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ABSTRACT

Astrophysical tests of modified modified gravity theories in the nearby universe have

been emphasized recently by Hui, Nicolis and Stubbs (2009) and Jain and VanderPlas

(2011). A key element of such tests is the screening mechanism whereby general rela-

tivity is restored in massive halos or high density environments like the Milky Way. In

chameleon theories of gravity, including all f(R) models, field dwarf galaxies may be

unscreened and therefore feel an extra force, as opposed to screened galaxies. The first

step to study differences between screened and unscreened galaxies is to create a 3D

screening map. We use N-body simulations to test and calibrate simple approximations

to determine the level of screening in galaxy catalogs. Sources of systematic errors in

the screening map due to observational inaccuracies are modeled and their contamina-

tion is estimated. We then apply our methods to create a map out to 200 Mpc in the

Sloan Digital Sky Survey footprint using data from the Sloan survey and other sources.

In two companion papers this map will be used to carry out new tests of gravity using

distance indicators and the disks of dwarf galaxies. We also make our screening map

publicly available.

1. Introduction

Modified theories of gravity (MG) have received a lot of attention in recent years, primarily

as a way of explaining the observed accelerated expansion of the universe. A modification of

general relativity (GR) on large (astrophysical) scales is generically expected to be a scalar-tensor

gravity theory, where a new scalar field couples to gravity. Equivalently these can be described

via a coupling of the scalar field to matter which leads to enhancements of the gravitational force.

Nonrelativistic matter – such as the stars, gas, and dust in galaxies – will feel this enhanced force,

which in general lead to larger dynamically inferred masses. The discrepancy from GR (or the true

masses, measured via lensing) can be up to a factor of 1/3 in f(R) gravity (for a review, see e.g.

Jain and Khoury (2010) and Silvestri and Trodden (2009)).

The enhanced gravitational force should be detectable through fifth force experiments, tests of

the equivalence principle (if the scalar coupling to matter varied with the properties of matter) or
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through the orbits of planets around the Sun (Will 2006). Khoury and Weltman (2004) proposed

that nonlinear screening of the scalar field, called chameleon screening, can suppress the fifth force

in high density environments such as the Milky Way, so that Solar System and lab tests can then

be satisfied. This screening was originally suggested to hide the effects of a quintessence-like scalar

that forms the dark energy and may couple to matter (generically such a coupling is expected

unless forbidden by a symmetry). Hence there are reasons to expect such a screening effect to

operate in either a dark energy or modified gravity scenario. Qualitatively similar behaviour occurs

in symmetron screening (Hinterbichler & Khoury 2010) and the environmentally dependent dilaton

(Brax et al. 2010). The screening map we present here may be applied to these mechanisms as

well once the parameters of the theories are (approximately) matched.

The logic of screening of the fifth force in scalar-tensor gravity theories implies that signatures

of modified gravity will exist where gravity is weak. In particular, dwarf galaxies in low-density

environments may remain unscreened as the Newtonian potential φN, which determines the level of

screening, is at least an order of magnitude smaller than in the Milky Way. Hence dwarf galaxies

can exhibit manifestations of modified forces in both their infall motions and internal dynamics.

Hui, Nicolis and Stubbs (2009) discuss various observational effects, in particular the fact that

rotation velocities of HI gas can be enhanced. Interestingly, stars can self-screen so that the stellar

disk in an unscreened dwarf galaxy may have lower rotational velocity than the HI disk. Jain and

VanderPlas (2011) study the offsets and warping of stellar disks, detectable by comparison of the

morphology with the HI gas disk and through observations of rotation curves.

Observations in the solar system rule out the presence of MG effects in galaxy halos with

masses higher than the Milky way, M = 1012M�. In chameleon theories, two parameters are

relevant for describing tests of gravity: the background field value χc and the strength of the

coupling to matter αc (using the notation of Jain, Vikram and Sakstein 2012). Models of f(R)

gravity have recently been worked out (Starobinsky 2007; Hu & Sawicki 2007). In these models the

parameter corresponding to the background field value is the present day value of the derivative of

the function f(R), denoted fR0. Milky way constraints corresponds to fR0 > 10−6. Cosmological

probes rule out fR0 > 10−4 (based primarily on cluster counts, see Schmidt, Vikhlinin and Hu 2009

and Lombriser et al 2010; other cosmological tests are significantly weaker). Dwarf galaxies have

the potential to probe field values down to fR0 ∼ 10−8− 10−7. Tests using distance indicators also

probe field values down to fR0 ∼ 10−7.

