
AN OPEN ARCHITECTURE FOR DATA ENVIRONMENTS BASED ON
CONTEXT INTERCHANGE

by

MARIA ELENA NEIRA

Ingeniero de Caminos, Canales y Puertos (1988)
Master en Comunidades Europeas (1989)

Universidad Politecnica de Madrid

Submitted to the Sloan School of Management and
the School of Architecture and Planning

in Partial Fulfillment of the Requirements of the Dual Degree of

Master of Science in Management
and

Master in City Planning

at the
Massachusetts Institute of Technology

February 1995

© 1995 Massachusetts Institute of Technology. All Rights Reserved

Signature of Author

MIT Sloan School of Management
October 3, 1994

Certified by

Certified by

Accepted by

Accepted by

C-
'I

Stuart E. Madnick
John Norris Maguire Professor of Information Technology

Thesis Supervisor

,JOs erreira.'iProfessor of Urban Studies and Planning
Director of Computer Resources Laboratory

A A Thesis Reader

Jeffrey A. Barks
Assoc1 tt ean, Master's and Bachelor's Programs

Langley C. keyeF Ford Professor of Urban Studies and Planning
Chairman, MCP Committee

- 1 -

MASSACHUSETTS INSTITUTE
OF T ur- ogy

APR 03 1995
UBRARIES

AN OPEN ARCHITECTURE FOR DATA ENVIRONMENTS BASED ON
CONTEXT INTERCHANGE

by

MARIA ELENA NEIRA

Submitted to the Sloan School of Management and
the School of Architecture and Planning on October 3, 1994

in Partial Fulfillment of the Requirements of the Dual Degree of
Master of Science in Management and Master in City Planning

ABSTRACT
The management of large scale integrated computing environments presents
several problems resulting from hardware and software incompatibilities, from
systems architecture disparities, and from inconsistencies in the data itself. The
situation in the data management arena is the most problematical because most
of the current systems and their application programs do not explicitly declare
the meaning, semantics and organization of their data. This important
information the "data environment" as well as its manipulation is the central
concern of Context Interchange Theory, a part of the ARPA-sponsored Intelligent
Integration of Information (13). The project as a whole develops knowledge-based
techniques and tools to promote the sharing of data among networked systems;
its client/server architecture is based on open system standards. After tracing the
evolution of the data environment concept as applied to computer systems, we
present a novel approach to their representation by means of a frame-based
Context Definition Language (CDL). This language allows for interoperability
among a network of systems by restructuring their data environments into inter-
related Domains consisting of EntityObjects, Properties, MetaProperties and
Links. Several examples are presented in CDL to illustrate context acquisition,
and the capture of data environments, i. e., context knowledge. Finally, using the
newly defined CDL, we build a C++ context prototype.

Keywords: Context Interchange, Data Management, Knowledge Representation

Languages, Open Systems.

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology

A mis padres

- 3-

ACKNOWLEDGMENTS

An endeavor like a dual master program cannot be undertaken without the

support of many people. It is not possible to list here all those that one way or

another contributed to the completion of this study. I would like to mention,

however, those that for their position or because of the circumstances made a

larger contribution towards the completion of this thesis.

At MIT, I must thank Professor Stuart E. Madnick, my advisor, who judiciously

as well as steadily guided me through the steps of the program, including this

thesis. During these years, he has been a great professor as well as a sensitive and

intuitive mentor. I can never adequately express my infinite gratitude to this one

gentleman.

At the Center for Earth and Planetary Studies, Washington D.C., I must thank Dr.

Thomas Watters and Mr. Michael Tuttle who introduced me to the world of new

Information Technologies. To both of them my gratitude for their patience.

At Universidad Politecnica de Madrid, I must thank Professor Carmen Gavira

and Professor Jose Calavera who encouraged and helped me to persuade a

research-oriented career. They deserve my most affectionate admiration.

A very special remembrance goes to Jesus Sarmiento, my grandfather, who left

this world several years ago, and to whom I miss very much and keep very alive

in my memory.

Finally, I must endlessly thank my parents, Elena and Jaime, and my brother and

sisters, Santiago, Flor and Belen, who, far from here but very close to my heart,

have been, are, and will always be, the major reason for the efforts that I have

undertaken outside my home country. To them, my deepest gratitude for their

tireless understanding, support and patience.

-4-

TABLE OF CONTENTS

PAGE

A B ST R A C T ... 2

ACKNOWLEDGMENTS .. 4

TABLE OF CONTENTS ... 5

LIST OF ACRONYMS ... 9

LIST O F FIG U R ES .. 10

LIST O F TA BLES .. 11

CHAPTER 1: INTRODUCTION ... 12

1.1 Interoperable computer networks .. 12

1.1.1 Physical and logical connectivity...13

1.1.2 Integration strategies ... 16

1.2 The context interchange framework..20

1.3 O utline of thesis... 29

CHAPTER 2: DATA ENVIRONMENTS .. 31

2.1 On data structures and knowledge representation............................. 32

2.1.1 D ata types.. 35

2.1.2 Record-based models... 37

2.1.3 Semantic models... 39

2.1.4 Object oriented models... 40

2.1.5 Integrated databases ... 41

2.1.6 Data repositories, data warehouses and metadata 42

2.1.7 Re-engineering data environments .. 46

2.2 On data environments and interoperability... 47

-5-

2.2.1 Examining a data environments .. 47

2.2.2 Closed systems, open systems and their differences 49

2.3 Data conflicts over the network .. 50

2.3.1 1-Dimensional conflicts .. 51

2.3.1.1 Semantic conflicts .. 51

2.3.1.2 Domain-dependent meaning....................................53

2.3.2 N-Dimensional conflicts.. 54

2.3.2.1 Inter-domain conflicts ... 55

2.3.2.2 Domain-specific dimensions 56

2.3.2.3 Complex conflicts .. 57

2.3.2.4 O rder conflicts .. 59

2.3.3 N am ing conflicts .. 59

2.4 The architecture of open data environments .. 60

CHAPTER 3: CONTEXT DEFINITION ... 63

3.1 Why a new model and a new representation language for context? ... 70

3.1.1 Components of the architecture ... 71

3.1.2 The context application logic.. 72

3.2 A formal view of context interchange ... 73

3.2.1 A ssum ptions ... 73

3.2.2 R elations .. 78

3.2.3 Transformations in context .. 80

3.2.4 The ontology as facilitator of data exchanges 81

3.3 Context representation: CDL .. 82

3.3.1 C D L characteristics ... 83

3.3.2 D om ains in CD L ... 84

3.3.2.1 Source context domain definition............................85

3.3.2.2 Receiver context and domain-restricted queries 88

3.3.3 EntityObjects, Properties and their semantics 90

-6-

3.3.3.1 Identification... 90

3.3.3.2 Ontology Links .. 93

3.3.3.3 Representations .. 99

3.3.3.4 Constraints .. 101

3.3.3.5 M issing value .. 101

3.3.3.6 Transform ations ... 101

CHAPTER 4: CONTEXT ACQUISITION USING CDL...................103

4.1 The netw ork directory locker ... 104

4.1.1 Dom ain ... 104

4.1.2 Subdom ains..106

4.1.3 Context interchange view .. 106

4.2 The Alum ni/Gift Database ... 107

4.2.1 Dom ain ... 107

4.2.2 Subdom ains.. 110

4.2.3 Context interchange view .. 118

4.3 The Topologicaly Integrated Geographic Encoding and Referencing

file s ... 12 4

4.3.1 Dom ain ... 124

4.3.2 Subdom ains..124

4.3.3 Context interchange view .. 125

CHAPTER 5: PROTOTYPE... 126

5.1 Scope of the prototype ... 126

5.2 Design issues...127

CHAPTER 6: CONCLUSION ... 128

6.1 W hat is m issing today? 128

6.2 Context Interchange...130

6.3 Context acquisition: definition and view s .. 134

6.4 Netw ork interoperability through context ... 135

REFERENCES ... 139

-7-

APPENDIX NUM . 1: SOURCE CODE .. 145

-8-

LIST OF ACRONYMS

ADT

ARPA

CAD/CAM

CASE

CDL

CDT

CIM

CISL

CIS/TK

DBMS

DCE

DDL

DML

E-R

GIS

IRDS

IT

IS

I3

MIA

MIT

0-0

OSI

OSF

TIGER

USGS

... A bstract D ata Types

... Advance Research Projects Agency

... Computer Aided Design/Computer Aided Manufacturing

...................................... Computer Aided Software Engineering

.. Context Definition Language

.. C om plex D ata Types

.. Computer Integrated Manufacturing

.............................. Composite Information Systems Laboratory

.................................. Composite Information Systems/Tool Kit

... Database management System

... Distributed Computing Environment

... Data Definition Language

... Data Manipulation Language

... Entity-R elationship

.. Geographical Information System

................................... Information Resource Dictionary System

.. Information Technology

... Inform ation System s

.. Intelligent Integration of Information

... Multivendor Integration Architecture

.. Massachusetts Institute of Technology

... O bject-O riented

... Open Systems Interconnection

... Open Software Foundation

Topologicaly Integrated Geographic Encoding and

.. R eferen cin g

.. United States Geological Survey

-9-

LIST OF FIGURES

PAGE

1. Context Interchange in a Simple Source-Receiver System...............................25

2. Data Representation in Computer Programs.. 36

3. Example of N-Dimensional Conflicts.. 57

4. Client-Server Context Interchange Architecture ... 69

5. Graphical Nomenclature of Context Model.. 76

6. Simplified View of Context Interchange Model .. 79

7. Application of Context Interchange Model..81

8. Network Domain Description in Natural Language .. 85

9. Network Domain Description in CDL ... 86

10. MIT Alumni/Gift Database Description .. 88

11. Receiver Context Querying in ContextDomain... 89

12. Context Definition Language Layered Structure .. 91

13. Interlocking of Hierarchies in the Shared Ontology .. 93

14. IsK indO f Link ... 95

15. P artO f L in k .. 96

16. R elatesTo Link ... 97

17. Example of Multi-Cardinality .. 100

18. Examples of Network Directory Records ... 105

19. Network Directory Source Domain Description ... 107

20. The MIT Alumni/Gift Database Schema..108

21. List of Fields Selected for Analysis .. 110

22. MIT Affiliation Code Table...112

23. D atabase Source C ontext...117

24. Local and G lobal Links..121

25. Subset of the O ntology .. 123

-10-

LIST OF TABLES

PAGE

1. Data Conflict Categories .. 22

2. 1-Dimensional Format Conflicts .. 52

3. Domain-Dependent Conflicts...54

4. List of Name Sub-components by Country .. 55

5. List of Dimensions and their Mismatches .. 56

6 . C on flict T ab le .. 64

- 11 -

CHAPTER 1

INTRODUCTION

1.1 Interoperable computer networks

Over the past few years, breakthroughs in networks and telecommunications

technology have provided increasing connectivity among a wide variety of

devices that manage the input, output, storage and processing of data. Systems

connectivity has increased not only from improvements in these technologies but

also from dramatic advances in hardware and software. These improvements in

technology have created new systems architecture and new ways of computing,

i. e., massive parallel processing, distributed processing, and cooperative and

client-server computing.

They give organizations the opportunity to take advantage of more economical,

more sophisticated and more reliable IT infrastructures, which have become

capable of supporting a wider range of computer-based activities. In addition,

the fact that these technological developments have carried with them drastic

price reductions in computer-mediated communications and computing power,

gives them strategic advantage and provides them with new methods to redesign

and improve their IT-based activities, and expand them internally as well as

externally .

- 12 -

Nevertheless, especially in data-intensive computing environments, all these

benefits do not come without cost. There exist serious problems to be solved

before we can achieve and take advantage of full IT systems connectivity. These

difficulties, identified by Madnick, Siegel and Wang [Madnick & others 90] as

logical and physical connectivity1 issues result from the idiosyncrasies of the

component systems in the IT infrastructure: each one has its own domain, its

own architecture and, its own implicit organization. Moreover, the structure and

meaning of the data residing within each system has its own unique data

environment.

1.1.1 Physical and logical connectivity

In general, connectivity problems, also known by the names of interoperability

and systems integration problems, fall into four categories [Collet & others 91,

Kent 79b, Lenat & others 90, Madnick & others 90, Malone & others 87, Navathe

92, Shen & others 91, Takagi 92, Thompson 89]:

e Hardware incompatibilities

They result from incompatible architectures and from the lack of standard

interfaces among the many hardware components.

* System software incompatibilities

They include, among others, differences in transaction processing and

concurrency control mechanisms, differences in interactive processing

environments, and in real-time processing requirements.

1 For a complete definition of the terms logical connectivity and physical connectivity the reader

is referred to [Wang & Madnick 89].

-13-

e Data incompatibilities

They are chiefly those found within the data structures and relationships

among those structures, and in the way both of them are implemented.

Particularly important are the differences in atomic data types across systems;

but the major problems arise when these atomic data types are incorporated

into higher order types (data structures, tables, objects, entities, etc.). The

solution to this problems of types, aggregates and relationships among them

are radically different in each environment. In the Information Systems (IS)

arena, these incompatibilities are manifested in the form of data model

differences. That is, data definition language (DDL), data manipulation

language (DML), data representation, database programming and/or query

language vary from system to system. Yet even in the case of model and types

homogeneity across environments, incompatibilities due to data conflicts 2 are

very likely to occur.

e Communication incompatibilities

Including differences in network protocols, and in transmission modes, i. e.,

synchronous versus asynchronous , etc.

To overcome these difficulties is the new challenge of the IT systems integration

paradigm. The task is especially difficult in those networks where accurate and

timely data exchange among heterogeneous environments 3 is an inherent part of

the systems specifications. The following examples are drawn from typical IT

2 See Section 2.3 for definitions and classification of data conflicts.

3 Throughout this thesis we will be using the term environment, particularly data environment

meaning the set of internal and external characteristics which affect the overall properties of the

system's resident data.

- 14-

systems, where data heterogeneity is a major minefield in the route to

integration:

e Multi-agent design systems such as CIM and CAD/CAM managing dynamic

complex objects with substantial changes throughout their life cycles, and

with time-stamped feedback flows among objects.

e Production-oriented scheduling applications, particularly those involving the

integration of operations to reduce costs and increase effectiveness in

throughput, reallocation, dispatching, inventory control, and other tasks

related to plant operations control.

* Intelligent planning and flow control supporting distributed transportation.

An example of this would be the 1992 Integrated Feasibility Demonstration of

the DRPI, where a planning system developed and detailed a military forces

employment and deployment plan as well as a simulator to analyze this plan

with respect to transportation feasibility.

- Computer-based decision support systems that need to interchange timely

and accurate information. An example would be government-related

information systems, which contain large amounts of critical transportation

management information, socio-economic data, population statistics, etc. In

emergency situations it would be especially important for these systems to

ensure the proper data flows and feedback. Unfortunately, most of

information systems remain isolated, contain duplicated and overlapping

information, and the proper integration strategies are not yet in place.

-15 -

In addition to these technically-oriented issues, strategic and organizational

issues also play an important role in systems integration. The increase in IT

systems connectivity has impacted and changed the information flows, functions,

coordination among functions, boundaries and structures of the organization

itself as well as its culture; it even influences the IT systems integration paradigm

-- when the appropriate feedback mechanisms are in place. Issues such us

computer security, data ownership, users' privacy, inter-organizational linkages

etc. are, at different levels, key issues which must be taken into consideration in

order to develop a sound, safe and successful integration strategy.

1.1.2 Integration strategies

Nowadays, a typical information technology infrastructure consists of a

collection of different systems residing in a variety of different, muti-vendor,

mutually incompatible software and hardware platforms, and running a mixture

of business, scientific, and engineering applications, which have incompatible

data environments.

The entire system (enterprise) needs to be linked into a coherent whole, by tying

together all their components, irrespective of the vendor platform into which the

systems are running, of the system role, of the data model, and of the data

environment. Moreover, the enterprise may also want to extend its business by

linking enterprise-wide systems with the business suppliers, distributors and

customers' environments. Our integration strategy should be able to respond to

all these demands.

-16-

In order to accomplish this, we need to open the component systems, i. e., to

develop open systems architecture as the basis of our systems integration

scheme.

Everyone seems to recognize the potential benefits of system openness and of a

systems interoperability strategy. Numerous initiatives in the private, public and

international arenas --Open Software Foundation (OSF), concurrent engineering,

Open Systems Interconnection (OSI), system integrators, ARPA-sponsored

knowledge sharing effort, MIA's architecture, ARPA-sponsored Intelligent

Integration of Information effort, re-engineering, etc.-- have been undertaken

recently to achieve these ends. These initiatives, at different levels and with

different scopes, have addressed the systems interoperability problem, and have

tried to solve it by creating new technologies and tools with such names as

protocols, common system interfaces, wrappers, standards, mediators.

It may seem that the obvious and logical solution to interconnect all these

systems, move applications and move data is to open their architectures by

adopting inter --and intra-- systems standards-based interfaces. But the open

standards solution is not yet in place, and, as we pointed before, this is even

more truth in the data management arena.

In the past, many of these systems integration problems were studied in a

smaller scale, and were solved by analyzing each of the components, and by

imposing standards on their hardware and software. Regarding data integration,

previous studies [ACM 90, Kent 79b, Shen & others 91] have shown that

heterogeneity, semantic discrepancies, and conflicts of meaning are the norm

when comparing data from different sources. The most common way to solve the

-17-

problem has been to create an integrated schema --very often called enterprise

model--, which can be either composite or federated, to glue the components.

Implicit to this approach is the fact that integrators have been coping with

component heterogeneity:

e Hiding differences

Hiding (hard-coding) the differences among systems is present, at different

level, in every integration project.

* Standarizing

Eliminating their differences, i. e. imposing proprietary standards; and

e Developing static integration methodologies

Deciding at design time what the (static) component modules are, and what

their (static) contributions to the new integrated system ought to be according

to the requirements of the project.

These solutions are no longer feasible. Experience has shown that many of the

systems that followed the integration strategy described above, resulted in

failure or gave a poor performance. The reasons and lessons that we learned

from those failures fall into the following main categories:

* Centralization problems

Centralized integration strategies are not possible when the component

systems work in an independent fashion, so that the adoption of mandatory

and/or proprietary standards is not feasible.

-18-

e Scaling problems

Even when a feasible centralized approach can be put in place, it has been

demonstrated that classical data integration methodologies do not scale up.

