.069±0.02 1.00 0.97
32 3 0.036±0.006 0.17 0.053±0.009 1.00 1.00

Double round robin 8 1 0.083±0.031 0.19 0.119±0.054 0.99 0.87
16 1 0.064±0.015 0.18 0.094±0.025 1.00 0.99
32 1 0.052±0.007 0.17 0.077±0.013 1.00 1.00
8 2 0.056±0.024 0.19 0.076±0.042 1.00 0.83
16 2 0.041±0.009 0.18 0.061±0.018 1.00 0.97
32 2 0.034±0.005 0.17 0.051±0.009 1.00 1.00
8 3 0.038±0.02 0.19 0.052±0.034 1.00 0.77
16 3 0.03±0.008 0.18 0.045±0.016 1.00 0.93
32 3 0.025±0.004 0.17 0.037±0.007 1.00 1.00

discriminate between predictions we can also use the
TRPS to combine the predictions into an ensemble
predictor as indicated in the next section.

4. Improving predictions using ensemble
predictions

Typically, there is not a single “best” model to
predict the output of a tournament, and different
statistical models may capture different aspects of
the prediction. Combining information from several
models can improve the overall prediction by pooling
results from multiple prediction models into a single
ensemble prediction. Bayesian model averaging is a
standard technique to generate an ensemble predic-
tion model by combining different statistical models
and taking their uncertainty into account. It works by
creating a weighted average of the predictions from
each individual model where the weight assigned to
each model is given by how well it performed prior to
the prediction (Hoeting et al., 1999; Fragoso, Bertoli,
and Louzada, 2018).

Let us assume that we have K prediction mod-
els, M1, . . . , MK, and for each model Mk we have
a corresponding prediction Xk. Then the ensemble
Bayesian model average prediction, X�, is given as
the weighted average

X� =
K∑

k=1

XkP(Mk|y),

where P(Mk|y), k = 1, . . . , K, are the weights of the
K models based on prior training data y. The weights
P(Mk|y) depend on the prior distribution of the mod-
els and may be difficult to compute. However, the
weights of the individual prediction models can be
estimated directly if predictions (and final results
after the tournaments have ended) based on the same
models are available from prior tournaments. Here we
will sketch how the TRPS can be used in combination
with ensemble prediction.

Let X̃k represent the prediction from model Mk at a
previous tournament and let Õ be the actual outcome
of the previous tournament. Then
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ω̂ = arg min
ω1,...,ωK ;

∑K

k=1
ωk=1

TRPS(Õ,

K∑
k=1

ωkX̃
k)

will be an optimal combination of weights based on
the previous predictions. An ensemble prediction for
a new tournament would then be

X� =
K∑

k=1

ω̂kX
k

and this ensemble prediction will reduce both bias
and variance of the final prediction for the prior tour-
nament and may also provide a better prediction for
the current (Jin, 2006). However, since the weights
are clearly optimized to match the quality of the pre-
dictions in the previous tournament, they may be
overfitted to X̃k and Õ and not optimal for the current
prediction.

If we have information on predictions and out-
comes from the same set of models from several
prior tournaments, then we can use the average
TRPS based on the prior tournaments to optimize
the weights we use for the current prediction. By
employing several prior tournaments we will reduce
the risk of overfitting since the number of weights
will remain constant. Specifically, if we have predic-
tions from the same set of K prediction models from
J prior tournaments then the optimal weights can be
computed as

ω̂ = arg min
ω1,...,ωK ;

∑K

k=1
ωk=1

1

J

J∑
j=1

TRPS(Õj,

K∑
k=1

ωkX̃
k
j),

where Õj and X̃k
j respectively stand for the actual

outcome and prediction from prediction model Mk in
tournament j = 1, . . . , J .