The tests with dwarf galaxies and nearby distance indicators rely on observations of nearby

galaxies, within 100s of Mpc and 10s of Mpc respectively. The first step in carrying out these

tests is to classify the galaxies as being screened or unscreened. The screened galaxies may be

self-screened if they are sufficiently massive, or screened by virtue of being close enough to a large

galaxy or group or cluster of galaxies.

The goal of this paper is to provide a method to classify galaxies based on observables. We

also study systematics in the observations and its effect into screening. We use N-body simulations
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to test and calibrate our methods. We apply the methods to galaxies in the SDSS.

§2 contains a description of the N-body simulations. In §3 we describe the observable properties

of galaxies used to quantify the level of screening. We test two different methods to make a screening

map and explore a variety of systematic errors. We apply our results to the SDSS in §4 and conclude

in §5.

2. Description of simulations

In order to find a proper criterion to determine whether or not a given galaxy is shielded

against the modification of gravity, we utilise the high-resolution N -body simulations for the f(R)

gravity presented in Zhao et al (2011a). See also Li and Barrow (2007); Li and Zhao (2009, 2010);

Li and Barrow (2011). The f(R) gravity generalises the general relativity (GR) by adding to the

Ricci scalar R in the Einstein-Hilbert action a specific function f(R), hence the name. If the

function f(R) is suitably chosen, this simple extension of GR can produce accelerated expansion

of the universe, and also evade the stringent solar system test thanks to the chameleon mechanism

with which GR can be locally restored in high density regions. Interestingly, this model predicted

a different structure formation on the intermediate scales compared with the ΛCDM model, so it

can be tested observationally (for a review of f(R) gravity, see Sotiriou and Faraoni (2010) and

De Felice and Tsujikawa (2010)). f(R) models may be considered representative of the chameleon

mechanism, which is one of the viable screening mechanisms in modified gravity (MG). Others

include the Vainshtein, symmetron and environmentally dependent dilaton screening.

We choose the f(R) model proposed by Hu and Sawicki (2007), and for the analysis we shall use

the high-resolution N -body simulations preformed by Zhao et al (2011a) based on the Hu-Sawicki

model. Specifically,

f(R) = αR/(βR+ γ) (1)

where α = −m2c1, β = c2, γ = −m2,m2 = H2
0 ΩM and c1, c2 are free parameters. The ratio c1/c2

determines the expansion rate of the universe in this model, and c1/c
2
2, which is proportional to

fR0 (the value of |df/dR| at z = 0), dictates the structure formation. We follow Schmidt et al

(2009) to tune c1/c2 to match the expansion history in a ΛCDM model, and choose values for

fR0 so that those models can evade the solar system tests. To satisfy these requirements, we set

c1/c2 = 6ΩΛ/ΩM and simulate four models with fR0 = 10−4, 10−5, 10−6, 10−7 (F4, F5, F6 and F7

hereafter). We do not use the F4 simulations for our screening tests. The models used and the

corresponding Compton wavelength λC are given in Table 1. The relation between fR0 and λC is

approximately λC = 32
√
fR0/10−4 Mpc (Hu and Sawicki 2007).

The simulations were performed using a code based on MLAPM, which is a self-adaptive

particle-mesh code. We used 2563 particles in a box of 64 Mpc/h a side, and preformed 10 real-

izations for each model to reduce the sample variance. The minimum particle mass is 109M�/h.

In this paper we use the halo catalog, obtained by using the spherical over-density algorithm, with
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minimum mass set at 5 × 1011M�/h to obtain reliable dynamical masses. For each realization,

all the models have the same initial condition at z = 49, where GR is perfectly restored for these

f(R) models. We study in detail the F6 model since it gives us the best compromise of number

screened/unscreened galaxies and this is the one that we study in more detail in data.

Fig. 1.— Distribution of ∆m (= MD/ML − 1) for different fR0 models as labeled on the figure.

A galaxy is less screened for large ∆m. A fully unscreened galaxy has ∆m = 0.33 (higher values

are due to simulation inaccuracies). As we move from the F5 to the F7 model, fewer halos are

unscreened – though a significant fraction still show small deviations, i.e. ∆m < 0.1.

