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Abstract

For most of its 60 year history, the Casimir effect was an obscure theoretical back-
water, but technological advances over the past decade have promoted this curious
manifestation of quantum and thermal fluctuations to a position of central impor-
tance in modern experimental physics. Dramatic progress in the measurement of
Casimir forces since 1997 has created a demand for theoretical tools that can pre-
dict Casimir interactions in realistic experimental geometries and in materials with
realistic frequency-dependent electrical properties.

This work presents a new paradigm for efficient numerical computation of Casimir
interactions. Our new technique, which we term the fluctuating-surface-current (FSC)
approach to computational Casimir physics, borrows ideas from the boundary-element
method of computational electromagnetism to express Casimir energies, forces, and
torques between bodies of arbitrary shapes and materials in terms of interactions
among effective electric and magnetic surface currents flowing on the surfaces of the
objects. We demonstrate that the master equations of the FSC approach arise as
logical consequences of either of two seemingly disparate Casimir paradigms-the
stress-tensor approach and the path-integral (or scattering) approach-and this work
thus achieves an unexpected unification of these two otherwise quite distinct theoret-
ical frameworks.

But a theoretical technique is only as relevant as its practical implementations
are useful, and for this reason we present three distinct numerical implementations
of the FSC formulae, each of which poses a series of unique technical challenges.
Finally, using our new theoretical paradigm and our practical implementations of
it, we obtain new predictions of Casimir interactions in a number of experimentally
relevant geometric and material configurations that would be difficult or impossible
to treat with any other existing Casimir method.
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Title: Professor
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Title: Professor
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Chapter 1

Overview

During the academic year, MIT's Department of Physics convenes a weekly physics
colloquium at which an eminent physicist regales the physics community with tales of
the latest developments in various hot subfields of contemporary physics. In my first
years of graduate school, too busy with coursework to attend every week's session,
I developed an algorithm for determining which colloquia I would attend. Talks
pertaining to my research, or to research I aspired to do in the future, I would always
attend. Talks on subjects not related to my research, but still of general interest and
with interesting applications to the real world, I would sometimes attend. Talks on
speculative esoterica, talks on abstract technobabble, and talks that seemed to bear
no fathomable relationship to any real-world phenomena I might expect to encounter
in my lifetime, I would never attend.

Casimir physics fell squarely within this latter sector of my classification scheme.
Like all physicists, I had at least heard of the Casimir effect, through footnotes,
through lore, and from a particularly forbidding and impenetrable section in one of
the Landau and Lifshitz textbooks. Some sketchy-sounding claptrap about vacuum
energy and quantum fluctuations? A divergent expression for the energy that can
be massaged through some sort of contrived mathematical procedure to give a finite
force law? Vaguely interesting, a curious diversion, but certainly nothing you would
actually want to work on.

My dismissive attitude might perhaps have been justifiable in any of the first 50
years after the birth of the Casimir effect, but it was already outdated when I entered
graduate school in 2002, and today, in 2010, it is entirely obsolete. The advent of pre-
cision Casimir experiments in the years after 1996 promoted Casimir physics from the
realm of gedankenexperiment to a central position in modern experimental physics,
with a substantial and growing catalog of measurements of Casimir interactions in a
wide range of materials and geometries. This rapid development on the experimental
side has, in turn, spurred an interdisciplinary effort on the part of theoretical physi-
cists, numerical analysts, and engineers to develop new algorithms and tools capable
of predicting Casimir phenomena in realistic experimental configurations. It is this
latter effort that provides the context and motivation for this thesis.

This thesis introduces a new technique for predicting Casimir forces between ob-
jects of arbitrarily complicated geometries with arbitrary material properties. Our



new technique, which we term the fluctuating-surface-current (FSC) approach to

computational Casimir physics, combines ideas from electrical engineering, theoreti-
cal physics, and numerical analysis to yield a procedure that accurately and efficiently
calculates Casimir energies, forces, and torques between objects of arbitrary two- and
three-dimensional shapes with arbitrary frequency-dependent electrical characteris-
tics. This thesis presents two separate theoretical derivations of the fundamental
FSC formulae, discusses three separate practical numerical implementations of the
formulae for predicting Casimir phenomena in various situations, and then uses the
FSC approach to predict Casimir forces and torques in a number of new geometries
that would be difficult to handle using any other Casimir method.

An Overview of this Thesis

We now offer brief synopses of the remaining chapters in this thesis.
The first three chapters beyond this introduction provide key background for what

follows. Chapter 2 reviews the physics of the Casimir effect, including three distinct
theoretical interpretations of the effect and a synopsis of the current state of the art
in experimental investigations. This sets the stage for an overview, in Chapter 3,
of the two dominant paradigms that have emerged in the past decade for predicting
Casimir phenomena-the numerical stress-tensor approach and the path-integral (or
scattering) approach. The former of these two approaches relies, in practice, on a
choice of numerical method for solving electromagnetic scattering problems, and the
particular method we choose in this work-the boundary-element method (BEM)-is
reviewed in Chapter 4.

The original contributions of this thesis begin in Chapter 5. In the first half of
that chapter we demonstrate that BEM techniques, applied within the stress-tensor
paradigm of computational Casimir physics, yield remarkably simple expressions-
our fluctuating-surface-current formulae-for Casimir interactions (energies, forces,
and torques) between objects of arbitrarily complex geometries and arbitrary ma-
terial properties. Then, in the second half of the chapter, we switch gears entirely,
abandon the stress-tensor paradigm, apply BEM ideas instead within the alternative
context of the path-integral approach, and demonstrate nonetheless that precisely
the same fluctuating-surface-current formulae emerge from this seemingly inequiva-
lent approach. The fluctuating-surface-current (FSC) formulae, and our simultaneous
derivation of these expressions from two entirely disparate starting points (stress ten-
sors and path integrals), constitute the essential new theoretical contribution of this
work.

But modern Casimir physics is an experimentally-driven field, and theoretical
techniques in such a field are only as valuable as their real-world implementations
are practical, efficient, and accurate. Thus the next three chapters of this thesis are
devoted to detailed discussions of three separate numerical implementations of the
FSC formulae. In Chapter 6, we discuss CASIMIR3D, a numerical tool that uses the
FSC formulae to compute Casimir energies, forces, and torques in geometries consist-
ing of compact three-dimensional objects of arbitrary shapes and of arbitrary material
properties. In Chapter 7, we discuss CASIMIR2D, a tool similar to CASIMIR3D but
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Figure 1-1: A schematic interrelationship of the chapters in this thesis.

designed for computing Casimir energies and forces per unit length between quasi-2D
objects-that is, three-dimensional objects of infinite extent in one spatial dimension
and constant two-dimensional cross-section in the transverse dimensions. Then, in
Chapter 8, we discuss FASTCASIMIR, a numerical tool that uses matrix-sparsification
techniques to improve the complexity scaling of CASIMIR3D for large-scale computa-
tions of Casimir interactions between perfectly electrically conducting bodies.

Our FSC formulae and its various numerical implementations are brought to
fruition in Chapter 9. Here we present the first predictions of Casimir inter-
actions in a number of experimentally relevant configurations that would be pro-
hibitively expensive, if not outright impossible, to address using any other computa-
tional Casimir technique, including crossed cylindrical capsules, tetrahedral nanopar-
ticles, disc-shaped nanoparticles of finite radius and thickness, and elongated beams
of irregular polygonal cross-section.

Finally, in Chapter 10 we present our conclusions and suggest direction for future
work, and a series of technical details are relegated to the Appendices.



What's New in This Thesis

We now point out the key new results that are presented for the first time in this
thesis.

The Boundary-Element Method as an Analytical Technique

The boundary-element method of computational electromagnetism, which is reviewed
in Chapter 4, is a well-established technique that has been used for decades to solve

electromagnetic scattering problems. However, all previous applications of this tech-
nique (of which we are aware) have used it only as a numerical tool. A key innovation
of this thesis is our use of boundary-element ideas in an analytical context to prove
theorems. In particular, our expressions (5.4-5.5) and (5.18-5.19) for the scattered
parts of dyadic Green's functions are new, and are a critical ingredient in our stress-
tensor derivation of the FSC formulae (5.1).

Analytic Evaluation of Stress-Tensor Integral

The numerical stress-tensor approach to Casimir physics, which is reviewed in Chapter

3, is a well-established technique in computational Casimir physics that expresses the
Casimir force as a two-dimensional integral (with a rather complicated integrand) over
a closed surface C. In all previous applications of this technique to the computation of
Casimir forces in general geometries, this surface integral over C has been evaluated
numerically using numerical cubature techniques.

In contrast, in this thesis we demonstrate that the stress-tensor expression for the
Casimir force may be written in a factorized form, in which factors that depend on
C are separated from those that do not, and that this separation allows the spatial
integral over C to be evaluated analytically, in closed form, for arbitrary bounding
surfaces. This obviates numerical cubature, eliminates all dependence on the arbitrary
bounding surface C, and leads to a tremendously simplified version of the stress-tensor
formula (our master FSC formulae (5.1)).

This story is told in Section 5.2. The key new theorem that enables it is stated
and proved in Appendix C.

Evaluation of Electrodynamic Casimir Path Integrals using Surface Un-
knowns

The path-integral approach to Casimir computations, which is reviewed in Chapter

3, is a well-established technique in computational Casimir physics that expresses
Casimir energies as functional integrals over fields, which are converted to finite-
dimensional integrals over sources (or Lagrange multipliers). In early path-integral
treatments of Casimir phenomena involving scalar fields, these sources were taken
to be surface unknowns defined on the boundary surfaces of the interacting objects.
However, when the path-integral technique was later extended to encompass elec-
trodynamic Casimir interactions in general geometries, the surface unknowns were



abandoned in favor of other sets of unknowns (such as multipole moments) that do
not have an immediate interpretation as surface unknowns.

In this thesis, for the first time, we use surface unknowns to evaluate electro-
dynamic Casimir energies. This story is told in Section 5.3, where we show that a
path-integral formula for electrodynamic Casimir energies, evaluated with the help of
surface unknowns, leads to the same compact and simple expressions obtained (from
an entirely different starting point) in Section 5.2 (our master FSC formulae (5.1)).

Manifestly Gauge-Invariant Treatment of Electrodynamic Casimir Forces

Previous path-integral treatments of electrodynamic Casimir phenomena in general
geometries have concealed the underlying gauge-invariance of the theory by working
in a fixed gauge throughout the calculation. This thesis presents (in Section 5.3) a
manifestly gauge-invariant procedure for the evaluation of electrodynamic Casimir
energies.

New Techniques for Evaluation of BEM Matrix Elements

A key ingredient in BEM solvers for 3D electromagnetic scattering problems is a
procedure for evaluating BEM matrix elements between localized basis functions, a
task involving large numbers of multidimensional integrals with rapidly varying or
even singular integrands.

This thesis presents new and comprehensive suites of techniques for evaluating
these integrals in two different BEM contexts: matrix elements between RWG basis
functions for scattering problems involving compact 3D objects, and matrix elements
between two-dimensional rooftop functions for scattering problems involving quasi-2D
objects.

A Fast Matrix-Vector Product for the Imaginary-Frequency EFIE

The precorrected-FFT technique, which was invented in the 1990s [36], improves the
complexity scaling of numerical linear algebra operations involving certain matrices
that arise in computational electromagnetism problems. The technique was first
applied to boundary-element analysis of real-frequency scattering problems in [12].

Chapter 8 of this thesis presents the first application of the PFFT technique to the
imaginary-frequency boundary-element method. This work also represents the first
steps toward a "fast solver" (i.e. a numerical technique exhibiting reduced scaling of
storage and CPU-time requirements) for computational Casimir problems.

New Predictions of Casimir Interactions in Complex Geometries and Ma-
terials

Using the new computational Casimir paradigm presented in Chapter 5, we obtain the
first predictions of Casimir interactions in a number of new configurations that would
be difficult, if not outright impossible, to treat using any existing method, including
crossed cylindrical capsules, tetrahedral nanoparticles, disc-shaped nanoparticles of



finite radius and thickness, and elongated silicon beams of irregular polygonal cross-
section.



Chapter 2

Casimir Physics: Some Theoretical
and Experimental Perspectives

The late 1940s was an era of epochal advances in the understanding of the vacuum
sector of quantum electrodynamics. In 1947, the Lamb shift demonstrated that QED
vacuum effects modify the Coulomb force between charged particles [24, 4]. In 1948,
the anomalous magnetic moment of the electron demonstrated that vacuum effects
modify the coupling of a charged particle to a background magnetic field [23, 43].
And it was also in 1948 that H. B. G. Casimir published his seminal prediction that
vacuum effects would give rise to attractive forces between planar metallic surfaces [7].
In contrast to the former two phenomena, however, in which the experimental dis-
covery was contemporaneous with or even predated theoretical understanding, the
latter effect had to wait almost fifty years before precision measurements [25] could
conclusively establish the validity of Casimir's 1948 predictions in full detail.

This nearly half-century absence of experimental input did little to diminish the
curiosity of theorists, who proceeded throughout the second half of the 20th century
to refine and develop Casimir's ideas. By the time experimental data finally did begin
to pour in, at the end of the 1990s, a host of alternative physical interpretations had
arisen to complement Casimir's original picture of vacuum-point energies sensitive to
moving material boundaries. In this chapter we will review this array of viewpoints,
closing with a survey of recent progress in experimental investigations of Casimir
phenomena.

2.1 The Casimir Effect as a Zero-Point Energy
Phenomenon

Casimir's original treatment [7] considered the space between perfectly conducting
planar surfaces as a type of electromagnetic cavity (Figure 2.1). Working in the limit
in which the cross-sectional area A of the boundary surfaces is taken to infinity at
fixed surface-surface separation a, Casimir solved the classical Maxwell equations for
the allowable excitations of the electromagnetic field in this cavity, obtaining a count-
ably infinite set of mode frequencies {w,(a)} depending on a. Now switching from



Maxwell's equations E
Boundary conditions

a Zero point energy: EZP(a) _ 1 hw,(a)

Fcasimir _ gEZP(a) -- 2 (per unit area)

Figure 2-1: Casimir's original picture of his effect considered the space between
perfectly conducting parallel plates in vacuum as a type of electromagnetic cavity.
Maxwell's equations predict a countably infinite set of mode frequencies W(a) that
depend on the plate-plate separation a. Summing the quantum-mechanical zero-point
energy of all modes yields a formally infinite energy of fluctuations, but Casimir was
able to obtain a finite result for the derivative of this energy-the original Casimir
force.



classical to quantum-mechanical thinking, Casimir ascribed to the nth cavity mode a
zero-point energy hw/2, and, summing the contributions of all modes, obtained an
expression for the energy of the entire configuration in the form

E(a) = 1 hion(a).

n

This expression is obviously divergent, but Casimir argued that the physically mean-
ingful quantity is the change in the energy as the surface-surface separation a is
varied, and, after some mathematical manipulations, arrived at his famous expres-
sion for the force-per-unit-area between the plates,

.F(a) = - - = - . (2.1)
A aa 240a4 *

It seems safe to assume that most physicists outside the Casimir specialty think of
Casimir's force in just the way we have presented it here-as a manifestation of
zero-point energy in electromagnetic cavity modes. Far less well-known is that there
is an alternative viewpoint, one which emphasizes a different set of considerations
and which, not incidentally for the purposes of this thesis, opens the door to new
computational procedures.

2.2 The Casimir Effect as a Material-Fluctuation
Phenomenon

In this alternative interpretation of the effect, which was known to Casimir him-
self [8] but which today is primarily associated with the work of a Russian school
of physicists-Dzyaloshinkii, Lifshitz, and Pitaevskii-in the 1950s [18, 30], we think
of Casimir forces between materials as an extended version of the van der Waals
interaction between isolated molecular dipoles.

This point of view is sketched in Figure 2.2. Again we consider the space between
planar material boundaries, but now, in contrast to the discussion of the previous
section, we consider the boundary surfaces to be composed of real-world materials
(i.e. solids comprised of elementary atomic or molecular constituents), not simply
idealized perfect conductors (Figure 2.2(a)). If we were to zoom in on any microscopic
volume AV within one of these materials, we would see, in essence, a collection of
atomic- or molecular-scale electric dipoles. In the absence of an external forcing field,
these dipoles will have no particular uniform orientation, and our volume AV will
have no net dipole moment (Figure 2.2(b).) However, from time to time, quantum
and thermal fluctuations can cause the dipoles in our little volume to fluctuate into
spontaneous alignment with one another, giving the volume a net electric dipole
moment, which gives rise to a net electric dipole field (Figure 2.2(c)). The influence
of this field will be felt across the gap in the interior of the other material, where
it will induce elemental dipoles to align in its direction (Figure 2.2(d).) But now
we have two net dipole moments, one in either material, mutually aligned and thus
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Figure 2-2: The material-fluctuation picture of the Casimir effect. (a) As before, we
consider parallel plates separated by a distance a in vacuum, but we now allow the
plates to be made of real-world materials instead of idealized perfect conductors. (b)
If we zoom in on any microscopic volume of these materials, their atomic and molec-
ular constituents look like microscopic electric dipoles, which (in the absence of any
external forcing field) will ordinarily not be aligned in any particular direction with
one another, so that there is no net dipole moment. (c) However, from time to time,
quantum and thermal fluctuations will cause the constituent dipoles to fluctuate into
a state of temporary alignment with one another, giving rise to a net dipole moment
and thus a net electromagnetic field which is felt across the gap in the other mate-
rial, (d) where it induces dipoles in that material to align with one another, leading
to a net dipole-dipole interaction similar to the van der Waals interaction between
isolated molecules. Summing these microscopic fluctuation-induced interactions over
the volumes of the interacting materials (and taking into account the finite propaga-
tion speed of electromagnetic information) we recover the original Casimir force for
metallic surfaces.



mutually attracting. Summing the contributions of all microscopic volumes AV in
the material surfaces, and-a subtlety which turns out to be crucial in obtaining the
correct force law-accounting for the finite speed of light, which bounds the rapidity
with which information on momentary polarization fluctuations in one material can
be communicated to distant points in the other material, we obtain a force between
the material surfaces which turns out to be equivalent in all particulars to the force
predicted by the cavity-mode arguments of the previous section.

The material-fluctuation picture of the Casimir effect has obvious intuitive appeal.
If it is difficult to visualize the zero-point energies of cavity modes, and if it seems
somewhat incongruous to ascribe forces between materials to phenomena occurring
in the empty space surrounding those materials, it is undoubtedly much more natural
to think of those forces as a spatially and temporally dispersed version of the van
der Waals interaction familiar from elementary chemistry-and, moreover, such a
viewpoint emphasizes the role played by the properties of the materials themselves
more than what might be happening in the empty space between them.

On the other hand, when it comes to actually computing Casimir interactions,
the material-fluctuation viewpoint affords little advantage over the zero-point-energy
picture, as there is no obvious procedure for how we might go about "summing the
contributions of all microscopic volumes" in the interacting materials. Fortunately,
there is yet another interpretation of the Casimir effect that leads directly to well-
defined computational techniques.

2.3 The Casimir Effect as a Field-Fluctuation Phe-
nomenon

The zero-point energy picture of Section 2.1 emphasized fluctuations in the electro-
magnetic fields in the space between material bodies. The alternative picture of
Section 2.2 shifted the focus to fluctuations in the material themselves. The two
viewpoints are not, of course, really at odds with one another, as the field fluctua-
tions can be understood as causing (or, just as well, being caused by) the polarization
fluctuations; instead, the two pictures are complementary. Having clarified that, we
now take up a third viewpoint, in which we shift the emphasis back to the fields in
the region between the material bodies-but now, instead of thinking of individual
cavity modes, we consider fluctuations in the components of the fields instead.

This picture is cartooned in Figure 2.3. (Whereas our previous two schematic
depictions of the Casimir effect envisioned an infinite-parallel-plate geometry, we now
switch over to considering the force between compact objects (in this case, a roughly
cubical object and a roughly spherical object), as it is in the consideration of just
these sorts of geometries-for which the zero-point energy picture would amount to
an unwieldy computational procedure indeed-that the field-fluctuation viewpoint
really comes into its own.)

As suggested in the figure, if we were to measure the components of the fields
in the region surrounding the bodies, we would see noise-the instantaneous value
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Figure 2-3: A third way to think about the Casimir effect is to emphasize the role of

fluctuations in the components of the electromagnetic fields in the region surrounding
the interacting objects in a Casimir geometry. In the absence of any external forcing
field, the average value of any single field component vanishes, but the average value

of the squared field components will in general be nonzero and can be used to compute
an average energy density (E) while the average values of off-diagonal products of

field components can be related to a type of force density (the fluctuation-averaged
Maxwell stress tensor (Tij)) that we can use to compute Casimir forces.



of any field component will not be strictly zero, but will instead exhibit random
fluctuations. In the absence of any external forcing field, the average value of any
single field component vanishes, but the average value of the squared field components
will in general be nonzero and can be used to compute an average energy density.
Indeed, if we knew the mean squared value of all field components at all points in
space, we could compute the total energy of the electromagnetic fields in our material
configuration-whereupon we would be right back where we started, in Section 2.1,
with a divergent energy expression that we could also have obtained by considering
zero-point energies in field modes.

The great virtue of the field-fluctuation viewpoint emerges when we consider the
fluctuation-averaged values of off-diagonal products of field components. Just as the
averages of squared field components yield an energy density, the averages of off-
diagonal products of field components are related to a certain type of force density

(or pressure)-the fluctuation-averaged Maxwell stress tensor-that we can use to
compute Casimir forces.

This technique will be discussed in detail in the following chapter. In the mean-
time, we have gotten ahead of ourselves; we have discussed several theoretical inter-
pretations of the Casimir effect without reminding the reader why she should care.
Let us turn now to a survey of the experimental sector of Casimir physics.

2.4 The Casimir Effect as an Observable Phenomenon

Putting the numbers into Casimir's original formula (2.1), we find that the magni-
tude of the Casimir pressure felt by one of two perfectly conducting plates in the
configuration of Figure 2.1 is

hc7r2  10-8 atm

240a 4  (a in [ym) 4

Thus, at a macroscopic surface-surface separation of a =1 mm, the Casimir inter-
action between perfectly conducting plates is an utterly negligible 20 orders of mag-
nitude smaller than ordinary atmospheric pressure, while even at a mesoscopic sep-
aration of a = 1 pm the Casimir force is still a scant 10~8 atmospheres. (And the
Casimir interaction between real materials will generally be even smaller than that
between idealized perfect metals.)

The tiny force magnitudes expected at macroscopic and even mesoscopic distances
suggest that the Casimir effect will only be observable between objects at nanoscopic
distances from one another, and this observation helps to explain why, although
there were some tentative experimental findings in the decades after Casimir's initial
prediction, it was not until the advent of modern microelectronics technology that the
first experiments could be performed to confirm Casimir's prediction in full detail [25].

Since the appearance of [25], the experimental Casimir field has grown by leaps and
bounds, with Casimir interactions having now been observed in dozens of laboratories
around the world and currently under investigation in an increasingly wide variety of



geometries and materials. Although we cannot do justice to the full breadth of the

experimental situation here (a valuable survey may be found in [6]), we will single out

two recent trends in experimental Casimir physics as particularly worthy of mention

for the purposes of this thesis.
First, although Casimir's original predictions considered only perfectly metallic

objects, and most theoretical work in the ensuing decades was restricted either to this

case or to the case of dielectric objects in vacuum-for which the Casimir interactions
tend to resemble at least qualitatively those for the perfect-metal case-in 2009 it was

experimentally demonstrated [33] that pairs of objects comprised of certain combina-

tions of materials, when embedded in a liquid dielectric such as ethanol, can exhibit a

Casimir interaction that differs in a key qualitative way from any Casimir effect that

had ever before been observed: it is repulsive instead of attractive. This experimen-

tal finding provoked a raft of suggestions for new experiments probing the impact of

novel material configurations [41], and there is every reason to believe that experi-

mental characterization of Casimir interactions between objects of various interesting

materials will be a growth industry in the near future.
Second, although the first precision experiment [25] and many subsequent experi-

ments used geometric configurations of relatively high symmetry-such as spheres and

plates-more recently it has become fashionable to conduct Casimir experiments in

highly asymmetric geometries, such as the quasi-2D silicon beams of polygonal cross-

section investigated in [29]. The sharp distance dependence of the Casimir force in

even the simplest Casimir situation (equation (2.1)) indicates that the Casimir effect

is a sensitive probe of geometric effects, a fact which will undoubtedly remain at the

forefront of experimental Casimir work in the coming years.
Thus, almost fifteen years after the dawn of the era of modern precision experimen-

tal Casimir physics, the field has entered a regime in which novel material-property
effects, complex geometric configurations, and the interaction between the two can

be expected to be a major theme of future work. This progress on the experimental

side has, in turn, stimulated the development of theoretical tools capable of predicting

Casimir interactions in arbitrary materials and geometries-a spate of recent progress
to which we now turn.



Chapter 3

Modern Numerical Methods in
Computational Casimir Physics

As discussed at the end of the previous chapter, the past 15 years have been an era of
explosive growth in experimental Casimir physics, with Casimir phenomena currently
under investigation in an increasingly broad variety of experimental configurations.
This rapid experimental progress has created a demand for theoretical tools capable
of predicting Casimir energies, forces, and torques among materials with arbitrary
frequency-dependent material properties configured in realistic experimental geome-
tries.

The computational methods used by Casimir, by the Russian school (Dzyaloshinkii,
Lifshitz, and Pitaevskii), and indeed by all classical Casimir researchers-where the
"classical" era of theoretical Casimir physics must be thought of as lasting until
around 2007-were generally designed to work for one and only one specific geom-
etry, with the entire technique reformulated for each new geometric configuration.
Moreover, the geometries considered in the classical era were generally highly sym-
metrical idealizations of actual experimental configurations-infinite planar bound-
aries at constant surface-surface separation, concentric spheres, and the like. It is only
in the past few years that techniques sufficiently general to be applied to arbitrary
geometries, and sufficiently sophisticated to handle complex asymmetric experimental
configurations, have emerged [22].

These general-purpose schemes for Casimir computations have to date adopted
one of two distinct strategies: either the numerical stress-tensor approach, or the
path-integral (or scattering) approach. (It is interesting to note that both techniques
are motivated by the material-fluctuation or field-fluctuation pictures discussed in
the previous chapter; Casimir's original picture of zero-point fluctuations in cavity
modes has long since been essentially abandoned as a practical computational frame-
work.) The fluctuating-surface-current (FSC) technique introduced in Chapter 5 of
this thesis represents a third computational paradigm, which may be viewed as a
logical outgrowth of either the numerical stress-tensor or the path-integral technique
and thus amounts to a unification of these two seemingly disparate approaches. To
prepare the groundwork for this eventual synthesis, in this chapter we review the nu-
merical stress-tensor and path-integral approaches to computational Casimir ptysics.



