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ABSTRACT

Quantitative environmental performance evaluation methods are desired given the growing certification
and labeling landscape for consumer goods. Challenges associated with existing methods, such as life
cycle assessment (LCA), may be prohibitive for complex goods such as information technology (IT).
Conventional LCA is resource-intensive and lacks harmonized guidance for incorporating uncertainty.
Current methods to streamline LCA may amplify uncertainty, undermining robustness. Despite high
uncertainty, effective and efficient streamlining approaches may be possible.

A methodology is proposed to identify high-impact activities within the life cycle of a specific product
class for a streamlined assessment with a high degree of inherent uncertainty. First, a screening
assessment is performed using Monte Carlo simulations, applying existing activity (materials and
processes), impact, and uncertainty data, to identify elements with the most leverage to reduce overall
environmental impact uncertainty. This data triage is informed by sensitivity analysis parameters
produced by the simulations. Targeted data collection is carried out for key activities until overall
uncertainty is reduced to the point where a product classes’ impact probability distribution is distinct from
others within a specified error rate.

In this thesis, we find that triage and prioritization are possible despite high uncertainty. The methodology
was applied to the case study of liquid crystal display (LCD) classes, producing a clear hierarchy of data
importance to reduce uncertainty of the overall impact result. Specific data collection was only required
for a subset of processes and activities (22 out of about 50) to enable discrimination of LCDs with a low
error rate (9%). Most of these priority activities relate to manufacturing and use phases. The number of
priority activities targeted may be balanced with the level to which they are able to be specified. It was
found that ostensible product attributes alone are insufficient to discriminate with low error, even at high
levels of specificity.

This quantitative streamlining method is ideal for complex products for which there is great uncertainty in
data collection and modeling. This application of this method may inform early product design decisions
and enable harmonization of standardization efforts.

Thesis Supervisor:
Randolph E. Kirchain, Principle Research Associate, Engineering Systems Division
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1. INTRODUCTION: THE CHALLENGES OF ENVIRONMENTAL
FOOTPRINTING FOR COMPLEX PRODUCTS

The push for environmental performance

Manufacturers are no longer solely driven by meeting market demand for cost, performance, and
quality; competitive companies must now focus on environmental performance. This push is
driven by many factors including volatile energy prices, climate change legislation, corporate
sustainability efforts, consumer demand for “green” products, pressure from retailers on their
upstream supply chains, and, perhaps most significantly, labeling initiatives. Examples of the
explosion of country-specific labeling initiatives include Japan’s EcoMark, China’s
Environmental Labeling Program, Taiwan’s Electrical and Electronic Manufacturers’
Association, France’s Grenelle de I’Environnement, and Germany’s Blue Angel (Horne 2009;
Lim and Park 2009; Weber et al. 2010).

Such labeling initiatives are supported by environmental quantification methodologies developed
by the British Standards Institute (BSI), the International Standards Organization (ISO), and the
World Resources Institute/World Business Council on Sustainable Development (WRI/WBCSD)
(ISO 2006b; WRI/WBCSD 2007; BSI 2008). These methodologies provide guidance on various
aspects of impact assessment and data collection. To respond to the aforementioned pressures
and comply with these methodologies, many industry sectors are engaging in detailed
environmental data collection efforts within their supply chains for use in evaluation efforts.
These efforts are costly and require significant resources even for evaluating a single product,
and this burden is amplified by the complexity of supply chains and the vast quantity of
products. Supply chains lack infrastructure to monitor and report the basic information required
to evaluate product environmental performance including material and energy input quantities,
origins, and processing information, as well as outputs and emissions. Due to these data
collection challenges, streamlined approaches for data collection and modeling are desired. Such
streamlining efforts may include use of proxy data, screening analyses to identify hotspots, and
algorithms that relate product attributes to impact.

Given the expanding environmental standards and labeling landscape, there is a growing need for
harmonized, consistent, quantitative, but just as critically, streamlined environmental
performance evaluation tools. To create a level playing field for such evaluation efforts,
companies are forming working groups to reach consensus on focused measurement and analysis
protocols. An example is a project through the International Electronics Manufacturing Initiative
(iNEMI), which aims to develop a consistent quantification tool to evaluate the environmental
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performance of electronics (iNEMI 2009). In addition, the Sustainability Consortium' is
developing a Sustainability Measurement and Reporting System (SMRS), an expanded Product
Category Rules (PCR) document developed in accordance with ISO 14025, established “to
communicate the real impacts of products to the consumer.”

However, streamlining approaches will amplify the many sources of uncertainty in these studies
and therefore may undermine results. Given the urgency of quantifying environmental burden
generated by the explosion of initiatives in this area, and the significant cost of conducting these
assessments, streamlining seems necessary. This thesis investigates whether we are able to
streamline evaluations through the use of screening to examine which elements of uncertainty we
must address in order to make defensible quantitative evaluations.

Life cycle assessment challenges and opportunities

Life cycle assessment (LCA), an environmental management approach, has long been the tool of
choice for quantifying the impact of a product, process or service on the world. However, LCA
tends to be resource-intensive in terms of data collection, analysis, and interpretation of results.
Specifically, LCA is challenged by lack of guidance for data cut-off decisions, emphasis on
primary data collection, inflexibility, and lack of guidance to evaluate and communicate
uncertainty. These challenges are further discussed below.

+ Conventional LCA guidance encourages complete data collection but permits cut-offs
based on mass, volume, or environmental impact thresholds if such cut-offs may be
justified. However, there is little guidance on providing sufficient defense of such
decisions (ISO 2006b; ISO 2006c; BSI 2008). Justification for a cut-off decision is
therefore left to the discretion of the practitioner, introducing high levels of variability
and subjectivity.

* LCA guidance tends to emphasize collection of measured primary data over secondary
data (BSI 2008), though estimated or calculated data may be permitted (ISO 2006c;
WRI/WBCSD 2007). Close supplier interaction is encouraged so that direct measurement
and reporting of input and output material and energy flows can take place. Secondary
data are considered acceptable only if primary are unavailable. Guidance does not fully
discuss the inadvertent variability and error associated with inconsistencies of primary
data collection efforts, and the possibility that such error could drown out any meaningful
differences in measurement.

! The Sustainability Consortium is an organization comprised of international collaborators working to “build a
scientific foundation that drives innovation to improve consumer product sustainability through all stages of a
product’s life cycle” (TSC 2011) .




* LCA approaches tend to be static and not easily adaptable to accommodate evolution of
products. Because data collection and analysis for a single product and its life cycle
impacts may take months and are highly resource intensive, this does not bode well for
highly complex products with many design and process permutations.

* Uncertainty in data and modeling may render the difference between LCA results
unimportant. Although ISO 14044, 14040 and 14025 acknowledge and recommend
uncertainty analysis, little guidance and structure is provided for practical implementation
(ISO 2006a; ISO 2006b; ISO 2006c). In ISO 14044, uncertainty analysis is defined as
“systematic procedure to quantify the uncertainty introduced in the results of a life cycle
inventory analysis due to the cumulative effects of model imprecision, input uncertainty
and data variability.” Because mainstream LCA tends to be mean-based, it is therefore
limited in ability to incorporate and communicate into the results the many forms of
uncertainty associated with the LCA process.

The challenges of quantifying environmental impact are especially pronounced for information
technology (IT) and other complex, quickly evolving products. Data collection is challenged by
convoluted supply chains, making it nearly impossible to obtain primary data specific to
fabrication facilities, lines of production, generation technology, and at the stock-keeping units
(SKUs) level. In addition, many original equipment manufacturers (OEMs) purchase parts from
a shared pool of suppliers, making it difficult to discriminate environmental performance by
brand. This rapidly-evolving industry with high product and technology turnover quickly renders
conventional, static LCA results obsolete. High product and process variability, as well as spatial
and geographic uncertainty, must be incorporated and interpreted in analysis and results. This
thesis explores the use of streamlined approaches to LCA for IT products in particular.

Vision for more effective and efficient method

Manufacturers looking to design electronics for environmental performance, consumers relying
on labels to inform “green” purchases, and standards organizations aiming to harmonize
evaluation efforts could benefit from effective and efficient evaluation methods. By effective, we
mean uncertainty must be identified, analyzed and interpreted, not indefensibly omitted, to
produce results of sufficient accuracy and enable a consistent method to understand the viability
of labeling schemes. By efficient, we mean processes and activities may be prioritized in terms
of contribution to uncertainty to streamline the evaluation process. Secondary data can stand in
for primary data if a process or activity is not high priority, thus reducing data collection and
analysis burdens. And once process or activity data are compiled, these data may be reused or
modified to accommodate analyses of similar products.

~_~
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With this vision we propose a method for robust streamlined environmental assessment. The
method begins with a probabilistic triage, incorporating existing data and temporal, spatial and
parametric uncertainty, to identify priority activities for targeted data collection. We then
evaluate how many of those activities must be targeted for specific data collection. This targeted
data collection and quantification of uncertainty enables us to explore the ability to resolve
environmentally preferable decisions. While not the focus of this thesis, the proposed method
then develops regressions between those priority activities, product attributes, and environmental
impacts, to enable efficient approximation of the consequences of key design decisions.

We use quantification of the environmental impact of liquid crystal display (LCD) laptop
modules as a case study to evaluate the methodology. The perfluoro-chemicals (PFCs) used as
process materials in LCD manufacturing are significant global warming gases and have been
targeted for environmental performance improvements. The worldwide production of module
components involves electricity-intense processes with highly variable fuel mixes. Aging data
need to be updated to reflect quickly-evolving manufacturing processes and materials (c.f., the
primary LCD study used in the dominant LCA database is from 2001). These analysis challenges
make LCDs an interesting product example.




1.1 Thesis outline

In this thesis we propose and evaluate a methodology for effective and efficient evaluation of
environmental performance of IT product classes which accounts for high levels of uncertainty
and defensible prioritization of data collection.

Chapter 1 provides an overview of the motivation for, and challenges of, quantitative
environmental assessment of IT products. This chapter also reviews previous LCA streamlining
efforts and how uncertainty has been addressed.

Chapter 2 presents the methodology, beginning with a data screening assessment, followed by
targeted data collection around important activities.

Chapter 3 provides background on LCD technology, processes, materials, and impacts. In this
chapter, the methodology is applied to the analysis of LCDs to evaluate which elements of the
screening LCD model need to be addressed (i.e., the level of resolution required around a subset
of activities) to make quantitative evaluations.

Chapter 4 presents discussion of results.

Chapter 5 provides a summary of the main ideas developed in the thesis and broader implications
of this work on the development of standards, product declarations, and labeling efforts.

Chapter 6 provides a list of literature referenced in the thesis.
Chapter 7 contains appendices including A. acronyms, B. case study analysis data tables, C. a

literature review of LCD life cycle environmental impacts, and D. analysis and discussion of
LCD life cycle environmental impacts.

13
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1.2 Literature review

This chapter outlines published and publicly-available literature pertaining to streamlining
efforts, how uncertainty has been addressed in these efforts and environmental assessment in
general, and what forms of uncertainty may be most relevant to IT products.

1.2.1 Streamlining efforts in environmental assessment

Given the resource-intensive nature of establishing the bill of materials (BOM) and processes for
LCA, streamlining of data collection and modeling has been of interest in the field. Systematic
methodologies to identify key-issue hotspots have long been pursued. Streamlining measures,
however, increase uncertainty in the result. Several approaches, including simplifying measures,
use of secondary data, screening, and correlative algorithms, are outlined briefly below.

Simplification measures

One class of simplifications is the use of qualitative information to rank the impacts of each life
cycle activity (generally against some benchmark) as demonstrated by the Environmentally
Responsible Product Assessment (Graedel and Allenby 1995) which employed a matrix
approach to streamlining. Such simplification measures are useful when quantitative data are
unavailable but information about uncertainty, reliability, completeness, age, and geographical
and technological representativeness are known (Weidema and Wesnaes 1996). Socolof used
decision rule priorities, including mass, environmental/toxic concern, energy concern, functional
importance, and physical uniqueness, to leverage known information and prioritize efforts
(Socolof et al. 2001b). Such techniques are highly flexible and subjective and may compound
uncertainty in the analysis.

Secondary data

The use of secondary data as proxies for primary data can be used to simplify and streamline the
evaluation process. Such data include that from publicly-available sources, pay-for-use
databases, or expert opinion (Hochschorner and Finnveden 2003; Hur et al. 2005). For example,
commercial databases, such as ecoinvent, provide proxy process data (ecoinvent 2010). Such
proxy data may vary in relevance depending on spatial, temporal and parametric match.

Screening

The SETAC-Europe working group has long pursued tackling the problem of how iterative an
LCA must be, and how thorough a screening should be before turning to a refined analysis
(Heijungs 1996). Research by Lasvaux et al. sought to identify the flows that contribute the most
to assessment indicators. The study acknowledged the need to compromise between precision of
simplified characterization model (SCM) and number of life cycle inventory (LCI) flows
(Lasvaux et al. 2010).

]
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Stochastic analyses have been developed which incorporate an uncertainty distribution around a
mean-based estimate to apply to Monte Carlo simulations. These efforts may require heavy data
collection and an understanding of the independence of and correlation among parameters
(Olivetti 2010). Many studies have applied Monte Carlo simulations to determine probabilistic
mean values based on uncertainty approximations. The ecoinvent reports discussed the use of
Monte Carlo (Hedemann and K6nig 2003). Monte Carlo simulations were used to assess relative
contributions to variance of groups of parameters related to plant-protection products, including
elementary flows, energy supply, transport and packaging, and waste treatment flows (Geisler et
al. 2005). Huijbregts provided an informal scheme for the analysis of parameter uncertainty, to
aid in deciding which flows require more attention when assigning uncertainty distributions (see
Figure 1) (Huijbregts et al. 2003).

[ ]

Figure 1. A rough guideline for screening assessment prior to Monte Carlo simulation (Reproduced
from Huijbregts, Gilijamse et al. 2003)

Maurice et al. suggested a combination of qualitative and quantitative approaches to efficiently
assess uncertainty using Monte Carlo simulations (Maurice et al. 2000). The suggestions focused
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on parameters with significant leverage in affecting/contributing to cumulative results. Rank
order coefficient was proposed as an activity prioritization metric (Evans and Olson).

Learning algorithms

Others have recognized the need for rapid, preliminary LCA tools to inform early design
decisions based on impact tradeoffs. Sousa et al. sought to develop learning algorithms and
neural networks to produce surrogate LCA models based on generic product classifications. This
work produced product concept descriptors, applying an abbreviated LCI list, greatly reducing
data collection requirements for environmental assessment. More work is needed to improve
classification requirements and accuracy of estimates, and data availability is critical in
development of such surrogate models (Sousa et al. 2001; Sousa and Wallace 2006).

Such efforts may not enable the discrimination of product classes, a level much more granular
than generic product classifications.

The next section contains discussion of categories of uncertainty, highlighting those particularly
relevant to IT products. Such forms of uncertainty are important to consider in streamlining
approaches in order to achieve robust results.

1.2.2 Accounting for uncertainty for accurate environmental assessment

In the previous section, we discussed the need to increase robustness of environmental evaluation
streamlining efforts in light of amplification of uncertainty in data and modeling. In this section,
we outline and discuss categories of uncertainty and the importance of accounting for it,
particularly in streamlined approaches.

Importance of accounting for uncertainty for accurate evaluation

Many studies have discussed the importance of incorporating uncertainty in environmental
evaluation and LCA (Heijungs 1996; Huijbregts 2002; Huijbregts et al. 2003; Heijungs and
Huijbregts 2004). The apparent difference between products or systems may in fact be
statistically insignificant once uncertainties are incorporated into the analysis (Huijbregts et al.
2003). Indeed, sources of error and uncertainty must be identified and quantified because they
may mask the difference between comparative LCAs and make product differences insignificant
(Geisler et al. 2005). Uncertainty associated with LCAs must be conveyed while still providing
guidance, as uncertainty without guidance may be difficult to take action upon (Olivetti 2010).

Parameters may be levers of overall uncertainty without having high uncertainty themselves, if
they are ubiquitous in the model. Geisler et al. noted that factors with large absolute
contributions to impact may not have high contribution to variability if their uncertainty is small.
The influence of an input parameter is therefore a combination of the impact of input values on
absolute magnitude and impact on dispersion of results (Geisler et al. 2005). Indeed, Heijungs
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]
16,



emphasized this often neglected distinction between differing ‘key’ drivers, although it is of
‘seminal’ importance (Heijungs 1996).

Some forms of uncertainty are inherent to the system and are irreducible. Also called aleatory
uncertainty, it may include parameter, scenario/choices, and model uncertainty (Huijbregts
2002). Parameter uncertainty may exist from errors in input data, functional unit definition,
inventory analysis, and impact assessment. Life cycle inventory development may be process-
based, economic input/output (I/O)-based, or a hybrid of the two. Process-based has heavy data
requirements, requiring data for every process involved. Omissions may occur where data are not
available or processes are not identified, leading to cutoff error. Economic I/O is a top-down,
fully aggregated approach that may lead to ‘double counting’ due to sector categorizations. A
hybrid of the two types is also possible (Williams 2004). Due to the continuum of methods, there
is no clear way to consistently minimize uncertainty. Scenario and choice uncertainty may exist
in allocation choices and definition of scales of time and geography of environmental impacts,
and other normative choices in designing the model. Model uncertainty may exist if spatial and
temporal differentiation is not clear or if relevant aspects of reality are not reflected within the
model.

Epistemic uncertainty is reducible and may include spatial, temporal, and source/object related
variability (Huijbregts 1998). Emphasis has been placed on the importance of quantifying all of
these uncertainties.

Frischknecht et al. qualitatively considered the following uncertainty types in ecoinvent data:
variability and stochastic error of input/output figures, appropriateness of input or output flows,
model uncertainty, and neglecting important flows. The study recommended using Monte Carlo
simulations to focus the effort used to understand parameter uncertainty around the most
sensitive parameters so that the most important sources of uncertainty would be addressed
(Frischknecht et al. 2007).

Weidema 2009 emphasized the need to address uncertainty all along the causal chain, and
condemns recent misinterpretations that highly uncertain points, such as endpoints, should be
ignored. He argued that it is necessary to go to the endpoint if such information is needed to
make a decision, as stopping at the midpoint is simply ignoring the uncertainty at the end of the
causal chain (Weidema 2009).

Although currently lacking, clear guidance to quantify and incorporate uncertainty in LCA could
be developed in similar ways to how ISO standards have solidified some LCA terminology and
SPOLD has solidified data exchange (Heijungs and Huijbregts 2004).




Electronics-specific uncertainty

Nearly all types of uncertainty may be important in electronics LCA (Williams et al. 2009). Of
particular relevance to electronics streamlining efforts are spatial (or geographic), temporal, and
source/object-related variability (Heijungs 1996; Huijbregts 2002; Huijbregts et al. 2003).

Geographic variability specific to IT may include production facility energy efficiency and
electricity grid fuel mix variability associated with manufacturing and use locations. Variability
in delivery distances and supply chain freight movement should also be considered (Weber et al.
2010). Electricity grid fuel mix and logistics for production and use have been assumed to be the
dominant types of geographic uncertainty, given that there is little information on how
production efforts vary between countries. Electricity grid fuel mix variability is on the order of
200 kgCOse per desktop, which is on the same order of impact for the product (Hedemann and
Konig 2003). Global distribution of supply chains and rapid evolution in the IT industry make
geographic as well as temporal uncertainty relevant in environmental assessment considerations.

Temporal variability is also highly relevant to IT footprinting. However, data are few and tend to
be dated, as exemplified by the Socolof 2001 monitor LCA, which is comprehensive but over ten
years old (Socolof et al. 2001b). The lack of temporal data may be addressed through assumed
independence of individual data: where there is no newer data, older data may be assumed to
represent newer production technologies, noting that uncertainty estimates are probably
underestimated.

Source/object-related uncertainty may surface due to incomplete information about an input data
value, and may be high because data is scarce for electronics industry. This lack of data
complicates understanding the uncertainty distributions associated with unit processes and
inventories. As products evolve quickly over time, trends in BOM, parts, and manufacturing
burden can significantly affect the carbon footprint.

Other uncertainty issues relate to inclusion or exclusion of capital goods given the great turnover
in equipment in the industry (Olivetti 2010). The choice of impact assessment method, as well as
uncertainty within methods, such as evolving characterization factors for PFCs, is particularly
salient to IT (Reap et al. 2008; Olivetti 2010)*. In addition, allocation from facility-level energy
use to product outputs, and variation in chemical use in different component manufacturing
environments, present large uncertainty potential (Olivetti 2010). Other opportunities for
uncertainty include boundary and scope delineation, functional unit, and goal definition.

Quantification of uncertainty

2 For the purposes of this thesis, we evaluate only one impact category, global warming potential (GWP 100a). This method still
contains sources of uncertainty but perhaps not as great as multi-impact methods.
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Efforts to quantify uncertainty are nascent. In practice, there is debate over the effectiveness of
various methods to obtain and calculate required parameters and metrics (Sugiyama et al. 2005).
Heijungs et al. classified methods of processing uncertainty as the following (Heijungs and
Huijbregts 2004):

* parameter variation/scenario analysis (a few different models or datasets are chosen,
often to investigate extreme scenarios);

* sampling methods (including Monte Carlo, which is the most common, but also including
Latin hypercube sampling);

* analytical methods (explicit mathematical expressions for distributions of the model
results, use of which is based on first order approximation of Taylor expansion of the
underlying model); and

* non-traditional methods (such as fuzzy set theory, Bayesian methods, non-parametric
statistics, neural networks).

Basset-Mens categorized methods to quantify uncertainty as stochastic analysis, scenario
analysis and statistical analysis (Basset-Mens et al. 2006). Stochastic analyses require making
assumptions about correlations between parameters and the probabilistic distributions around
parameters, which are not often available (Basset-Mens et al. 2006). Statistical analyses may
require a high mathematical level.