For example, while is possible to keep an integrated global schema for a low

number of component systems, the approach with a large number of them

becomes intractable.

e Static design problems

Loosely-coupled networked systems with a large number of independent

dynamic component nodes are becoming more and more common. Static

architectures, i. e., architectures where all their modules are known at design

time are no longer adequate, because every time there is a change in one of

the components, the whole system needs to be re-worked; thus design

methodologies, fairly static at the present time, ought to be augmented with

dynamic capabilities.

e Data interpretation problems

Regardless of the system, of its centralized or decentralized components, of its

size etc., the major problem appears reside in the data itself. Data has no

public meaning and no public structure. Rather, it appears to result from the

private structure, architecture and evolution of the system, and can only be

exchanged and integrated by a process of pre-consensual domain --agreement

on what it is and how it is to be used. State-of-the-art software tools lack the

power to understand what the data is. They also lack the power to monitor

data changes in component systems. Finally, the data management function is

the function most affected by a broad and heterogeneous user community

composed of application developers, data administrators, end-users, network

- 19 -

managers and systems analysts. As a result, the function is strongly

dependent on environmental and organizational idiosyncrasies; data is,

among all the system components, the one which is most heavily affected by

internal and external organizational linkages and forces.

In a new environment characterized by rapid changes in IT-related technologies,

in IT-supported operations, in the IT function, and very frequent changes in IT

component systems, new integration approaches ought to be put in place. In this

broad area of IT systems integration we will look at how new data integration

approaches should be designed in terms their integration goals, their integration

requirements and their implementation techniques.

1.2 The context interchange framework

The interoperability issue that this thesis addresses is that of achieving data

integration among a collection of loosely coupled and independent computer

systems interconnected through the network. Particularly, we focus on the

definition and development of tools and techniques to promote intelligent

sharing of data among those interconnected systems.

Our strategy to provide data interoperability consists of identifying, explicitly

declaring and resolving the incompatibilities originating from the different

underlying assumptions attached to each data environment. The solution that we

propose is framed in the Context Interchange integration strategy [Goh & others

94, Neira & Madnick 93, Siegel & Madnick 89a, Siegel & Madnick 89b, Siegel &

Madnick 91].

- 20-

The work focuses on data modeling and data knowledge representation and on

their associated architectural issues rather than on the processing needs. The

methodology that we plan to follow is described below.

The thesis begins with a historical analysis of data environments, emphasizing

the evolution of data definition schemes within them [Backus 78, Chen 76, Codd

70, Davis & others 91, Hammer & Mcleod 81, Kent 78, Navathe 92, Shipman 79,

Thompson 89]. Generally speaking, we notice that the task of data definition and

representation has been understood and studied assuming stand-alone static

systems. The analysis includes, among others, the well known record-based,

semantic and object oriented paradigms. We will be analyzing how data

definition is being captured and processed under each of the paradigms. With

this study, we hope to gain a better understanding, and develop a better

definition, of data definition and data knowledge representation --called

metadata, DDL, schema, data dictionary, etc. For each of the data definition

paradigms that we analyze, we cover the following topics:

" Where the data knowledge is located in the system.

e How this knowledge is documented and accessed.

e What part of the data environment, if any, is not recorded by the

representation tools readily available in the system.

Our analysis continues with a review of the existing tools and methodologies

supporting data sharing among a set of (component) systems [Atre 92, Bright &

-21 -

others 92, Collet & others 91, Goldfine & Koning 88, Gupta 89, Lenat & others 90,

McCarthy 84, Sheth & Larson 90]. The review includes integrated database

systems, data repositories, warehouses, IRDS and re-engineering. We notice that

in this area, much of what has been done to design open systems architectures,

has been done in the software and hardware arenas. Meanwhile the systems'

openness regarding their data environments remains, to this day, poorly

understood, and has been neither extensively studied nor formalized.

Table 1

Data Conflict Categories

FORMAT

UNIT
SEMANTIC - ---

1-DIMENSIONAL SCALE

PRECISION

DOMAIN -DEPENDENT MEANING

DOMAIN DEPENDENCY

DOMAIN -SPECIFIC DIMENSIONS
N-DIMENSIONAL

COMPLEX

ORDER

NAMING

A complete model to represent data environments and to support exchanges

among those data environments needs to attach data organization and meaning

explicitly to the model's structures. Our research has identified several conflicts

that prevent open data flows. We believe that these are due to a systematic

misrepresentation of the data, and that this situation ought to be corrected by

defining the above mentioned data environments. The conflicts fall into the

-22-

categories presented in Table 1. These categories will be explained in detail in

Chapter 2.

To resolve these conflicts, we need to create, besides the data environment

definition, additional elements in the network capable of detecting and resolving

the conflicts; this takes us to our next step which is to present a complete picture

of the architecture that enables data integration and open data environments: this

architecture is Context Interchange.

Context Interchange Theory is a novel approach to achieve data interoperability.

From the context interchange point of view, to exchange meaningful data among

systems, we need to define the meaning, semantics and organization of all the

data environments, i. e., data contexts, involved. In addition, we need to create

global tools, i. e., a shared ontology, and context mediators to undertake context

comparisons and transformation management. Briefly, the context interchange

architecture (Fig. 1) defines the following modules:

e At system level, context interchange defines context clients with a data source

context --used to export data-- and a data receiver context ---used to import

data-- whose role is to capture the data environment characteristics --data

meaning, semantics and organization. Both contexts are included as an active

part of the system and they interact with the other modules of the context

architecture.

* At the global level, context interchange defines a context server providing

network libraries of ontologies, and network mediators modules to manage

context conflicts and their resolution.

- 23 -

e The local modules act as clients sending requests to the global modules

residing in a context server. That is, they are architectured as a high level

application program compliant with a distributed computing standards, i. e.,

client/server model (Fig. 4).

Our first contribution to the context interchange theory is comprised of the

definition of a formal model of "contextualized" data exchange that organizes

data around a set of conceptual entities --concrete and abstract things-- and

properties. The model draws a clear distinction 4 between atomic and aggregated

data. The formalism is built upon the following assumptions:

e The domain of a system is described as a set of conceptual entities (things), i.

e., EntityObjects5 . This finite set of concepts (things) is named using the

vocabulary provided by the shared ontology. It represents the outermost

boundary of the system domain. Subsets of the system domain, i. e.,

subdomains can be created choosing a subset of the domain's EntityObjects.

e Every EntityObject has a finite set of associated descriptors, i. e., Properties6.

They are used to store information about the concept. In our formal

description of context, these variables determine the dimension of

EntityObject in the domain where it resides.

4 This is consistent with our classification of data conflicts briefly introduced above.

5 In this document we refer to the terms EntityObject, Property, MetaProperty, Link and Domain

(capital letter) to refer to their unique meaning as defined for the purposes of this thesis. If they

are not capitalized, then, they refer to their standard dictionary definition.

6 In the context of this thesis, the terms 'property' and 'attribute' are equivalent.

-24-

e A Property must be able to represent partial knowledge about the

EntityObject and accommodate multiple sub-properties, i. e., MetaProperties.

They are needed to complete the representation of EntityObjects and

Properties outside their domain boundaries. MetaProperties contain explicit

declarations of the meaning and representation of the data to which they are

attached.

e Domains can communicate by attaching to them a set of global relations,

called Links. Through this scheme, we include each domain in the global

ontology.

SHARED ONTOLOGY

Export Context Context Mediation mport Context

DATA Context DA TA

SOURCE Transformation]RECEIVER

Figure 1: Context Interchange in a Simple Source-Receiver System 7

The model is formalized based on Set Theory; particularly, we structure every

domain as a set of n-tuples connected by relationships (Links) to outside

domains. The relations are modeled using Transformations Theory paradigms, i.

-25-

7 Source: [Siegel & Madnick 91].

e., cross product, cluster product and tensor product analysis. Relations are key

elements to define the various ways to combine data from different sources.

Our next point deals with context interchange architectural issues, mainly we

present context interchange as an application compliant with the OSI's network

standards. The application consists of client nodes that transmit their data

exchange requests for information on Domains to the context server. This

architecture serves as the basis to structure, inter-connect and locate the modules

described above.

Continuing our work in the development of context interchange theory, we

present the design of the Context Definition Language (CDL), a new

representation language for context knowledge, supporting interoperability

among a collection of independent networked systems. CDL's role is to manage

the procedural and declarative knowledge of the set of n-tuples that characterize

the domain.

Overall, CDL's structures are frame-like structures [Branchman & others 85,

Minsky 68, Norvig 92] specially suited to hold context knowledge. The

knowledge they contain is intensional --the CDL structures can be used in

recognition and comparison processes. These reasoning processes

(augmentation, generalization and matching) are provided by the global

modules of the context interchange architecture; they intervene to perform the

data environment comparison and transformation management defined above.

All the CDL components have been created under a modular design approach

that encompasses the definition of sub-units, i. e., layers of data definition. Each

one deals with the representation of a different aspect of context knowledge.

-26-

CDL frames have different structures depending on the role they play in the

context architecture:

* Source domain description

Network nodes and their aggregated domain-specific structures at high-level

as Domains with EntityObjects.

* System-level structures description

These are the domain-specific EntityObjects and the Properties attached to

them.

* Receiver description

They are represented as global network queries requesting any combination

of EntityObjects, Properties and Domain information.

The definition of a shared (global) ontology against which to match the

categories --EntityObjects and Properties in CDL's nomenclature-- found in the

various network node domains, constitutes an important CDL-related issue that

we emphasize in this thesis.

To support our analysis and conclusions with real examples, we choose to

analyze different data environments. Each of them pertains to a very different

domain, and we give a detailed description of its contents. Afterwards, for

reasons of brevity, we choose a subset from them to represent and embed in the

newly defined CDL frames. In doing so, we demonstrate the feasibility of context

analysis and context acquisition in operational network nodes.

-27-

Finally, we develop a prototype, using the C++ programming language,

demonstrating how to build a data environment definition directory. The

environment definitions are incorporated into a global hierarchy of domains. The

prototype assigns to this global hierarchy --global ontology library-- the function

of a network domains directory. Every domain is assigned a virtual file. The file

stores, in the form of CDL objects, the network nodes containing information in

that domain.

The basic contributions of this thesis to the context interchange approach to

systems integration are:

e The design of CDL layered structures to capture context knowledge. CDL

design responds to the need of a standard language for information exchange

among a collection of network nodes.

" A model of the network systems as a collection of independent and

autonomous nodes. Each node is expressed as a Domain described using the

common vocabularies provided by the shared ontology. Furthermore, we can

locate and access these nodes by accessing and manipulating their CDL

representations.

- The decomposition of context interchange application into modules that meet

open system architecture standards.

-28 -

1.3 Outline of thesis

The following chapters of this thesis attempt to describe a new architecture to

design open data environments based on the context interchange framework. In

doing so, the research questions will be addressed thoroughly.

Chapter 2 presents the background literature on data environments. The first

part of the chapter provides a summary of the history of the knowledge

representation techniques used to capture data environments; these techniques

range from types, through data models, to repositories. The second part of the

chapter presents a complete classification of the data misrepresentations present

in those environments.

Chapter 3 presents the architectural aspects of context theory. A formal model to

describe data environments as a collection of independent networked systems is

presented. Finally the chapter covers the definition of the CDL and its frames to

encode the data environment characteristics, i. e., context knowledge at different

levels.

Chapter 4 analyzes different domains, demonstrating how to incorporate context

to them; that is, how to open their data architectures.

Chapter 5 using the C++ programming language, implements a context

prototype demonstrating how to build a network library of domains (each

domain containing its characteristic ontos). The library is consulted in domain

matching and transformations needed as part of data exchange processes.

- 29 -

Chapter 6 summarizes our theoretical developments and work, and comments

on the many advantages of our data integration strategy. It also includes

conclusions and future research.

- 30 -

CHAPTER 2

DATA ENVIRONMENT REPRESENTATION

This chapter presents the evolution of the techniques and the tools used for data

environment representation, i. e., context knowledge representation, in computer

systems. The work focuses on knowledge representation by means of data types,

data modeling, data dictionaries, system schemas, network directories, re-

engineering, thesaurus and repositories, and on the associated architectural

issues rather than on the data processing needs. The survey of literature aims to

identify:

e Where in the system is this knowledge located.

e How it is documented and accessed by the users.

e What part of the data environment, if any, is not incorporated into the

environment.

At the same time, our survey includes an evaluation of the expressiveness, and

flexibility of the above mentioned paradigms to reflect an accurate picture of

what the context of the system is. Thus we will be looking at models, types,

dictionaries, etc. from a knowledge representation point of view.

- 31 -

Afterwards, we present a classification of the most commonly found data

disparities that prevent meaningful exchange. The analysis stresses that these

incompatibilities, originated from conflicting data environments, can not be

detected and/or resolved by applying state-of-the-art tools.

Incompatibilities emerge only during information exchange processes; then the

lack of a complete representation, the lack of completeness, and the many

implicit assumptions become the key issues that keep data locked to a particular

environment. Yet these implicit assumptions and misrepresentations constitute

part of the information about data needed for meaningful interchange. We need

to incorporate that information to the system.

Therefore, our previous analysis demonstrates that data interoperability requires

more than what current representation schemes offer regarding data

environments. As corollary to this demonstration, we identify the need to close

the gap between current representations and a complete representation, i. e.,

context knowledge. By adding meaning, semantics and organization to their

definitions, data environments become self-describing and open sources and

receivers. That is, they become the import and export nodes of the context

interchange architecture.

2.1 On data structures and knowledge representation

In this section we undertake an in-depth review of the existing schemes used to

capture data environment information. Overall, they consist of the data

structures provided by the computer language and/or the system's data manager

-32 -

program, plus the semantics imposed upon them during the logical data

modeling phase. These imposed semantics aim to model the domain of the

system using a very small set of distinctive data structures (categories). The field

uses mechanisms that allow designers to hide details and concentrate on the

common target features of data objects. The methodology and tools are very

similar to those used in the field of knowledge representation to describe domain

categories, and they are generated by applying the following techniques:

* Conceptualization

Is a technique used to provide a way for naming different concepts that

belong to the real world but which are difficult to manipulate in a computer

environment.

e Categorization

Is a technique that groups under a common denomination all the entities of

the world that present equal values under a set of properties that are chosen

to define the category.

e Abstraction

Is used as a way to detail and concentrate on general common properties of

data objects. The different models that we will be presenting, capture several

types of abstraction mechanisms. Abstraction is also part of the processes of

categorization and conceptualization.

e Generalization

Is used to hide the differences among concepts and categories and group

them into a higher level, i. e., more general concept or entity.

-33 -

In the field of information processing, imposed semantics are often times called

data representation standards. As we will see later on this chapter, some highly

developed and mature data environments, contemplate the design of a module

to define data model and data semantics standards. This module --repository,

warehouse, etc.-- is a central point in the architecture of the system and is

accessible across an existing portfolio of networked nodes consisting of

applications, databases, and development environments. Its main role is to

provide a place to store the characteristics of the component data environments,

enabling communication among them.

Notice that, in many cases, the main goal of these tools has been not to represent

data environment and data knowledge per se, but to achieve at physical (disk

storage) level efficient ways to organize and access large-scale data banks. Also

notice that the different models that we are presenting use a very rich collection

of abstraction, conceptualization, categorization and generalization mechanisms.

However, all of them use a very limited collection of representation structures to

implement these many types of data knowledge representation mechanisms.

Obviously, the result is that the mappings from real world concepts (things) to

the computer structures are many-to-many. This multiple mappings create

ambiguities and misinterpretations that prevent, we will see exactly how, the

exchange of data across environments.

In this chapter, the evolution of data environment representation (Fig. 2) is traced

emphasizing in the Information Systems (IS) arena. We choose to do so because

IS has been historically the area of Computer Science that has adduced and

formalized in different application environments --industry, university, R&D,

-34-

etc.-- and under very different processing requirements --transaction, interactive,

etc.-- the representation of a data environment. Moreover, we must admit that

the field of data environment representation in computer programs has been

almost exclusively addressed, and largely dominated, by IS/DBMS programs.

Thus data environment representation is largely influenced by the representation

and modeling of data as applied to the design of character-based database

structures.

Under various denominations - data types, data models, data repositories - these

schemes have been used, some of them for more than twenty-five years, to

describe "reality" --the part of the world that the system manipulates. This thesis

presents them in chronological order. This chronological organization allows us

to follow the evolution of the field from its beginnings, with only primitive types

and physical storage concerns, to the present times, where representation of data

meaning and semantics are being considered as the main concerns.

The reader should keep in mind that the part of the data model that we target is

the part concerned with the data description, DDL (Fig. 2), as opposed to DML,

database programming language and database query language.

2.1.1 Data Types

Data types [Martin 86] are the basic units provided by every computer language

as the way to encode variables representing real world objects. They range from

simple primitive types to complex types. They can be classified into three major

categories:

e Primitive types such as binary, integer, real, character and string.

-35 -

e ADT/CDT: text, ordered set, matrix, time series, vector, structure and list.

e User defined types

Types constitute the simplest scheme for data representation in computer

programs. The abstraction mechanism is implemented mainly by defining

categories with a name (category name) and a system-wide type associated with

that name. In general, type-based data environment representation is not very

rich and not flexible either. The many user defined categories need to be

translated into a small set of pre-defined system types. As a consequence, the

capabilities of this approach for representing specialized knowledge, super and

sub-categories and complex objects are fairly limited.

DATA ACCESS DATA STRUCTURES

High level data definition LOGICAL

Constructs defined using Logical schemas and views LEVEL

a high levela hih lvelEntities and relationships-
data manipulation language

Physical schemas

Data manager Records, tables and fields

Internal language Data types

Files
Operating system Blocks PHYSICAL

Command language Bytes LEVEL

Figure 2: Levels of Data Representation in Computer Programs

-36-

Nonetheless, we must stress that the concepts of ADT/CDT are very powerful

when incorporated as part of a data model, for example, as part of the semantic

data model8 .

2.1.2 Record-based models

There are many different data environment representation schemes grouped

under the common denomination of record-based models. The first of these

models to be developed was the flat file model where data was stored in a file

with no structure, i. e., flat file. Normally, the records were stored with an

implicit structure and organization for retrieval efficiency purposes. In this

model, data knowledge representation has similar characteristics, and therefore

similar limitations, to the ones present in data type models.

Search and storage efficiency, that no data representation concerns, created, as an

evolution of the primitive flat file models, the hierarchical and network models

[Benyon 90, Kent 78, Kent 79a, Navathe 92, Wiederhold 84]. These models

present the database as a collection of (cross-connected) files. Cross-connections

among the files are provided by embedded indices. Both models emphasize

physical implementation as opposed to the logical implementation of the

database data definition.

The relational database model [Codd 75, Date 85] is the most popular of the

record-based models. Compared to most other models, it has a formalism which

is based on predicate calculus. The model organizes data in table-like files called

relations. Each relation is a set of tuples, of the same type, where each tuple is

essentially a row of data in the table. A relation's logical structure is defined by a

8 See Section 2.1.3.

-37-

group of attributes; each attribute is a column heading in the table. Each attribute

is assigned to an attribute domain. This domain is restricted to the definition of

the data type and the allowable range of values for all the possible occurrences of

the attribute.

