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Abstract

We first demonstrate theoretically and experimentally that electromagnetic resonators
with high quality factors (Q) can be used to transfer power efficiently over distances
substantially larger than the characteristic dimensions of the resonators by operating
in a so-called "strongly coupled" regime. We next generalize the notion of strongly
coupled resonances to a system comprising one power source and multiple receivers in
a regime of broad practical applicability and show that, by appropriately tuning the
parameters of the system, it is possible to significantly improve the overall efficiency
of the wireless power transfer relative to the single-source and single-receiver configu-
ration. We experimentally verify the predicted improvement in efficiency for a system
consisting of one large source (area ~ 1 m2 ) coupling to two much smaller receivers of
dimensions comparable to those of many portable electronic devices (area ~ 0.07 m2 ).

Next, we present a novel design for an electrical conductor whose structure is opti-
mized to have the lowest achievable resistance in the 2-20 MHz frequency range,
where it can offer performance an order of magnitude better than the best currently
available conductors. The two following chapters deal with energy transport in pho-
tonic crystals. We first investigate numerically how a square lattice of dielectric rods
may be used to collimate a laser beam and the feasibility of using this system as
a chemical sensor. Finally, we present and demonstrate through specific examples
a systematic and general procedure, which is both computationally inexpensive and
straightforward to implement, for coupling strongly dissimilar waveguides with 100%
transmission.
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Chapter 1

Overview

A substantial part of this dissertation deals with phenomena arising in systems of

coupled electromagnetic modes that are well described by a subset of the powerful

phenomenological techniques collectively known as coupled-mode theories [29, 30].

Chapter 2 provides a physically intuitive and heuristic derivation of the coupled-

mode theory expressions that will be used throughout much of our work. Chap-

ters 3, 4, and 5 either deal directly with or (in the case of Chapter 5) were originally

inspired by the tantalizing possibility of making efficient wireless power transfer fea-

sible for practical applications. The mechanism for power transfer that we consider

here relies on the near-field interactions between the electromagnetic fields of differ-

ent resonators rather than on their radiative far-field, and we show that although

near-field interactions, by their very nature, decay faster as a function of distance

than radiative fields [36], it is possible, with proper design, to use them to achieve

efficient power transfer (where the precise meaning of "efficient" may depend on the

requirements of the particular application) when a source (the object transmitting the

power) and a device (the object on the receiving end of the transfer) are separated by

distances multiple times greater than their characteristic dimensions. Furthermore,

this near-field solution does not suffer from many of the drawbacks of a radiative ap-

proach such as lack of omnidirectionality (if the radiation is not directed), the need for

complicated tracking mechanisms (if it is), necessity of a clear line-of-sight between

the source and the device at practical frequency ranges for radiative power transfer,



as well as more stringent safety concerns for radiative systems [35).

Chapter 3 starts by expressing the condition for efficient wireless power trans-

fer between two resonators in the framework of coupled-mode theory. Within this

framework, we are able to identify a "strongly coupled" region in the parameter

space of the coupled resonators where the efficiency of the transfer is sufficiently high

for a wide range of applications. Although the coupled-mode theory treatment is

general enough to apply to essentially any system of interacting resonators, we fo-

cus on electromagnetic resonances for a concrete demonstration of the principle of

strongly coupled resonances. For our first experimental validation of midrange wire-

less power transfer using near-field coupling, we build helical self-resonant coils which

rely on their distributed inductance and capacitance to resonate (in contrast to the

lumped inductance and capacitance of a textbook RLC circuit). We develop from

first principles an approximate analytical theory for self-resonant coils that matches

the experimental results reasonably well for a wide variety of parameters and proves

to be quite useful in predicting the expected performance of self-resonant coils before

they are built, thus aiding in their design. Finally, we measure the coupled-mode

theory parameters for our self-resonant coils and, in a separate experimental setup,

the efficiency of the power transfer and find the latter to be in good agreement with

the optimal efficiency predicted from the coupled-mode theory parameters. With the

self-resonant coils built for this project (measuring 60 cm in diameter) we are able to

achieve an efficiency ~ 50% at a separation of 2 m between the center of the coils.