5. Application: Evaluating predictions for the
2018 FIFA World Cup

For the 2018 FIFA World Cup competition there
were 32 teams, initially split into 8 groups. An online
prediction tournament was made public and analysts
were encouraged to contribute predictions before the
World Cup started on June 14th, 2018 (Ekstrøm,
2018a; Ekstrøm, 2018b; Ekstrøm, 2018c). Each pre-
diction competition contestant had to submit a 32x32
matrix as in Section 2.1, and the rows of each pre-
diction were subsequently collapsed into the 7 actual

possible rank categories that we are able to observe
from the tournament: 1st place, 2nd place, 3rd place,
4th place, 5th-8th place, 9th-16th place, and 17th-
32nd place. These seven categories comprised 1, 1,
1, 1, 4, 8, and 16 teams, respectively.

As part of the competition it was announced that
a weighted log loss penalty would be used for scor-
ing the individual predictions (Rosasco et al., 2004).
The log loss uses the average of the logarithm of the
prediction probabilities and is given by

− 1

T

T∑
t=1

R∑
r=1

wr log(Xrt) (Ort = 1),

where wr was a pre-specified vector of weights given
to each team within each of the seven possible col-
lapsed rank categories, wr = (1, 1, 1

2 , 1
2 , 1

4 , 1
8 , 1

16 ).
(Ort = 1) is the indicator function of a correctly

predicted rank for each team. The log loss has the
nice property that it places large penalties on confi-
dent predictions that are wrong. However, it is not
obvious how to handle the log loss when a prediction
of 0% has been made (and it occurs) and it also uses
the same penalty to predictions that were almost the
correct rank as it does to predictions that were far
apart in ranks.

Here we will focus on the individual predictions,
how they compare to each other and to the final tour-
nament result when we use the TRPS and the wTRPS.
For completion we will also include the scores for the
original log loss.

Five predictions entered the contest:

1. A completely flat and trivial prediction where
every team had the same probability 1

32 of
obtaining each of the original 32 ranks. Since
these 32 ranks - one for each team - are collapsed
to the seven possible ranks we can observe, the
flat probability prediction probabilities become
1

32 , 1
32 , 1

32 , 1
32 , 4

32 , 8
32 , 16

32 for ranks 1–7, respec-
tively.

2. A prediction by Ekstrøm using a Skellam distri-
bution to model the difference in goals scored by
each team in a match depending on the teams’
initial skill level derived from a betting company
(Skellam, 1946; Karlis and Ntzoufras, 2003;
Ekstrøm, 2018c; Ekstrøm, 2018a; Ekstrøm,
2018b).

3. Another prediction by Ekstrøm using the
Bradley-Terry model using each team’s ELO
rating as the team strength (Bradley and Terry,
1952). The ELO ratings were downloaded
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Table 2

TRPS, wTRPS and log loss scores for 5 predictions from the
recent 2018 FIFA World Cup. Smaller numbers indicate better
predictions. The scale of the numbers differs between the different

methods, and cannot be directly compared

TRPS wTRPS Log loss

Flat 0.120 0.214 0.455
Ekstrøm (Skellam) 0.086 0.153 0.367
Ekstrøm (ELO) 0.101 0.179 0.421
Groll et al. (2018) 0.089 0.157 0.365
Groll et al. (2019) 0.090 0.159 0.371

from https://www.eloratings.net/
immediately prior to the start of the World Cup.

4. A prediction by Groll et al. (2018) where a ran-
dom forest model was used to estimate team
strengths based on several team-specific covari-
ates (e.g., mean age, number of players from
strong clubs, economic factors, coach factors),
including as most important covariate individ-
ual team ability parameters that reflect a team’s
current strength based on historic matches.

5. An updated version of the prediction by Groll et
al. (2018) has been provided after the World Cup
and is actually the content of the journal paper
Groll et al. (2019). This prediction was submit-
ted after the competition ended but is included
here for the sake of completion. Besides small
algorithmic improvements, it added the ELO
rating to the predictors in the random forest.

