If you could see what I hear:
Editing assistance through cinematic parsing

by
Natalio Carlos Pincever

B.S., Electrical Engineering
University of Florida
Gainesville, Florida
1989

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION,
SCHOOL OF ARCHITECTURE AND PLANNING, IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF
MASTER OF SCIENCE
AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 1991

© Massachusetts Institute of Technology 1991
All Rights Reserved

Signature of the Author m

Natalio C. Pincever
Media Arts and Sciences Section

s May 10, 1991
, “
Certified by
/£ ,
/ / Glorianna Davenport
/) Assistant Professor of Media Technology
- . Thesis Supervisor
Accepted By

>tepnen A. Benton
Chairperson
Departmental Committee on Graduate Students

MASSACHUSETTS InsT,
OF TE CHNOLQGY'TUTE

JUL 23 1991
LIBRARIES
Rotch

If You Could See What I Hear:
Editing assistance through cinematic parsing

by

Natalio C. Pincever

Submitted to the Media Arts and Sciences Section, School of Architecture and
Planning, on May 10, 1991 in partial fulfillment of the requirements
of the degree of Master of Science at the
Massachusetts Institute of Technology

Abstract

The proliferation of camcorders has made it possible for everyone to be a film
director. However, the editing process is still reserved for a few specialists
who have access to sophisticated equipment. In order to offer a low-cost tool
which encourages novices to participate in the process, we need to better
understand how the power of computers and digital signal processing
technology can help to detect basic cinematic modules. The described system
combines approaches from different disciplines in order to probe the audio
track to find said modules.The system assists the user in the editing process by
suggesting potential editing points.

Thesis Supervisor: Glorianna Davenport
Title: Assistant Professor of Media Technology

Acknowledgements

I would like to thank my family: el viejo, la vieja, Becky, Adridn and
Mayra. I couldn’t have made it this far without them.

I'd also like to thank the following people: John Watlington and Barry
Vercoe for reading the original proposal, and help in shaping up the ideas;
Carlos Reétegui and Derrick Yim for their super-human effort; Dan Ellis, for
all the tools; Andy Hong, for his all-around niceness; Michael Hawley, for all
his useful suggestions and ideas; Chris Schmandt, for giving me a chance;
Thomas Aguierre Smith, mi buen amigo, for all the great arguments and
collaborations; and the rest of the people at the Media Lab, for making this
place what it is: an effervescent avalanche of ideas.

Finally, I'd like to thank Glorianna Davenport, my advisor, my teacher,
my friend, for just about everything.

Table of Contents

1. Introductionccccenniecneinnenn ereessseeeesasbesesssansssssssstetesssrarasenes rreeersaresrresenreesDd
1.1 The concept of an Assistant EQitOr......cccceuriusimvcniuniieniininssniesiieneend

2. Backgroundcoeeeeneneninennncninen. semsesasasssssussnsssnsasnsanensasassnsnsnison ernssssssssssssissenns®
2.1 Home movies............ vereeesaeessesessasses

7
2.2 What is in a soundtrack?.......ccccceeeeee eeeesseressesersseanees errererereserssssssssesessessd

4. Project Description........ sesnseeenssesnesasasasases cassuesseasensaasensansanssn sesssesesaisusansnnsanssnsnasns w14
4.1 Methodology.....c.ccccceeene. cesssstissssssnsasssasssrsasasasasasseeasanasasstasates veererererenenennnn 14

4.2 Implementation ... ceererereenesernenesnans 17

4.2.1 Hardware configuration......... cevereerereere et rasnanas R V4

4.2.2 SOftWATE. ...c.cueerrrrrereeerenererennrenrassssessssseessacasanesens vereresrerernrnenenns 18

4.3 System performance evaluation........eeiiieisencisennc Y. ¥

5. ODSEIVALIONS ..cveveveeereennrsrirninisisnsnssssssrersasssssssssssssssssssssssesesissensassssnsnsasns cereresenesesnenans 30
5.1 LIMitationS...cccccvvirmnerennnrniniesissnesnsessessssesessesinnescnssenss cevesrerereeenenenannnse30

5.2 Sample INteractionccommmeescussessecssemseusscnesssenssinssasenens RO 7.

5.3 Directions for further research.........cccccevvurueununnee. vesermessninssasesesenenness 30

5.3.1 Real-time Parsing......ceceeseecsccescsceuscscsisismsieiisinisescsnencnnnn. 36

5.3.2 Use of spectral signatures.................. SRR / 4

5.3.3 Incorporation of user profile/preferences......................38

6. CONCIUSIONS eouierveeecceiniiniterinnsstsnissssssssss s e sesssesssssssseasasasasssssssasaes ceerereenerenenn 38

3310 11670 £:1's) 1 5NN RS cevereeeenerersnesennarsnansesnsesn 40

1. Introduction

A Computational Approach to Designing the Home Moviemaker’s Assistant

Most, if not all, home movies remain unedited. Why? For one reason,
electronic editing equipment has until recently been too expensive for
consumer acquisition, and it is only recently that consumer VCRs have been
built with editing capabilities and computer ports. Another reason that
home movies are not edited is that editing -telling a concise, coherent story-
is hard work and time consuming. In order to overcome the typical
reluctance of users to edit, we must identify why that reluctance exists, and
design a system that is easy to use, fun, and encouraging, since editing is hard
and time-consuming. More people would edit their footage if aided by a
computational system which possessed enough knowledge about the editing
process to be of assistance.

The system described herein is designed to assist the user with the
editing process, based on some knowledge we can program. This particular
system looks at the audio track as a content indicator. The audio track is used
to parse the content of rushes, which are the first generation stream of
information. There's enough information encoded in the audio signal to
obtain a great number, if not all, of the shot changes. This is achieved
through the analysis of background noise levels, found to be a very reliable
cue in determining shot boundaries. Several disciplines are merged in this
design, all contributing different elements and useful concepts. Based on
observations of raw footage, several heuristics were developed to map
changes in the audio signal to what happens on-screen. These heuristics are
then applied to the raw audio data, in the form of a soundfile, which is the
digitized audio track of the video to be analyzed. Further analysis is then
performed on this audio data, using well-known techniques. The results are
then presented to the user, who interactively logs the shots found by the
system, with the changes she deems necessary.

1.1 The concept of an Assistant Editor

Even though most “How to do it” manuals encourage users to edit their
footage, the majority of home movies remain unedited. As editing
equipment becomes available, there will be a necessity to bridge the gap
between the user, who possesses no knowledge on the editing process, and
the equipment. This gap can be bridged through the “enhancement” of the
required tools, with the help of a computer. This computer would then
become the novice editor’s aide, or “Assistant Editor.”

The concept of the “Assistant Editor” is simple. The purpose is to create

a system that will assist in the editing process, that is at once easy to use, fun,
and encouraging. Such a system must possess knowledge of the editing

-5-

process, as well as the capability to use this knowledge in order to assist the
user. What are the ideal characteristics/attributes of such a system?

eIt should be non-intrusive, meaning that the user should
retain the controlling role in the process.

eIt should be interruptible. The user must be able to, at any
time, override the system'’s findings and decisions.

eIt must be easy and fun to use, in order to overcome the
user’s reluctance to edit the material.

¢ It must be as interactive as possible.

o It must offer valuable assistance.

These are the design guidelines which will allow the system to
gracefully interact with the user. As this interaction occurs, the user will
learn more about the editing process, and more collaborative interactions
can evolve.

2. Background

Ever since the early days of cinema, there have been attempts to create a
portable camera that would transport the moviemaking experience into the
home. The first attempt was the Biokam in 1899, which was a 17.5 mm
system. It was later followed by Pathé’s 28 mm system in 1912, and several
others. In 1923, Kodak introduced the 16mm system, which was perhaps the
first true home movie system. However, the first real revolution in home
moviemaking came with the advent of Super 8 , which became extremely
popular. Users were true filmmakers in that they worked in all aspects of the
moviemaking experience: shooting, developing, editing (splicing the film),
and exhibition. The low cost made this medium accessible to a wide
audience, who kept editing benches in their garages and basements. “Super 8
has turned filmmaking into a medium which is not unlike writing.
Everybody is doing it. Filmmaking is fast becoming a viable means of
personal communication,” declares the enthusiastic Lenny Lipton [Lipton
75].