We emphasize that none of the content of this chapter is new; instead, this chapter is
a discussion of existing techniques in computational Casimir physics that are reviewed
here as background for the remainder of this thesis.

3.1 The Stress-Tensor Approach to Computational
Casimir Physics

In Section 2.3 we sketched an interpretation of the Casimir effect that emphasizes
the role of electromagnetic-field fluctuations in the medium (or vacuum) surrounding
interacting material objects. The numerical stress-tensor technique formalizes this
intuitive picture into a systematic computational procedure.

3.1.1 Casimir Forces from Stress-Tensor Integration

The key cartoon depiction of the stress-tensor paradigm is Figure 2.3. If we were
to measure the instantaneous values of the cartesian components of the electric and
magnetic fields in the region between material bodies, we would see noise: the func-
tions Ei(x, t) and Hi(x, t) are not identically vanishing, even the absence of externally
imposed fields, but instead exhibit random fluctuations. For our purposes the most
convenient way to characterize this noise is through the use of spectral density func-
tions. If f(t) is a time-varying quantity (such as Ei(x, t) for fixed i and x), then the
spectral density of fluctuations in f at frequency w is

(f) = eiwt f (t)dt) (3.1)

where the K) notation on the right-hand side indicates an average over all possible
values of the start time to. (f), is the noise quantity that we would measure in

the laboratory with a spectrum analyzer or lock-in amplifier, and (f), dw, speaking
somewhat roughly, is the portion of all noise in f that comes from fluctuations with
frequencies in the interval [w, w + dw].

The spectral density of fluctuations in any single field component vanishes, (Ei (x)),

(Hi(x)), = 0, but the spectral densities of fluctuations in squared field components
are generally nonzero and define an energy density of electromagnetic-field fluctua-
tions,1

U(x,W) = {e(x)(Ei(x)), + [t(x)(Hi(x))}.

Taking this idea one step further, by considering the spectral densities of fluctuations
in off-diagonal products of field components we obtain a fluctuation-induced version

iStrictly speaking, this expression for the energy density is only correct for nondispersive media;
the full expression for the energy density in the presence of frequency-dependent E and y is slightly
more complicated.



of the Maxwell stress-energy tensor,

Ti (x, w) = e(x, w) [(Ei(x)Ej (x)) - Z (Ek(x)Ek(x))
k

+ t(x, w) [(Hi(x)Hj (x)), - E KHk (x)H (x)),]. (3.2)
2k

We interpret Ti as a flow of i-directed momentum in the j-direction, so that E, T 3fi
represents an i-directed force per unit area (a pressure) on a surface patch with normal
n.

The stress-tensor approach to Casimir computations now proceeds by surrounding
a material body with a (fictitious, arbitrary) closed bounding surface C and integrating
the fluctuation-induced pressure (3.2) over this surface to obtain the full i-directed
Casimir force on the object as

i F (w), (3.3)
_. 27r

F (w) = j (Ti (x, w)) n (x) dx (3.4)

where n(x) is the inward-directed unit normal to C at x.

3.1.2 Noise Spectral Densities from Dyadic Green's Func-
tions

Equations (3.2) and (3.4) reduce the computation of Casimir forces to the computa-
tion of spectral densities of fluctuations in products of field components. This might
hardly seem much of an advance, inasmuch as there is no immediately obvious pro-
cedure for computing these spectral-density functions for a given Casimir geometry.

The development of such a procedure was the key contribution of the Russian
school in the 1950s [18, 30], who used the fluctuation-dissipation theorem of statistical
physics to relate fluctuations in products of field components to the scattering portions
of the dyadic Green's functions of classical electromagnetism. At temperature kT =



1/# these relations read2

KEi(x)Ej(x') = ihw coth 2 Im gE*c(w;x x') (3.5a)

Hi (x)H2 (x') = ih coth - Im g"'c(W; x,') (3.5b)

where, as discussed in Appendix A, g yscat(w; x, x') is the i component of the scat-

tered electric field at x due to a j-directed point electric current source at x', and
gMM,scat(w; x, x') is the i component of the scattered magnetic field at x due to a

j-directed point magnetic current source at x', all quantities having time dependence

oc e
The theoretical significance of (3.5) is that the ! functions for a given Casimir

geometry can be computed using techniques of classical electromagnetic (EM) scat-

tering theory, and equations (3.5) thus establish a link from the deterministic world

of the classical Maxwell equations to the stochastic realm of quantum-mechanical and

statistical fluctuations. The practical significance of this for Casimir computations
is that the door is now flung wide open to the vast array of techniques that have

been developed over the decades for numerical solutions of Maxwell's equations. In-

deed, inserting equations (3.5) into (3.2) and (3.4) results in an expression for the

Casimir force involving an integral over space and frequency which may be evaluated

by straightforward numerical cubature, with the value of the integrand at each cuba-

ture point obtained as the numerical solution of a classical EM scattering problem.

Choice of Scattering Methodology

With computational Casimir physics thus reduced to computational classical elec-
tromagnetism, the question now becomes which of the myriad numerical techniques
for solving EM scattering problems is best suited for Casimir applications. To date,
almost all applications of computational electromagnetism to Casimir physics have

employed finite-difference techniques [40, 35] to solve the imaginary-frequency scat-

tering problems. Although the finite-difference technique has the virtues of generality

(in that it may be applied to geometries with arbitrary spatially-varying material
properties with no more difficulty than to piecewise-homogeneous geometries) and

simplicity (in that it is relatively straightforward to implement), it is not the most

efficient method for solving scattering problems in the piecewise-homogeneous geome-

tries commonly encountered in Casimir problems. Instead, more efficient methods are

available, and one such method-the boundary-element method-will be discussed in

2The constant prefactors in our equations (3.5), as well as in our equations (3.9) below, appear

to differ from those in the corresponding equations in other references, including [30] and [22]. The

distinction is that the ! quantities in our equations are precisely the fields due to point sources

with no additional prefactors, whereas some authors write the relations (3.5) and (3.9) in terms

of different dyadic Green's functions that equal the fields of point sources only up to a constant

prefactor. For example, in Ref. [22] this constant prefactor is iW (see footnote 4 in [22]), and hence

our equations differ from the corresponding equations in that reference by a factor of iw (or -( in

the imaginary-frequency case).



the following chapter. (Later, in Chapter 5, we will demonstrate that the boundary-
element method in fact leads to a significant streamlining of the stress-tensor ap-
proach, in which the spatial integration in (3.4) may be evaluated analytically, leading
to formulae much simpler than (3.4)-our fluctuating-surface-current formulae).

3.1.3 Transition to Imaginary Frequency

In the meantime, however, there is one subtlety left to discuss. To get a sense of the
function F (w) that we are integrating over all w in equation (3.3), let us consider
what this function looks like for a typical Casimir problem. Figure 3.1.3(a) plots this
function for the particular case of the Casimir force (per unit area) on the upper of
two perfectly-conducting metallic plates separated by a distance a in vacuum (a case
in which F (w) may be evaluated analytically).

It is immediately evident from this plot that the task of integrating this function
numerically over all w will be highly ill-defined, due to catastrophic cancellation errors
arising from the large oscillations of the integrand. Mathematically, we can think of
the bad behavior of the integrand as resulting from the existence of poles in F(W)
located in the lower-right quadrant of the complex w plane; physically, these poles
correspond to resonance frequencies of the geometry in question. In the presence
of such resonance phenomena, classical EM tools can often be coaxed to work well
over narrow frequency bandwidths, but are difficult to use for inherently broadband
problems such as that defined by the infinite frequency integration in (3.3).

But this diagnosis already suggests a cure-namely, that we promote the broad-
band nature of Casimir problems from a curse to a blessing by availing ourselves
of Wick rotation. Thinking of the w integral in (3.3) as a contour integral in the
complex-w plane, we now simply rotate this contour 900 counter-clockwise and inte-
grate instead along the imaginary w axis, distancing ourselves from the troublesome
poles in the lower half-plane. The Casimir force expression (3.3) becomes simply

F =j {Fi(). (3.6)
0 7d(

As illustrated in Figure 3.1.3(b), the Wick rotation tames the angry oscillations in
Figure 3.1.3(a), leaving a smooth integrand that succumbs readily to straightforward
numerical cubature.

Computations at Imaginary Frequency

Figure 3.1.3 leaves no doubt that the frequency integral defining the Casimir force
is best performed over the imaginary frequency axis. What are the implications of
this for our computational procedure? Putting w = if in (3.4), the integrand of the
( integral in (3.6) is

F(= j Ti (x, () fn (x) dx (3.7)
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Figure 3-1: (a) A plot of the function F(w), the integrand of the frequency inte-

gral (3.3), for the particular case of the Casimir force-per-unit-area between parallel

metallic plates separated by a distance a in vacuum. The rapid oscillations in the

integrand render the integral essentially inaccessible to numerical quadrature. Math-

ematically, the oscillations correspond to the existence of lower-half-plane poles in the

integrand (inset of (b)), which suggests rotating the integration contour from the real

to the imaginary axis in the complex w plane. (b) The integrand of the Wick-rotated

integral, F( ), is a smooth and rapidly-decaying function of ( that succumbs readily

to numerical quadrature. 30



where Ti, (x, () is the Wick-rotated version of the stress-energy tensor, given by the
imaginary-frequency version of (3.2):

Ti (x, ) = e(x, ) (E (x)Ej (x)) - E (Ek(x)Ek(x)
k

+pt(x,) [(H(x)Hj(x)) - ( E Hk(x)H(x))j. (3.8)
k

Here c( ) and p( ), the permittivity and permeability functions on the imaginary axis,
are defined by straightforward analytic continuation of their real-frequency counter-
parts; in practice, these functions may be computed from real-frequency e and y data
by simple application of the Kramers-Kronig relations [19].

The notation ( ), in equation (3.8) represents a sort of Wick-rotated spectral
density of fluctuations. Although it is difficult to ascribe a physical significance to
equation (3.1) under the rotation w -+ i , the rotated versions of (3.5) are perfectly
well-defined; at temperature T = 0 they read

Ej (x)Ej (x') = kgEsca
t ( ;xx' (3.9a)

Hi (x)Hj (x') k X, X') (3.9b)

where the imaginary-frequency versions of the dyadic Green's functions are defined
precisely as before (for example, gEEscat is the scattered electric field due to a point
electric current source), but now with all quantities having exponentially growing time
dependence ~ e

3.2 The Path-Integral Approach to Computational
Casimir Physics

The path-integral approach to the computation of fluctuation forces was pioneered by
Bordag, Robaschik, and Wieczorek [5] and by Li and Kardar [26, 27], and has since
been further developed by a number of authors (see [37] for an extensive survey of
recent developments.) In this section we briefly survey this technique.

3.2.1 Casimir Energy from Constrained Path Integrals

In the presence of material boundaries, the partition function for a quantum field
# (which may be scalar, vector, electromagnetic, or otherwise, but is here assumed
bosonic) takes the form

Z () = f [D#(T, x) ]c s (3.10)



where the action at inverse temperature # is the spacetime integral of the Euclidean
Lagrangian density for the # field,

S[] J= d dx LE {#(T, X)}, (3.11)

and where the notation [... ]c in (3.10) indicates that this is a constrained path
integral, in which the functional integration extends only over field configurations #
satisfying the appropriate boundary conditions at all material boundaries.

If the boundary conditions are time independent and the Lagrangian density con-
tains no terms of higher than quadratic order in # and its derivatives, then it is
convenient to introduce a Fourier series in the Euclidean time variable,

(T, x) = #qOn(x)einT, = rn ,

whereupon the path integral (3.10) factorizes into a product of contributions from
individual frequencies,

Z(#) = W Z
n

Z(#;() = JD#(x)] e~S[Onn] (3.12)

with

S #[O n = 3 dx LE On (X)ei nT}

representing the contribution to the full action (3. 11) made only by those field config-
urations with Euclidean-time dependence e-inT. The free energy is then obtained
as a sum over Matsubara frequencies,

F = In Z( = - In Z(Oi, n) (3.13)
3 Zo(3) zoo(#,I )

where Zo.(Zoo) is Z(Z) evaluated with all material objects separated by infinite dis-
tances (dividing out these contributions in (3.13) is a useful convention that amounts
to a choice of the zero of energy). In the zero-temperature limit, the frequency sum
becomes an integral, and the zero-temperature Casimir energy is

e = j0d In Z() (3.14)
27r o Zoo

(Here and below we omit the # argument to Z).



3.2.2 Enforcing Constraints via Functional 6-functions

Equations (3.13-3.14) reduce the computation of Casimir energies to the evaluation
of constrained path integrals (3.12). In most branches of physics, the path integrals
associated with physically interesting quantities are difficult to evaluate because the
action S in the exponent contains interaction terms (terms of third or higher order
in the fields and their derivatives). In Casimir physics, on the other hand, the action
is not more than quadratic in #, and the difficulty in evaluating expressions like
(3.12) stems instead from the challenge of implementing the implicit constraint on the
functional integration measure, arising from the boundary conditions and indicated
by the [. -- ]c notation in (3.12).

The innovation of Bordag [5] and of Li and Kardar [26] was to represent these
constraints explicitly through the use of functional J functions. If the boundary
conditions on # may be expressed as the vanishing of a set of quantities {La#0}, where
{La} will generally be some family of linear integrodifferential operators indexed by
a discrete or continuous label a, then the constrained path integral may be written
in the form

Z()= [D<n(x) e-S[O;n

= J D#,h(x) 116 (Lc#)e-S[ln; nl (3.15)
a

where now the functional integration over #n is unconstrained. A particularly conve-
nient representation for the one-dimensional Dirac 6 function is

6(u) =J i e", (3.16)
127

where we may think of A as a Lagrange multiplier enforcing the constraint that u
vanish. Inserting one copy of (3.16) for each 6 function in the product in (3.15) yields

Irf dAc
Z() Dn 2(x) e-s[4k;tn]+ia La

The final step is to evaluate the unconstrained integral over #; since the exponent
is quadratic in #, this can be done exactly using standard techniques of Gaussian
integration, yielding an expression of the form

Z {(n) J dAa e-SeffIA. (3.17)

(where {#} is a constant that cancels in the ratios in (3.13-3.14)). The constrained
functional integral over the field # is thus replaced by a new integral over the set
of Lagrange multipliers {Aa}, with an effective action Seff describing interactions
mediated by the original fluctuating field #.



3.2.3 Representation of Boundary Conditions

Equation (3.17) makes clear that the practical convenience of path-integral Casimir
computations is entirely determined by the choice of the Lagrange multipliers {Akj
and the complexity of their effective action Sff; these, in turn, depend on the details
of the boundary conditions imposed on the fluctuating field. For a given physical
situation there may be multiple ways to express the boundary conditions, each of
which will generally lead to a distinct expression for the integral in (3.17). Ultimately,
of course, all choices must lead to equivalent results, but different choices may exhibit
significant differences in computational complexity and in the range of geometries that
can be efficiently treated. Several different representations of boundary conditions and
Lagrange multipliers have appeared in the literature to date.

The original work of Bordag et al. [5] considered QED in the presence of super-
conducting boundaries, with the boundary conditions taken to be the vanishing of
the normal components of the dual field-strength tensor; in the notation of the pre-
vious section, L,# = i"F,*,(x), and the set of Lagrange multipliers {Ax} constitutes
a three-component auxiliary field defined on the bounding surfaces. The method is
applicable to the computation of electromagnetic Casimir energies, but the treatment
was restricted to the case of parallel planar boundaries.

Li and Kardar [26, 27] considered a scalar field satisfying Dirichlet or Neumann
boundary conditions on a prescribed boundary manifold. Here again the boundary
conditions amount to the vanishing of a local operator applied to #, Lx# = #(x)
(Dirichlet) or Lq# = |8#/&nIx (Neumann), and we have one Lagrange multiplier
A(x) for each point on the boundary manifold. In this case it is tempting to interpret
A(x) as a scalar source density, confined to the boundary surfaces and with a self-
interaction induced by the fluctuations of the # field. This formulation was capable,
in principle, of handling arbitrarily-shaped boundary surfaces, but was restricted to
the case of scalar fields.

The technique of Refs. [26, 27] was subsequently reformulated [15, 16] in a way that
allowed extension to the case of the electromagnetic field. Whereas the original for-
mulation imposed a local form of the boundary conditions-and took the Lagrange
multipliers A(x) to be local surface quantities-the revised formulation abandoned
the surface-source picture in favor of an alternative viewpoint that emphasized in-
coming and outgoing electromagnetic waves. In this revised formulation, the local
boundary conditions are replaced by an integral form of the boundary conditions,
L,# = f '*(x)#(x)dx for some discrete set of functions {a(x)}, corresponding to
the requirement that each term in a multipole expansion of # separately satisfy the
boundary conditions on the full boundary surface. In contrast to the continuous
surface-source densities used in Refs. [26, 27], this form of the boundary conditions
leads to a discrete set of Lagrange multipliers {A}, with one multiplier associated to
each multipole; instead of representing the local value of a surface source density, we
now think of A, as the ath multipole moment of a source distribution, and the effective
action Seff describes the interaction among multipoles. (The strategy of separately
enforcing an integrated boundary condition on each term in a multipole expansion is
reminiscent of classical scattering theory, and indeed the path-integral approach to



Casimir computations is sometimes known as the "scattering" approach [37].)
The great virtue of multipole expansions is that, for certain geometries, a small

number of multipole coefficients may suffice to solve many problems of interest to
high accuracy. This has long been understood in domains such as electrostatics and
scattering theory, and in recent years has been impressively demonstrated in the
Casimir context as well [15, 16, 37], where multipole expansions have been used to
obtain rapidly convergent and even analytically tractable series for Casimir energies
in certain special geometries. The trick, of course, is that the very definition of the
multipoles already encodes a significant amount of information about the geometry,
thus requiring relatively little additional work to pin down what more remains to be
said in any particular situation.

But this blessing becomes a curse when we seek a unified formalism capable of
treating all geometries on an equal footing. The very geometric specificity of the
multipole description, which so streamlines the treatment of compatible or nearly-
compatible geometries, has the opposite effect of complicating the treatment of in-
compatible geometries; thus, whereas a basis of spherical multipoles might allow
highly efficient treatment of interacting spheres or nearly-spherical bodies, it would
be a particularly unwieldy choice for the description of cylinders, tetrahedra, or par-
allelepipeds. Of course, for each new geometric configuration we could simply re-
define our multipole expansion and correspondingly re-implement the full arsenal of
computational machinery (a strategy pursued for an dizzying array of geometries in
Ref. [37]), but such a procedure contradicts the spirit of a single, general-purpose
scheme into which we simply plug an arbitrary experimental geometry and turn a
crank.

Instead, the goal of designing a more general-purpose implementation of the path-
integral Casimir paradigm leads us to seek a representation of the boundary condi-
tions that, while inevitably less efficient than spherical multipoles for spheres (or
cylindrical multipoles for cylinders, or ...) has the flexibility to handle all manner of
surfaces within a single computational framework. This is one way of motivating the
fluctuating-surface-current approach to Casimir computations, and will be pursued
in detail in Chapter 5.
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Chapter 4

Boundary-Element Methods for
Electromagnetic Scattering

Our discussion of the numerical stress-tensor method in the previous chapter makes

clear that the accuracy and efficiency of this approach to computational Casimir

physics depend critically on the procedure chosen to solve the large number of electro-

magnetic scattering problems required to evaluate the integrals in (3.7). This chapter

discusses one particular choice, the boundary-element method, that has proven par-

ticularly well-suited for Casimir applications.
The boundary-element method (BEM) [17, 32] is a well-established technique in

computational electromagnetism that, for decades, has proven the method of choice in

a wide variety of applications. The purpose of this chapter is to remind the reader of

this existing set of techniques, primarily for the purposes of fixing ideas and notation

for the remainder of this thesis; nothing in this chapter is new, although the ex-

plicit expressions (4.8) and (4.17) for the scattered fields have not, to our knowledge,
appeared before in the form we give them.

In an EM scattering problem, we are given a scattering geometry and known

incident fields Ei"c (x), Hinc(x) (and/or known sources for the incident fields), and our

task is to compute the scattered fields E scat(x), Hscat (x) (with the total fields obtained

by summing incident and scattered contributions). The well-known finite-difference

(FD) [9, 34] and finite-element (FE) [47, 20] methods solve directly for the total fields

by locally enforcing a differential (FD) or integral (FE) form of Maxwell's equations. A

virtue of these methods is their great generality; because Maxwell's equations are only

referenced locally, geometries with arbitrary spatially-varying electrical properties are

handled with no less ease than piecewise homogeneous geometries. The drawback,
of course, is that the methods are "too general" for many problems; indeed, many

scattering geometries consist of homogeneous bodies embedded in a homogeneous

medium, and the FE and FD methods fail to make use of the simplifications afforded

by the known solutions of Maxwell's equations in this case.

The BEM is an alternative strategy, most directly applicable to piecewise-homogeneous

scattering geometries (i.e. geometries in which the permittivity and permeability are

piecewise-constant in space), that makes maximal use of the known closed-form solu-

tions to Maxwell's equations in homogeneous media. In the BEM, instead of solving



directly for the scattered fields, we instead solve first for an intermediate quantity,
namely, an effective surface-current distribution, confined to the surfaces of the scat-
tering objects, that gives rise to a scattered field satisfying all boundary conditions.
Once we have solved for the effective surface-current distribution, we may use it to
compute the scattered fields anywhere in space.

4.1 The Boundary-Element Method for PEC Bod-
ies

4.1.1 The Integral Equation for K

As a first illustration of the BEM, let us consider the problem of a monochromatic1

incident field Ei"c(x, t) = Einc(x)e+l scattering off of one or more perfectly electrically
conducting (PEC) bodies embedded in vacuum (factors of e+ ' will henceforth be
suppressed). Physically, the incident field induces a surface-current distribution K(x)
on the surfaces of the scatterers, and it is this current distribution that gives rise to the
scattered fields; if we knew K(x), we could use the vacuum dyadic Green's functions
(Appendix A) to compute the scattered electric field anywhere in space according to

Escat (x) = f f ( ; x, x') - K (x') dx' (4.1)

where the surface integral extends over S, the union of the surfaces of all scattering
objects.2 (Equation (4.1) applies for evaluation points x lying exterior to the scat-
tering objects; the field vanishes at interior points because we are considering PEC
bodies.)

Equation (4.1) is not immediately useful as we do not know K(x) a priori, but we
can solve for K(x) by demanding that the field (4.1) to which it gives rise satisfies the
appropriate boundary conditions. Since we are considering PEC bodies, the boundary
conditions are simply that the tangential components of the total electric field vanish
at the surfaces of the scatterers:

[Einc(x) + Escat(x) x n(x) = 0, x E S (4.2)

where crossing with n(x), the normal to S at x, is simply a convenient way of ex-

'The boundary-element is more typically formulated in the real-frequency context, in which
case the time dependence of all quantities would be e-i"t instead of ~ e+, and it is from this
context that the term "monochromatic" is borrowed. Although we are here presenting an imaginary-
frequency version of the boundary element method-because this is the version that we need for the
purposes of this thesis-the entire discussion of this chapter carries over immediately to the real-
frequency case simply by replacing the imaginary-frequency dyadic Green's functions r((; r) (which
have exponentially-decaying spatial dependence r ~ e-&/W) with their real-frequency counterparts
L(w; r) (which have oscillatory spatial dependence F ~ e"w/c).

2The dyadic Green's functions in Appendix A carry a superscript r indexing the homogeneous
region in which they are defined; the absence of that superscript on rEE in (4.1) indicates that this
is a vacuum dyadic Green's function.



tracting the tangential components of a vector. Inserting (4.1), we obtain an integral
equation for K(x) :

[jsEE( x x') K(x/)dx'] x n(x) = -Ei"c(x) x n(x). (4.3)

Equation (4.3) is sometimes known as the "electric-field integral equation" (EFIE).

4.1.2 Discretization

To solve (4.3) for a general geometry, we now proceed by discretizing the surfaces
of the scattering objects into small surface patches and introducing a set of localized
tangential-vector-valued basis functions {f.} compatible with our surface discretiza-
tion. The {ff}, which will play the dual roles of expansion functions for our surface
current distribution and testing functions for the boundary condition (4.2), are the
"boundary elements" from which our method derives its name. (The discussion in
this chapter is independent of any particular choice of basis function; in Chapters 6
and 7 we will specialize to two specific choices of basis function that are particularly
convenient in certain cases.)

Approximating the induced surface current K(x) as an expansion in the finite set
{fo},

K(x) = ZKafK(x), (4.4)

inserting into (4.1), and taking the inner product of (4.3) with each basis function in
the set yields a linear system for the expansion coefficients {K,}:

M-K=V (4.5)

where the elements of the K vector are the expansion coefficients {Kc}, the elements
of the V vector are the inner products of the basis functions with the incident field,

Va = - fa f(x) - Einc(x) dx
Jsup fa

-(fQ|Einc), (4.6)

and the elements of the M matrix are the interactions of the basis functions:

MJ(0 = Jupf af(x) - x, x') - f3 (x') dx dx'

=_{fa|T EEIf

We will refer to the matrix defined by (4.7a) as the "EFIE matrix." Note that MO
is the inner product of basis function f, with the electric field radiated by currents
described by basis function fo.



4.1.3 Explicit Expression for Scattered Fields

After solving the linear system (4.5) for the {K,} coefficients, we may use these
coefficients to compute the scattered fields anywhere in space according to

Escat(x) = K FEE X, X') f,(x') dx' (4.7a)

ZKa pEE(X) fa) (4.7b)

Hscat (x) Z Ka ME(X) fa). (4.7c)

For the sequel it will be convenient to have an explicit, if formal, expression for
the scattered fields in terms of the incident fields. We obtain such an expression by
substituting the formal solution to (4.5), K = M- -V, into (4.7):

Escat (x) _ _ E(x) f -) [M11 f Einc) (4.8a)

Hscat (x) _ ME (X) fc) [M-11 Kf3 Einc (4.8b)

Equations (4.8) will play a crucial role in our application of BEM techniques to
stress-tensor Casimir computations in Chapter 5.

4.2 The Boundary-Element Method for General
Bodies

4.2.1 Integral Equations for K and N

In the PEC case, the mathematics of the BEM procedure neatly mirrors the physics
of the actual situation. Indeed, for good conductors at moderate frequencies it really
is true that the physical induced currents are confined near the object surfaces; the
surface current distribution K(x) obtained in the BEM procedure thus has a direct
physical interpretation as an induced surface current.

The situation is more complicated for general (non-PEC) objects, for here the
physical induced currents are no longer confined to the surfaces, but instead extend
throughout the bulk of the object. The obvious extension of the procedure outlined
above would be to introduce a volume discretization and solve a system analogous
to (4.5) for the coefficients in an expansion of a volume current density J(x). Such
a procedure, while retaining the intuitive interpretation of the quantity computed as
a physical current density, would suffer from poor complexity scaling, as the number
of unknowns (and thus the dimension of the linear system corresponding to (4.5))
would scale like the volume, not the surface area, of the scattering objects.