In this model, everything is represented in the above mentioned two-

dimensional table construct 9. This table data structure contains all the available

descriptive information about the data. The structure of the database (i. e.,

database schema) is implemented creating, besides the tables themselves, logical

connections (links) among tables, e. g., using the pk-fk (primary key - foreign

key) feature.

The functional model [Backus 78, Shipman 79], ultimately derived from lambda

calculus, represents entities, attributes, and their relations and operations. It

models all of them as functions, with their associated domains and ranges, or

derived functions. The database consists of a set of objects which are either

entities or attributes and functions to perform the mapping between objects.

Derived functions are inversions, compositions and restrictions of other functions

and can be used in the model to define the relations among existing entities.

These record-based models have limited their abstraction capabilities to the

definition of a limited set of categories. They were not flexible and expressive to a

limited extent. Their limitations have been widely documented in [Kent 79b,

Kent 91, McCarthy 84]. These models lack powerful logical representation

schemes, and focus on database physic implementation and data structures.

9 The relational system has the closure property with respect to the table structure; that is, it is a

closed system with respect to tables.

-38-

Their knowledge representation problem is very well phased and summarized in

[Davis & others 91] where the authors assert that data representations are not

data structures, and that is one of the limitations of these modeling paradigms.

Nevertheless, data structures can be turned into representation tools by imposing

semantics on them. This is the key idea that moved researchers to develop the

theory of our next section: semantic models.

2.1.3 Semantic models

Semantic data models [Chen 76, Elmasri & Wiederhold 81, MacCathy 88,

Thompson 89] constitute a significant move, with respect to the previous

modeling paradigms, toward richer representation schemes with more powerful

conceptual design tools. The data semantics paradigm aims to attach more

meaning to the data. It does so by defining data and data relationships, and

unique environment-defined mappings to the standard data manager-defined

structures, e.g., relational structures.

The most important move that semantic models brought about is that, for the

first time, they incorporated a clear distinction between physical data and logical

data. This dichotomy is implemented by defining within the system two levels:

* Specification level.

- Information structures and transactions level.

To go from one to the other, there is a translation process, i. e., mappings,

between the specifications and the real data constructs. There are two key

-39 -

characteristics of this mapping process, the first is the addition of constraints not

present at the specification level. The second is that the mappings between the

two levels are not unique.

The most widely spread of these models is the Entity-Relationship (E-R) model.

Chen [Chen 76] was the first author to propose a high-level information

description scheme as part of the data modeling and , of course, as the first step

in the modeling process. It is intended only as a logical database design tool. It

defines entities, relationships and attributes with no data operations for them.

2.1.4 Object-Oriented models

From the logical design point of view, these models [Atkinson & others 90, Kim

92] are essentially indistinguishable from those based on the previous semantic

paradigm, i. e., it is always possible to add object-oriented (0-0) features to a

semantic data model. Thompson [Thompson 89] states that, in some senses,

semantic models are a generalization of the concepts of these object oriented

models but they do not have the encapsulation and implementation structures

that the 0-0 approach does.

0-0 eliminates the distinction between entities and relationships characteristics

of the semantic models. The 0-0 data models apply to both the conceptual and

logical design phases. They are similar to semantic models in the structural

abstraction concepts and the possibility to perform value and type composition.

But they differ from semantic models in that they have embedded as part of the

model, formal ways to:

* Use system identifiers.

-40-

o Implement inheritance.

e Implement information-hiding and encapsulation.

Up to this point, we have been studying the data environment representation

paradigms 10 that concentrate on stand-alone data environment representation.

Now we shift to study the strategies that have been proposed for modeling data

in the presence of a collection of existing systems.

2.1.5 Integrated Databases

There have been several IS integration projects11 [Atre 92, Gupta 89, Madnick &

others 90, Sheth & Larson 90]. Their approaches look at integration from two

different points of view:

e Composite databases

This strategy creates a global schema to hide the component systems and

their differences, and presents the user with a unified view of the data.

e Federated databases

This strategy creates many accessible local schemas along with the tools

necessary to interact with them.

From our point of view, they provide similar tools for data environment

representation. More importantly, if discrepancies exist, they are resolved at

10 Sections 2.1.1, 2.1.2 and 2.1.3.

11 A complete survey of research prototypes can be found in [Gupta 89].

- 41 -

design time with static schema reconciliation techniques. It is a very common

solution to establish an enterprise model that provides an extended view

mapped from different databases irrespective of their models. An example of this

would be CIS/TK [Madnick & others 90, Wang & Madnick 89b] a prototype

HDBMS with real-time access and retrieval capabilities to data residing on

disparate autonomous information systems. CIS/TK integration capabilities

include data model and data semantics reconciliation.

A more recently developed project, the Carnot project [Collet & others 91, Lenat

& others 90, Shen & others 91], takes a unique approach to systems integration.

Its unique strategy is based on the definition, development and implementation

of a dynamic schema: the Cyc knowledge-base.

2.1.6 Data repositories, data warehouses and metadata

We must remember that, strictly speaking, tools supporting repository services

have been around almost as long as computers. They have been known as

libraries, thesaurus, glossaries, etc. However, they have been systematically and

redundantly encoded within multiple facilities with dissimilar syntax, taxonomy

and semantics. They were never thought of as a network systems integration

tool. But it has been only recently that the proper attention to their central role in

systems integration has been recognized.

Since a few years ago, several researchers have suggested the need to store,

explicitly within the system, knowledge about the data, e. g., metadata [Goldfine

& Koning 88, Mark & Roussopoulos 86, McCarthy 84, Siegel & Madnick 89a,

Siegel & Madnick 89b], rather than storing only the structural data properties. In

order to provide a systematic way to store and access the (metadata)

-42-

environment information, new tools such as repositories, warehouses, and

knowledge bases have lately emerged. Later trends have demonstrated that these

tools need not only provide for metadata storage but also provide an organized

way to access metadata, to cope with data replication and synchronization, and

to keep track of data distribution, location, interchange, sub-environments

(views), with possible changes in all of them. In all these cases, the repository

contains only metadata, i.e., Repository-Objects, Repository-Relations, etc.

These elements, part of the intersystems' architecture, can be defined as being

specialized databases/knowledge bases, where all the enterprise modeling is

stored and dynamically accessed. In addition, this database/knowledge-base

may also include information related to project management, as well as related

data requirements, design, implementation, testing and environment

development. The data stored could be in the form of documents, specifications,

source code, test data and a myriad of other forms essential to the specifications

of the system.

Repositories and data warehouses come in very different varieties. In general,

they provide data integration capabilities needed for the development and

maintenance of information systems. They have been developed to suit the needs

of environments where the application portfolio consists of many applications

built around a series of common databases. Their power lies in the fact that

application programs, computer languages, system software and database

management products can use a common set of data definitions stored in the

data warehouse or repository.

-43 -

The reason why these tools are widely used is because they support the many

emergent forms of distributed computing. They constitute the sources for

determining:

- How to access data.

* How to represent data.

For example, a data dictionary, sometimes called a directory system can be

designed to comprehensively support the logical centralization of data about

data --this is why they were thought of as metadata storage facilities. In many

cases, they not only provide storage and access to this type of information but

also support cross reference information about the metadata (which is normally

placed in the above mentioned directory). The dictionary provides information

about what the data is and how it can be accessed. It is an automated facility

meant to support data administration in a distributed environment.

At present, the repository pretends to become a broader concept that includes

tools for data access, data sharing and data management, and, in turn, it pretends

to play a more crucial role across the sytem's life cycle. For example, repository

technology is widely used in the application development environment (ADE)

where it acts as the system's knowledge-base and serves as a key element for the

CASE tool integration strategy. For example, the repository stores information on

how the components of an information model and its associated databases are

related. It also gives the power to navigate and show the relationships among

application components.

-44-

From our point of view, the major challenges that these tools [Devanbu & others

91, Giordano 93, Jones 92, SIGMOD 91] will have to address in the near future

are:

* Life cycle

How to represent the evolution of the system and its data; particularly the

maintenance of accuracy and integrity constraints.

* Content

To define what their exact contents ought to be is a very difficult design

question. This is especially true in new integrated environments e. g., new

client-server technologies, where PC-based files, spreadsheets, and many

other kinds of network-accessible objects are present. The meta-

representation of these objects in a warehouse or repository is going to make

their implementation a harder task i. e., they must be able to cope with not

only normalized sets of databases but also with files where data is

represented at many very different levels of abstraction.

In spite of the ongoing evolution of these tools, current repository technology just

provides "data repository services" --data definition storage services. It does not

provide "data integration services." Both of them, when combined will constitute

a very powerful and sophisticated set of "integrated data management services"

and supporting tools: that is the direction in which these technologies are

evolving.

-45-

2.1.7 Re-engineering data environments

The process of re-engineering [Andrews & Leventhal 93] consists of an

engineering step backward followed by an engineering step forward. During the

backward step, re-engineering takes the past design and extracts the essential

problem domain content. During the forward step in engineering, the problem

domain content --model of the application-- becomes the basis for re-

implementation in a new medium. The rationale for re-engineering lies in the fact

that great savings from reusing code, and reusing the data accessed by that code,

can be realized. Re-engineering is applied to a wide variety of software

engineering areas such as programming code, databases, inference logic and

expert systems.

In our field of study, data environments, re-engineering is used to migrate

between (database) modeling paradigms and between different implementations

of a database paradigm, for example from one vendor's relational database to

another's.

Re-engineering provides valuable background and many lessons to our study.

First, it has demonstrated that the data knowledge and data structures contained

in the model are not enough to give a full definition of the data. In order to

define what the data is, it looks not only to the model constructs and to their

implementation in an application schema, but also to observed patterns of data,

and semantic understanding of the application. Second, it has demonstrated that

extensive dependency analysis and domain analysis are the necessary starting

points to understand the data and move it to a new stage. Semantic clues have

been identified as a critical part of its success.

-46-

Through the exclusion of implementation-specific information from the design

process, system dependencies may be reduced. Their removal allows the user

who is unfamiliar with the system to understand its functionality and contents as

if he or she were inside the system.

2.2 On data environments and interoperability

2.2.1 Examining data environments

A data environment can be thought of as having two kinds of information

associated with it:

e Explicit knowledge

This includes the schema, the data dictionary, the data type definitions or any

combination of these. This knowledge is the target of existing data

environment representation schemes. It is an active part of current

operational systems, and it is captured by means of the DDL.

e Implicit knowledge

This includes the different assumptions about the data that have been

encoded using the DDL. These assumptions include, among others, units and

scale of numerical data, meaning of data, temporal domain and scope of data.

They create conflicts that current systems cannot cope with. Our analysis of

data conflicts 12 will show a complete classification of implicit knowledge in

the form of 1-dimensional, n-dimensional and naming conflicts that can

prevent meaningful data exchanges.

-47-

12 See Section 2.3

Most of the existing systems have been developed based on the representation of

only explicit knowledge, which results in the de-coupling of meaning, structure

and representation of data. Furthermore, they have been developed as stand-

alone units each with its own implicit syntax and semantics.

In the past, systems isolation has allowed data environments to be systematically

misrepresented. Accessing the data was limited to local users with the support of

data administrators, i. e., the persons who imposed the valid mappings, the units,

the constraints, etc. on the data. This "closed system" status made the analysis

and representation of the data environment unnecessary.

After years, oftentimes, this situation caused problems whenever a person new to

the system was faced with a mature undocumented data environment, in the

absence of data administrator support: The (implicit) data environment

characteristics were neither defined nor kept anywhere.

On the other hand, other projects which attempted to fully represent a data

environment failed to do so, due to the semantic limitations of the data models,

mainly the many-to-many nature of the mappings between model structures and

schemas.

However, the situation has changed. The computer network is now a reality, and

systems need to adapt to it. As happened before with other parts of the system

architecture, data environments should open their architectures and adhere to

the open systems paradigm.

-48 -

2.2.2 Closed systems, open systems and their differences

In the open systems world that we pictured in the previous chapter with a large

number of systems connected through the network, there are incredible benefits

to achieving data interoperability. Nevertheless, especially in data-intensive

computing environments, all these benefits do not come without cost. There exist

serious problems to be solved before we can achieve and take advantage of full

IT systems connectivity.

Continuing with our discussion of open data environments, we now turn to

study why data definition and representation requirements change in an open

environment. From our point of view, these are the most problematic issues that

we encountered:

e Static and closed data environments

Traditionally, systems have been closed, and their data environments are no

exception to the rule. The closed world assumption inevitably creates closed

world systems13. However, in networked systems the close world assumption

does not hold any more, causing environment interferences whenever the

norms from two data environments conflict: assumptions appropriate to the

context of one application may not fit the context of other applications. In

addition, data environment representation focuses on the representation of

(static) declarative knowledge [Morgenstein 84], and it does not provide the

means to capture dynamic changes, characteristic of open environments.

13 The closed world assumption states that if a fact that is not provable (true) then it is by

definition false. Closed systems are known for having a feedback mechanism that derives all the

information from within the system itself, i. e., the system ignores changes in the state of the

environment.

-49 -

e Local meaning vs. global meaning.

Data do not contain nor transport meaning; interpretation of data is

contextual and done at the local level. The local environment and its

assumptions are not an explicit part of the description of the system and,

therefore, they cannot be incorporated and transferred along with the data.

The large majority of the data disparities that we encounter are due to the fact

that they reside in different worlds and therefore they are expressed

according to the conventions of their worlds.

As a result, we need to develop new technologies and tools capable of addressing

the transformation of data environments from their closed to their open state,

precisely defining all the changes involved in the process.

2.3 Data conflicts over the network

Continuing our study on techniques and tools for data definition, this section

presents a classification, and give examples of data conflicts across environments.

The classification poses a categorization of the kind of problems that context

interchange addresses, and , in that sense, gives us the basic guidelines for what

we need to build a complete data environment definition, including the data

environment transformations and comparisons that we intend to address in the

next chapter.

We have grouped the conflicts under the common denomination of inter-data

environment problems, to stress the fact that they constitute the data definition

-50-

variables. These variables vary, implicitly and explicitly, from one system to

another causing incompatibilities among them and preventing the integration of

their data.

2.3.1 1-Dimensional conflicts

We define as 1-dimensional conflicts those that occur at individual data item

level, as opposed to those that occur at a collection of individual data items level.

This collection of atomic data units are grouped in a single unit by means of the

DDL, or by other similar support tools provided by the data manager present in

the system. We also include in this category conflicts defined across equi-n-

dimensional domains, i. e., domains where the groups of data items are

homogeneous, because they can be decomposed into a finite set of n 1-

dimensional conflicts.

2.3.1.1 Semantic conflicts

This conflict is due to the existence of different representations of a single

(atomic) conflict. This type of 1-dimensional inter-domain conflict can be

resolved by the declaration of semantic values and transformations operations,

such as functions, tables and heuristics among them.

This type of conflict has been identified and studied by Siegel and Madnick

[Siegel & Madnick 89a, Siegel & Madnick 89b, Siegel & Madnick 90, Siegel &

Madnick 91]. They state that semantic conflicts are tractable by the definition of

semantic domains and their incorporation into the schema of the system,

semantic values and semantic value transformations. A sub-division of semantic

conflicts based on the different aspects of data representation is:

-51-

e Format conflicts

Heterogeneous formats exist for representing basic data types and/or basic

user-defined data types. For example, in Table 2 we can see that the same one

thousand amount can be represented in plain format (1000), USA format

(1,000) and Europe format (1.000). In many instances, the format is a intrinsic

characteristic of the system. That is, every system has its own way to

represent its basic types --integers, real numbers, character strings and such.

Therefore, format heterogeneity is present in almost every data interchange

process.

Table 2
1-Dimensional Format Conflicts

Format Representation
Plain format 1000
USA format 1,000

Europe format 1.000
Exponential format 103

etc.

e Unit conflicts

They are due to the representation of the same thing in two different

reference systems. For example, we can find the same quantity expressed in

one system as 1 kilogram and in other system as 1,000 grams. Other times the

unit conflicts are far more complicated. In the case of spatial data,

transforming from one unit (reference) system to another, e. g., USGS to UTM

coordinates, implies the definition of complex transformation functions. They

range from linear interpolations to cubic convolutions, and, in many cases,

they can be applied to the whole object, and they are only defined in one

direction, i. e., there is no inverse function. Unit transformations can be

-52-

performed intra-domain, in which case it is very common to have a master-

slave style of unit conversion.

e Scale conflicts

They can be considered as a special case of unit conflicts. They occur when a

domain expresses a global base unit implicitly transformed by multiplication

or division by a constant term. For example, 1 and 1.000 can express the same

quantity in the same unit system but, in the first case there is an implicit

division by a thousand. The problem with scale conflicts is that the scaling

factor is domain-unique, and depends on the characteristic of the context.

e Precision conflicts

This conflict is present when two systems have different implementations of

accuracy. For example, 1.00 and 1.03 express the exact same quantity in two

different domains. Rules for rounding off numbers when changing context

should be established. As there are no general rules, it should be treated as

case-based reasoning. In the case of non-numerical data, precision conflicts

come in many varieties, including no type homogeneity across domains; in

these cases, to solve the conflicts we need functions to perform inter data-type

translations. For example, a location indicator for MIT can be Cambridge,

02139, Massachusetts, and many others.

2.3.1.2 Domain-dependent meaning

A meaning conflict can occur when two domains perceive the world from

different points of view. In this case, the conflict causes different interpretations

of sub-domains.

-53-

Our example to explain this sub-domains conflict (Table 4) deals with looking at

two different domains: a database containing heath-related data on persons, and

a database containing historical series of weather data. The conflict pertains to

the common sub-domain of temperatures.

In the domain of human body temperatures [Shoman 91], the mapping function

from numerical values (left row of the table) to qualitative values (right row of

the table), the function would qualify a temperature of 37.00 'C as normal:

Table 3
Domain-Dependent Conflict

Temperature ("C) Temperature(qualitative value)

37.00 Normal

Now, if we study the same mapping function in the domain of weather

temperatures, we would observe that the same mapping function indicates that

37.00 is "High." This is a clear example of meaning conflict due to the fact that

qualitative description of numerical values is sensitive to the domain in which

the functions are defined. Thus any attempt to define absolute qualitative

temperature values needs to take as a parameter the domain in which the scaling

is defined.

Another example of this kind of conflict is shown in Figure 13. In this case, the

domain of Map Features interprets the rivers as linear features while the

subdomain of Water Body sees the same river as a surface feature.

2.3.2 N-dimensional conflicts

-54 -

N-Dimensional conflicts occur among data structures defined by the data

manager residing in the environment. They involve the definition of high-level

groups of (atomic) data units.