MODEL fR0 λC (Mpc)

F5 10−5 10

F6 10−6 3

F7 10−7 1

Table 1: Table summarizing the models used in this paper. The background field value fR0 and

Compton wavelength λC for the three model simulations used are shown.
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3. Methods and Tests for Screening Criteria

3.1. Theoretical Background

To test GR using dwarf galaxies, one of the first steps is to create a 3D screening map, which can

be used to determine whether a galaxy is screened or not. In this section, using N-body simulation

explained in the previous section, we develop a technique to find screened and unscreened galaxies.

In the simulation we can estimate the degree of screening exactly by comparing the lensing mass

and dynamical mass of the dark matter halos. We use ∆m, the difference between the dynamical

and lensing mass, defined in Zhao et al (2011b), to quantify the degree of screening for the simulated

halos. However, in our initial application to observational data we will use a binary classification,

i.e. screened and unscreened.

In the f(R) gravity, the Poisson equation gets modified and reads,

∇2φ = 4πGa2δρ+

(
4πGa2δρ

3
+
a2

6
δR

)
= 4πGa2δρeff (2)

where G is Newton’s constant, φ is the gravitational potential (the time-time part in the perturbed

FRW metric), δR is the perturbed Ricci scalar due to MG, and δρeff is the perturbed total effective

energy density, which contains contributions from matter and modifications to the Einstein tensor

due to MG. The dynamical mass MD(r) of a halo is

MD ≡
∫
a2δρeffdV (3)

where the integral is over the extension of the body. Physically, the dynamical mass MD(r) means

the mass inferred from the gravitational potential felt by a test particle at r. Assuming the spherical

symmetry, we can integrate the Poisson equation once to obtain

MD(r) ∝ r2dφ(r)/dr. (4)

We actually use Eq. 4 to measure the dynamical masses of halos in our simulation. Note that if

the gravity is modified, MD will be different from the lensing mass ML, the true mass of an object

since MD includes the contribution from the scalar field, which mediates the finite-ranged fifth

force within the Compton wavelength. Therefore, the relative difference ∆m,

∆m ≡MD/ML − 1 (5)

between the dynamical and lensing masses of the same object can be used as a indicator for MG.

From Eq. 4, we can estimate the range of ∆m by considering two extreme cases.

(I) In low density regions for unscreened galaxies, δR can be dropped, giving ∆m = 1/3;

(II) In high density regions where GR is locally restored, namely, δR = −8πGa2δρ, then ∆m = 0.
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So ∆m ∈ [0, 1/3], which can be used to quantify the extent of the screening.

In Fig. 1 we show the degree of screening in different simulations. The figure shows the

distribution of ∆m for simulations with different fR0 values. The fraction of unscreened galaxies

(galaxies with higher ∆m) is largest for the F5 model – the fraction decreases with smaller values

of fR0. Some values of ∆m are higher than 1/3, due to numerical uncertainties.

3.2. Two Approximate Methods for Screening

We are interested in a sample of galaxies within a few hundred Mpc, especially low mass

galaxies. Observations do not allow us to estimate lensing masses for these galaxies and thus

estimate ∆m directly. This leads us to look for an alternate method to classify screened galaxies.

We can estimate the dynamical masses of galaxies using measurements of luminosities or velocities.

From the mass estimate we can find their virial radius under reasonable assumptions. Using the

locations and dynamical masses of a reasonably complete galaxy catalog, we attempt to build a

screening map using two simplified criteria as follows.

In f(R) gravity the chameleon effect recovers GR if fR0 ≤ 2/3 |φN |/c2, where φN is the

Newtonian potential of the object (Hu & Sawicki 2007). This condition applies for an isolated

spherical halo. We will make a simple approximation and use the same condition to determine

whether an object is self-screened or environmentally screened. i.e. we look for the galaxies which

satisfy the following conditions:

|φint|
c2

>
3

2
fR0 or

|φext|
c2

>
3

2
fR0 (6)

The first condition describes the self-screening condition. However, low-mass galaxies may be

environmentally screened; the second condition is a simplified attempt at describing this, with

|φext| being the Newtonial potential due to the neighbor galaxies within the background Compton

length λC . |φint| for a galaxy is defined as

|φint| =
GM

rvir
(7)

where the mass M and the virial radius rvir are related via δcrit = M
4/3πr3vir

. Here we use δcrit =

200ρcrit where ρcrit is the critical density of the Universe. The external potential |φext| is evaluated

using neighbors

|φext| =
∑

di<λC+ri

GMi

di
(8)

where di is the 3D distance to the neighboring galaxy with mass Mi and virial radius ri, λC is the

Compton wavelength and fR0 is the model parameter defined in Zhao et al (2011a,b).