The hand-held video camera, or camcorder! , is far more ubiquitous
than Super 8. The VHS camcorder was introduced in the US 11 years after
the black & white reel-to-reel consumer Portapak. These compact, shoulder

1Commercial video equipment has been available for some time. The first video camera
was created in 1925 by John Logie Baird; the first videotape recorder was sold by Ampex in
1956.

-

mounted units, imported from Japan, arrived in this country in 1981
(Panasonic and RCA first, with Sony close behind with a different format).
The first video 8mm units came in 1984 courtesy of Kodak, and this format is
gaining popularity over the bigger VHS units, although the latter are still
quite popular.

The proliferation of camcorders has made it possible for everyone to be
a film director. Unofficial statistics show that there's a camcorder in
approximately 10 percent of American households, which amounts to more
than 9 million camcorders. These figures are on the rise, aided by the
increasing ease of use of newer models. Despite this proliferation, home
video editing is still unusual. It is quite obvious that most “home movie
directors” do not have formal schooling in the cinema arts. Such lack of
formal training would lead one to assume that each user has a unique
method, perspective, theme, and score. However, the few studies which
have been made observe certain trends. While we can use these studies to
isolate indicators, readers should realize that the studies we have found
make observations based on broad demographics.

2.1 Home movies

Home moviemaking is perhaps the most overlooked form of visual
communication. Considered a minor form, the only notable types of
documentation on the subject are “How to do it” manuals. Home
moviemaking is unique in that it is a form of private and personal
communication, yet it is associated with mass communication technology.

A limited anthropological study shows that the communication aspect
of home movies has not been controlled by technology; rather, it is
controlled and structured by social prescriptions and limitations. The study
also shows that most users completely disregard advice given by “How to do
it” manuals2. Contrary to what the manuals say, most users never seem to
plan their shots, never think about camera techniques, and are extremely
reluctant to edit the footage. There also appears to be a certain uniformity in
most home movies. The majority of home movies depict people, usually
close friends or relatives. This is also true in the exhibition phase, since most
movies are shown to close friends and relatives, usually people that were in
the movie itself. Another striking observation is that the off-camera events
(i.e. the actual shooting) are handled by the head of the household, generally
the older male. It should be pointed out that this study only took white,
middle-class families as samples. Cross-cultural studies, such as one
involving Navajo Indians, show some interesting results in that the subject
matter, as well as the filming techniques, change drastically [WA 70].

2Chalsen describes the situation in detail, and includes several accounts and interviews
with a population sample[Chalsen 75].

This study brings us back to the question: why do home movies remain
unedited? We underscore our earlier response: a) Cost of equipment;

b) difficulty of the thought task. If we want to encourage editing, we
need to assist the user in every way possible.

2.2 What is in a soundtrack?

Computationally, it is less expensive to parse audio than it is to parse
video, since video requires a more complicated, multidimensional
representation. There is strong evidence to suggest that separate audio and
video servers will be used in the digital world [Applebaum 90] [Arons 89], as
each has a unique set of attributes, such as granularity of representations
[DPAS 91]. It is then useful to identify potential applications for such servers.
If there is enough information in the audio track to extract shot boundaries,
then why bother trying to obtain this information from a more complicated,
multidimensional representation?

A shot is comprised of one or more frames which are generated and
recorded contiguously and which represent a continuous action in time and
space. A shot is defined by two numbers, uniquely indicating the location
and duration of the shot: frame-in and frame-out. Clearly, the original shot
generated in the camera may be redefined many times during the editing
process. Frequently a passage of sound is recorded along with the shot
(either on the same or on a separate medium). We refer to this sound as
synchronous sound. Synchronous sound is made up of meaningful dialog
and ambient sound. If this synchronous sound track is not physically bound
to picture (as in film or digital modes where separate picture and sound
servers will be used), it must carry some identifying tag which will guarantee
that it will maintain its synchronous relationship with the picture despite
adjustments which may occur during editing.

A different category of sound also present in some movies is wild
sound. As theaters became outfitted for projection, presenters thought to
accompany movies with live music, most frequently piano; music was
selected to enhance particular reactions of the audience. These live
accompaniments were free form, that is they were not specifically rehearsed
or synchronized to the action. This is an instance of wild sound [DPAS 91].

As soon as it became technically possible to lock sound to the moving
image for projection, sound became the ubiquitous partner of the motion
picture. While the audience perceived this track to be synchronous with the
picture, most release tracks for narrative film were created in dubbing
studios and foley pits during the post-production process. (Even today most
sound tracks for feature films are created during post-production.)

In traditional cinema, the goal of the editor is to create a seamless
experience. Shots are assembled to form sequences which play on the
viewer’s ability to build cognitive structures. Sound is often used to blur
distinctions at the edges of shots, sequences and scenes. As a final step in
cinematic post-production, after the editor has fine-tuned or “locked
picture,” a sound editor is frequently employed to “clean up the track,”
embellish the feeling of being there by inserting sound effects, and to design
audio transitions. In addition to synch sound, a track providing explanatory
commentary or music may be added to make information more explicit, to
heighten the perception of an action, or to set a mood. This process of adding
special effects and music links back to the expressive methodology of early
filmmakers.

As described above, a shot is the basic building block of cinema.
Typically, synchronous sound accompanies original shots in home movies.
The editor’s job is to create sequences by joining shots. Any editing system
which encourages logging or other segment manipulation begins with the
required definition of shot units. To assist the user in the editing process, an
editor’s aide must be able to determine shot boundaries. We believe that
these shot boundaries can be identified by parsing the synchronous audio
track. The user can then proceed to build sequences, based on the building
blocks (shots) the system provides.

Audio tracks of home movies

Home movies audio tracks are essentially composed of the same
elements already described for all movies: ambient sound and meaningful
dialog. The latter sometimes includes some narration, usually performed by
the same person doing the shooting. This differs from commercial movies,
where the narration is usually generated later, in the post-production stage.
In commercial movies the dialog is sometimes altered in a process known
as Automatic Dialog Replacement (ADR), also referred to as looping.

Yet it is in the ambient sound where we find the most interesting
distinction. In commercial movies, this element plays a secondary role. Most
ambient noise is undesirable, and is eventually eliminated. In fact, many
reshoots are caused by unwanted changes in ambient noise (like a plane
flying overhead). Such noises are extremely difficult to edit. The only type of
ambient noise generally consciously respected is what's called “room tone,”
which is used to create the mood of the space in which the action is supposed
to occur.

Two kinds of noise can be recognized: narrow band noise, and
broadband noise. Narrow band noise has limited spectral content; thus, it is
not difficult to edit out. All that is needed is a filter designed to clean up the
particular bands in which such noise is present. Broadband noise, on the
other hand, has components throughout the frequency range. It would be

9-

impossible to build a filter to remove this noise, since it would have to
remove all frequencies, leaving no sound at all!

Ambient sound in home movies has all these elements present, from
cars going by to hand adjustments on the camera. No home moviemaker is
going to reshoot her son blowing out the birthday candles because someone
in the back of the room was sneezing. Room tone becomes more than just
ambiance: it becomes the specific attribute of the time and space in which the
shooting is being done.

3. Previous Research

Looking for a solution to the problem of assisting home movie editors,
we can examine several traditional disciplines: Film Theory, Artificial
Intelligence (A, and Digital Signal Processing (DSP). There are several
useful concepts from all these disciplines which can be incorporated into the
overall system design: concepts from film theory reveal the shot as a
primitive; DSP offers useful transformations of audio data into more useful
forms, which will be easier to analyze; some research in Al offers a
methodology for understanding and utilizing the results of the analysis.