Stochastic analysis

For stochastic analyses, ISO 14044 guidance suggests applying either ranges or probability
distributions to determine uncertainty in the results (ISO 2006¢). This document also suggests
specific evaluation techniques, including gravity analysis (Pareto analysis), uncertainty analysis,
and sensitivity analysis. Quantification of uncertainty is recommended by BSI specifications but
not outlined in detail (BSI 2008).

Monte Carlo is a sampling technique whereby a sample of model results is generated, and
statistical properties of the sample such as mean and standard deviation provide an indication of
the location and variance of the population parameter (Heijungs and Sun 2002). Monte Carlo
provides stochastic results which are not exactly reproducible. The number of trials is not greatly
affected by the number of uncertain input parameters, and is only determined by the required
accuracy of the output distribution. Often only a few hundred trials will suffice (Heijungs and
Sun 2002). Monte Carlo and similar approaches aim to explicitly incorporate uncertainty in LCA
whereas other approaches may aim to simply reduce uncertainty in the analysis (Heijungs and
Huijbregts 2004). The use of Monte Carlo simulations is recommended to focus the effort used
to understand parameter uncertainty around the most sensitive parameters so that the most
important sources of uncertainty may be addressed (Heijungs 1996; Maurice et al. 2000;
Frischknecht et al. 2007).




Hertwich applied an uncertainty framework developed by Finkel which included four types of
uncertainty and four corresponding methods for evaluation: Monte Carlo was used to assess
parameter uncertainty, comparison of calculations for various geographic regions was used to
assess variability in landscape parameters, comparison of values under open and closed system
boundaries was used to assess decision rule uncertainty, and case studies were used to assess
model uncertainty (Finkel 1990; Hertwich et al. 2000).

Perturbation theory has been proposed in relation to I/O, and is the study of the effects of
perturbations of coefficients of equations on solutions to the equations (Heijungs and Sun 2002).

Estimation of probabilistic distributions

There are few established rules for fitting probability distributions to unit process data, and
solutions vary. The choice of correlation coefficient does not appear to have established rules,
either. One study assigned 0.5 for electricity, 0.3 for steam, and 0.1 for cooling water (Sugiyama
et al. 2005).

Probability distributions ranging from normal, binomial, uniform, triangular, pert and lognormal
may be found to be the best fit. The decision may be informed by expert opinion, goodness of fit
statistics, or precedent (Sugiyama et al. 2005). Because the form of probability distributions is
often unknown for individual parameters, Geisler chose to consistently use lognormal
distributions to avoid bias in distribution choices, because it yields positive values, and its long
tail is likely representative of many parameters (Geisler et al. 2005). The ecoinvent Overview
and Methods document cited Hofstetter 1998 for recommending the use of lognormal
distributions in lieu of normal distributions as more realistic in approximating the variability in
fate and effect factors used in risk assessment and impact pathway analysis (Hofstetter 1998;
Frischknecht et al. 2007). However, other analysts have chosen to bias the decision based on
their judgment (Sugiyama et al. 2005).

The choice of distribution may be based on the number of data available. A uniform distribution
may be used when two data points are available, a normal distribution for three or more
relatively unskewed data points, and a triangular distribution where three or more data points
have apparent skew. The ecoinvent database was developed based on literature by applying the
Pedigree Matrix approach, a method to quantify qualitative sources of uncertainty (Sugiyama et
al. 2005; Frischknecht et al. 2007). Semi-quantitative uncertainty factors (also known as the Data
Quality Indicator (DQI) approach) may also be useful if only one quantitative data point is
available (Weidema and Wesnas 1996; Frischknecht et al. 2007). DQIs incorporate the
following criteria and may be used to inform the strategy around data collection for LCA
(Weidema and Wesnzs 1996):

* uncertainty (spread and pattern of distribution),
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* reliability (depending on the methods used for measurements, calculations, assumptions
and quality control of data),

* completeness (number of data collection points and periods and their representativeness
of the total population),

* age (year of the original measurement),

e geographical area for which the data is representative, and the

* process technology or technological level for which the data is representative.

Since data development methods vary from database to database, approaches for quantifying
uncertainty should be carefully vetted. Heijungs raised the important point that if probability
distributions are to become a standard and useful part of LCA data, it will be necessary to
solidify the way uncertainty data is described. For example, in representing a uniform
distribution, one must choose between specifying one of the three options: mean and width,
mean and half-width, or lowest and highest value (Heijungs and Huijbregts 2004; Heijungs and
Frischknecht 2005). Williams et al. cited Lloyd and Ries for showing that precision may not be
possible with current LCA and footprinting methods, concluding that if more than one data point
are available, all should be used to communicate uncertainty of underlying data (Lloyd and Ries
2007; Williams et al. 2009).
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1.3 Literature review: Improving robustness of streamlining measures

The uncertainty issues in environmental evaluation related to data and modeling are intensified
in streamlined measures. However, the literature on streamlining measures lacks discussion of
how robustness may be maintained given potentially significant uncertainty; specifically, the
extent to which these streamlining approaches amplify uncertainty and how to identify and
address aspects of the product class contributing most to that uncertainty.

Despite its potential importance, uncertainty analysis is often avoided because it may require
knowledge of or making assumptions around parameter correlation and probabilistic
distributions of each parameter; information which may be hard to come by (Basset-Mens et al.
2006). We see it as our research contribution to address such uncertainty issues in streamlining
efforts. This thesis attempts to investigate these uncertainty issues in streamlining approaches
including use of both qualitative and quantitative information, and reliance on secondary data
until primary data is needed as determined by a screening assessment.

Because quantitative, primary data may not be available to represent certain activities, it may be
helpful to leverage qualitative or secondary information to estimate inventory or impact data. For
instance, modeling transportation activities may require data on distance traveled, mode of
transport, and unit allocation of those impacts. These data need not be measured directly in order
to evaluate them; they may be estimated by gathering qualitative data from the supply chain,
website information, prior knowledge, literature, or database proxies. If such data prove to be
key contributors of impact uncertainty, they may be targeted for specificity. This research aims
to account for all potential uncertainty in data to inform the prioritization of primary data
collection by leveraging secondary data.

Likewise, this research places heavy emphasis on the use of screening assessments to triage
activities and materials based on this secondary data. The screening model will incorporate
uncertainty estimates in the form of probabilistic density functions. The results of the screening
assessment will be used to establish a hierarchy of priority areas where uncertainty needs to be
addressed in order to make quantitative evaluations. Uncertainty will be addressed through
targeted evaluation and data collection.

This research does not attempt to leverage the learning algorithm work, and much of the
methodology, especially the literature review and screening assessment, will need to be redone
for even slight product variants. However, this work is intended to be modular and re-applied to
related products that may share similar life cycle phases or activities. The resulting LCD model
from this research is intended to be reused for rapid evaluation of LCD classes until activities
require updating due to evolving technologies and generations, geographic changes, or product
design modifications. Although not the focus of this thesis work, but important to the larger




research effort, regressive algorithms will be developed for certain key activity impact drivers,
relating them to easily-known product attributes and approximate impact, for facilitated
evaluation of design options.

Standardization and labeling efforts would benefit from consistent methods of identifying,
quantifying, evaluating and reducing uncertainty to apply to streamlining efforts. In this thesis,
we propose to identify the main contributors to impact uncertainty when using streamlining
measures. The methodology applies existing data and simple, conservative probability models to
stochastic analysis methods such as Monte Carlo simulations. These simulations prioritize
product activities based on leverage in overall uncertainty.
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1.4 Larger research project

This thesis work is part of a larger research project to reduce the resource intensity of
environmental evaluation by mapping characteristics (or attributes) of generic or proxy products
to environmental impact. These correlative algorithms determine changes in impact based on
easily-known or relevant product attributes. These product-attribute-to-environmental-impact-
algorithms (PAIAs) are based on an average bill-of-materials acting as proxies for specific
products. The PAIAs link a set of product attributes (e.g., type of display module, size of display,
type of memory, area of printed wiring board (PWB)) to a an average bill-of-activities and
finally to the resulting environmental footprint (Kirchain 2010). Such algorithms streamline the
evaluation of impact and may be help to inform early design decisions. The PAIA methodology
has initially focused on laptops as a product of interest and on GWP as the environmental metric.

To this end, it is the focus of this thesis research to develop a consistent, streamlined approach to
identify the activities and attributes around which algorithms should be developed, based on their
contribution to impact uncertainty. The proposed methodology is applied to the case study of
LCDs, a relevant and interesting component of laptops for which streamlining is desired.




1.5 Central research guestion

Given the urgency for environmental evaluation of complex products and limits on resources,
streamlined measures of evaluation are desired. However, uncertainties in data and modeling
undermine the robustness of streamlining measures, as uncertainty may compete with design
differences. These challenges are especially pronounced for complex products such as IT with
potentially high spatial, temporal, and source/object-related variability.

Our research aims to address these uncertainty issues in streamlining efforts to improve
efficiency and effectiveness of environmental evaluation. Namely, given the high levels of
uncertainty that exist when streamlining measures are used, how effectively can one identify
high impact activities for a life-cycle of interest?

This thesis will explore methods to identify high impact activities for a streamlined assessment
with a high degree of inherent uncertainty. Furthermore, considering those high impact activities,
this thesis attempts to answer a key streamlining question: how much information specificity
about these activities is required to generate an assessment result with sufficient resolution (i.e.,
to differentiate alternatives under consideration)? The first part of this question defines how
much streamlining of the analysis is possible. The latter part constrains this research approach to
analyses that produce results that are useful to inform the question at hand.

In answering this question, this thesis will evaluate the impact of incremental information on the
resolving power of the resulting assessment. This information will also be used to systematically
comment on the limitations and possibilities associated with discrimination between product
classes informed by an evaluation method of this type.




2. METHODOLOGY

In Chapter 1 we discussed challenges associated with conventional environmental analysis tools.
Evaluation measures developed in response to these challenges were then described. Figure 2
provides a visual representation of such measures, given the tension between specific and
comprehensive data collection efforts to achieve a sufficient LCA result (Kirchain 2010). The
approach to achieve a sufficient LCA result by pursuing specific, precise data, and then scaling
data to develop a comprehensive system model may be represented by the red arrow. An
alternate approach (streamlining), represented by the green arrow, involves first collecting
existing data to represent a comprehensive picture of the system, accounting for necessarily high
uncertainty, then screening for areas which contribute most to total uncertainty, and then
specifying them in more certain detail. We feel our research contribution has been to address

uncertainty issues in such streamlining measures.
4
Idealized
@(’% Goal
o J

ComprehensivenessA

Screening

Results accurate

Targeted resources ™ 3

Significant uncertainty

alein :
5655095 Results precise

Resource intensive

Extensive supp\'ler interaction

——

Omissions indefensible

Specificity
Figure 2. An approach to streamlining LCA is represented by the upper green arrow (Reproduced
from Kirchain 2010)

A main goal of this research was to investigate the viability of streamlining to enable effective
and efficient environmental evaluation of products, specifically those in the IT industry. Another
goal was to identify key drivers of uncertainty. One way to investigate key drivers of overall
uncertainty is proposed in this chapter’. Focusing resources on areas of uncertainty by
specifying, or resolving them reduces overall impact uncertainty, making the impact distribution

3 We also evaluated potential methods of hotspot, or contribution, analysis including use of stochastic impact estimation to
calculate the percent of trials for which an activity contributes a percentage of the total impact burden. This thesis document does
not focus on that analysis.




more distinct. But how much uncertainty reduction, or resolution, is necessary to yield a useful
result?

The extent to which activities are to be resolved depends not only on resources (time, money,
analytical tools) but our tolerance for error. This error can also be described as the rate at which
modeled results incorrectly identify the product with the lower environmental impact. This false
signal rate is defined as the percentage of total scenarios that an environmentally-favorable
product will be incorrectly labeled un-favorable based on a core assumption: the mean of the
environmentally-preferred product is less than that of an alternative.

This concept can be illustrated with probability density functions for impacts associated with
product classes® 4 and B, where 4 may be a 14” LCD and B may be a 15” LCD, and ug > ua.
Based on this relationship between the means, we infer that 4 is the environmentally preferred
option to B a majority of the time’, though with some error rate because the two populations’
impacts are not completely distinct. This false signal (FS) rate is represented by the area of
overlap in Figure 3. Reducing uncertainty associated with the key drivers of environmental
impact tightens the distributions and reduces the false signal rate.

Resolution analysis:
Ability to differentiate

14" screen 15" screen

Screen size attribute
example

v

Two metrics of interest: difference in the means
and false signal rate: pair wise comparison

Figure 3. False signal rate represented by area of overlap of two impact probability density
functions

* Product class is the level of categorization we are interested in, as opposed to a more specific level such as SKU or less specific
level such as product type (e.g., laptop).

5 Goedkoop et al. have evaluated distribution comparisons for two products by calculating the difference distribution (B minus
A). If the difference distribution is largely positive, B has a higher impact a majority of the time (Goedkoop et al. 2008).




A practitioner or company may tolerate a false signal rate of 10% (i.e., an accuracy rate of 90%)
to produce a sufficient result and spare the resource intensity required to achieve a higher
accuracy rate. It should be kept in mind that 100% accuracy is not realistic as we can neither
represent each product’s life cycle with complete accuracy using proxy data, nor could we count
on primary data to represent a product with complete accuracy.

We apply this false signal rate metric to evaluate the number of activities to resolve. The
proposed streamlining methodology is outlined below, including building a screening model with
existing, low-fidelity data, performing probabilistic triage using a conservative test to develop a
priority list of activities to target, then specifying those priority activities to reduce uncertainty
and understand our ability to discriminate classes or scenarios. This chapter provides a
generalized approach to the methodology, whereas the next chapter applies the methodology to
evaluate LCD classes and discuss the nuances associated with practical application of the
method.

2.1 Built an activity screening model

* Performed a literature review to create a comprehensive checklist of life cycle phases,
components, and activities to represent in the screening model.

* Compiled existing data from LCAs, commercial LCA databases, published academic
literature, and industry data. Three types of information were essential to create the best
available estimate of environmental impact:

a.) life cycle processes associated with the product,
b.) bill of activities (BOA) with their associated quantities, and
c.) uncertainty associated with processes and BOA

2.2 Set goals and established priority activities using a stylized self-test

* Determined desired accuracy rate and difference threshold, given resource constraints,

* Applied a stylized “self-test” using stochastic methods (Monte Carlo simulations) to
triage activities based on probabilistic contribution to overall uncertainty. This step
resulted in a prioritized list of activities to target for efficient resolution of product
classes.

2.3 Performed a streamlined assessment by specifying high-impact activities

* Specified priority activities until desired accuracy rate was obtained using Monte Carlo
simulations. This step identified the number of streamlining elements (i.e., unresolved
activities) necessary to address in order to effectively evaluate scenarios.




2.1 Built an activity screening model

2.1.1 Performed a comprehensive literature review and a created checklist of activities

The objective of this step was to develop a comprehensive model of life cycle activities by
creating a checklist of things that must be accounted for in the probabilistic triage. The deliberate
act of creating a checklist helped to reduce data availability- and modeler-bias. Here, low-fidelity
data were acceptable as we balance resources with urgency of result. The checklist was
populated with information gathered in the literature review to develop a comprehensive picture
of the life cycle phases, components, subcomponents and activities that must be modeled,
including transportation, materials procurement, materials processing, manufacturing, retail, use,
and end-of-life (EoL). Retail and Eol were considered at the product (laptop) level in the larger
research effort. Use was considered both at the LCD (component) level and the product level.
Environmental hotspots highlighted in previous work were noted for thorough consideration in
the model.

2.1.2 Leveraged existing bill of activity and uncertainty data

The checklist of life cycle phases, subcomponents, and hotspots identified in the previous step
was populated with low-fidelity, existing data. Data included BOM, BOA, as well as cut off
criteria, product characteristics to be used in the larger PAIA effort of mapping impacts to
product characteristics to facilitate analysis, and life cycle inventory/unit process data. The BSI
recommends including materials and activities that contribute at least one percent of total impact,
up to a total which should not exceed five percent of impact (BSI 2008). At this stage, it was
difficult to make this cutoff assessment/judgment, so we attempted to include all materials and
activities for the screening until they could be defensibly omitted. Datasets considered include
commercially available such as ecoinvent and GaBi electronics databases (PE International
GmbH 2006; ecoinvent 2010), publicly available such as NREL (NREL 2008), existing OEM
and academic LCAs (CMO ; Williams et al. 2002; Krishnan et al. 2008; AUO 2009; Gutowski et
al. 2009), and other publicly-available data (Socolof et al. 2001b; Horowitz 2003; Kobayashi et
al. 2009; IEA 2010). A range of regional electricity fuel mix proxies were used to represent
electricity impacts associated with manufacturing, machining and product use. Country-level
electricity grid fuel mix proxies were provided by ecoinvent and GaBi electronics databases, as
well as International Energy Agency and WRI reports (PE International GmbH 2006;
WRI/WBCSD 2007; IEA 2009; ecoinvent 2010; IEA 2010). Other activity estimates were
developed through expert consideration by the modeler. A concerted effort was made to capture
all realistic uncertainty and variability by considering extreme conditions (water, rail, truck or air
transport), thoroughly mining databases, investigating manufacturing and grid market data, and
using government or third-party usage studies. Any and all data points were accounted for in this
initial modeling step so that uncertainty was represented as thoroughly as possible. Maurice et al.




notes that, “LCA may be used to compare different processes or products in relative terms only. The aim is to
attempt to identify the best option rather than to have the best estimation of the confidence
interval of the results. Therefore a rough overestimation of uncertainty should be achieved in a
first step,” (Maurice et al. 2000). Prior screening efforts have assigned a normal distribution to a
single data point, a uniform distribution to two data points, and a triangle distribution to several
points when a mean value can be inferred. Often in this research, extreme scenarios were
estimated and thus uniform distributions were chosen as a model for many activities.

Before performing the probabilistic triage on the unresolved data to develop a hierarchy of
activities, correlations between activities and attributes within products were considered in the
model. We assigned mass and size a moderate positive correlation of 0.5 and backlight bulb
number and size a weak positive correlation of 0.2. A positive correlation coefficient greater than
zero and less than one may be considered for such direct relationships.

Once the screening model was populated with BOA and uncertainty information, these activities
were triaged based on probabilistic contribution to overall GWP.




2.2 Set goals and established priority activities using a stylized self-test

Environmental impact may be evaluated using a number of various metrics. Hotspots may be
evaluated through a contribution analysis by estimating impact with stochastic trials and
calculating the proportion of trials each life cycle phase or specific activity impact meets a
percentage threshold. Our approach uses stochastic methods to triage activities based on
probabilistic contribution to variance. Once priority activities were identified, uncertainty for
those activities was reduced until accurate scenario comparisons were possible.

2.2.1 Determined acceptable error rate and difference threshold

Jumping ahead to Section 2.3, the extent to which uncertainty was reduced in the streamlining
assessment depended on the resources available to expend and the level of error tolerated.
Therefore, it was critical to have chosen a specific error rate for that analysis. For the purposes of
establishing the priority activity list the streamlining assessment will implement, it was important
to have a sense for that desired error rate so that a sufficient number of priority attributes were
included on the list, in order to meet (or exceed) the target in subsequent steps.

Another decision was the “difference threshold”, or level of granularity, below which we were
no longer interested in attempting to discriminate products. We assumed there is a threshold
distance between the mean that falls below a level of granularity that is affordable to measure or
meaningful to consumers.

Convergence on these metrics should be set in a larger conversation with project participants,
consumer research representatives, and modelers, based on further information about meaningful
levels of granularity of information to consumers and how such meaning can be clearly
communicated on labels for consumer goods. The costs of measurement will also need to be
considered in this decision.

2.2.2 Identified priority activities using stylized self-test and probabilistic triage

The purpose of this step was to identify the activities in our model with the highest leverage in
overall result. These high priority activities were targeted for specification (thereby reducing the
uncertainty bars around them) to reduce uncertainty of the result to the desired false signal rate.

The data and uncertainty information gathered for the unresolved population of LCDs were
applied to Monte Carlo simulations (using Crystal Ball software) to produce stochastic estimates
of total global warming potential impact, as well as sensitivity parameters reflecting how
changes in each assumption (activity) affected overall impact. The sensitivity analysis and our
judgment about the practical feasibility of collecting data for the activity informed the list of




priority activities for targeted data collection to reduce uncertainty. To most conservatively
evaluate high leverage activities, false signal rate was calculated by comparing an impact
distribution (for many thousands of trials) to a benchmark: the same distribution displaced by the
difference threshold established earlier. This displacement distance was defined as a percentage
of the magnitude of the mean, i.e., shifting the mean of 4 (u4) by 10%. This conservative test
was defined as the stylized self-test, and this term will be used throughout the remainder of the
methodology, analysis and discussion.

Magnitude and uncertainty determine which activities have high leverage in overall uncertainty
(Geisler et al. 2005). The Monte Carlo simulations produced sensitivity parameters for all
activities/assumptions, called contribution to variance parameters, which indicated the sensitivity
of the overall impact result to changes in each activity/assumption®. Beginning with an
unresolved product model, simulations were executed and the sensitivity analysis was produced.
The activity with highest contribution to variance became the priority activity for resolution. We
resolved the activity tightly, documented the activity on our priority list for later use, and then re-
executed the Monte Carlo simulations to refresh the sensitivity analysis. We refreshed the
analysis because results were prone to change with each resolved activity due to correlation
between activities. We continued this process to make a list of priority activities that had been
resolved until the false signal rate was reduced to at least the target false signal rate.