Table 2 below shows the tournament rank proba-
bility scores for the five predictions. For the wTRPS
we have used weights similar to the weights for the
log loss described above except that the vector was
scaled to sum to 6 (one less than the number of rank
categories).

Not surprisingly, the flat prediction fares worst and
obtains a TRPS of 0.120. The best of the five predic-
tions is Ekstrøm’s Skellam-based model which uses
odds from a Danish bookmaker as input and it obtains
a TRPS of 0.086. The model by Groll et al. (2018)
has a TRPS almost similar to the Skellam model.
Interestingly, the updated model that was provided
after the tournament performs slightly worse than the
original model by Groll et al. (2018) although the
differences are negligible. The weighted tournament
rank probability score, wTRPS, provides essentially
the same ranking of the five predictions, whereas
the log loss swaps the order of the two best predic-
tions. This swap is due to the fact that the Ekstrøm
(Skellam) prediction placed markedly high probabil-
ities on expected favorites such as Germany, Brazil

and Spain, all of which did not fare so well at the
World Cup.

The most surprising result is the difference
obtained in scores between the ELO-based model
by Ekstrøm and the corresponding Skellam-based
model. While the two models are slightly different,
their main differences are due to the input informa-
tion that is given to the model. For the Skellam model
the input are bookmaker odds while the ELO-based
model uses the official ELO rating of the teams. Per-
haps the ELO rating is not updating fast enough to
reflect the current quality of the teams entering the
World Cup — which is something the bookmakers
more readily can adjust for.

The average of the two best predictions yields a
TRPS score of 0.085 which is a slight improvement
in TRPS. This suggests that it might be beneficial to
create an ensemble predictor for future predictions.

6. Discussion

In this paper we have extended the rank probability
score and introduced the tournament rank probabil-
ity score to create a measure to evaluate and compare
the quality of pre-tournament predictions. This is, to
the best of our knowledge, the first such measure,
and complements the classical match-based compar-
isons that serve a different purpose as explained in the
Introduction. The TRPS is a proper scoring rule and it
retains the desirable properties of the rank probability
score — being non-local and sensitive to distance —
such that predictions that are almost right are more
desirable than predictions that were clearly wrong.

Our simulations show that the TRPS is very
flexible, handles partial rankings, works well with
different tournament types and is able to capture, eval-
uate and rank predictions that are more than random
guesses. As such it sets the basis for future discussions
and evaluations of predictions that appear in research
and media, especially in situations where prior infor-
mation may be severely limited, in the sense that two
teams may have never met faced each other in a match
before.

The flexibility of the TRPS comes in two guises.
First, it is possible to set specific weights to use the
TRPS to focus on predicting specific results such as
the winner. This ensures that the same framework
can be used for general tournament predictions as
well as specialized forecasts. Secondly, the TRPS is
directly applicable to partial rankings which is com-
mon in many tournaments. In fact, instead of adding
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weights, one could choose to take another way of
weighing by collapsing the relevant categories into
one. For example, in the Premier League we could
disregard the normal ranking of the teams from 1 to
20, and instead only consider the ranks 1 (champion),
2-4 (qualified for Champions league), 5 (qualified
for Europa League), 6-16 and 17-20 (degradation).
In Olympic games, the most important ranks are of
course the first three places. Next to this, the first 8
competitors receive an “Olympic Diploma”. So the
ranks here could be Gold (1), Silver (2), Bronze (3),
Olympic Diploma (4-8), and Others (9+).

The TRPS leads naturally to creating improved
model-averaged ensemble predictions that combine
a set of prediction models into an optimal prediction
based on results from earlier tournaments. We have
outlined how the TRPS can be used for this purpose
and we will pursue this in a future publication.

In conclusion, the TRPS provides a general
measure to evaluate the quality and precision of tour-
nament predictions within many fields and it can
serve as a way to both determine prediction win-
ners and provide the foundation for creating ensemble
model-averaged predictions that increase the overall
precision of sport tournament predictions within all
fields of sport.
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