To retain the advantages of a surface-only formulation, we abandon the strategy



of solving for the physical source density that radiates the scattered fields, and in-
stead attempt to solve directly for the tangential components of the total fields on
the boundary surfaces. The mathematical development underlying this approach is
a certain vector generalization of Green's theorem known as the Stratton-Chu equa-
tions [44], which relate the electromagnetic fields in the interior of a closed region to
the tangential components of the fields on the boundary of that region. More pre-
cisely, let Q be a contiguous homogeneous volume in space with boundary 8Q, and
for points x on &Q define two tangential vector fields according to

Keff(x) = n(x) x H(x), Neff(x) = E(x) x n(x) (4.9)

where E and H are the total (incident plus scattered) fields and n is the inward-
pointing normal to 8Q at x. The Stratton-Chu equations are then the following
expressions for the fields at points inside Q:

E(x) = j {FEE(,x)- K(x') FEM ,r (; X, X) - Ne"(X')) dx' (4.10a)

H(x) = J FMEr eff X/) +r MM,r( ;x,x) -N*f(x') dx' (4.10b)

where the F functions are the dyadic Green's functions for the homogeneous medium
Q. (Equations (4.10) assume that there are no field sources within Q: if there are any
such sources, their contributions must be added in separately.)

Although the tangential vector fields defined by (4.10) are simply components
of the E and H fields and do not correspond to actual physical source densities,
nonetheless the form of equations (4.10) encourages us to think of Keff and Neff as
effective electric and magnetic surface current densities, which, if known, would allow
us to compute the fields anywhere in space, just as knowledge of K(x) suffices in the
PEC case to determine uniquely the full scattered field. (To emphasize this analogy
we will henceforth drop the "eff" designation from K and N.)

As in the PEC case, we obtain equations determining the effective source den-
sities by applying the boundary conditions, which are simply that the tangential
components of the total E and H fields be continuous across material boundaries.
Consider a scattering problem in which incident fields Enc, H "c impinge on one or
more compact objects embedded in a medium. (The objects might themselves consist
of multiple distinct layers of homogeneous material, such as a dielectric sphere coated
with a thin layer of conducting material; all that is important for our purposes is that
space be divided up into a number of contiguous piecewise-homogeneous regions Q,).
Consider a point x on the boundary between two regions Qr and Q8, and suppose
the incident field sources lie in Q,. (For the prototypical scattering problem involving
incident radiation impinging on a compact homogeneous scatterer in a medium, Qr
would be the interior of the scatterer, while Q, would be the external medium.) As



we approach x from within Q, the fields approach

Eext(x) = Ei"(x) + {FEES()) K + FE M S(X) - N} dx'

H*ext(x) = Hinc (x) + {TME, (X) K + TMm s(x) -N} dx'

(4.11a)

(4.11b)

where the s superscript identifies the dyadic Green's functions appropriate for medium

QS e
On the other hand, as we approach x from within Qr, the fields approach

Eint(x) =

Hint(x) =

{ EE,r (x) K + LTEM r(X) N} dx'

SfM
E,r () K + rMMr(x) N} dx'.

(4.12a)

(4.12b)

Equating tangential components of (4.11) and (4.12) yields a system of integral
equations for the surface current densities:

[ iFME,r - K + p
M M ,r -N} dx' -

{f EES - K + rEM,S - N} dx'1

K + FMM,s -N} dx'
I { J M E ,S

= --Ej""cN

(4.13a)

= -Hic

(4.13b)

These equations, which are the generalization of (4.3) to the case of non-PEC scat-
terers, are sometimes known as the Poggio-Miller-Chang-Harrington-Wu (PMCHW)
equations [32].

4.2.2 Discretization

Proceeding now in precise analogy to the PEC case, we discretize the boundary
surfaces 8Qr and approximate the surface current distributions as expansions in a set
of localized basis functions:

K(x) = ZKof,(x), N(x) = -Zo E Nja(X).

(Here Zo ~ 377 Q is the impedance of free space, and the constant prefactor in the
definition of the N, coefficients is a useful convention which leads to a symmetric
BEM matrix.)

With the expansions (4.14), the discretized version of equations (4.13) becomes

MEE MENI
M ME M MM

K)
N f

VE
VM

(4.15)

pEE,r - K + FEM,r -N} dx'

(4.14)

- ia 2,



where the elements of the RHS vector are

VE= -(fo|Einc)/zo, VM a I H inc),

and the elements of the matrix-for the simplest case of one or more homogeneous
objects embedded in an external medium-are

M ( = (fa lEE,e( ) + fEE,r

M ((- (fa|FE M ,e + rE M ,r

M( (fa|F M E,e + r M E,r(fo

MMg() = -Zo (f f MM e) +r MM,r( )jf3.

if basis functions f. and ff3 both exist on the surface of the rth object, or

M ( = (fal EE,e f3/Z,

MEg() (fa I TEM,e f8)

M ()= (fa ()ME,e(fo

MM O (() = -Zo(fa|TMM,e J

if basis functions f. and ff exist on the surfaces of different objects (and where
the e superscript identifies the dyadic Green's functions appropriate for the exter-
nal medium). (Physically, two surface current elements on the surface of the same
object interact with one another both through the medium interior to that object
and through the exterior medium, while currents on different objects interact only
through the exterior medium).

We will refer to the matrix M( ) defined by the above equations as the "PMCHW
matrix."

4.2.3 Explicit Expression for Scattered Fields

After solving (4.15) for the surface-current expansion coefficients, we may use them
to compute the scattered fields anywhere in space according to

Escat(x) = {K(FEEe(x) f) - ZONC(TEM,e(X) }fa} (4.16a)
a

Hsca t (x) = {Ka(MEIe(X) fa) - ZoNa(F MM e(x) fa)}. (4.16b)

(These are for the case of evaluation points x in the exterior region; the correspond-
ing expressions for x interior to object r, which we will not need, contain minus
signs relative to (4.16) and only reference the subset of the expansion coefficients



corresponding to basis functions defined on the surface of object r).
As in the PEC case, we can write explicit formal expressions for the scattered fields

in terms of the incident fields. To facilitate this process we define some notation for
the blocks of the inverse of the PMCHW matrix in (4.15):

MEE MEM [1 (A B
MME MM C D

The formal solution of (4.15) is then

K = A- VE+B-VM

N = C. VE +D.VM

and the non-PEC analogue of equation (4.8) is

Escat(X

- f { FEE(XfQ) [A#e] # Einc)

+ (FEE(X) fa) [Bapl f H"fic)

+ K EM(X f [Cap] ( E inc)

+ KFEM(X) f Da f I H inc) (4.17a)

Hscat X

=- S ME(X) [A] Einc)

+ KrME(X) fa [BCa] Kf3 H inc)

+ KFMM (x) Ifa) [cafl] K fo E inc)

+ KFMM(x) fa)[DQ,] f Minc)}. (4.17b)

4.2.4 Summary

This completes our brief overview of the boundary-element method. The most im-
portant results for what follows are the explicit expressions (4.8) and (4.17) for the
scattered fields in terms of the incident fields. The critical advantage of these expres-



sions is that they furnish a certain separation of the scattering geometry (the details
of which are encapsulated in the basis functions {ff} and in the inverse BEM ma-
trices) from the incident fields {E, H}inc and the scattered-field evaluation point x.
As we will see in the next chapter, it precisely this explicit factorization that allows
analytical progress to be made within the stress-tensor formulation of computational
Casimir physics.
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Chapter 5

Fluctuating Surface Currents: A
Novel Paradigm for Efficient
Numerical Computation of Casimir
Interactions among Objects of
Arbitrary Materials and
Geometries

We now have all the pieces needed to motivate the derivation of the fluctuating-
surface-current formulae that constitute the central theoretical contribution of this
thesis. After stating the formulae in Section 5.1, we will present two separate deriva-
tions, one within the framework of the stress-tensor approach to Casimir computations
(Section 5.2), and the other within the path-integral framework (Section 5.3).

5.1 The Fluctuating-Surface Current Formulae

The fluctuating-surface-current technique expresses the zero-temperature Casimir en-
ergy of a configuration of objects, and the zero-temperature Casimir force and torque
on one of those objects, in the forms

E d log det M(() (5.1a)
27r Jo det Moo()

i"= - o d Tr jM-() (5.1b)

d r M() (5.1c)

In these equations,



" M(() is a matrix describing the interactions, at imaginary frequency (, of tan-
gential electric and magnetic currents flowing on the surfaces of the interacting
objects in our Casimir geometry, as approximated by expansions in some fi-
nite set of localized tangential-vector-valued expansion functions. (In fact, M
is nothing but the the BEM matrix described in Chapter 4-either the EFIE
matrix for a Casimir problem involving perfectly conducting objects, or the
PMCHW matrix for more general objects.)

" The matrix BM/Ori in (5.1b) is the derivative of M(() with respect to an in-
finitesimal displacement of one of the interacting objects in our Casimir geometry-
namely, the object on which we are computing the force.

* The matrix BM/&9 in (5.1c) is the derivative of M( ) with respect to an in-
finitesimal rotation of one of the interacting objects in our Casimir geometry
about some axis, and T on the LHS of that equation is then the torque about
that axis.

Readers familiar with the path-integral approach to computational Casimir physics
will recognize the FSC energy formula (5.1a) as bearing a striking resemblance to the
corresponding formula for the Casimir energy that arises in the path-integral formal-
ism [37]. In both cases, the energy is computed as an integral over all imaginary
frequencies, with the integrand proportional to the logarithm of a ratio of matrix de-
terminants. The distinction lies in the nature of the matrix in question: in the usual
path-integral formalism, M is a classical scattering matrix describing relationships
among incoming and outgoing waves of the electromagnetic field, whereas in the FSC
approach M is the BEM matrix (Chapter 4) describing the interactions of fluctuating
surface currents on the surfaces of the objects in our Casimir geometry.

Finite-Temperature Expressions

Equations (5.1) are for temperature T = 0. At nonzero temperatures, the imaginary-
frequency integrals go over to Matsubara sums in the usual way [22, 30]:

2j dI( ) -+ k 0T I I(n)
n=O

where the nth Matsubara frequency is & = 2n7rkBT/h and where the primed sum-
mation indicates that the n = 0 term enters with weight 1/2.

5.2 Stress-Tensor Derivation of the FSC Formulae

Our first derivation of the FSC formulae proceeds by applying BEM ideas to the
numerical stress-tensor method reviewed in Chapter 3. As discussed in that chapter,
to compute the Casimir force on an object using the numerical stress-tensor method
we surround the object by a closed bounding surface C and write the i-directed



Casimir force on the object as a combined integral over imaginary frequency and
over C:

F =j --Fii() (5.2)

F ()= -h j (x; () gEs'"(, x, x) - g ,scat x, x) (5.3)

+ p(x; )[g Mscat (,XX)M,scat (x) dxij 2 kk(~ x, X]

where the dyadic Green's functions g( ) are the solutions of classical scattering prob-
lems at imaginary frequency (.

The naYve way to apply BEM ideas to stress-tensor Casimir computations would
be simply to evaluate the spatial integral in (5.3) numerically, with the value of the
integrand at each point computed by using a numerical BEM technique to solve
the scattering problems implicit in the definition of the 9 dyadics. Although this
procedure leads to a perfectly workable computational scheme,' and one which is
already significantly more efficient than using finite-difference methods to evaluate
the integrand in (5.3) [40], in fact it is possible to do much better.'

The key observation is that the BEM technique allows us to write down compact
closed-form expressions for the dyadic Green's functions 9EESCat and gMMScat in (5.3)
in which the dependence of these quantities on the bounding contour is separated from
the dependence on the Casimir geometry. Upon plugging these expressions into (5.3),
it then emerges that the surface integral can be evaluated analytically once and for
all, obviating numerical cubature for the spatial integral, eliminating the dependence
on the arbitrary bounding contour C, and leaving behind compact expressions that
refer only to our particular Casimir geometry-the FSC formulae.

The derivation of these ideas is straightforward, but unavoidably involves some
lengthy mathematical expressions. To present the ideas in the simplest context first,
we begin by considering the case of PEC objects in vacuum, then generalize to arbi-
trary materials.

5.2.1 The PEC Case

If we take the incident field in (4.8) to be the field of a j-directed point electric
current source at x', Ejnc(x) = FE(x, x'), then the scattered electric field computed

'Stress-tensor integration with the g dyadics computed using numerical BEM techniques is im-
plemented in the Casimir3D package described in the following chapter, and may be selected in
place of the FSC formulae through command-line options.

2After the first application of FSC techniques to the computation of Casimir interactions in
general geometries [39], the same results were re-obtained using a numerical BEM solver [49].



from (4.17a) is just the scattered part of the electric-electric dyadic Green's function:

gEEscat  f) = _ S KrEE(x) f) M-]f FE(/).ij (X X (f I rE (x/ (5.4)

(Throughout this section we work at a fixed imaginary frequency ( and omit the (
arguments to g and IF).

Similarly, to compute the scattering part of the magnetic-magnetic dyadic Green's
function we take the incident field to be that of a point magnetic current source,
E!nc(x) = 1j"(x, x'), and use (4.17b) to compute the scattered magnetic field:

( ME(X) fa) [M-1] f FEM (X)) (5.5)

Writing out the inner products in full detail and rewriting the F tensors in terms of
the G and C tensors (Appendix A), we may write these expressions in the form

gEE,scat (X,) = --Zo2 2 [M-1Q 1

a3 a 3 supfa

Gik(x, r)fayk(r) dr

gMM,scat _ Cik(x, r)fk (r) dr+K2 EM- 
I

a#aeupf JSupf,3

(5.6a)

fi (r') Ci (r', x') dr'

(5.6b)

(with summation over repeated indices implied; here r, = (/c and the K arguments
to G and C are suppressed). Inserting into (5.3) and interchanging the order of the
x and r, r' integrations then immediately yields

Fi) = hZo0 , [M-1] a
dr fS (5.7)

sup fa

where we have defined

ikl(r, r') = r2 Gik(x, r)Gij (r', x) - LGmk(x, r)Gim(r', x)

CS -
- Ci (x, r)CIj (r', x) + f6 Cmk(x, r)CIm(r', x)}I n(x) dx. (5.8)

The symmetry of the M matrix in (5.7) allows us to rewrite that equation in the form

dr Jupff(5Fi =

sup fo
dr'

gMM,scat (IX)

fol (r') Gij (r', x')

dr' fak(r) - likl (r,r') - f~i (r')

dr' fak(r ) - fiki(r, r) - foli(r') (5.9)
a#K E sup1 f a fo



where we have defined a symmetrized version of the I kernel,

Jikl(r, r') - Ik(r, r') + Iilk(r', r). (5.10)

The point of this symmetrization is that, as demonstrated in Appendix C, it allows
the surface integrals in the definition of I to be evaluated in closed form for any
topological two-sphere C, with the result

0,

Gkli(r - r')

Gk1 (r - r')
0ri

0,

if both r, r' lie inside C

if r lies inside and r' lies outside C

if r lies outside and r' lies inside C

if both r, r' lie outside C.

Note that we may write (5.11) in the slightly simpler form

0,1

Yki(r,r') = r'
Br Gki(r' - rE)

where, in the
of C.

if r, r' lie on the same side of C

if r, r' lie on opposite sides of C

second case, r' (rE) is whichever of of r, r' lies in the interior (exterior)

Armed with equation (5.12), we can now analyze the integral over the supports
of basis functions fa, f3 in equation (5.9). Let us label the objects in our Casimir
geometry 01, 02,-- , where 01 is the object on which we are computing the force;
thus object 01 lies in the interior of the bounding surface C, while all other objects
lie in the exterior of C. The first case of equation (5.12) then tells us that the integral
over fQ, f, vanishes unless precisely one of the two basis functions lies on object 01.
Suppose f, lies on 01, while fo lies on O with n > 2. Using the second case of (5.12),
the integral in (5.9) then reads

Z , sup f dr 
sup f/I

dr' fak(r) - aGk(r - r') - fi(r')
(9rf

apE
dr' f,(r) - E /rf ).

Iik(r,r) = (5.11)

(5.12)

dr J
fU sup3

= ZOnj
i sup f,

= U - a d

fg

(5.13)

dr' fak(r) . YIaI (r,r') - foli(r)



But this is nothing but minus the derivative of the a, # element of the BEM matrix
M with respect to an infinitesimal rigid displacement of object 01 in the i direction,

a
= Ma_ . (5.14)

An analogous analysis holds for the case in which ff6 lies on 01 and f. lies on On,
n > 2.

In view of these observations, we can now rewrite equation (5.9) to read

Fi f() = , [ 1M 8
2 a,8 a oriaar

= Tr {M - } (5.15)
2 Bri

(where we have invoked the symmetry of M) and the full Casimir force (5.2) is

{ d Tr M-1. (5.16)
27 0o ari

Next, using the general relation for the derivative of the determinant of a matrix with
respect to a parameter,

a log det A(A) _1 BA
=A Tr A-'-a

we can identify (5.16) as minus the ri derivative of an energy expression,

ar
where

h det
E8=-- delog et (5.17)27r 0 o det MOo

where Moo is M computed with all objects removed to infinite separations, and
subtracting log det MOo is a convenient normalization that amounts to a choice of the
zero of energy.

Equations (5.16) and (5.17) are our fluctuating surface current formulae. Although
derived here for the particular case of PEC objects in vacuum (for which M is the
EFIE matrix discussed in Chapter 4), these formulae remain valid, in precisely the
forms we have quoted them here, for arbitrary material configurations, but with M
replaced by the PMCHW matrix. We next turn to a demonstration of this fact.

5.2.2 The General Case

Generalizing to the case of arbitrary materials embedded is now just a straightforward,
if notationally cumbersome, procedure.



The first step is to obtain the analogues of (5.4) and (5.5) for the non-PEC case.
If we take the incident fields in equation (4.17) to be the fields of a j-directed point
electric current source at x', i.e.

E ac(x) = E(xx'), H (x) = I X

then the scattered E field computed from (4.17a) is just the scattered portion of the
electric-electric dyadic Green's function:

gEE,scat  x/ I E r { E (X A [ A r EE (X

+K EE (X) f) B f F E (X/)

E M X Ifa) c 1013K EE (X

+r T "(x) Ifa D ]"fr M E /) (5.18)

Similarly, taking the incident fields to be the fields of a point magnetic source, and
using (4.17b) to compute the scattered magnetic field, yields the scattered portion of
the magnetic-magnetic dyadic Green's function:

g; Mscat (X X') __ _ { E(X fa8 A ]K1, (X/)

+KFIE(X) fa) B h flK# FMM(X

KFMM(x) fa C c K EM/

+Fe(x)t fu D itfhs e w(x' ) F (5.19)

As before, we write out the full inner products in these equations with the r dyadics



rewritten in terms of the G and C dyadics:

GFEscat(X X/)

z2ze2 e2 [ A If
L# J&3Jsup fa

-ZoZee 2 I B

+ZoZene2[ C
a# sup fa

-Ke2 [ D iUPfa

Gik (x, r) fak(r) dr]

Gik(x, r)fak(r) dr]

Cik(x, r) fak (r) dr]

Cik(x, r)fk(r) dr]

suP fo
ff p(r')Gij (r', x') dr'

fal (r')CI,(r', x') dr'

f pi (r') Gj (r', x') dr'

fol (r') Cig(r', x')dr'

J
[sup fg

[sup f

MMscat( )

A ] IsUP fa

B I3[i

C ]3 IUP

D

Cik(X, r)fak(r) dr

Cik(x, r)fak(r) dr]

Gik(x, r)fak(r) drl

Gik(x, r)fck(r) drl

(Note that the wavenumber and relative wave impedance that enter here are those of
the external medium in our Casimir geometry, Ke and Ze, because the surface C on
which we evaluate the stress tensor lies entirely within this medium.)

Substituting these expressions into (5.7) and rearranging the order of integration

-Ke2

Ze2

Z0 e

+ e2

+ZZe

K e2

+Z2ZI2

[JUP f,6

[JUPf'3

[JUP f'3

dr]

dr'
dr'

dr'

= - E
a# O

fpi (r' Qijr', x')

foli(r') Gig(r',x')

f,81 r') Cij(r', x')

f,31 (r') Gis (r' ,x'/)



now yields the analogue of equation (5.9):

{A [A ZoZee pfFi W) = 2

- [ B I/3
aI 0"

- e f

sup fa

he 

f

where the 3
analogous to

kernel is defined and evaluated in Appendix C, with a result directly
(5.12):

0,1
Jik(r, r') = 8

{r'Ch( - rE)

if r, r' lie on the same side of C

if r, r' lie on opposide sides of C.
(5.21)

Proceeding in direct analogy to the discussion surrounding equation (5.14), it is now
a short step to identify the integrals in equation (5.20) as just the derivatives of the
elements of the PMCHW matrix, whence we can identify that equation as nothing
but the PMCHW analogue of equation (5.15),

Fi ( )'=Tr {M1 }
2 Bri

(5.22)

which has precisely the same appearance as (5.15), but with M now standing for the
PMCHW matrix instead of the EFIE matrix as in (5.15).

5.3 Path-Integral Derivation of the FSC Formulae

It is remarkable that the FSC formulae (5.1), which we derived above in the context
of the stress-tensor approach to Casimir computations, can be derived on the basis of
entirely separate considerations within the path-integral framework. In this section
we present this alternate derivation.

The novel path-integral formulation that we present here differs in at two key
respects from typical path-integral computations of electrodynamic Casimir phenom-
ena. First, whereas most authors make a specific choice of gauge, thus concealing the
underlying gauge invariance of the theory, here we write the Euclidean Lagrangian for
the electromagnetic field in a way that preserves manifest gauge invariance throughout
the calculation (Section 5.3.1). Second, whereas other electrodynamic path-integral

dr isup 
fo

dr Jupf3

dr isup 
fo

dr' fk (r) - ikl (r,r') -f (r)

dr' fak (r ) - ikl(r,r') - fi p(r)

dr dr' fak (r) - Ik(r, r) - fi (r )

(5.20)

dr' fak(r) - YEW (r,r') - fol (r')



formulations convert the functional integral over fields into a functional integral over
volumetric unknowns-such as the multipole moments of a source distribution-our
treatment uses surface unknowns (namely, electric and magnetic surface currents).
Surface unknowns have been used elsewhere in path-integral analysis of scalar-field
fluctuations [26, 27], and special surface unknowns were used in [5] and [14] to compute
electrodynamic Casimir phenomena for the special case of the infinite-parallel-plate
geometry. However, this work represents the first use of surface unknowns to compute
electrodynamic Casimir forces in general geometries.

5.3.1 Euclidean Lagrangian for the Electromagnetic Field

The first step in applying the path-integral formalism to the computation of electro-
magnetic Casimir energies is to write down a Euclidean action for the electromagnetic
field. To this end, we begin by recalling that the usual (real-frequency) Lagrangian
for the electromagnetic field is

S =J dx L(w, x)
27f

1(w, x) = e(w,x)|E(w,x)|2 - [(w,x)|H(w,x)| .

To rewrite this in terms of the four-vector potential A"(w, x) (with A0 = <, the usual
scalar potential) we write3

1
E, = iwA' - 8 A0  Hi = -eojkajA

p

to obtain (with the w and x dependence of A" suppressed)

L(w, x) -(W) (- iwA'* - a4A0* (iwAi - &2A0) - E eijk~lmajAk*l A")
2 2p(w, x)

- c, x W 2 Ai*Ai - iw&2A
0*Ai + iwAi*O Ao + 8 A0*atA0

- -8 Aj*8a Aj - 8a Aj*og A'
2p(w, x)

Integrate by parts to shift all derivatives over onto non-conjugated quantities:

S(w x) (w2 Ai*Ai + iwAo*&aAi + iw Ai*& AO - AO*a aAO

+ ( Ai*ajajAi - Ai*OiajAi).
2p-(w, x)

3Here and throughout this thesis we use the symbol e to denote the Levi-Civita symbol, while
the symbol c is reserved for dielectric permittivities.



The transition to imaginary frequency is effected by the replacements4

w -+ it, A --+ iA, AO* -+ iAO*

under which the Euclidean Lagrangian density reads

£ E( , x) = -(i-, (X 2 A'*A - itA *ajA - itA *8

1
+ 'Ai*a ajAi - A'* a8a Ai)

2p(ie, x) n

or, introducing a convenient matrix-vector notation,

1
2

:~~4L(~~) ]

A0 + Ao*84a8AO)

(5.23)

A0

A'
A2

A3

(5.24)

with

-iego,

- 82 2 

- Ozox

-ieg,

-e2 + (6X + 82)

--azay
- By Bz

-6(2 + _(& + y2)

To proceed it will actually be useful to rewrite this in the form

N// -
A'
A2

A3

- o

-e<2 + (8 + 83)

- }a8 a
-e2 + 1(82 + 02)

-z

~2 + _I((9x + O2

--A 8

4The seeming incongruity between the latter two prescriptions here is not a typo!

-zc~ax, D / (0 =
LE( , X) =

c. -A0

A1

A2

A3

with now

AO)

(5.25)

~cILL(~)

-i (82 2 O2
-i

ox

-z 6 a

-A



We will use the notation A" to denote the four-vector in (5.25), i.e.

AO

A'
A2

A3

A will be the four-vector field over which we path-integrate, and equation (5.25) is
almost, but not quite, the quantity that enters into the exponent of the constrained
path-integral expression (3.10) for the Casimir energy. To complete the story, we must
add a Fadeev-Popov gauge-fixing term. To identify an appropriate form for such a
term, we take a page from the usual QED path-integration procedure by writing Z,
as the sum of a diagonal term and a rank-one update, then taking the gauge-fixing
term proportional to the rank-one update. More specifically, we write

ze, = U1 - U 2

-e(2 + 1 V 2

0
0
0

U2=
i NF0 ax

J6i i

i ~9z

0
-<2 + 1V 2

0
0

192

(9
X

SAza

i FC O

192

0
,0

-e 2 + 1 V2

0

192

0
0
0

-2 + .1V2
it

and we now take the Fadeev-Popov gauge-fixing term to be simply

Z)FP = 1 U2
aFP

where the Fadeev-Popov gauge-choice parameter aFP may be chosen arbitrarily and
is absent from all physical predictions, as will be explicitly verified below.

The final expression for the Euclidean electromagnetic Lagrangian density is

LE A"(x)e}6 = (A0

A'
A 2

A3

t

*) + ZFP ( )

and, following the general procedure discussed in Chapter 3, we write the electromag-
netic Casimir (free) energy of a collection of objects at inverse temperature # in the

A0

A'
A 2
A 3

(5.26)



form

1 ZI(#3) -1 0 (n 27rn
EzoI o =-- E In Zoo =0 - (5.27)

ZC(,() / [ A eDA fA eAd (5.28)

with the notation [- - ]c indicating that the functional integration ranges only over
field configurations that satisfy the boundary conditions in the presence of our inter-

acting material objects.