The formulation for this false signal rate (FS) is expressed in Equation (1).
false signal(FS) = P(B < A) (1)

The false signal rate can be calculated directly from Monte Carlo simulation results by
comparing scenario pairs 4 and B where ug > p4 and calculating P(B < A)7, or the false signal
rate can be analytically derived (FS* will be used to denote the analytically derived false signal
rate). For the purposes of the self-test, the analytical method will be used. There is a body of
literature to calculate P(B<A) analytically given that the impact distributions resemble, or can be
transformed to resemble, common probability models such as normal, beta, exponential, gamma,
couchy, and Weibull (Cook 2008; Cook 2009). Based on u, and the coefficient of variation® of
A, (COV,), the necessary distance between u,4 and up can be derived for a target false signal rate,
FS*. Conversely, F'S* can be derived given a desired distance between u4 and u3.

For example, if B is the product to which we are comparing 4 and we know up > 14, the standard
deviation of 4 is equal to that of B (64 = 035), and 4, B, and Z are normal random variables

¢ Spearman rank order coefficient may be used in Monte Carlo to determine overall model uncertainty sensitivity to each
parameter (Evans and Olson). An alternative is the sensitivity parameter in a Taylor series expansion to determine the parameters
that contribute to overall uncertainty (Quantis 2009; Hong et al. 2010).

7 The direct, pair-wise method of calculating FS will be used to compare multiple scenarios in Section 2.3.

& Coefficient of variation is equal to the standard deviation divided by the mean and is a normalized metric of uncertainty.




(A,B ~N(u, 3,0, B)), we can derive the distance up must be from x4 in order to discriminate

the two populations with FS* This distance will be denoted (k-1)u4, where

k=te 2)
U,

FS* is defined as the probability with which the standard normal random variable Z is less than
zero, where Z is the difference between random variables B and A.

FS§*=P(Z=B-A4<0) o0 2008) @

In the subtraction of independent random variable 4 ~ N(u,,0,) from B~ N(ku,,0,) the mean

of 4 is subtracted from that of B whereas the variances are additive, resulting in the following
function of Z.

2 {(k-1), 30, "

The normal cumulative distribution function F(x) at Z =0 can be formulated as the following.

F(0,(k =1, N2COV, 1, ) (5)

Cook provides the following formulation for P(B < 4) which we defined as F'S* in Equation

(3), where capital phi (@) is the cumulative distribution function of a standard normal (Cook
2008).

—P(B<A)=® % (6)
(O’A +UB)
(Cook 2008)

We can rewrite Equation (6) in terms of the error function erf°, which is a scaled and translated
form of ® :

=F(x,,u,or)=<D(x_‘u (7)

J-aler(5)
o o (Abramowitz and Stegun 1970)

® The error function can be reformatted as the following for ease of computation in Excel,
erf(X)=2P (X \/; ) —1, where P is replaced with the normsdist standard normal function (whereas the function ERF in

Excel contains a bug for some ranges of x) (Abramowitz and Stegun 1970; ExcelBanter 2011).
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Replacing x, ., o with the parameters from Equation (5) results in the following formulation for
FS*based on k and COV,.

FS*=—1—(1+erf( L=k )J (8)
2 2C0V,

Using Equation (8), FS$* can be analytically derived for normally (or almost normally)
distributed data if the distance between the means and cov, are known. As mentioned earlier, the
false signal rate may also be derived directly from the Monte Carlo simulation data by
comparing scenario pairs 4 and B where up > u, and calculating P(B < A). Although the analytical
solution is less accurate than direct comparison of scenario pairs because the analytical method
requires fitting the data to a probability model, it provides insights into what drives this type of
result. In particular, we can see that spacing (k-1)u4 grows linearly with COV and is directly
related to FIS*.




2.3 Performed a streamlined assessment by specifying high-impact activities

2.3.1 Streamlined assessment of product classes by resolving activities until target was
met

In the previous section, the stylized self-test enabled the identification of a priority list of
activities. To establish how many of these key attributes were necessary to enable the
discrimination of two different product classes or product scenarios, the priority activities were
resolved one by one (to be sure we minimize resource expenditure), specifying each activity to
nearly a point estimate, at two different levels (to reduce the total number of scenarios to be
compared for this illustration), using the pair-wise calculation for the Monte Carlo data, until the
target FS was achieved. Specificity was based on the modeler’s judgment of measurement
practicality. Some activities were tightly resolved; for instance, screen size was deemed possible
to resolve at near point estimates, such as 14" and 15”, which could be mapped to corresponding,
precise, near standard areas. On the other hand, manufacturing electricity fuel mix was deemed
less possible to specify, so a wider range is more realistic.

Tradeoffs may be considered between the number of activities resolved and the level at which
they are resolved: if high precision is possible, fewer priority activities will need to be targeted.
If precision is difficult and wider specification ranges are helpful, then more activities may need
to be targeted. Results may vary depending on the levels chosen for evaluation. In the screen size
example provided above, if two highly similar sizes were chosen (e.g., 14” and 15”), a
conservative level of resolution would be required. If two quite different sizes are chosen (e.g.,
10.1” and 17”), the level of resolution required would be less stringent given highly similar
product classes. This effect is compounded by the multitude of activities resolved. For the
purposes of this thesis, the conservative estimate was not stringently adhered to, but we tried to
err towards it.

Before executing the Monte Carlo simulations on the unresolved data, correlations between
products were considered. Some activities were not product-dependent or could not be known a
priori. For such independently-varying attributes, we considered them to strongly correlate
between products. An example was the use phase electricity fuel mix because we could not
determine in advance how the use phase electricity mix would vary between products or
scenarios. Therefore, this activity was modeled not to contribute uncertainty to indefensibly
favor any scenario. To represent these strong correlations in the Monte Carlo simulations, we
modeled each at only one level, using a mean or hypothetical value, removing uncertainty
parameters, so that undue imbalance of uncertainty between products would not occur.

By specifying a couple dozen activities at two levels each, a large number of product scenario
permutations were produced in the Monte Carlo simulations, resulting in a large number of




false signal rate calculations. Due to this large number of product scenarios under evaluation, the
primary metric we have chosen to represent the performance of the model is the average FS.
This is the average false signal rate of scenario comparisons for which uz > 1,4 and the difference
threshold (between up and u,) were met, with each permutation given equal weight in the model.
Other metrics will be discussed in Chapter 4.




3. ANALYSIS: CASE STUDY FOR LIQUID CRYSTAL DISPLAYS

In this chapter we demonstrate the application of the methodology to a complex IT product class
for which rapid evaluation tools are highly sought: LCDs modules.

Liquid crystal displays are one type of IT product for which improved efficiency and
effectiveness in environmental assessment is desired. The time required to perform an LCA for
an LCD may exceed the lifespan of the product, manufacturing technology, or materials used due
to high turnover and product evolution in this industry. Other electronics that are similarly
challenged include desktops, servers, televisions, and cell phones.

In the first section of this case study, a BOA and associated uncertainty were compiled. Then, to
identify the main contributors of overall uncertainty, a sensitivity analysis was produced using
Monte Carlo simulations. The main drivers of uncertainty included not only ostensible product
activities but activities associated with manufacturing processes and other “contextual”
characteristics. Then, by targeting/specifying 22 of the priority activities (out of almost 50 total
activities) we were able to achieve a false signal rate of 9%. This case study demonstrates that
activity prioritization and streamlined assessment are possible despite high uncertainty.

Background and prior evaluation for liquid crystal displays

This LCD analysis evaluated materials and manufacturing for a specific LCD technology:
twisted-nematic (TN) amorphous-silicon (a:Si) thin-film transistors (TFTs) within the active
matrix (AM) LCD type. In this thesis, the generic term “LCD” will refer to this specific
technology because the available literature emphasizes this most commonly manufactured and
purchased type of laptop display. The TFT LCD technology makes up the majority of market
share for LCDs, for which 2007 revenue was projected between $77.5 billion of $98 billion of
the flat-panel display (FPD) market. The TFT LCD materials market was expected to grow at a
compound annual growth rate of 13% between 2004 and 2009 (DisplaySearch 2006). The other
leading light modulating technology, in-plane switching (IPS), was not explicitly excluded from
the analysis though its processing steps differ from TN and has different backlight energy
requirements to achieve performance similar to TN. We considered these differences to be too
granular to be explicitly modeled for the purposes of this thesis; further investigation between the
technologies will be evaluated in the larger research project. In addition, IPS is a
design/performance attribute and is not typically a negotiable choice. Figure 4 provides a cross-
sectional representation of a liquid crystal cell before subcomponents are added. Subcomponents
include the backlight unit (BLU) which may use either cold cathode fluorescent lamps (CCFL)
or light emitting diodes (LEDs) as light sources, as well as PWBs, ICs, casing, and wires
(Lueder 2010).
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Figure 4. Cross-section of an assembled liquid crystal cell (Reproduced from Lueder 2010)

Existing LCA results from Dell and from the ecoinvent database highlight the potential
significance of LCDs in the overall environmental footprint of laptops (ecoinvent 2010;
O'Connell and Stutz 2010). However, the evaluation of this component presents a challenge due
to the great complexity of LCDs as well as the age of existing life cycle inventory data. To
illustrate the complexity of the product and challenge of comparing existing studies, some
examples of bills of materials (BOMs) are listed below in Table 1 for TFT LCDs. These data are
from a Chimei-Innolux (CMI) Product Category Footprint (PCF) for a 15.4” module (of
1680x1050 resolution), a European Commission energy-using products (EuP) 2007 evaluation of
the industry average of best-selling 17" LCD monitors (of 1280x1024 resolution) in 2005, and
Socolof and coworkers’ 2001 analysis of a 15 LCD monitor (of 1024x768 resolution) (CMO ;
Socolof et al. 2001b; EuP 2007). The latter reference is from which the ecoinvent LCI is derived.
Here, the distinction between monitors and modules should be highlighted. Monitors are
commercially-available, stand-alone products with a display screen and associated electronics
encased in a single housing that is capable of displaying output information from a computer via
one or more outputs. To qualify as a monitor under Energy star, the screen must be larger than 12
inches (EuP 2007). Modules, however, are integrated into a computer or laptop, and the
computer and module function as a single unit which receives AC power through a single cable
(EuP 2007)"°. This report focuses on modules, as they are integrated component of laptops.
However, monitors will also be discussed due to the overall similarity in the materials and
manufacturing and because more data were available for monitors.

The three BOMs presented in Table 1 demonstrate the complexity of LCDs. For example, the
monitors contain metals such as aluminum and stainless steel for the frame, while the module
does not. The quantity and type of plastic varies widely between the three BOMs. Some BOMs
may contain itemized subcomponents such as printed wiring boards (PWBs), CCFLs and LEDs
while others have disaggregated those subcomponents by material. This table highlights the

1% The Swedish Environmental Management Council reports the following technical specifications for an LCD Product Category
Rule (PCR): resolution, diagonal size, light modulating mode (e.g., TN, IPS), weight, number of colors, and back light type
(SEMC 2005).
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challenges of comparing existing studies and the need to develop consistent methods for the
evaluation of environmental impact.

Table 1. High variability exists between LCD BOMs

Material Unit Comments 15.4" LCD 17" LCD 15" LCD
module monitor monitor
(CMO) average of best- | (Ggcplof
selling in 2005
(EuwP 2007) | 3l
2001b)
Inputs
aluminum kg 0.039 0.13
stainless steel kg bezel 1.854 2.53
copper kg 0.19
iron kg 0.05119 1.165
panel glass kg panel glass 0.22636 0.308 0.59
ITO kg 0.000578 0.0005
fiberglass kg 0.01476
E-glass fiber kg 0.12
aramid fiber kg 0.0065
powder coating kg 0.001
plastics: kg TAC, polarizer 1.78
LDPE kg Panel protector film 0.164
PP kg
PMMA kg | light guide, diffuser 0.13311 0.153 0.45
PET kg polarizer, etc 0.06973 0.06
PC kg 0.0165 0.385 0.52
rubber kg 0.00036
EPS kg 0.279
PVC kg 0.043
ABS kg 0.679
PA kg 0.422
styrene-butadiene copolymer kg 0.36
PEE kg 0.3
triphenyl phosphate kg 0.09
big caps & coils kg 0.041
slots/ports kg 0.037
solder (SnAg4Cu.5) kg 0.0076
solder (60% tin 40% Pb) kg 0.04
polyimide alignment layer kg 0.0005
color filter pigment kg 0.04
thin film transistor kg 0.01
Subcomponents brought into the LCD facility
LCD screen m’ kg 0.091
PCBA & components Kg —_ 0.37
PWB 1/2 lay 3.75 kg/m’ kg 0.03
PWB 6 lay 4.5 kg/m® kg 0.02
ICs kg/# logic type
( 39 )




ICs, 5% Si, Au kg 0.013 |
ICs, 1% Si kg 0.02 |
BLU kg — j
lamp (CCFL) kg | only the bulb? 0.00089 f 0.0019
SMD & LEDs average kg 0.011
glass for lamps kg 0.026
liquid crystals kg 0.0023
chassis kg
stainless steel kg bezel
wire & cables kg 0.00144 0.23

Several LCA studies for LCDs are summarized in Table 2 to demonstrate variability in scope,
assumptions, and results. These studies vary with regard to life cycle phases evaluated, year the
product was manufactured (not always explicitly stated), year of study, display size, and product
type (module versus monitor). Not surprisingly, the results vary widely, with estimated primary
energy demand and global warming potential (GWP) varying from 624 to 2,840 MJ and 38 to
593 kgCOae, respectively, for a range of life cycle phases. Such variability motivates efforts to
provide structure to LCA methodology and identify the primary drivers of impact so that those
drivers can be thoroughly analyzed and communicated in LCA. Furthermore, the lack of
consistency across these studies diminishes the ability to compare results. For instance, although
the Socolof and O’Connell studies evaluated a similar set of life cycle phases (manufacturing,
assembly, logistics, use and EoL), their results are quite different. Different use phase
assumptions and data may have contributed to such divergent results. O’Connell assumed a
lifetime of four years whereas Socolof assumed a lifetime of at least four years for some LCDs
and six and a half years for others.

Table 2. Data sources for primary energy demand and GWP impacts of LCDs

Functional unit Screen size | Primary GWP Source Scope
(FU) *) energy (kg CO2eq/FU)
(module/monitor) (MIJ/FU)
all life cycle
< (Socolof et al.
TFT-LCD monitor 15 2,840 593 2001b) phases
production (use
TFT-LCD monitor 17 985 55 (EuP 2007) and EoL are also
available)
all life cycle
(O'Connell and
TFT-LCD module 14.1 N/A 38 Stutz 2010) phases
production,
TFT-LCD module 15.4 624.4 20.8 (CMO) assembly, and
transport between

The most comprehensively documented monitor study was sponsored by the USEPA in 2001
and assessed the life cycle impacts of cathode ray tubes (CRTs) and LCDs but it is now dated
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(Socolof et al. 2001b). Nevertheless, the Socolof report provides useful manufacturing and
materials information which serve as the base of our research efforts. The report provides
decision rules for establishing the inventory list for an LCA, and it is the data upon which we
base much of our screening analysis. These reports informed the ecoinvent dataset on electronics
(ecoinvent 2010).

Dell performed a product carbon footprint (PCF) for the Dell Latitude E6400 laptop using
primarily data found in the GaBi electronics database (PE International GmbH 2006; O'Connell
and Stutz 2010). The study identified four components that make up 95% of laptop GWP as the
PWB mainboard, display, chassis, and battery. O’Connell points out that despite the display’s
relatively low mass, its impact is disproportionately large. The display is considered a process-
intensive component because energy requirements and auxiliary materials are largely responsible
for the GWP (O'Connell and Stutz 2010). Although the Dell study does not state this explicitly, it
may have assumed a relatively high level of PFC abatement in LCD module production (as well
as IC manufacturing, see IC section), to align more closely with current abatement goals in the
industry.

Au Optronics Corporation (AUO) performed a life cycle carbon footprint for a 32-inch TFT-
LCD television according to BSI PAS 2050 specifications, the first evaluation of its kind for
televisions. This cradle-to-grave study revealed total emissions to be 1,255 kgCO2e, with about
40% from materials and manufacturing, 59% from use, and a small fraction from disposal,
distribution and retail (Chang et al. 2010). The study applied the IPCC AR4 GWP assessment
tool for GWP. Data included those available in Simapro 7.1 for materials, Taiwanese Power
Company electric power data, and Taiwanese Water Corporation data. The authors highlighted
the enormous resource intensity of performing this environmental footprint.

A Chimei-Optoelectronics (CMO) environmental product declaration (EPD) assessed all life
cycle phases of a 15.4” CMO TN CCFL-backlight LCD module (CMO). The study reported
several impact categories, including GWP, acidification, energy consumption, ozone depletion,
summer smog, and eutrophication. It is likely that additional EPD studies and corporate social
responsibility (CSR) reports will be produced as environmental performance becomes
increasingly used as a marketing tool for manufacturers.

Other studies have focused on specific life cycle phases or components of LCDs and modules.
Some have focused on end of life scenarios, such as the King County Literature Review for Flat
Panel Displays, Lee’s LCD Material Flow Analysis, and Lee’s study of Recycling in Washington
(KCSWD 2007; Lee 2008; Lee et al. 2009a). Other studies have focused on backlights, such as
the technical analysis of LCD backlight options (Kobayashi et al. 2009), backlight technologies
(OSRAM 2009) and lighting technologies which may be applied to LCDs (Slocum 2005).

]
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Although CRTs are beyond the scope of this LCD-based analysis, it is worth mentioning some of
the CRT assessment efforts. Kim performed an LCA of a CRT computer monitor and found that
the use phase was the largest contributor to impact (Kim 2001). Site-specific data were used in
the foreground system, while secondary data were used in the background system. Williams
evaluated the life cycle energy intensity of CRT monitors and found that overall impact was
dominated by the production phase (81%). The author recommends extending the usable lifespan
of CRT monitors by reselling or upgrading to mitigate the burdens associated with

manufacturing and disposal (Williams 2004).




3.1 Building the activity screening model

3.1.1 Comprehensive LCD literature review and checklist

The objective of this step was to create and populate a checklist of activities to account for in the
comprehensive probabilistic triage so that modeler and data availability bias were minimized. All
life cycle phases, components, and hotspot activities of interest were noted from the literature.
Existing LCD LCA literature was reviewed to form a comprehensive BOA for LCDs. Results of
the literature review can be found in Appendix C.

Checklist of life cycle phases
e Materials Processing
¢ High-tech Processing
* Transportation
e Retail (not addressed the LCD-module level but addressed at laptop product-level)

®  Use (mainly addressed at laptop-product level, although for this thesis research, LCD backlight energy demand—for both LED and

CCFL backlights—was modeled)

End-of-Life (as in the case of retail, EoL was not addressed at LCD-module level but was addressed at product-level)

Checklist of components that comprise most LCDs
* LCD array: substrate plus color filter and thin film transistor
¢ LCD cell: LCD array plus polarizers, spacers, liquid crystals, drivers
e LCD module: LCD cell plus PWBs, IC tabs, backlight unit, power supply, cables, wires

Checklist of hotspot activities (in terms of GWP)
¢ PWB manufacture: high energy demand
e IC manufacture: use of PFCs, high energy demand
e LED semiconductor manufacture: use of PFCs, high energy demand
e LCD array manufacture: use of PFCs, high energy demand

3.1.2 Existing LCD bill of activity and uncertainty data

Life cycle data for LCDs are not abundant, especially for manufacturing processes. Data were
collected and pieced together as best as possible to represent the life cycle. Standard screen
diagonal sizes 10.1, 11.6, 12.1, 13.3, 14, 15, 16 and 17” and corresponding standard screen areas
(m?) were used. In our BOA model, many activities were assumed to correlate with screen size.
Unless otherwise specified, we modeled LCD mass to correlate at 0.5 with screen size and bulb
number to correlate at 0.2 with screen size. LCD mass was estimated using Chimei-Innolux data
for LCD sizes 10.1 to 17.3”. Spatial, temporal and source/object-related uncertainties were
estimated for each activity. Summarized below are the assumptions made for the BOA, with




specific details and values provided Appendix Table 5. Unless otherwise stated, it is implicit that
most activities were modeled to correlate to screen size or mass.

Materials processing
To model materials processing activities and impacts, we evaluated material proportion, material
and machining emission factors, mass, and backlight bulb variability.

Material classes were modeled to include varying proportions of minerals (specifically
glass), metals and polymers. Within and between classes, we assumed a high degree of
variation in materials, including steel versus aluminum, and poly-lactic acid versus
petroleum-based plastic.

Material mass (kg) was modeled to vary widely and was estimated based on BOMs from
OEM surveys. It was assumed that minerals could comprise 10-30% of mass, polymers
could comprise 20-50% of mass, and metals could comprise the remaining mass.
Material production emissions factors (kgCO,e/kg) from the ecoinvent database were
used to represent the broad categories of materials described above, including minerals,
metals and polymers (ecoinvent 2010).

Material machining energy demand variability (kWh/kg) was estimated from a range of
values including injection molding, machining, and finish machining (Gutowski et al.
2009).

Material machining energy demand emissions factors (kgCO,e/kg) were modeled based
on extreme electricity fuel mixes, specifically a minimum of 0.28 kgCO,e/kWh for
California and a maximum of 1.58 kgCO,e/kWh for India (PE International GmbH
2006; ecoinvent 2010).

Backlight bulb number was estimated for edge light design rather than direct light design
because the edge design is much more common for laptop applications. Bulb number was
modeled to correlate with screen size at 0.2 unless otherwise specified. Between one and
four CCFLs are typically used (Socolof et al. 2001b) whereas an LED backlight may
have 20 diodes for a screen greater than 7 (Chien 2008) and common screen sizes
typically have between 15 and 30 diodes (Myers 2011).

Backlight bulb manufacturing energy demand (kWh/bulb) associated with manufacturing
CCFLs and LED bulbs was approximated using values for compact fluorescent lamp
(CFL) lighting and LED-SSL lighting (Slocum 2005). LED semiconductor chips were
evaluated separately under High-tech processing (below).