3.1 Video Editing systems

The intent of an editor’s assistant requires the intervention of
computation at three or more levels: Segmentation at the lowest level,
Representation, and Story Structure at the highest level. The most basic form
of editing is splicing film. A very old process, it still has a romanticism all its
own. “It's a great tactile experience to handle the very film you shot with
your own flesh and blood fingers” [Lipton 75]. “Film is a wonderful physical
medium. You can take a piece of film in your hands and stretch it out to get a
sense of it’s duration; you can hold it up to the light to see what the images
look like. You can also get it accidentally caught on the edge of your editing
table, break it, scratch it, and get it stuck to your clothes. Film is the noble
savage of audio-visual media” [Rubin 89]. No other medium comes close to
offering the flexibility of film, with all it's problems. Computer editing
systems must be able to recapture that flexibility, and, hopefully, that charm
as well. There have been several systems built which attempt to fulfill the
above-stated goals: Sasnett’s system at the segmentation level, Bloch’s at the
representation and structure levels, and Rubin’s at the structure level.

An interesting system which attempts to segment video material was
built by Sasnett [Sassnet 86] in 1985; the system coded changes in image
content, such as luminance and chrominance, for nine points spread
through the screen. An algorithm was devised in which the different regions
of the screen, represented by the points, voted on the possibility of a scene
change. These votes were the result of inferences made based on color-

-10-

component differences and average luminance differences. Clearly, these
would never show zooms, pans, or shaky movement, for none of these
would cause changes in either chrominance or luminance. The votes would
then be analyzed, and a scale was used to check the results. Vote patterns
would then be matched to this scale, which was then used to decide whether
a shot change had occurred. Sasnett called his system the “Scene Detector.”
The results it yielded were encouraging, capturing 90% of valid scene
changes. However, false detections were also high (somewhere between 15
and 35%, depending on the scene content), particularly fast pans and zooms.

Another system, inspired by Giles Bloch’s work (see below), was
implemented by Rubin, the Constraint-Based Editor [Rubin 89]. This system
creates sequences automatically, using rules derived from film theory
concepts on continuity. These rules create transitions based on five classes of
temporal relationships and three classes of spatial relationships. The
material is broken down into shots manually, including as much
information as possible. This information is kept in a log, which forms the
basis for a database, in which each field represents a particular shot attribute:
description, characters, angle of view, etc. This database is then manipulated
by a set of programs that, functionally, are very similar to those operators
implemented by Bloch. The most interesting one of these is the one Rubin
calls the doctor , which behaves like a “grammar-checker” that uses simple
information on some of the database fields to spot and cure potentially poor
transitions.

Artificial Intelligence: Rule- and Knowledge-based systems

Rule-based systems are those that use a set of predefined rules already
programmed into the system to make decisions. The key issue in building
such systems is the formulation and articulation of the appropriate rules.

Knowledge-based systems, as the name reveals, have pertinent
knowledge already stored in such a way that the computer can make use of it
to generalize or to perform some set of functions. This knowledge can adopt
two forms: rules, which make knowledge-based systems a superset of rule-
based systems; or common knowledge. The hardest problem to tackle when
building knowledge bases is selecting an appropriate representation: how is
this information to be represented so that a computer can understand it. A
common representation of such knowledge is that of a heuristic, which is
defined as “task-dependent information”[Nilsson 80]. Such heuristics can be
thought of as “guesses” used to make inferences as to what is actually
happening. See “Methodology” for a more detailed explanation.

These concepts can be used in the design of the system. Based on

observation of raw footage, heuristics that define what a shot is can be
formulated. These heuristics are then programmed into a rule-based module

-11-

that will examine data from the audio track, and apply these rules where
necessary.

One of the most interesting computer editing systems using these
concepts was built by Bloch [Bloch 88] . This system builds sequences based on
what can be called a “cinematographic language,” as well as techniques
borrowed from Natural Language Understanding. Shots and sequences are
represented with a number of formal and semantic slots: actions, setting,
actors, look, position, and motion. Based on film theory concepts, sequences
are built by making inferences based on relationships among these slots from
different shots. These inferences, however, can produce some changes in the
meaning of the shot based on its context. The implementation consists of
five operators, each working at a different level:Choice , Construction ,
Appreciation , Correction , and Projection . The Choice operator determines
the type of segment needed; the Construction operator recognizes classic
forms of editing, through the use of specialists for some of the frames
described earlier; Appreciation and Correction also use specialists for other
frames to check the joining, with Correction making changes as needed; and
Projection deals with the actual showing of the sequences.

Agents and agencies

Minsky defines an agent as “Any part or process of the mind that by
itself is simple enough to understand-even though the interactions among
groups of such agents may produce phenomena that are much harder to
understand”[Minsky 85]. This concept of an autonomous unit with domain-
restricted knowledge (it knows its function and purpose, but nothing else)
can be easily transported to other domains, and implemented on a computer.
In the proposed system, it is possible to define agents that will perform
certain low-level duties, which together will form what are called agencies.
Agencies are defined as “any assembly of parts considered in terms of what it
can accomplish as a unit, without regard to what each part does by
itself”[Minsky 85]. Such a breakdown allows for a robust implementation, as
well as modularity, for each agent has only a particular task to perform. For
example, one agent can observe and identify certain parameters in the audio
track. Another higher-level agent can take that information and analyze said
parameters. Taking these agents together, an agency called “Change finder”
can be built, whose function would be to find changes in a certain parameter
existing in the audio track.

Although these ideas affected the original conception of the system,
they were not used in the current implementation specifically. Rather, this
theory suggests how the basic research of this thesis might evolve. Once such
agents can be built, it may be possible to extract even more usefu
information from the audio track. :

-12-

3.2 Audio Processing

As it has been established earlier, there is enough information encoded
in the audio signal to obtain a great number, if not all, of the shot changes.
Several audio techniques can be used to obtain the information encoded in
the audio track. There are several useful elements of signal processing which
may be incorporated into the system design. Of utmost interest are the
analysis tools that the field has to offer, for they transform audio data into a
more useful form. Statistical properties of the audio signal, such as the
average power of a block of samples, may be computed for analysis purposes.
These will be useful in the first stage of parsing: time-domain analysis of the
signal. They can tell us where changes in the power of the signal occur,
which generally indicates drastic changes in background noise levels. This is
analogous to “reading the VU meter” on an audio mixing board: as the
overall sound level changes, so does the VU meter indicator. With the help
of heuristics, such processing can give an indication of the type of changes
happening;: a rapid increase followed by a rapid decrease is usually a thump,
caused by someone shutting a door, or dropping something heavy on the
floor, or grandma falling off her chair.

Another powerful tool is the Fast Fourier Transform, or FFT. The FFT
allows spectral (frequency-domain) analysis of a signal. Such analysis is
useful for filtering operations, recognition and detection of signals whose
spectral content has been predefined. FFTs are slow and computer-intensive,
yet they are very accurate, as frequency domain analysis provides a large
amount of information. The FFT may be replaced by simpler transforms.
There are several techniques available to analyze the spectrum of the signal
once it has been obtained. Of interest are average spectrum and average
amplitude (sum of mean-squared spectrum). These techniques allow for the
analysis of changes in the spectral content of a signal, as well as changes in
the power distribution. The latter is usually a good indicator of changes in
background noise levels. It can be used in the following manner: a template
is created with the spectral characteristics of a sample window, which is then
compared with the following window. If there are considerable changes in
the power distribution, then it can be safely assumed that the spectral content
of this second window is different, thus finding changes in the spectral
content of the signal, rather than finding changes in signal power. A
combination of both average amplitude and average spectrum should suffice
to capture enough changes in signal content to find the shot boundaries.