The motivation for the above criteria is the following: the range of the fifth force is finite,

defined by the Compton length λC . Our test galaxy will only feel the fifth force from neighbors
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within a distance λC + ri of the i-th galaxy (which itself must not be self-screened). We make

the ansatz that the level of environmental screening is set by |φext|, though an accurate treatment

requires a full solution of the scalar field equations. As we increase fR0, the fifth force range becomes

larger.

We use the N-body simulation described in the previous section to test the validity of the

screening criteria of Eq. 6. We use dynamical mass Mdyn from the simulation as it is the quantity

that we can get easily from observations. The virial radius will also be obtained from Mdyn. In Fig.

2 we show the screened and unscreened galaxies in the |φext|–Mdyn plane. The points are colored

according to the degree of screening (∆m). The figure shows that we can classify objects as screened

(blue) and unscreened (red) using simply defined boundaries set by fR0. The minimum non-zero

|φext| is given by galaxies with just one low-mass neighbor (limited by the simulation resolution of

5× 1011M�/h) at a distance equal to λC . For the F7 model the self-screening condition is satisfied

for nearly all resolved halos. So we are not able to study the impact of environmental screening via

the external potential |φext| for this model.

Fig. 2.— Scatter plot for |φext| vs. Mdyn (equivalent to |φint|), colored according to ∆m, as indicated

in the colorbar on the right. Each point represents a galaxy halo from the N-body simulations.

From left to right, we show different f(R) models: F5, F6 and F7. Blue colors indicate screened

galaxies while red colors are unscreened. When |φext| = 0 we assign an artificial random value

– these halos are shown at the bottom of each panel. Note how the number of unscreened (red)

galaxies is reduced when we move from F5 model to F7. The minimum non-zero |φext| is given

by galaxies with one low-mass neighbor (limited by the simulation resolution) within a Compton

wavelength λC . A simple cut in Mdyn and |φext| corresponding to Eq. 6 seems to work to separate

screened from unscreened galaxies.

As an alternate criterion for environmental screening we study the parameter Dfn introduced

by Haas et al (2011). For a test galaxy, it is defined in terms of its neighbors as:

Dfn = d/rvir (9)

where d is the distance to the n-th nearest neighbor with mass f times higher than the test galaxy,

and rvir the virial radius of the neighbor galaxy. Previous studies, Haas et al (2011), show that
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D11 (D, hereafter) is a good estimator for environmental screening. The values of D are set by the

threshold on ∆m; for the F6 model, it is about 10 for a Milky Way sized galaxy with the threshold

∆m = 0.1. See Fig. 3 for the distribution of ∆m in the D - Mdyn plane. Note how |φext| (∼M/d)

and D (∼ d/rvir) are inversely correlated. However, the anti-correlation is not exact, since the

weight in both estimators is different and |φext| uses information from multiple neighbors. From

Fig. 2 and Fig. 3, we see that either |φext| or D along with an estimate of Mdyn is a good proxy

for screening. The combination of both estimators does not provide significant extra information.

We find below that the contamination is lower when using |φext|.

Fig. 3.— Scatter plot for D vs. Mdyn, colored according to ∆m, as shown in the colorbar on the

right – the three panels are as in Fig. 2. The distribution of galaxies in this plot is similar to Fig.

2, so a cut using Mdyn and D is also likely to be effective in separating screened from unscreened

galaxies. The effect of systematics is studied in subsequent figures.

However, this simple analysis may have limitations when one uses real data. In order to

evaluate the performance for survey data, we consider three cases below:

1. The ideal case, i.e., without systematics. This allows us to study the intrinsic scatter around

our cuts in |φext| or D and Mdyn.

2. Consider the contamination due to each type of systematics one by one.

3. Consider the realistic case, i.e., all three sources of uncertainties together.

3.3. Tests of Screening Without Systematic Errors

Using simulations we can learn how to separate screened/unscreened galaxies using observables.

We will describe screening using cuts in |φext|, Eq. 6, or D and Mdyn (equivalent to |φint|). We have

considered more sophisticated classification methods but the systematics in the observables limit

us to simple approximations at this time. We focus our study on the F6 model, since the number

of screened and unscreened galaxies is comparable there, and it is probably the most interesting
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case in terms of current limits. Towards the end, we will check how well our conclusions apply to

other models.