2.3.2.1 Inter-domain conflicts

Inter-domain conflicts are present when the same concept has different sub-

representations across environments. Even though the same concept exists across

the domains, its implementation is different among them. Table 4 shows the field

representation and sub-fields representation of a person's full name. In this case,

the intra-domain dependency differs depending on the country, which acts as a

supra-domain. Here we are assuming that names of persons are broken up into

three fields (Field-1, Field-2 and Field-3 in Table 4). Therefore we have the same

property, for the same object but with different content in each domain:

Table 4

List of Name's Sub-Components by Country
Country Field-1 Field-2 Field-3
Holland Family Name Street address

Japan Family Name Given Name

Spain 1st Family Name 2nd Family Name Names

Sweden Family Name User Supplied String

USA First Name Middle Name Last Name

Tanenbaum [Tanenbaum 88] describes the problem represented in the example

of Table 4. His work concerns the integration and queering of information

present in public network telephone directories. The difficulties to achieve

integration are due to the fact that different legal jurisdictions assign different

structures to a same (name) concept; that is, a person's full name content differs

-55 -

from country to country, i. e., country domains assign different properties and

structure to the same concept; still, at data item level, in any of these cases (Table

4) it can be confusing to decide how to split into the above fields names such as

John von Newman.

2.3.2.2 Domain-specific dimensions

Dimensional conflicts come from the fact that the same concept can be expressed

with a different number of variables. In qualitative terms, we can explain this

conflict by saying that different domains represent the same object at different

degrees of specificity. The degree of specificity in which a particular object is

represented depends on how much information the system-domain is interested

in keeping about the object. Table 5 shows the different variables --Properties of

an EntityObject in CDL nomenclature-- under which a person is expressed in two

different databases.

Table 5

List of Dimensions and their mismatches
City Hospital Database City Hall Database

Patient-Name Full-Name

ID# SSN

Place of birth
??y Citizenship

Blood-Type ?

Figure 3 shows another example of dimensions mismatch. There, the same

information is expressed at different levels of abstraction by using different sets

of variables. These different levels of abstraction are due to the representation of

the same concept (amount of rain over a certain region) at different degrees of

specificity. But the systems in our example need not be incompatible. In this case,

-56 -

a hierarchical structure of meanings, like the one we will propose in Chapter 3

will enable us to compare different abstraction degrees and different types of the

same concept, when the proper transformations are undertaken. That is, if there

exists a function to transform daily precipitation onto their monthly mode and

std-deviation and vice versa, then these systems will be compatible.

SYSTEM-2
(Relational)

SYSTEM-i
y jselect (Entity-Relationship)

Fset III

DailyRaiall Irelationshil enti
January X1 Xr

computer
February networkLjj~j~jCit

Precipitation

- monthly-mode
AnalyzeRain() - monthly-std-dev

(XXX YYYY)

Application

Figure 3: Example of N-Dimensional Conflicts

2.3.2.3 Complex conflicts

Another group of data conflicts are those involving concurrent engineering

design projects. In these cases, the views of what usually are very complex

objects, change radically from one phase to another of the project. These changes

involve a mix of the previously described data conflicts: inter, intra, domain,

naming, etc. conflicts. This involves a change in domain and a change in the

structure which needs the re-interpretation of all of existing features.

-57-

Views of complex objects and their associated conflicts are very commonly found

in two-dimensional, three-dimensional and n-dimensional data sets. Some

examples of possible conflicting views are given below:

" A block in a city is represented in a record-based database by its address

while in a geographical database it is represented as a polygon with an area.

e In a regional map a city has an area while in a World map the city is reduced

to a point.

- Objects belonging to disparate domains but represented under a common

structure, and, of course, under a common set of properties change their

meanings when assigned to different domains14 .

In addition, there are serious data integration problems when the data types do

not fit standard types, relational structures or other common data structures. An

example of this would be the images, animation, music, etc. present in

multimedia systems. In such environments, issues of how to define the syntax

and semantics of network-wide searches, and how the target information is to be

merged and filtered are, to date, complex data integration issues that need to be

resolved.

14 For example, the reader can identify this type of view conflict in the Appendix 2 where with in

the same data environment, the Alumni/Gift environment, the fields of the ALF-MASTER file

change their meaning depending whether they refer to an Alumnus EntityObject or to a company

EntityObject.

-58-

2.3.2.4 Order conflicts

N-dimensional domains need not to be compatible with respect to the order into

which they organize their sub --N-- domains. For example, suppose the conflict

between a database that stores traffic flows as right-lane flow and left lane flow,

and it wants to communicate with an application program that processes the

same traffic flows as inbound-lane and outbound-lane flows.

2.3.3 Naming conflicts15

Naming conflicts are due to different ways of writing a concept, property, etc.

They can be classified into two major categories:

e Synonyms are encountered when different data environments use different

names to identify the same subject.

e Homonyms are present when different systems keep a (single) common

denomination for different objects.

We should point out that naming conflicts are very common at data definition

level (metadata conflicts), and at data instance level16. We believe that both of

them have the same nature and therefore we propose to treat them formally in

context interchange theory by applying to them the same formalisms.

15 For a more detailed study of naming conflicts the reader is referred to [Wang & Madnick 90].

16 Even assuming that all the systems in the world decide to refer to a company name with the

logical mane "CO", we would still have to elaborate on the inconsistencies of the spelling in the

many systems containing this field.

-59 -

2.4 The architecture of open data environments

In Section 2.2, we studied and classified data conflicts. From that study, we

concluded that data from autonomous sources cannot be exchanged unless we

define a priori what their meaning, their representation and their properties are.

On the other hand, in Section 2.1, the design approaches to data representation

that we examined lead us to conclude that there has been a development of a

certain small set of structures to represent the world's data. These structures are

lacking powerful means to represent meaning, organization and semantics of

data. At the same time, there has been a stand-alone style of design in which the

missing parts of the system's context were not explicitly coded but part of the

system's implicit characteristics. As a consequence, the current data modeling

approaches lack tools to represent the context of data, i. e., data semantics, data

meaning, internal functions to generate new (derived) data, etc. They lack tools

to compare different environmental characteristics, tools to resolve

incompatibilities and like mechanisms needed to achieve network

interoperability.

From a knowledge representation point of view, current data environments use a

very limited collection of representation structures which attempt to capture a

very wide range of abstraction, conceptualization and categorization

mechanisms 17 . Until recently, the fact that they were being used in stand-alone

mode minimized the emergence of data environment conflicts as well as the

emergence of their representation weaknesses. But now we need to extend the

-60 -

17 See Section 2.1.

knowledge representation capabilities of current data models to include

modeling of these environment characteristics, as well as transformation

functions for conflict resolution. However, we need to be capable of modeling

not only the information which has previously been processed but also designing

a repository-manager for that data definition information.

First, context interchange theory defines is the export-import context (Figs. 3).

They are both included in the system as an extension to the type and/or the

schema definition, functioning as an active data repository of the node which is

named context. At this local level, context, acting as a repository of knowledge

for data structure, data organization, data semantics and data meaning, closes the

gap between data and information that previous data definition approaches did

not. The import and export contexts are located above and attached to the

existing model structures. The result of the process of import/export context

implementation will include:

e Declarative domain knowledge in form entities and their lists of properties,

represented according to a preexisting ontology.

e Explicit procedural definition of data organization, meaning and semantics in

the local systems.

Then, at a global level there will be a context server containing:

e Global ontology.

-61 -

e Mediators performing query execution and planning management as well as

conflict resolution management.

e Transformation libraries storing the functions needed for context

transformation.

Figure 4 pictures a network whose members are open data environments.

Openness has been embedded in the network by incorporating context clients

and servers. Later chapters of this thesis define (Chapter 3) and demonstrate

(Chapter 4) how context can be articulated around the existing data and

incorporated into the system in the form of frames containing declarative and

procedural knowledge (heuristics, rules, tables, constraints, etc.).

-62-

CHAPTER 3

CONTEXT DEFINITION

This chapter focuses on modeling, formalizing and representing context

interchange components. First, in order to define the components of the context

interchange model, we choose different operational systems and study the

variables involved in the definition of their contexts, the functions to manipulate

the variables, and a decomposition of these functions into modules. We place

particular emphasis on the definition of the interactions among them.

We show that the outcome of the previous study, i. e., modules of the context

interchange architecture match the findings of Chapter 1 and Chapter 2, where

we introduced a preliminary modular decomposition of context and its functions

into:

e Autonomous source/receiver nodes.

* Network libraries (global knowledge-bases).

e Context mediators.

They constitute the building blocks of our interoperability architecture because

the ability to open the system's data environment and ability to share

information is provided by them.

-63 -

In this chapter we present the knowledge content and structure of the above

listed modules, i. e., their knowledge content and the structure by means of the

newly defined CDL structures.

Table 5

Conflict Table

CONFLICT TYPE EXAMPLES

MA vs. Massachusetts
FORMAT - - -- - - -- - -- - -- -- - -

1.000 vs. 1,000

UN11 UTM vs. State Plane (static)

SEMANT1C USA $ vs Japanese Y (dynamic)

-DIMENSIONAL SCALE 1 vs. 1000

1 vs. 1.003
PRECISION - -- - ---

Cambridge vs. 02139

DOMAIN-DEPENDENT MEANING 37.00"[Normal in Human Body domain]
vs.
37.00" [High in Weather Forecast domain]

DOMAIN DEPENDENCY Parts of a person'sfull name

Person [SSN, Name, Depratment]
DOMAIN -SPECIFIC DIMENSIONS vS.

Person [Name, ID, Blood-Type]

-DIMENSIONAI COMPLEX Intrinsic topology chages

Traffic-Flow [inbound, outbound]
ORDER vS.

Traffic-Flow [outbound, inbound]

NAMING Rainfall vs. Precipitation

-64-

The introduction of CDL transforms the definition of current systems. From now

on, we view systems as a Domains containing a collection of domain-specific

EntityObjects with Properties and MetaProperties. Links, also defined in this

chapter, are meant to express the relationships between a system's Domain (local)

and the (global) ontology. The Links implicitly define the relationships of a

system's domain to other (local) domains.

In search for a definition of context

The key issue that context interchange theory poses is that of defining and

representing context at local level. With this in mind, our previous research

[Neira & Madnick 93] aimed to provide a better definition of context knowledge

and context representation, i. e., context definition and representation at system

level.

In our study [Neira & Madnick 93], the MIT Alumni/Gift Database18 was chosen

as a case study for context, i. e., data environment implementation. To define the

context of this database, we studied its domain, i. e., the part of the real world

represented in the system, its data semantics, data access tools, i. e., data

definition and data manipulation languages, its schema, i. e., how data is

organized and how is accessed, and its associated implicit knowledge. As part of

our methodology, we queried the database and observed that the absence of

context, i. e. incomplete data environment definition, resulted in poor

accessibility and misinterpretation of query results. We concluded that the

database should be described as:

18 For more information on this database, the reader is referred to Chapter 4.

- 65 -

e A Domain, which is the part of the real world represented in the system,

more precisely it is the computer representation of that part of the world 19.

e A finite set of EntityObjects, which can be thought of as the set of categories,

or concepts (things), belonging to the domain of the system, e. g., alumnus,

company, etc.

e A finite set of Properties, which can be thought of as attributes of the

previous concepts, used to store information about the EntityObjects such us

CO-NAME (company name), IDENT-CODE (identification of the class of the

record), etc.

e A collection of (data environment) definition structures, in this case the ones

defined by the existing data manager, involving a language and several data

storage structures used to encode and manipulate the data.

These four modules capture the "meta" information describing the content of the

system. In this particular case, Domain, EntityObjects and Properties constitute

the declarative knowledge, and the DBMS is the procedural knowledge needed

to manipulate the other three.

At database field level, we created a CDL structure representing the fields'

context. This new knowledge representation structure contained, besides the

19 In this paper, this domain is defined in more detail, and it is expressed in terms of what we

called the supra-context or high level description of a network node. The supra-context is

envisioned as a help facility containing part of the assumptions about data in that particular

environment. It will be used by the context mediators when executing global queries.

-66-

knowledge provided by the database structures, other declarative knowledge

and procedural knowledge (table look-ups, heuristics, rules, database queries,

and others) stating fields' meaning, semantics, logical location, etc. of the data

environment.

The lesson that we learned is that the system domain can be described as a finite

collection of ontos chosen from the global ontology. That is, to describe the

domain of the system as a collection of concepts, and to reference them to a

global system, i. e., a pre-established set of reference concepts. This chapter,

building upon those original findings, presents a development of context

interchange in two directions: a more complete definition of context and an

extended CDL language.

The chapter continues with a formalization of the context interchange model.

Based on Set Theory, domains are expressed as sets of ordered n-tuples.

Afterwards, Transformation Theory is used to formalize relations among systems

and to define domain transformations when transferring data from one to

another, and to resolve data conflicts (Table 5).

Our work continues with a description of the knowledge contained in the

modules proposed by the model, and the definition of a CDL suitable to store

that knowledge. CDL is a language for context knowledge representation and

transformation, i. e., CDL contains declarative and procedural knowledge. CDL

components carry the meaning of what we identified in the last chapter as the

context of a system. It is also capable of expressing the local concepts as members

of the global ontology. As a summary of the previous paragraphs, the work in

this chapter compromises:

-67-

e A formal model for context representation and context relationships.

* New CDL frames suitable to represent declarative and procedural context

knowledge.

-68 -

FUNCTION:

Maintains a collection
of Donains and their
inter-connections

FUNCTION:
Translations management

FUNCTION:
Query execution and planning management
Conflict resolution management

Network

CONTEXT
Client

FUNCTION:
Definition of export context(s)
Definition fo import context(s)

Figure 4: Client-Server Context Interchange Architecture

-69 -

3.1 Why a new model and a new representation language for

context?

The goal of the context interchange architecture is to provide the modules for an

intelligent integration of information based on context interchange paradigm. In

this section we describe in detail the architecture of these modules.

First, we should point out that to be able to interconnect all existing systems,

move applications, move data, etc., i. e., achieve a fully interoperable information

technology infrastructure, these existing systems should open their

architectures 20 . Open interoperability means that the new application should be

built in such a way that neither the design nor the implementation of the system

should block the application to a particular environment. In other words, open

systems applications should be portable across all customer specified platforms.

What is the meaning of "open" regarding data? It means the interchange of

meaningful data as well as the search of where that data is, exist as part of the

system and as part of the network modules. Moreover, these modules create an

architecture based on international (global) standards.

The architecture that we are going to define here supports these functions and,

consists of a set definitions, rules and terms that are used as guidelines to the

context interchange application. To guaranty cross systems portability, we define

this architecture based on industry standards. This section proposes to represent

2 0 The traditional way to do that is to adopt standards-based interfaces for each of the modules of

the architecture.

-70-

and split context interchange tasks, and to locate them as part of an OSI-based

application program.

3.1.1 Components of the architecture

We view the context application program as embedded in a client-server

computing environment. The Context architecture encompasses several

components (Fig. 4) at local as well as global level.

At system level, the data environment -- data meaning, semantics and

organization-- are captured in a source context and a receiver context, and

included as one more part of the system. The contents of this part of the system

qualify them as the data environment's knowledge-base. In traditional

information systems the most similar concept corresponds to the system schema,

data types and the like analyzed in Chapter 2.

At the global network level, libraries of ontologies, context mediators and context

conflict resolution modules are elements of the context (server) application

infrastructure.

* Network libraries, i. e., ontology knowledge-bases, to store the concepts of the

various domains of the federated systems. These ontology databases function

as a meta-knowledge storage service. Their contents are made available to

clients in response to their requests.

- Context mediator is in charge of query execution and planning management

and it is also in charge of source location and identification.

-71 -

* Context conflict resolution module. Once the high-level domain matching is

done, the next step will be to perform intra-domain characteristics matching.

e Conversion libraries are also part of the global modules of the context

application and they will be in charge of translation management.

e Context conversion libraries. Here some conversion libraries are available and

are called by the Context Mediator generated conversion plan to undertake

the necessary context transformations.

3.1.2 The context application logic

So far in this section we have analyzed the components of context and how they

fit. Now we shift to concentrate on how to define context as an application

program that lives in the network, particularly how its components take care of

the different processing steps, and the logic behind this architecture.

We specify for context an architecture based on distributed computing model, i.

e., client/server model (Fig. 4). We will organize the network directories in an

intelligent way, and store and add to these directories information about the

various network Domains.

In a distributed computer environment, the local modules of the context

application will contact the global modules to request Domain information

regarding a particular query. The context interchange application takes the

request and passes it as a query to a global directory, i. e., name services

application module to lookup information on network node designations (names

and addresses).

-72-

Anything that can be named and accessed individually (databases, application

programs, etc.) is called a Domain. Each Domain has a corresponding listing (an

entry) in the above defined directory service. Each entry contains the

EntityObjects and the Properties that describe the Domain. All the entries are

collected in lists called context directory services. The directories are organized

into domain hierarchies --a directory can contain another directories. This way of

organizing context directories is similar to the way in which directories of

telephone users organized (by countries).

3.2 A formal view of context interchange21

So far in this thesis, we have been concentrating on the study of the knowledge

representation part and this is the part that we formalize in this point. Our

formalism of context interchange uses Set Theory as a basis to represent any

existing system --a set with elements with certain order laws and certain

properties. Once we have organized the local domains, i. e., network nodes, we

propose a formalism for data exchange among them based on Transformation

Theory.

3.2.1 Assumptions

As we pointed earlier in this chapter, we view a large network connecting a

collection of independent systems. The domains attached to each of them can be

expressed as:

21 In the mathematical expressions used in this thesis we follow Einstein's index notation where

applicable.

-73-

For the purpose of this thesis we will treat all of them as homogeneous although

we understand that future refinement of this formalism may need to describe

specialized nodes, and specialized Domains within a given system.

Domains as collections of concepts

The set of general concepts (things) that the system knows of constitutes its

Domain 22 . The Domain of a system is a set of conceptual entities (things), i. e.,

EntityObjects. This finite set of entities, expressed in the language of the shared

ontology is the outer boundary of the system domain. We can refer, for example,

to a person as an EntityObject defined by the system's environment. Thus each

node's domain can be defined as a set union of all the EntityObjects that it

contains:

Di = UEij,, V i & j= 1,...,IM

Subsets of the system domain create system sub-domains, and their formal

definition goes as follows:

(Di)i =UEi,, V i & 1 < m& Eij ... Eii

That is, we also contemplate the possibility of having different contexts, or

Domains, for the same system. They will be defined as context views and

22 Stores information and/or processes information about them.

-74-

constitute well defined subsets of the general context. They can be thought of as

domain projections contained in the general system Domain.

Concepts (EntityObjects) as a collection of properties (Properties)

Every EntityObject has a finite set of associated descriptors, i. e., Properties23 .