4. Project Description
4.1 Methodology

Through the observation of raw footage, it is possible to come up with a
set of generalizations which, after successful testing, could be robust enough
to be programmed as heuristics into a system. Such observations show:

eDifference in background noise usually means a different
shot.

eLoud, singular noises should be reviewed by the editor,
since they usually represent unwanted sounds, like a tap
on the microphone.

These two assertions look deceptively simple. Yet, if robust, they offer a
sufficient framework to build the assistant editor on.

Localizing Shot Boundaries

Preliminary research shows background noise level to be a powerful cue
in recognizing shot boundaries. Thus, the first step is to be able to recognize
such differences. If the difference in background noise is greater than a pre-
established threshold, then it is safe to assume that this is a new shot.

Some digital audio processing will be required in order to prepare the
audio data for the system to use in making intelligent decisions. Both time-
and frequency-domain analysis will be performed on the digitized audio
track.

Time-domain analysis will provide information used to determine
differences in background levels, as well as for identifying peaks (usually
caused by unwanted loud noises). Frequency domain analysis will be used to
determine whether loud sounds are actually unwanted noise (non-
harmonic waveforms). It may also be used for more sophisticated processing
(like voice detection).

As stated earlier, the shot is the fundamental building block for
storytelling using visual media. As mentioned earlier, It is fairly obvious
that the editing tasks will be greatly simplified if such building blocks are
identified for the novice editor.

-14-

Unwanted Noise Reduction

I have already established that loud, singular noises should usually be
removed. Making decisions based on this rule is slightly more difficult, since
it cannot be determined as reliably as the difference in background noise. Not
all loud noises are necessarily unwanted: a mug being set on a table, a door
slamming, someone falling off a chair. Thus, user input will be necessary to
resolve this dichotomy. Assuming that an unwanted noise has been found,
how do we remove it? One way to do this would be to use a template for
what background noise level should be for the current shot. The unwanted
noise is cut out of the track. The space created by this removal is then filled
with background noise, looping if the amount of space is larger than the
stored template. The soundfile then has to be re-recorded onto the audio
track of the source material, using timecode for synchronization purposes.

The problem which now arises is how to choose this background noise
template. Ideally, the computer should be able to do this. However, this
requires the formulation of a set of heuristics. The cognitive mechanisms
used to separate sounds are still unknown, and there is intensive research in
signal separation. If such an algorithm is found, then it will easily integrate
into this system, both for unwanted noise reduction and for content analysis.

Content Analysis

Using audio as an indication of patterns of content could prove quite
useful. The audio track can provide information that otherwise would be
extremely difficult to parse. Take, for example, a funny incident: the family is
gathered around the table, grandma falls off her chair, and everyone laughs.
In the audio track, this appears as a constant signal level, followed by a sharp
increase, a sharp decrease, and a rise of a fluctuating signal level. The
constant level is caused by the mumble of the family; the spike is caused by
grandma falling; and the fluctuation is caused by everyone laughing.

As stated earlier, there’s no way of telling whether this spike was just a
thump, or was it something more interesting. Given our cognitive
understanding of human behavior, the presence of laughter is an indication
of a funny incident . If it is possible to know what laughter looks like, then
we can parse it, and thus tell that something funny happened. Therefore, it is
not desirable to remove such a spike from the audio track.

Another interesting possibility is to develop a library of templates, or
“spectral signatures” of different sounds, to keep for later comparison. It
might be possible to find content elements through template matching. For
example, assume that the system has stored the spectral content of a fire
engine roaring by. By checking through the soundtrack for occurrences of
this spectral pattern, the system can tell that within a certain segment, there’s

-15-

a fire engine. This in turn suggests that there is a fire. Eventually, parsing
could lead to the complete automation of the logging process, provided there
was enough memory for storing patterns and enough computing power to
perform the comparisons.

A third method for extracting content information would be to run a
pitchtracker through the audio track. This would yield pitch information,
useful in finding occurrences of human speech. The human voice has
several frequency components, which are multiples of the fundamental
frequency Fo. This fundamental frequency determines what pitch we hear
the voice in. There is a certain range of frequency values that Fg can take. For
adult males, this range is from 80 to 240 Hertz; for adult females, 140-500 Hz;
for children, anywhere up to 600 Hz [Handel 1989]. It should be pointed out,
however, that these values are in no way absolute, making this a difficult
feature to implement. However, identifying changes of voice in dialog
sequences could be useful. Another difficulty is that several musical
instruments have frequency components within this range, making it
practically impossible to determine whether a particular sound was a voice
or an instrument without additional information.

Mecha}nisms for User Input

We are working toward an assistant process; humans may be required
to do some error correcting. The interface to the system is an important
issue. A graphical interface will be provided, in which the user will make
editing decisions using a mouse, clicking on buttons. The design guidelines
used for this interface are quite simple. The goal is not to design a flawless
interface full of features. Rather, the interface is kept to a minimum. The
exploration of the rules and heuristics that make up the parser are far more
important to this work than having a nice interface.

Most of the interaction is through dialog boxes, which appear on the
screen during interactions. These dialogs have buttons, which the user clicks
on to make decisions. The only other element of the interface is the shot
logger, in which the user, once the appropriate shot boundaries are chosen,
types in a description of each shot.

The user must be provided with a method for overseeing the changes
being made, as well as participating in the decision-making process. For
example: a loud, single sound is heard. It is difficult for the program to know
if this was an accidental tap on the microphone, or if it was the example
stated above: grandma falling off her chair. Clearly, we do not want the
system to cut the sound out if the latter was the case. Thus, the user must be
prompted for a decision, accompanied by playback of the sound in question,
as well as the original video segment.

-16-

4.2 Implementation
4.2.1 Hardware configuration

The hardware configuration of the proposed systems calls for a
computer, a video Hi8 player with SMPTE timecode, a video monitor, an
audio amplifier, and speakers (or headphones). The following figure shows a
diagram of the hardware implementation.

Back-end

wai:h B;P Audio In Video Monitoy
Front-end

Capabilities

Computer

Video Hi8

Video Line

Ethermet
RS-422 Control
0 0 0 ¢ 0> Speakers
Amplifier

Figure 1: Hardware configuration

The video signal from the Hi8 player will go straight to the monitor, to
allow the user to keep track of what is in the video material. It is in the audio
track where all the processing is done. The audio from the video player is
digitized, to allow the digital signal processor to analyze the signal content.

The original design called for a NeXT computer, due to its signal
processing capabilities. As that machine was unavailable, a compromise
between speed and ease of use had to be made. The solution achieved was to
link two different computers via Ethernet. The front-end machine is a
Macintosh Ilci with the DSP added as a NuBus card. The card used is the

-17-

Digidesign “Sound Accelerator”, which comes with an audio editing
environment (described in the software section). The most computer-
intensive signal processing, calculating the FFTs, was done on another
computer, a DECstation 5000, which was chosen due to its speed and
availability. Because of disk-size restrictions on the latter, the first level of
parsing was performed on the Macintosh computer, passing only the chunks
of information requiring further processing to the DECstation.

The video player used is a Sony EVO 9800. It is a Hi8 player (format used
by most camcorders, thus it is the format in which home movies are
recorded) with several necessary options, such as SMPTE timecode and RS-
422 external control. These features allow accurate search and playback
functions, necessary for successfully selecting edit points (frame-in and
frame-out for shots).

4.2.2 Software
The following is a diagram of the different software modules of the

system, an appropriate mix of off-the-shelf video playback and audio
digitizing equipment and new software. Descriptions of each module follow.

4 Parser N
Digital Signal -
P:ze:sin;@a Serial Controller /
I Usex SMPTE reader
Communications Interface/
System
Module Manager
1
Rules Module Audio Editorx

Figure 2: Software implementation

Serial controller: The function of this module is to control the video
Hi8 player via a serial interface. It will execute the basic control commands:
Play, Stop, Rewind, Fast Forward, Record. The SMPTE timecode reader will
do just that, read the timecode from the video player. It will also store the
numbers in a buffer for quick access. This module will also work together
with the serial control module, in passing SMPTE numbers to the latter for
frame-searching purposes.