5.3.2 Boundary Conditions on the Electromagnetic Field

In a scattering geometry consisting of one or more homogeneous material bodies
embedded in a homogeneous medium, the boundary conditions on the electromagnetic
field are simply that the tangential E and H fields be continuous across all material

boundaries: if x is a point on the surface of an object, then we require

ta [Ei"(x) - Eout (x)] = 0

ta [Hi"(x) - H*ut(x)] = 0

where {E, H}in,"ut are the fields evaluated just inside and just outside the object
surface at x, and where ta (a E {1, 2}) are vectors tangent to the surface at x. In

terms of the modified four-vector potential AA, these conditions may be written in
the form

ti{Li"(x) - Lp "(x)}AI(x) = 0 (5.30a)

ti{L''"(x) - L ";(x)}AP(x) = 0 (5.30b)

where LE,r and LM,' are differential operators that operate on AP to yield the com-
ponents of the E and H fields in region r. In a homogeneous region with spatially

constant c(Q, x) r ),p((,x) = (i), these take the form

-- -8ax i 0 0 00 0 - a o

LE,r -y 0 i 0 , L' = 0 &z 0 - .

- -az 0 0 i 0 -a, ax 0
(5.31)

Equations (5.30) are a set of four boundary conditions for each point x on the surfaces
of the material bodies in our geometry; in the language of the Section 3.2, these are
our constraints L&7$, and to each constraint we now associate a Lagrange multiplier.
We use the symbols Ka(x) and Na(x) (a = 1, 2), respectively, to denote the Lagrange



multipliers associated with constraints (5.30a) and (5.30b) at the single point x. Then
the 6 functions that enforce the boundary conditions (5.30) at x are

6 (Eou (x) - Ei[ t (x)) = J 2L eiKx L "Eu

6(H'-(x) - Ht(x)) = J 2)iN[LL"-LMout]AA(x)

where we may think of {K., Nx} = 1:_= {Ka, Na}ta as vectors in the tangent space
to the boundary surface at x. Aggregating the corresponding 6 functions for all points
on the surface of a single object, we obtain functional 6-functions,

J DK (x)e s -[ 1 ( d (5.32a)

DN(x)es Nx L' "LM'ot(x)dx (5.32b)

where the integral in the exponent is over the surface S of an object in our geometry,
and where the functional integrations f DK, f DN extend over all possible tangential
vector fields on S.

Since K and N are tangential vector fields on S that enforce the continuity of the
tangential electric and magnetic fields, respectively, it is tempting to interpret these
quantities as electric and magnetic surface current densities, and with their introduc-
tion our path-integral formalism begins to exhibit the first glimmers of resemblance
to the boundary-element method (in the PMCHW formulation) discussed in Chapter
4.

5.3.3 Evaluation of the Constrained Path Integral

In general we will have one copy of the functional 6-functions (5.32) for the surface of
each object in our geometry. For the particular case of two objects, the constrained
path integral takes the form

Z 0,) = J [DAII e-21AAdx

= J7DK1 I DK 2  DN1 JfDN2 J DA{

-A f AS Adx

x e+i fS, { K1 -(LE,1-LEO)+N 1 -(LM,1LM,o)Adx

x e+i fS2 { K 2.(LE,2 LE,O)+N 2-(LM,2-LM,O) } Adx

with fS1,2 denoting integration over the surfaces of objects 1 and 2.



To proceed, it is now convenient to think of breaking up the functional integration
over AP into three components, f DAI = f DAIL f DA4 f DA', where AI is the field
in the interior of region r (r = 1,2 for the interiors of objects 1 and 2, and r = e
for the external medium). The matrix D(x), which depends on x through E and y,
is constant in each region due to the piecewise homogeneity of the geometry, while
the operators LEM,r only operate on the fields in region r. The functional integral
becomes

Z(#,= JDK1DK 2 DN1DN 2 DA DAIL DA{

fVe Ae e A 1 A1'1A 1 fv2 A2-22-A 2

x e+i fsi {[Ki-LE,1+N 1 .LM,1].A 1 -[Ki -LE,e+NI.LM'e].A dx

x e±i fS2 { [K2 -L E,2+N 2.LM, 2 ]-A 2 -[K 2 -LE,e+N 2 -LMe]Ae } dx (5.33)

with f. denoting volume integration over the interior of region r. Now performing
the functional integrals over the fields Al immediately yields an expression of the
form (3.17):

Z(/, () = {# DK 1 DK 2DN 1 DN 2 e S0f{K1,K2,N1,N2] (5.34)

where {#} is an unimportant constant that cancels upon taking the ratio in (5.27)
(and which will not be written out in the equations below), and where the effective
action for the surface currents contains several terms, which we will now investigate
individually.

First consider terms arising from integrating the Af field out of (5.33). Schemat-
ically, we have

J e A1 -1A1+i fsi [Ki -L E,1 +N 1 .L"'l]-Ai

DA'e_ 2/3s

= e~ ffs1{Ki -LE,1+Ni- LM, -1.[K 1-L E,1+N1 -LMl]

- e-S1[K,Ni]

where Si describes interactions of the electric and magnetic currents on S mediated



by virtual photons traveling through the interior of object 1:

Si K1, N 1 = dx dx' K1(x) . yEE, (x x') K 1(x')

+K 1 (x) - .E
M (x, x') N 1 (x')

+N1 (x) -y, (ME,1 / -, K(x')

+-N1 (x) -y"'(x, x') - N1(x') (5.35)

with the components of the tensor kernels given by (P,Q C {E,H})

,y 9'1 = Li,'0 , LT. (5.36)

The matrix multiplications in equation (5.36) are most easily evaluated in momentum
space, where we have

-i_ k, i 0 0 0 0 -ikz iky

L-E,1 = ~ ky 0 k 0 L,') 0 ikz 0 -ikxK - kz 0 0 iL 0 -iky ikx 0

and

= (2 +(k2)11 ) U2
CFP '

S - +k 2 [1 + IP) U 2] (5.37)

where 1 is the 4x4 unit matrix, {El, p } are the (spatially constant) permittivity and
permeability of region 1 at imaginary frequency (,

and the momentum-space form of the U 2 matrix is

2 KkX sky skz
U - Kkx kx2 kxky kxkz
2 p ky ky kX ky ky kz '

skz kzkx kzky k2

We first observe that the second term in square brackets in (5.37) makes no contri-



bution to the y kernels in (5.36). Indeed, we have (c = 1/ /epl)

LE, - U 2 - (LE1 )T

1

pl

K2

sck,
szky
rskz

-ickx
-icky
-ickz

Kkx
k 2

ky kx
kz kx

ky

kxky
k 2

kz ky

kzk
kxkz
kykz

k 2

-ickx
i0
0
0

and the other three possible LUL sandwiches also vanish identically:

LE,1 - U 2 . (LM'1)T = LMl - U 2 - (LE,1)T = Lm" . U 2 (L"1)T

This furnishes the promised demonstration that the gauge-choice parameter aFP in
(5.37) makes no appearance in the effective action (5.35), thus explicitly confirming
the gauge invariance of our procedure.

Having verified that only the first term in (5.36)
(5.36), these kernels are now easy to evaluate. First,

contributes to the A kernels in

y EE,1 __ - - L E 1 (LE,1)T

K2+ k2II

K2 +k2

zz2
r~ K( 2 + k2 )

-ckx
-icky
-ickz

)+
'I-ick,

i0
0
0

k 2
kykx
kz kx

-icky
0

0

kxky
k 2

kz ky

-ickz
0
0
i

kx k
kykz

k 2

But a quick comparison with the momentum-space forms of the dyadic Green's func-
tions in Appendix A reveals this to be nothing but { times the electric-electric dyadic
Green's function, i.e.

7EE,1 ( ;k) . EE1 k)

or, transforming back to real space,

1EE , EE,1 /

and the striking similarity of our formalism to the boundary-element method begins
to come into even sharper relief.

63

-icky
0
i0
0

-ickz
0
0
it

= 0.



1
EM,1

K2 + k 2

K2 + k2

K2+ k2

-icky

--ick_.

0 0 0
0 ikz -iky

-ikz 0 ikx
iky -ikx 0

-kz ky
0 -kx
kx 0

and again comparing with Appendix A reveals that we have simply

EM,1 _ EM,1

Having established the obvious pattern, it is now a short step to confirm that the
remaining two cases of the -y kernel in (5.36) are simply

ME,1 . ME,1

MM,1 
fMM,1

and equation (5.35), the portion of the effective action for surface currents that arises
from integrating the photon field in the interior of object 1 out of (5.33), reads simply

S1 [K 1, N1 = Uf dx (5.38)

(5.39)

(5.40)

(5.41)

In precisely analogous fashion, we find that the contribution to the effective action
arising from integrating out the photon field in the interior of region 2 reads

dx'{ K2(x) . FEE,2( . X, X/) -K 2 (x)

+K 2(x) - TEM,2(J X, X') -N 2 (x)

+N 2 (x) - f M
E,2 / x') -K 2 (x)

+N 2(x) - F ME,2 XX/) -N 2(x)}.

Finally, we consider integrating the photon field in the exterior region (Ae) out of

Next,

S2 [K2, N2] =182dxj (5.42)

(5.43)

(5.44)

(5.45)

- ky

dx'{ K1(x) - rTEE, 1 / , - K1(x)

+K1(X) - TEM,1 X 7x') - N1 (x)

+N1 (x) - ]FME,1 /,x - K1 (x)

+N1(x) - rTME,1 /7,) -N1(x)}.

ILE,1 ,1 TI



equation (5.33). Although the computations proceed exactly as before, the resulting
contribution to the effective action is more complicated. In addition to terms analo-
gous to (5.41) and (5.45) describing the self-interactions of currents on Si and S2, we
now have terms describing interactions between currents on different object surfaces,
with all interactions now mediated by photons propagating in the external medium:

Se [Ki, N 1 , K2, N 2]

_ f d d K1 (x) r EEe E
M

e K1 (x')
2 JS dx N1 (x) ) F M Ee MM,e N1 (x')
+ [ x (K 2(x) fEE,e rEMe K2 X')
2 Js2 xs2 N 2(x) , L ME'e MMe N 2(x')
{ ff K1 (x) r EE,e r EM,e K2 x')2 sdx Jsdx N1 (x) J P MEe MM)e N 2(x')

+ j dx j dx/ ( 2 X ) K E,e FM)e K-(x') (5.46)2 , N2XfME~eme Ni1(x')

Combining (5.41), (5.45), and (5.46), the path integral (5.34) now reads

Z = DKDN exp - I ( f
N2 (N2

(5.47)
with

/EE,1 + fEE,e fEM,1 + EM,e fEE,e EM,e(pME,1 + FME,e fME,1 + fMM,e rMEe FMM,e

1= f EE,e EMe EE,2 + fEE,e EM,2 + EMe

1ME,e fMM,e FME,2 + IFME,e FME,2 + fMM,e

The quantity F - () in (5.47) is nothing but the left-hand side of equation (4.13).

Having elucidated the structure of the effective action for surface currents, the
remainder of our derivation is now straightforward. To evaluate the functional integral
over sources in (5.47), we approximate K and N as expansions in a finite set of
tangential basis functions representing surface currents flowing on the surface of the
interacting Casimir objects, just as we did in equation (4.14):

K(x) = ZKcafQ(x), N(x) = -Zo Nafa(x).

We now insert these expansions into (5.47) and approximate the function-dimensional
integrals over K and N as finite-dimensional integrals over the Kc and N, coeffi-
cients: J DKiDNi =+ J dKa fldNa



where 3, the Jacobian of the variable transformation, is an unimportant constant
that cancels upon taking the ratio in (5.27) (and which will not be written out in the
equations below). Equation (5.47) now becomes simply

Z(,)= J dKa f7 dNae-
a a

a finite-dimensional Gaussian integral which we evaluate immediately to obtain

= # [detM() ] 1 ,2  (5.48)

where M() is nothing but the PMCHW matrix discussed in Chapter 4 (and, once
again, {#} is just an irrelevant constant into which the (/2# prefactor in the exponent
disappears). Now finally inserting (5.48) into (5.28) and (5.27) leads immediately back
to our FSC formulae (5.1), and our derivation is complete.

5.4 Equality of the Partial Traces

An important practical simplification of the FSC formulae follows from the structure
of the BEM matrices. Recall from (5.1) that the quantity that enters into the FSC
expression for the Casimir force is

Tr M-- - FI M-1 ra 1  (5.49)

(with a similar expression for the torque). As before, let the objects in our Casimir
geometry be labeled 0,, n = 1, 2, -. -, with 01 the object on which we are computing
the Casimir force, and let D, be the dimension of the subblock of the M matrix
corresponding to object O (that is, D, is the number of localized basis functions
defined on the surface of 0.) The dimension of the full matrix is D = E D,.
We know that the only nonzero entries of the derivative matrix &M/&ri are those
corresponding to pairs of basis functions of which precisely one is located on the
surface of object 01. We can thus split the sum in (5.49) into two pieces:

M1 [& Di D -[Mao1 D Di a/1
S 3 Ma- " + ( ZM-4&AI

a# [-a=1 #3=D 1 +1 a=D13=1

(5.50)

The first piece on the RHS here is the sum of the first D1 diagonal elements of the
matrix M- 1 -'9M while the second piece is the sum of the remaining D - D1 elements.dri
But from the symmetry of M it now follows that the two pieces here are equal, and
thus to compute the full trace we need only sum the first D1 diagonal elements of



M-' - '9 (or the latter D - D1 elements, if they are fewer) and double the result, i.e.dri

am Di D - MTr M- - I = 21 M1 -c r917 a=1 #=D 1+1 . z .

In practice, a convenient way to evaluate this quantity is to LU-factorize the matrix
M, solve the linear systems M - Xm = Bm where the vectors Xm are the first Di
columns of a, then extract and sum the mth elements of the vectors Bm and double
the result. The equality of the partial traces then ensures that this operation requires
just D1 linear solves, in contrast to the full D solves that would be required in the
absence of the simplification.
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Chapter 6

CASIMIR3D: A Numerical
Implementation of the FSC
Formulae for Compact 3D Objects

Chapter 5 presented the theoretical underpinnings of our master FSC formulae (5.1),
but said little about how these formulae might be implemented in practice. In this
and the following two chapters we remedy this deficiency, presenting three separate
numerical implementations of the FSC formulae.

The implementation presented in this chapter, CASIMIR3D, predicts Casimir
forces, energies, and torques between compact three-dimensional objects. We begin in
Section 6.1 by describing a particular choice of basis functions-the "RWG" functions,
introduced in 1982 and today used extensively in computational electromagnetism-
that CASIMIR3D uses to represent tangential current distributions on the surfaces
of compact 3D objects. In Section 6.2 we discuss the implications of this choice of
basis functions for the computation of the elements of the BEM matrices that en-
ter into the FSC formulae. After the relatively involved nature of Section 6.2, all
remaining details of the numerical implementation of CASIMIR3D are comparatively
straightforward, and are briefly summarized in Section 6.3. (Details on the usage of
the CASIMIR3D software package, including command-line syntax, are relegated to
Appendix G.)

6.1 RWG Basis Functions for 3D BEM Problems

The first and most important decision we make in crafting a practical implementation
of the fluctuating-surface-current formulae is a choice of localized basis functions to
represent our fluctuating surface currents. For CASIMIR3D we choose the "RWG"
basis functions, introduced by Rao, Wilton, and Glisson in 1982 [38], which have
proven a particularly useful choice for representing tangential current flow on the
surfaces of compact three-dimensional objects. To fix ideas and notation for the
remainder of this chapter, in this section we review the definition of the RWG basis
functions.



(a)

(b)

f17 i'(X)

f39 (X)

(c)

Figure 6-1: To represent tangential currents on the surfaces of compact 3D objects
such as a cube and sphere (a), we approximate the surfaces of the objects as unions
of planar triangles (b), then assign a single vector-valued basis function (the "RWG"
basis function, (c)) to each adjacent pair of triangles.
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fa(X)
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Figure 6-2: To the ath internal edge in our discretized surface mesh, la, we associate
a single RWG basis function f (x). This basis function describes a surface current
distribution that emanates from one of the two vertices opposite l (we call this
vertex Q2), increases in magnitude as it flows toward 1a, then crosses over the edge
and decreases in magnitude as it flows toward the opposing vertex (which we call
Q;). We use the labels P,+, and P; to denote the triangular panels on which the
current is increasing and decreasing. As illustrated in the figure, the value of the
basis function at a point x is proportional to x - Q! (for x E Pgj) or to Q- - x. (for
x P;).

To describe surface currents with RWG basis functions, we begin by approximating
the surfaces of compact 3D objects as unions of planar triangles, a discretization
process illustrated in Figure 6.1 for the approximately cubical and approximately
spherical objects whose Casimir interaction we considered in Chapter 3. (For objects
with curved surfaces, such as a sphere, the planar triangles can of course furnish
only an approximate representation of the true geometry, but the approximation can
be improved to any desired degree of accuracy simply by using smaller and smaller
triangles.)

We now associate one vector-valued RWG basis function to each internal edge in
the triangulation. As pictured in Figure 6.1, the basis function f. associated with the
ath internal edge is nonvanishing only within the two triangular panels that share
that edge; we arbitrarily designate one of these panels the "positive" panel associated
with f, (and denote it ?,), while the other panel is the "negative" panel (denoted
P;). We use the labels Via, V2 a for the endpoints of the shared edge and Qf, Q;
for the vertices opposing that edge within the positive and negative panels.

The RWG basis function f. then describes a current distribution that originates
from vertex Q+, flows across panel Pj toward the common edge of the two panels
with increasing magnitude until it reaches that edge, then crosses over into P; and



flows toward Q. with decreasing magnitude until it is sunk into that vertex. More
explicitly, we have

la

fa(X) = A (6.1)1. A(XQ) X C pg2a

where l1, A+, A- are the length of the shared edge and the areas of the two panels.

An important feature of the RWG basis function is that the charge density asso-
ciated with the current distribution it describes is constant on each of the two panels
and of strength designed to ensure that the total charge density vanishes:

e x E Pa±
V - fa(x) = A

- x E Pa
A-a

6.2 Evaluation of BEM Matrix Elements Between
RWG Basis Functions

Appendix B reduces the computation of BEM matrix elements between localized
basis functions to the evaluation of three types of integrals (the "L-functions") over
the supports of the basis functions. In this section we consider the evaluation of the
L-functions for the specific choice of RWG basis functions.

6.2.1 RWG Matrix Elements from Panel-Panel Integrals

Because each RWG basis function is supported on precisely on two triangular panels,
each L-function decomposes into a sum of four panel-panel integrals:

L.(r; fa, f3) =L.(; Pa, Q; P, Q

-L.(r,; PO+, Q+;- PW , Q-3)

+L.('; P;, Q-; 'P, Q-). (6.2)

(and similarly for Lv and Lx; note that the panel-panel L-functions depend not only
on the two panels but also on which of the panel vertices are the current source/sink



vertices.) Inserting the definition (6.1), the three panel-panel L functions are

il dx

Lv (r,; P, Q; P' Q')
- ill dx

L x (,;P, Q;P, Q')

- ill dx

dx'

dx'

dx'

(x - Q) - (x' - Q')#(; |x-x

4.- #(r; |x - x'l)

(6.3a)

(6.3b)

(x - Q) X (x' - Q') -x ] - Vx') K; |x- x'1)

(6.3c)

where the scalar # and 0 functions were defined in Appendix B.

To evaluate integrals over a triangular panel with vertices (V1 , V 2 , V3 ) we param-
eterize points in the triangle according to

x =V 1 + u(V 2 - V) + v(V 3 - V 2)

V 1 + uA + vB, (A = V2 -

O u 1,)

V1, BE=V 3 -V 2)
and write

jdx f(x) = 2A du dvf (x(u, v))

where the function x(u., v) is given by (6.4) and the factor of 2A (twice the area of
the triangular panel) is the Jacobian of the variable transformation. Applying this
procedure to both the x and x' integrals in (6.3), the panel-panel L-functions reduce
to integrals over a four-dimensional region consisting of the product of two standard
triangles:

L.(r,; P, Q; P', Q') ll' du dv du' dv' h.(u, v, u', v')#(r; R(u, v, u', v'))

Lv('; P, Q; P', Q') = ll' du dv du' dv' hv(u, v, u', v')#0(r,; R(u, v, U', v'))

Lx (i; P, Q; P', Q') = il' du dv du' dv' h x (u, v, u', v') (r; R(u, v, U', v'))

(6.5a)

(6.5b)

(6.5c)

where

S/1 u u'du dv du' dv' _-f du odv O du' fodv',

0 < V <u (6.4)



the R function is the distance between parameterized points in the two triangles

R(u, v, U', v') = (V 1 + uA + vB) - (V' + u'A' + v'B') ,

and the h functions are polynomials in u, v, U', v' whose coefficients express geometric
information about the triangles:

h.(u, v,', v') = (x(u, v) - Q) - (x'(u, v) - Q') (6.6a)

hv(u, v, U', v') = 4 (6.6b)

hx (u, v, u', v') = [(x(u, v) - Q) x (x'(u', v') - Q') [x(u, v) - x'(u', v') (6.6c)

with the notation

x(u, v) = (V 1 + uA + vB), x'(u', v') = (V' + u'A'+ v'B')

P=(V1,V 2,V 3), A=V 2 -V 1 , B= V 3 -V 2

P'=(V'1, V'2, V'), A' = V'2 - V'1 B' = V/- V'2

6.2.2 Panel-Panel Integrals between Distant Panels

When panels P, P' in (6.3) are relatively far away from one another, the integrands
vary relatively slowly over the domain of integration, and the integrals may be eval-
uated by straightforward numerical cubature.

To quantity the notion of "relatively far away," we introduce a relative distance
function between panels according to

|xo - x' IRD(P, P') = 0 (6.7)
MAX (rad(P), radT(P))

where xo, x' are the panel centroids and rad(P) is the radius of the minimal circle
centered at the centroid of P that fully encompasses P. This relative distance between
panels then determines the order of the numerical cubature scheme needed to evaluate
the integrals in (6.5).

I have found it adequate to use a nested cubature scheme, in which a single
cubature rule for the standard triangle is used twice, once for the (u, v) integral and
once for the (u', v') integral. More specifically, let {ui, vi} be the points and {wi} the
weights of an NC-point cubature rule for the standard triangle, so that

1 U NC

j du I dv f(u,v) ~ E Wmf (Um,Vm).
J O m=1



Then I evaluate the integrals in (6.5) via the prescription

NC NC]du dv du' dv'I(u, v, u', v') e ( E WmnI(Um, Vm, un, vn).
m=1 n=1

When RD(P, P') > 8, I have found that a fourth-order cubature rule with N' = 6

yields sufficient accuracy (relative errors of 10-6 or less), while in the range 4 <

RD(P, P') < 8, a seventh-order rule with N' = 15 is adequate. (These two rules

and many more are contained in the invaluable trove of cubature rules presented in

Reference [10]).

6.2.3 Panel-Panel Integrals between Nearby Panels: Desin-
gularization

When the relative distance between panels P, P' is less than 4, the integrands vary

rapidly over the domain of integration and low-order cubature schemes are inaccu-

rate. As long as P, P' contain no common points, this difficulty could in principle

be addressed in brute-force fashion simply by using higher-order cubature schemes.

But this would be computationally costly, particularly inasmuch as a typical Casimir

problem will require us to recompute the elements of the BEM matrix elements at

dozens or hundreds of frequencies to evaluate the integral over ( in (5.1). Moreover,
even the highest-order numerical cubature scheme will be powerless to adjudicate the

singularities in the integrands of (6.3) that arise whenever P, P' have one or more

points in common. Although these are of course integrable singularities, their exis-

tence thwarts straightforward numerical cubature and requires a more sophisticated

approach.
The computation of singular or nearly-singular panel-panel integrals for numerical

BEM schemes is a well-studied topic in the computational electromagnetism commu-

nity (a useful recent review is Ref. [46]). Although no universal consensus has emerged

to define a single optimal computational approach, two techniques in particular have

come into common usage: desingularization [48], in which the most singular term

in the Taylor1 expansions of the singular kernels in (6.3) are subtracted off and in-

tegrated analytically or quasi-analytically, and Taylor's method [45], in which the

four-dimensional integrals in (6.3) are rearranged in ways that allow the use of Duffy

transformations [11] to eliminate the singularities altogether.

As useful as both of these techniques are, neither method in isolation suffices

for the purposes of CASIMIR3D. The desingularization technique, as typically im-

plemented, subtracts only the most singular term from the singular kernel (for, in

general, it is only this term that may be analytically integrated), leaving behind an

integrand that, while nonsingular, still exhibits sufficiently rapid variation to require

large numbers of integrand samples to evaluate the full four-dimensional integral by

numerical cubature. On the other hand, Taylor's method succeeds in reducing the

'The two Taylors in this discussion-one known for his series, the other for his method of evalu-
ating singular triangle-triangle integrals-are not to be confused with one another!



four-dimensional integral to a three-, two-, or one-dimensional integral, but with an
integrand that-while again explicitly nonsingular-is expensive to evaluate.

Thus both methods, while removing integrand singularities, nonetheless leave be-
hind multidimensional integrals that are expensive to evaluate by numerical cubature.
While this expense may be acceptable for typical BEM solvers-which operate at a
single frequency-for Casimir applications, as noted above, we must recompute ma-
trix elements at dozens or hundreds of frequencies, and this requirement motivates
us to concoct a more efficient scheme.

In CASIMIR3D we construct such a scheme by combining and extending the desin-
gularization and Taylor-method techniques. First, we extend the desingularization
technique by subtracting multiple (up to 4) terms from the Taylor expansions of the
singular kernels. This leaves behind smooth, slowly-varying integrands that are inte-
grated already to high accuracy by low-level cubature rules. Second, we evaluate the
contributions of the singular terms using a modified version of the Taylor method, in
which we extend Taylor's original procedure to the case of general kernel functions
and polynomial factors. Although our extended Taylor method for evaluating singu-
lar integrals is not without computational expense, all the integrals that we will need
turn out to be frequency independent; thus we need only compute these quantities
once per Casimir calculation, after which we may store and reuse them for rapid
recomputation of BEM matrix elements.

The panel-integral scheme implemented by CASIMIR3D differs from standard tech-
niques discussed in the literature in at least four ways. First, we combine the ideas of
desingularization and the Taylor method, two methods that have heretofore remained
separate. Second, we extend both of these procedures, by subtracting several more
terms than usual from the singular kernels, and by expanding the Taylor method to
allow treatment of arbitrary kernel functions and integrand polynomials. Third, our
method is specifically optimized for use in broadband problems, in which BEM matrix
elements must be recomputed at a large number of separate frequencies. Finally, our
method works at imaginary frequencies, as required for Casimir problems. (Notwith-
standing this last point, the central ideas are equally applicable to real-frequency
problems, and the panel-integration module of our CASIMIR3D code indeed contains
implementations of our technique for both real- and imaginary-frequency panel inte-
grals.)