High-tech processing and manufacturing

To model activities and impacts associated with high-tech processing and manufacturing,
variability within LCD array, backlight semiconductor, IC and PWB primary and secondary
materials and energy were considered, including PFC type, PFC abatement levels, and PFC
degradation rates.
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LCD array manufacturing GHGs were modeled to reflect variability in gas type,
characterization factor, mass, abatement levels, and degradation rates.

o NF; and SFs were modeled to represent array manufacturing PFCs as they are
among the most potent greenhouse gases used for array production (IPCC 2007;
Krishnan et al. 2008).

o Characterization factors (kgCO,e/kg PFC) for processes dominated by SFs were
modeled at 22,800 and those dominated by NF; were modeled at 17,200.

o PFC mass (kgPFCs/m2 array) was modeled to vary based on the number of color
filter and thin film transistor layers used. A minimum value was estimated using
Intergovernmental Panel on Climate Change (IPCC) figures for LCD
manufacturing (IPCC 2006). A maximum was estimated based on a silicon wafer
process BOM for various numbers of processing steps, including deposition,
lithography and etching (Krishnan et al. 2008), as well as estimates provided by
the MSL supplier survey (MSL 2010b).

o PFC emissions abatement levels vary by fabrication facility, generation line, and
by time. Therefore, a range of extreme abatement levels were modeled between 1
and 100%.

o PFC degradation rates were estimated at 1 to 2% for SFs and 10 to 15% for NFs.
LCD array manufacture energy demand was modeled to reflect variability in high-tech
processing energy demand, mass of trace materials used, and electricity fuel mix.

o High-tech process energy demand (kWh/kg trace material) was modeled based on
analyses by Gutowski et al., including deposition, lithography, and etching
(Gutowski et al. 2009). A minimum estimate from OEM survey responses was
also used (MSL 2010b).

o Masses of trace materials were modeled to vary with processing steps and screen
size, using ancillary BOMs from the Socolof report (Socolof et al. 2001b).

o Array and cell manufacturing electricity fuel mix emissions factors
(kgCO2e/kWh) were estimated based on proxy fuel mixes for Korea
(manufacturing location of LG and Samsung) and Taiwan (manufacturing
location of AUO and CMI), modeled in equal proportions, though a market share
weighting would improve accuracy (PE International GmbH 2006; ecoinvent
2010).

Module fuel demand was modeled based on estimated fuel energy quantity and fuel mix
emissions factors.

o Module fuel energy amount (kWh/kg LCD) was modeled using a range of values
to represent variability in LCD size, module facility, and fuel type based on fuel
quantity approximations (Socolof et al. 2001b).

o Module electricity fuel mix emissions factors (kgCO,e/kWh) were modeled using
regional proxies representing impact extremes (California and India).
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* LEDs are mounted on semiconductor chips and so LED BLUs were modeled
accordingly. Variability in semiconductor area, PFC quantity, abatement, characterization
factors and degradation rate were considered.

o Area (mm?) was estimated using data for LED-SSL semiconductor chips, on the
order of 0.5 to 2.5 mm? (Slocum 2005).

o PFC quantity used per unit area (kgPFCs/mm?) was approximated using inputs of
PFCs required for 32MB DRAM IC semiconductor manufacturing (Williams et
al. 2002).

o PFC abatement level (%) was assumed to vary between 1 and 100%.

o PFC characterization factors (kgCO,e/kg PFC) for SF¢ and NF; were used, as
estimated for array manufacturing (IPCC 2007).

o PFC degradation rate was estimated at 2 to 3% for SFs and 12 to 20% for NF;.

* IC manufacturing GWP was modeled based on varying die area and PFC emissions
factors. No distinction between logic and memory was made as data was unavailable to
differentiate impacts.

o Die area (m?) was estimated to vary in number and area based on disassembly
observations of IC package size and number. A die-to-package ratio of 0.2 was
used.

o PFC emissions factors (kgCO,e/m” die) were modeled based on emissions as
reported by IC manufacturers to a 2008 industry survey (SIA 2008).

¢ IC manufacturing energy demand was modeled based on varying wafer production area
and electricity demand per wafer area. No distinction between logic and memory was
made as data was unavailable to differentiate impacts.

o Die area (m?) was estimated based on disassembly observations of variability in
number and package area of ICs. A die-to-package ratio of 0.2 was used.

o Electricity demand (kWh/m?) was modeled based on energy demand as reported
by IC manufacturers to a 2008 industry survey (SIA 2008).

* PWB GWP and energy demand were modeled based on varying PWB area and emissions
factors.

o Area (m®) was estimated to vary between 20 and 100% of screen area.

o PWB emissions factors (kgCO,e/m”) were modeled using extremes for varieties
of PWBs in ecoinvent and GaBi electronics databases (PE International GmbH
2006; ecoinvent 2010).

Transportation
To model transportation, we considered variability of mode, distance, number of legs, and
emissions factors.
* Transport distances and number of legs (km)
o Realistic minimum and maximum distances for each of the potential transport
legs were calculated, to include (a) raw material extraction to manufacturing, (b)




from manufacturing to assembly, (c) from assembly to retail, (d) from retail to
consumer, and (e) from consumer to end of life.
* Transported mass (t)

o It was estimated that the mass transported along any of the potential legs may
range from a minimum of the mass of the LCD itself to a maximum of four times
the mass of the LCD.

¢ Transport mode and resulting emissions factors (kgCOe/tkm)

o It was estimated that modes of transport carbon emissions could range from a per-
unit mass basis ocean tanker, air freight, or van. The corresponding emissions
factors for these modes were derived from ecoinvent (ecoinvent 2010).

Use
Variability of LCD-component energy demand, electricity fuel mix, duty cycle and product
lifetime were considered. Use was also evaluated at the LCD-product level (laptop) in the larger research
project at the MIT Materials Systems Laboratory.
¢ Energy demand (kW) was estimated using CMI LCD LED backlight specifications as a
minimum. This value was multiplied by a factor of 3.334 as described by Slocum to
estimate the equivalent CFL luminance, then multiplied by two to approximate an upper
extreme (Slocum 2005; CMI 2011).
e Lifetime (yr) was estimated using extreme but realistic scenarios based on literature
values (Socolof et al. 2001b; O'Connell and Stutz 2010).
* Duty Cycle (hrs/yr) was estimated using extreme scenarios of few hours of use to
maximum hours of use.
* Grid Emissions Factors (kgCO,e/kWh) were assumed to vary based on geographic
location of LCD use, so extreme regional proxies were used (PE International GmbH
2006; ecoinvent 2010).

Retail
* Retail impacts were not addressed at the component (LCD) level, but were addressed at
the product (laptop) level in the larger research project at the MIT Materials Systems Laboratory.

End of Life
* Asin the case of the Retail phase, EoL impacts were not addressed at the component

(LCD) level, but were addressed at the product (laptop) level in the larger research project at the
MIT Materials Systems Laboratory.




3.2 Setting goals and establishing priority activities for efficiency

3.2.1 Convergence upon acceptable error rate and difference threshold
A tentative target average F.S* of 10% was set by the research group. A tentative difference
threshold was set at 10% of the mean impact of the product class under evaluation (u,).

3.2.2 Identification of priority activities using probabilistic triage

The literature review and data scavenge of existing LCD data informed the low-fidelity
quantitative estimates of activities, as described in Section 3.1.2 and further summarized in
Appendix Table 5. With this comprehensive list of nearly 50 activities, we performed
probabilistic triage using Monte Carlo simulations based on a stylized self-test to identify
activities with the greatest leverage in reducing uncertainty of overall impact.

Crystal Ball software was used to facilitate the stochastic analysis. The sensitivity analysis
produced by the software, as well as our judgment about the practical feasibility of collecting
data for the activity, informed the list of priority activities for targeted data collection. In order to
most conservatively evaluate high-leverage activities, an analytical, stylized self-test was used to
calculate the F.S* and evaluate uncertainty reduction. For this LCD case study, the impact density
functions were fairly normal and therefore the analytical F$* formula presented in the
Methodology was applied. Although perfect normality was not achieved for each set of trials
after resolving an activity, we believe it would have been quite resource-intensive to attempt to
represent each function with a best fit probability model. We believe the assumption of normality
was reasonable for the purpose of this exercise.

The initial self-test for the unresolved product class unsurprisingly yielded a high F'S*,
insufficient based on the target of 10%. The contribution to variance parameters for this set
revealed the use phase duty cycle to be the activity with highest leverage in the overall result,
with a contribution to variance of nearly 22%, as shown in Figure 5 (complete sensitivity results
can be found in Appendix Figure 7). The number is less important than identifying the activity
with the highest contribution to variance, targeting it, and then removing it from further
contention so the next priority activity can be identified and a list can be formed.




Assumptions Contribution To

Variance
|use Duty cycle (hrs/yr) 0.219 |
Use Grid Emissions Factor (kgCO2e/kwh) 0.159
Use Lifetime (yrs) 0.135
Screen size (m2) 0.088
Cell Grid Emissions Factor (kgCO2e/kWh) 0.045
Array PFC mass (kg PFCs/m2 semiconductor) 0.039
Deposition/sputtering electricity (kWh/kg) 0.037
PWB area {m2) 0.033
LCD mass (kg) 0.033

Figure 5. Contribution to variance parameters for an unresolved product class revealed duty cycle
to have highest leverage in overall uncertainty. Duty cycle was therefore specified before the next
set of simulations

Although the list of sensitivity results shows other high-leverage activities that could be added to
the priority list, these results are prone to change after each resolved activity due to correlation
between activities. We therefore refreshed the sensitivity analysis by re-executing the Monte
Carlo simulations after specifying duty cycle at 4,380 hours per year from its initial range of
1,000 to 8,760 hours per year. As shown in the second set of sensitivity results in Figure 6, duty
cycle is no longer listed and the following four activities from the first set remained high on the
list, but deposition electricity overtook array PFC mass for the fifth spot (additional sensitivity
results are provided in Appendix Figure 8).

Assumptions Contribution To
Variance

[Use Grid Emissions Factor (kgCO2e/kwWh) 0.214 I
Use Lifetime (yrs) 0.185
Screen size (m2) 0.095

Cell Grid Emissions Factor (kgCO2e/kwh) 0.054
Deposition/sputtering electricity (kWh/kg) 0.053
Array PFC mass (kg PFCs/m2 semiconductor) 0.050
Array PFC non-abatement (%) 0.040

LCD mass (CMI) (kg) 0.037
PWB area (m2) 0.032

Figure 6. Contribution to variance parameters for the second round of simulations after duty cycle
had been resolved revealed use phase electricity fuel mix as the next priority activity




Based on the sensitivity results of the second round of simulations (shown in Figure 6), the use-
phase electricity grid fuel mix emissions factor was added to our list of priority activities after
duty cycle. Then, to remove it from further contention, we resolved it from its initial highly
uncertain range of 0.28 to 1.58 kgCO,e/kWh to a point estimate of 0.78 kgCO,e/kWh. This
process of resolving priority activities was carried out until the F.S* had been highly reduced,
beyond the target.

We created a priority activity list of 20 activities, reducing F.S* from 44.2% to 1.3%. These
activities are listed below and complete details are provided in Appendix Table 6.

Duty cycle (hrs/year)
Use grid electricity fuel mix (kgCO,e/kWh)
Lifetime (yrs)
Screen size (m?)
LCD cell manufacture fuel mix (kgCO,e/kWh)
Use phase energy demand (depends on bulb type, CCFL or LED) (type)
LED semiconductor manufacture PFC abatement level
LCD array manufacture PFC mass (depends on PFC type used: NF; or SFe) (kg)
LCD array manufacture PFC emissions abatement level (%)
. LCD array manufacture deposition electricity (kWh/kg)
. LCD array manufacture PFC mass (kg)
. LCD array manufacture deposition materials mass (kg)
13. LCD mass (kg)
14. Number of bulbs (#)
15. LCD array manufacture etching materials mass (kg)
16. Area of LED semiconductor (mm?)
17. Use phase energy demand (kW)
18. LCD module manufacture fuel mix (kgCO,e/kWh)
19. PWB emissions factor (kgCO,e/m?)
20. Materials machining energy (kWh/kg)
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The priority activity list above was based on choice of LED at Step 6, Bulb type. To test the
sensitivity of self-test results to variability of activity choice, we reproduced the list, choosing
CCFL bulbs instead at Step 6. These two choices resulted in highly similar self-test priority lists,
though FiS* is reduced more efficiently for CCFLs, with only 17 levels of resolution for a F.$* of
0.0%. More details are provided in Appendix Table 7.

1. Duty cycle (hrs/year)
2. Use grid electricity fuel mix (kgCO,e/kWh)
3. Lifetime (yrs)




Screen size (m?)

LCD cell manufacture fuel mix (kgCO,e/kWh)

Use phase energy demand (depends on bulb type, CCFL or LED) (type)
LCD array manufacture PFC mass (depends on PFC type used: NF; or SF¢) (kg)
LCD array manufacture PFC mass (kg)

9. LCD array manufacture deposition electricity (kWh/kg)

10. Use phase energy demand (kW)

11. LCD array manufacture deposition materials mass (kg)

12. LCD mass (kg)

13. LCD array manufacture etching materials mass (kg)

14. LCD array manufacture PFC emissions abatement level (%)

15. LCD module manufacture fuel mix (kgCO,e/kWh)

16. PWB emissions factor (kgCO,e/m?)

17. Materials machining energy (kWh/kg)
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The similarities between the two lists is reassuring because if we were to have produced only one
list for one bulb type, the results would still be highly relevant to resolve a class with the other
bulb type. The main differences are that the LED priority list requires resolution of LED PFC
emissions abatement, LED semiconductor area, and number of bulbs, whereas the CCFL priority
list does not. Furthermore, the order of activities is not exact, but quite close. Future work could
be done to evaluate whether this low sensitivity holds true for other activities such as bulb
number, screen size, or materials mass. Because this self-test exercise is meant to be a relatively
rapid and efficient method of producing a priority activity list, a rough analysis using mean
values as resolution levels may suffice. In this case in which we found the choice of LED to
produce a more rigorous list, we chose it over the less-comprehensive CCFL list. For both
scenarios, this exercise revealed the main drivers of impact to reside within the manufacturing
and use phases.

In this self-test exercise we conservatively bounded the maximum number of activities needed to
discriminate classes under practically any scenario. However, these priority activities were
resolved with a high level of precision that may not be practical in terms of measurement and
reporting. In the following section, we will resolve these activities one-by-one at feasible levels
until effective scenario comparisons can be made.

In light of the larger PAIA research pursuit to develop easy-to-use algorithms to test design
parameter impacts, an interesting question is whether ostensible product attributes alone could
provide enough opportunity to reduce uncertainty. Or are manufacturing and use phase activities,
as identified by the self-test, necessary? Manufacturing and use phase activities tend to depend
on the context of location of production and use, generation of equipment, and choices made by
particular fabrication facilities, making them difficult to obtain data for, since infrastructure for




measurement and reporting are nascent at best. It may therefore be challenging and expensive to
rely on such attributes for an analysis. If we are to consider only ostensible product attributes,
leaving out these “contextual” attributes, and attempt to reproduce this analysis to identify levers
for targeted data collection, we will find that we are limited to the following attributes/activities:
screen size, bulb type, bulb number, LCD mass, LED semiconductor area, and materials
proportions. By reproducing this priority activity exercise using only these ostensible attributes,
we were able to obtain a minimum FS* of 41%, far exceeding our target of 10%. Therefore,
accurate discrimination of product classes will depend on access to contextual, manufacturing
and use phase activity data relating to fabrication facility policies, and perhaps equipment
generation and technology, as product attributes alone do not suffice. A summary of the results is
provided in Table 3 and further details are provided in Appendix Table 8.

Table 3. Ostensible product attributes alone are insufficient to attain a low false signal rate

Run | Activity/ attribute Unresolved values Resolved values Unit
No. to resolve
1 Unresolved N/A N/A N/A
2 Screen size 0.045024 — 0.07976 m’
0.1271
3 Bulb CCFL or LED LED Type
4 Bulb no. LEDs: 20 #
15-30
5 LCD mass 0.16- 0.25 kg
0.66
6 LED semiconductor 0.5- 0.5- mm?
area 2.5 0.6
7 Material proportions Minerals: 10 to 30% of LCD | Minerals = 20%, polymers = %
mass; polymers: 20 to 50% 30%, metals = 50%
of LCD mass; metals: 20 to
70% of LCD mass
(5 )




3.3 Streamlining assessment through targeted specificity

In the previous section, the stylized self-test enabled the identification of a priority list of
activities for LCDs. To establish how many of these key attributes were necessary to enable the
discrimination of two different classes or scenarios, the priority activities were resolved one by
one (to be sure we minimize resource expenditure), specified at nearly a point estimate at two
different levels, until the target average false signal rate was achieved. For example, screen size
was highly resolved at two levels, 14 and 15”.

First, we considered which activities might correlate between products and therefore should not
be included in the average FS calculation. To represent such independently varying attributes in
the Monte Carlo simulations, we modeled each at a single level of resolution, typically using a
mean value, to minimize its uncertainty contribution. Resolving at this single level is not
practical in a real assessment as obtaining point estimates is quite difficult for the majority of the
activities modeled. However, for the purposes of this analysis the choice was made to push
envelope of feasibility to understand the viability of the model. If we were not able to resolve
between product classes of interest using this point estimate approach, it would not be viable for
a more realistic range of values. Future work will investigate the impact with more viable ranges.
Because of this assumption, these results are not meant to reflect practical estimations of product
class resolution at this time.

Examples of these activities include duty cycle, for which we had originally assumed a
full range of possibilities (1,000 to 8,760 hours per year, uniformly distributed) then specified at
a single-level point estimate (4,380 hours per year). Use phase grid fuel mix was also presumed
to strongly correlate between products and so a specific value of 0.78 kgCO,e/kWh for the
United States grid was chosen. Lifespan had been originally modeled uniformly between one and
six years then was resolved to three years. Perfluoro-compound (PFC) type should be modeled
consistently between products although it was modeled to vary 50/50 and characterization factors
for those PFCs should likewise be correlated. Degradation rate could also correlate, though it
was not modeled to. As was considered for the self-test, we assumed certain attributes and
activities to have strong correlations within a product scenario. For example, if not otherwise
specified, we modeled LCD mass to positively correlate with screen size with a correlation
coefficient of 0.5. In addition, if left unspecified, bulb number correlates positively with screen
size with a correlation coefficient of 0.2.

3.3.1 Resolving attributes until target is met

After resolving each of the correlated attributes (duty cycle, use grid mix, lifetime) at a very
narrow level (as described earlier), we began by executing Monte Carlo simulations on the
otherwise unresolved LCD model. These highly unresolved scenarios produced a high average
FS, so we continued to resolve attributes. Next on the priority list was screen size, which we then
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resolved at 14” and 15”. These two levels divided the unresolved distribution into two
distributions (for u;4and u;s) permitting the possibility of evaluating scenarios (u;4-14), (u15-
H1s), (U14-p1s) and (u;s-414). None of these four comparisons were valid for the average FS
calculation because the difference threshold was not met. We then proceeded to resolve the cell
manufacturing fuel mix at two precise levels (0.50 to 055 kgCO,e/kWh for Korea (K) and 1.04 to
1.09 kgCO,e/kWh for Taiwan (7)), resulting in four scenario distributions (u;4x, (147, K15% and
415,7) and sixteen scenario comparisons with an average FS of 26%. We continued to resolve
attributes and test FS until an acceptable rate was met. A large number of scenario permutations
were created as a result of specifying two levels for each of 19 activities, and this is one main
reason we limited our analysis to two levels apiece. As mentioned earlier, resolving to a point
estimate (or near point estimate) was not considered practical for some activities but reasonable
for others. Activities deemed reasonable to resolve tightly include screen size (because once the
screen diagonal is specified, there is little variation in area), bulb type (a precise bulb type of
LED or CCFL should be possible), bulb number (a precise bulb number between 1-4 for LEDs
and 15-30 for CCFLs should be possible), and LCD mass (should be fairly precisely
measurable). Other activities deemed to benefit from more flexible ranges include deposition
electricity and mass, fuel mixes, energy demand of bulbs, and PFC abatement levels. Table 4
displays a summary of the attributes resolved and respective levels of specificity. These
specifications permit a low average FS of 9%. The complete analysis details are presented in
Appendix Table 9.

Table 4. Discrimination of LCDs is possible at 9% false signal rate when two different scenarios are

highly specific
Run Activity/ attribute to resolve Resolution range
Duty cycle One thousandth hrs/yr
Use grid fuel mix One thousandth kgCO,e/kWh
Lifetime One thousandth yr

Screen size

One ten-thousandth m*

Cell manufacturing grid fuel mix

Five hundredths kgCO,e/kWh
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Bulb type' ' type
Bulb no. One bulb
Bulb manufacturing energy One kWh/bulb
LED PFC mass Unresolved kgPFC/mm”
10 LED PFC un-degraded Ten %
11 Bulb electricity demand One hundredth kW (ten watts)
12 LED semi-conductor area Five tenths mm*
13 LED PFC un-abated Ten %
14 Array PFC un-abated Ten %

1 Bulb type was modeled to resolve variables 7-13 to the following extent:

Specification of LED resolves to the following: 1-4 bulbs, bulb manufacture energy 1.26-1.54 kWh/bulb, LED PFC mass 0.014-
0.026 kgPFC/mm2, LED PFC degradation 1-20%, bulb energy demand 0.022-0.028 kW, LED semiconductor area 0.5-2.5mm?,
LED PFC abatement 0-99%.

Specification of CCFL resolves to the following: 15-30 bulbs, bulb manufacture energy 10.35-12.65 kWh/bulb, bulb energy
demand 0.07335-0.09335 kW, zero LED PFC mass, LED PFC degradation, LED semiconductor area, and LED PFC abatement.