They are used to store information about the EntityObject. In our formal

description of context, they will define the dimension of EntityObject in the

domain where they are located. We consider in this thesis that the Properties are

individual and single units of information 24:

E ij E D ",,1Vi & j=1 .. ,M

Eij = [Pij1, ..., Fijk] ,, k =1 I..., r & j= 1, ..., m,,1

Therefore, the collection of all the properties belonging to an EntityObject can be

expressed as a set of n-tuples where n is the number of properties attached to the

it. This set also determines the dimension of the EntityObject in Di, its Domain.

The definition of a Domain as a collection of EntityObjects with their K

Properties constitutes the reference-base and dimension of the Domain space. In

addition, a Property must be able to represent partial knowledge about the

EntityObject and accommodate multiple sub-properties.

23 See Footnnote Number 6.

24 As we will see in the next chapter, the nomenclature used to refer to properties consist of the

EntityObject to which they belong, an arrow and the name of the Property:

EntityObject-->Property

e. g., EntityObject-->IdentificationNumberName

-75 -

NOMENCLATURE

SYMBOL EXPLANATION

EntityObject (global)
or

Property (global)

EntityObject (local)
or

Property (local)

Cross Product

Tensor Product

) Cluster Product

Generalized Link

Figure 5: Context Model. Graphical Nomenclature

MetaProperties

Each EntityObject and Property can have attached to it a set of parameters, called

MetaProperties whose value will determine transformations necessary to

undertake when exchanging data from one domain to another:

PijkEDi &Eij EDi,, V Pijk

Dij: Pk = Pk [ps], S = 1, ... , V

- 76-

The previous formula expresses that the MetaProperties are a collection of

parameters (Rs)that the system needs to determine the characteristics of the

Property outside the Domain boundaries. MetaProperties contain explicit

declaration of the meaning and representation of that piece of knowledge.

The reader should notice that two implications of our previous definitions are as

follows:

- Properties are atomic, an atomic concept is a non-decomposable. It can be

physical, abstract, event, etc., but is a single piece of data element that can be

regarded as a fundamental information unit whose meaning is assumed to be

understood and, in the environment it resides, it needs no further definition.

But the "understandability" of an atomic concept is local to the system. In data

import/export processes additional information needs to be incorporated. We

choose to express this additional information as MetaProperties.

e A non-atomic object is a physical, abstract, event, etc. whose meaning is

described (defined) in terms of other atomic and/or non-atomic concepts.

These non-atomic concepts are defined by the complex data structures

provided by the system's data manager. They can be relational tables, objects,

entities, relationships, etc. The additional information that we need to explain

a complex data structure goes far beyond the concept of MetaProperties.

Constraints

Each property is defined over a range of values that is most likely characteristic

of the domain. This range of allowable values is a domain constraint:

- 77-

Eij = dom (Pk E Ej) = {Pijk}

It is important to notice that once we have identified the EntityObject owner of

the property, to complete its definition, in addition to providing the above

mentioned MetaProperty values, we must provide the range of allowable values

of that Property within the system.

3.2.2 Relations

Each system can communicate (receive and/or send information), bi-

directionally (source and/or receiver), with other system nodes. Even though

there are no constraints built into the model, depending on the characteristics of

communicating domains, the process of data exchange among two given nodes

need not be symmetric but dependent of the direction of the exchange.

Links

When exchanging information, we first have to assert whether or not the

Domains involved contain common EntityObjects and common Properties. This

is what Links are used for.

Domains can communicate by attaching to them a set of global relations, called

Links, that glue each domain to a reference vocabulary system called the global

ontology. By using this ontology, Links express sharing of nodes and provide the

capability to refer to the same clusters across Domains. They constitute the most

important tool of context abstraction, generalization and conceptualization.

In the context model (Fig. 4), the relationships among global Domains are also

expressed, indirectly, using Links. In our context interchange formalism, Links

-78-

consist of a collection of pair-wise operations across Domains (Fig. 6). For

example (Fig. 6), given the collection of EntityObjects belonging to Domain "A"

(Eij) and Domain "B" (E'ij), we can express a set of pre-established relations

(already present in the global ontology) to other Domains. In addition, we can

create new relationships by using the concept of transformations that we

introduce in Section 3.2.3.

Again, the key issue is to realize that domains can be modeled by linking

EntityObjects, Properties and MetaProperties to a network of interrelated and

predefined concepts, i. e., the shared ontology, and that the type of Link varies

depending on the Domain.

I SUPER-ENTITYOBJECT

Is-Kind Of

ENTITYOBJECT
[Property-1, ... , Property-k 4

Property-n]

IsKind Of

SUB-ENTITYOBJECT

Is Kind Of

I SUB-ENTITYOBJECT I

Domain "QA"

SUPER-ENTITYOBJECT

DPROPERTY-K . I

Domin"B

Figure 6: Simplified View of Context Interchange Model

-79-

3.2.3 Transformations in context

Links can also allow the domains to be transformed by different combination

operations. We give the definition of the following ones:

* Cross product [X I is used to represent the connection of two different

hierarchies. A cross product Link indicates a Cartesian product of the

component domains. For example, the cross product of the domains shown

in Figure 6 would be:

EABki E DAx DB
EABki =[PA1, ..., PAk] x [PBil , i = 1, ..., V

e Cluster product [] is used to express a hierarchical relation among entities

and/or domains. These type of Links are suitable to represent the classical

hierarchies. To express the cross product of two nodes in knowledge

representation terms we will include an IsKindOf Link to express this

parent/son connection.

" Tensor product [0] will be used when there is a need to express all possible

combinations of the elements belonging to two different EntityObjects.

Model's support of context comparisons

The above defined context transformations and relations facilitate the exchange

operations among heterogeneous environments. Besides transformations, context

interchange also contemplates semantic transformations. They are needed when

representation conflicts are present. Remember from the previous chapter that

transformation management is one of the responsibilities of the context mediator.

- 80-

"Educational Institutions"

Domain____
F- - - - _-- -- --- I

I EDUCATIONAL INSTITUTION
[Name,... .., Num-Students]

Is Kind _

HIGH SCHOOL

IsKind_Of

UNIVERSITY

------ -- ---- |

I GEO-POLITICAL REGION |

STATE ,,,,,,

"Teritories" Domain

Figure 7: Application of Context Interchange Model

3.2.4 The ontology as facilitator of data exchanges

Recall that context interchange theory involves the definition of a shared

ontology used as inter-systems common vocabulary, and that in our previous

research we propose to structure the domain as multiple interconnected contexts.

In [Madnick & Neira 93], we presented an example consisting of the

development for a generic EntityObject, and a set of sub-ontologies needed to

contextualize its Properties. Although the purpose of this paper is not to build

an ontology, we must create the parts of it that we need to describe the domains

of our examples. In this case, the names for EntityObjects and their

corresponding Properties were chosen arbitrarily but assuming they exist as part

of an existing global ontology used as inter-systems' common metadata

vocabulary.

-81-

Organizing this ontological world model involves an extensive multiply

interconnected network of units, for which storage, access and update

procedures are available, as part of the inter systems connection architecture.

Examples of this shared ontology and their use in the definition and access to

data environments will be provided in Chapters 4 and 5.

3.3 Context representation: CDL

The model that we built in the last section has defined Domains, EntityObjects,

Properties. Links and MetaProperties as the building blocks of data environment

definition. In this section, we are going to explore the internal structure and the

contents of each of them.

From our point of view, the definition of data environments using context

interchange theory encompasses two different representation tasks:

e Knowledge representation of the system's context that involves:

e Representation of the system's declarative knowledge. It includes schema

knowledge and data semantics.

. Encoding system's procedural knowledge. It includes access languages

and methods to the data contained in the system

" Knowledge management and knowledge processing, namely context

translations, context mediation and context information search.

- 82-

Particularly, we are going to present CDL definitions at different levels and

allocate them to different parts of the network. This involves the design of

context knowledge representation structures:

- Individual system representation as an export context.

e Import context in the form of a global query.

" To define the data structures of the system.

Our first step is to provide a global representation of content definitions (or

domain definitions), and later, complete it by adding a definition of its syntax

and its semantics and access methods. Once we have completed this task, we will

have the building blocks and a reference system for the information existent in

the local system.

For all the proposed CDL structures, we need to give a modular definition,

flexible enough to present their potential users with the part of the data context

that he/she needs, rather than with a standard unit that cannot be

accommodated to represent the particulars of every system. In order to do so, we

propose to design CDLs in separate modules, corresponding to orthogonal

dimensions of data environments and to allow unit modules and their

dimensions to be customized at the proper level.

3.3.1 CDL characteristics

-83-

We choose to build CDL with a frame-like language structure. According to

several authors [Devanbu & others 91, Minsky 68, Patel-Schneider & others 94]

these type of representations are suited to describe sets of objects with complex

relational structure, and it is also suited to represent domains that exhibit

strongly hierarchical, taxonomic categories of objects.

A frame structure [Brachman & Levesque 85, Hu 89, Minsky 68, Norvig 92]

provides a set of representation services for complex data collections and/or

databases. Frames have the power to combine the various ways of representing

knowledge (objects, rules, logic, etc.) and can therefore combine the

representation advantages of all of them.

One very important piece of information that the CDL frames must capture is

their associations with the global ontology. CDL must have the capability to

interconnect hierarchies by supporting various types of links [Madnick & Neira

93] therefore, extending the semantics of a pure hierarchical structure, as defined

in the previous section. What we are proposing is to link CDL frames so that the

result is a network where, of course, the nodes of the network are the new CDL

frames.

3.3.2 Domains in CDL

This section describes the way in which we choose to name and write the

information contained in the CDL frames, their components, Domains,

MetaProperties, etc.

-84-

Figure 8: Network Domain Description in Natural Language

3.3.2.1 Source context domain definition

We will define the information present in the system as well as its characteristics.

This can be done by giving a high level organized description of the system.

Figure 8 presents a natural language version of what we just called high level

description of the Alumni/Gift Database's contents. In addition we have to

include also a high level description of the data manager, i. e., access means and

organization of that content data. A suitable syntax to capture the above domain

definition is the Node Domain description presented in Figure 9 that represents

the MIT Alumni/Gift Database. In general, we defined a set of standard

components as follows:

ContextName

It contains declarative knowledge stating the name of the node. It is the unique

name, a network address or a logical name. It plays the role of the node's unique

identifier. In our example (Fig. 10) we chose to fill the logical name of the agent, i.

e., MIT Alumni/Gift in this field.

-85 -

NODE DOMAIN DESCRIPTION
(NATURAL LANGUAGE)

This is a database whose name is MIT Alumni/Gift Database

This database contains persons (MIT-Alumni, ..., MIT-Postdoc)

school-domain-information

administrative-domain-information

and MIT-donor organizations (companies, ..., fraternities)

administrative-domain-information

NETWORK NODE EXPORT CONTEXT

ContextName: <name of node>

ContextDomain: <ontos and their properties in the node>

DomainConstraints: < node-specific characteristics>

ContextAccess: <node's domain access tools>

ContextStructure: <schema(s) description>

Figure 9: Network Domain Description in CDL

ContextDomain

It contains declarative knowledge stating the collection of EntityObjects and the

list of Properties present in that domain. Therefore, it contains (Fig. 9) implicitly

the data available, i. e., domain of the system, expressed in terms of the global

ontology. Partitioning the domain and structuring the domain will lead to the

definition of a hierarchy of context and a hierarchy of their associated knowledge

bases. Furthermore, the establishment of these context hierarchies is the essential

part when performing context comparisons and network-wide domain searches.

DomainConstraints

It contains declarative constraint knowledge specific of this node. Usually, a

phenomenon has certain characteristics that distinguish it from others and data

environments are no exception to this rule. It specifies a set of conditions

(constraints) that apply only to the data present in the node. They are organized

into logical groups as follows:

" Time constraints

e Space constraints.

-86-

e Quality constraints.

The representation of this constraint knowledge is only necessary to access this

system. It is not, by any means, universal domain (shared information) and

therefore it should be kept at local level.

One common characteristic of this knowledge is its declarative nature. For

example, most of the existing systems, i. e., databases contain the part of the

world that is not supposed to change in declarative manner in the form of the

well known integrity constraints. We call this type of knowledge constraint

knowledge. The representation of this kind of knowledge [Brachman & Levesque

85, Minsky 68] is an advantage in the sense that search processes can use them to

improve performance. The disadvantage is their static quality and inflexibility.

This knowledge is used for detecting or correcting errors in input data. In the

case of the Alumni Database we wrote its description in Figure 10.

The maintenance and accuracy of this knowledge is very tedious. Therefore, we

will only represent those constraints that have a direct relation to the

interoperability architecture, keeping local the rest of them. There is no need to

expose every single system's complexity, otherwise the context application, and

particularly the global ontology would become unmanageable.

ContextAccess

It contains the procedural knowledge necessary to manipulate the node's data

The characteristics describing them, recorded here in the form of a list of

predicates from a family of related characteristics or what we have called domain

-87-

characterization. This slot expresses the general constraints on all the members of

the class that it belongs to (declared in ContextDomain).

ALUMNI/GIFT SOURCE DOMAIN DESCRIPTION

ContextName: MIT-Alumni/Gift

ContextDomain: Person-Alumnus WHERE [Alumnus-->school=MIT]
[school-domain-property-list,
administrative-domain-property-list]

DomainConstraints: Time [1970 - present]
Location [Cambridge, Massachusetts, USA]
Size [500 Megabyte]

ContextAccess: Network Datatabase,
Natural Language

ContextStructure: Schema Num. 1
[ALF-MASTER-VIEW (SQ (char 10), ..., PFX (char 6)]

Figure 10: MIT Alumni/Gift Database Description

ContextStructure

It contains the schema(s) present in the system. It also contains references to the

protocols, internal data organization, etc. more specifically it will contain the

information that would allow using data manipulation languages to query the

system. The information will point to the system's schema storage facility. The

description of the structure of the agent may not be unique, i. e., a particular

node can choose to be represented under different views.

3.3.2.2 Receiver context and domain-restricted queries

When a node is acting as a receiver it will do so by presenting, in the form of

query-values the information that it is requesting. For example, from the same

Alumni/Gift Database we could submit a global query asking for sources where

-88 -

MIT Alumni information is stored as shown in Figure 11. For example, suppose

that we are now located at the MIT-Alumni/Gift Database domain and we want

to find out what other systems contain information on MIT alumni, and what

information is available. Then, we will submit to context server residing in the

network the query present in Figure 11.

Therefore our approach to the receiver context design will be to use the same

structures that we designed for source context, inserting query-values in those

properties, fields, etc. that we attempt to query. The implicit assumption in our

design is that a domain can only submit queries to the global ontology within its

own domain.

Figure 11: Receiver Context for Querying on Context Domain

However, we are going to allow context-based querying with no pre-defined

Domain. That is the case, for example, of a user who wants to get information for

the available network sources with no domain restriction, he or she will have to

build dynamically a CDL frame instance similar to the one pictured in Figure 9.

-89 -

The context server also provides execution management facilities for this kind of

context-free queries.

3.3.3 EntityObjects, Properties and their semantics

We will define here the content and form of the CDL language for the purpose of

creating a context information data storage structure suitable to hold the

information required to represent its context. The description of its component

modules is the subject of the rest of this section.

We propose to describe the context of a system in terms of the different

dimensions of data description. Furthermore, we claim that the components of

this CDL property frame (Fig. 12) can be expressed as orthogonal dimensions of

data description and presented to the user, if necessary, independently. At the

same time, every dimension can have several meta-dimensions. Madnick and

Siegel [Siegel & Madnick 89a, Siegel & Madnick 89b, Siegel & Madnick 91, Siegel

& Madnick 92] have described them as semantic domains of the data. These

semantic domains constitute the variables whose values are to be determined

before any meaningful data exchange can be undertaken.

In the next sections, we describe the contents of the layers and their sub-

components.

3.3.3.4.1 Identification

It tells the location (schema location) of a particular piece of information (entity-

object) in the system schema. It also provides the name of the onto (thing) in the

system.

- 90 -

We separate this part of the entity-object knowledge from the rest in order to

differentiate the structure and usage of names from the structure of the

EntityObject itself. This module is directly related to current repository

technology in the sense that it can be used to facilitate data location across any

portfolio of systems. The layer is subdivided into:

IDENTIFICATION AccessName Location-related
MODULE Is_In

Is Kind Of
IIsMemberOf -N

ONTOLOGY LINKS MebrO
MNOLE IK IsPartOf Ontology-relatedMODULEHasParts

I RelatesTo

ValueType
REPRESENTATION I AllowableValue

MODULE MetaProperties Local characteristics

CONSTRAINTS Constraints
MODULE

MISSING VALUE i
MODULE MissingValue

TRANSFORMATIONS Transformations
MODULE

Figure 12: Context Definition Language Layered Structure

AccessName

It contains the Property's name in the system. We could have broken this item

into further detailed items, giving version-identifier, descriptive-name, alternate-

name, etc., but, for the purpose of this paper, and for the sake of simplicity, we

keep the context of a Property's name an/or the context of an EntityObject's

Name as if it were fully defined by its AccessName. This field can be multi-

-91-

valued if, as we will see shortly in several examples, the system contains name

duplications. Replicated data25 enhances security and availability and our CDL

should accommodate the representation of such a critical issue.

IsIn

It stores the logical location(s) of that property in the local schema. The examples

shown later in this thesis are given in the form of a chain connected by dots with

the name of the system followed by other location identifiers e. g.,

ALUMNI/GIFT.ALF-MASTER.PFX-CODE. Notice that, within a system, there

may exist different sources of the same information.

This notion of location identifier can address data reduplication by including in

the value of IsIn the many locations where the same information is stored. It is

important to have such a scheme because it gives our architecture power to cope

with issues as different as data security reasons, poor systems design, etc., this

field can be multi-valued if there is data duplication. In the case where additional

information can be found in the same system, we store that information in the

RelatesTo module but not here.

25 Note on AccessName and data replication

In the Alumni/Gift Database every field can be queried under two different field names or, using

CDL Unit nomenclature every field has two different access names:

company CO- NUM and BN

identification number SEQ-NUM and SQ

mailing name MAIL-NAME and AN, etc.

-92-

3.3.3.2 Ontology Links

Ontology Links are meant to connect the local Domain of a system to the global

Domain residing in the context interchange server, i. e., the library of ontologies

(Fig. 4). Links express the EntityObject, Property, etc. relative to a pre-existing

global ontology. That is, the local constructs are matched, through this scheme,

against an inter systems ontology. This ontology provides a uniform definition

of the EntityObjects, MetaProperties and Properties that become the building

blocks to describe the system, more importantly, the information content of the

system, its domain, is defined by these set of Links rather than in terms of

physically stored data.

Figure 13: Interlocking of Hierarchies in the Shared Ontology

Conventional hierarchies, i. e., tree structure, are inadequate for our purposes. A

river, for example, may simultaneously belong to the transport route, national

-93 -

/ I CANAL
ROAD HIGHWAY

boundary drainage channel and water body classes. The taxonomic result is an

interlocking of hierarchies (Fig. 13) known as network, or lattice 2 6 .