More specifically, we define desingularized versions of # and V) according to

9 KD1( r) 47rr 1 1r - 2(6r)3

1
- -r ExpRel(4, rr)

47rr

and similarly

1
D s)r) r - 1)-wr ExpRel(4, Kr)4ur

where the ExpRel function is defined in Appendix D.



The integrals in (6.5) are now evaluated as

h. (u,J uv , , ) d d )} d u d dv'v'

= {h. (u, v, u, v')p" (r, R) I du dv du' de'

3

+ E (_ J {h.(u,v,U',v')Rn- dudvdu'dv' (6.8a)
n=O

hv(u, v, u', v')$(K, R)} dudv du'dv'

= {hv(u,v,ul, v')#DS iR)} dudvdu'dv'

+ 47rn! {hv(u, v, u, v)Rn1 du dv du'dv' (6.8b)
n=O

J hx (u, v, u', v')$(r , R)} du dv du' dv'

= {hy(u, v, u', v') Os (,, R) du dv du'dv'

4

+ ( Cn hx (u, v, u', v')R"-3 du dv du' dv' (6.8c)
n=O

where R is short for R(u, v, u', v'), and where, in the last line, the coefficients are
{Co, C 1, C2 , C3 , C 4} = {-1, 0, j, - , }}.

As noted above, a key feature of the decomposition here is that the singular
portions of the integrals are frequency-independent, as witness the fact that K appears
only as a multiplicative prefactor outside the integrals in the summation terms in
(6.8). Thus, for a given Casimir geometry, we can evaluate these integrals once and
for all at the beginning of our calculation, then reuse the results as many times as
necessary to assemble the full frequency-dependent integrals.

Evaluation of desingularization integrals

The desingularization integrals that enter into the summation terms in (6.8) all have
the form

h(u,v,u',v')RP dudv du'dv', -3 < p 2 (6.9)

where, as noted above, h is a polynomial in u, v, U', v'.
If the original panels P, P' have no points in common, then R does not vanish

within the region of integration and the integral is nonsingular. In this case I have
found it entirely sufficient to use an adaptive numerical cubature scheme [2, 3] to
evaluate (6.9). Although adaptive cubature schemes can require large numbers of



numerical integrand samples to converge, the fact that the integrals need only be
computed once per evaluation of the full frequency integral (5.1) loosens the con-
straints on the efficiency with which we evaluate (6.9).2

If the original panels 7, P' have points in common, then R vanishes within the
domain of integration and the integral is singular (for p < 0.) In this case we avail
ourselves of the generalized Taylor method for the evaluation of singular panel-panel
integrals described in Appendix D.

6.2.4 Special Cases for Panel-Panel Integrals

The methods presented in the previous two subsections suffice to compute the panel-
panel L-functions (6.5) in most cases of interest, but there are two particular cases
in which we proceed slightly differently.

First, for the common-panel case (i.e. the evaluation of (6.3) in the case 7 = P'),
although the desingularization technique described in the previous section works per-
fectly well, in practice it is actually faster simply to use the full Taylor method of
Appendix D with the g function taken as the full # kernel. (The Lx integral vanishes
in the common-panel case, so we do not need the case g = 0.) Of course, we could also
use the full Taylor method for the common-edge and common-vertex cases, but they
are slightly more time-consuming in that case (requiring a two-dimensional and three-
dimensional numerical cubature, respectively, as compared to the one-dimensional
quadrature required in the common-panel case) and thus in practice we use the desin-
gularization scheme for these cases.

However (and this is our second special case), when the /- parameter in the L-
functions (6.3) is greater than or on the order of the inverse panel size (as measured,
for example, by the panel radius rad(P)), then the desingularization technique does
not work well. (Large values of K arise in two cases: (1) at high imaginary frequencies
(, and (2) in the interior of imperfect conductors such as gold).

For panels with one or more common vertices in the high-' case, we simply revert
to the full Taylor method of Appendix D with the g functions taken to be the full #
or V) kernels. As described in the Appendix, the Taylor method for these g functions
is well-defined and accurate in the limit , -+ oc.

For panels with no common vertices in the high-, case, neither the desingulariza-
tion nor Taylor methods are available. However, we are assisted here by the fact that
the L-functions between panels with no common points decay exponentially with K in
the large K regime, whereas the L-functions between panels with one or more common
points decay only algebraically with K, as summarized in Table 6.1. Thus the former
are significantly smaller than the latter (generally by several orders of magnitude) and
are calculated already to sufficient accuracy by simple (non-desingularized) numerical
cubature, as discussed in Section 6.2.2.

21f necessary for future applications, the evaluation of of (6.9) could be accelerated, at the cost of
some tedious work, by evaluating the v or v' integrals analytically, leaving behind a three-dimensional
integral (with an extremely complicated integrand) that will succumb to adaptive numerical cubature
more rapidly than the four-dimensional integral (6.9).



# vertices shared by P, P Asymptotic behavior ofS(n, P, P') as , -+ 00

0 e-KRmin

1 (common vertex) -3

2 (common edge ) ~ - 2

3 (common panel) ~ 1

Table 6.1: Decay rates of panel-panel L-functions in the large-r, regime. (Rmin is the
minimum distance between P, P.)

6.3 Miscellaneous Implementation Notes on CASIMIR3D

The evaluation of BEM matrix elements for RWG basis functions, discussed at length
in the previous section, is by far the most challenging component in the implemen-
tation of CASIMIR3D. Once this step is complete, the evaluation of the master FSC
formulae (5.1) now proceeds entirely straightforwardly using a bevy of standard nu-
merical techniques, which we now briefly summarize.

Calculation of Determinant. The Casimir energy integrand is given by (5.1a)
in terms of the determinants of the M and M, matrices. For a Casimir geometry
consisting of N interacting objects, these matrices exhibit a block structure of the
form

T1  U 1 2  U 13  -- U1N 1 0 0 -- ' 0
U 2 1  T2 U 23  -- U2N 0 T2  0 ''' 0

M U31 U 32  T 3  - U3N , MO 0 0 T 3  -- 0

UN1 UN2 UN3 ''. TN 0
(6.10)

where block Tm describes the mutual interactions of basis functions on object m, while
block Umn describes the interactions of basis functions on object m with functions
on object n.

To evaluate log det , we resort to the standard numerical technique of LU-det M,,'

factorization. Let this factorization for the M matrix be M = L - U, 3 so that U
is upper-triangular and L is lower-triangular with ones on its diagonal (and thus unit
determinant). Similarly, let Tn = 1, - u, be the LU-factorization of the T" block
matrix (where the lower case letters indicate matrices of lesser dimension than L, U.)

3The U matrix here is not to be confused with the Umn block matrices in (6.10). The collision
of terminology is unfortunate, but the usage of the symbol U on both sides is so entrenched that
there is little we can do about it now.



Then we have

log det M log det U
og det M\ H, det u,

H%(U)is= log H (Uii
Hn Hi (un) ii

= log (Ui
(un);i

where our schematic notation in the third line indicates that quantity in the numerator
runs over all diagonal elements of U, while the quantity in the numerator runs over
the diagonal elements of u1 , then over the diagonal elements of u2 , etc.

The first equality here follows because det M = det L - det U = det U, while
det M,, which is the product of the determinants of the diagonal blocks of M, is ob-
tained similarly. The second equality follows because the determinant of a triangular
matrix is the product of its diagonal entries. Since there are as many factors in the
numerator as in the denominator of the second line, we can sum the logarithms of
their pairwise ratios, as in the third line, a better-conditioned numerical procedure
than taking the logarithm of the ratios of the overall products as in the second line.
(Indeed, from the expression on the third line above we can simply omit the por-
tion corresponding to the first diagonal block T 1, because the upper-right block of U
actually coincides with ui.)

Calculation of Trace. The derivative of the M matrix with respect to displace-
ment or rotation of the first object in our Casimir geometry has the form

( U12 A AUis -. AU1N

AU21 0 0 --- 0

AM= AU 31  0 0 ... (6.11)

AUN1 0 0 ... 0

where A is short for 0/0ri (for displacements) or 8/8O (for rotations). Let Vi,
i = 1, -. - ,D 1 be the first D1 columns of the matrix AM (where D 1, the dimension
of the matrix subblock corresponding to object 1, is proportional to the number of
basis functions defined on the surface of object 1). Then, following the observations
of Section (5.4), the quantity that enters into the integrand of equations (5.1b) and
(5.1c) is

Di

Tr {M-1 AM} = 2 (M- 1 . Vi) .

In other words, for each of the D1 vectors Vi, we compute the vector M 1 -Vi and
add the ith component of this vector to a running sum, which we double at the end
of the calculation to obtain the integrand of (5.1b) or (5.1c). (To compute M 1 -Vi



we solve the linear system M -X = Vi using the LU-factorization of M.)

Dense-Direct Linear Algebra. In CASIMIR3D, which is designed to work with
matrices of total dimension less than or on the order of 104, the full BEM matrices
are explicitly computed and stored in memory, and the LU-factorizations needed to
compute the Casimir energy, force, and torque integrands in (5.1) are computed using
the LAPACK suite of dense-direct numerical linear algebra codes. (A technique for
reducing the scaling of memory and CPU time requirements is discussed in Chapter
8 of this thesis.)

Frequency Integration. We evaluate the ( integral in (5.1) using a straightforward
one-dimensional adaptive numerical cubature with the infinite interval ( E [0, oc]
compactified to [0,1] :

df f(0 ) = f df(1(t) )J(t)

~ w,,f ((t) ~ n.(6.12)

In the first line here we have put ((t) = t/(1-t) (with J(t) = 1/(1-t)2 the Jacobian of
the transformation), while the second line represents an evaluation of the t integral via
adaptive numerical quadrature, with the weights w, and points ti, chosen adaptively
by the adaptive quadrature algorithm. (In CASIMIR3D we use a modified version of
the QUADPACK algorithm 4 as reimplemented in the GSL. 5 )

Evaluation of Multiple Displacements at Once. In a typical Casimir calcula-
tion we seek not merely the Casimir energy and force of a single geometric configura-
tion, but rather a full curve predicting the energy and/or force as we vary the relative
distance and/or orientation of the interacting objects (we will refer to such variations
as "geometrical transformations"). For example, for the sphere-cube example of Fig-
ure 6.1, we may seek to evaluate the Casimir quantities at several different values
of the surface-surface separation. To this end it is important to observe that rigid
displacements and rotations, of the objects in a geometry affect only the Um, block
matrices in (6.10), leaving the Tm blocks unchanged; once we have computed the Tm
matrices at a given imaginary frequency ( we can reuse them to compute the Casimir
quantities under multiple geometric transformations. On the other hand, when we
change the frequency ( we must recompute all matrix blocks.

This suggests that, when computing a full force curve, we should not evaluate the
( integral in (5.1) separately for each geometrical transformation, but should instead
think of integrating a vector of integrands all at once, with each component of the
vector corresponding to a Casimir quantity at a separate geometric transformation.
Thus, the function f(() in (6.12) becomes a vector fi((); at each frequency point

4http: //www .netlib. org/quadpack

'http://www.gnu.org/software/gsl



(n chosen by the adaptive quadrature scheme we assemble the T" matrices in (6.10)
only once, then reuse these matrices to compute the Casimir quantities under multiple
geometric transformations. (For energy calculations, the diagonal entries of the u,
factors in the LU factorization of T, matrices can of course be reused as well.)



Chapter 7

CASIMIR2D: A Numerical
Implementation of the FSC
Formulae for Quasi-2D Objects

Many experimental Casimir geometries [29] consist of two or more objects elongated in
one spatial direction (call it the z direction) with essentially constant two-dimensional
cross-section in the transverse plane, and with the length of the objects in the z-
direction being much larger than the characteristic feature size or surface-surface
separation in the xy-plane. For such quasi-2D geometries, it is convenient to idealize
the objects as being of infinite extent in the z-direction and to compute Casimir
energies, forces, and torques per unit length (in the z-direction). This is the task for
which CASIMIR2D is designed.

The structure of this chapter mirrors that of the previous chapter. In Section 7.1
we describe the localized basis functions used by CASIMIR2D to represent tangential
current distributions on the surfaces of quasi-2D objects. Section 7.2 discusses the
implications of this choice of basis functions for the computation of the elements of
the BEM matrices that enter into the FSC formulae. Other aspects of the numerical
implementation of CASIMIR2D are summarized in Section 7.3, and details on the
usage of the CASIMIR2D software package are relegated to Appendix H.

7.1 TDRT Basis Functions for 2D BEM Problems

7.1.1 Definition of TDRT Basis Functions

Two-dimensional rooftop (TDRT) basis functions are a convenient set of expansion
functions for surface currents on quasi-2D objects. (Two-dimensional BEM schemes
using linearly varying surface unknowns have appeared before [31], but the particular
functions we define below are used here for the first time in the context of imaginary-
frequency BEM solvers for Casimir computations). As depicted in Figure 7-1(a),
we begin by approximating the cross-sectional boundaries of quasi-2D objects as
collections of straight-line segments; we refer to the endpoints of these segments as
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Figure 7-1: Two-dimensional rooftop (TDRT) basis functions. (a) The cross-sectional
boundaries of quasi-2D objects are discretized into finite line segments. (b) Notation:
Sn is the directed line segment connecting control point pn_ 1 to pn. ui is a unit vector
in the direction of Sn. (c) To each control point pn we associate a "rooftop" function
An (p), which takes the value A = 1 at the central control point, falls linearly to zero at
the adjacent control points, and vanishes everywhere else. (d) To each control point
we associate one ||-type and one z-type basis function; the former describes currents
flowing around the perimeter of an object, while the latter describes currents flowing
down the infinite length of the object.

1-

0.5

A 0-

p

Pn+1

CD



control points. We use the symbol p = (x, y) to label points in the cross-sectional
plane, and we denote the nth control point in our geometry by pn = (xn, y"); the

directed line segment from pn_ 1 to pn is Sn, its length is l = |pn - p,1|, and

un = Sn/ln is a unit vector in its direction (Figure 7-1(b)).

To each control point pn we now associate a rooftop function An(p). This function

is only nonvanishing for points p contained within the two line segments that meet at

pn; as illustrated in Figure 1(b), it attains a maximum value of unity at the central
control point (p = pa), falls linearly to zero at each of the two neighboring control
points (p = Pn±), and vanishes everywhere else.

We next define two vector-valued basis functions associated with each control
point; each function is localized within two adjacent line segments in the p plane
and varies sinusoidally in the z direction. A first function describes surface currents
running around the perimeter of the object:

(A(p)eiqzu, pES

f,~(p, z) = f P p Sn (7.1)
ijA)(p)eizfun+1  p E Sn+1

A second function describes surface currents flowing down the length of the object:

fnq(p, z) = An(p)e Z2. (7.2)

The functions (7.1) and (7.2) are our TDRT basis functions. (The factor of i in the

definition of the f 1 function is a useful convention that amounts to choosing the z-
oscillation in the currents described by the f 1 and f functions to be 900 out of phase
with one another.)

Using the TDRT basis functions, we may approximate a general surface current
distribution as an expansion of the form

N d
K(x) = E J Kiqf 11(x) + Knqfq (x)} (7.3)

n=1I27 qnI

where N is the total number of control points in our discretized geometry.

7.1.2 Integrals over TDRT Basis Functions

In what follows we will frequently need to evaluate integrals over TDRT basis func-

tions of the general form

L(mq, nq') =fmq(x) T(r; x - x') fnq(X') (7.4)



where fmq and fnq, are TDRT functions and the kernel F depends only on the 3D
difference vector (x - x') = (p - p', z - z'). All such integrals take the general form

L(mq, nq')

= Jdp dp'f{z, z' - independent factor j dz j dz'ei(q'z-qz)G(K; x - x')

where the dp, dp' line integrals extend over line segments in the cross-sectional plane
and G is a scalar kernel function.

To evaluate the z', z integral here, we change variables to t = z' + z, u =Z - z:

j_0 dz j dz'ei(q'z'-qz)G(; x - x')

-oot -ooq'

dt e'- j du e ('+q)uG(x; p - p', u)

6(q' - q) -I(K; q; p - p')

where we have defined a two-dimensional kernel function,

I(n; q; p - p') = 2-r du euG(K; p - p', u).

Thus TDRT functions with different values of q have vanishing inner products (7.4).

We will need to evaluate I for three specific choices of the scalar kernel G, as
tabulated in the following table:

Here KO and K1 are modified Bessel functions of the second kind, and

Cq , 2 +q2 .



7.2 Evaluation of BEM Matrix Elements Between
TDRT Basis Functions

7.2.1 Block Structure of the BEM Matrix

To elucidate the block structure of the BEM matrix in the case of TDRT basis func-
tions, we recall the original provenance of this matrix as the set of coefficients in a
linear system of equations, obtained by discretizing an integral equation, of the form

M - K = V, (7.5)

where the unknown vector K contains the coefficients in an expansion of a surface-
current distribution in some set of tangential vector-valued basis functions. For the
particular case of TDRT basis functions, this expansion takes the form (7.3), and the
discretized integral equation (7.5) is thus nominally an infinite-dimensional system
because of the continuous nature of the q index:

SJ Mn,nigKnigi = Vn. (7.6)
ni

However, as discussed in the previous section, all elements of the M matrix contain
a factor of 6(q - q'), and the infinite linear system (7.6) thus block-factorizes into an
infinite set of finite-dimensional systems, one for each q:

Mq Kq = Vq. (7.7)

In view of this block-factorization, the log-determinant that enters into the FSC
energy expression (5.1a) is

log det M = log det Mq
0027r

j d log I detMql.
0 dq

Inserting this into the master FSC formulae, we obtain expressions for the Casimir
energy and force per unit length of our quasi-2D structure:

9- h2  d< dq log det M(, q)
o2 J o log det Mo,( , q)

F7= - jdh jd20 dqTrM (,q) - 'M (,q) (7.8b)

Equations (7.8) are the versions of the master FSC formulae (5.1) appropriate for
quasi-2D geometries.



7.2.2 Matrix Elements between TDRT Basis Functions

The structure of the BEM matrix in the EFIE and PMCHW formulations was dis-
cussed in Chapter 4 and is reviewed in Appendix B. Each pair of basis functions
(fa, f3) contributes one entry (EFIE) or a 2x2 block of entries (PMCHW) to the
BEM matrix; these entries, in turn, are obtained as linear combinations of three
types of integrals over the supports of the two basis functions (the "L-functions" of
B).

For TDRT basis functions, the a subscript is a compound index, a = (tmq),
where t E {| , z} labels the type of basis function, m labels the control point to which
the basis function is associated, and q is the z-wavevector. To elucidate the general
structure of the L-functions for TDRT basis functions, we consider the particular case
of the L. function between two z-type basis functions:

Lq(; f 'q, f q,) = dx dx' [f'.(x) - f (x') Go(i;x - x')
sup figsup f;,

- dp Jdp' Am(p)An(p') J dz f dz'ei(a'z-qz)Go(K;x - x').

This integral is of the general type considered in Section 7.1.2, and we find

L.(K) fmq, fnq,) = 6(q - q')L.(; q; fmq, f;nq)

where

L. (K; q; f Mq, fnq) J dp Jdp'Am( p) An(p')Ko (anqp - p'I) (7.9)

defines a modified version of the L. function appropriate for the particular case of
TDRT basis functions.

Computation of the elements of the M( , q) matrices in equations (7.8) now re-
duces to the evaluation of these modified L-functions for various combinations of
TDRT functions (s, t {||, z}):

f9 M((, q) fig) = -KeZe L*t.(ne, q, m, n) + L" (Ke, q, m, n)

in the PEC case, or

{fs,,I M ( ,q) Ifn

-Keze[L"(r.,q,m,n) + 2 L"(re, q,m,n)] -L'(Ke,q,m,n)

-L"(Ke, q, m, n) + [Lst(e, q,m, n) + L(K, q,m, n)



in the PMCHW case; here

e = V/6 e(i )pe (ie) - , Ze =

C ee(j()

are the imaginary wavevector and the relative wave impedance of the external medium
in our scattering geometry at imaginary frequency . (Equation (7.10) is for the case
in which fnq, ft lie on the surfaces of different objects, so that only re, Ze are relevant.
If, instead, the two basis functions both lie on the surface of the object n, then the
matrix elements are augmented by similar contributions with {e, Ze} - {", Z},
as discussed in Appendix B).

7.2.3 Modified L-functions as Segment-Segment Integrals

Integrals such as that in (7.9) extend over the supports of two TDRT basis functions
within the cross-sectional plane. Since each basis function is supported on two line
segments, each L-function is a sum of four segment-segment integrals,

L' (K, q, f ft) Lst ; Pm-1, pm, +; p(' , pp, +)

+ Ls(, q;Pm-IP1 ,m, +;ppn--)
+Lq;PPm,- Pn-1, Pi +

+ q; pm, Pm+1, (7.11)

(and similarly for LV and Lx). The p arguments to the segment-segment L functions
indicate the segment over which we integrate, while the ± arguments indicate whether
the rooftop function is rising or falling on the corresponding line segment. (More
precisely, the argument is + when the rooftop function is rising as we traverse the
line segment in the direction of current flow described by the ||-type basis function,
and - otherwise).

In all there are twelve segment-segment L-functions for each pair of line segments.
Writing out the integrands of these twelve functions reveals that they may be obtained



as linear combinations of a smaller set of 6 segment-segment integrals:

L 11(, q; A, B, a; C, D, r) = cos 014

L(, q; A, B, a; C, D, T)
UT

L1 (r, q; A, B, ;C, D, r) = iq sin 0 i 4

-L1' (r,, q; A, B, a; C, Dr) = 0

L1z (, q; A, B, a; C, D,T) =a 1

L1"(K, q; A, B, a; C, D, r) =q 2in

L.(,q; A, B, a; C, D, T) = 0

L:1(1 q; A, B, a; C, D, T) = rq2

Lz(7 q; A, B, or; C, D, r) = iln'I

L.z (r,, q; A, B, o,; C, D, T) =14

Lzz (K, q; A, B, a; C, D, T) = q 214

L'z ((,, q; A, B, a; C, D, r) = 0

,5 + nxi 6 )

5 - f'I1
6)

where
u = B - A,

u' = D - C,

U.l J=ul, =

l' = |u'| 6' 1

sino = (6 x 6')-

and the I quantities are two-dimensional integrals defined over a pair of line segments

(7.12a)

(7.12b)

(7.12c)

(7.12d)

(7.12e)

(7.12f)

(7.12g)

(7.12h)

(7.12i)

(7.12j)

(7.12k)

(7.121)



(X, -* XE), (X's -* X'E)

11{ 1 (aq; XS, XE; XS, X'E)

14

11' du du' { , Ko (aqR(u, u') (7.13a)

{5 }(cYq; Xs, XE; X'S, X'E)

11l'a, I du du/' , (u ', ,aq ,u) (7.13b)
Jefaun RY(u, U') R (u, u')

with (Figure 7-2)

R(u, u') = R(u, u')|

R(u,u') = XS + u(XE - XS) - X' - U'(X' - X's)

= Ro + uL - u'L' (7.14)
Ro = XS - X, L =XE-Xs L' = X' -X'.

S E - SE S,

The endpoints of the line segments in the I integrals are determined from the (A, B, o, C, D, T)

arguments to the segment-segment L functions in (7.12) according to

jX i{{ A B} o- + ,X , {/I C,D} r = +
{Xs XE} ={ ~, {XiXE}fCD} '=

{B, A} o- - { D, C} r =_ -

We pause briefly to comment on our choice of notation. The segment-segment L
functions on the right-hand side of (7.11) depend both on the line segments over
which we are integrating and on the ± arguments indicating the growth or decay
of the rooftop functions on those line segments. This dependence is reflected in the
appearance of explicit factors of o and T in equations (7.12). In contrast, the I
integrals in (7.13) depend only on the endpoints of the line segments and take no ±
arguments. This simplifies the subsequent discussion, particularly for the evaluation
of nearby segment-segment integrals in Section 7.2.6.

7.2.4 Derivatives of L-functions

For analytic force calculations we need derivatives of L-functions with respect to rigid
relative displacements of the underlying basis functions. For the case of TDRT basis
functions the L-function derivatives are given by the same expressions as (7.12), but
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Figure 7-2: Geometry and notation for computation of segment-segment integrals.

with the 11-6 integrals replaced by their derivatives with respect to the components
of the Ro vector in (7.14).

Before proceeding, it is convenient to introduce a slight refinement of our notation
that will allows us to present the remainder of this discussion in a more coherent and
unified fashion. For a given pair of line segments we define a three-index integral
quantity according to

Ipq (a, XS, X C, X, ) iilj du jT du'u A (R(u, u')) (7.15)

where IC, is one of three possible kernel functions:

Co(R) = Ko(aR), K31(R) =ceK, (a , K2(R) = a 2 -
R R2

In terms of this notation, the six integrals that enter into the RHS of (7.12) are

I1= zoo 12 = 20?,

13 = 14 = I0 (7.16)

15 = Rox l + Lx.IE1 - L''2 16 = RoyIl + LyI 21 - L'I 2.

Equation (7.15) depends on Ro only through the quantity R(u, u') in the kernel. The
derivative of this quantity with respect to (say) the x component of Ro is

a= Rox+uLx-u'L'
-R(uu) = -

BRox 'R(u, u')

and applying this formula to (7.15) yields an expression for the derivatives of the
segment-segment integrals:

I = -Roxjlrp'| - Lxl-p'l + L'I _ 1 (for r = 0,1).



With these results we can write expressions for the derivatives of the six integrals
that appear on the right-hand side of (7.12); for example, the x derivatives 11-4 read

101

ITIT2o R o3 11 L x o + L 'l 1 (7.17)

14 Ill 2

and the y derivatives of 11-4 are similar. The corresponding expressions for the
derivatives of 156 are also similar, but (1) involve the 12 integrals instead of the
11 integrals, and (2) are lengthier, as each of the three terms in the expressions for
15 and 16 in (7.16) expands into three terms upon differentiating. In addition, the
expressions for BI 5/8Rox and BI 6/&Roy each contain one additional term arising from
chain-rule differentiation of the first terms in (7.16).

The upshot of this treatment is that the derivatives of the L-functions may be
accommodated simply by enlarging the set of segment-segment integrals (7.15) we
compute for each pair of line segments. We now turn to a consideration of the
evaluation of these integrals.