In Fig. 4 we show the contours of average ∆m in the |φext|–Mdyn plane. We use bins of 0.25

in log(|φext|) and log(Mdyn). We can see that ∆m increases towards low mass halos in low density

environments (smaller |φext|). We see in the figure that it is possible to make a division between

screened and unscreened halos based on a fiducial value of ∆m. It should also be noted that for

any fiducial threshold value of ∆m the boundary looks mostly like a square defined by Mdyn on the

x-axis and |φext| on the y-axis. In this paper we set ∆m = 0.1 as the threshold value. Some part of

the contamination evident in Fig. 2 comes from the dispersion of ∆m in the |φext|–Mdyn plane. The

top left panel of Fig. 5 shows this dispersion for the ideal case. It can be seen that the dispersion

is larger (∼ 0.1) near the boundary defined by the environmental potential, where the classification

is not so clean. We study below how this dispersion changes with different systematics. The

overplotted contour lines in Fig. 5 demarcate 20% (lower line) and 80% (higher line) of screened

galaxies (in each pixel).

At the end, the best cut will depend on the number of total galaxies. For the model F6,

there are fewer screened galaxies than unscreened, hence the transition zone (where there is more

contamination) will affect more the total contamination of screened galaxies. We go one step further

and calculate the best cuts using the F-score test, a common algorithm used in machine learning in

order to classify objects. This algorithm takes into account that both samples might have different

number of galaxies and also minimizes the contamination in both directions. This can be done by

maximizing the F-score estimator, which is defined as:

Fscore =
2PR

P +R
. (10)

where P is precision in screened galaxies and R is recall, defined as follows. True positives (TP)

are the screened galaxies that are tagged screened. False positives (FP) are the unscreened galaxies

that are tagged screened. False negatives (FN) are the screened galaxies that are tagged unscreened.

P and R are then defined as: P = TP/(TP + FP ) and R = TP/(TP + FN).

We plot the intrinsic contamination levels for screened (blue) and unscreened (red) galaxies

for the |φext| - Mdyn method (dashed) or the D - Mdyn method (solid) in Fig. 7 (top-left). The first

method gives lower contamination for screened galaxies (blue) in the range 10-15% for ∆m > 0.1.

The contamination for unscreened galaxies is lower than 10% always, and consistent for both

methods. In Fig. 8 we show the best cuts in |φext| (left axis, solid line) and Mdyn (right axis,

dashed line). The F-score is consistently around 0.8, which means that our suggested classification

is robust.

We have performed the same analysis using D - Mdyn and we see in Fig. 6, top-left, that the

cut is not as squared as in Fig. 4 so a sharp cut in D and Mdyn would not be accurate. This

is the main reason why a cut in D - Mdyn does not work as good as |φext| - Mdyn. In addition

the dispersion, hence the contamination, is also higher. Note how contour plots in Fig. 4 give a
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cut in |φext| - Mdyn similar to the one obtained when using the F-score (Fig. 8), which is a good

consistency check.

Now we extend our conclusions to other models. For F5, most of the galaxies are unscreened,

only galaxies that reside near big clusters (M > 5 × 1014M�/h) will be screened. We see in Fig.

2 that the proposed cut is valid. As for F7, these simulations are not precise enough to study our

proposed cut in detail, since we would need about one order of magnitude less massive galaxies to

be confident of our tests.

Fig. 4.— Contours in mean ∆m for the ideal case of no systematic errors using the φext method.

∆m increases from upper right to lower left in the plot. The contours generally follow straight cuts

in mass (or |φint|) and |φext|. We have checked that even with systematics this plot remains similar.

3.4. Tests of Screening with Systematic Errors

In this section we study how systematic errors and other limitations in real surveys impact

the screening methodology described above. There are three main sources of systematic errors in

currently available data (in this paper we primarily use the SDSS galaxy catalog). These are:

1. Uncertainty in mass estimate. For the current sample, the mass measurement is subject to

30% uncertainty.