15 Array PFC type

16 Array PFC char, Factor Ten CO, equivalents

17 Array PFC un-degraded Ten %

18 Array PFC mass Five hundredths kg PFC/m’
19 Deposition electricity One hundred kWh/kg

20 Deposition mass One tenth kg/m*

21 LCD mass Five thousandths kg

22 Module manufacturing grid fuel mix Five hundredths kWh/kg LCD

These ranges should be fairly reasonable and practical to implement, such as specifying
electricity fuel mixes for cell manufacturing, module manufacturing, and use within five
hundredths kgCO,e/kWh; bulb manufacturing energy demand within one kilowatt-hour per bulb;
LED semiconductor PFC mass to go unspecified; PFC emissions abatement rates for array
manufacturing and LED semiconductor manufacturing within a range of 10% (e.g., between 80
and 90%); PFC emissions degradation rates within 10%; bulb electricity demand within ten
watts; PFC characterization factors within ten carbon-dioxide equivalents; array manufacturing
PFC mass within five hundredths kg PFC/m?; array manufacturing deposition materials
electricity demand within one hundred kWh/kg; deposition materials mass within one tenth
kg/m?; and LCD mass within five grams.

There may be countless permutations depending on the number of activities on the priority list,
the practical feasibility of collecting data for attributes, and the resolution at which data can be
specified. The example above is intended to illustrate our approach. The practical feasibility of
the resolution levels will be further discussed in Chapter 4, along with other observations
regarding the need for contextual information in robust streamlining assessments, the balance
between number of activities specified and level of specification, and the quality of our
methodological assumptions. Also discussed will be areas of future work, including addressing
the methodology’s propagation of data gaps, consideration of various ways to define and address
uncertainty, and how metrics used in this methodology could be solidified or improved.




4. DISCUSSION

This thesis presented a methodology to streamline environmental assessment by consistently
identifying the high-impact activities within the lifecycle of interest. The methodology was
applied to a case study of LCDs to produce an abbreviated list of priority activities which were
then specified. The twenty-two priority activities included both ostensible product attributes as
well as “contextual” attributes associated with manufacturing processes and use. Specifying
these priority activities enabled the differentiation of LCD classes whose average impact differed
by at least 10% with an average false signal rate below 10%. Interestingly, high-tech
manufacturing and use activities were heavily represented among the priority subset whereas
transportation- and materials processing-related activities did not require specification.

Although the nature of case-based research precludes complete generalization, these results show
promise for the use of streamlined assessments to identify key contributors to environmental
performance and to differentiate the performance of product classes. Specifically, the case
analysis demonstrated the feasibility of generating sufficient quantitative environmental
evaluation based on limited information. Furthermore, this method provides a consistent
approach to justify and target data collection efforts.

Nevertheless, this method is still under development. The method specifics and case analysis
presented here serve as jumping-off points for improvements. This chapter presents some
observations and thoughts on strengths, as well as areas for future work. Among the observations
and strengths are the merits of simplification measures given resource constraints, the need for
contextual information, ability to make tradeoffs between activities and resolution levels, and
fitness of assumptions. Areas for future work include the propagation of data gaps, defining and
identifying uncertainty, and improvement of metrics including the average false signal
calculation to reflect demographic realities.

4.1 Observations

Merits of simplification to reduce and focus effort

The LCD case study demonstrated that triage is possible (and therefore much lower data
collection burden is possible) despite high uncertainty. Simplification measures may be
leveraged to reduce and focus effort. Our analysis identified a clear hierarchy of important
impact drivers for LCDs. Out of around 50 activities, 22 key activities that account for most
variation of impact were prioritized. Resolution of these strongest drivers of variability provided
significant improvement in the fidelity of an estimate of LCD impact and allowed us to
discriminate with reasonable confidence—only 9 percent false signal rate. In the end, this study
represents just a piece in a larger effort to reduce the cost of impact assessment and to, therefore,
allow it to be used throughout the IT industry.




Although for the purposes of the screening assessment it is important to use a broad set of data
that reflect the current state of industry, it may be possible beyond the screening set to limit the
collection of primary data. Once priority activities have been identified, data collection efforts
can be more focused and less resource intensive. For instance, in the LCD case study, the
hierarchy of activities revealed all transportation activities to be low in importance. The
screening estimates, which embedded minimum and maximum potential distances, extreme
emissions factors resulting from extreme potential modes of transportation, and extreme mass
estimates of transport, indicated that it was unnecessary to collect primary data for. (Of course,
this is a probabilistic conclusion based on some specified risk tolerance of the analyst. As risk
tolerance drops, the number of activities which must be considered will increase.)

Necessity of contextual information

Our preliminary assessment for the LCD case study revealed ostensible product attributes alone
were insufficient to achieve a low false signal rate. Included among the these attributes were
screen size, bulb type, bulb number, LCD mass, LED semiconductor area, and materials
proportions. The lowest false signal rate attainable when this activity subset was specified was
41%. This result implies the need for additional “contextual” information, including high-tech
manufacturing and use phase activity data. These results are summarized in Table 3 and further
details are provided in Appendix Table 8.

Technology generation may be another helpful piece of contextual information. It may be
possible to derive information about product attributes and activities based on technology
generation of products and manufacturing equipment. At this time, generation information is not
a silver bullet for environmental evaluation. Within a plant there may be multiple generation
lines, and some products may be produced on multiple generation lines. If generation number is
known by the OEM, each generation has a range of performance in terms of energy demand and
yield. Unless specific contracts are written, an OEM rarely is able to receive a single generation
type, instead receiving a varying percent breakdown of multiple generations. These
complications challenge data collection efforts because impact calculations often are based on
allocating facility-level measurements to yield and generation performance.

If generation information were straight-forward, it would allow us to infer electricity use, which
is probably appreciable. We may also be able to infer something about PFC abatement because

although abatement technologies are not generation-specific, we could derive information from

the manufacturer and location of production.

For this thesis effort, contextual activities were based on industry averages, and generation
inferences were not made. For future work, we recommend that the role of technology generation




be explicitly explored. Infrastructure must be laid to assure more robust and consistent collection
based on technology generation.

Tradeoff between number of resolved activities and level of resolution

In light of the results of the ostensible activity analysis, our streamlined assessment included
contextual information, as summarized in Table 4. Each activity was resolved as precisely as was
considered currently or eminently possible given our understanding of data collection and
measurement capabilities and infrastructure. To further inform such decisions, it would be
interesting to have access to specification cost (fixed and variable expenses associated with
infrastructure, manpower, energy, time) for each activity. With this information, tradeoffs could
be made between the level of specificity and number of priority activities to specify. For
example, a high-cost priority activity could be specified less stringently at the lesser expense of
adding another activity to the priority list for resolution. A marginal cost threshold could be
determined above which an activity is no longer attractive or cost-effective to resolve. With or
without access to such cost information, such tradeoffs may be made between number of
activities to resolve and level of resolution.

Among the attributes and activities in the LCD case study streamlined assessment, those
presumed to have high specification costs include the fuel grid mixes for the cell, module and
use. These mixes were specified to moderately wide ranges of five hundredths kgCO,e/kWh with
the belief that this level of information granularity could be obtained, perhaps with high fixed
infrastructure costs to locate and monitor facilities and use, but eventually low marginal cost.
Other high-cost activities may include the bulb manufacturing energy demand and other
activities associated with LCD sub-components upstream from OEMs in the supply chain, over
which OEMs may have minimal control. Activities relating to PFC type and quantity may
currently be expensive to measure and report, but may become more affordable over time as the
industry adapts to greenhouse gas regulations targeted at semiconductor manufacturing. PFC
emissions abatement and degradation rates for array and LED semiconductor manufacturing
were specified at a moderately wide 10% range (e.g., between 80 and 90%). Based on LCD
fabrication facility site visits by members of MSL, emissions abatement levels are currently
specified as high, medium or non-existent and tight estimate ranges are probably not likely.
Degradation rates may be calculated analytically and not directly measured, so a fairly tight
range such as 10% may be a reasonable goal.

Activities deemed possible to specify precisely include LCD mass, for which there are both
standard diagonal and area metrics. Bulb number and type were presumed to be straight forward
to report and count before assembly.




Reasonableness of methodological assumptions

The analytically-derived false signal rate metric used in the self-test requires fitting
stochastically-derived impact estimates to a common probability model. For the LCD case study,
a normal model was applied because fairly normally distributed data were observed for the
unresolved scenario and the first few levels of resolution, although the remainder of iterations
were not assessed for normality.

4.2 Areas for future work

Potential propagation of data gaps and subjectivity

Because this methodology relies on existing data to inform targeted data collection, the quality
and completeness of the analysis are reflected in the quality and completeness of those existing
data. For our LCD case study, there was a dearth of manufacturing data, including specific
process and materials information, as well as associated impacts. For this reason, proxy data for
similar electronics processing were used and pieced together as comprehensively as possible.
However, there are likely to have been gaps and it is difficult to know what they are. Such gaps
may exist in any screening assessment which relies on existing research efforts.

Activities were therefore approximated as conservatively as possible. Efforts were made in the
screening assessment to err towards conservative approximations for processes lacking data. An
example of this is the cell manufacturing grid fuel mix. National-level proxy grids were applied
at the screening level to account for geographic, spatial, and parameter uncertainty. However, it
should be kept in mind that the specificity of mix proxy will determine the leverage of this
parameter in the model. If highly specific information becomes available to modify the leverage,
results may change. Unfortunately, information gaps due to underrepresentation of activities and
impacts in existing literature are likely to be propagated in our method. Our approach of low-
fidelity, high uncertainty reduces the cost of filling gaps and might encourage some assessment
of issues using broad estimates that were previously omitted. Furthermore, subjectivity may be
introduced in our methodology, especially at the data collection and screening stages, but
subjectivity is inherent in any modeling process. We hope that despite such subjectivity, the
methodology allows decisions to be defended quantitatively and results replicated, given access
to the screening data.

Defining and identifying uncertainty

How uncertainty is defined and categorized may define how it is identified and processed.
Uncertainty has been framed in many different ways, often depending on the analyst or decision
maker. For the purposes of this thesis, uncertainty was dealt with in a uniform way—by
assigning estimated probability distributions to one or more data points. Other methods of
representing and evaluating uncertainty may be considered.




Metric quality

A number of approaches were possible to evaluate environmental performance hotspots,
including the use of stochastic estimation methods to calculate the percentage of trials that an
activity or life cycle phase contributes to a certain percentage of overall impact. Our method
applied several other metrics to stochastic impact estimates to evaluate the ability to identify and
leverage hotspots. These metrics included average false signal rate to evaluate the performance
of the streamlined assessment model, difference threshold as a cutoff level of impact granularity,
and the number of priority activities to specify and level of specificity as efficient uncertainty
reduction measures.

Due to the large number of product scenarios under evaluation, the metric we chose to represent
the performance of our model was the average false signal rate. It was defined as the average
false signal rate for scenario comparisons that meet the FS criteria. For the purposes of this
thesis, this average FS calculation weighted all scenario permutations equally, although in reality
scenarios may have varying levels of occurrence and importance. This equal weighting gave
undue emphasis to scenarios that matter less. Ideally, we would have used demographic data to
weight scenarios to reflect realities such as location of production and use. One example is cell
manufacturing electricity fuel mix, for which we had used equally-weighted proxy grids for
Taiwan and Korea, the two primary countries in which manufacturing takes place for the four
largest LCD manufacturers. In reality, manufacturing between the two countries is not evenly
split. Market share or product volume data could be used to weight manufacturing impacts. For
example, we could have estimated AUO and CMI, which manufacture in Taiwan, to have 23%
and 16.8% of market share respectively, and LG and Samsung, which manufacture in Korea, to
have 32.3% and 27.9% of market share. An amplifier of 39.8% could be used for Taiwanese
scenarios and 60.2% for Korean scenarios, effectively emphasizing Korean grid impacts to
reflect the reality of manufacturing location.

Another potential metric of performance would be the environmental penalty associated with the
false signal rate of our modeling. In other words, we could calculate the impact difference
between the false signal rate scenarios and perfect discrimination. This requires first knowing the
false signal rate or the average false signal rate across multiple scenario comparisons, so false
signal rate is a metric to be converged upon first.

The difference threshold is an impact measure below which we do not attempt to resolve. It is a
decision to be converged upon by the modeler and stakeholders and will likely be based on the
expense of measuring and reporting at very fine levels of granularity, as well as meaningful units
to people, especially consumers evaluating this information on product labels. For the purposes
of this research, the threshold was set to vary as a proportion of impact magnitude. However, in
the future, this threshold may be set to a consistent, absolute value.




The number of priority activities and level of specificity is an implementable measure to reduce
uncertainty and enable discrimination. This framing assigns activities and related uncertainty as
decision variables. Other methods of framing may exist.




S. CONCLUSIONS

In today's marketplace, firms from every sector are facing significant pressure to evaluate the
environmental performance of their operations and products. For the IT industry, this is no
simple task. Complex and dynamic products and supply chains translate into high costs for
pervasive and effective environmental evaluation. There is much interest in streamlining
measures to improve the efficiency and effectiveness of evaluation. However, potentially high
uncertainty associated with simplification measures may undermine the robustness of
streamlining results. This thesis research sought to enable the identification of high-impact
activities streamlining elements necessary for robust streamlining assessment.

Our methodology leveraged existing streamlining measures including secondary data and
screening for hotspots. First, an activity model was built upon existing BOA and impact data,
incorporating full ranges of uncertainty. Stochastic analysis was used to triage activities based on
contribution to overall uncertainty. The priority activities were then targeted for specific data
collection to the point where overall impact uncertainty distributions were sufficiently distinct
from one another, enabling us to discriminate environmental performance. The goal of
probabilistic triage is to identify those key drivers of impact so that data collection can be
focused on the aspects of a product life-cycle "that matter" and thereby conserve limited
resources for data collection. To accomplish this, the triage method relies on available data
sources, but tries to accurately reflect the associated uncertainty that comes with the use of
secondary data.

The case study for LCDs identified the key drivers of impact for LCDs as applied in laptop
computers. The probabilistic triage identified 22 key activities that account for nearly all
variation in impact. Resolving these strongest drivers of variability provided significant
improvement in the fidelity of an estimate of LCD impact and allowed us to discriminate with
high confidence—only 9 percent error. Our results demonstrated that triage is possible (and
therefore much lower data collection burden is possible) even with highly uncertain data. In the
end, this study represents just a piece in a larger effort to reduce the cost of impact assessment
and to, therefore, allow it to be used throughout the IT industry. These initial results show
promise for the probabilistic triage method.

The key drivers for LCD were related to high-tech manufacturing and use—attributes that relate
to context rather than ostensible product attributes. In fact, the resolution of ostensible attributes
alone, such as bulb type, number, and materials, did not provide enough leverage to reduce
uncertainty and false signal rate to a meaningful extent.

Priority contextual attributes may currently be costly to measure and report. We hope the results
of this research will motivate the development of reporting infrastructure and industry




collaboration. Measurement precision is a decision that will need to be converged upon to inform
the difference threshold used this methodology. The difference threshold quantity should be
granular enough not to mask meaningful impact differences, but not so granular that
measurement is prohibitively costly. Future work to weight scenarios according to demographic
realities will improve the accuracy of the average false signal rate. Ideally, an optimization
algorithm will solve for the number of activities to resolve, and level of resolution for each,
based not only on the average false signal metric but the costs associated with specification,
which may vary widely by activity.

Although much work remains to identify the optimal streamlined LCA method, the results of this
thesis show promise for the use of probabilistic streamlining methods for analyzing the
environmental performance of IT product classes. For the case analyzed, the triage method
identified that only a small set of attributes strongly determine product environmental
performance. Such information should greatly reduce the cost of implementing environmental
evaluation within IT supply chain. Additionally, by explicitly considering uncertainty and
variability within the assessment process, the probabilistic triage approach enables broad,
comprehensive assessment without undue increase in analytical cost. This comprehensiveness
should improve confidence in the result and thereby increase “buy-in” or acceptance of
conclusions by stakeholders inside and outside of the supply chain. These benefits should
encourage the further exploration of probabilistic streamlining methods in the IT sector and
beyond. Reducing the cost of generating environmental assessments and increasing the
acceptance of their results should only help to move forward current debates about carbon
labeling and footprint requirements. In the end, this is a necessary step towards lowering the
footprint of industrial production and the consumption that drives it.
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7. APPENDICES

Appendix A: Acronyms

Acronym Phrase or name

a:Si Amorphous silicon

AM Active matrix

BLU Backlight unit

BOA Bill of activities

BOM Bill of materials

BSI British Standards Institute

CCFL Cold cathode fluorescent lamp

CFL Compact fluorescent lamp

CMI ChiMei-Innolux Corporation

CMO ChiMei Optoelectronics

Cov Coefficient of variation

CRT Cathode ray tube

CSR Corporate social responsibility

DQI Data quality indicator

EPD Environmental product declaration

EPEAT Electronic Product Environmental Assessment Tool
EuP Energy Using Products

FPD Flat panel display

FS False signal rate

FU Functional unit (as used in LCA)

GWP Global warming potential

1/0 Input/output

1C Integrated circuit

iNEMI International Electronics Manufacturing Initiative
IPCC Intergovernmental Panel on Climate Change
IPS In-plane switching (light modulation)

ISO International Organization for Standardization
IT Information technology

kgCOse Kilograms of carbon dioxide equivalents
LCA Life cycle assessment

LCD Liquid crystal display

LCI Life cycle inventory

LED Light emitting diode

LGP Light guide plate




MJ
MSL
OEM
PAIA
PCF
PCR
PFC
PM
PMMA
PWB
SCM
SKU

SMRS
TFT
TN
TSC
WLICC

WRI/WBCSD

Megajoule

Materials Systems Laboratory

Original equipment manufacturer

Product Attribute to Impact Algorithm

Product carbon footprint

Product category rules

Per-fluorinated compound

Passive matrix

Polymethyl methacrylate

Printed wiring board/Printed circuit board
Simplified characterization model

Stock-keeping unit

Sustainability Measurement and Reporting System
Thin-film transistor

Twisted-nematic (light modulation)

The Sustainability Consortium

World LCD Industry Cooperation Committee
World Resources Institute/ World Business Council on Sustainable
Development




Appendix B: Case study analysis data tables

The following tables contain data to support the LCD case study described in Chapter 3.

Table 5. LCD probabilistic screening model/bill of activities

Activity/ Sub- Units Proxy Source Assigned Min/Max or
Material | Activity/ distri- Mean/COV
Material bution
LCD screen | LCD screen | m” 10.17-17” HP & uniform 10.1”: 0.0450-0.0451
size area diagonal screen | Lenovo 11.6”: 0.0589-0.0590
areas specs 12.1: 0.0620-0.0621
13.3”: 0.0734-0.0735
14”: 0.0798-0.0799
15”: 0.0939-0.0940
16”: 0.1014-0.1015
177:0.1271-0.1272
LCD mass | LCD mass kg LCD mass CMI data uniform 0.16 to 0.66
ranges for sizes
10.1 to
17.3”
Materials Processing
Glass/miner | kg Minerals (MSL uniform 10 to 30% of LCD mass
als mass 2010b)

Glass Glass/miner | kgCO, | ecoinvent (ecoinvent lognormal 15, 439, 0.00744
als e/kg mineral 2010) (mean, SD, location)
emissions arithmetic mean
factors
Polymer kg Polymers (MSL uniform 20 to 50% of LCD mass
mass 2010b)

Plastic Polymer kgCO, | ecoinvent (ecoinvent lognormal 6.3,9.1,0.001939
emissions e/kg polymer 2010) (mean, SD, location)
factors arithmetic mean
Metals mass | kg Non-precious (MSL uniform 20 to 70% of LCD mass

metals 2010b)

Metal Metals kgCO, | ecoinvent non- | (ecoinvent lognormal 11.7,46.4, 0.00577
emissions e/kg precious metals | 2010) (mean, SD, location)
factors arithmetic mean
Energy kWh/ Inj. molding, (Gutowski et | triangle 0.36, 0.48, 166.67
demand kg machining, al. 2009) (min, mean, max)

finish
machining
Machining Grid kgCO, | Extreme (PE uniform 0.28 to 1.58
emissions e/kWh | geographic International
factors proxies for GmbH
California and | 2006;
India ecoinvent
2010)
Bulb No. # Edge light (Socolof et uniform Unresolved: 1 to 30
design only al. 2001b; LED: 15 to 30
Backlight Chien 2008; CCFL:1to 4

bulbs Myers 2011)

Energy kWh/ CFL lighting (Slocum uniform Unresolved: 1.26 to
bulb bulb kWh, 2005) and 12.65
()




LED-SSL estimates LED: 10.35 to 12.65
lighting CCFL: 1.26 to 1.54
(DRAM proxy)
Manufacturing (high-tech)
Array PFC kgPFC | IC Lower limit: uniform SFs: 0.004 to 0.5000
mass /m’ semiconductor | (IPCC 2006; NF;: 0.0003 to 0.4000
manufacturing | MSL 2010b)
Upper
limit:(Krishna
n et al. 2008)
Array PFC | Array PFC % Extremes Estimated by uniform 1 to 100%
un- abated modeler
Array PFC kgCO, | CF4, SFs, NF; (IPCC 2007) uniform 17,200 to 22,800
char factors | e/kg
PFC
PFC % Estimates for Estimated by uniform SF¢; 1t0 2%
degradation SF¢ and NF3 modeler NF;: 10 to 15%
Deposition kWh/ CVD and (Gutowski et uniform 325 to0 66,389
electricity kg PECVD, al. 2009) n=7)
sputtering
Deposition kg Deposition (Socolof etal. | uniform 0.02t0 0.16
mass trace materials | 2001b) Tbls 2-
56 and 2-57
Lithography | kWh/ Process chain Si | (Williams et uniform 1,489 to 2,765 (based on
electricity kg to wafer al. 2002; Boyd | (n=1) mean 2,127 in literature)
(kWh/kg Si out) | et al. 2009)
Lithography | kg Lithography (Socolof etal. | uniform 0.01 to 0.08
mass trace materials 2001b) Tbls 2-
56,2-57
Etching kWh/ | Dry etching of | (Gutowski et uniform 5,305 to 8,639
Array electricity kg Si3N4/Si0, al. 2009) (n=2)
nersy Etching kg Etching trace (Socolof etal. | uniform 0.036 to 0.360
mass materials 2001b) Tbls 2-
56, 2-57
Cleaning kWh/ | Etching (Gutowski et uniform 5,305 to 8,639
electricity kg electricity al. 2009) (n=2)
Cleaning kg Cleaning (Socolof et al. | uniform 0.0108 to 0.1077
mass materials 2001b) Tbls 2-
56, 2-57
Array/cell kgCO, | Ranges for (PE uniform 0.46 to 1.24
grid mix e/kWh | Korea and International
Taiwan GmbH 2006;
ecoinvent
2010)
Module fuel | kWh/ Module fuels (Socolof et al. | uniform 82 tol152
energy kg 2001b) Table
LCD 2-58:
fuels=elect +
fuels - elect
Mociule fuel Grid kgCO, | Extreme (PE uniform 0.28 to 1.58
emissions e/kWh | geographic International
proxies for GmbH 2006,
California and ecoinvent
India 2010)
{ ]
{7 )