7.2.5 Segment-Segment Integrals between Distant Segments

The treatment of segment-segment integrals breaks down along lines similar to those
discussed in the case of panel-panel integrals in the previous chapter. The behavior of
the integrand in (7.15) is governed by the kernels k,(R); when the two line segments
are relatively far apart, the integrand is a slowly varying function of u, u', and the
integral may be evaluated by straightforward numerical cubature over the square
[0, 1] x [0, 1]. When the line segments are closer together, simple numerical cubature
is inaccurate and we must resort to more sophisticated methods.

To quantify the notion of "relatively far apart," we define a relative distance
function between line segments (in analogy to Equation (6.7) for triangular panels)
to be the distance between the centers of the segments normalized by the length of
the larger segment:

RD(S Sn) PoP(7.18)
max(ISml, lS .)

For line segments of relative distance RD>10, CASIMIR2D evaluates (7.15) using
a seventh-order cubature rule (with 12 cubature points) over the square {u, u'} =
[0, 1] x [0, 1]. For less-distant pairs of line segments we must wheel out more heavily
artillery, as discussed in the next section.

7.2.6 Segment-Segment Integrals between Nearby Segments:
Desingularization

We evaluate segment-segment integrals between nearby segments using a desingular-
ization technique similar to that introduced for panel-panel integrals in the previous



chapter. Availing ourselves of the known asymptotic behavior of the modified Bessel
functions near the origin,1 we define desingularized versions of the Ko- 2 functions in
(7.15) according to

KS(aR) = Ko(aR) + log R + (log - + 7)

1 1 aa a 1
kS(aR) = -K1 (aR) -R 2  log R - -(logo +7--

R aR2 2 2 2 2

1 2 1 az2 az2 a3)
k" (aR) = R2 (aeR) a2 R2 + 2R + - log R + -log -'+ 7 -2 R2 a2 +22R2  88 2 4

with Euler's constant 7 = 0.577216 -- ..
We now separate the integral (7.15) into non-singular and singular portions:

I q = 1 DSpq + 1 S,pq
r r r

where rS'pq is just (7.15) with each kernel function replaced by its desingularized
version, and where the singular contributions are given by

' i-' [jpq + (7.19a)

I' 1 2l' + +(7.19b)
p2 1 a22F~pqlpq2 pq n-q

1 S'9 - a2 ' _ ' 8- 3 2 F3.1j (7.19c)

with
a a 1Ca2 3

IF = log 2 +7, F2  (Fi - 2 173 =8 41  '
and

= j du j du' upu'S (R(u, u')), (7.20)

S2 (R) log R

S4 1|R 4

We note that (7.19) depends on the frequency parameters ( and q only through Oa,
which enters (7.19) only as a multiplicative prefactor, while the J quantities are
frequency-independent. Thus these quantities need only be evaluated once for a given
geometry, whereupon they may be reused as often as necessary to recompute BEM
matrix elements at various values of , q during the evaluation of the (, q integrals in
(7.8).

A detailed discussion of techniques for evaluating the rf is presented in Appendix

ihttp: //functions .wolfram. com/Bessel-TypeFunctions/BesselK/06/01/04/01/02/



7.3 Miscellaneous Implementation Notes on CASIMIR2D

Almost all of the technical implementation notes discussed in Section 6.3 for CASIMIR3D
carry over mutatis mutandis to CASIMIR2D. These include the computational advan-
tages of simultaneously evaluating the Casimir quantities for multiple geometric trans-
formations at each imaginary frequency point, as well as the use of LU-factorization (as
computed by dense-direct linear algebra software) to evaluate determinants and solve
linear systems. (In CASIMIR2D the matrices are complex-valued, not real-valued as in
CASIMIR3D, but in practice this introduces no new complications beyond replacing
calls to real-valued LAPACK routines with calls to their complex-valued counterparts.)

The only additional practical complication that arises in the case of CASIMIR2D is
the need to evaluate integrals over the full upper-right quadrant of the ((, q) plane in
equations (7.8), as compared to the single-dimensional quadrature over ( required for
CASIMIR3D. In CASIMIR2D we evaluate this integral using a simple two-dimensional
generalization of equation (6.12): we put ((t) = t/(1 - t), q(s) = s/(1 - s), map the

( , q) integral into an integral over the square {s, t} = [0, 1] x [0, 1], and evaluate this
integral using two-dimensional adaptive numerical cubature:

j 0d j dq f( ,q) = dt ds f (((t),q(s))J(t, s)
0 00 0

~ Ef (,s) Jts)(7.21)

where J(t, s) = 1/l[(-t)(1 -s)] 2 is the Jacobian of the transformation, and where the
weights wn and cubature points tn, s are chosen adaptively by the adaptive cubature
algorithm.
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Chapter 8

FASTCASIMIR: An Accelerated
Matrix-Vector Product for Casimir
Operations

The FSC formulae (5.1) for Casimir energies, forces, and torques require the computa-
tion of linear-algebraic quantities (matrix determinants, matrix traces, and solutions
of linear systems) involving matrices whose dimensions are proportional to the num-
ber of localized basis functions used to represent tangential currents on the surfaces
of the interacting objects in a Casimir geometry.

For moderate-sized problems (involving matrices of dimensions D < 10'), the
FSC formulae may be evaluated using dense-direct methods of linear algebra, with
memory scaling like O(D 2 ) and CPU time scaling like O(D 3 ). However, for larger
problems this complexity scaling is unacceptable, and we must instead pursue fast
solvers-techniques that exploit the known structure of the problem to reduce the
complexity scaling to more tractable levels.

This chapter takes a first step toward the development of a fast Casimir solver
by presenting a key ingredient in the development of such a solver: an accelerated
matrix-vector-product routine for the EFIE matrix M() that enters into the FSC
formulae (5.1) for Casimir energies, forces, and torques between perfectly conducting
bodies.

Our approach is based on the precorrected-fast-Fourier-transform (PFFT) ap-
proach to matrix sparsification [36, 12]. This technique was invented in the 1990s to
reduce the complexity scaling of linear-algebraic operations in computational electro-
magnetism problems; the idea is to exploit certain aspects of the known structure of
the problem to improve the scaling of both the storage and the CPU time needed for
a matrix-vector product from O(N 2 ) to O(N log N). The PFFT technique has previ-
ously been applied to real-frequency scattering problems discretized with RWG basis
functions, first in Ref. [12] and subsequently by a number of authors (see Ref. [28] for
a review).

In this chapter we apply the PFFT method to the solution of imaginary-frequency
scattering problems. We describe a PFFT-accelerated numerical procedure for ap-
proximating the matrix-vector product M( ) -X, where X is an arbitrary numerical



vector and M(() is the imaginary-frequency BEM matrix. (For simplicity, we con-
sider here only the case of perfectly electrically conducting (PEC) bodies, so that
M( ) is the EFIE matrix that enters into equation (4.5).) This represents a first step
toward the development of a full "fast solver" (i.e. a solver with quasilinear scaling
of storage and CPU time) for Casimir applications.

The remainder of this chapter is organized as follows. In Section 8.1 we discuss
the basic ideas behind the PFFT technique for accelerating matrix-vector products
with the EFIE matrix. In Section 8.2 we discuss an important subtlety that must
be addressed in order for the PFFT-accelerated matrix-vector product to operate
effectively. Finally, in Section 8.3 we discuss how our fast matrix-vector product
routine might be used to accelerate practical Casimir computations.

What's New in this Chapter

As noted above, although the PFFT technique is not new, it is presented here for the
first time in the context of the imaginary-frequency version of the boundary-element
method. This changes the kernel that enters into the convolution and correction
steps (discussed below) from an oscillatory kernel into a decaying kernel. (On the
other hand, the projection and interpolation steps are not affected by the transition
to imaginary frequency; our implementation of these steps is not essentially distinct
from that of Ref. [12], and is discussed below only for the sake of completeness.)

The implementational subtlety discussed in Section 8.2 is not unique to the imaginary-
frequency context, and would be relevant to a real-frequency PFFT implementation
using RWG basis functions. However, to our knowledge this subtlety has not been
previously addressed in print, and thus the discussion of Section 8.2 is, to the best of
our knowledge, new.

8.1 A Precorrected-FFT-Based Procedure for Ac-
celerating the Matrix-Vector Product

8.1.1 Overview

For a discretized geometry containing a total of N RWG basis functions, the com-
putational cost of a direct calculation of the matrix-vector product M -X scales like
N2 . We may think of this as the cost of separately computing N numbers (the inner
products of the scattered field with N basis functions), each of which depends linearly
on N numbers (the coefficients in the expansion (4.4)). To improve on this O(N 2 )
scaling, we clearly need some method of computing our N numbers all at once.

Such a method is provided by the PFFT algorithm [36]. The basic steps in a
PFFT evaluation of the product M - X = B are sketched in Figure 1 and may be
summarized as follows.

1. We begin by surrounding our scattering geometry by a regularly-spaced 3D grid
(Figure la), containing a total of N_ grid points.
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Figure 8-1: Figure 1: Schematic depiction of PFFT procedure for computing the
matrix-vector product M - X = B. (a) The discretized scattering geometry is sur-
rounded by a uniform 3D grid (for clarity, only a 2D cross section is shown in the
figure). (b) Projection: For each RWG basis function f, in the discretized geometry,
we identify a set of equivalent point dipole sources located on grid points near f, and
chosen to reproduce the electric field of f, at distant points. Repeating this procedure
for all basis functions, and weighting the resulting dipole sources by the entries of the
X vector, yields a full grid of dipole sources. (c) FFT convolution: We perform an
FFT-accelerated convolution operation to transform the full grid of dipole sources
(shown here as red arrows) into a full grid of electric field values (shown as blue ar-
rows). (d) Interpolation: We interpolate among the electric field values tabulated on
the grid to construct an approximant to the electric field in the interstitial regions,
and we evaluate the inner product of each basis function f8 with this interpolated field.
This approximates the #th entry in the product vector B. A subsequent correction
step (not shown) improves the accuracy with which nearby panel-panel interactions
are treated.



2. Projection: For each localized basis function f, in our discretized scattering
geometry, we construct a set of equivalent point current sources, located on grid
points near the support of fc and chosen to reproduce the electric field of f, at
distant points (Figure 1b). Then, given the vector X of basis function weights,
we superimpose the equivalent point current sources for all basis functions,
weighted by the entries of X, onto the grid, thus obtaining a full grid of point
current sources.

3. FFT Convolution: We use fast-Fourier-transform (FFT) convolution techniques
to transform the full grid of point current sources into a full grid of electric field
values (Figure 1c) with computational complexity scaling like O(NG log NG).
After this operation, we have the value of the scattered field, due to the full
grid of point sources, at each grid point.

4. Interpolation: In the interstitial regions between grid points, we construct an
approximantEarox(x) to the scattered field by interpolating among the exact
known values on the grid points. Using this approximate representation of the
scattered field, we estimate the inner product of the scattered field with each
basis function, < fa, Escat >; this approximately calculates the entry B, in
the output vector B.

5. Correction: The procedure described so far accurately approximates the contri-
butions to B, from basis functions located far from fa, but inaccurately repre-
sents the contributions of nearby basis functions (including the contribution of
f, itself). For this reason we must correct the B vector to replace the (inaccu-
rate) grid-approximate treatment of the interactions of nearby basis functions
with a more accurate treatment.

Each of these steps will be discussed further in the following sections.

8.1.2 Projection

The projection step is illustrated in Figure 1(b). We seek to "project" a single RWG
basis function fa onto a set of grid points {xn}, where by "project" we mean "identify
a set of point current sources at the points {xn} whose aggregate E-field at distant
points reproduces the E-field due to f,." (Here n = (n., nY, nz) is a compound
subscript indexing points in the grid).

In our case we choose the xn to be a 3 x 3 x 3 cube of points centered at the grid
point closest to the centroid of f. (we refer to this cube of points as the "projection
stencil" for fa, and the number of points it contains is N,, = 27 in our case). For each
cartesian direction i E {x, y, z} we fix the magnitudes of the i-directed point sources
on the projection stencil by requiring that the lowest-order multipole moments of the
source distribution represented by these point sources match the multipole moments
of the source distribution represented by the i-component of basis function f,.

More specifically, let Pain be the strength of the i-directed point source at grid
point x, in the projection of the i-component of basis function f,. Then, for each
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element in a set {#m(x)} of multipole functions, we require

S Pain4$m(Xn - xo) = Jupfck fai(x)#m(x - xo) dx (Vm) (8.1)
n

where the sum on the left-hand side ranges over all Ni points in the projection
stencil, xo is the center about which we match multipole moments, and the multipole
functions are

(#m(x)} = {l,,y,z, x 2, xy, xz, y 2 .

If the number Nmultipole of multipole functions is equal to Nei, we thus obtain an
N,1 x N,1 linear system for the Pain coefficients, while if Nmuitipoie # N,, we have
a non-square system which we solve in a least-squares sense using singular-value
decomposition (SVD) techniques.

The computation of the Pin coefficients need only be performed once for a given
scattering geometry and grid. Then, given the weights {K,} of an expansion of some
current distribution K(x) in RWG basis functions, K(x) = E Kf(x), we obtain a
full grid of equivalent point sources by accumulating the contributions of each basis
function at each grid point-that is, we set the magnitude of the i-directed source at
grid point x, equal to

Sin =5 PainKa (8.2)

If we think of the quantities Sin, the magnitudes of the i-directed equivalent point
sources at all grid points, as the components of an NG-component vector Si, then
equation (8.2) takes the form of a matrix-vector product for each cartesian component

Si = Pi - K (8.3)

where, for each i, Pi is an NG x N matrix. Crucial to the performance of our al-
gorithm is the fact that this matrix is sparse-indeed, each coefficient K, in the K
vector contributes to precisely N,, elements of the Si vector, so the storage required
for Pi, and the CPU time required to perform the matrix-vector product (8.3), are
proportional to NeN, i.e. O(N).

8.1.3 FFT Convolution

At this point we have point dipole sources at each of the points in our grid, and we
would like to compute the electric field due to these point sources. The standard
expression for the E-field due to an electric current distribution is

E(x) = f ( ; x, x') / J(x')dx'
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where the dyadic Green's function, defined in Appendix A, may be thought of as a
sum of two terms:

F(X; x, x') = +(;x x') + 2 ) ((; x - x') (8.4)

x - x') = - Zo 6 Sil (8.5)
47rx - x'

Xf (( - x') = 848 .i(ie-l-~ (8.6)S3 K 47rlx - x'|

(Here , = i/c; because FEE is the only dyadic Green's function that will appear in
this chapter, we abbreviate it to F for convenience).

In our case, we seek to evaluate the E field due to the grid of point sources,

Ji(x) = ZSin6(x - x").
In

We will use the symbol Fin to denote the ith cartesian components of this field at xn.
We then find

Fi E(x) = Fij (x, - xni)Sin'. (8.7)
n'

A naive evaluation of this sum for each of the NG elements requires O(N,) operations.
To do better, we introduce the discrete Fourier transforms (DFTs) of the F and S
quantities:

Jisk(X) Fi (x)e-ik'x, Syk -S(x)eikx

n n

where the sum runs over all points in the grid. Then equation (8.7) reads

Fin = Fijkeik (xn-xn') fY Skeik' xn}

n/ k k'

Rearrange:

= ZpjkSjkeik" X eS(k'-k)-xn/
k k n/

=NGjk,k'

= NGS{FjkSjk ikn.
k

Thus Fin is just the inverse DFT of a quantity whose Fourier component at k is the
product of the Fourier components of Fij and Sj at k.

This then suggests the following algorithm for computing the numbers Fin.

(0) Compute and store the forward DFTs of the Fij kernels. (This step depends only
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on the grid and the frequency, and hence the kernel DFTs may be computed
once and stored, then reused multiple times to compute multiple matrix-vector
products.)

(1) Compute the forward DFTs of the Sin vectors.

(2) Compute the momentum-space products 'ijk -Sjk for each index pair ij and each
momentum vector k.

(3) Compute the inverse DFTs of the momentum-space products.

This procedure yields the full set of quantities {Fin} with asymptotic CPU time
scaling like O(NG log NG) (the time required to evaluate forward and backward DFTs
using fast Fourier transform techniques). Formally, we write

Fi = rii - Si (8.8)

where Fij is an implicitly defined NG x NG matrix whose operation on a vector of
length NG requires CPU time scaling like O(NG log NG).

8.1.4 Interpolation

The interpolation step is illustrated in Figure 1(c). In the interstitial regions between
grid points, we interpolate among the values of the electric field at the grid points to
construct an approximant Eca"x to the scattered field; the inner product of Eca
with basis function f, approximates B , the ath entry in the output vector B.

More specifically, let us write the ith cartesian component of EscatO as an expan-
sion in the same multipole functions #m used in the projection step, centered at the
origin xo about which we computed multipole moments for basis function fa:

Eapexs(x) = Di,0m(x - xo). (8.9)
m

We fix the values of the D coefficients by requiring that Escat match the known
values of the electric field on all grid points in the projection stencil for f,:

S Dimqm(xn - xo) = Fi (Vn E projection stencil for fa) (8.10)
m

The inner product of f, with Ecapt is now

B approx Kfe, Esataox J fai(x)Escat (x) dx
J(Jpf approx'i
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Insert (8.9):

E EZ DimJ fi (x)#Om(x - xo) dx.

Insert (8.1):

Dim E Cianqrm(xm - xo)
Sm nl

Finally, insert (8.10):

= ZZCixnFin.
n

Thus the interpolation step uses the same coefficients as the projection step; the
projection and interpolation operations are mutually adjoint. Using the matrix-vector
product notation of equation (8.3), we can write the preceding equation in the form

Bapprox = PT F%. (8.11)

As in the projection step, the sparsity of the matrix Pi ensures that the storage and
CPU time required for this operation are O(N).

8.1.5 Correction

Summarizing the content of the previous three sections, we may aggregate equations
(8.3), (8.8), and (8.11) to obtain a formal expression for the grid approximation to
the matrix-vector product:

Bapprox [P - '. -p] -K (8.12)

(where for simplicity we are employing a shorthand in which some notational details
are omitted).

Consider the quantity BaPox, the ath component of the approximate product
vector Bapm, x. This number is a sum of contributions from all basis functions in
our geometry. The computational procedure summarized by equation (8.12) does a
decent job of approximating the contributions of basis functions f8 that are relatively
far away from f, (because the grid approximation to the field of f3 is more accurate
as we get further away from f3), but a poor job of representing the contributions from
basis functions nearby f, (including, of course, the contribution of f, itself).

To improve the accuracy with which we account for the contribution of fg to Ba,
we will correct equation (8.12) by subtracting the grid-approximate contribution of
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fg and instead adding in the exact contribution:

B approx,corrected = Bapprox _ pT. f. -P - M 3  K8

- Bapprox - ZCalK0 (8.13)

where the sum is over all basis functions fg that are nearby f, and where the elements
of the correction matrix are

PT - P Mp] if fc is nearby f8

Ca3 =

0, otherwise.

This matrix is sparse, with the number of nonzero entries per row bounded above by
a constant Nnearby (the maximum number of basis functions that lie nearby any other
basis function), and hence may be stored and applied to a vector with memory and
CPU time proportional to Nnearby - N, i.e. O(N). (The threshold separation distance
beneath which two basis functions may be considered "nearby" one another is an
implementation parameter that may be adjusted upward for greater accuracy at the
cost of greater memory and CPU time requirements.)

The computation of the exact matrix elements M,0 is straightforward and may
be done efficiently using the techniques described in Chapter 6. On the other hand,
the computation of the co matrix element of the PTrP matrix involves summations
over the elements in the projection stencils of f, and f,3 together with a real-space
convolution operation of the form 8.7 (but carried out over a reduced portion of the
grid). Although this calculation is expensive, it need only be done once for a given
geometry and frequency, after which the correction matrix may be stored and reused
to compute any desired number of approximate matrix-vector products.

8.1.6 Summary

Summarizing the above sections, our final formal expression for the PFFT-accelerated
approximation to the matrix-vector product B M -K is

Bapproxcorrected = pT - f P - C - K. (8.14)

As discussed above, the storage and CPU time required by the P and C matrices are
O(N), while those for F are O(N log NG).
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(b)

Figure 8-2: Reorganization of RWG basis functions into loop and star basis functions.
(a) To each internal vertex in our mesh discretization, we assign a "loop" function,
obtained as a linear combination of the RWG functions on the panels touching the
vertex. (b) To each panel in our mesh discretization we assign a "star" function,
obtained as a linear combination of the four RWG functions that are nonvanishing
on that panel.

8.2 An Important Subtlety

A naive implementation of the matrix-vector product scheme described above will
lead to systematic errors that impede the convergence of iterative solvers. In this
section we illustrate the nature of the difficulty and discuss a technique for avoiding
it.

8.2.1 Loop-Star Decomposition of the RWG Basis Function
Expansion

The easiest way to understand the nature of the difficulty is to recall that our expan-
sion of the surface current in terms of RWG basis functions,

K(x) = ZKcfa(x), (8.15)

can alternatively be written as an expansion in the so-called "loop" and "star" basis
functions,

NL Ns

K(x) = E K.Lm(x) + > KmSm(x) (8.16)
M=1 m=1

where the loop and star functions Lm(x) and Sm(x) are linear combinations of the
f, as illustrated in Figure 8-2.

As is well known, any well-behaved vector field K(x) may be decomposed as a
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sum of divergence-free and curl-free terms, a procedure known as a Helmholtz de-
composition. The loop-star expansion (8.16) represents what we might term a par-
tial Helmholtz decomposition, because the first term (the "loop" contribution) is
divergence-free, although the second term (the "star" contribution) has both non-
vanishing divergence and curl. Indeed, as indicated in Figure 2(a), each panel in
the support of the loop function is the "positive" panel (in the sense of Chapter 6)
associated with one of the RWG functions in the loop, and the "negative" panel of
another function in the loop, whereupon the total scalar charge density described by
the loop function thus vanishes identically on that panel, i.e. V - Lm 0 for all loop
functions Lm.

8.2.2 Erroneous Propagation of Divergenceless Sources

Using the loop-star expansion, we can now understand the origin of the small errors
in the PFFT matrix-vector product.

We first observe that the second term in (8.4) (the "electrostatic" term in the

dyadic Green's function), when convolved with a divergenceless current source, yields
an identically vanishing field:

E (2 (x) = x - x') J (x')dx'

[Biyb(x - x') J[ J(x') dx'

(where <D(r) e-r/r). Now integrate by parts:

SJ[i(x - x') a J (x') dx'

=0
= 0

for divergenceless J.
From this observation, and from the discussion of the previous subsection, it now

follows that the portion of the scattered electric field obtained by convolving I( 2 ) with

the first term in the expansion (8.16) should give rise to an identically vanishing E
field, since, as noted above, the first term in (8.16) term is explicitly divergence-free.
The difficulty is that this property is not preserved by the grid-projection operation,
nor, indeed, could it possibly be: the only set of spatially dispersed pointlike cur-

rent sources with everywhere vanishing divergence is a set in which all sources have

exactly zero strength. Instead, the grid-projected approximate representation of our

current distribution (8.15) will contain small inaccuracies, which in turn will trans-
late into small inaccuracies in the grid representation of the propagated electric fields;

these inaccuracies will contaminate the interactions of both nearby and distant basis

functions, and thus are not mitigated by the correction step. Although the result-

ing error in any one evaluation of the approximate matrix-vector product (MVP)

107



will be small, a typical application of the procedure described here will involve the
calculation of many hundreds or thousands of approximate MVPs, usually inside a
loop in an iterative numerical procedure such as GMRES or the Arnoldi iteration, and
the accumulation of small errors of the sort discussed here is enough to thwart the
convergence of such iterative schemes.

8.2.3 Modified PFFT Technique

However, this diagnosis of the disease suggests an immediate cure. Since we know that
the loop portion of our original surface current expansion is explicitly divergenceless,
and thus that the r7(2) term in the Green's function must propagate no field cor-
responding to these sources, we can simply turn off the contribution of (2 ) to the
implicit matrix IF that enters into (8.14) (of course we must also zero out the contribu-
tions of T(2 ) to the corresponding portions of the correction matrix C). Instead, when
evaluating the contribution to the approximate product vector Bpprox'corrected arising
from the loop portion of the input vector K, we carry out a modified version of the
PFFT procedure in which only the first term in the Green's function (8.4) is retained.
(When evaluating the contribution of the star portion, we must of course retain both
terms in (8.4).) This simple fix eliminates the small but convergence-confounding
errors and helps to ensure rapid convergence of iterative schemes based on the fast
MVP.

8.3 Fast Casimir Computations with the Acceler-
ated Matrix-Vector Product

In this chapter we have taken a first step toward a fast solver for Casimir problems
by implementing a matrix-vector product (MVP) for the imaginary-frequency BEM
matrix for PEC bodies. The question of how to use this fast MVP in an actual
fast solver is reserved for future work; in this final section we briefly anticipate three
possible approaches.

1. A first idea is to use the fast MVP in the context of a Lanczos or Arnoldi method
to estimate the extremal eigenvalues of the BEM matrix, then use these estimate
to approximate the determinants in the master FSC formula (5.1a).

Such an approach would depend sensitively on the nature of the eigenvalue dis-
tributions of M and M, in (5.1). If the logarithm of the ratio of determinants
in (5.1a) is dominated by contributions from the extremal eigenvalues, then
an iterative procedure for calculating the spectral extremes could lead to an
efficient computational procedure.

On the other hand, if the extremal eigenvalues of M and M, are similar in
magnitude, then these eigenvalues will make little contribution to the log-det
ratio in (5.1a); in this case, our iterative eigenvalue calculator may need to
burrow well in to the innards of the eigenvalue spectra, rendering an iterative
procedure of dubious value.
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2. A second approach would be to apply the fast MVP to the trace formulae in
(5.1b-c), with the linear-system solves implicit in the definition of the inverse
matrix M-1 carried out using an iterative solver such as GMRES. As discussed in
Section 5.4, the equality of the partial traces ensures that we would never need
to do more than Di solves (where D1 is the dimension of the matrix subblock
corresponding to the object on which we are computing the force or torque),
and in practice the trace may turn out to be dominated by a subset of the
diagonal matrix entries (which, offhand, we might anticipate would be those
entries corresponding to basis functions lying closest to the other interacting
objects in our Casimir geometry).

On the other hand, before we could solve the linear systems that enter into the
trace formulae, we would need to assemble the RHS vectors, which in this case
would be the first D1 columns of the derivative matrices &M/ari or DM/6.
If we need only a small constant number of linear solves, the RHS vectors
could be assembled directly with cost scaling like O(N) each; alternatively, a
modification of the fast-solver technique discussed in this chapter could be used
to obtain grid-ready representations of these vectors.