Chapter 4 generalizes the coupled-mode theory treatment to a system contain-

ing one source interacting with an arbitrary number of devices in the limit where

the coupling between the source and a device dominates over the coupling of that

particular device to any other device. This setup approximates a real-world scenario

where a large resonator (e.g., embedded in a wall) serves as the source of power for a

multitude of much smaller receivers, which could potentially be integrated into elec-

tronic devices. We find that one can achieve significant gains in the overall efficiency

of the system by simultaneously powering multiple properly tuned devices, and that

this improvement in performance could lead to decent overall efficiencies even if the



source is only marginally strongly coupled to any particular receiver. We demonstrate

these results in a laboratory experiment coupling one large source (~- 4 times the area

of the self-resonant coils in Chapter 2) to two small sources (~ 1/16 times the area of

the source). We perform this considerably more complicated experiment using a very

different methodology from that of the previous chapter and find the directly mea-

sured efficiency to be in excellent agreement with the prediction from coupled-mode

theory.

In Chapter 5 we present an original design for an electrical conductor-consisting

of a number of mutually insulated coaxial conducting shells-that has much lower

resistance in the 2-20 MHz range (which is of particular interest to our wireless power

transfer approach) than the best currently available conductors: a solid wire or litz

wire (litz wire is a braid of many thin and mutually insulated strands [76, 24, 57]).

In the course of introducing our new conductor design, we also elucidate the physical

effects at work in a conductor at radiofrequencies (such as the skin-depth effect and

proximity losses) and analyze why litz wires, which work quite well at frequencies

below 1 MHz, become impractical above - 2 MHz. One obvious application of

our proposed conductor would be to build magnetic resonators for midrange wireless

transfer with improved performance and/or more compact design, although our novel

design could possibly be of use to any electrical application in this frequency range.

The next two chapters shift the focus away from wireless power transfer and

towards applications of photonic crystals. Photonic crystals are man-made periodic

dielectric structures whose properties can be tailored to enable an exceptional amount

of control over the propagation light and a variety of unique physical effects [37]. In

Chapter 6, we show how we used computer simulations to aid in the design of a sub-

sequently fabricated photonic crystal slab composed of silicon rods which supported

the propagation of a light beam with nearly no diffraction, a phenomenon known as

supercollimation. We also quantitatively compare the expected performance of su-

percollimation in our rod slab to an alternative photonic crystal consisting of a lattice

of holes in a dielectric slab.

Finally, Chapter 7 outlines a general procedure that could be used to couple very



dissimilar waveguides with 100% transmission. This technique is more easily under-

stood in a coupled-mode theory approach and is in principle applicable to any pair of

waveguides as long as a few simple conditions (weak-coupling of both waveguides to

a resonance and among themselves) are satisfied. The prescription is typically easy

to implement and computationally cheap, as we demonstrate explicitly for different

combinations of three different photonic crystal waveguides.



Chapter 2

Temporal coupled-mode theory

2.1 Introduction

In this chapter we give an overview of the coupled-mode theory formalism [29] that

will be used in much of this thesis. In general, a couple-mode theory may refer to

any of a set of abstract approaches used to treat diverse problems such as coupled

parallel waveguides [28, 33], tapered waveguides [40, 56], resonant cavities coupled to

waveguides [20, 21, 74] and many other physical systems (e.g., see [30] and references

therein). A common thread in coupled-mode theory methods is to expand the physical

field in a finite basis and extract the coefficients governing the dynamics of the field

by enforcing some additional constraint such as conservation of energy [29], time-

reversal symmetry [74], Lorentz reciprocity [12], or using a variational principle [31].

Here we focus on two cases of importance to the problems treated in this thesis: a

system of discrete coupled resonators relevant to our analysis of midrange wireless

power transfer (Chapters 3 and 4) and a resonant cavity weakly coupled to waveguides

(Chapter 7). In the first case we will show-following the approach of [29]-that if

the system is time-invariant (so that the geometrical and material properties do not

vary in time) and the overlaps of the fields due to different resonators are sufficiently

small, then the total energy of the system can be expressed to good approximation

as the sum of the energies of the individual resonators and the coupling and decay

coefficients can be derived in a straightforward way by enforcing energy conservation



and linearity. Similarly, we derive equations describing the evolution of the cavity

coupled to waveguides as done in [37] by assuming that the cavity is weakly coupled

to each waveguide (and that the direct coupling between waveguides is weaker still

and can be ignored to leading order), and enforcing time-invariance, time-reversal

invariance, energy conservation and linearity.