-18-

Audio editor: The audio editor used was the software which
accompanies the Digidesign “Sound Accelerator” NuBus card, “Sound
Designer”. This software allows for complete recording and playback
capabilities, as well as the ability to display an amplitude representation of
the soundfile (see figure below). See the “Sample Interaction” section for
usage information.

;‘,) E:}/\@fajl f,) —00:00:00. 14 |00:00:03.07

10.2 sec

Figure 3: Soundfile representation

Careful thought was given to the possibility of using stereo soundfiles;
these were discarded mainly due to the fact that most home movies are
recorded with a single microphone, thus recording the same information on
both left and right channels, duplicating the computing power necessary to
analyze them. Also, recording them in stereo duplicates the size of the
soundfiles, which creates serious storage problems; a stereo, 16-bit soundfile
sampled at 44.1 KHz will occupy about 10 megabytes of storage space per
minute of sound.

Parser: The parser examines the audio stream looking for certain kinds
of changes; it has two different modules: the digital signal processor, and the
rules module. The digital signal processor does the actual parsing required.
To achieve this, it performs several tasks, such as Fast Fourier Transforms,
Linear Predictive Coding , and statistical analysis. The calculation of the
Fourier Transforms was done remotely on a different machine (a DECstation
5000), through a TCP/IP socket connection. The soundfiles were modified
slightly before transmittal: the byte ordering was swapped, and the data
packaging modified3.

The rules module takes the form of heuristics, which make certain
“guesses” as to how to interpret the information extracted by the signal
processing module.

The parsing itself is done in different layers, each giving different
information that could not be extracted from the others. The rules domain
interprets the information obtained by the digital signal processing module,

3The format used is a hybrid between the IRCAM soundfile format and that used by
NeXT. See [Ellis 91] for more details.

-19-

and apply the rules programmed into it, or heuristics, in order to make
intelligent decisions on the editing process.

The first layer consists of time-domain analysis of the sampled
waveform. The soundfile is divided into chunks, each being the equivalent
of a frame of video. The number of samples representing a frames (1470) is
obtained by dividing the sampling rate (44.1 KHz) by the number of frames
in a second (30 for NTSC video). The root-mean-squared amplitude (RMS) is
then obtained for each block. Next, the parser assumes that the first RMS
value is the initial background noise level. The parser looks for changes in
the average RMS value that are larger than the tolerance level. This
tolerance number is a constant in the code. After several test runs, it was set
t0.26 or 26%. The parser keeps track of two numbers: the current minimum
and the current average. The current minimum is set every time that an
RMS value for a video frame goes below the previous minimum and is
within the tolerance. If not, the parser assumes that there is a possible shot
boundary where the signal level dropped, and sends a segment of three
frames before the “boundary” and three frames after, where it assumes that
the signal levels out to this new setting.

The current average is dealt with in a similar way, except that it is not
set to the new value; instead, it is averaged with the previous value.
Essentially, this creates a window of two average RMS values, and all the
numbers in between are ignored. If they are below, they are treated as
explained above, and if above the window they are averaged with the
previous current average to update it (keep track of rising background noise).
That is, if they are within the tolerance level. If not, the parser counts to see
how long it takes before the RMS values return to the current window. If it
takes longer than the frame tolerance (currently set at 43 frames: several
values were tested, and this one gave the best results), it assumes that a shot
boundary occured somewhere in between. Thus, it sends three frames before
the initial value and three frames after to the second parser. At this point,
the signal level may drop back to an allowed level, in which case the system
continues. The sound may drop below the minimum, in which case it
assumes a boundary in between the initial value and this final value, and
then passes it to the next stage. Every time that the system encounters a
possible shot boundary, it resets both the current minimum and the current
maximum to be the next lowest number.

Using heuristics based on observation of raw footage, some preliminary
conclusions are then drawn from the observation of these mean values.
Here is where the first decision as to what is a shot change is made. For
example, let's assume that the mean increases sharply, to then decrease as
sharply as it increased after a short period of time (a “spike”). The heuristic
in this case would be that this was a thump, caused by a slamming door, an
accidental tap on the camera microphone, or a loud knock. Another

-20-

example would be a smooth increase followed by a smooth decrease. The
heuristic for this case could yield several results: a passing car, an airplane
flying overhead. None of these would qualify as a shot change, since they are
transitory changes in background noise levels. There are other cases which
could possibly be shot transitions, but the information available at this stage
of processing would be insufficient. For example, a smooth increase in
average amplitude. This could mean that a car drove into frame and
stopped, that someone turned on a noisy device (like a fan or a computer), or
it could also represent a smooth pan (which could mean a shot transition).
In these cases, a second layer of processing is required. This second layer
consists of frequency-domain analysis, after performing a Short Time
Fourier Transform on the soundfile. Analysis done at this level consist of
standard signal processing techniques such as average spectrum, which is the
equivalent of the mean analysis performed on the first layer, and average
amplitude (sum of mean-squared spectrum). These two analysis schemes
detect changes in the energy distribution on all frequency bands, thus
capturing changes in the nature of the signal, not changes in the amplitude.
This second-level processing is only performed for cases that are ambiguous
at the first level, meaning that a clear distinction cannot be made simply
with amplitude changes.

Interface/System Manager: This module allows the user to control the
whole process through point-and-click events. It also lets the user to monitor
what the different modules are doing, as well as ask for user input when
necessary. This interface allows interruptability at every stage of the process,
giving the user complete control, and thus allowing the user to relinquish as
much control as desired.

-21-

— > Find New <
Shot

Yes
Play back Shot No Adjust No | Try again? [c—®
Is it OK? ™ end points ? ves
No
s ?
Scrap
Store on shot log segment

Figure 4: Interface interaction

As can be clearly seen in the diagram, the interface permits the user to
scrap a segment if she thinks it is of no use. This is a quite useful feature,
since it allows the user to eventually go back to either change the material, or
to log it manually. If the system is not performing the way the user wants it
to, this feature will let her override it altogether. The other interesting
feature is the logging ability: the user is able to log the video as the shot
boundaries are being found. This is also extremely useful, since a full log of
the material will be available immediately, and the shot descriptions should
be very accurate, since the user is will describe what he is actually seeing.

The user-interface module is also the higher-level controller. It's
function is to schedule tasks to perform, pass information to and between
modules, and obtain user input through the graphical user interface.

4.3 System performance evaluation

The system's performance was evaluated by running several different
types of shot transitions. In this section, I'll describe the system'’s
performance in evaluating five different transitions, which are a
representative sample. These were chosen tp reflect a range of problems and
difficulty, the first being the simplest case. The transitions were as follows:

¢ Simple transition, from black to a shot (nothing ->
something).

e A shot change in which there’s a human voice present up
to the transition point.

¢ A pan in a noisy environment.

¢ A shot change in which there’s music in the background
in both shots.

¢ A shot change that occurs right after a car drove into
scene.

These transitions, except for the first one, challenge the parser in that
the background noise levels are in flux at the moment of the transition.
Simple, straightforward transitions that the parser has no trouble dealing
with are of no illustrative value. The following sections will deal with
performance for each sample transition.

From black to noise

This is the easiest transition to pick up. The following figure shows the
evaluation using the “dspbench” tool [Ellis 91]. The top third shows an
amplitude representation of the soundfile, the middle third shows the
spectrum for the particular thumbnail position, and the bottom third shows
the phase.

dspB - gidl.irc

File x Edit View
Hono 0,00 ,0.05 _,0.10 0.15 ,0.20 0.25 _ 0,30

LBut: ? HBut: ? RBut;: ? (Susnd)

Figure 5: From black to noise-Before the change

As it can be seen in the figure, even though there’s supposed to be no
sound, there’s some high-frequency components present (at the right of the

-23-

figure). I have been unable to trace this noise: it may either come from the
camcorder heads, or from the digitizing equipment.