Area mm’ LED (Slocum uniform 0.5t02.5
semiconductor | 2005), on the
chip area order
PFC mass kg IC DRAM (Williams et uniform LED: mean of 0.012 for
PF Czs/ manufacturing | al. 2002) a range of PFCs, range
Bacl«.rlight mm PFCs ocf;j OF%O%tg 0.016 given
oo | Char. factor | kgCO, | SFsand NF; (IPCC2007) | uniform | 17,200 to 22,800
uctor
e/kg
PFC
Abatement % Extremes Estimated by uniform 0.01 to 1.00
modeler
Degradation | % Estimates for Estimated by uniform 2 to 3 for SFg; 12 to 20
rate SFs and NF, modeler for NF,
Die area m” Measured Disassemblies | triangle 0.000031875;
package area * | (12.1", 13", (n=4) 0.0000511491;
IC PFCs die factor 14.5", 15" 0.00006763
PFC kgCO, | PFC emissions | (SIA 2008) uniform 400 to 34,000
emission e/m? (n=29)
factors
Die area m* Measured Disassemblies | triangle 0.000031875;
package area * | (12.1", 13", (n=4) 0.0000511491;
IC energy die factor 14.5" and 15™) 0.00006763
IC kWh/ | kWh/area (SIA 2008) uniform 2,000 to 48,000
electricity m’ wafers out (n=29)
PWB Area m’ 0.2t0 1.0 Based on uniform 0.2*screen area to
screen size various typical 1.0*screen area
screen sizes
PWB PWB kgCO, (PE uniform 39 to 678
impacts emission e/m? International (n=14)
factors GmbH 2006;
ecoinvent
2010)
Transport
Distance km Extreme Estimated by | uniform 40 to 20,000
scenarios modeler
Transport | Mass t Extreme Estimated by | uniform 100 to 400% of LCD
(all legs) scenarios modeler mass
Mode kgCO, | Tanker, air, van | (ecoinvent uniform 0.01 to 1.90
emissions e/kg 2010)
Use
Energy kW Typical (Slocum uniform Unresolved: 0.022 to
demand product, mod 2005; CMI 0.0934
2011) LED: 0.022 to 0.028;
CCFL: 0.073 to 0.0934
Lifetime yrs Extremes uniform 1to$
Consumer | Duty cycle hrs/yr | Extremes uniform 1000 to 8760
use Grid kgCO, | Averages for (PE uniform 0.27 to 1.58; average US
Emissions e/kWh [ China and International grid used of 0.78
California GmbH
2006;
ecoinvent
2010)
End of Life: not addressed
(]




Sensitivity: TOTAL GHG

Assumptions Contribution To
Variance

|use Duty Cycle (hrs/yr) 02195 |
Use Grid EF (GaBi, Ecoinv) (kgCO2e/kwh) 0.159
Use Lifetime range (MSL) (yr) 0.135

* Screen size (m2) 0.088
Cell Grid EF (GaBi, Ecoinv) (kgCO2e/kwh) 0.045
Array PFC mass (Krishnan 2008, CMO) (kg PFCs/m2 semiconductor) 0.039
deposition/sputtering electricity (kwh/kg) 0.037
PWB area (screen size) (m2) 0.033

* LCD mass (CM1) (kg) 0.033
Array PFC non-abatement (%) 0.032
deposition mass (kg/m2) 0.027
Polymer mass (kg) 0.023
Mineral mass (kg) 0.020
LED PFC abatement % 0.019
Transport mass (t) 0.018
Use Energy Demand (CMI, Slocum) (kw) 0.015
LED PFC degr rate 0.012
Bulb 0.011
Bulb manu energy (Slocum) (kwh/bulb) 0.007
etching mass (kg/m2) 0.006
LED semicond PFCs (kg PFCs/mm2) 0.006
LED semincond area (mm?2) 0.002

* # Bulbs, LED or CCFL (manu-related only) 0.002
Module Grid EF (GaBi, Ecoinv) (kgCO2e/kwWh) 0.002
Array PFC CF (IPCC) (kgCO2e/kg PFC) 0.001
Other 0.006

Figure 7. Contribution to variance parameters for the first set of trials. Use phase duty dycle had
the highest contribution and was therefore resolved before the next set of trials
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Sensitivity: TOTAL GHG

Assumptions Contribution To
Variance
!Use Grid EF (GaBi, Ecoinv) (kgco2e/ kwh) 0.214
Use Lifetime range (MSL) (yr) 0.185
* Screen size (m2) 0.095
Cell Grid EF (GaBi, Ecoinv) {kgCO2e/kwh) 0.054
deposition/sputtering electricity (kWh/kg) 0.053
Array PFC mass (Krishnan 2008, CMO) (kg PFCs/m2 semiconductor) 0.050
Array PFC non-abatement (%) 0.040
* LCD mass (CMI) (kg) 0.037
PWB area (screen size) (m2) 0.032
deposition mass {(kg/m2) 0.029
Use Energy Demand (CMI, Slocum) (kW) 0.028
Polymer mass (kg) 0.027
LED PFC abatement % 0.023
Mineral mass (kg) 0.021
LED PFC degr rate 0.019
Transport mass (t) 0.017
Bulb 0.017
Bulb manu energy (Slocum) (kwh/bulb) 0.017
LED semicond PFCs (kg PFCs/mm2) 0.013
etching mass (kg/m2) 0.008
* # Bulbs, LED or CCFL (manu-related only) 0.007
LED semincond area (mm2) 0.006
LED PFC CF (IPCC) (kgCO2e/kg PFC) 0.001
Module Grid EF (GaBi, Ecoinv) (kgCO2e/kWh) 0.001
Array PFC CF (1IPCC) {(kgCO2e/kg PFC) 0.001
Other 0.002

Figure 8. Contribution to variance parameters after duty cycle was resolved




Table 6. Activity priority list for LCDs

Run | Activity/ Mean cov FS Largest Un- Resolved Unit
No. attribute impact of rate | contributor | resolved values
resolved (kgCOze) | impact | (%) | to variance values
(%)
1 Unresolved 1631 48.1 442 Duty cycle 1000- 4380- hrs/year
8670 4380.001
2 Duty cycle 1557 37.7 42.6 Use grid 0.27- 0.78- kgCO2e/k
1.58 0.781 Wh
3 Use grid fuel | 1451 31.1 40.1 Lifetime 1-5 3- yrs
mix 3.001
4 Lifetime 1448 26.2 394 Screen size 0.045024 - | 0.07976- m’
0.1271 0.07986
5 Screen size 1411 22.4 37.6 Cell grid 0.46- 0.5- kgCO,e/k
1.24 0.50001 Wh
6 Cell grid 1233 23.0 37.9 Use energy Bulb: LED LED type
demand or CCFL
(depends on
bulb type)
7 LED 1133 25.2 38.9 LED PFCun- | 0.01- 0.08-
abated 1.00 0.0801
8 LED PFC 903 22.0 37.4 Array PFC SFs: 0.004- | NF;: kg
emissions mass (choose | 0.5000 0.0003-
type of PFC) | NF;: 0.0003- | 0.4000
0.4000
9 PFC type: 840 18.4 35.0 Array PFC 0.01- 0.98-
NF; un-abated 1.00 0.98001
10 Array PFC 955 18.6 352 Deposition 325- 30,000- kWh/kg
emissions electricity 66,000 30.001
11 Dep. elect 941 16.9 33.8 Array PFC 0.0003- 0.045- kg
mass 0.4000 0.045001
12 NF; mass 760 11.1 26.2 Deposition 0.02- 0.15- kg
mass 0.16 0.15001
13 Dep. mass 834 8.2 19.3 LCD mass 0.16- 0.25- kg
0.66 0.25001
14 Mass 803 6.5 13.8 Bulb No. LEDs:15- 20- #
30 20.0001
15 20 LEDs 790 59 11.5 Etching mass | 0.036- 0.05- kg
0.360 0.06
16 Etching mass | 750 4.8 7.2 LED 0.5- 0.5- mm’
semicond. 2.5 0.6
area
17 LED 720 4.6 6.3 Use energy LEDs: LEDs: kW
semicond. demand 0.022- 0.022-
area 0.028 0.02201
18 Use energy 690 39 34 Module fuel 0.27- 0.99- kgCOze/k
demand mix 1.58 1.00 Wh
19 Module fuel | 690 34 1.8 PWB 39- 50- kgCOze/m
mix emissions 678 51 2
factor
20 PWB 680 32 1.3 Machining
emissions energy
factor
( ]
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Table 7. Activity priority list for LCDs—sensitivity of bulb type

Run Resolution Mean Ccov FS Largest Un- Resolved Unit
No. level impact of rate | contributor | resolved values
(kgCO; | impact | (%) | to variance values
€) ()
1 Unresolved 1631 48.1 442 Duty cycle 1000- 4380- hrs/year
8670 4380.001
2 Duty cycle 1557 37.7 42.6 Use grid 0.27- 0.78- kgCOqe/
1.58 0.781 kWh
3 Use grid fuel 1451 31.1 40.1 Lifetime 1-5 3- yrs
mix 3.001
4 Lifetime 1448 26.2 394 Screen size 0.045024 - | 0.07976- m’
0.1271 0.07986
5 Screen size 1411 224 37.6 Cell grid 0.46- 0.5- kgCO,e/
1.24 0.50001 kWh
6 Cell grid 1233 23.0 37.9 Use energy Bulb: LED CCFL type
demand or CCFL
(depends on
bulb type)
7 Bulb type 1334 15.4 323 Array PFC SFe: 0.004- | NFs3: kg
(CCFL) mass, choose | 0.5000 0.0003-
PFC type NF;: 0.0003- | 0.4000
0.4000
8 PFC type: NF; 1270 12.8 29.0 Array NF; NF;:0.0003- | NF5:0.045 | kg
mass 0.4000 -0.045001
9 NF; mass 1175 10.5 25.0 Deposition 325- 30,000- kWh/kg
electricity 66,000 30,001
10 Deposition 1160 8.1 19.2 Use energy CCFL: CCFL: kw
electricity demand 0.07355- 0.07335-
0.093352 0.07336
11 Energy demand | 1060 7.1 15.9 Deposition 0.02- 0.15- kg
mass 0.16 0.15001
12 Deposition mass | 1134 5.6 10.2 LCD mass 0.16- 0.25- kg
0.66 0.25001
13 Mass 1103 3.6 2.6 Etching mass | 0.036- 0.05- kg
0.360 0.06
14 Etching mass 1064 2.7 0.5 Array PFC 0.01- 0.98-
un-abated 1.00 0.98001
15 Array PCF un- 1090 2.6 0.3 Module fuel | 0.27- 0.99- kgCO,e/
abated mix 1.58 1.00 kWh
16 Module fuel mix | 1090 1.9 0.0 PWB EF 39- 50- kgCOqe/
678 51 m’
17 PWB emissions | 1080 1.7 0.0 Machining
factor energy
( ]
L)




Table 8. Product attributes alone are insufficient to attain low false signal rate (full table)

Run Activity/ Mean Ccov FS Largest Unresolved | Resolved | Unit
No. attribute to impact of rate | contributor values values
resolve (kgCOe) | impact | (%) | to variance
(%)
1 Unresolved 1345 36.5 423 Screen size 0.045024 — 0.07976- m’
0.1271 0.07986
2 Screen size 1300 34.0 41.8 Bulb type CCFL,LED | LED Type
3 Bulb 1434 31.0 41.0 Bulb no. LEDs:15- 20- #
30 20.0001
4 Bulb no. 1413 30.8 40.9 LCD mass 0.16- 0.25- kg
0.66 0.25001
5 LCD mass 1383 31.6 41.1 LED 0.5- 0.5- mm’
semicond. 2.5 0.6
area
6 LED 1209 319 41.2 Materials Minerals: 10 | Minerals %
semiconductor proportions to 30% of =20%,
area LCD mass; polymers
polymers: 20 | = 30%,
to 50% of metals =
LCD mass; 50%
metals: 20 to
70% of LCD
mass
7 Material 1209 323 413 PWB area
proportions (less than 0.1
contribution

to variance)




Table 9. Sufficient false signal rate (9%) is attained in streamlined assessment (full table)

Run Activity/ attribute to Resolution range Scenario 1 Scenario 2
No. resolve range range
1 Duty cycle One thousandth 4380- N/A - correlated
hrs/yr 4380.001
2 Use grid fuel mix One thousandth 0.78- N/A - correlated
kgCO,e/kWh 0.781
3 Lifetime One thousandth 3- N/A - correlated
yr 3.001
4 Screen size One ten-thousandth m* 0.0798- 0.0939-
0.0799 0.0940
5 Cell manufacturing grid fuel | Five hundredths 0.50- 1.04-
mix kgCO,e/kWh 0.55 1.09
6 Bulb type" Type LED CCFL
7 Bulb no. One bulb 20 2
8 Bulb manufacturing energy | One kWh/bulb 10.35- 1.26-
11.35 2.26
9 LED PFC mass Unresolved kgPFC/mm® 0.0- N/A
0.026
10 LED PFC un-degraded Ten % 0.80- 0.90-
0.90 1.00
11 Bulb electricity demand One hundredth kW (ten 0.022- 0.074-
watts) 0.032 0.084
12 LED semi-conductor area Five tenths mm’ 2.0- 0
2.5
13 LED PFC un-abated Ten % 0.90- 0.08-
1.00 0.18
14 Array PFC un-abated Ten % 0.90- 0.01-
1.00 0.11
15 Array PFC type NF; SFe
16 Array PFC char. factor Ten CO; equivalents 17,200- 22,800-
17,210 22,810
17 Array PFC un-degraded Ten % 0.80- 0.90-
0.90 1.00
18 Array PFC mass Five hundredths kg PFC/m” | 0.05- 0.10-
0.10 0.15
19 Deposition electricity One hundred kWh/kg 30,000- 60,000-
30,100 60,100
20 Deposition mass One tenth kg/m’ 0.016- 0.10-
0.160 0.20
21 LCD mass Five thousandths kg 0.25- 0.45-
0.255 0.455
22 Module manufacturing grid | Five hundredths kWh/kg 0.99- 1.45-
fuel mix LCD 1.04 1.50

12 Approximate area of 14” and 15” LCDs (m?)
1 Bulb type was modeled to resolve variables 7-13 to the following extent: LED resolves to the following: 1-4 bulbs, bulb

manufacture energy 1.26-1.54 kWh/bulb, LED PFC mass 0.014-0.026 kgPFC/mm?, LED PFC degradation 1-20%, bulb energy
demand 0.022-0.028 kW, LED semiconductor area 0.5-2.5mm?, LED PFC abatement 0-99%. CCFL resolves to the following:
15-30 bulbs, bulb manufacture energy 10.35-12.65 kWh/bulb, bulb energy demand 0.07335-0.09335 kW, zero LED PFC mass,
LED PFC degradation, LED semiconductor area, and LED PFC abatement.




Appendix C. Literature review of LCD global warming impacts

As stated in the case study chapter, the analysis performed for this thesis pertains to materials
and manufacturing for a specific LCD module technology: twisted-nematic (TN) amorphous-
silicon (a:Si) thin-film transistors (TFTs) within the active matrix (AM) LCD type. In this thesis,
the generic term “LCD” refers to this specific technology because the available literature
emphasizes this most commonly manufactured and purchased type of laptop display.

AM-LCDs have driver tabs along the rows and columns of the display glass. A matrix is formed
across the glass by parallel electrical lines, where each intersection of the matrix forms a pixel
(Socolof et al. 2001b). AM-LCDs which employ the TFT switch type have a transistor at each
pixel which acts as a switch. It is this active technique which permits the strong contrast between
a pixel’s on and off states (Socolof et al. 2001b). Within the AM-LCD technology, switch types
include not only TFT but diode matrix and metal insulator metal. Within TFT-AM-LCDs, there
are various transistor technologies, including a:Si, polycrystalline silicon (p:Si), or non-silicon
(such as CdSi). Within the a:Si transistor technology, TFT light modulating modes include TN
and IPS. The majority of modules employ TN. The orientation of the liquid crystal (LC)
molecules allows light to pass from a background source to the display cell. When a current is
applied, the LCs turn perpendicular to the glass. The alignment layer, electrical charge, and
polarizers on the glass panels work together resulting in the on or off state of the LCD cell.
LCDs are considered non-emitting display technologies because the technology regulates
passage of backlight through the display (Socolof et al. 2001b).

Materials Processing

With regard to the processing of display materials, natural gas is associated with 28% of the total
LCD life cycle burden, followed by steel production (1.1%), polymethyl methacrylate (PMMA)
sheet production (0.5%), polycarbonate production (0.5%) and several other process (<1%)
(Socolof et al. 2001b). See Table 10 for this list.

Table 10. Materials processing GWP of LCDs (Socolof et al. 2001b)

Process Group GWP % of total
(kgCOqe) LCD

Natural gas production 166.3 28.0
Steel production, cold-rolled, semi-finished 6.8 1.1
PMMA sheet production 29 0.5
Polycarbonate production 2.8 0.5
Aluminum production 1.8 0.3
Styrene-butadiene Copolymer production 0.8 0.1
PET resin production 0.4 0.1
Total Materials Processing 181.7 30.7




EuP 2007 provides a BOM and associated GWP impact for an LCD monitor. The main drivers
of impact from materials processing are identified as the LCD screen (16.83 kgCOze), ICs (5.44
kgCOe), galvanized steel sheet (5.24 kgCO;e), polyamide 6 (3.61 kgCOse) and ABS (2.25
kgCOse).

Manufacturing

With regard to manufacturing impact, that of the monitor/module is associated with 29% of the
total LCD life cycle burden, followed by the electric grid with 8.7%, and LPG production and
natural gas production at 1.4 and 0.6%, respectively (Socolof et al. 2001b). The monitor/module
manufacturing impact is driven by emission of perfluoro-compounds (PFCs) in array production,
specifically NF; and SFs, as well as the GHG emissions associated with the electricity grid. The
complete list of manufacturing burdens is displayed in Table 11.

Table 11. Manufacturing GWP of LCDs (Socolof et al. 2001b)

Process Group GWP % of total
(kgCO2¢) LD

Monitor/module 174.0 29.4
Japanese electric grid 51.9 8.7
LPG production 8.3 1.4
Natural gas production 3.8 0.6
US electric grid 0.9 0.1
LCD glass manufacturing 0.1 0.0
Fuel Oil #4 production 0.1 0.0
Fuel Oil #6 production 0.0 0.0
Fuel Oil #2 production 0.0 0.0
Panel components 0.0 0.0
Total Manufacturing 239.2 40.4

As mentioned above, module manufacturing is the largest contributor to manufacturing GWP.
Figure 9 shows the processes and components that contribute to module impact from materials
processing and manufacturing, based on ecoinvent data using the IPCC 2007 GWP 100a impact
assessment method (IPCC 2007; ecoinvent 2010). Under this scenario of non- or low-abatement
of PFCs used in LCD assembly, the assembly process accounts for 98% of module materials and
manufacturing impact. This is attributed primarily to the emissions of NF3 and SFs used in LCD
array and cell manufacture. However, a non-abatement scenario such as this is not realistic based
on current industry abatement goals. A complete abatement scenario of assembly PFCs is shown
in Figure 10. Under complete abatement, assembly burden shifts from PFCs to the electricity
used in production, specifically for China and Japan (the assumed manufacturing locations,
current production dominated by Taiwan, Korean and Chinese manufacturing). Other large
impacts are from IC semiconductor product (Higgs et al. 2009), the PWB and the BLU.
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Figure 9. PFC emissions drive LCD module materials and manufacturing GWP under a non-
abatement scenario of NF; and SF, used in LCD assembly (datasource: ecoinvent 2.2 2007 and

IPCC 2007 GWP 100a)
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Figure 10. Electricity emissions drive LCD module materials and manufacturing GWP under a
scenario where NF; and SF; are abated from array process emissions (datasource: ecoinvent 2.2

and IPCC 2007 GWP 1002)

The EuP 2007 study of LCD monitor impacts identified OEM plastics manufacturing (5.10

kgCOze), sheet metal manufacturing (1.59 kgCO,e) and PWB manufacturing (1.35 kgCOze) to

be the main drivers of manufacturing GWP (EuP 2007).

Use

The use-phase GWP burden of an LCD is comprised of the GHG emissions created as a result of
the electricity consumed during laptop use, and is therefore a function of quantity of electricity

used and grid mix of energy sources that produce the electricity. Socolof et al. 2001 estimates

this use-phase burden as 29% of the total LCD burden. This burden will vary based on the duty
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cycle, ability for laptop to reduce power to idle display, and energy efficiency of the specific
laptop, and the grid mix for the region where the laptop is used.