2.2 Coupled-mode theory of discrete coupled res-

onators

For concreteness, we shall focus on electromagnetic resonances in this section, al-

though the same arguments are applicable to other types of resonances (e.g., acoustic

and nuclear) as long as they obey the same general physical principles. We start by

considering a set of N lossless resonators, and assume that we have found the har-

monic solution to Maxwell's equations for each individual resonator m in the absence

of all others:

V x em(r) iwmpm(r)hm(r), (2.1)

V x hm(r) -iwmem(r)em(r), (2.2)

where em(r) and ,m(r) are the time-invariant permittivity and permeability profiles

associated with resonator m, and Wm its characteristic frequency. In addition to

Eqs. 2.1 and 2.2, em(r) and hm(r) must also satisfy the boundary conditions associ-

ated with the resonator. For convenience the modes are normalized such that

Ijdr [cm (r)|Iem (r)|12 + pm (r) Ihm (r)|12] = 1. (2.3)

Given Eqs. 2.1, 2.2, and 2.3, the time-dependent electric and magnetic fields can be

written as Em(r, t) = am(t)em(r) and Hm(r, t) = am(t)hm(r), lam(t)| 2 corresponds to



the energy stored in the resonator, and the time evolution of am(t) is governed by

&m(t) = -iwmam(t). (2.4)

We now relax the assumption that the resonators are lossless, and consider the quality

factor Qm of the resonator traditionally defined as [36]

Energy stored in resonator m (2.5)
Average power loss in m

As long as Qm > 1, the solution to Maxwell's equations including losses is well

approximated by the lossless solution, and the average power loss is Pm(t) oc Iam(t)12.

Using Eq. 2.5, we find

Pm (t) = wm | am (t) 12

= 2Fmlam(t)| 2 , (2.6)

where we have defined the decay rate Fm = wm/(2Qm). Since Pm(t) = dlam|2 /dt =

am* + ima* , Eq. 2.4 can be suitably modified to account for Eq. 2.6 by adding a

term proportional to Fm:

&m(t) - (sWm + Fm) am(t). (2.7)

So far we have considered each resonator in isolation; let us now consider the res-

onators in the presence of one another and approximate the resulting electromagnetic

fields as an expansion in the modes of the individual resonators:

E (r, t) ~ am (t) em (r), H (r, t) ~ .m(t) hm (r). (2.8)
m m

A calculation of the electromagnetic energy contained in the fields of Eqs. 2.8 would

generally have to take into account mixed terms of the form oc ama*. However,

provided that the resonators are sufficiently separated in space so that the overlap



integrals between different modes satisfy

dr [e (em e* + e* -en) + y (hm h* + h* -h)] < 1, (2.9)

it is a good approximation [33] to neglect such energy cross-terms and take the total

energy of the system to be Utoti = Em lam(t)12. (This is the case for the systems

considered in this thesis, for which the overlap terms are < 10-2.) Since lam(t) 2 is the

energy stored in resonator m, we may find its coupling to another resonator n (ignor-

ing all other resonators for now) by noting that changes in the energy lam(t) 2 must

be due to a combination of the loss mechanisms embodied in Fm and a net transfer of

energy to or from the other resonator. The latter effect is due to interference terms

in the real part of the Poynting vector E x H*/2; it follows that

dlaml2 = -2Fmlam| 2 + i (a*mnan - ams*a*), (2.10)
dt mmam

where the constant rimn can be determined by integrating the aforementioned terms

of the Poynting vector between the two resonators, or by some equivalent method.

Although Kmn is typically a function of the angular frequency W, it can be self-

consistently approximated by its value at the mean of the resonant frequencies (Pm +

on)/2 as long as it varies slowly within a frequency range - w/Qm or ~ w/Qn of

that value. In general, there may be additional loss terms induced by one resonator

on another, but these terms are sufficiently small here that they can be ignored for

our purposes in this thesis (one such effect is considered in [43], which analyzes the

interference between the radiative fields of two resonators). We can derive some key

properties of 1Emn by considering the rate of total energy loss of the two coupled

resonators m and n:

d (laml 2 + lan| 2 ) -2Fmlam1 2 - 2Fa 2

+ i ( mnan - am ±*a* + a*snimam - ani*ia*) . (2.11)

Since we have assumed that all loss mechanisms are incorporated in Fm and £n, the



second line of Eq. 2.11 must equal zero. Combining that with the fact that the phases

of am and a, in Eq. 2.11 are arbitrary, we find that Km and ram must be real and

equal.