3. Finally, perhaps the most naive application of the fast MVP would be to bypass
the FSC formulae and instead evaluate the stress-tensor integral in (5.3) nrumer-
ically (i.e. by numerical cubature)-with the integrand at each cubature point
obtained by solving a numerical BEM problem, and with the linear BEM system
solved approximately via GMRES (or similar) with the fast MVP. Coming from
a dense-direct linear-algebra perspective (as is natural for the CASIMIR3D and
CASIMIR2D implementations presented in Chapters 6 and 7), it is difficult to
see how the large number of MVPs required for such a procedure could possibly
render it competitive with the other two possible applications of the fast MVP
proposed above, but in the absence of detailed comparisons for large problems
we must keep an open mind.
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Chapter 9

Results: New Predictions of
Casimir Interactions in
Experimentally Relevant
Geometries and Materials

Chapter 5 discussed the theoretical underpinnings of the fluctuating-surface-current
approach to computational Casimir physics, while Chapters 6, 7, and 8 discussed
its practical numerical implementation. In this chapter we at last get down to the

fruits of the FSC approach-new predictions of Casimir interactions in experimentally
relevant geometries and materials that would be difficult, it not outright impossible,
to treat with any other existing method.

Casimir energy of identical spheres, parallel capsules, and
crossed capsules

Figure 9-1 shows plots of Casimir energy versus separation distance for three pairs
of perfectly conducting objects: identical spheres of radius R, identical capsules with
parallel axes, and identical capsules with perpendicular axes ("crossed capsules.")
(A "capsule" is a cylinder of radius R with hemispherical endcaps, of total length
L = 6R in this case.) The energy curve for the crossed capsules interpolates between
the curve for the spheres at short distances and the curve for the parallel capsules at
large distances. We may understand this result as follows: At short distances, the
interaction is dominated by contributions from the portions of the surfaces that lie
in closest proximity to each other. For the crossed capsules, this region of nearest
proximity is restricted to a length ~ R around the centers of the capsules and hence
exhibits the same scaling as the region of nearest proximity for the two spheres in the
short-distance limit. In contrast, for parallel capsules, the strongly-interacting region
extends down the entire length of the capsule and hence scales with an additional
factor of L at short distances. At large distances, the interaction becomes pointlike
and the energy of interaction between identical capsules becomes independent of the
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Figure 9-1: Casimir energy vs. separation distance for three pairs of perfectly con-
ducting objects: identical spheres (red curve), identical capsules with parallel axes
(blue curve), and identical capsules with perpendicular axes (green curve). The hollow
circles represent the sphere-sphere data of Ref. [15].
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Figure 9-2: Magnitude of attractive Casimir force between crossed capsules of radius
R as a function of capsule length, for surface-surface separations Z = 2R and Z = 4R.
The dashed lines denote the asymptotic (L -+ oo) limits of the force, as roughly
extrapolated from our finite-L data. The solid lines are fits of the large-L data to the
form a + b/L, although our data are insufficient to establish the precise asymptotic
L-dependence of the force.

orientation.

Casimir Force vs. Length For Crossed Capsules.

The Casimir force between crossed cylinders, in the limit in which the length L of the
cylinders is much longer than their surface-surface separation Z, is experimentally
accessible [13] and interesting in its own right as a finite interaction between effectively
infinite objects. Figure 3 plots the magnitude of the attractive Casimir force between
crossed metallic capsules of radius R, at fixed surface-surface separations of Z = 2R
and Z = 4R, as a function of the capsule length L. In the limit L -+ oo our capsules
become infinite cylinders and the force approaches a Z-dependent constant (denoted
by the dashed lines in the figure.)
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Figure 9-3: Contour plot of Casimir energy vs. orientation angles for tetrahedral
nanoparticles separated by a distance D = 2L.

Tetrahedral nanoparticles

Several groups have succeeded in producing tetrahedral nanoparticles of dimensions
~10-50 nm [1, 213, and Casimir forces may dominate the interactions between elec-

trostatically neutral particles of this type. Our method allows the first predictions
of Casimir interactions between perfectly conducting tetrahedral particles. Figure
9-3 depicts a contour plot of Casimir energy vs. orientation angles for two perfectly
conducting tetrahedra originally separated by a distance D = 2L in the y direction,
where L is the tetrahedron edge length. To one of the tetrahedra we apply a rota-
tion through an angle <p about the z axis followed by a rotation through an angle
9 about the y axis; the fixed origin of these rotations, depicted as the origin of the
coordinate axes in Figure 9-3, is the point lying a distance H/2 below the apex of the
tetrahedron, where H = V5L/2 is the height of the tetrahedron. The contour plot
reveals a clear minimum at (9, #)=(0,60o), corresponding to the closest approach of a
vertex of the base of the rotated tetrahedron to the unrotated tetrahedron, as might
be expected for an attractive interaction.

Attractive and repulsive Casimir forces between silicon and
teflon spheres and cubes immersed in ethanol

Ref. [413, using the methods of Ref. [15], predicted Casimir forces between spheres
and slabs composed of various materials and suspended in ethanol. Figure 9 uses
the FSC technique to reproduce the results of Ref. [413 for the Casimir force between
teflon and (undoped) silicon spheres, then extends these results by plotting Casimir
forces between spheres and cubes of the same material properties (with the cubes
sized to have the same volume as the corresponding spheres). For each geometry, we
plot the ratio of the computed Casimir force to the force predicted by the perfect-
metal proximity force approximation (PFA) for that geometry; since the PFA always
predicts an attractive force, a positive (negative) ratio implies an attractive (repulsive)
Casimir force. It is interesting that all four geometries exhibit a repulsive-attractive
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Figure 9-4: Casimir force between silicon and teflon spheres and cubes immersed in
ethanol, normalized by the PFA predictions (see text). For the sphere-sphere case,
the solid circles represent data computed using the methods described in this paper,
while the thick solid line reproduces data from Ref. [41]. For the other three cases,
the solid and hollow circles represent data computed using the methods described in
this thesis, and the dotted lines are a guide to the eye.
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force crossover at approximately the same surface-surface separation distance.

Finite-size effects in nanoparticle diclusters

Ref. [41] predicted Casimir forces between dielectric slabs, of infinite cross-sectional-
area, embedded in ethanol. It is interesting to ask how these predictions are modified
for finite slabs (discs). Figure 9 plots the PFA-normalized Casimir force between
pairs of puck-shaped nanoparticles, one composed of polystyrene and the other of
doped silicon, immersed in ethanol. For comparison, the dotted curves indicate the
(PFA-normalized) force between pairs of infinite slabs of the same materials. For small
values of the surface-surface separation d, the normalized puck-puck force tends to the
slab-slab limit, but finite-size effects cause the curves to deviate beyond separations
of d ~ R/2 (with R the puck radius).

Rotational stability of dielectric nanoparticles

For the nanoparticle pair corresponding to the intermediate curve in Figure 9 (dopant
density of 1.4 - 1019 cm -3 for the silicon nanoparticle), we now fix the centroids of
the nanoparticles and plot the Casimir energy (Figure 9-6) as a function of rotation
angles (see the inset of Figure 9-6) for two centroid-centroid separation distances S
of 700 and 500 nm. The slight shift in the value of S changes the stable equilibrium
(right).

Casimir Forces between Quasi-2D Silicon Beams

Modern lithographic and etching techniques allow the fabrication of high-aspect-ratio
structures, such as the coupled silicon waveguides suspended over a substrate reported
in Ref. [29], in which elongated beams of constant cross-section are kept within trans-
verse separations of a few hundred nanometers over a length of several microns or
longer. The cross-sectional profile of the waveguides in such an experiment may
exhibit irregular non-rectangular shapes, for which purpose a general-purpose geo-
metric tool such as CASIMIR2D is ideal for predicting Casimir interactions. As just
one example, Figure 9-7 plots the Casimir force per unit length, as predicted by
CASIMIR2D, for a discretized version of a hypothetical structure consisting of two
silicon waveguides suspended over a silicon substrate.
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Figure 9-5: Casimir force between puck-shaped polystyrene and doped-silicon
nanoparticles immersed in ethanol. The dotted curves indicate the force on slabs
of the same materials and thickness but infinite cross-sectional area [41].
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Figure 9-6: Rotational stability of hockey-puck shaped nanoparticles suspended in
ethanol. One nanoparticle is composed of polystyrene, and the other of silicon with
a dopant concentration of 1.4-1019 cm- 3 (corresponding to the middle curve in the
previous plot). We fix the centers of the particles at center-center separations of
S = {500, 700} nm allow them to rotate about their centers. The minimum-energy
configurations are depicted in the insets at right. (All angles are measured in degrees.)
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Figure 9-7: Casimir force per unit length, as a function of surface-surface separation,
as predicted by CASIMIR2D, for a hypothetical geometry consisting of elongated
silicon beams of irregular cross-section suspended over a silicon substrate (inset).
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Chapter 10

Conclusions and Future Work

This thesis has presented a new paradigm for computational Casimir physics. Our
fluctuating-surface-current (FSC) method expresses Casimir energies, forces, and
torques-among objects of arbitrary shapes and materials-in terms of the inter-
actions of effective electric and magnetic surface currents flowing on the surfaces of
the interacting objects. Upon discretizing object geometries and approximating the
surface currents as expansions in a finite set of localized basis functions, the FSC
technique leads to expressions for all Casimir quantities that are not only simple and
compact but also fully general, in the sense that they may be applied, mutatis mu-
tandis, to any number of distinct Casimir geometries with no need to reformulate the
underlying computational procedure in each case.

The FSC formulae were first stated in Chapter 5 of this thesis, where they were
demonstrated to emerge as simple logical consequences of either of two seemingly dis-
parate theoretical frameworks-the stress-tensor and the path-integral (or scattering)
approach to computational Casimir physics. In addition to furnishing a useful new
technique for practical Casimir computations, this thesis thus achieves an unexpected
unification of these two otherwise quite distinct paradigms.

But theoretical Casimir methods are only as useful as their real-world implemen-
tations are practical, efficient, and accurate, and for this reason in Chapters 6, 7,
and 8 we presented three separate numerical implementations of the FSC formulae.
Practical implementations of the FSC formulae turn out to pose a number of nu-
merical challenges-the most significant of which involves the efficient and accurate
numerical evaluation of huge numbers of singular or nearly-singular multidimensional
integrals-and this thesis developed a number of responses to these challenges, which
were discussed in Chapters 6 through 8 and codified in technical detail in a series of
Appendices.

After considering abstract theoretical underpinnings in Chapter 5 and practical
numerical implementations in Chapters 6 through 8, the fruits of the FSC technique
were finally harvested in Chapter 9. There we demonstrated that the FSC approach
is capable of efficiently predicting Casimir interactions in a variety of geometries that
would be difficult or simply impossible to treat using any existing Casimir method.
Thus, beyond the intrinsic interest of the theoretical perspective it furnishes or the
practical relevance of the numerical techniques that go into its implementation, the
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FSC technique will be, quite simply, the hands-down computational method of choice
for many experimentally relevant Casimir configurations today and in the future.

Future Work

The FSC formulae, equations (5.1), obtain Casimir energies, forces, and torques in
terms of the determinant and trace of certain matrices describing the interactions of
discretized surface currents. The dimensions of these matrices are proportional to
the number of localized basis functions needed for an accurate description of surface
currents in a given Casimir geometry; for the examples presented in Chapter 9, this
number was in the range N ~ 103 -- 104, and thus the dimensions of the matrices in
(5.1) are small enough that determinants and traces may be evaluated using dense-
direct linear algebra, with O(N 2 ) memory and O(N) CPU-time scaling.

For future applications, it may be necessary to consider more complicated ge-
ometries, in which the number of basis functions grows in excess of a few tens of
thousands. For such large problems, O(N 3 ) methods are computationally infeasible,
and we must pursue alternative approaches.

This general state of affairs is ubiquitous in the history of computational science:
a new computational method, which relies in practice on numerical linear algebra, will
often be developed and demonstrated first in a dense-direct (O(N 3)) context; later,
after this initial proof-of-concept, second-generation implementations will emerge to
improve the complexity scaling to 0(N log N) or similar. This thesis may be thought
of as an initial statement and proof-of-concept of the FSC technique (as demonstrated
in Chapter 9, our first-generation implementations already achieve some decidedly
nontrivial advances in computational Casimir physics) together with some first steps
(Chapter 8) in the direction of a second-generation implementation with improved
complexity scaling. An obvious direction for future work will be to continue down the
road begun in Chapter 8 towards a comprehensive fast solver for Casimir applications.
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Appendix A

Dyadic Green's Functions

The dyadic Green's functions of classical electromagnetism appear in many contexts
throughout this thesis, and for this reason we collect here a compendium of definitions
and relations involving these quantities. This material is of course not new, but is
reproduced here to fix ideas and notation for the purposes of this thesis.

In the presence of known volume densities of electric and magnetic current J(x), M(x)
at a fixed imaginary frequency (, the components of the electric and magnetic fields
are given by linear integral relations of the form

Ei(x) =

Hi(x) =

SpEE(; x x') J (x') + F ((;x, x')M(x')} dx'

FE X/ Mdx'.

These relations define the four dyadic Green's functions F.

In an infinite homogeneous medium with spatially constant relative permeabil-
ity and permittivity c((; x) = er((), p((; x) = p'( ), the four F functions may be
expressed in terms of just two tensors:

TEEr(rj,rr) =rZoZ rG(K',r,r'),

TEmr(, r, r') - Kr C r, r')

(ZO = [ , ZT  = ,F'

FME,r(r/) - rC(Krr/)

rMM,r r/) =- G(K', r, r')
Z0 Zr

(A.1)

K' = V/ popr6eer .(

where G, sometimes referred to as the "photon Green's function," is the solution to
the equation

V xV x +(K)2] G(nr; r - r') = 6(r - r')1;

and C is defined by

(A.2)

(A.3)
1

C = V x G.
Kr
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Explicit expressions for the components of G and C are

Gij = i , 1 Oio9= Go, Gi ! -- eiikokGo (A.4)
K2 K

where Go is the scalar Green's function for the Helmholtz equation,

Go(; r - r') = (A.5)
47rlr - r'|

which satisfies
[V2 - K2] Go(K; r - r') = 6(r - r').

With these expressions, we can verify that equation (A.3) is actually just the first
half of a pair of reciprocal curl identities relating G and C

1 1
V x G = C, V X C = -G. (A.6)

Kr ' r

(As usual with tensors and dyadics, the vector notation here is suggestive but vague;
the precise meaning of (A.3) is

1 1
-eiABaAGBj = Cij, EiABaACBj = -Gij.) (A.7)

K K

In a general inhomogeneous region, the dyadic Green's functions may be expressed
as the sum of two terms,

f EE( ; x, x) _ EE X;,x X) + gEE,scat (; X, x') (A.8)

(and similarly for the other three F functions); here rEEx is the homogeneous DGF for
an infinite medium with constant c', pr set equal to their values at x, and EEscat, the
scattering part of the DGF, describes the fields scattered from the inhomogeneities
in the geometry. The first term in (A.8) is singular as x -+ x', but the second
term is perfectly well-defined in that limit and is the quantity that enters into the
fluctuation-dissipation expressions for the spectral density of fluctuations in products
of field components, as discussed in Chapter 3.

Before proceeding we pause briefly to comment on our choice of notation. The
four dyadic Green's functions FPQ (P,Q E {E,M}) depend both on the imaginary
frequency and on the homogeneous region in which they are defined, through the
material-property functions {r(i), pr(i )} for that region. Thus these functions are
properly thought of as functions of imaginary frequency, and they carry a superscript
(r) indexing the homogeneous region in which they are defined, i.e.

1rPQ = FP"((, r, r').

In contrast, the G and C dyadics are universal functions, defined mathematically by
(A.4) and (A.5), that depend on e, y, and only through the single parameter K, and
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hence these functions are

G = G(K;r,r')

C = C(; r, r').

Momentum-Space Representations of Dyadic Green's Func-
tions

The momentum-space representation of the scalar Green's function is (A.5)

Go(; r) = J d)OG(K; k)eik~r

with
1Oo (r; k) = .2 kT2 m k 2

The momentum-space version of (A.4) reads

= +kikj]-Gij = oj + -|] Go, Cij = -- EijkkkGo
K

or, in matrix format,

G(k) = 1
K2 (K 2 + k2 )

C(k) =
K(K 2 + k2 )

+ (k 2
kykx

kz kx

kxky k kz
k2 kykz

kz k k 2

0
kz

- ky

-kz
0
k
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Appendix B

BEM Matrix Elements between
Localized Basis Functions

In Chapter 4 we reviewed the boundary-element method (BEM) of computational
electromagnetism, and in Chapter 5 we showed that the matrices that enter into
BEM calculations also enter in to a certain set of formulae-our master FSC formulae
(5. 1)-for Casimir phenomena. For reference, in this Appendix we write out the
precise forms of these matrices, using a notation that clarifies the discussion of the
matrix-element calculations presented in Chapters 6 and 7. This material is of course
not new, but is instead merely a distillation of the content of Chapter 4 (which itself
was of course not new, but was instead merely a review of a well-established technique
in computational electromagnetism).

The elements of the BEM matrices in the EFIE and PMCHW formulations involve
inner products of basis functions with the dyadic Green's functions of Appendix A.
More specifically,

1. EFIE Matrix Elements: For the electric-field integral equation, appropriate
to the case of PEC scatterers, each pair of localized basis functions (f, ffl)
contributes a single matrix element to the BEM matrix,

MHao (W = ( fa I'FEE,ewIf,

= -ZoZeKe (f G(re) f

where re, Ze are the imaginary wavenumber and the relative wave impedance
of the external medium (in which the PEC bodies are embedded) at imaginary
frequency (.

2. PMCHW Matrix Elements: In the PMCHW formulation appropriate for the
case of general material bodies, each pair of localized basis functions (fe, ffl)
contributes a 2 x 2 block of matrix elements to the BEM matrix.

If f,, f,3 lie on the surfaces of two different objects, this block of elements takes
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the form

K ( f o|FEE,e ( )If ) _f IF EM,e I f/3)

(fa l ME,e Z fI MM,e

-( -KeZe(felG(e) f)
- se(f lCQ~e) fp)

-KeK fIC(

+e (fa|G(

where Ke, Ze are the imaginary wavevector and relative wave impedance of the
external medium at imaginary frequency (.

If fQ, f6 lie on the surfaces of the same object (call it object r), then equations
(B.1) and (B.2) are augmented by contributions from the medium interior to
object r:

Kfa M( ) fo ) =

-seZe(fa|G( e f -K'Z'(f, G(Kr)|f,)
- |e f. - s'f C (r,)|fo)

Ke (fa C(e) f3f) - K(f. I C(Kr) f,8)

+ (fa G(,e)|f) + r fa G(.r) f)

where Kr, Zr are the imaginary wavevector and relative wave impedance, at
imaginary frequency (, of the medium interior to object r.

The inner products with the G and C dyadics can, in turn, be represented in
terms of three separate types of integrals:

1Lv(x, fa, fo)fa G(r,) f )3

fa C(' ) f13

= L(x, fa, fe) -

=-L x (xfa, f)
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e) f

e) f)
(B.2)

1 l IF EEe + LEE,rIfo) -(fi EM,e + FEM,r f)
Zo

(fC, TFME,e + ME,r If) -Z f FMM,e + MM,r Io



where the L-functions are

L.(, fa, f8) =Jf dx
sup da isup fg

Lv(, fa, fg) =Jf dx
sup fa fsup fg

L x Klfa, f) = fdx f
sup f.. sup f,3

dx' [f(x) -f(x')] Go(K; |x - x'|)

dx' [(V - fa(x)) (V ffl(x'))] Go(K; Ix - x'|)

dx' [f.(x) x f (x') ] VGo(K, |x - x'j)

where

Go(K; r) 4i--47rr
is the scalar Green's function for the imaginary-frequency Helmholtz equation.

For some purposes it is convenient to use the symbols # and 4 for Go and for the
scalar part of its gradient, i.e.

e~e--4(rr

O(K; r (1± Kr)e-Kr

so that Vd(r) = rd(r).
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Appendix C

Proof of Integral Identities

In this Appendix we state and prove a new integral identity that underlies the stress-
tensor derivation of the FSC formulae presented in Chapter 5. We emphasize that this
integral identity is new and is stated, proved, and used for the first time in this thesis,
although an identity bearing at least a superficial resemblance appears in equation
A.6 of Ref. [42].

In Chapter 5, we introduced a three-index integral kernel I defined by

§ik1(r, r') = K2 VA(r, r, x) nA(X) dx (C.1)

where the integration is over a closed surface in space (a topological two-sphere) C
and the integrand contains products of factors of dyadic Green's functions:

VA(r,r',x) = G1G - G - CG1C + C~kClB- (C.2)
2 2

Here the G and C dyadics are those defined by equations (A.2) and (A.3); we use
capital Roman letters (A, B, - - -) to denote contracted indices, and we are using a
shorthand notation in which i arguments are suppressed and spatial arguments re-
placed by superscripts,

G' = Gi (K, x - r), G 2 Gij(K, r' - x).

We also defined a symmetrized version of I:

Iik1(r, r') Ikl(r, r') I lk(r', r)

K 2 JVA(X) nA(x) dx (C.3)
JC

with

YVA(x) = GlyGA + GlGi - SiAGiGBB - - CACI + OiACBkClB- (C4)

The goal of this Appendix is to demonstrate that, by appealing to the defining prop-
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erties of the G and C dyadics, the surface integral in (C.3) can be evaluated in closed
form, with the result

lijk(r,r) =

0,

aGkI (r -- r')ar

-raGkl(r - r')
0ri

0,

if both r, r' lie inside C

if r lies inside and r' lies outside C

if r lies outside and r' lies inside C

if both r, r' lie outside C.

For the purposes of this Appendix it will be convenient to work in length units such
that K = 1. With this convention, the G and C dyadics are related to the scalar
Green's function for the Helmholtz equation according to

Gi = (61j - 8a)I Go, Cij = -EiokakGo, (C.6)

(C.7)
and Go satisfies

[aAaA - 1 Go(r) = 6(r).

The evaluation of the surface integral (C.3) now proceeds in several stages.

C.1 Apply Divergence Theorem

The first step is to recast the surface integral in (C.3) as a volume integral over the
volume bounded by C,

JVAnAdA = J&AVAdV (C = v)

= W dV

where we put W &9AVA.

Each of the six terms in VA contains two factors and hence contributes two terms
to W (by the chain rule for differentiation). Terms of the form 9aCiA vanish; to each
of the remaining (nonvanishing) terms we assign a label, as tabulated in Table C. 1.
Note that derivatives of G J enter with a minus sign, because we are differentiating
with respect to x, which enters the argument of G with a minus sign.
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Table C.1: Terms in W = AVA .

C.2 Treatment of W 2 and W 3

We first consider the terms labeled W 2 and W3 in Table C.1. Starting with the first
of these, we have

w2 - [Gk] [OAG]

Expand the second factor using (C.6):

= - [G (1 - ADA) G2]

Apply (C.7):

=+ [Gil] [D61 2)]

Integrate by parts:

~+ a, G162 (C.8)

where ~ means "equivalent as long as we are underneath the volume-integration
sign." (Note that the minus sign coming from the integration by parts is cancelled
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Label Term

W1 ( G1 G2

w2 _G1 & 2I [Gb] [OAG1]

W3  [aAG( ] [G G]

WAk -il8G

w4 G[A] [aA]G G

w5 [AGIc G *o]

Label Term

W6 G G2

-[OACil] [ct:']

W8 Ci

W0 [A] [CAC]

-[CAk] [aW1c&]



by the minus sign coming from the fact that x enters 2 with a minus sign, as noted
above).

By analogous operations, we find

W - [6(1)] [OkG ]. (C.9)

We now set aside results (C.8) and (C.9) for future use.

C.3 Treatment of Remaining Terms

C.3.1 Rewrite in terms of Go

Turning next to the remaining 8 terms in Table 1, we begin by using (C.6) to rewrite
everything in terms of the scalar Green's function:

Wi + W + W 5 ±+W6

= [aAGk - OiGlA] [G ] + [G',] [aG 2- aG 2]

= [SikAG' - kA8Gl [,,G 2 - aIAG2]

+ [6kAG - &kAGo] [61A 2G - 6iaAG (C.10)

W+W8 +W9 +W10

-EikB6iAC [OA&BG:] [acG2] + EkAB~iIC [BG] [aAac 2C]

+ EAkBEIAC OiOBG] [CG 2 - EAkBEIAC aBG] aacG .

We can trade Levi-Civita symbols for Kronecker deltas using the identity

EABCEDEF

- EBFOCE] + 6AE [EBF6CD - OBD6CF] + EAF [EBD6CE - 6BE6CD] -

We then find

w7 + W + w9 + W1O

= [(a8 GO] [iGakG 2 - 6k1iGo - [6WiG' - k0iGo] [aA8AG

- ii 1oaG 0 G0] + 6ik [8AGO] [1AG 

-[oiG] [aka 2] + [akiGo] [a G 2].
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C.3.2 Label Individual Terms

To proceed, we now assign a new label to each separate term in (C.10) and (C.11):

16

W1 +W + W6 + W1+W +W9+W1 = X"
n=1

Table C.2: Terms in X.

C.3.3 Recombine Terms,

We first note the obvious cancellations:

x2+X15 = 0

X7 +X 13 = 0
X4 +X 14 = -0
X8+X16 = 0

135



Summing and appropriately recombining the remaining terms, we find

X1 + x 3 + x" + x1 2 = [kaiG- - 6ikIGo] [aAAG2 -G 2

and

x 5 + x6 + x 9 + x 10 = [AaAG 0 - Go] [6ikG - SklaiG ].

From (C.6) it follows that

[6klaiGo - 6ikaiGol = [aiGkl - lGik] .

Using this and (C.7), we can rewrite the previous two equations in the form

X1+ x 3 + x 1 + x 12 = [aiG 11- cG] 6(2)]

x5 + x 6 + x9 + x 10 = [6(1)] [aG2 - 2G 2']. (C.13)

C.4 Final Steps

Finally, we combine equations (C.8), (C.9), (C.12) and (C.13) to obtain

i=kl Ij{W2+W+X1 +x 3 +x 1 + x12+x5+x6+ x9+ x1o dx

= j 8[aiGl] 6(2) - 6(1) [aiGi}dx

Writing out the function arguments, this reads

YikI(r, r) = jV { 9iGa(x - r)] 6(r' - x) - 6(x - r) [iGkI(r' - x)] }dx. (C.14)

We now proceed on a case-by-case basis depending on the positions of r, r'.

" First, if r and r' both lie outside the bounding surface C, then neither 6 function
contributes and we have 1= 0.

* If r lies inside C while r' lies outside C, then only the second 6 function con-
tributes, and we find

Iikl(r, r') -OiGkI(r' - r)

=+aiGkl(r - r')
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" If r lies outside C while r' lies inside C, then only the first 6 function contributes,
and we find

ik(r, r) = iGki(r' - r)

= -- iaGkI(r - r').

" Finally, if both r and r' lie inside C then both 6 functions contribute, their
contributions cancel, and we find T = 0.

The result (C.5) is thus established, and our proof is complete.