Entity-objects, properties and MetaProperties can be linked using types, tables,

rules, etc. The rest of this section is dedicated to define the different types of links

that an object or property needs to get connected to the global ontology.

Given the appropriate transformations, this linked ontology should be able to

support aggregations, decomposition, heterogeneous formats, and organize and

resolve data incompatibilities.

One important thing to notice is that we envision these links not only as residing

in the global ontology, but also as residing and being part of the knowledge-

based ontology that the local system needs to support its context definition in

terms of global concepts.

The semantics of this ontology are supported by the definition of the following

types of specialized links:

Is KindOf

Represents a hierarchical relationship (super-class/sub-class) in the ontological

hierarchy. It is the classical tool used to construct generalized hierarchies.

This classification scheme is one of the reasoning methods that our links use, i. e.,

the property of an EntityObject in the super-class will be passed down to its sons

26 A lattice allows a node to have more than one parent.

-94-

if no restriction is specified. An example of IsKindOf Link is presented in

Figure 14.

SUPER -
ENTITYOBJECT

IsKindOf
IsKind Of

ENTITYOBJECT1 ENTITYOBJECT'

Figure 14: IsKindOf Link

IsMemberOf

It is a link that expresses membership to a particular class of EntityObjects.

Properties or MetaProperties. This is the mechanism that we use to express

membership of one of the local data categories to one of the members of our

global ontology.

IsPartOf

This Link is meant to express the different levels of granularity in which an item

(thing) can be represented. It imposes a relationship between a low level object

and a high level object ,but not as a subclass/super-class relationship (the later

case is covered by the previous Link). The importance of the semantics of this

link lies not only at the global ontology level, but also at the local level. It

expresses the local grouping of global ontos (things) under a single-thing; for

example, a MAIL-NAME (local grouping of things) containing the name, the

-95 -

prefix name, the suffix name and an address. This concept is similar to the one

that the IRDS terminology defines as ATTRIBUTE-GROUP. In other words, this

is the abstraction concept of building aggregate objects from component objects.

In this way, we can construct a new EntityObject from existing ones (Fig. 15) for a

given domain.

FirstName

+ MiddleName Component

LastName properties +

FullName New property

EntityObject-->FulName

into a unique

IsPartO t at0
I Is Part Of sPartOf

EntityObject-->FirstNam EntityObject-->MiddleName I EntityObject-->LastName

Figure 15: IsPartOf Link

RelatesTo

This Link expresses connections with other items, even connections outside the

exact domain of the system. We need this link (Fig. 16) because the category of a

concept is completely determined by its environment, rather than by its intrinsic

composition; that is, the category of a thing (essence) and its uses (roles), differ

among systems. This fact reflects that the purposes of the system (use, role)

determine what how the concept is perceived. For example, in the Alumni/Gift

environment, companies and college students are perceived as the same thing

-96-

(ALF-MASTER File records), and therefore both have FIRST-NAME and LAST-

NAME.

Relates To RelatesTo

EntityObject-->Prefix J I EntityObject-->Name & tObect-->Suffix

Figure 16: RelatesTo Link

In other cases, we need this Link to represent categories that overlap or inter-

relate without being subsets. This is a tool that involves classifying similar objects

into object classes. Namely, it allows us to define types of names for a given

thing, e.g., person-name, legal-name, Soc-Sec-Num, etc., and to enable different

access schemes for data. The following example is taken from one of the systems

that we study in Chapter 4. It shows us the purpose of this type of Link: a person

(that we chose to name as EntityObject) can be named in several ways, or in the

nomenclature that we are introducing, a person can be referred to in many

different ways:

e With an identification number called SEQ-NUM that we have referred to in

the global ontology as:

EntityObject-->IdentificationNumberName.

* With the category name (Alum, Widow, Postdoc, etc.) to which it belongs. We

have referred to in the global ontology as:

-97-

EntityObject-->ClassName.

e There are other types of names (Legal Name, Full Name, etc.) in the system

and we have grouped all of them under Name. This scheme give us the

flexibility to create subclasses for it within the domain of the system 27 :

EntityObject-->Name

Notice that this Link can also be used when different representations of the same

property are present in the system, and most likely not all of them exist at the

global level. Most of these representations are the local variations under which a

concept or property can be expressed in a data environment. EntityObjects

and/or properties connected by this link are characterized by having a common

IsKindOf Link value.

HasParts28

At the local level, it will allow us to refer to a set of different (local) things as a

single (global) thing. This link will support decomposition of Properties and/or

EntityObjects. Let's take again the example that we chose for the link RelatesTo.

The Properties SuffixName Name and PrefixName cannot be linked to the

Name Property with the above defined IsPartOf Link. In this case, we need to

express a relationship among different domains, one is the Name domain and the

other is the domain of particles to add to Name.

2 7 To see this sub-classification, go to diagram at the end of this document.

28 HasParts and IsPartOf are not inverse properties and the next link (RelatesTo) and our

example demonstrates why. Essentially HasParts creates a strict relationship where the parts are

equal to the whole while the IsPartOf does not fulfill that requirement.

-98-

3.3.3.3 Representation

It contains explicit declarations of the environmental constraints imposed on the

semantic and syntactic data values, representation semantics and syntax of the

entity object in the system. All the semantic values are defined at this level. An

example of this would be the representation of a Social Security Number (SNN)

expressed as:

SNN [0 ... 9, -1 (integers and hyphen, or numbers in the 999-99-999 format)

The representation is broken into:

ValueType

This expresses the syntax of the entity-objects and the properties in the system;

we extend the traditional concept of type by adding to it definitions of format,

units, scale and length;

AllowableValues

It contains the set of permitted values. They can be either single-valued or multi-

valued. In addition, the special value Null (undefined) is present in every

domain; It corresponds to the values that the attribute can take in this Domain.

Cardinality

This expresses whether the field is single or multi-valued. In the later case, the

cardinality value is the number of single items in which the field can be broken

(Fig. 17)

-99 -

Figure 17: Example of Multi-Cardinality

MetaProperties

MetaProperties are information needed to complete the definition of a property.

They can be Properties and/or EntityObjects from outside or inside the domain

of the system. They are attached to the local ontos to complete their

representation definition. This definition implicitly creates two local categories of

Properties and EntityObjects:

e Primitives

They have an intrinsic natural existence, e. g., color, number, distance, etc. All

primitives have a Null list of MetaProperties.

- Assignables

They need additional knowledge, i. e., MetaProperties, to be described;

Transformations 29 are used to determine MetaProperty values. For those

-100-

EntityObject-->ClassName

IDENT-CODE(1) sIsMember of

IDENT-CODE(2)

IDENT-CODE(3) ---- > IDENT-CODE

IDENT-CODE(4)
TT~T~NT Of" ll

LLJLIN L-~~LJL.~~I)

29 See Section 3.3.4.7.

already present in the system, queries will be the mapping functions used to

determine their values. For those not present in the system, other tools such

us heuristics, rules, arithmetic operations, table look-up, etc. will be used.

Notice that MetaProperties are domain-dependent. They are not intrinsic to the

data but are intrinsic to the context of the data, i. e. data environment.

3.3.4.4 Constraints module

This contains system structure related definitions. For example, primary key

specifications, data access restrictions, etc. These constraints can limit the

information to be accessed by defining database views.

3.3.3.5 Missing value

This is an error-handling scheme that will lookup other fields if no data is found

in a CDL-based query. For example, it will dictate what to do in the case of

incomplete data; that is, It describe other sources either inside the system or

outside the system 3 0 , from which to infer the property value.

3.3.3.6 Transformations

It stores rules, queries, heuristics, etc. that will take the system schema to

different contextualized stages. The transformations are application-dependent,

and there are no general rules as to how they function. Every application, system,

database, etc. will have to define their own transformations. To transfer

information to a different domain, the use of this facility is very likely to be

needed.

30 A Source can be, for example, the user who submitted the query.

-101 -

In this thesis, we lack a target context so we present a small set of absolute

conversions (from local to hypothetical global properties) that are likely to be

needed. However, we do not formally address the issues of context comparison

and context conversion. These transformations, if included as part of the system's

context definition, could function as a general description of the environment

without the need for either conversions or comparisons of context.

-102 -

CHAPTER 4

CONTEXT ACQUISITION USING CDL

The process of context acquisition is the subject of this chapter. We focus on the

development and implementation of context in legacy systems, i. e., operational

systems with a mature data environment. This is the first step needed to

incorporate them to the context interchange architecture. We plan to perform

context acquisition and context implementation in disparate data environments,

i. e., environments with different domain and different supporting system

structure. This will demonstrate the capabilities of CDL as a general, complete

and non domain-specific tool to represent context.

For all the analyzed systems, we perform the same sequence of steps:

e First, we describe the structure, meaning and organization of the system and

its data. We need to perform this initial study to define and understand an

existing Domain and its associated data environment. At the same time, we

also describe the means by which that information can be transformed in

context.

- Second, we match the above defined context to the appropriate part of the

shared ontology. In order to do that, we develop that part of the ontology

(global Domain as well as local Domain), that we need to represent each of

the systems.

-103-

e Our third, and last step, consists of encoding the system using the CDL

language presented in Chapter 3. This last step also includes a study of what

tools are readily available to extract data environment characteristics, and

how the data environment representation scheme supports the explicit

declaration of these characteristics by means of data definition languages,

rules, heuristics, translation tables, metadata, etc. In other words, we will be

looking at what is necessary to transform a system schema into a

contextualized one.

4.2 The network directory locker

The network directory locker is part of the MIT network of lockers. It contains

information about the Internet, the networks connected to it, how to use the

Internet, how to use the directory, a network addresses (domains) database, etc.

4.1.1 Domain

Among the documents (Fig. 19) contained in the directory31 are:

* The network directory produced at the University of Texas, which lives in

/mit/net-directory/net-dir. It contains six parts: net.directory.part[123456].

Examples of records in this database can be seen in Figure 18. There is no

further information in the database stating what the subfield meanings are 3 2 ,

why are they organized in that way, etc. That is, we found that there is no

31 For reasons of brevity, we limit our description of directories to the most important ones.

32 The subfields in this database file are separated by semi-colom (Fig. 18).

-104-

data semantics definition support in this database. The reader will notice that

this is a constant in the systems we analyze.

e Regularly-produced network periodicals which describe changes in network

usage and topology, new services, etc. are kept in /mit/net-

directory/magazines.

e Information about network domain names is kept in /mit/net-

directory/domain-info.

* A report prepared by the Rand Corporation which describes some issues

concerning the Ethics and Etiquette of Electronic Mail, which is contained in

/mit/net-directory/documents/email.ethics.

EMDCCI11; EEARN; 1267; IBM 4341-2; IBM VM/SP R4; RSCSV2/NETDATA; IBM
Scientific Center Madrid, Spain, Centro Cientifico UAM-IBM, Universidad Autonoma
Facultad de Ciencias, Modulo C-XVI, E-28040
Madrid (Spain); Gonzalo Martinez, GONZALO@EMDCCI 11, +34 1 7342162; EARN

EMDCSIC1; no aliases; 2360; CYBER 180/855; NOS 2-5-3; NJEF/PUNCH; Consejo
Superior de Investigaciones Cientificas CSIC, Centro de Calculo, CSIC, Pinar 19, E-28006
Madrid - Spain; Victor Castelo, CCEVC28@EMDCSIC1, +34 1 2616688; EARN

EMDUPM11; no aliases; 0266; IBM 4341-12; IBM VM/SP R4; RSCSV2/NETDATA;
Universidad Politecnica Madrid, Spain, Universidad Politecnica de Madrid, Centro de
Calculo, Avda Ramiro de Maeztu s/n, E-28040 Madrid (Spain); Carlos Otermin,
U2301004@EMDUPM11, +34 1 2545000 ext397; EARN

Figure 18: Examples of Network Directory Records

e A standard host-table for the Internet is kept in /mit/net-directory/host-

tables/hosts.txt. In the past, this table was updated once every two weeks or

-105 -

so but it is no longer used; now the hosts are known via the domain name

system.

* A standard host-table-type file for BITNET is kept in /mit/net-

directory/host-tables /bitnet.links; this is updated whenever the BITNIC

distributes a new version of bitnet.links.

* A directory called bin for programs to help with the use of these documents,

and a directory "etc" which contains data files used by the programs residing

in the bin directory.

As described, all the data is stored in a hierarchy of flat files. The information

they contain can be accessed using the search programs offered by the UNIX

operating system plus a set of additional customized programs to run some

queries related to the directory where information on network domains and their

owners is stored.

4.1.2 Sub-domains

In this case, by design choice, we consider that every file of the directory

hierarchy that we are examining constitutes a unique sub-domain with (many)

similar types of records (Fig. 18). This is also true in the case of a text or

unstructured file.

4.1.3 Context Interchange View

In Figure 19 we picture a description of the context source description (expressed

as a global sub-Domain) for the network directory of this section. In order to do

so, we have assumed that the EntityObjects "Network" (and its name: Network--

-106-

>Name) and ComputerNetworks are part of the prexisting global ontology. In

addition, we have also assumed that ComputerNetworks can have a set of

network domains called documentation-domain-property-list, and that

ComputerNetworks can have attached to them a list of users with Properties

called User-->Name-domain-property-list.

NETWORK DIRECTORY SOURCE DOMAIN DESCRIPTION

ContextName: Network-Directory

ContextDomain: ComputerNetworks WHERE [Networl-->Name] =Internet]
[documantation-domain-property-list,
User-->Name-domain-property-list]

DomainConstraints: Time [1989-1992]
Location [Cambridge, Massachusetts, USA]
Size [Null]

ContextAccess: File Hierachy,
UNIX

ContextStructure: Schema Num. 1
[net-directory

bin
documents(mail-ethics, FTP-Directory.txt, Telemail-Gatway.txt)
net-dir (net.directory.partl, ..., net.directory.part6)]

Figure 19: Network Directory Source Domain Description

4.2 The Alumni/Gift database

4.2.1 Domain

The MIT Alumni/Gift Database stores records of MIT Alumni and MIT donors

(person, corporation, society, etc.). Data is organized by a network database

-107-

management system into approximately forty (40) files 3 3 . A file has several

either single-value or multi-value fields. Files are defined by their names and

their fields while fields are defined by their names and their number of

characters (numeric or alphanumeric).

Figure 20 shows the database schema; this is the only information about its

domain and its data available to someone accessing this database. The lack of any

further explicit description of the data under these files and fields would allow

one, for example, to submit a query requesting all the records whose LAST-

NAME starts with I, to retrieve the MIT alumni with surnames starting with I,

and obtain, among others, I.B.M. as one of those assumed to be MIT alumni.

ALUMNI/GIFT
[ALF-MASTER

(LAST-NAME char(20), FIRST-NAME char(30),

SEQ-NUM char(10), ((IDENT-CODE(1),

..., IDENT-CODE(5)), MID-NAME char(30),

NICK-NAME char(16), SHORT-NAME char(27),
JOIN-NAME char(30), LEGAL-NAME char(60), SPOUSE-NAME

LEGAL-NAME char(60),..., PREVIOUS-NAME char(30)) I

[ALF-COMPANIES
(CO-NAME char(30), CO-NUM char(1O), SIC-CODE char(5),
MASTER-FILE-CO-NAME char(30),..., SUBSID-IND char(1))]

[ALF-TABLES
(000-LIST-OF-TABLES, 100-MIT-COURSES ,134-999-SEQUENCE-NUMBERS,
952-ACCT-DOCUMENT-SEQ-#S)]

Figure 20: MIT Alumni/Gift Database Schema

33 We access the Alumni/Gift through the CISL's Account. This account has access to three files:

ALF-MASTER (restricted access through the ALF-MASTER-VIEW), ALF-COMPANIES and ALF-

TABLES. The ALF-MASTER File is the largest file in the database, containing approximately 65%

of the data.

-108-

Obviously, our last example demonstrates that Alumni/Gift does not provide a

complete description of the database environment. In particular, the database

stores two types of information whose specification is missing in the previous

example:

e Administrative information on MIT alumni.

* Administrative information on MIT donors (companies, associations, MIT

alumni, etc.); in the same file, ALF-MASTER.

The database allows the exclusive retrieval of alumni information but only if the

IDENT-CODE and/or SEQ-NUM fields needed to infer the type of a record are

in place. Yet this information is not explicitly present in the database.

The only concepts and their attributes, EntityObjects and Properties in the CDL's

nomenclature , that can be identified at schema level are the forty categories

corresponding to the forty files into which the database is structured.

Therefore, classifying the ALF-MASTER File's records involves incorporating

knowledge into this basic structure, declaring that IDENT-CODE and SEQ-NUM

contain the information needed to classify the ALF-MASTER File's records into

categories. Furthermore, we can also extend these local categories, by performing

transformations and semantic equivalence operations, and matching them to

others belonging to a predefined global ontology.

In general, we have seen that the system is missing explicit knowledge

declarations about the organization, the meaning and the representation of its

-109-

data. This paper proposes to include all that information, named context, as an

active part of the system.

4.2.2 Sub-domains

Now we analyze and represent selected fields (Fig. 21) from the ALF-MASTER

File. The analysis of each field is broken into:

- Meaning: contains the meaning of the information under the field.

e Representation: contains the definition of the semantic and syntactic

constraints imposed by the environment.

* Comments: contains further details of the field's characteristics and its

relationship to other database fields.

IDENTIFICATION CODE (IDENT-CODE)
FIRST NAME (FIRST-NAME)

SEQUENCE NUMBER (SEQ-NUM)
MAILING NAME (MAIL-NAME)
LEGAL NAME (LEGAL-NAME)

SUFFIX CODE (SFX-CODE)
LAST NAME (LAST-NAME)

MIDDLE NAME (MID-NAME)

Figure 21: List of Fields Selected for Analysis

-110-

Identification Code (IDENT-CODE, IC)3 4

This is a letter that identifies the category of the record. The list of allowable

categories, that we called ClassName(s), is located in the File, MIT

AFFILIATION CODE Table (Fig. 22). For example, the letter 'A' will identify the

data in the record as corresponding to an MIT alumnus. In the database, it is

represented as a one (1) alphanumeric character.

This field is multivalued, i. e., the same record can be classified as a member of

up to five (5) different classes. In the database they are specified as IDENT-

CODE(1), IDENT-CODE(2), IDENT-CODE(3), IDENT-CODE(4) and IDENT-

CODE(5). Therefore, the domain definition of this field is a set of values that can

be atomic and non atomic data values. The field can have a Null value; in this

case, other fields, defined later in this document, should be queried to identify

the class of the record.