2. Uncertainty in the distance estimate. The distance measurement is subject to 3-10 Mpc/h

(300-1000 km/s) uncertainty between galaxies in SDSS as the distances are derived from

redshift measurements, which include peculiar velocities.
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Fig. 5.— The dispersion in ∆m is shown for the ideal case and for different systematics as labeled

on the plots. The colorbar on the right gives the scale. The ideal case (top-left) has some intrinsic

dispersion, specially along the |φext| cut. We can see how the dispersion worsens once we add

systematics – top-center: mass uncertainty of 30%; top-right: random incompleteness of 10%;

bottom-left: redshift distortion induced error in distance; bottom-center: use of projected distance

and a line-of-sight cut of 500 km/s; bottom-right: all the previous systematics together (using

projected distance). We overplot two solid lines that define the boundaries for 20% (lower line) to

80% (higher line) of the screened galaxies per pixel (using the threshold ∆m = 0.1).

3. Incompleteness. Somewhere between 5-20% of the neighboring galaxies for a typical test

galaxy may be missing in our sample.

In order to study the uncertainty in galaxy halo mass, we add a 30% gaussian error to the

dynamical mass in the simulations, both for test masses (the halo under classification) and neigh-

bors. The virial radius is recalculated given the new estimated mass. See top-center plot in Fig. 5

and Fig. 7 to see the effect of mass uncertainty in the screening. The dispersion increases along

the mass direction (Fig. 5). This implies that the contamination due to self-screening condition is

larger than the contamination due to environmental screening condition. The best cuts in |φext| and

Mdyn are similar to the ideal case. However, the contamination increases up to 5% (for screened

galaxies) with respect to the ideal case (Fig. 7).
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Next, we study the completeness in the catalog. The incompleteness can arise in survey

catalogues due to masking or by edge effects. To mimic these effects we randomly reduce the

number of neighbors by 10%. This incompleteness is independent of the mass. However, since

there are more low mass galaxies in the universe, most of the randomly selected galaxies are low-

mass. The effects due to incompleteness can be seen on the top-right plots (Fig. 5 and Fig. 7).

In Fig. 5, we see that this systematic affects mainly low massive galaxies. The contamination in

screened galaxies increases by around 5% (Fig. 7).

We also study the effect of uncertainties in distance on the classification. The distance uncer-

tainty mainly originates from the use of redshift to estimate distances – which is affected by the

peculiar velocities of the galaxies. In order to introduce this systematic in the simulation, we add

the peculiar velocity distortion vz to the rz direction as r′z = rz + vz/H(z). This systematic affects

|φext|, since it changes the distance. It is a very large source of systematics as we can see in Fig.

5, bottom-left, and Fig. 7. We can reduce this systematic by estimating the distance using only

the 2-D projected distance for suitably selected neighbors, and assuming spherical symmetry. We

use neighbor galaxies within a line-of-sight distance of 5Mpc/h around the test galaxy (or equiva-

lently 500km/s in the measured velocity). This is the velocity dispersion of an intermediate cluster.

The improved results are on the bottom-center plot. We also checked the result using neighbors

within a line-of-sight distance of 10 and 20 Mpc/h and found that the results remain the same. See

bottom-left plot in Fig. 5 for a summary of all the systematics together.

We also tested what happens when there is incompleteness specifically in low mass neighbor

galaxies used to determine |φext|. Not surprisingly we find that completeness is important for halo

masses just below the self-screening threshold. We tested this with the F6 simulations, and we

expect that for the F7 model this will be the principal limitation in our simulations.

In conclusion, once we add systematics, the best cuts in |φext| and Mdyn remain nearly the

same as in the ideal case. However, the overall contamination nearly doubles compared to the

ideal case. We did the same analysis for the second classification scheme based on D-Mdyn. The

results are shown in Fig. 6. In the upper left panel we plot the contours of mean ∆m for the ideal

case and in the upper right panel we show the contours with all systematics together. The bottom

panels show the dispersion in ∆m for these two cases. We see that when adding the systematics the

separator between screened and unscreened sample changes significantly from the ideal case. This

makes these parameters harder to calibrate to reliably classify screened and unscreened galaxies.