End-of-life

The first known LCA case study for displays was performed by Ecobilan in 1995 to determine
the most environmentally-favorable EoL fate for CRT displays. The study estimated VOC
emissions, dust emissions, and energy consumption for landfilling, reuse and recycling (Epelly
1995).

The end-of-life (EoL) fate for LCDs varies widely, particularly by region and by local
regulations and resources. Potential EoL fates for monitors and modules include incineration,
landfilling, recycling, and reuse. Estimates of GWP for incineration and landfilling are shown in
Table 12 (Socolof et al. 2001a). The GWP contributions from EoL are relatively minor (0.1%)
relative to total life cycle impact, though this may not be the case for other impact categories,
such as eco-toxicity or human health (Epelly 1995). According to this study, incineration is
associated with a larger impact than landfilling (1.65 kgCOze versus 0.03 kgCOze). This
difference may be due to assumptions about the fate of embodied carbon. Presumably,
incineration releases embodied carbon to the atmosphere, some of which goes unabated and
contributes to GWP, whereas landfilled LCDs do not degrade during the timeframe considered
(100 years) and therefore do not contribute to GWP. Contributions from indirect activities
relating to incinerator and landfill infrastructure and operation are relatively minor (e.g.,
electricity grid, LPG production) or even negative (€.g., natural gas collected from landfill). As
incinerator emissions abatement technology improves (and it likely has since the 2001 report)
incineration GWP estimates will likely decrease.

Table 12. End-of-Life GWP for LCDs (Socolof et al. 2001b)

Process Group GWP % of total
(kgCO2e) LCD

LCD incineration 1.65 0.28
US electric grid 0.03 0.01
LCD landfilling 0.03 0.00
LPG production 0.00 0.00
Fuel Oil #4 production ' -0.35 -0.06
Natural gas production. -0.79 -0.13
Total EoL 0.57 0.10

Lee 2008 provided a thorough qualitative discussion of the EoL impacts of LCD monitors as
well as LCD subcomponent masses. Lee identified commonly used materials for various
subcomponents of an LCD and discussed potential impacts of these materials. These impacts are
primarily around eco-toxicity and human health, and there is little discussion of GWP (Lee
2008).
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Some EoL. GWP can be abated with thoughtful LCD design. Shih 2007 evaluated recycling
processes for LCD-type products, noting that parts were often soldered together instead of
fastened, making them more difficult to disassemble and recycle effectively. The high cost of
manual separation necessitated shredding for material recovery in many cases. This study
investigated methods of optimizing disassembly and shredding based on cost/benefit parameters
(Shih and Lee 2007).

Table 13 presents data from Socolof et al. for all life cycle stages, ranked in order of impact.
From this we identified the following bundled drivers of impact:

* Level of abatement of PFCs

* Quantity of energy used for materials processing, manufacturing, and use

* Electricity grid mix for region of materials processing, manufacturing, and use

Table 13. LCD life cycle hotspots listed in order of significance (Socolof et al. 2001b)

Phase Process Group GWP % of Material Details
(kgCOse) | total
SF¢ used in etching stage
Manu Monitor/module 174.0 294 SFs (29.4%), CO, (<1%) | of photolithography
CO; (28%), CO; (<1%), | CO, bi-product of

Use US electric grid 171.4 28.9 N>0 (0.1%) | electricity grid mix
Mat Natural gas CO, (15.6%), CH, CO, and CH, part of
proc production 166.3 28.0 (12.4%), N,O (<0%) materials processing

Japanese electric il CO, (8.7%), N;O (<1%), CO, bi-product of |
Manu grid 51.9 8.7 CH4 (<1%) electricity grid mix

Liquefied petroleum CO, (1.2%), CH,4
Manu gas production 8.3 1.4 (0.1%), N,0 (<1%) \L .
Mat Steel production, . CO; (1.1%), N,O (<1%), ‘
proc cold-rolled 6.8 | 1.1 CH4 (<1%), CoFs (<1%) |

Natural gas 7 CO, (0.4%), CH4
Manu | production 3.8 0.6 (0.3%), N,O (<1%)
Mat PMMA sheet o CO, (0.4%), CH4 (<1%), |
proc production 29 0.5 N,0 (<1%)
Mat Polycarbonate | CO; (0.4%), CH, (<1%),
proc production 28 | 05 N0 (<1%)

" C0, (0.2%), CF4 (0.1%),

Mat Aluminum CH; (<1%), CoFs (<1%)
proc production 1.8 0.3 N0 (<1%)

Such data from Socolof et al. and ecoinvent comprise the base of our hotspot analysis, as there
have been few other complete LCAs for LCD since then.

Based on the potential significance of LCDs in the overall footprint of laptops and the older data
that are available within the LCA arena, this document presents a detailed description of the
production process. The extent of this detail is illustrative of the possible levers to reduce impact




within displays. This description provides a framework over which changes in the LCD
manufacturing process can be potentially outlined.




Appendix D: Analysis and discussion of LCD global warming impacts
In this section, LCD life cycle phases and associated global warming impacts are evaluated. This
analysis helped inform the development of the screening model discussed in Section 3.1.

Production and Raw Materials

This section includes a description of the drivers of environmental impact during production. For
the purposes of this thesis, production will be defined as cradle to gate, while the use is defined
as use by the consumer at the 1aptop product-level (though LCD module-level use, including backlight
bulb energy demand, will be included).

The LCD manufacturing process is typically framed in three stages as shown in Figure 11 below:
¢ Array: creation of color filter (CF) and thin-film transistor (TFT);
* Cell: spacers and liquid crystals (LCs) inserted in sealed array, polarizer added, diffuser
film and light guide added behind the TFT side, drivers added along sides; and
* Module: backlight unit (BLU), power supply, PWBs, IC tabs and cables added to cell.

Array Cell

CF and TFT developed CFand TFT me

on glass substrates

Module

IC tabs, PWBs, BLU,

oply, and

s added to cell

Figure 11. Stages of LCD production as described in literature

Array stage
In the array stage, a CF and a TFT are each created on a substrate (typically glass) through the

following steps (Socolof et al. 2001b)

a) deposition of thin film materials (conductors or semiconductors) on the substrate using
chemical vapor deposition (CVD) or physical vapor deposition (PVD). A typical low-
pressure CVD (LPCVD) process will require chamber cleaning using NF3. Deposition is
preceded by an oxidation step.

b) lithography by coating the substrate with materials to transfer a pattern through a mask.
This step is used multiple times in combination with different masks.

c) etching of the thin films through the pattern resulting in transfer of the pattern to the
films. Etching can be wet or dry, though dry is most common for flat-panel displays.
PFCs are often employed in this stage. AM-LCD etching involves amorphous silicon,
silicon nitride, various oxides, and metals (Socolof et al. 2001b).
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d) cleaning is necessary to minimize contamination preceding oxidation and deposition and
following each lithography step. Cleaning traditionally uses large quantities of ultra-pure
water.

Because these steps are relatively burdensome in terms of life cycle GWP for an LCD, the
number of CF and TFT formation steps is directly related to impact. Conventionally there have
been four CF formation steps (one for each of four color layers: black, red, green and blue) and
eight TFT formation steps (for various layers including gate metal, SiO,, and ITO) (Socolof et al.
2001b). According to a study which evaluated the environmental impacts of semiconductor
photolithography, a change in the number of interconnect layers from six to eight increases
fabrication energy consumption by 13% (Krishnan et al. 2008). Primary drivers of environmental
performance are discussed below.

Glass substrates

The substrates on which the TFT and CFs are created are usually soda lime or non-alkali
borosilicate glass (Socolof et al. 2001b; DisplaySearch 2006). However, research in past years
has considered flexible materials such as plastic film substrates based on polymer-dispersed LC
technology with molecular alignment control (Fujikake and Sato 2009). These and other
potential flexible substrates are currently in research and development (CMO). Glass is widely
used in LCDs, and there is growing demand for glass substrates free of arsenic and other heavy
metals. The EAGLE XGTM glass substrate claims to be free of arsenic, antinomy and barium
while maintaining light, durable and advanced thermal properties (Lee 2008).

Gases

During deposition, etching and cleaning steps of array fabrication, gases similar to those in
semiconductor manufacturing are used, though they are generally of lower purity requirements.
Etching may be wet or dry, though dry appears to be most common (DisplaySearch 2006). The
gases of global warming significance are PFCs including SF¢ used for dry etching/deposition and
NF; used in the cleaning chambers of plasma-enhanced CVD to clear away undesired material
(DisplaySearch 2006; AUO 2009; MSL 2010c)

Emissions abatement infrastructure may be of the point-of-use variety (process pumps, cold bed
adsorption, combustion and water scrubbing, plasma abatement) or the facilities variety (house
scrubber and acid waste neutralization, VOC exhaust, fluoride treatment, copper treatment,
ultrapure water, process cooling, or HVAC).

Trends

* Replacement of SFg with NF; (Samsung 2010; MSL 2010c). NF; is a less potent GHG than SFg, with
characterization factors of 17,200 and 22,800, respectively (IPCC 2007). In addition, NF; decomposes
more rapidly than SFg and persists less in the atmosphere.




* In dry etching, Cl; may be used to etch silicon in lieu of PFCs to etch silicon nitride and silicon dioxide
(Krishnan et al. 2008).

¢ Local high efficiency scrubbers may be used to increase abatement (MSL 2010c).

* Industry is studying the substitution of NFs and CF; with F, and replacement of COF, with SFs (AUO
2009).

Sputter targets

Deposition methods may include LPCVD, PECVD, HDP-CVD, PVD evaporation, and PVD
sputter. Sputter targets are used to deposit metal thin films for date, source/drain and pixel
electrodes (DisplaySearch 2006). Sputtering is described as an inefficient process, with the
percentage of useful material (utilization) typically only 30 to 40%. Indium-tin oxide (ITO) is the
dominant material used for the pixel and color filter electrodes. If PVD sputter is used, it is
environmentally significant to know if ITO is used for the electrode. PVD sputter can occur
through direct current, radio frequency, or magnetron.

Trends
* Rotatable targets with higher utilization are under development (DisplaySearch 2006).

The IPS mode display employs the same front panel patterning process described above for TN,
with the exception that no ITO electrode is formed. For the rear panel, the number of patterning
layers is reduced from six or seven to around four (USEPA 1998) and the electrode on the rear
glass is made of any number of other materials (e.g., Mo, Ta, Al/Cr, MoW). Therefore, ITO is
not used in IPS manufacturing (Socolof et al. 2001b). Despite this environmental benefit of IPS
production, IPS demands an increase in the number of backlights to meet the brightness
requirements (for desktop applications) which carries its own environmental burden
(DisplaySearch 1998).

Etching lasers

It may be environmentally significant to know what pulse-width laser technology is used in
etching. State-of-the-art laser technology may apply very efficient lasers using pico-second
pulse-width as opposed to nanosecond (Lee et al. 2009b). The pico-second laser provides high
quality processing at slower speeds but at higher capital costs for the laser in relation to the
nanosecond. It is believed that the pico-second is a ‘sweet spot’ in the pulse-width range with
benefits for a wide range of materials (Lee et al. 2009b).

Facility energy demand

The facilities used to manufacture LCD arrays require significant environmental control. For
instance, the ovens used to bake the CF and TFT require high energy demand, yet the facilities
must be maintained at temperatures ideal for workers and machinery.

Trends
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* Recycling heat from CF ovens through innovative design Installation of a heat-switching device on
emission pipes to increase the temperature of hot air entering ovens and reduce energy consumption
for heating (AUO 2009).

» Addition of frequency converters into air-conditioning boxes to lower the operating frequency,
reducing electricity consumption (AUO 2009).

Cell stage
The cell stage is the term used to describe the creation of the cell, which typically includes the

following activities: merging of front and rear substrates, sealing of substrates, curing of
substrates, insertion of spacers between substrates, inspection of cell, application of UV-cured
adhesive, insertion of LCs, application of UV or oven-cured sealant, and lamination of front and
rear polarizers onto the substrates.

Later stages include the functional testing of the glass panel, cleaning and testing of circuit
boards, attachment of column and row drivers, and system testing.

Liquid crystals

There are more than 400 varieties of LC compounds in use for displays, many of which are trade
secret (USEPA 1998). Liquid crystals tend to be PAHs or halogenated aromatic hydrocarbons
(USEPA 1998). Socolof et al. lists organic liquids, specifically phenylcyclohexane biphenyls, as
examples. Because LCs comprise a small fraction of the total LCD mass, they are often left off
the BOM and omitted from LCAs. The mass of LCs is only about 0.8 mg of LC per cm” of LCD
screen (USEPA 1998).

Polarizers

Polarizers are typically made of PET and thin-crystal film (Ukai 2007). The polarizer and
analyzer are formed using polymer plates with cellulose triacetate and polyvinyl alcohol with
iodine (Tavares et al. 2009).

Trends

» Optimization of equipment heating As required by the processing parameters, liquid crystal cleaners
must heat up pure water to 70C. Traditionally, water is cooled before heated. Installation of a by-pass
for the coolers so that pure water is not cooled off in summer allows large energy savings (AUO 2009).

* Optimized pre-coolers to replace ice machines in winter Replacement of ice machines with pre-
coolers, which convert cool water into ice water. This measure can drastically lower power
consumption (AUO 2009).

e In-cell technology Some research seeks to expedite integration of system parts, such as the
incorporation of memory circuits and the LC driver into the pixel area (Ukai 2007). This is called ‘pixel
memory’. In this technology, the SRAM and LC driver are integrated beneath the reflexive pixel
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electrode and the LCD is driven by only the pixel circuit when displaying a still image. The result is only
a small charging current to the pixel capacitor, resulting in ultra-low power operation (Ukai 2007).

Module stage
The module stage describes the addition of the BLU, the power supply, several PWBs (for driver

input, controller, adjustment, BLU, and power supply) as well as ICs to the LCD cell.

Backlight unit

The BLU is comprised of the following: light sources, light guide plate (LGP), and optical sheets
such as reflection sheets, diffusion sheets, and inverter for CCFL light sources (DiFeng 2005;
Kobayashi et al. 2009). The BLU drives GWP during production, use, and disposal phases,
though disposal is not well quantified. While use impact is driven by the amount of electricity
consumed by the backlight bulbs, production impact is driven by the materials and
manufacturing associated with backlight type, number of bulbs/diodes, arrangement of backlight,
and LGP. The following paragraphs discuss the tradeoffs between bulb type, arrangements, and
material requirements.

Light sources

Light sources include CCFL, hot cathode fluorescent lamps (HCFL), external electrode
fluorescent lamps (EEFL), flat fluorescent lamps (FFL), magnetically coupled electrode-less
lamps, mercury-free fluorescent lamps, inorganic EL, field emission, and inorganic and organic
LEDs. Not all of these may be used currently for laptop applications. Traditionally, CCFLs were
the most commonly used technology in laptops and monitors, though inorganic LEDs are rapidly
replacing this technology and are now favored in laptop applications (DisplaySearch 2006;
Kobayashi et al. 2009). LEDs are gaining market share over CCFL though the technology is not
yet fully mature.

There are no known quantitative LCAs for laptop backlights, though various studies have
investigated specific life cycle phases or investigated bulbs and diodes used for ambient lighting,
which may be used as a proxy for backlight bulbs and diodes. In this case, it would be important
to know how ambient lighting bulbs and diodes differ in production processes, materials, use,
and disposal impacts. For instance, whether the semiconductor processing and substrate material
the same for lighting LEDs as backlight LEDs.

Chien 2008 evaluated the environmental performance of CCFLs, noting the high efficiency of
light output, contrasted with high operation voltages, fragility, lengthy wait for full flux (about
10 minutes) and the use of poisonous substances, such as mercury. This study noted that LED
technology is replacing traditional CCFL in LCDs due to “large color gamut, color temperature
adjustability, long durability, and environmental safety”, i.e., mercury-free (Chien 2008).




One study of interest on lighting was performed through the EPA in 2005 (Slocum 2005). Due to
lack of publicly available data and the multitude of materials choices and designs still being
considered for LED-SSL backlight technology, this report evaluated LED ambient lighting
technology compared with incandescent and CFL ambient lighting as proxies for BLU
technologies. The study identified potential significant environmental impacts of LEDs, focusing
on ecological and human health metrics (2005). The physical product of an LED is made of
fewer primary materials than a CCFL. LEDs are compact sources of light and are made on chips
on the order of 0.5 to 2.5 mm? (Slocum 2005). However, semiconductor manufacturing for LEDs
is a highly energy-intensive process (Slocum 2005). Semiconductor substrates of silicon, used in
the computer industry, can be grown as large-diameter wafers of 12 inches, but the substrate
materials for LEDs are more difficult to grow while maintaining a low defect density, and are
therefore two, four or six inches in diameter (Slocum 2005). LED chips are manufactured with
compound semiconductor materials such as aluminum gallium indium nitride (AlGalnN)
(Slocum 2005). The process requires highly controlled steps using techniques such as molecular
beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). The epitaxial
growth of LEDs in MOCVD reactors is currently the most demanding and costly processing
step, with much lower yields (~60%) than in the more mature silicon-chip industry (Slocum
2005). More information specific to LED chip manufacture can be found in Slocum 2005.

Since few data are available for semiconductor manufacturing energy requirements, Slocum
approximated it using a 32 MB DRAM chip from the oft cited study by Eric Williams et al.
(Williams et al. 2002). She compared its production and use impacts with those for CFL and
incandescent lighting, as shown in Figure 12. The production energy for one SSL-LED lamp was
much higher than that for the other lights. Though this analysis was for ambient lighting bulbs
and DRAM was used as a proxy for LEDs, the results may inform our hotspot analysis for laptop
backlights. For instance, the high-purity materials required for semiconductor processing should
be evaluated, though it would be expected that on life-cycle basis, LEDs demand less energy
than the other two lamps (Slocum 2005).




CFL Incandescent LED-SSL

Input Power (W.lamp) 15.0 60.0 75
Flux (Im lamp) 900 730 1500
Luminous Efficacy (Im'W) 60 12 200
Lifetime (kr) 8.000 1.000 20.000°
Required luminou: service

a—_ 1.000.000 1.000.000 1.000.000
Number of hour: lamp is nsed to - o
provide required service (Arlamp) 1 1.370 66
Number of lamp: used to provide 0.14 137 0.03
required service ’ ’ .
Energy consumed in ute, based on

required service (kWh) 16.67 82.19 5.00
Production energy for 1 lamp unit )

phti 14 015 115
Production energy of lamp, based

on required service (kWh) 0.19 0.2 0.38
Total Energy (kWh)* 16.86 82.40 538

Source: (Gydesen. & Mammann. 1991); Author s calculations.

1A conservative esumate for the lifetime of SSL device is assumed. because of the uncertamty regarding the
lifetime of lamp and luminaire components. besides the LED chip.

I The energy estimates do not imply these values are accurate to four significant digats. As discussed in the
text. values should be considered to be ordes-of-magnitude only.

Figure 12. Energy demand of manufacturing and use for three lamp types (Reproduced from
Slocum 2005)

An OSRAM study compared the life cycle performance of ambient lighting technologies,
including a conventional light bulb (40W GLS), a CFL lamp (8W CFL Dulux Superstar), and an
LED lamp (8W Parathom). The LED process inventory included the LED chip, housing, and
necessary transports. These LED data were collected at OSRAM Opto Semiconductors, while
data for the incandescent and CFL lamps were taken from two other studies on behalf of
OSRAM. Other process and raw materials data were taken from the GaBi database, literature, or
ecoinvent. Front-end LED process flows included epitaxial growth of the LED structures on a
sapphire substrate via metal organic vapor phase epitaxy, various metallization and lithography
steps, and the replacement of the initial substrate with a carrier substrate before chip separation.
Backend processes included deposition of the LED chip into a leadframe, wire-bonding, and
phosphor and lens deposition (OSRAM 2009). The functional unit was 25,000 hours of light and
assumed 100% yield. Based on these assumptions and data, the study determined that LED
lamps need less than 2% of their life cycle energy for their production and dismissed any concern
over LED production being very energy-intensive, as shown in Figure 13 (OSRAM 2009).
Results for GWP mirror those for energy demand, and are shown in Figure 14. The results for
the LED lamp are driven by aluminum as a heat sink and the ballast, which are energy-intensive
in production and use, respectively. Drivers of CFL impact are the PWB and power-consuming
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processes (OSRAM 2009). Production of an OSRAM Golden Dragon Plus LED requires about
0.4 kWh of electricity, while a Parathom LED lamp that includes six LEDs requires 9.9 kWh.
Because this study analyzed ambient lighting bulbs, not backlights, the semiconductor, heat sink,
and ballast technology should be further investigated.

Primary Energy Demand Primary Energy_ Demand
Use [kWh] Manufacturing [kWh]
3500 - r 350

3290
[Juse
3000 1 I Manufacturing - 300
(zoom factor 10)
2500 - - 250
2000 - - 200
1500 -+ L 150
1000 = L 100
658 658
500 A - 50
153 10.2 9.9
0 [ Lo
25 x GLS 2.5 x CFL 1 x LED lamp

Figure 13. Primary energy demand of manufacturing and use for three lamp types (Reproduced
from OSRAM 2009)
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Figure 14. GWP of manufacturing and use for three lamp types (Reproduced from OSRAM 2009)

Because 100% yield is not realistic in semiconductor manufacturing, the OSRAM study
performed a sensitivity analysis around yield assuming a worst case scenario (40% in frontend
production and 80% in backend). This scenario increased the energy demand from 9.9 kWh to
12.6 kWh, which made no difference in the final outcome of the LCA (OSRAM 2009). Apart
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from bulb type, another consideration for backlight environmental impact is the arrangement of
the bulbs, usually chosen in conjunction with light-guide plate geometry. There are two ways
LED components tend to be arranged:

* Edge light “indirect” arrangement generates a very thin and uniform BLU (1 to 10 mm);
LEDs are located at the side edges of the LGP. Edge type is the most common
arrangement for laptops and monitors.