The j Kernel

The development of Chapter 5 also makes reference to a version of the I kernel defined
in analogy to equations (C.1) and (C.2), but with the "GG - CC" structure of (C.2)
replaced by a "CG+ GC" structure:

ikl(r, r') = 2 j YA(r, r', x) nA(x) dx

YA(r,r', x) = Cjh.G2A - C6ki0 2 + GkC2A - Gk 02
2 1 k2 Bk 1B-

(C.15)

(C-16)

We also define a symmetrized version defined in analogy to (C.3):

Jik1(r,r) = Jik(r, r') + Jilk(rr).

In Appendix A (Equation A.6) we noted that the curl operation takes G into C and
C into -G. With this observation we see that (C.16) is obtained from (C.2) simply
by taking the curl with respect to the k index, and thus that the j kernel is the
result of the same operation applied to the I kernel:

Jkik(r,r) =
1 -
-- ekAB&AIiBI(r, r')
K

0,

S ri Ck(r - r')

ar
r-Cki(r - r')

0,

if both r, r' lie inside C

if r lies inside and r' lies outside C

if r lies outside and r' lies inside C

if both r, r' lie outside C.

137



138



Appendix D

Evaluation of Singular Panel-Panel
Integrals

In this Appendix we discuss a technique for evaluating singular panel-panel integrals
of the type that enter into the computation of BEM matrix elements in Chapter
6. The technique that we present here is an expanded and generalized version of a
technique published earlier by Taylor [45].

A problem that arises frequently in the numerical implementation of the FSC
formulae using RWG basis functions (Chapter 6) is the evaluation of integrals of the
form

I = 4AA' dx dx' h(x, x') g (x - X') (D.1)
4AA' Jp Jpt

where P, P' are triangular panels sharing one or more vertices (A, A' are the areas of
the panels), h is a polynomial in the components of x, x', and the kernel g(r) depends
only on the distance r = ix - x'.

In many cases of interest, g(r) will be singular at r = 0, precluding the evalua-
tion of (D.1) by straightforward numerical cubature. In principle, we could proceed
by writing the four-dimensional integral as four nested one-dimensional integrals (in
which the limits of the inner integrals will depend on the outer integration variables)
and evaluate the integral using four nested one-dimensional numerical quadratures,
with the innermost quadratures evaluated using a singularity-aware quadrature rule.
Alternatively, we could introduce a regularization parameter 7 to mitigate the singu-
larities in g (for example, if g were 1/r 2 , we could put g, = 1/(r2 +y 2)), then evaluate
(D.1) at multiple finite values of rl and attempt to extrapolate to the T7 -+ 0 limit.
But neither of these methods would offer anything like the kind of efficiency needed to
evaluate, in a reasonable amount of time, the millions of singular panel-panel integrals
that arise in a typical Casimir computation.

The way out of this morass was shown by Taylor in 2003, who presented an
ingenious scheme for efficient and accurate evaluation of singular panel-panel inte-
grals [45]. Taylor's method proceeds by subdividing the four-dimensional domain
of integration in (D.1) into M subdomains, then introducing new integration vari-
ables in each subdomain in such a way that Duffy transformations [11] may be em-
ployed to neutralize the r = 0 singularities of g(r). (The number of subdomains
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into which the original integral is divided is M {3, 6, 2} for the cases in which P
and P' have {3, 2, 1} common vertices; we refer to these respectively as the common-
panel, common-edge, and common-vertex cases.) As an added bonus, this reorgani-
zation turns out to allow one or more of the four-dimensional integrals in (D.1) to be
evaluated analytically, thus leaving behind a non-singular lower-dimensional integral
that may be evaluated using straightforward numerical cubature. The price paid is
that the integrand of this lower-dimensional integral is so exorbitantly complicated a
function-involving antiderivatives of the h and g functions and containing dozens or
hundreds of terms-that even to write it down, much less to implement it numerically,
is itself a nontrivial computational challenge.

Taylor's original treatment [45] was restricted to certain specific choices of the h
and g functions in (D.1). In this Appendix we present a generalized version of the
technique that encompasses all cases of singular panel-panel integrals encountered in
the implementation of CASIMIR3D. (Incidentally, we also correct two typographical
errors in Taylor's original work [45]).

D.1 Parameterization of Integral

Let the triangle vertices be

P = {V1,V 2,V 3 } P 1={v 1,v2,v%}

where V1 is always a common vertex; in the common-edge case we have additionally

V'2 = V 2 , and in the common-panel case we have additionally V6 = V 3.
Put

B'= V/ - V'.

Following Taylor's original notation, we parameterize points
cording to

x(i, 2) =V1 + 1A + 2B, 0 < 1 <1,

0 < q1 < 1,

in the two triangles ac-

0 (2 5 '1

0 72 ! 771.x'(771, n2) = V1 + qlA'+ q2B',

whereupon the integral (D.1) becomes/1 i 1 'i

E =f i O 0 0TI 0 d7

with

h( (2, )/1, 2) = h(x( 1, 2), x'(11, T2)),

140

(D.2)h ((1, 2, 771,'q2) g ((1, 72 6 1, 72)

g (6i 12 6 1, 72) = g (R((1,)2, n1, 172))



where the squared distance between points is

2
= X( 1,2 -X'(7 1,12)I

= A2(2 + B2(2 + A'2n + B'%27
+ 2(A- B).12 - 2(A A')(ir/1 - 2(A -B')(ir/
- 2(B A')(27/1 - 2(B B') 2 7/2 + 2(A' - B')rjir/2.

D.2 Kernel Integrals

The kernel function g(r) in (D.1) enters into the master Taylor formulae only through
the quantity

I,,(X) - w'g(wX)do.

This quantity is only ever evaluated for indices n > 0 and at nonzero values of
the parameter X, which means that the powers of w in the integrand neutralize the
singularities of g.

This function is tabulated for a number of relevant kernel functions in the following
table.

where the nth relative exponential function is just exp(X) with the first n terms of
its Taylor series subtracted: 1

f-1iX
ExpRel(n, X) -e - .!

m=0
(D.3)

'Note that our relative exponential function is similar to, but distinct from, that defined by the
GSL (http: //www .gnu. org/sof tware/gsl/).
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D.3 Common Panel

In the common-panel case the four-dimensional integral (D.1) is reduced to a one-
dimensional integral with a complicated integrand:

1 3
I = fodz EESi,(x)Ia+1(X (x)) .(D.4)

i=1 a

Here the reduced distance functions for the three regions are

Xf"(x) IA2ui(x) + B 2u2 (x) + 2(A -B)uli(x)u 2i(x)

with the urn functions defined by

iui(X) U2i(X)

1 1 x
2 x (X -1)
3 x 1

and the S~,, functions are defined by a two-step process:

(1) We first introduce three two-variable functions Hi'(ui, u2) defined as definite
integrals involving the h polynomial:

/UP 
Uf2

Himit f Uigt2) a h(1,2,li +ed2+bl)o2w1 (D.5)

with the limits of integration as tabulated below.

0
Uf1
- U 1

L 2

0
Uf2

2 -U 2  1-u 1 -U 2  1

3 u2 -u 1 1-u 1 0 (U2 - ui)

(2) Since h is a polynomial in its variables, Hi" is a polynomial in its variables, and
thus the expressions

Hicp(onli (X), wu2i (X)

define polynomials in w (whose coefficients are themselves polynomials in x). The Scp
functions that enter into (D.4) are just the coefficients of w' in these polynomials, i.e.

Hf3c (Wuli(x), wu 2 j(X)) ZSicJ(z) w". (D.6)

The RHS of this equation defines not only the Sf," functions but also the limits of
the a summation in (D.4).
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D.4 Common Edge

In the common-edge case the four-dimensional integral (D.1) is reduced to a two-
dimensional integral with a complicated integrand:

I = z xidxi (D.7)J d 2 2t E ( z i , 2)
2

,+ 2

Here the reduced distance functions for the six regions are (L = B' - B)

Xj(X, X 2) - 2u + B 2u + L2 62

+ 2(A -B')uliu 2i + 2(A -L)uis 2 3 + 2(B'.

where u1 , u 2i, (2i are functions of (£1, X2) :

iui (XIi, X2) U2 (X1, iX2) 62(i, (X1z2)

1 -X -_iz2 (1 - X 1 + ziz2)

2 zi X1X2  (1 - x)
3 -- IX2 Xi(1 -- X2) (1 -- i)
4 XiX 2  -xi(1 - X2) (1 - X1X2)
5 - 122 -X1 1

6 1Xi2 1.1 -x1

L)U2i 1/2

and where the SiE functions are again defined by a two-step process:

(1) We first introduce six three-variable functions H5E(u1,u 2, 2) defined as defi-
nite integrals involving the h polynomial:

H l u1, U2, 2) h(1, 2, ni + 61, U2 + 2) d(1
Iv?

(D.8)

with the limits of integration as tabulated below.

1 ( 2 + (u2 -i) 1
2 62 1-Ui

3 2 + (u2 -i) 1
4 2 1-u 1

5 2 1
S6 2 + (u 2 -ui) 1- u

(2) Again, since h is a polynomial in its variables, HiOE is a polynomial in its variables,
and thus the expressions

H,9E (Uli (1, X2), WU2i (1, X2) 2~ 1X, X2)
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define polynomials in w (whose coefficients are themselves polynomials in x 1 , X 2 ). The

SCE functions that enter into (D.7) are just the coefficients of w in these polynomials,
i.e.

HE E a.2XX (D.9)

The RHS of this equation defines not only the SE functions but also the limits of

the a summation in (D.7).

D.5 Common Vertex

In the common-vertex case the four-dimensional integral (D. 1) is reduced to a three-

dimensional integral with a complicated integrand:

. = j dxi x2d2 dX3 E S, (ziz2,X3)la+3(Xi(ziX2,X3)) (D.10)

Here the reduced distance functions for the two regions are

X$v (X1 , X2 , X3 ) [ A2( + B 2 + A'2772 + B'2,q2

+ 2(A- B). 2i - 2(A - A')(in1 - 2(A - B)(u]2i

- 2(B- A').207u - 2(B- B')( 2 i7 2 i + 2(A' - B')T1 i?72i] 1/2

where 1i, 2i, 71, 72i are functions of X1, x2 , x3:

i (X~i, 2, za) (X(1, 2, X3) 9q1i(zi, 2, X3) 772i(Xi, X2, 3)

1 1 i2 X2X3

2 2 X2x3  1

and where the S?9,v functions are defined, slightly more simply than in the previous two

cases, as the coefficients of powers of w in an evaluation of the original h polynomial

with arguments containing factors of w:

h (ogsi(zi, 2, X3), o(2i(zi, X2, Xs), sni(Xi, X2, 3), 072i(zi, X2,X3))

S,,"(i, X 2 , X 3 ) Wa. (D.11)

The RHS of this equation defines not only the S,9jv functions but also the limits of

the a summation in (D.10).
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D.6 Implementation Notes

Before concluding this Appendix we pause to make some brief observations regarding
numerical implementations of the master Taylor formulae.

Evaluation of the Relative Exponential Function

The relative exponential function was defined in equation (D.3). In practice we will
often need to evaluate this function at small arguments X < 1, and for this purpose
a naYve implementation of the defining equation (D.3) is not adequate-at least not
in finite-precision arithmetic-as eX will be dominated by the first few terms in its
Taylor expansion, and subtracting these from the value computed by a floating-point
library implementation of exp(X) will yield little more than numerical noise.

In practice, for positive values of the argument X, an adequate alternative strategy
is simply to appeal to the equivalent alternative definition

cX

ExpRel(n,X) Z= m
m=n

with the infinite sum truncated as soon as the terms fall below some predefined error
threshold.

Computation of the SCP, SCE, and S" Polynomials

The reader will not fail to have noticed the extremely unwieldy definitions (equations
(D.6), (D.9), and (D.11)) of the polynomials SJ'(x), Si(Xi, x 2 ), and Sj(Xi, x 2 , X 3 )
that enter into the integrands of (D.4), (D.7), and (D.10).

These functions, which are defined in terms of the h polynomial in (D.1), are
already complicated even for the simplest case of a constant h polynomial (the only
case considered in Taylor's original treatment [45]), while their complexity grows
rapidly as the degree of h increases. This is especially true for the particular cases
of h polynomials that happen to be relevant for the purposes of this thesis (namely,
the three defined by equations (6.6), which are of degrees 2, 0, and 3, and contain
large numbers of terms.) To give just one example, for the particular case h.(x, x') =

(x - Q) - (x' - Q') that arises when computing the L. panel-panel integral discussed
in Chapter 6, the function Si(xi, x 2 ) for index values i = 1, a = 3 reads

Si'3(Xi, x2 ) =(B -B' + A -B)x2 - (B -B' + A-B)i 2

-(B -B'+ A -B) + A2 + 2B -B'+ -A -B + 'A -B)i
1 1 1

A2 - B - B' --- A .B'--A -B. (D.12)
3 2 2

For the common-edge case alone there are, in total, 24 such polynomials, in addition
to 15 polynomials in the common-panel case and 12 polynomials in the common-
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vertex case. And all of this only for the single choice h = h.; the case h = hx is even

worse!
Although each operation in the sequence of steps that defines the S polynomials is

straightforward (definite integration of polynomials, collection of terms, identification
of coefficients), the sheer magnitude of the tedious and error-prone pen-and-pencil

drudgery involved in writing down the S functions for a given h polynomial strains

the boundaries of human computational ability-so much so, indeed, that the Taylor
method for higher-order h polynomials would be useless in practice were it not for the

saving grace of computer algebra systems. Indeed, given an arbitrary h polynomial

it is a simple matter-a few lines of code-to coax a system such as MAXIMA or

MATHEMATICA to evaluate definite integrals over h, collect the terms in equations

(D.6), (D.9), and (D.11), identify the coefficients of the various powers of w, and emit

expressions for all required cases of the S polynomials. These expressions will be

numerous and tedious, as witness equation (D.12), but this is of little concern, as we

need only copy these numerous and tedious expressions into a separate code module
that will be parsed and evaluated by a different computer system (in the case of

CASIMIR3D, a C++ compiler) to generate a function that calculates numerical values

for the integrands in (D.4), (D.7), and (D.10). This function, in turn, we use as the
integrand of a numerical quadrature scheme to evaluate the integrals, and-voila!

Taylor's method becomes a useful computational procedure even for complicated h

polynomials.
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Appendix E

Evaluation of Singular
Segment-Segment Integrals

In this Appendix we discuss a series of techniques -for evaluating singular segment-
segment integrals of the type that enter into the computation of BEM matrix elements
in Chapter 7. Although the techniques are based on standard mathematical manipu-
lations, including change-of-integration-variables and Duffy transformations [11], we
emphasize that these standard mathematical manipulations are applied here for the
first time to the computation of matrix elements for two-dimensional BEM problems.

A problem that arises frequently in the numerical implementation of the FSC
formulae using TDRT basis functions (Chapter 7) is the evaluation of integrals of the
form I duf du'upu'4F (R(u, u')) (E.1)

where u and u' parameterize distance along two line segments (Xe, Xe) and (X', X'),

x(u) = X, + U(Xe - X'), x'(u') X' + e'(X' -

R(u, u') = Ix(u) - x(u')|,

and F(R) is singular at R = 0. If the two line segments share one or both vertices, then
this singularity is encountered within the region of integration, thwarting numerical
cubature and requiring more sophisticated treatment. In this Appendix we discuss
general techniques for circumventing these singularities.

E.1 The Common-Segment Case

In the case Xs = X's, XE = X'E, we have R(u, u') = llu - u'| (with I the length of the
line segment). In this case we put s = (u + u'), t = (u - u') and rewrite the general
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integral over the unit square in the form

/1 
1J du/0du' I(u, u')

0 Jo

= [jds dt + ds
.[ 0 -_s 1 12-8 dt] s+t), I (s - t)

Change variables to s -* 2 - s in the second integral:

= ds dt I (s + t), -(s
2

- t)) -(2-s
2

Applying this reorganization to the particular case (E.1), we have

f 1lI du

2p~q+1

du' uu F ( R(u, u')

101ds f-Sdt [(s + t)y(s - t)q + (2 - s + t)P(2 - S - ty ]F (1jt|

(E.2)

where the * superscript on the square brackets indicates that we retain only even
powers of t in the bracketed polynomial.

E.2 The Common-Vertex Case

The common-vertex case is that in which precisely one of {X 8 , Xe} coincides with one
of {X', X'}. There are four possibilities for how this may happen; we will consider
the subcase X, X', Xe # X', while the other three subcases may be handled by
taking u -+ 1 - u and/or u' -+ 1 - u'.

The key technique that facilitates the evaluation of (E.1) in this case is the Duffy
transform [11], used here for the second time in this thesis (the first time being in
Appendix D).

In the case X, = X', Xe # X' we have

R(u, u') = 1l2U2 + liu'2 - 211' cos 0 uu'

where 0 h 0 is the angle between the line segments. We note in general that integrals
over the unit square may be decomposed into

Io 1du f du'{ -- = du du'{. f du'- +

Applying this decomposition to (E.1), in the first integral we make the Duffy trans-
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du{



formation u' = ut, du' = udt and find

/1
u 1

du du' uPu'q F ( R(u, u')) = du up+q+1

fO Jo'

( X 1(t)= Vt 2 - 2ty cos 0 + y2,

In the second integral we put u = u't and find instead

du'
du uPu'qF(R(u, u')) = 10 du' ui(+q+l)

(X 2 (t) = Ot2 - 2tx cos 0+ x 2

Combining the two integrals and renaming u' -+ u in the second integral, our original
integral (E.1) now reads

1 u)
0du fodu' Upu' F(R(u, u')

= dt du Up+P+ 1 + tPF (ulX 2 (t))] .

The point of this reorganization is that, as long as F(R) does not blow up more
rapidly than 1/RP+q+1 at the origin, the u integral here is explicitly nonsingular.
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dt tq F (ul'X1 (t )),

dt tPF (u'lX2 (t)),

X=

ltqF (ul'X1(t) )
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Appendix F

Evaluation of jrF Integrals

In this Appendix we evaluate the J4 integrals defined in 7. (To our knowledge no
explicit evaluation of these integrals has appeared in the literature before).

In Chapter 7 we introduced a quantity go associated with a pair of line segments
and defined according to

jPq = jdu

where

} (R) =

f 

d

(F.1)

1
log R
1/R 2

1/R 4

and where

ii
R(u, u') = Ro + ul - ''

is the distance between points on two line segments. In what follows it will be
convenient to recast this quadratic polynomial in the alternative form

R 2 (, ) 12 [(u + uo) 2 + b2]

with the dimensionless geometrical quantities

uo - ro os -u'x cos 0, b2

ro - IRo|/l,

r 2 + u'2x 2 - 2 c'ro cos U

x = l'/l

(F.2)

C l 1 1'
cos= 3X12 , Cos I -Ro

rol 1
Cosq Il -Ro

cos ' s 2.
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Before getting started, we note the trivial result

3001101
1 = .(F.3)

14

The evaluation of (F. 1) for the remaining cases now proceeds in different ways de-

pending on the number of vertices shared by the two line segments.

F.1 Two Common Vertices

When the two line segments in question have two vertices in common (i.e. they are

the same line segment, traversed either in the same or in opposite directions), only

a small subset of the possible cases of (F.1) are needed, and we may evaluate these

using the the common-segment technique discussed in the previous Appendix, with

the results
\ logl -

J0 _ 2lo 2

0 1 logj 3_2 2 g 4-

J!' / logj 7

for the case in which the two line segments are traversed in the same direction (i.e.

1 '), or
logl -

J 0 I logl -
2 1 3 (F.5)

|1 jlog 1 - 5

for the case in which the two line segments are traversed in opposite directions (i.e.

1 = -1'.)

Equations (F.3) and (F.4-F.5) are the only cases of (F.1) that we need for the

common-segment case.

F.2 One Common Vertex

When the two line segments in question have one vertex in common, we can use the

Duffy-transform technique discussed in the previous Appendix to evaluate all needed

cases of (F.1) in closed form, with the following results:
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1. S(R) =log R:

f du j du' upu'qS(R(u, u'))

= dt du up+q+l tq[logu+logl'+logX1(t)]

+ tp[logu + log + logX 2 (t)]

1 (p + 1) log I' + (q + 1) log 1 - 1 qY ) A(j0

p+q+2 (p + 1)(q + 1)
(F.6)

2. S(R) =11R2

j du j du' UU'S (R(u, u'))

= dt J1du Up+q+11 1 - t + tP

-0 u2P2X2 (t) u212X22(t)f1 1 11(F7- 2 q Bq(, 0) + JBp(x,O) (F.7)

where the A and B functions are

A,(x,0) = j tP log \/t2 - 2tx cos0 +x 2

B(x, 0) =2txcos+X2]
ot2 - 2tx cos

Both of these integrals may be evaluated in closed form for arbitrary p > 0.

Equations (F.3) and (F.6-F.7) are the only cases of (F.1) that we need for the
common-vertex case.

F.3 Zero Common Vertices

Finally, we consider the evaluation of (F. 1) in the case in which 1, ' have no common
vertices. In this case, although the full integrals may not be evaluated in closed
form as in the common-segment or common-vertex cases, nonetheless it is extremely
convenient that one of the two integrals in (F.1) (which we will here choose to be the u
integral) may be performed analytically in all cases, leaving behind a one-dimensional
integral over u' which we evaluate by straightforward numerical quadrature.
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Thus we find

j2pq log + A(u')du'
(p + 1)(q + 1) +Jo

J4P j -4

where we have put

AP(u') = j UP log [(u+uo)2 + b2 du

Bp(u') = uP [(u

1
C, (U'/) = 0U u[((U

-2+ uo) 2 + b2]

4
+ uo )2 + b 2

where uO = uo(u'), b = b(u') as in equation (F.2). These integrals may be evaluated
in closed form in all the cases we will need, with results collected below.

Ao(u') = b(1 +
11 (Uo +

1
A 1 (u') = -buo( 1 + (

A 2 (u') = 1( -6

1
1)3 - UO - 12

+ g(b2
4

(b UO
- Ib(b2

3

Bo(u') = (1

B1(u') =(4 -- (1
2 b

b

b(1+ uo) - uo(b 2 + (1 +UO) 2 )(1

2b3(b2 + (1 + uo) 2 )

(b2 + u2)(b 2 + (1 + uo) 2)(1 - b(b2 + u2 + uo)

2b 3 (b2 + (1 + uo)2)
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1+ (b2 _

C1(') =

C2 (') =

" 'qBp,(u') du'

u'UqCP(u')du'



= arctan - arctan -
b b

(2 = log b2 + u

(3 = log [2 + (uo + 1)2

(4 = G - (2.

155



156



Appendix G

Command-Line Options for
CASIMIR3D

CASIMIR3D is a standalone command-line application that applies FSC techniques to
compute Casimir energies, forces, and torques among compact 3D objects of arbitrary
shapes and material properties.

A command-line invocation of CASIMIR3D takes the form

where the command-line options are summarized in the following tables.

Options controlling the geometry to be simulated

Specifies the .rwggeo file that describes the
-- geometry MyFile.rwggeo Casimir geometry. This option is always manda-

tory.

Specifies the file containing the list of transforma-
-- translist MyTransList tions under which to compute Casimir interactions.

This option is always mandatory.

Options controlling the quantities calculated

-- energy
-- xforce

-- yforceSpecify which quantities to compute. You may-- yforce specify any combination of these options, but at

-- torque x least one must be present.

-- alltorque
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Options controlling frequency behavior

Requests that the energy, force, and/or torque in-
-- Xi 1.2 tegrands be calculated at a single imaginary fre-

quency.

Requests that the energy, force, and/or torque in-
-- XiList MyXiList tegrands be calculated at a series of imaginary fre-

quencies listed in the specified file.

Requests that Matsubara sums be performed to
-- temperature T evaluate the Casimir energy, force, and/or torque

at the specified temperature.

Requests that numerical quadrature method xx
be used to evaluate the imaginary-frequency inte-

-- f iMethod xx gral for the zero-temperature Casimir energy, force,
and/or torque.

Options controlling evaluation of Casimir quantities

Requests that the Casimir energy, force, and torque

-- siMethod FSC at each imaginary frequency be computed using the
FSC (log-det / trace) formulae. This is the default.

Requests that the Casimir energy, force, and torque
-- siMethod mesh at each imaginary frequency be computed using
-- siMesh MySurfaceMesh.msh the numerical stress-tensor method, with the stress-

tensor integrated over the specified surface mesh.

Other Options

Requests that CASIMIR3D terminate immediately
-- VisualizeOnly after generating visualization files, without doing

any Casimir computations.

Requests that CASIMIR3D generate .spatialdata
files containing spatially-resolved stress-tensor
data. (This option may only be specified in con-
junction with -- siMethod mesh.)

Requests that CASIMIR3D export the BEM ma-
trices and their derivatives to binary .hdf 5 data

-- WriteHDF5 files, which may subsequently be used (among other
things) to import the matrices into MATLAB for
inspection and analysis.
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Appendix H

Command-Line Options for
CASIMIR2D

CASIMIR2D is a standalone command-line application that applies FSC techniques
to compute Casimir energies, forces, and torques among quasi-2D objects of arbitrary
cross-sectional shapes and arbitrary material properties.

A command-line invocation of CASIMIR2D takes the form

where the command-line options are summarized in the following tables.

Options controlling the geometry to be simulated

Specifies the .tdgeo file that describes the Casimir

-- geometry MyFile .tdgeo geometry. This option is always mandatory.

Specifies the file containing the list of transforma-
-- translist MyTransList tions under which to compute Casimir interactions.

This option is always mandatory.

Options controlling the quantities calculated

-- energy Specify which quantities to compute. You may
-- xforce specify any combination of these options, but at
-- yforce least one must be present.
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Options controlling frequency behavior

-- Xi 1.2 -- Q 2.1 Requests that the energy and/or force integrands
be calculated at a single point in the ((, q) plane.

Requests that the energy and/or force integrands
-- XQList MyXQList be calculated at a series of points in the ( , q) plane,

as listed in the specified file.

-- Xi 1.2 Requests that the full q integral be evaluated nu-
merically at the specified fixed value of (.

-- Q 1.2 Requests that the full ( integral be evaluated nu-
merically at the specified fixed value of Q.
Requests that Matsubara sums be performed to

-- temperature T evaluate the Casimir energy and/or force at the
specified temperature.

Requests that numerical cubature method xx be
used to evaluate the full two-dimensional integral

-- CubatureMethod xx (over the upper-right quadrant of the ((, q) plane)
for the zero-temperature Casimir energy, force,
and/or torque.

Other Options

Requests that CASIMIR2D terminate immediately
-- VisualizeOnly after generating visualization files, without doing

any Casimir computations.

Requests that CASIMIR2D export the BEM ma-
trices and their derivatives to binary .hdf5 data

-- WriteHDF5 files, which may subsequently be used (among other
things) to import the matrices into MATLAB for
inspection and analysis.
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