Also, the contamination is much larger than when using φext − Mdyn. Thus in the presence of

systematics the |φext|–Mdyn is preferred.
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Fig. 6.— Upper plots: Contours in mean ∆m for the ideal case (left) and for all the systematics

(right) for the environmental screening condition set by the neighbor distance D. Note how the

contour lines are not square-shaped, so a sharp cut in D would not be accurate. Bottom: We plot

the dispersion in ∆m for the ideal case (left) and all systematics together (right). Note that the

dispersion is worse than in Fig. 5. We overplot two solid lines as in the previous figure.
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Fig. 7.— The contamination in the galaxy sample using the |φext|–Mdyn cut (dashed lines) or

D–Mdyn cut (solid lines). The ideal case is shown in the top left panel and different systematics

are shown in the rest of panels as labeled (see Fig. 5 for description). We define the best cut as

the one that maximizes the F-score for each ∆m that we use to separate screened from unscreened

galaxies. The resulting contamination is plotted in blue for screened galaxies and red for unscreened

galaxies. The fractional contamination in the unscreened sample is always lower because the number

of unscreened galaxies is higher. Contamination in the screened sample when using D is higher

than when using |φext|.
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Fig. 8.— We plot here the best cuts in |φext| (solid left axis) and Mdyn (dashed right axis) as a

function of ∆m for the F6 model. When we change the threshold between screened and unscreened

to higher ∆m, we require a lower |φext| and lower Mdyn cut as we see in Fig. 4. We have checked

that the cuts are very similar even in the presence of the systematics tested in previous figures.
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4. Screening Map for the SDSS Region

Tests of gravity with a sample of galaxies requires a screening map: given the coordinates of

a test galaxy, such a map would allow one to determine the level of environmental screening. We

have created a screening map over about 10,000 square degrees out to a distance of 210 Mpc using

the SDSS group catalog created by Yang et al (2007) (DR7 version) and other surveys of galaxies

and clusters.

The group catalog from the SDSS covers the redshift range 0.01-0.2 and includes close to

400,000 galaxies. We restrict our screening map to z = 0.05. Yang et al find group members using

the friends-of-friends algorithm and calculate the group luminosity from member galaxies brighter

than a certain threshold. The group luminosity is then converted to halo mass using an interative

procedure that has been carefully tested with simulations. The mass of the groups ranges from

1011.6M� to 1015M�. They estimated the scatter in the estimated mass using mock catalogs and

found that it is less than 0.35 dex.

In the SDSS region, most of the contribution in our environmental screening map comes from

the Yang et al (2007) groups, but we include other galaxy and cluster catalogs to determine |φext|1.

We use the group catalog from 2M++ all sky survey (Lavaux and Hudson 2011). There are 3984

2M++ groups of galaxies in our catalog. For local galaxies within 10 Mpc we use the galaxy catalog

of Karachentsev et al (2004). These two catalogs improve our completeness for lower mass halos

but not uniformly with distance.

We compiled a catalog of clusters with known redshifts using archival data. Our catalog mainly

consists of Abell (Abell, Corwin and Olowin 1989) and ROSAT (Ebeling et al 1996) bright clusters.

We ignore many clusters from the Abell catalog as they lack spectroscopic redshifts or lie beyond

z = 0.1. Our catalog has a total of 675 clusters of galaxies.

A direct estimate of the masses of clusters and groups of galaxies can be found either by X-ray

observation or by lensing observations. However, many of our clusters and groups do not have such

an estimate. So we used established scaling relations to estimate the mass of clusters and groups.

We use either the mass-luminosity relation given by Reiprich and Böhringer (2002) or the mass-

velocity dispersion relation given by Evrard et al (2008) to determine the mass. For the galaxies

within 10 Mpc we use the mass estimates given by Karachentsev et al (2004), which covers 313 out

of 451 galaxies.

We chose a volume that extends to redshift z = 0.05, which is at a comoving distance of 210

Mpc and has an angular size of 10,000 square degrees. A 10 × 10 degrees (38 × 38 Mpc) patch

1NED provides a catalog of all the known extra galactic objects. We do not use this as many of the objects do

not have absolute magnitudes which are required to estimate their masses. We do recommend supplementing the

catalogs described here with NED-based data on neighboring galaxies for tests with a small enough sample of galaxies

(so that case by case inspection is feasible).
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of our map is shown in Fig. 9. The map is generated for different values of background Compton

length λC (1 to 10 Mpc); each one corresponds to models with different fR0 parameter. Fig. 9

shows the result for the F5, F6 and F7 models. Almost the entire volume is unscreened under a

F5 model – with the exception of massive and rare galaxy clusters, deep enough potential wells do

not exist. While most of the volume also appears unscreened in the F6 and F7 models, galaxies

reside preferentially in or near the screened regions so one has to be careful – for a specific galaxy

sample, the fraction of screened galaxies depends on their mass distribution since the locations of

galaxies (field vs. group) correlate with mass. The screening map and catalogs we make available

allow one to determine the screening level for a galaxy at any location within the volume covered.