The first parser accurately picks the transition point, since the change in
amplitude is fairly obvious at about 0.20 seconds. The second parser then
receives a block of samples consisting of three frames before and three
frames after the possible transition point. The FFT is performed, and the
results of figures 5 and 6 are produced. Figure 5 shows the spectrum before
the transition, and Figure 6 shows the spectrum after the transition.

dspB - gidl.irc
File x Edit View
Hono 0,00 ,0.05 0,10 ,0.15 ,0.20 0.25 0,30

) 5 10 15 20
LBut: ? MBut: ? RBut: ? {Svsnd)

Figure 6: From black to noise-After the change

It can be clearly seen that the spectrum changes drastically from one
figure to the other. The second parser evaluates an average frame, and then
calculates differences. The differences go up drastically after the 0.20 second
mark, correctly yielding the shot transition at that frame.

Voice up to the transition

This one works fine, even though there was a voice leading up to the
transition, thus confusing the parser by showing constant changes in
frequency response. The first parser again accurately picks the transition
point, since the RMS amplitude of the signal goes up higher than the 26%
tolerance level. Again, three frames before and three frames after are sent to
the second level parser. The spectrum is obtained, and analyzed. Figure 7
shows the spectrum before the transition.

File x Edit View
Hono 0,0 0.2 0.4

et -

0 5 10 15 20
LBut: Select menu item HBut 2 RBut:

Figure 7: Voice up to the transition- Before

As stated in the previous example, the parser proceeds to calculate
differences from the sample frame. The differences increase with the
spectrum shown in Figure 8.

dspB

File x Edit View
Fono 0.0 0.2 0.4 0.6 0.8 1.0 1.2
16 b tlez
45,16 ok
e W > 'm Nromesen M *_ —th
1,270 s
Select:
0,204 to
0,209 s

{ #3204

= -172)

Play

Record

Quit

0 5 10 15 20

LBut: Select menu item MBut: RBut: {HeruBar)

Figure 8: Voice up to the transition- After

Again, it is fairly obvious to note the difference. In this case, the lower
and middle frequencies are different: the lower frequencies increase, while
the middle frequencies decrease. Thus, the parser correctly finds the
transition at the 0.26 second mark.

Pan in a noisy environment

This particular case was picked because I knew it would give the system
difficulties. Pans are difficult to capture using background noise levels as a
cue, mainly because there has to be a significant change in levels from one
place to the other. However, this particular pan was captured without any
trouble. The answer can be found in that most camcorder microphones pick
up approximately an angle of 40° in front of them. If the pan covers an area
smaller than that described by the 40° angle, then the background noise
characteristics will be exactly the same for both the beginning and end of the
pan. Thus, the system captured a transition exactly after the 40° angle was
swept. Again, the first level of the parser captured the transition point at the
6.4 seconds mark, which is exactly after the camera stopped moving. The
three frames before and after are sent to the second parser, which evaluates
the spectral characteristics. Figure 9 shows the spectral content before the
transition.

dspB - pan.irc
File x Edit View

Hono 0 1 2 3 K 5 K3 R4 8

16 bit
[45.16 iz
Length
8.433 s
Select?
2,563 to
2,587 s
{ #115754
= 1018)

Play
Record
Quit

n! | i

0 5 10 '15 20

LBut: Select meru item MBut 3 RBut: (HenuBar)

Figure 9: Pan in a noisy environment Before

Figure 10 shows the frequency content after the transition.

File x Edit View

Hono 0 K] 2 3 K 5 5 ki 8

16 bit
45.1
Length
8,433 s
Tect:
2,587 to
2,53 s
(#116836
= -881)

Play
Record
Quit

0 '5 '10 ‘15 '20

e A

LBut: Select menu item HBut RBut: {MerwBar)
Figure 10: Pan in a noisy environment After

There is not much change in the frequency characteristics, so the second
parser is not able to discern a change. However, the transition is still
presented to the user, since the first parser found a significant change in
amplitude.

Music in the background

Again, this example was picked because it would cause problems. There
is music in the background both before and after the transition, and the
music is at a low point in the second shot. The problem is that this second
shot’s signal level after the transition is within the tolerance level set by the
first shot. So, the first parser only assumes a shot transition after the signal
level of the second shot has surpassed the threshold. at about 7 seconds. The
second parser looks at the frequency content again. Figure 11 shows the
spectral content before the assumed transition.

27-

[dspB - music.irc

File x Edit View

Mono 0
16 bit

45,1
Length
11,440 s
Select:
4,980 to
5,028 s

(9224868
= ~379)

Play
Record

Quit

Mi» 1

5 10 15 20

LBut: Mark to view

HBut : RBut: {Lvtinl)

Figure 11: Music in the background- Before

Figure 12 looks at the frequency content after the assumed transition.

d

File x Edit View

Hono

16 bit
4

kHz
Length
11,440 s
Select:

0

LBut: Select menu item

Figure 12: Music in the background- After

It is fairly obvious to note that there is not much change in the
frequency content. Thus, the second parser reports no changes, and assumes
the transition point chosen by the first parser, which is wrong. The transition
found is actually about half a second after the real transition.

This mistake could be corrected by lowering the signal threshold.
However, it was found that lowering this threshold would cause the parser

-28-

to capture false changes every time there was speech present in the signal:
most word transitions would be considered a shot change. Since most home
movie material consists of speech, a compromise value was chosen for this
threshold, eliminating errors caused by speech, but losing out on other
transitions.

Shot change after car drives by

This is another challenging transition for the parser: there’s speech
present right after the shot change. However, since there was a car driving
into scene, the threshold level was fairly high, since it is defined as a
percentage of the signal content. Since the speech part falls within the
tolerance, the first parser doesn’t recognize it as a transition. Rather, it picks
the point in which the speech utterance ends as a possible transition point,
and sends the corresponding frames to the second parser for further analysis.
Figure 13 shows the spectral content of the part before the supposed
transition.

dspB - car.irc

File x Edit View
Hono 0 K] 2 3 4 5 3 Ri 8 K]

45,16 kiz

[5 10) 15 20

LBut: Hark to view WBut RBut; ~— (LvtiaD)

Figure 13: Car drives by- Before

-29-

Figure 14 shows the frequency content after the transition.
dspB ~ car.irc
File x Edit View

[5 10 15 '20
LBut; Select menu item MBut: RBut: (MenuBar)

’ Figure 14: Car drives by- After

Again, there is a significant change in frequency content, particularly in
the lower frequency bands. Thus, the parser picks the point at 4.6 seconds,
which is exactly after the speech utterance.

One more time, the setting of the threshold level determines a wrong
transition point, since the real transition is before the utterance. However,
an argument can be made that the transition is partially correct, since it is
highly unlikely that a proper shot would begin with a partial speech
utterance!

5. Observations
5.1 Limitations

There are certain limitations to the system. Some can be attributed to
the original concept of parsing background noise levels, like detecting pans
and zooms. Others are caused by design and implementation constraints.

Detection of a pan is quite difficult. In this case, it is only possible if the
background noise conditions in the room change drastically from one
position to the next. In other cases, it has been found that the parser will
assume it is all in the same shot. The pan described in detail in the “System
Performance Evaluation” section is a good example of this: the system only
captured the transition after the pan had swept more than the 40° angle that
the microphone is able to capture. The first, quick pan, was not captured.

This might be improved through the development of other heuristics, based
on cues other than background noise.

Zooms are, by definition, impossible to capture using background noise
parsing, since the room tone doesn’t change at all. A zoom is a purely visual
event, and thus it is impossible to find any identifiable representation on an
audio track. The only way that zooms could be captured using audio
exclusively would be to be able to extract the particular sound made by
pressing the zoom button, if such a sound can be found.