The MIT Affiliation Code Table (Fig. 22) declares the classes of the ALF-MASTER

File. Yet this table constitutes a non-exhaustive explicit declaration of the domain

primitives stored in this file. Notice that its items do not fit into any standard

form of structured category description, such us a type-hierarchy; the set is

neither homogeneous nor complete but meant to fulfill the requirements of the

Alumni Database role. It is also important to notice the overlap of types, e.g.,

alumnus and postdocs.

34 The names of the field in the database are shown in parenthesis.

- 111 -

In order to categorize the records into classes other than the ones listed in the

table, we need of additional knowledge, generalization, inference and like

mechanisms.

Sequence Number (SEQ-NUM, SQ)

It is a unique name number identifier of every record in the File. In the database

is represented with ten (10) characters numeric values.

Identification
A
D
E
G
H
J
M
N
0
P
R
S
T
U
W
x

ClassName
alumnus
postdocs
estate of alumnus
grandparents
honorary
joint
in mem or honor
non-alumnus
alum owned entity
parents
relations
spouse
estate of trust
alum anonymous
widow
other

Figure 22: MIT Affiliation Code Table

This is one of the

follows:

fields that the alumni database staff uses to identify entities as

-112-

* If the person is an MIT alumni, the first four digits represent the year of

graduation so that number 3 5 is always 19XX, e. g., 1956, the other 6 digits

have no semantic meaning.

" If the entity is a company, then the first four digits are 1000.

* If any other entity they query the IDENT-CODE field to find out , for

example, that it is a living-group (Fig. 22).

e To identify a company, the IDENT-CODE (1) is an N and the SEQ-NUM must

start with 1000.

e There exist a table, part of the ALF-TABLES File, where special SEQ-NUM

series are kept; that is, entity-objects can be identify, in some special cases, by

the first four digits of their SEQ-NUMs. The table is 999-SEQUENCE-

NUMBERS.

The reason why they use this field in addition to IDENT-CODE to identify

entities, is because information from both fields is necessary to query entities not

explicitly declared in the IDENT-CODE table (either for confidential or for

practical reasons).

Last Name (LAST-NAME, LN)

The content of this field depends on the type of record:

e If record is for a person, then LAST-NAME stores a person's surname.

35 In this and the following examples, the letter 'X' stands for any alphanumeric character.

-113-

e If record is for a corporation, association, fraternity, etc. it can be:

" the name, if its number of characters is less than the field's length; or

e the first part of the name. In this event, the second part of the name is

stored in the FIRST-NAME field;

It is represented as a twenty (20) characters alphanumeric value.

In order to define the meaning of this field we need to know the IDENT-CODE of

the record. IDENT-CODE will tell us whether "Smith" is an alumni, widow, etc.

That is, only after identifying the type of record, one can tell what information

the LAST-NAME of that record contains. For example, if a record has IDENT-

CODE(1) = A, then LAST-NAME is the surname of a person, in this particular

example, the surname of an MIT alumni.

Yet the IDENT-CODE field is not enough to define LAST-NAME's contents. For

example, there are entities such us "companies" recorded in the database without

an specific IDENT-CODE; indeed, been the second most important type of entity-

objects in the Alumni/Gift, companies are not explicitly declared as a category

anywhere in the system. To solve this particular problem we need two pieces of

information, IDENT-CODE(1) = N and SEQ-NUM = 1000XXXXXX to infer that

the LAST-NAME field stores a company name. The field can have a Null value.

-114-

Mailing name (MAIL-NAME, AN)

This is a complete name in mailing format. It may include prefix and suffix

particles to address the person(s). In the case of a company, it is the name to be

used for mailing purposes. It is represented by thirty (30) characters

alphanumeric values.

The field free of any semantics constrains. The owner(s) of the record choose the

format and content of the mailing name; for example, whether or not to include a

prefix with the name, whether or not to include more than one person's name are

decisions left to the owner of the record (alumni, company, joint, etc.)

Semantically this field can be thought of as a set of attributes - attributes-group in

the IRDS terminology.

The field is likely to be the only existing name in the case of a non-person record.

At the same time, it may not contain the name of the owner of the record but the

name of other entity to which mail should be sent. For example in the case of a

company, the MAIL-NAME can be a particular person within the company to

whom mail should be sent.

Middle Name (MID-NAME, MN)

It is a person's middle name. It can have up to 15 alphanumeric characters. The

field has a Null value for non-person records. The semantics of this field

regarding its EntityObject identification are similar to those presented in the

LAST-NAME field.

-115-

First Name (FIRST-NAME, FN)

If the record pertains to a person, this field stores his/her first name. When the

record belongs to a non-person, this field is either Null or it contains the second

part of the entity's name. In the later case, the first part of the record's name is

under the LAST-NAME field. This scheme allows for names longer than the

LAST-NAME field length to be included in the database. The field's length is 30

alphanumeric characters.

Legal Name (LEGAL-NAME, LE)

This is the legal name of the record. They may request to be addressed one way

but the legal name is the formal name and it is stored in this field. For example, a

non-US born may choose to change or alter his/her name to make it easier to

pronounce, a woman who gets married may choose to alter her name in a variety

of ways. In all cases, the LEGAL-NAME is the original name and the modified

name is stored in the other name fields present in the database. No prefix or

suffix particles added to it. It has 60 alphanumeric characters. The field can have

a Null value.

Prefix Code (PFX-CODE, PX)

It is a particle(s) added at the end of a name to formally address a person,

organization, etc. It has up to 6 alphanumeric characters. There is a list of

predefined prefixes; the prefix particles are listed in the PREFIXES Table of the

ALF-TABLES File 3 6:

36 This list contains the translation of the 6 alphanumeric characters. They were taken from the

above mentioned PREFIXES Table.

-116-

Airman Attorney
Brigadier General

Judge Lieutenant
The Very Reverend 1st Lieutenant

In Honor of
Private First Class
2nd Lieutenant

Suffix Code (SFX-CODE, SF)

It is a particle(s) added at the end of a name to formally address a person,

organization, etc. It has up to 6 alphanumeric characters. Some examples are

listed bellow3 7 :

Esquire
Junior
Medical Doctor
Senior
U S Air Force

Estate of
Trust of
PHD
S. J. Superior
U S Coast Guard

Friends of
U S Navy
Doctor of Science
U S Army
U S Marine Corp

Figure 23: Alumni/Gift Database Source Context

Nonetheless, the field can have a suffix value other than the ones present in this

list.

3 7 The list is a translation of the 6 alphanumeric character SFX-CODEs found in the ALF-TABLES

file of Alumni/Gift.

-117-

Admiral
Brother

ALUMNI/GIFT SOURCE DOMAIN DESCRIPTION

ContextName: MIT-Alumni/Gift

ContextDomain: Person-Alumnus WHERE [Alumnus-->school=MIT]
[school-domain-property-list,
administrative-domain-property-list]

DomainConstraints: Time [1970 - present]
Location [Cambridge, Massachusetts, USA]
Size [500 Megabyte]

ContextAccess: Network Datatabase,
Natural Language

ContextStructure: Schema Num. 1
[ALF-MASTER-VIEW (SQ (char 10), ..., PFX (char 6)]

4.2.3 Context interchange view

The addition of context to this database goes as follows:

e The source context was presented in Chapter 3 and we included here again

only for the purpose of completeness (Fig. 23)

e The description of the fields is presented in the following pages.

Identification Code CDL

Identification

e AccessName [IDENT-CODE, ID]

e IsIn [ALUMNI/GIFT. ALF-MASTER. IDENT-CODE]

Links

* IsKindOf [EntityObject -- > ClassName]

e IsPartOf38 [Null]

e HasParts3 9 [EntityObject-->ClassName(1), EntityObject-->ClassName(2),

EntityObject-->ClassName(3), EntityObject-->ClassName(4),

EntityObject-->ClassName(5)]

e Relates_To4 0 [EntityObject -->Name,

EntityObject-->IdentificationNumberName]

Representation

e ValueType [(format: alphanumeric-plain), (units: Null),

38 This is the only field in the database containing class name information.

39 List of the five ClassName(s) properties that a given record can have.

40 List (not complete) of the other EntityObject names present in the database.

-118-

(scale: Null), (length: char(1)]

e AllowableValues4 1 for [IDENT-CODE(1)]

[A, P, E, G, H, J, M, N 0, P, R, S, T, U, W, X, Null]

for [IDENT-CODE(1) & IDENT-CODE(2)]

[A&P, A&E,

for [IDENT-CODE(1)& ... & IDENT-CODE(5)]

[A&P&G&H&S,

* Cardinality [1, 2, 3, 4, 5]

e MetaPropperties [Null]

Constraints4 2 [ALF-MASTER, ALF-MASTER-VIEW]

MissingValue4 3 if [IDENT-CODE(1) = Null] then [look-up (SEQ-NUM)]

Transformations 4 4

if [(IDENT-CODE(1)=J) or (IDENT-CODE(2)=J) or (IDENT-CODE(5)=J)] 4 5

then [EntityObject-->CARDINALITY = 1)]

41 The domain of this field includes 1-values-set (listed in full), and from 2-values up to 5-values

sets (not listed in full).

42 Declares the database views from which the object can be accessed.

43 If the value of this field is Null, we fetch a query to look up the SEQ-NUM of the record, and

from that value we can infer the identification code (ClassName) of the record.

44 Global entity-object names are inferred from the local names and some other information, i. e.,

the cardinality.
4 51f none of the IDENT-CODEs of the record is J (join), then the record is a single entity-object

record; otherwise the record corresponds to a joint entity-object and, therefore with cardinality

greater than 1. Notice that we are declaring here the EntityObject's cardinality not the

EntityObject-->ClassName's cardinality. The later was done a few lines above.

-119-

else [EntityObject-->CARDINALITY > 1]

if [EntityObject-->ClassName->CARDINALITY= 1]46

if [IDENT-CODE(1) = A]

then [EntityObject --> ClassName = Alumnus,

EntityObject --> ClassName = MITAlumnus,

EntityObject -- > ClassName = UniversityAlumnus]

if [IDENT-CODE(1) = D]

then [EntityObject -- > ClassName = Postdoctor,

EntityObject -- > ClassName = MITPostdoctor,

EntityObject -- > ClassName = Researcher]

if [EntityObject-->ClassName-->CARDINALITY = 2]47

if [IDENT-CODE(1) = A and IDENT-CODE(1) = D]

then [EntityObject --> ClassName = Postdoctor,

EntityObject -- > ClassName = MITAlumnus]

Last Name CDL

Identification

e AccessName [LAST-NAME, LN]

e IsIn [ALUMNI/GIFT. ALF-MASTER. LAST-NAME]

46 In this case, the record has only one identification code, that is, only IDENT-CODE(1) has a

non-null value. The scheme presented defines the ALF-MASTER records as members of global

entity-object classes. Only two cases are presented (A and D) the rest of the IDENT-CODE are

omitted.

47 When the cardinality of IDENT-CODE is 2 or greater than 2, new ClassNames can be inferred

by mapping sets of IDENT-CODEs to one single new ClassName. In this case, the record has two

identification codes; that is, IDENT-CODE(1) and IDENT-CODE(2) have non-null values. For

example, one can retrieve all MIT alumni who are postdocs. Notice also that we include only one

example of cardinality 2 and no examples for cardinalities 3,4 and 5.

- 120 -

Figure 24: Local and Global Links

Links

e IsKindOf{ EntityObject --> Name]

e IsPart_Of: [EntityObject --> FullName]

* HasParts [Null]

e RelatesTo [Null]

Representation

- ValueType [(format: alphanumeric-plain), (units: Null),

(scale: Null), (length: char(20)]

e AllowableValue [XXXXXXXXXXXXXXXXXXXX]

e Cardinallity [1]

e MetaProperties [ALF-MASTER.IDENT-CODE,

ALF-MASTER.SEQ-NUM]48

4 8 Both MetaProperties are ALF-MASTER fields, therefore we can infer their values querying the

file.

-121-

Local Domain

EntityObject-->MailName IGlobal Domain
HasParts

niy ject-- ame reix nIy jec--> ame u 1x

niy jec--> ame

Constraints [ALF-MASTER, ALF-MASTER-VIEW]

MissingValue [LAST-NAME = Null]49

then [EntityObject -->LegalName]

Transformations

if [IDENT-CODE = (A, D, ..., W)]50

then [LAST-NAME = Person -->LastName]

if [IDENT-CODE(1) = N and SEQ-NUM = 1000XXXXXX]

then

if [FIRST-NAME = Null]

then [LAST-NAME = Company -->FullName]

else

[ALF-MASTER.LAST-NAME & ALF-MASTER. FIRST-NAME)=

Company --> FullName]

if [IDENT-CODE (1) = J]51

then [LAST-NAME = Null]

49 If LAST-NAME is Null, we chose to give the more general property EntityObject-->LegalName

as alternative.

50 That is, if any of the record's IDENT-CODEs belongs to the list of the person categories.

5 1The (only) name of a joint should be under the JOINT-NAME field.

-122-

IE D

Is Memeber Of

(X-CODE

Is Memeber0O
Cardinality

EntityObject-->ClassNai

IsKindOf

RelatesTo
Is MemeberOf

)bject-->IdentificationNumberName

IsKind_0]

RelatesTo

IsMemeberO
LEGALNAME

(IDNT-OD, SEQ-NM)

Is Part 0]f

1Lntityubject-->irstNamq

IsPartOf

Is_Pa

jnutyubject--Lastnamej

|hnt1tyUbject-->MidieName

IsMemeber O
(R NAME

IsMemeber 0]f LASTNE

IsMemeber Of
-MI-E

Figure 25: Subset of the Ontology

-123-

S~Q-NUM)

IsMemeber_01

IDENPT-CODE..

EN-OE2I

SFX-CODE

_tO

4.3 The Topologicaly Integrated Geographic Encoding and

Referencing (TIGER) Files

4.3.1 Domain

The TIGER files [TIGER 91] are network files for the whole USA and its

territories designed as basic mapping tool for the Census by the Bureau of

Census. It integrates all the information necessary to administer the Census

enumeration process, i. e., these files contain a digital description of the nation's

political and statistical geographic areas. They are an extract of selected

geographic and cartographic information from the Census Bureau's TIGER

Database5 2 . They can be thought of a digital street maps overlaid with complete

1990 Census geography (e. g. tracts, blocks, etc.) and postal information (e. g.,

street names. address ranges and ZIP codes). The normal geographic coverage

for each file is a county.

4.3.2 Sub-domains

Overall the files contain the following information:

* Census Geography: tracts, blocks, voting precincts, etc.

e Postal Geography: street name, address ranges and ZIP codes.

" Coordinate measurements: latitude, longitude, state plane or any other

world-wide reference scheme.

52 All statistical maps and reference maps for the Census are computer plotted from the TIGER

database. This database is used to perform statistical analysis. It is only a graphic representation

of ground truth.

-124-

CHAPTER 5

PROTOTYPEs 4

5.1 Scope of the prototype

The prototype consist of a global ontology organized as a global network

(database) directory. The directory is the place where the systems and their high

level descriptions are stored. This part intends to mimic the services currently

offered by the network directory part of the OSI open system standards. It is

more powerful than the OSI's current version in the sense that the domains

stored in the real directory express only an address with no meaning content that

con support intelligent query of the network.

For a given domain, the directory will support the (hierarchical) storage of their

ontos and other possible relations among them. These ontos point to the sources

where information about then is contained. For example, we have designed

'Educational institutions' and "Territories" Domains (Fig. 7). and place them as

part of the above mentioned directory. These two domains are related by the fact

that they have some common ontos, i. e., Alumnus: this information is also

included as part of our directories

54 The ideas exposed in this chapter as well as the code presented in Appendix Num. 1 are a

preliminary design of the prototype that is currently being designed as part of the Context

Interchange effort.

-126-

e Topological information: Expression of how streets intersect and how lines

connect to form block or tract boundaries.

e Other features such us hydrographys3.

Particularly, all the above mentioned information is stored by census geographic

area codes, names for basic map features and address ranges in flat file format.

Each file contains 12 record types that collectively contain geographic

information (attributes) such as address ranges and ZIP codes for street

segments, name and codes of the feature type, codes for legal and statistical

entities, etc. The 12 record types come in the same tape as 12 separate files.

Record types 1 and 2 are enough to develop maps for a given area.

4.3.3 Context interchange view

The record types 1 and 2 of the TIGER files store mainly the topological

information. The information contained in the line segments encoded in these

types is used to construct the maps. In this case, the semiotics of character string

data are interpreted by programs intelligent enough to know, for example, how

to build polygons (census blocks, parcels, ZIP codes, etc.) from the line segment

semantics whose description is available in the TIGER files data dictionary

[TIGER 91].

53 In some cases, these additional information is provided by the Bureau of Census in additional

files compatible with the base-files, i. e., TIGER.

-125-

From a pragmatic point of view, the user of the system can ask for information

on the available domains. He/she will be given the option to go to either go to

the sources or to navigate through the network directory for more specific

domains.

5.2 Design issues

The prototype that we have implemented consist of the following modules:

knowledge representation mechanisms

Interconnected frames implemented as C++ classes. In them we store the

information about the system in form of the defined export context query-import

context.

knowledge base

To allow automatic storage and access to the information representing the nodes

of the network, we organize then in the network directory. All the system

containing information on the same domain are grouped under the same class

and listed under the file that implements that "domain-class"

-127-

CHAPTER 6

CONCLUSION

Nowadays, data integration strategies in large-scale computing environments

must address the design and implementation of technologies and tools to

manage the heterogenieties originated from disparate component data

environments. Aiming to facilitate to the user to locate, to access and to merge

the information she/he wants, this thesis presented a methodology for data

environment encoding and description. Our work was built upon the context

interchange data integration approach. The rest of this chapter describes our

findings and future research.

6.1 What is missing today?

First, we reviewed (Chapter 2) the data definition and data access schemes in

current systems. This survey of current data environment representation

techniques revealed that operational systems have explicitly incorporated limited

information of the systems themselves and their data. In general, this information

is stored, using a very limited number of constructs provided by the data

manager:

- Types.

-128-

e DDLs and DMLs.

e Schemas, E-R diagrams and other logical modeling tools.

* System-wide data repositories, warehouses and dictionaries.

These data manipulation tools are kept segregated form the data itself, and

accessed by entirely different means. All of them can be qualified as static

metadata declaration and manipulation tools. None of them contemplates the

idea of adding meaning to its data definition scheme, and sharing this meaning

with other systems for data exchange purposes.

In addition, these data representation and manipulation schemes (from the

simple flat file data model to more sophisticated semantic models) and their

associated data "structures" (data type structure, entity structure, relational table

structure, etc.), do not contemplate representation and declaration of themselves

at global network level to facilitate global queries and source identification to

potential users. We suffered these problems while performing this study, we

queried the systems that we were analyzing and observed that their absence

resulted in poor accessibility, misuses of data, etc.

