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The value of diversity metrics to represent ecological communities and inform broad-scale 

conservation objectives and policy has often been subject to debate and uncertainty1,2. In practice, 

diversity metrics are important in setting management and conservation priorities, just as economic 

indices contribute to global monetary and financial policies. Thus, key challenges for ecologists are 

to identify new ways to view and summarise patterns in biodiversity and improve on the metrics 

available for management purposes. In a recent paper on functional diversity patterns in reef fishes3, 

we highlighted the potential of new insights gained from functional trait-based approaches to inform 

marine management, stressing the need to develop and refine biodiversity measures that are linked 

to ecology (rather than taxonomy).  We used a unique, fisheries-independent reef fish identity and 

abundance dataset, collected using standardised methods from equatorial to high latitude regions 

all over the world, to provide the first global view of the distribution of individuals amongst species 

(including a measure of evenness) and functional traits amongst marine communities. A recent 

paper by Robinson et al.4 published in Marine Policy criticised the use of our evenness index as a 

measure of biodiversity, and questioned the use of functional trait-based metrics derived from 

surveys of standardised areas for decisions relating to broad-scale management of marine systems. 

In this paper we respond to Robinson et al. and rebut their claims related to sampling bias and 

broad-scale applicability of trait-based approaches. 

Firstly, we agree with the point of Robinson et al. that the use of evenness as a measure of diversity 

is of limited value for prioritisation of conservation efforts, and this was not implied in our paper. 

Rather, as we outline below, the evenness patterns were presented to provide context to assist with 

interpreting functional diversity patterns, and we maintain that detailed exploration of these 

patterns will provide valuable ecological insight. We also agree with Robinson et al. that reliance on 

particular individual diversity metrics for global conservation prioritisation is unwise, regardless of 

whether taxonomic or trait-based. Nevertheless, the services provided by functioning ecosystems 

represent one of several central motivations for conserving them. Thus we reiterate our 

conservation-related conclusions from our paper that metrics based on functional traits can provide 

an important additional input into management for conservation, bearing in mind that they 

complement rather than replace other approaches. Our paper contributes to the emerging body of 

research needed to develop and refine such approaches for marine systems. 

The simulations provided by Robinson et al.4 summarised several characteristics of evenness 

measures, including the one we used (the inverse Simpson diversity index divided by species 

richness), noting that they are inherently dependent on species richness (S) and total abundance (N). 

These properties are well-known; in fact, one co-author, amongst others, published a paper over 

thirty years ago in which he highlighted mathematical artefacts associated with sample size for some 

evenness measures5. As stated above, the inclusion of an evenness measure in our results was not 

intended to inform primary conclusions or conservation decisions, but to provide context to the 

abundance-related aspects of functional diversity. We used a common calculation for evenness, 

which was recommended in the most recent review of the subject6, to portray spatial patterns in 

species dominance that are, by definition, intimately associated with local richness. Thus, 

communities typical of tropical latitudes with a few highly abundant species and many rare species 

were scored, at the scale of our 500 m2 transects, as being less even than communities with fewer 



species and a more similar distribution of individuals amongst those species – a result which is both 

intuitive and in line with the extensive collective field experience of the authorship team. 

The trends shown by the simulations in Robinson et al. are certainly valid and long-known, in their 

most general form, but were exaggerated by the inclusion of impossible scenarios in their Figure 1 

where the number of species exceeded the number of individuals (the upper lines and any situation 

where S > N should have been excluded from their simulations). But more importantly, beyond 

demonstrating mathematical relationships between diversity metrics, these simulations provide 

little useful inference for real world situations due to a critical assumption: that the species 

abundance distribution (SAD) shape is universally consistent (i.e. across all latitudes, regions, 

assemblages). Although they tried different SAD shapes in different sets of simulations, Robinson et 

al. held the SAD shape constant within each set of simulations (e.g., the log-normal was presented in 

their Figure 1).  

Numerous hypotheses have been proposed to relate differences in local SAD shape to factors such 

as habitat, regional richness, productivity, phylogenetic background of species present, and 

importantly, spatial scale (many well discussed by McGill, et al. 7). While most of these potential 

relationships are yet to be empirically tested, it has long been known that tropical communities 

typically contain disproportionately more rare species and more curvilinear SADs (when ranked 

abundances are expressed logarithmically) than do temperate communities8. 

While the general ‘hollow curve’ of the SAD is said to be a universal phenomenon (and is responsible 

for the simulation results of Robinson et al.), variation in the form of SAD observed locally is what 

prompted McGill et al. to urge ecologists to ‘move beyond treating the SAD in isolation and to 

integrate the SAD into its ecological context’. Clearly, such patterns are of great interest to ecologists, 

including recent investigations that link species rarity to uncommon sets of traits9. Further research 

is certainly needed that integrates theory and broad-scale empirical data to assess where (and why) 

predictable differences occur in the finer-scale structure of SADs, and beyond that, what the 

ecological consequences of this are. But for now, assuming a universally constant form of SAD forms 

a poor basis for assessing the behaviour of locally-derived field estimates of any diversity metric. 