From Eqs. 2.7 and 2.10, we see that the time evolution of the am(t) for a system

of coupled resonators is given by

Om(t) - (iwm + Fm) am(t) + > iimnan(t). (2.12)
nom

In order to apply this formalism to the analysis of power transfer between resonators,

we need to modify Eq. 2.12 to account for the effect a source exciting the resonator

and that of a load extracting power from the resonator. The first effect is accounted

for by adding a driving term Fm(t) to the right-hand side of Eq. 2.12, while the load

is modeled as an additional factor that increases the decay rate of resonator m from

Fm to (1 + xm)Fm, and extracts power 2xmFmlam(t)12 from it. Our coupled-mode

theory description of a system of coupled discrete resonators then reads

dm(t) [iWm + (1 + xm)Fm] am(t) + 3 ii'mnan(t) + Fm(t), (2.13)
nom

which provides the starting point for the analyses in Chapters 3 and 4.

2.3 Coupled-mode theory of a resonant cavity cou-

pled to waveguides

We now consider a lossless system comprising a resonant cavity-of resonant fre-

quency wo-coupled to N waveguides [37]; Fig. 2-1 is a schematic representation of

the case N = 2 relevant to Chapter 7. Although we assume the system is lossless in

the sense that there is no dissipation in materials or power radiated outside of the

structure, the energy contained in the cavity mode can still escape through the waveg-

uides. If the coupling of the cavity to each waveguide is sufficiently weak, the cavity

mode is well approximated by the lossless case and, as in Section 2.2, we may define
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Figure 2-1: Graphical representation of a coupled-mode theory treatment of two
waveguides (red and blue strips) coupled by means of a cavity tuned to resonate at
the angular frequency wo and couple to each waveguide with quality factors Q1 and
Q2.

a complex variable a(t) such that ja(t) 2 represents the energy in the cavity. Each

waveguide is in turn represented by two complex variables SmIj (t) and Sm- (t) defined

so that the amplitudes squared of their Fourier transforms 5mri)(w) and 5.(w) rep-

resent the power per unit frequency at w carried by the waveguide mode traveling

towards and away from the cavity, respectively. We further assume that the direct

coupling between waveguides can be neglected relative to the coupling between the

waveguides and the cavity.

The mode in the cavity can either decay into the outgoing waveguide modes with

decay rates Im = wo/(2Qm) [the Qm being independent from each other as we neglect

direct interactions between waveguides to this order of approximation] or be excited

by the incoming waveguide modes 3 (t). Since the system is time-invariant and

linear, this process is described by an equation of the form

d(t) = -iWO 1 - i 2Q m  a(t) + amSt+j(t), (2.14)

where the parameters am represent the coupling between the cavity and the incoming

mode. Much like the Ksmn in Section 2.2, the am are approximated as constants over



the frequency range of interest. Similarly, the power in an outgoing waveguide mode

S$,)(t) can come from either the decay of the cavity mode or the reflection of its

corresponding incoming mode:

S(-) (t) = (+ #m (t) +7 m a(t), (2.15)

where the fm and 7Ym are constants similar to am, all of which can be related to

wo and Qm by enforcing conservation of energy and time-reversal invariance. First,

consider the decay of the cavity mode to an outgoing waveguide mode m when there

is no incoming power. Since the power lost by the cavity must equal the outgoing

power, we find from Eqs. 2.14 and 2.15 that

d a(t)12 2 (t) 2  - (t) 2 . (2.16)

dt Qm

The relative phase between a(t) and S- (t) has been undetermined so far, and we

may fix it by choosing 7m = wo/Qm. Let us now run this solution backwards in

time (which we are allowed to due to time-reversal symmetry); the incoming mode is

now S$j (t) = wo/Qma(t), while the power in the outgoing mode is zero. Combined

with Eq. 2.15 this implies that O2 = -1. Finally, since the energy in the cavity is

growing exponentially at a rate wola(t)| 2 /Qm, we find from Eq. 2.14 and the above

value of S$(t+(t) that am = wo/Qm. The final coupled-mode theory equations then

read

&(t) =-iWO - i a(t) + S (t), (2.17)