Problems caused by what is missing in our systems

Continuing with our study, we showed the collection of data disparities

(conflicts) whose representation is not covered by current data models. Conflicts

arise when more that one value5 5 is possible for a given concept. For us, conflict

55 Here, value is used in a generalized way.

-129-

mediation and resolution is to choose a particular value that is acceptable in the

receiver environment (context). We classified them as

e 1-dimensional conflicts.

e N-dimensional conflicts.

e Naming conflicts

All these issues mentioned above - static and incomplete representation tools, no

network query facilities, etc. are systematically preventing us from achieving

data integration over the network. To correct this situation, we presented a novel

integration paradigm: the context interchange theory.

6.2 Context interchange

In Chapter 3, we began our work of building open data environments based on

the context interchange paradigm. We defined the context of a system, i. e., data

environment as the representation of its Domain, its data semantics, its definition

and access tools (DDL and DML), its schema (how data is organized and how to

access it), and the representation of the meaning of its data in terms of a

preexisting global ontology.

The client/server context application

The tools we envision to develop the context application, especially systems' data

environments, include a combination of database technology, knowledge-base

-130-

technology and artificial intelligence techniques. In particular databases and

knowledge-bases bear the responsibility to store and search the shared

information. We believe that artificial intelligence programming techniques

ought to be used to manipulate that context (data) knowledge. For example, we

saw in this thesis that rule-based representation technologies capture guesses

that are not necessarily sound or true in any "reasonable" model and we found

this knowledge representation technique to be very appropriate to describe the

specialized and idiosyncratic data environments.

Context, as a repository of knowledge for data structure, data semantics and data

meaning, closes the gap between data and information. We described Context

Interchange as an application, in a client/server environment, embedded in the

application layer of the OSI model.

Context model

We described the system as a Domain containing EntityObjects, Properties and

MetaProperties. Set theory and transformation theory were used to model

domains and relations and transformations among them.

Our next step was to define a context definition language. CDL structures

contain declarative and procedural knowledge (table look-ups, heuristics, rules,

database queries, and others) stating meaning, semantics, logical location, etc. of

the system and its data.

High level domain representation

We design a high level CDL representation structure for context with the

purpose of helping to locate the data sources belonging to a particular Domain.

131 -

This tool is similar to the OSF DCE directory services. The components of this

high level description of the system are:

e ContextName

* ContextDomain

e ContextConstraints

" ContextAccess

" ContextStructure

Nonetheless, we observed that in the absence of a fully-featured language, ad hoc

query languages (for example, one supporting queries to the fields listed above)

at best can only be used for simple and limited read-only access. Even then,

considerable sophistication is likely to be required for the user if the data

extracted from the database is not to be a meaningless mess. If more powerful

ways of accessing a system are required, then we need to refine our CDL

structure and add to it more local domain representation capabilities. This is our

next theme.

Local domain representation

We defined CDL structures, local to the system, where we embedded the

characteristics of the EntityObjects, Properties, MetaProperties and Domain of

the system. Properties were presented as belonging to a single EntityObjects.

Although we could have presented them as belonging to other entity-objects -

using the context knowledge captured within the CDL structures, we chose not

to. At global level, it would had forced us to create a larger global ontology,

defining additional global entities, global properties, etc. which are tasks out of

the scope of this paper. At local level, promoting the ALF-MASTER EntityObject

132-

to, for example, 'Person' involves changes and redefinition of some of its

Properties that are hard to capture given the limited global ontology at hand.

This database field level CDL was implemented with the following components:

e Definition

It captures the name and logical location of the data in the system's schema;

e Links

They express the data domain relative to a predefined global ontology.

e Representation

Data semantics and syntax. It includes the MetaProperties, i. e., the domain

primitives needed to complete data description.

e Constrains

Logical data access constrains and connections.

e MissingValue

Error handling scheme.

- Transformations

Knowledge representation and manipulation schemes needed to transform

local terms into global terms.

-133-

6.3 Context acquisition: definition and views

Our analysis in Chapter 4 demonstrated that even in very disparate

environments (a hierarchical database system and a collection of flat files) the

problems involved in data environment description, i. e., context representation

are very similar. They relate to two sets of different issues:

e Views definition

If the goal is to create a mechanism allowing for access to all the data

structures, the representation of context is very difficult. As opposed to that,

we chose to represent views that, showing a subset of the existing data, can

support a number of key queries to the system.

e Data analysis

On the other hand, our experience has shown that these "front-end" products

to existing data environments are not straight forward to design and involve

a lot of data analysis (updated documentation, if exit, ...). Therefore, to build a

context of a mature system is not a straight forward task and requires

cooperation from both the context knowledge engineer and the developers of

the data environment (in most of the cases they are the database

administrators and designers),

Varieties of context

Related to the above mentioned context views is the issue of varieties of context

that we found to be a very crucial context design issue. For example, the ALF-

MASTER File has the following fields containing name information:

-134-

LEGAL NAME FIRST NAME MIDDLE NAME
LAST NAME IDENTIFICATION CODE NAME GPR
MAIL NAME NICK NAME SHORT NAME
JOINT NAME SEQUENCE NUMBER PREVIOUS NAME

Depending on the receiver, these fields can be interpreted as different,

equivalent, meaningful, etc. This problem is due to the different levels of

granularity, degrees of specificity, abstraction, etc., under which to encode a

concept 5 6 . Therefore, the real issue is how many of the above names should be

exposed or, in other words, how much information is to be exposed, or can be

exposed in the system context.

For example, in the case of Alumni/Gift, we can choose to give strictly alumni

administrative information and eliminate from its context all references to the

existence of companies, associations, etc. and their associated information (Fig.

25). We could have chosen to give only the FULL-NAME field and hide the rest

of the names present in the system, etc. These scheme creates the notion of

possible different contexts in a single system, also called varieties of context.

6.4 Network interoperability through context

Incorporating context knowledge to the system provides a complete and

consistent view of the data residing in the local system 5 7 . Once this

56 Recall that we modeled those disparate materialization of the same concept linked by

RelatesTo Link; at the same time, we had all of them as IsPartOf the property concept

common to all of them. The scheme is presented in Figure 25 for a subset of the above names.
57 For example recall from the Alumni?Gift example that we declared that the LAST-NAME field

is besides a person surname, a company name, part of a company name, etc.

-135-

contextualized view of the data has been provided, the system can be understood

and interpreted by any network user accessing the resources kept in the system,

without the harms of misuses and misinterpretations of its data.

Context as new interface to the system provides:

- Transparency: the underlying meaning, organization and semantics of the

system are reflected in the interface.

" Consistency: different parts of the system do similar things in a similar way.

e Simplicity: number of elements, basic EntityObjects and Properties of the

system declared globally, should be kept low.

e Complexity: number and range of ad hoc verification conditions that have to

be added to the schema in order to ensure that the data in the database

remains consistent and that context is reflecting the underlying data

environment is very important.

In order to design system interfaces with these properties, we need to address the

following issues in the near future:

How much local?, how much global ?

In the data integration strategy, we should define loosely-coupled versus tightly

couple approaches to integration (related to the previous point). Why? Because It

is a critical decision regarding how much knowledge should be shared.

-136-

Along these lines, we need to decide how much of the reasoning should be

embedded in CDL frames: should they just be self-describing declarative

structures? should they perform reasoning when attending user requests?

The last global vs. local point deals with the ontology. The global ontology and

the implications (mainly at local system global level) of promoting local

EntityObjects to global EntityObject, promoting Properties to MetaProperties,

etc., are issues that need to be addressed more in-depth by future research.

The parts of context interchange that we did not explicitly address

The thesis targeted the definition of context and context knowledge and the tools

to assist the development of context definitions and the maintenance of this

knowledge, i. e. data environments. Nonetheless, we lack a target context to

perform context comparisons and transformations across the network5 8 and we

did not address:

" context mediation

It will be targeted to facilitate context mediation, that is, the ability to query

context knowledge from disparate systems.

" Context resolution

Detects and tries to resolve (manipulate) a data conflict

58The reader may remember that we presented some examples of absolute

conversions (from local to hypothetical global properties), included in the

transformations layer of our CDL frames. However, we did not formally address

the issues of context comparison and context conversion.

-137-

We hope to continue our work on the development of context interchange,

specially regarding the development of the global ontology and the development

of mapping functions from concepts in the ontology to the (local) data definition

schemes that we presented in this thesis.

-- FIN --

-138-

References

[ACM 90] ACM Computing Survey. Special Issue on Heterogeneous Databases.

Vol. 22, Num. 3. 1990

[Andrews & Leventhal 93] Andrews, D. and Leventhal, N. Fusion: Integrating

IE, CASE and JAD: a Handbook for Reengineering the System Organization.

Prentice -Hall, 1993.

[Atkinson & others 90] Atkinson, M., Bancilhon, F., Dewitt, D., Dittrich, K.,
Maier, D., Zdonik, S. The Object Oriented Database System Manifesto.

Proceedings of the ACM SIGMOD Conference. Atlantic City, 1990.

[Atre 921 Atre, S. Distributed Databases, Cooperative Processing and

Networking. MacGraw Hill Database Expert's Series, 1992.

[Backus 78] Backus, R. Can Programming Be Liberated from the Von Newman

Style? A Functional Style and its Algebra of Programs. Communications ACM,
21, 1978.

[Benyon 90] Benyon, D. Information and Data Modeling. Blackwell Scientific

Publications, 1990.

[Brachman & Levesque 851 Brachman, R. and Levesque, editors. Readings in

Knowledge Representation. Morgan Kaufman Publishers, 1985.

[Bright & others 92] Bright, M., Hurson, A. and Pakzad, S. A Taxonomy and

Current Issues in Multidatabase Systems. IEEE Computer, March 1992.

[Chen 76] Chen, P. The Entity-Relationship Model: Towards a Unified View of

Data. ACM TODS, 1:1, March 1976.

-139-

[Codd 701 Codd, E. The Relational Model of Data for Shared Data Banks.

Communications ACM, 13:6, June 1970.

[Collet & others 91] Collet, C. and others. Resource Integration Using a Large

Knowledge Base in Carnot. IEEE Computer. December 1991.

[Date 851 Date, J. An Introduction to Database Systems. Addison-Wesley, 1985.

[Davis & others 931 Davis, R., Howard, S., Szolovits, P. What is a Knowledge

Representation? AAAI, Spring 1993.

[Devanbu & others 91] Devanbu, P., Brachman, P., Selfridge, P., Ballard, B.

LaSSIE: a Knowledge-based Software Information System. Communications of

the ACM, Vol. 34, No. 5, May 1991.

[Eckel 931 Eckel, B. Inside and Out C++. Osborne MacGraw Hill, 1993.

[Elmarsi & Wiederhold 81] Elmarsi, R. and Wiederhold, G. GORDAS: a Formal

High-Level Query Language For the Entity-Relationship Model. Proceedings of

the Second International Conference on Entity-Relationship Approach,

Washington, D.C., October 1981.

[Giordano 93] Giordano, R. The Information "Where?" House. Database

Programming and Design. September, 1993.

[Goh & others, 94] Goh, C., Madnick, S. and Siegel, M. Context Interchange:

Overcoming the Challenges of Large-Scale Interoperable Database Systems in a

Dynamic Environment CISL WP # 94-01, Massachusetts Institute of Technology,
1994.

[Goldfine & Koning 881 Goldfine A. and Koning P. A Technical Overview of the

Information Resource Dictionary System (Second Edition). NBSIR 88-3700,
National Bureau of Standards, 1988.

- 140 -

891 Gupta, A. Integration of Information

Heterogeneous Databases. IEEE Press 1989.

[Hammer & Mcleod 811 Hammer, M. and Mcleod Database Description with

SDM: A Semantic Database Model. Communications of the ACM, Transaction on

Database Systems, 6(3), 1981.

[Hu 891 Hu, D. C/C++ for Expert Systems. MIS Press, 1989.

[Jones 92] Jones, M. Unveiling Repository Technology. Database Programming

and Design, April 1992.

[Kent 78] Kent, W. Data and Reality: Basic Assumptions in Data Processing

Reconsidered. 1978.

[Kent 79a] Kent, W. Limitations of Record-Based Information Models. ACM

TODS, 4:1, March 1979.

[Kent 79b] Kent, W. Data and Reality. Basic Assumptions in Data Processing

Reconsidered. North-Holland Publishing Company, 1979.

[Kent 91] Kent, W. The Breakdown of the Information Model in Multi-Database

Systems. SIGMOD Vol. 26, No. 4. December 1991.

[Kernigham & Ritchie 86] Kernigham, B. and Ritchie, D. The C Programming

Language. Prentice-Hall.

[Kim 92] Kim, W. Object Oriented Databases. MIT Press, 1992.

[Lenat & others 90] Lenat, D., Guha, R., Pittmank, K., Pratt, D., Shepherd, M.,
CYC: toward Programs with Common Sense. Communications of the ACM,
33(8), 1990.

[Lisov & Guttag 861 Lisov, B. and Guttag, J. Abstraction and Specification in

Program Development. MIT Press / McGrawHill, 1986.

- 141 -

[Gupta Systems: Bridging

[Madnick & others 90] Madnick, S. Siegel, M. and Wang, R. The Composite

Information Systems Laboratory (CISL) Project at MIT. Data Engineering, Vol. 13,
No. 2, June 1990.

[Malone & others 871 Malone, T., Grant, K., Turbak, F. Brobst, S. and Cohen, M.

Intelligent Information-Sharing Systems. Communications of the ACM Vol. 30,
Num. 5, May 1987.

[Mark & Roussopoulos 86] Mark, L. and Roussoppoulos, N. Metadata

Management. IEEE Computer, December 1986.

[Martin 861 Martin, J. Data Types and Data Structures. Prentice-Hall

International, 1986.

[McCarthy 841 McCarthy, J. Scientific Information = Data + Metadata. Database

Management: Proceedings of a Workshop. Navy Postgraduate School, Standford

University, California, 1984.

[McCarthy 88] McCarthy, J. The Automated Data Thesaurus: A New Tool for

Scientific Information. Proceedings of the 11th International Codata Conference,
September 1988.

[Minsky 68] Minsky, M., editor. Semantic Information Processing. MIT Press,
Cambridge, MA, 1968.

[Morgesten 84] Morgesten, M. Active Databases as paradigm for Enhanced

Computing Environments. Conference on Very Large Databases, 1984.

[Navathe 92] Navathe, S. Evolution of Data Modeling for Databases.

Communications of the ACM. Vol. 35, No. 9, September 1992.

[Neira & Madnick 93] Neira, M. and Madnick, S. Context Interchange Theory:

towards the Definition and Representation of Context Knowledge. CISL WP #

93-08, Massachusetts Institute of Technology, 1993.

- 142 -

[Palinsar & Gamer 90] Palinsar, F. and Gamer, M. Mapping the unmappable:

plumbing the depths of crossfile and crossystem navigation. Online, July 1990.

[Patel-Schneider & others 84] Patel-Schneider, P., Brachman, R. and Levesque,
H. Argon: Knowledge Representation Meets Information Retrieval. Proceedings

of the First Conference on Artificial Intelligence Applications, 1984.

[Ross 81] Ross, R. Data Dictionaries and Data Administration: Concepts and

Practices for Data Resource Management. New York: Amacon, 1981.

[Rumble & Smith 90] Rumble, J. and Smith, F. Database Systems in Science and

Engineering. Adam Hilger 1990.

[Shen & others 91] Shen, W., Huns, W. and Collet, C. Resource Integration

without Application Modification. MCC Technical Report Number ATC-OODS-

214-91, 1991.

[Sheth & Larson 90] Sheth, A. and Larson, J. Federated Database Systems for

Managing Distributed, Heterogeneous and Autonomous Databases. ACM

Computing Surveys, March 1990.

[Shipman 79] Shipman, D. The Functional Data Model and the Data Language

DAPLEX. Proc. ACM SIGMOD'79 Conference. Boston, 1979.

[Siegel & Madnick 89a] Siegel, M., and Madnick, S. Schema Integration Using

Metadata. CISL Working Paper No. 89-06, Massachusetts Institute of Technology,

1989.

[Siegel & Madnick 89b] Siegel, M., and Madnick, S. Identification and

Reconciliation of Semantic Conflicts Using Metadata. CISL WP # 89-09,

Massachusetts Institute of Technology, 1989.

[Siegel & Madnick 91] Siegel, M. and Madnick, S. Context Interchange: Sharing

the Meaning of Data. ACM SIGMOD Record, April 1991.

- 143 -

[Siegel & Madnick 92] Siegel, M. and Madnick, S. A Metadata Approach to

Solving Semantic Conflicts. Conference on Very Large Databases, 1991.

[SIGMOD 911 SIGMOD Record. Special Issue: Semantic Issues in Multidatabase

Systems, December 1991.

[Shoman 91] Shoman, Y. Varieties of Context. Artificial Intelligence and

Mathematical Theory of Computation: Papers in honor of John McCarthy.

Academic Press, 1991.

[Smith & Smith 77] Smith., J. and Smith, D. Database Abstraction, Aggregation

and Generalization. ACM TODS, 2:2, June 1977.

[Takagi 921 Takagi, A. Multivendor Integration Architecture (MIA) Overview.

NTT Review, Vol. 3 Num. 5, September 1992.

[Tanenbaum 88] Tanenbaum, A. Computer Networks. Prentice-Hall 1988.

[TIGER 91] The Bureau of the Census. TIGER/Line Census Files, 1990 Technical

Documantation. Prepared by the Bureau of Census. Washington: The Bureau,
1991.

[Thompson 89] Thompson, J. Data with Semantics, Data Models and Data

Management. Van Nostran Reinhold, New York, 1989.

[Wang & Madnick 89] Wang, R. and Madnick, S. Facilitating Connectivity in

Composite Information Systems. Data Base, Fall 1989.

[Wang & Madnick 90] Wang, R. and Madnick, S. A Poligen Model for

Heterogeneous Database Systems: The Source Tagging Perspectives. January

1990.

[Wiederhold 84] Wiederhold, G. "Knowledge and Database Management" IEEE

Software, Vol. 1, No. 1, 1984.

- 144 -

[Wiederhold, 86] Wiederhold, G. Views, Objects and Databases. IEEE Computer.

December 1986.

[Wiederhold 92] Wiederhold, G. Mediators in the Architecture of Future

Information Systems. IEEE Computer, March 1992.

[Wiederhold & others 921 Wiederhold, G. Wegner, P. and Ceri, S. Toward Mega

Programming. Communications of the ACM Vol. 35, Num. 11, November 1992.

[Wiederhold 931 Wiederhold, G. Intelligent Integration of Information.

Proceedings of the ACM SIGMOND Conference, May 1993.

[Winston 941 Winston, P. Onto C++. Addison-Wesley Publishing Company,

1994.

- 145 -

Appendix Num. 1: Source code

- 146 -