Following their criticism of the evenness measure, Robinson et al. went much further in also 

suggesting that global patterns described in our paper are flawed due to poor detectability of fishes 

in temperate zones (and thus underestimated species richness in these areas). They provided no 

clear evidence to support this conjecture.  

(1) First, they attempted to compare species richness estimates from temperate regions in our 

study with those from other studies in the same or similar regions. The studies they drew 

comparison with mostly described species richness at different scales to that reported in our 

study (which was standardised within 500 m2 transects, as a measure of local, or alpha, 

diversity), making comparison difficult. For example, one study they cited described 

accumulated richness of fishes from the coast to the continental shelf margin of South Africa 

in 52 km blocks10. It is not possible to compare species richness from this with our study - 

not only was it at a much coarser spatial resolution than in our study, but it also 

encompassed a much broader range of depths and habitats. Further, it was based on 

overlaid distribution maps of species (rather than point observations), an approach known 

to overestimate local species richness at any site within the region11, as species do not occur 



at every site within their range. The only references cited by Robinson et al. from which local 

richness estimates per unit area can be roughly compared to those reported in our study 

actually support our results, rather than suggesting numerous species were missed in our 

surveys of these regions, and were studies by authors who contributed to our dataset for 

these regions12,13. 

 

(2) In recognising biases associated with visual census methods, Robinson et al. also claimed 

that video survey methods in the same areas ‘vault’ temperate richness values above those 

we reported. In contrast to this claim, rigorous comparisons have suggested that video 

methods tend to underestimate richness in comparison to visual census14 by missing more 

small and cryptic species15 or through poorer coverage of non-carnivorous species (in the 

case of baited video14). This tendency is confirmed by comparing the total number of species 

recorded in the video study Robinson et al. cited16 (total 54 species from three video 

methods, 18,000 m2 surveyed) to the visual census data used in our study from the same 

southwest Australian region (78 species, 12,000 m2) (in the same habitat type and 

presumably similar depths). In our paper we acknowledged known biases in visual census 

methodology, which are common to all census methods, but argue that no other type of 

method for estimating local fish species richness, short of destructive sampling, would 

provide a less biased assessment of global reef fish richness patterns. 

Rather, the claims of Robinson et al. seem instead to reflect a lack of understanding of true patterns 

in local species richness and fish density on high latitude reefs. Should one expect all well-sampled 

communities to sit above the ‘threshold’ of 10-40 species that their simulations identify? A study in 

southern Chile (not referenced by Robinson et al.) which used a combination of visual and capture 

sampling methods and covered a range of depths over four seasonal surveys of two weeks each 

(including 240 hours of SCUBA effort), accumulated a total of 18 fish species17. Whether this would 

surpass the richness ‘threshold’ suggested by Robinson et al. would depend on the local form of the 

SAD. The richness within a single transect in this location on a single occasion will of course be much 

lower and less likely to reach the threshold, even if every species present was sighted (i.e. zero 

influence of detectability). We suggest that this threshold will not be reached on reefs without 

surveying increasingly larger areas of reef with distance from the equator. It is in fact likely 

impossible for some fish communities associated with rocky reefs at high latitudes to reach such a 

threshold within an area that is logistically possible to sample. Rather than being driven by 

methodological biases, the evenness patterns questioned by Robinson et al. simply highlight the 

stark differences in densities of fish species and individuals from tropical and temperate marine 

systems in nature.  

Importantly, comparison of our global maps of evenness and functional diversity clearly shows that 

the major functional diversity hotspots, and thus our primary conclusions3, were not biased towards 

regions with highest evenness or lowest richness. Surveys with <3 species were omitted from 

predictive modelling, and predicted functional diversity hotspots occur at mid- to low latitudes with 

moderate richness. They are thus not invalidated by richness constraints on evenness, nor by 

methodological bias that affects local richness (as discussed above). We agree with Robinson et al. 

that a lack of data from the Benguela and Humboldt systems requires further study, as do other 

unsurveyed regions. Our maps represent predictive hypotheses that align well with current 



knowledge. Major gaps in the global distribution of survey effort clearly represent priorities for 

investigation, with new data allowing predictions to be refined through the future.  

Finally, by suggesting that functional traits are system-specific and cannot be fairly compared across 

large scales, Robinson et al. have apparently missed one of the key advantages of trait-based 

approaches: while species themselves differ between regions and can only be compared in 

traditional taxonomic measures when considered as equal units, many ecologically-relevant 

characteristics of species can be directly compared across large-scales and assemblage types, and 

can ultimately prove extremely informative. There are many considerations associated with the 

selection of traits that have been discussed elsewhere18, but an important consideration in this 

context, as in our study, is that traits chosen should not be geographically-constrained, in the sense 

that any value should be conceivably possible for species at any site. Much more work still needs to 

be done, however, to determine which traits are the most informative for particular ecosystem 

functions and community types, and in relation to particular threats to biodiversity.  
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