Another limitation found during the evaluation of the system was that
of the setting of threshold levels for shot changes. The parser uses a certain
tolerance value, defined as a percentage of the overall signal level, to test
discontinuities in sound levels. Those transitions found to be within the
tolerance level are not considered shot changes, while those that exceed it are
then transferred to the second level for further parsing. It is obvious to point
out that, as this tolerance level changes, so will the number of transitions
captured. A higher tolerance level helps in dealing with speech, which is apt
to change in amplitude drastically; yet it results in a lower number of
transitions captured, for it will only capture drastic changes in signal levels.
A tradeoff was made in the parser design, in that an intermediate value was
picked. The results of this tradeoff can be seen in the “Evaluation” section, in
which the last example, that of the car, is not captured as a shot transition
since the speech that is present at the beginning of the next shot is still
within the tolerance level. Yet in the first example, even though the
transition is from silence to a very low signal, the parser is able to identify it
as a possible transition.

A third limitation found was that of setting the frame tolerance during
parsing. As described earlier in the “Implementation” section, a frame
tolerance of 43 was used. This frame tolerance is how long must a change in
signal level be, without dropping below the current minimum, before it has
to be considered a possible shot transition. As in the previous case with the
setting of threshold levels, it is clear that changing this frame tolerance value
affects the results. A longer tolerance might help capture longer events,
while a shorter tolerance might miss some speech utterances, and take them
for possible transition points.

The other important issue that this setting of a frame tolerance brings
up is that of granularity: how long does a segment have to be before it is
considered a shot? The value chosen is almost a second and a half long. Is
that long enough to be considered a shot? As we break new ground with
projects such as the one being described here, it is imperative for
theoreticians and philosophers to begin redefining the concepts we need to
rely on.

5.2 Sample Interaction

This section will describe a sample interaction between the user and the
system. The interaction begins with the user digitizing the audio track of the
video to analyze following the procedure described in the implementation
section: first, the “Sound Designer” application must be opened. Recording
of a soundfile begins by pulling down "New" from the file menu. An
interface like the one shown here appears.

o[PR »

UV TY—

10.2 sec

Figure 15: Sound Editor Interface

To begin recording, click the tape recorder icon. A standard Macintosh
new file interface appears, with radio buttons at the bottom to select
soundfile format. The soundfiles must be recorded with the “Sound
Designer II Mono” option turned on, which is achieved by clicking on the
appropriate radio button. This will record mono soundfiles with 16 bit
resolution, which gives them excellent dynamic range and signal-to-noise
ratio.

Once this is done, the user will open Sancho, the application. Sancho
will proceed to prompt the user for the location of the digitized audio track,
using a standard Macintosh “open file” dialog. Once the soundfile has been
located, the parsing begins. The user is then shown a dialog which displays a
scrolling bar showing how much of the first-level parsing has been
completed.

If further parsing is required, the user will be informed of this by a
separate dialog, which will also keep the user informed of the progress of the
parsing.

Once the first possible shot has been found, another dialog appears. This
dialog informs the user that a shot has been found, and ask if playback is
desired.

-32-

A shot has been found starting at:
3462717 and ending at: 3465812

(Plag Segment] [Discard J

Figure 16: Shot Found Dialog

The latter is selected by dlicking on the “Play Segment” button on the
dialog box. The shot is then played back to the user, who is then prompted by
a dialog box on whether the shot is to her liking, or if there is a need to
adjust the endpoints. The respective buttons are at the bottom of the dialog

box.

Is this shot 0K?

0K | Edit Endpoints

Discard

Figure 17: Shot OK Dialog

By clicking on the “OK”, the user then proceeds to log the shot in

another dialog pops.

-33-

Enter a description of the shot:

: (cancel |

Figure 18: Shot Description Dialog

If the user clicks on the “Cancel” dialog, he’s taken back to the last
dialog. In fact, this is a constant throughout the interaction: anytime
“Cancel” is clicked on, the prior dialog appears.

Shot endpoints and descriptions are stored on a log window, which is
invisible to the user, except for two cases:

a) The user wishes to check on what has been logged. In this case, the
log appears as a dialog box, with an “OK” button at the bottom.

b) After the logging process has been completed, the whole log comes
up as a window, in which the user can again change the text description of
the shot, or adjust the endpoints.

The log window looks like this:

Test Log file

Inpoint OutPoint Description
0002300 0014510 Opening Shot
0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot with a long description which may not all fit
0023420 0023420 A shot with some more long descriptions
0023420 0023420 Another shot shot
0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 . 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

0023420 0023420 A shot

Figure 19 -Shot logger

As it can be seen, the shot log has shot endpoints clearly labeled, and
offers a text-edit field in which the user can modify the shot description.
Once the shot has been logged, the parser begins looking for the next shot,
while displaying again the scrolling-bar dialog.

If the shot chosen by the parser is not to the user’s liking, he can click on
the “Edit Endpoints” button of the dialog shown in Figure 17, which will pop
up another dialog that will let the user adjust the shot endpoints, as well as
play the shot back as many times as the user needs in order to adjust the

boundaries.

-35-

Modify in and out points:

Iinpoint:

Outpoint:

0K Cancel |

Figﬁre 20: Edit Endpoints Dialog

Once the user finds the shot to his liking, he can get to the shot logger by
dlicking “OK”. Else, he has an option to either scrap the piece, or send it back
to the parser for further checking. This options are again presented in the
form of a dialog box. If the user decides to scrap the piece, the parser begins
anew from the endpoint of the scrapped shot. If the user clicks on “Check
Again,” the parser will begin searching again through the same material.

5.3 Directions for further research

There are several directions for further research. The following are the
ones I think can provide greater flexibility to the system, as well as increase
functionality. As computing power increases, other methods might be
developed to improve system performance, using other, more-powerful
parsing algorithms.The proposed directions for further research are real-time
parsing, the use of spectral signatures, and incorporation of user
profile/preferences.

5.3.1 Real-time parsing

Real-time parsing would increase functionality a great deal. This real-
time addition would be implemented by running the audio output of the
video player straight into a NuBus digitizer board (like the Digidesign
“Sound Accelerator” card currently being used), and writing DSP 56000
microcode that would permit some time-domain analysis of the signal to be
done as the tape is being played back. This would also require the writing of a
library of routines to record and play back soundfiles, since the software

-36-

being used now (Digidesign's “Sound Designer”) does not allow for any
other operations to occur while recording. By writing those functions, the
recording of the audio track could be incorporated into the system, making it
unnecessary to use the commercial software being used now. These changes
would drastically reduce the amount of time necessary to do the parsing,
since half of it will be done as the soundtrack is being digitized. They would
also make the system more interactive, since response time will be
considerably shortened.

5.3.2 Use of spectral signatures

This is an area of research that could bring exciting progress. Spectral
signatures are defined to be the unique spectral content of a particular sound.
Take, for example, the sound caused by an accidental tap on the microphone.
This sound can be recorded, and analyzed. The spectral content of this noise
can then be kept as a template for future reference, to check for possible
occurrences in a soundfile. Pattern matching techniques from the field of
speech recognition can then be used to compare the template with a random
noise that is believed to be a tap on the microphone. Such techniques
provide exhaustive methods for template matching, such as dynamic time
warping (used for matching sounds of similar spectral content but different
time duration). If a positive match occurs, the noise has been identified.

Such templates can be built for a number of different sounds which are
usually encountered in most homes movies: cars, airplanes, etc. Thus, it will
be possible for the system to not only recognize shot boundaries, but also to
catalog some of the content of the shot as well. This will allow the system to
create a log of the raw material. Also, this can lead to the implementation of
a “search” function, that would be able to search through the material to find
specific sounds. Suppose a user wants to find a shot in which there's a car.

She would then call the search function, with “car” as an argument.The
“search function could then find the template of a car, previously recorded
and analyzed, and run it through the material until a match is found. Then,
the shot containing the car would be played back to the user. This would
provide an initial shot description [AS 91].