* Array backlight “direct” arrangement results in a thicker BLU (25 to 40 mm) and is
practically unlimited in terms of diagonal because LEDs are arranged in a dense array
behind the display.

The IPS TFT structure requires more backlights to meet brightness requirements (e.g., eight
CCFL bulbs instead of four for TN) (USEPA 1998; DisplaySearch 2006).

To retrofit a CCFL-lit BLU with LEDs, the BLU architecture can remain almost identical, with
the addition of a PWB strip for the diode base. Up to 154 diodes may be used (Kobayashi et al.
2009). For the edge light arrangement, twenty (for screens less than 7°°) or more (for screens
greater than 12”) LEDs are used to provide uniform luminance for LCD (Chien 2008). LEDs
have the advantage that if consistent LED packing density is maintained, the luminance remains
constant for all backlight unit sizes (Kobayashi et al. 2009). Socolof et al. estimated that a typical
CCFL backlight contains four bulbs.

Trends

* LEDs are replacing CCFLs in laptop backlights LEDs can achieve the same luminance with less power
(Kobayashi et al. 2009). It is unclear whether the direct or the indirect LED arrangement is
environmentally favorable. LEDs are replacing CCFLs in laptops because of heat issues (MSL LCD site
visit, August 2010). AUO plans to introduce LED backlights to 100% of laptops by 2011 (AUO 2009).

* Improved technology is allowing the reduction of bulb quantity for certain varieties of screens (AUO
2009)

* CCFLs will evolve to be longer to accommodate larger diameter displays. They will also evolve with a
wider color-gamut, higher luminance and higher luminous efficiency (Kobayashi et al. 2009).

Optical components

The optical components of backlights include the lamp reflector, the LGP, and the optional
diffuser (Kobayashi et al. 2009). The light guide plate and diffuser will be discussed in greater
detail below because they are typically made of PMMA which has a high material production
GWP.




Light guide plate

Market demand for thinner, lighter and brighter BLUs has spurred innovation of LGPs which
distribute a light source to the full screen area (DiFeng 2005). The LGP is often paired with a
brightness enhancement film, or prism sheet, to enhance luminance (DisplaySearch 2006).

For these thin, edge-lit arranged BLUs, the LGP functions as an optical device that converts a
linear light source (from CCFLs) or some point sources (from LEDs) into an area of uniform
light. The light rays are incident on one side of the LGP and reflect internally. An array of etched
or ink-printed white spots at the bottom of the LGP causes the rays to reflect and refract. Once
the light is emanated from the top surface of the LGP, the diffusion sheet disperses and evens out
the light. LGP research is underway to maximize these performance criteria with minimal LGP
material. LGPs are produced in both flat- and wedge-type varieties (Kobayashi et al. 2009).
Laptops mostly use wedge type.

Research has proposed a uniform LGP for LCDs with the goal to overcome heat, shadow and
illuminative uniformity problems. It would enable incident light to be distributed uniformly to
the BLU and enhance optical efficiency of output. This design could decrease the required
number of LEDs and achieve demand for illuminative uniformity (Chien 2008).

The LGP is the heaviest part of the BLU, accounting for 15-20% of the weight (DisplaySearch
2006). They are typically made by injection molding or cast molding PMMA, which has a high
GWP associated with high energy of production (Kobayashi et al. 2009; ecoinvent 2010).
Injection molding is a highly productive method, whereas cast molding is less productive
(Kobayashi et al. 2009). Plastics Europe has been unable to collect sufficient current plant data
and therefore no longer has a PMMA profile online (Schanssema 2010). Additional data
collection is needed on PMMA production impacts. Compared with PC, PS and COP, PMMA
has superior optical properties (93% optical transmission) and is by far the favored material for
performance (Kobayashi et al. 2009). PMMA is also highly durable against UV exposure and is
cited to have reasonable lifetime (Kobayashi et al. 2009).

DiFeng proposes a LGP made of PMMA based on micro-prism structures designed to control the
illumination angle, which results in a thinner and brighter backlight system because other optical
sheets are not required (DiFeng 2005).

The choice to design with a LGP is coupled with arrangement of the light source. For edge
arrangements, a light guide is necessary. A direct backlight arrangement may not use a LGP but
requires diffusive sheets between the light source and the LC panel (Kobayashi et al. 2009). An
alternative to a LGP is a cavity to produce vertical uniformity when LEDs are placed at both the
top and bottom sides of the display.




Trends

* The tradeoffs considered during BLU design include the number of bulbs, use of LGP and/or diffusers,
and quantity of materials used. Although the edge light arrangement type is most common for laptops,
a LGP may reduce the BLU’s environmental performance.

* To reduce PMMA weight, one trend is to integrate the prism sheet and LGP by forming a ‘V’ groove on
the LGP to allow thinner screens.

¢ Another trend is use of a prism LGP, which patterns a V-shape in the bottom of the LGP for light
centralization and reflects the light vertically, eliminating the need for a separate prism sheet.

Diffuser plates

Diffuser plates are necessary in many laptop BLUs to convert point light sources or line light
sources into a flat light source. Diffusers are often made of PMMA, like the LGP, and therefore
face the same high GWP of production. Other potential materials include MS, MMA, PS, PC and
COP, but like the LGP, PMMA is the favored material due to its high optical qualities
(Kobayashi et al. 2009).

Trends
* Integration of a prism sheet into a diffuser plate to enhance performance and permit materials other
than PMMA to achieve high optical performance (Kobayashi et al. 2009)

Printed wiring boards in LCDs

An LCD requires at least one PWB to function. Socolof et al. identified six PWBs for an LCD,
including controller, row driver, column driver, power supply, backlight, and adjustment knob
PWBs (Socolof et al. 2001b). The major PWBs, by size and function, are the controller and
backlight PWBs. The column and row PWBs are relatively small.

Energy used to manufacture PWBs has a significant impact on the GWP of the entire life cycle.
In terms of estimating the GWP of PWBs, it will be important to know the quantity of PWBs
(probably between 1 and 6), the total area of PWB, the number of layers, and the surface type.

Integrated circuits in LCDs
The ICs in LCDs supply voltage levels that control the liquid crystals. They are categorized as:

* gate (or row) driver IC: switches the TFT on and off, thereby activating the rows of the
display (DisplaySearch 2006).

* source (or data or column) driver IC: provides voltages that control gray scale levels
(DisplaySearch 2006) in the activated row. Source drivers supply video data signals to
data lines connected to the source of TFTs at each pixel of an LCD (Patentdocs).

¢ controller IC: used to coordinate the timing of the row and column drivers and provide a
constant stream of display data to the column drivers. The controller may also modify the
display data to enhance the image quality (EEtimes.com).




The number of ICs used in a LCD may vary. There is a relationship between the
resolution/screen size and the number of ICs (DisplaySearch 2006). Larger displays require
several row driver ICs, several column driver ICs, and a controller IC. Small displays may
accommodate all three on a single chip, such as the Isron device (EEtimes.com). The 182341 IC
is an example of combining row and column drivers in a single component at a small process
mode. ICs may be mounted directly onto the glass of the display to reduce the complexity of
manufacturing and reduce display. This eliminates the need for a surrounding IC package
(EEtimes.com).

A list of major components for a disassembled 15” laptop manufactured in 2005 is shown in
Table 14. The identification number had been removed from the board. The housing size was
measured using a caliper. The die-to-package area ratio was calculated by the research team
(Environmental Assessment of ICT Products, Display Data) for a series of logic and memory
ICs. The research team calculated the die area based on the aforementioned ratio. The potential
function of each IC was researched on IC manufacturer websites and in academic literature. The
pin count was based on observation and the mask count was based on pin count, using mask
count ratios provided in GaBi documentation (PE International GmbH 2006).

Table 14. Components identified from disassembled Dell Latitude D600 from 2005

ID# | Estimated | Housing area Die area: | Die area Possible function S # masks
Housing | (mm?) package | (mm?) pins | (GaBi)
type area

Board with LCD inverter
2 SO 18.80 20% 3.76 CCED belghitarys 8 2
control
Ul | ssop 27.50 20% 5.50 CCFL backlight 20 3
driver
Tl 20% LCD inverter
Board running across length of screen drivers
IC3 SSOP 21.60 20% 4.32 Driver IC 16 2
IC4 TSOP 13.42 20% 2.68 Driver IC 8 2
IC6 SSOP 64.45 20% 12.89 Driver IC 14 2
TQFP 192.38 20% J 38.48 Controller IC 100 13

Metal frame

The metal frame (or bezel) of the LCD is of low priority in terms of GWP. If we were to quantify
its GWP, it would be important to know whether the material quality is high, medium or low;
whether steel is used (steel production, cold-rolled, semi finished is relatively burdensome) and
where the steel and frame were produced to resolve uncertainty around the electricity grid mix.




Trends

* Panels assembled with snap-fit instead of screws may facilitate disassembly and recycling of
components (AUO 2009)

* Integrated PWBs and ICs that combine traditionally distinct components into a single component
may reduce material and energy requirements

Use

The display subsystem accounts for 30% of the power consumed in a laptop (Horowitz 2003).
The backlight is responsible for high power dissipation, accounting for 90% of LCD power
consumption (EuP 2007; Kobayashi et al. 2009). This high power demand motivates the push for
modern and efficient technology, including use of LED backlights over other lighting options.

Some LCDs almost always have a backlight running. To create a black screen, the display may
simply block pixels to prevent light from getting through (EuP 2007). Therefore, the notion that
power consumption is linked to resolution may have been true for CRTs, but may not be true for
LCDs. Rather, power consumption is correlated to screen size because of the way the picture is
delivered to the screen (EuP 2007).

Horowitz 2003 considers laptop displays fundamentally inefficient. He estimates that perhaps
only 1% of energy drawn from an outlet in the wall is actually available as information on the
display. Horowitz proposes the use of the metric pixels per watt to evaluate monitor efficiency.
A wide range of monitor efficiencies is found among laptops, from 27,000 pixels per watt to
186,000 pixels per watt (Horowitz 2003). Power consumption estimates by LCD screen size for
from a TCO study are provided in Table 16 (EuP 2007).

When comparing CCFL and LED backlights for LCDs, it is generally understood that LEDs
consume less energy than CCFLs (Slocum 2005). In addition, LEDs deliver light more
efficiently to small areas, result in less ‘overglow’ than CCFLs, and are considered more rugged
and durable (Slocum 2005). In an experiment evaluating energy consumption, two identical 15.4” laptops equipped with either
LEDs or CCFLs were compared. Both achieved a maximum luminance of 180 cd/m?, with uniformity of
80%. The color gamut was comparable at about 40% of NTSC. However, the LED outperformed
CCFL, using 1.5W versus 3.37W at 60 cd/m®. The implications of this are extended battery life
and energy savings for the consumer, as well as reduced GWP (Kobayashi et al. 2009). Slocum
determined that as of 2005, LEDs had the potential to provide up to 200 Im/W, though in their
current state provided 25-40 Im/W, which is less efficient than fluorescent technology at 55-90
Im/W, see Figure 15 (2005). Increasing use of LED technology will drive its efficacy.




Lighting Technology Efficacy (Im/W)
_Incandescent 13-25
Fluorescent 55-90
HID 25-124
Current 25-40
SSL Potential 150-200

Figure 15. Lighting technology efficacies (Reproduced from Slocum 2005)

An important consideration for LEDs is that the luminous output gradually depreciates over time.
Therefore, end-of-life tends to be when the LED reaches 50% of its initial luminous output
(Slocum 2005). There are minimum luminance requirements, of course, depending on the
display function. Luminance may be at least 1900 cd/m” with a single CCFL bulb. If DVDs or
other visuals are to be enjoyed, at least two bulbs are necessary to produce 3600 cd/m>
(DisplaySearch 2006). For an LED BLU, it is recommended that the luminance level on an LCD
screen be between 200 cd/m” for monitor applications, with a brightness uniformity of at least
85%. A color gamut greater than 100% NTSC must be achieved (Kobayashi et al. 2009). For the
LED backlight of a 32-inch LCD panel, 150W ought to be the maximum power consumption,
comparable to a CCFL LCD. The key is to minimize the number of LEDs to minimize failures in
time and reduce power consumption. LED lifetime may well exceed CCFL, reaching 50,000
hours. One experiment reported LED power consumption of 190mW (and 30W for all 154
LEDs) for a retrofitted 19-inch LED LCD monitor.

The power mode categories defined by ECMA 2009 for integrated computers are listed below. It
is not necessarily the case that LCD power consumption will adjust proportionally to overall
laptop power consumption. For example, during laptop idle mode when overall laptop power
consumption decreases, the backlight is probably still producing light although the pixels are
blocking the light from being emitted. For this reason, it is likely that LCD power consumption
stays fairly consistent through the laptop’s active and idle modes. Further research in this area is
needed. Laptop power mode categories are listed below.

* Disconnect: no power sources

* Off: lowest power mode that cannot be switched off; correlates to ACPI system level S5
state (ECMA 2009)

* Sleep: reduced power state; lowest mode entered automatically after a period of inactivity
or manual selection; computer returns to on-mode with full operational capacity upon
sensing a request from the user/computer (EuP 2007); correlates to ACPI system level S3
or S4; Wake on LAN capability disabled (ECMA 2009)

* Wake on LAN Sleep: same as Sleep mode (above) but with the Wake on LAN capability
enabled.
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On: when not in Sleep, Off or Disconnect modes; has several sub-modes including Long
Idle, Short Idle, and Active mode.
Idle: operating system and software have loaded and product is not in Sleep mode.
Includes:
o Short Idle: 5 minutes after OS boot, screen is on and set to as-shipped; brightness
and long idle power management features should not have engaged.
Long Idle: 15 minutes after OS boot, screen has just blanked but remains in
working mode (ACPI G0/S0). Power management features should have engaged
but product is prevented from entering sleep mode (ECMA 2009).
Active: product is carrying out work, including active processing, seeking data from
storage, memory or cache; connected to a power source and producing image on screen,
producing brightness as set to.

For on-mode power for LCDs of various screen sizes, see the Energystar 2007 database (EuP

2007). Table 15 shows approximate maximum, average and minimum power consumption for
LCD monitors. It should be noted that this probably refers to stand-alone monitors with CCFL
backlights.

Table 15. Power consumption for displays in on-mode (Reproduced from EuP 2007)

Power [W/m?] Power [W/MPx]
- | CRT LCD CRT B LCD
Max ! 1087 617 92 214
Average : 760 290 52 23
Min | 281 184 20 12

Table 16 shows power demand for best-selling LCDs in 2005. We assume that these LCDs are
stand-alone displays and not integrated modules. This distinction is important if we consider that
stand-alone displays often use CCFL backlights and may be built to be more robust than an
integrated display, which is designed for portability and commonly houses LED backlights. For
this reason, the power consumptions listed below are likely to be higher than those for an
integrated LCD. The large range of values across these studies for various power modes
motivates further resolution into the drivers of this demand and the role of the LCD.

Table 16. LCD power consumption estimates (Reproduced from EuP 2007)

Data IVF summer survey Product Case Data TCO 2005 data 17” TCO 2005 data 15”

| Sources Sets LCD LCD

| Operation | FU Ave | Max | Min Ave Ma Min | Ave l Max | Min Ave Max | Min
-al Modes X i

e S T

| Active Display 399 | 70 30 314 N/A | N/A 259 | 47 | 17.1 i 16.4 213 129

ok,
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Active m 415 604 330 345 N/A | N/A | 285 526 191 236 306 185
Active Mpixel 285 | 39.7 229 239 | N/A | N/A | 215 59.8 13.7 20.9 271 16.4
Sleep Display 1.2 2 0.7 0.9 N/A | N/A 1.1 ) 0.5 1.0 2.1 0.7
Sleep m’ 13.2 | 22 Tl 10.3 N/A | N/A 12.4 44 5.3 14 30.1 9.6
Sleep Mpixel 0.9 1.5 0.5 0.7 N/A | NJA | 09 3.1 0.4 1.2 2.7 0.9
Off Display 1.1 2 0.7 0.8 N/A | N/A 1.0 3.0 0.5 0.9 1.2 0.6
Off m’ 117 | 22 7.1 9.2 N/A | N/A 114 33.6 5.2 12:2 17.5 8.6
Off Mpixel 0.8 1.5 0.5 0.6 N/A | N/A 0.9 3.8 0.4 1.1 1.6 0.8
Trends
* Use of organic light emitting diodes (OLEDs) may bypass [inorganic] LEDs and CCFLs altogether. OLEDs
create light efficiently and directly from each pixel instead of lighting a crystal. They did not have the
operating lifetime to be marketable in laptops at the time of the Horowitz 2003 report
* A potential energy saving strategy may be to design the backlight unit to reduce standby power draw
of the backlight (Samsung 2010)
EoL

Laptop (and therefore LCD) EoL varies by geographic region and policy. EoL options include
reclamation for refurbishing and reuse, reclamation for recycling of materials, landfilling, and
incineration.

Some members of the laptop industry have instated take-back programs, such as Samsung’s
Global take-back program (Samsung 2010). Changes in processing requirements may begin to
influence the way laptops are disposed of and recovered (Lee 2008). The European Union’s
Waste Electrical and Electronic Equipment (WEEE) Directive and Restriction of Hazardous
Substances (RoHS) Directive are two existing and influential policies that increase recycling of
e-waste and encourage green design (Lee 2008). Also, the USEPA and the American Plastics
Council define or regulate electronics waste in the United States (Noon 2009). Efforts are
underway to design LCDs with EoL impact in mind. Such efforts include research to relate the
dimensions of an LCD to its impacts so that designers can facilitate recycling and reuse of
products (Lee 2008).

For the most part, laptops have not been designed with reuse/recycling in mind (KCSWD 2007).
One LCD recycler reported that there was no method to recover glass and liquid crystals from'
LCDs so the entire module must be shredded. Another recycler reported sending screens to a
primary smelter in Canada for materials recovery (KCSWD 2007). Tavares et al. discuss LCD
separation aimed at recycling and point out that it is the plastic between the glass substrates
which makes it difficult to recycle the glass. In fact, separation requires a grinding process,
which includes coil, disk, balls and hammer mills. However, coil and disk mills cannot complete
this separation and are therefore not viable processes for recycling. Only a hammer mill has an




efficiency of around 98% completion. Lee also cites panel glass recyclability as a key area
requiring improvement (Lee et al. 2009a). In addition, the King County Literature Review
describes the small and inaccessible fasteners on a typical FPD, including clips, screws and
adhesives, making disassembly challenging. The design and location of these fasteners differs by
manufacturer and makes it difficult to create a standard disassembly method (KCSWD 2007).

Due to concerns over impacts, reuse and recycling are the preferred EoL management strategies
in Washington State (KCSWD 2007). Figure 16 shows LCD monitor EoL processing based on a
study in Seattle, WA (Lee et al. 2009a). At the time of this study, the LCDs collected at EoL as
part of Seattle’s ‘Take it Back’ Network were not disassembled, though 40-70% were
refurbished for reuse/resale. The remaining 30-60% were sent by the handler to a processor
(along with the majority of CRTs, for which there is little demand for reuse) (Lee et al. 2009a).
For the LCDs that were processed, PWBs were reused or smelted overseas, CCFLs were
recovered on site, the LCD panels were sent to a plastics recycler or metal smelter, aluminum
was sent to a local broker, mixed plastics were sent to a plastics recycler locally or in China,
ferrous metals were sent to a local steel mill, copper was sent to an overseas smelter, and
removable plastic components were sent to a local plastics recycler or to one in China.

End-of-life impact of backlight bulbs is considered extremely small (~0.1% of the primary
energy demand over the life cycle) (OSRAM 2009).
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Figure 16. LCD monitor processing in Seattle, WA (Reproduced from Lee 20092)

The King County Solid Waste Decision (2007) evaluated EoL management of FPD devices,
including laptop LCDs. For AM-LCDs, the components most likely to fail and limit the lifetime
of the machine are the display, LCs, TFT, backlight, driver IC, tabs and other small components.
Failure of LCs and transistors would require replacement of the entire display panel, while the
BLU and IC tabs could be replaced readily. It is estimated that LCD monitors have a lifespan 3.6
times that of a CRT.

EoL considerations for backlights include whether LED or CCFL lighting technology is used.
For instance, the projected longevity of LEDs (up to 100,000 hours) could extend the lifetime of
the lighting system and reduce the quantity of spent lamps (and therefore materials) entering the
waste stream (Slocum 2005). In addition, LEDs simply require less physical product using fewer
materials, and therefore could be expected to reduce the waste stream of spent lamps (Slocum
2005).




Trends

* Panels may be assembled with snap-fits instead of screws to facilitate disassembly and recycling of
components (AUO 2009)

* Recycled and recyclable content

Summary of Future Trends in LCDs
Anticipated changes to process or product materials include (MSL 2010a):
* Slim and light design: cascade, polished glass, glass center turn-key solution
* Power saving total solution: ambient light sensor, dynamic blight control, dynamic
refresh rate, fly-cut LGP
* Style: slim border cell technology, a:Si gate
* Touch panel: integrated TP, external TP
* Advanced technology: three-dimensional display, MEMC, display port

Anticipated/occurring environmentally significant changes in process materials:

* None (MSL 2010a)

* Toreduce PCF and SFs emissions, the member nations of the World LCD Industry
Cooperation Committee (WLICC) are investing effort into emissions reduction. Member
companies, including, AUO, started designing plants in 2003 to install a PFC abatement
tool with a removal rate of over 90% (MSL 2010b)

* Encouragement of suppliers to use renewable energy (AUO 2009)

* GHG emissions and water per substrate quantity reduced (AUO 2009)

* Increase of the recycle and reuse rate of the packaging materials for semi-finished
products (AUO 2009)

¢ Production weight reduction

¢ Product disassembly time improvement

Anticipated system-level technology changes (e.g. integrated technologies):
* Development of carbon footprint verification e-system to collect supplier data to improve
verification efficiency (AUO 2009).