Fig. 9.— The environmental screening map generated in the SDSS region at 210 Mpc (z = 0.05)

for 10 × 10 degrees of survey area, approximately 38 × 38 Mpc, with 2 arcmin resolution. The

external potential |φext|/c2 is shown, with the screening condition evaluated using Eq. 8 for models

with fR0 = 10−5, 10−6 and 10−7 (left, middle and right panels). The cut in screening classification

is indicated in the colorbar as 3/2 fR0 and also shown in the maps as a white contour line (regions

inside the contour are screened). Almost the entire volume is unscreened in the F5 model. Even

in the F6 and F7 models most of the volume is unscreened. But since galaxies are preferentially

located in or near the high density (screened) regions, a careful evaluation of screening for a desired

galaxy sample is necessary.

As an example, we study the scatter in |φext| −Mdyn for a set of nearly edge-on, rotationally

supported galaxies selected to study warps as a probe for modified gravity following Jain and

VanderPlas (2011). The details of the test will be presented elsewhere. These galaxies are selected

inside the SDSS footprint. In Fig. 8 we plot |φext| − vc for these galaxies for models F5 (left), F6

(middle) and F7 (right). The peak circular velocity vc is used a proxy for Mdyn. We overplot the

limits for unscreened/screened following Eq. 6 using the conversion(
vc(km/s)

100

)2

=
fR0

2× 10−7
. (11)

Note how Fig. 10 and Fig. 2 are similar in range since the halo mass limit is similar in data and

simulations (M > 5 × 1011M�). In the F5 model, we suffer from the small number of screened
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galaxies, but the classification should still be accurate. The F6 model is the most complete while

the F7 model is likely to have incompleteness issues at larger distances.

For fR0 < 10−6 care must be exercised in using our map. Over the full 200 Mpc line of sight

distance we do not have completeness for galaxies with halo mass below 1012M�. Within 10 Mpc

we do have information on galaxies with masses well below this limit. At distances beyond that, the

mass limit of the combined dataset we have used must be evaluated with care. In particular, the

catalogs described above are incomplete over the distance range 10-50 Mpc where the SDSS galaxy

catalog should be used directly. In the tests we have carried out, we supplemented the catalogs

described here with NED-based investigations of galaxy neighbors.

Fig. 10.— We plot |φext| − vc for SDSS galaxies, for the f(R) models F5 (left), F6 (middle) or F7

(right). Zero values (no neighbors within λC) are plotted on the bottom of each panel of the figure.

5. Conclusions

In order to test modified gravity theories with screening mechanisms, we need a criterion to

separate screened from unscreened galaxies that is applicable to galaxy catalogs. We have tested

two simple criteria for chameleon theories with simulations of f(R) gravity. While the criteria use

simplified approximations to test for screening, we find they are successful at obtaining screened

and unscreened subsamples that are robust to systematics.

For the criterion based on estimation of the external Newtonian potential, given in Eq. 6, we

find that the intrinsic contamination is around 10%. We model the main expected systematics –

mass uncertainty, incompleteness, and distance errors – and study how the contamination in the

method degrades. For pessimistic assumptions, the contamination increases to about 20%. We are

able to test the f(R) models F5 and F6 with catalogs from simulations. Our tests of the F7 model

are limited by the mass resolution of our simulations but we expect the criteria to scale simply to

any relevant value of the background fields.

We applied our method to a catalog of galaxies in the SDSS region and constructed a screening
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map. For three discrete choices of the background field value fR0 we have shown examples of

screening maps and samples of screened and unscreened galaxies. We have used our screening

results in two companion studies of gravity tests with cepheids and with late-type dwarf galaxies

(Jain et al 2012; Vikram et al 2012). We have also made available our compilation of input catalogs

and code to evaluate screening2.

There are several caveats and possible improvements for future work. We have used approxi-

mate screening criteria, but for a given mass distribution the scalar field equations can be solved

numerically to obtain more accurate screening maps. The contamination in the presence of system-

atics can be tested and controlled by discarding galaxies that are expected to be partially screened.

Further, for a given screening level the thin shell condition allows for a quantitative estimate of

partial screening. Finally, while our results are tested only with f(R) simulations, extension to

other chameleon theories and symmetron or environmental dilaton based screening are feasible –

see e.g. the discussion in Jain et al (2012).
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