Another direction such research could take is the creation of filters
specifically designed to eliminate a particular sound. For example, take a
plane flying overhead. Once it has been established that we have a plane
flying overhead, using spectral signature matching, we could create an
“airplane” filter, which would, once convolved with the original signal,
eliminate the airplane noise from the soundtrack. This technique of
eliminating sounds by subtraction is common in dialog processing, which is
usually done in the analog domain, although some digital filtering is also
beginning to be used.

-37-

In this technique also lies the key to extending the system to be used for
commercial filmmaking. By creating a template for the clapboard sound, and
the assistant director yelling “cut,” it would be relatively easy to find all the
takes, before proceeding to extract additional information from the audio
track. This would reduce the amount of time necessary to do the initial
logging of the raw material, and thus reduce production costs.

5.3.3 Incorporation of user profile/preferences

Adding a mechanism for storing user preferences would also improve
system performance. Such mechanism could take two forms: a “preferences
file” which the user might be able to create, in which he would select his
options; or a system-created user profile, in which the system will would
record a user's choices during interaction. Both options, or a combination,
would provide much more flexibility, as well as improve the quality of the
interaction. By using such a profile, the system would be able to recognize
whether a particular user prefers longer shots, shorter shots, or tighter cuts.
This would require some form of login, to identify the user to the system.

6. Conclusions

There are several conclusions to be drawn from this work. First and
foremost, is the establishment of the concept of the Assistant Editor, and the
usefulness of audio analysis in that concept. It is my firm belief that more
people will edit their footage if they get useful help from their computer. It is
not difficult to foresee the home entertainment center of the future, with a
computer-controlled VCR with editing capabilities: the user logs the raw
footage interacting with the computer, and later edits it based on the log that
was created earlier.

Time constraints have prohibited the implementation of real-time
parsing, as well as extensive subjective testing of users interacting with the
Assistant Editor. Such tests should prove quite useful.

The work described herein has proven the viability of using sound as a
content indicator. I have established that ambient sound offers clues about
the physical and geographic aspects of place, since the microphone/sound
recorder preserves the environment in which it is situated. Room tone is
thus more than just ambiance: it becomes the specific attribute of the time
and space in which the shooting is being done. Segmenting the video
material becomes then the process of finding changes in the environmental
factors that make up the room tone. It is viable to find most shot changes
parsing audio exclusively. However, if complete segmentation is desired, it

might be necessary to integrate this system with a video parser like the one
built by Sasnett, which has already been described.

The use of spectral templates for feature extraction, although not
completely implemented, shows promise as a vehicle for automating the

logging process.

As stated in an earlier section, there seems to be a trend towards
separate audio and video servers due to several reasons, like granularity of
descriptions. The results of this work support that trend. This work has
shown that the single frame, the unit of choice for video, is too coarse a
description for audio. Sampling at CD quality (44.1 KHz), there are 1470
samples for every frame of video. It’s fairly obvious that quite a few things
can happen within so many samples. Thus, audio has a finer granularity
than video. How small? For this project, the unit has been the FFT window
size, of which there are several per video frame, depending on the number
of bins in the FFT. Since this representation also varies, the single sample
should be considered the unit of granularity.

This contextual-based representation helps in the integration of audio
in Multimedia systems, as it ties in with context-based representations of the
moving image like Stratification [AS 1991]. The Stratification methodology
breaks down the environmental factors into distinct descriptive threads
from which inferences concerning the content of each frame can be derived.
Once a specific audio attribute is found, like a police car passing by, it
becomes a part of the description of the shot being examined. The converse is
also true: the shot description can provide information that, used with the
“spectral signature” of the particular sound, can create new templates. For
example, assume that we have a car driving through a beach. Parsing the
audio track, we’'ve found that the “car” template is present on this shot. We
also know from the shot description that this particular car is on the beach.
We can then use the audio corresponding to that particular segment as “car
on the beach” and save it for fine-grained parsing at a later stage.

The work presented herein is only at its beginning, as there is still a
great deal of ground to be covered. It was frustrating at times to see that the
more progress was made, the more there was to do. There is a wealth of
information encoded in the audio track, and more ideas and new analysis
techniques are necessary to be able to parse such information. As computer
capabilities increase in terms of speed and memory, it will be possible to
obtain substantially greater amounts of content information, not just
environmental factors and shot transitions. Speech recognition also offers
some interesting possibilities if integrated into this system. Imagine having
the computer do full transcriptions of a press conference, with shot changes,
complete annotations, and full dialog transcription. It is my deepest hope

that someone will continue working with the ideas and concepts I've tried to
outline in these pages.

-40-

Bibliography

[AS 91]. Aguierre Smith, Thomas G. Stratification: Toward a Computer
Representation of the Moving Image , working paper, Interactive
Cinema Group, Media Laboratory, 1991.

[Applebaum 90]. Applebaum, Daniel. The Galatea NetworkVideo Device
Control System , MIT, 1990.

[Arons 88]. Arons, Barry et al. The VOX Audio Server , IEEE Multimedia ‘89,
Ottawa, Ontario, April 1989.

[Benson 88]. Benson, K. Blair. Audio Engineering Handbook , McGraw-Hill,
New York, 1988.

[Bloch 88]. Bloch, Giles R. From Concepts to Film Sequences. Yale University,
1988.

[Chalsen 75]. Chalsen, Richard. Cinema Naiveté: a study of home
moviemaking as visual communication, in Studies in the
Anthropology of Visual Communication, vol. 2, 1975.

[DPAS 91]. Davenport, G., Pincever, N. and Aguierre Smith, T. Cinematic
primitives for Multimedia , to appear in JEEE Computer Graphics
and Applications, June 1991.

[Eis 49]. Eisenstein, Sergei.Pilm Form. Harcourt Brace Jovanovich, Orlando,
1949.

(Ellis 91]. Ellis, Dan. Some software resources for digital audio in UNIX,
Music and Cognition Group technical document, MIT Media Lab,
~ April 1991.

[Handel 1989]. Handel, Stephen. Listening , MIT Press, Cambridge, 1989.

-41-

[Laurel 90]. Laurel, Brenda. The Art of Human-Computer Interface Design ,
Addison Wesley, Reading, 1990.

[Lipton 75]. Lipton, Lenny. The Supef 8 Book , Simon and Schuster, New
York, 1975.

[LMKC 89]. Leffler, Samuel J. et al. The Design and Implementation of the 4.3
BSD UNIX Operating System , Addison Wesley, Reading, 1989.

[MC 85]. Mast, Gerald and Cohen, Marshall. Film Theory and Criticism ,
Oxford University Press, New York, 1985.

[Minsky 85]. Minsky, Marvin L. Society of Mind , Simon and Schuster, New
York, 1985.

[Moorer 86]. Moorer, Andy. The Soundroid , videotape of the Media Lab
Forum on 2/12/86.

[Nilsson 80]. Nilsson, Nils J. Principles of Artificial Intelligence , Tioga, Palo
Alto, 1980.

[ND 86]. Norman, Donald A. and Draper, Stephen W. User Centered System
Design . Lawrence Erlbaum Associates, New Jersey, 1986.

[OS 89]. Oppenheim, A. and Schafer, R. Discrete-Time Signal Processing ,
Prentice Hall, New Jersey, 1989.

[PA 84]. Pincus, Edward, and Asher, Steven. The Filmmaker’s Handbook ,
Plume, New York, 1984.

[RS 78]. Rabiner, and Schafer, R. Digital Processing of Speech Signals ,
Prentice Hall, New Jersey, 1978.

[RM 78]. Reisz, Karel, and Millar, Gavin. The Technique of Film Editing ,
Focal, Boston, 1978.

[Rubin 89]. Rubin, Benjamin. Constraint-Based Cinematic Editing, MSVS
Thesis, MIT, June 1989.

-42-

[Sasnett 86]. Sasnett, Russell. Reconfigurable Video , Master's Thesis, MIT,
February 1986.

[WA 70]. Worth, Sol, and John Adair. “Navaho Filmmakers,” American
Anthropologist, volume 72, number 1, February 1970.

-43-