S-()(t) - t) + (t). (2.18)

Thus we see that, for a fixed wo, this physical setup can be tuned by varying the

various Qm , a property we exploit in Chapter 7. Let us now apply Eqs. 2.17 and 2.18

to the case of a cavity coupled to two waveguides (Fig. 2-1). We are interested
2

in particular in the transmission T(w) =S~ (w) /5j6(w) , the fraction of power



coming in from the first waveguide that makes it to the second waveguide when only

the first waveguide is excited (here we work in the frequency domain for convenience).

Since we have set S+) (w) = 0, Eq. 2.18 for the second waveguide immediately gives

52 (w) = 5(W). (2.19)

Meanwhile, Eq. 2.17 becomes

-iwd(w) = -iwod(w) - wod(w) + (W) (2.20)

which combined with Eq. 2.19 gives

5jH(w) = 5 +)(w), (2.21)
S2P)= (WO - W) + I+ WO

whence we can read off the transmission

T(w) =0 ) (2.22)
(wo - w)2 + + 1 W

When Q1 = Q2, T(wo) = 1 (there is 100% transmission from one waveguide to the

other at the resonant frequency of the cavity), a property known as Q-matching [20]

that will be used in Chapter 7.



Chapter 3

Wireless power transfer via

strongly coupled magnetic

resonances

3.1 Summary

We show, using the coupled-mode theory formalism, that a system of two coupled

resonances can in principle be operated in a "strongly coupled" regime wherein they

transfer power from one another with reasonably high efficiency. We then demon-

strate experimentally that a system of two helical self-resonant coils (which resonate

due their distributed, as opposed to lumped, inductance and capacitance) fulfills the

strong coupling criterion and therefore transfers power efficiently even though the

separation between the centers of the coils is many times larger than their char-

acteristic dimensions (i.e., "midrange" distances). We experimentally measure the

coupled-mode theory parameters of the coils as well as the efficiency of the coil-to-

coil transfer while powering a 60 W light bulb, and find that the measured efficiency

agrees well with the optimal efficiency predicted by the coupled-mode theory param-

eters. Using this setup, we can fully light up the light bulb when the centers of the

coils are more than 2 m apart with ~ 50% efficiency. We also derive from first prin-



ciples an approximate analytical model for the coils that can predict most quantities

of interest within - 5%.

3.2 Introduction

Attempts to deliver power wirelessly date from at least the turn of the twentieth

century, when Nikola Tesla attempted to develop a scheme to transfer power wirelessly

over distance [771. In the mid-twentieth century, much effort was also devoted to

developing a long-range wireless power transfer scheme using radio waves [10]. Over

the past decade or so, there has been a proliferation of portable electronic devices

(laptops, cell phones, robots, PDAs, etc.) which need to be recharged on a daily basis.

As a consequence, interest in wireless power has reemerged [23, 19, 32, 42]. Radiative

transfer [78], although perfectly suitable for transferring information, poses a number

of difficulties for power transfer applications in that the efficiency of power transfer

is very low if the radiation is omnidirectional, and unidirectional radiation requires

an uninterrupted line of sight and sophisticated tracking mechanisms. A theoretical

paper [44] recently presented a detailed analysis of the feasibility of using resonant

objects coupled through the tails of their non-radiative fields for midrange energy

transfer. Intuitively, two resonant objects of the same resonant frequency tend to

exchange energy efficiently, while dissipating relatively little energy in extraneous off-

resonant objects. In systems of coupled resonances (e.g., acoustic, electromagnetic,

magnetic, nuclear), there is often a general"strongly coupled"regime of operation

[2]. If one can operate in that regime in a given system, the energy transfer is

expected to be very efficient. Midrange power transfer implemented in this way can

be nearly omnidirectional and efficient, irrespective of the geometry of the surrounding

space, with low interference and losses into environmental objects [44]. The above

considerations apply irrespective of the physical nature of the resonances. In this

dissertation, however, we focus on one particular physical embodiment: magnetic

resonances. Magnetic resonances are particularly suitable for everyday applications

because most non-metallic and non-magnetic materials do not interact strongly with



magnetic fields, so interactions with environmental objects are minimized. We were

able to identify the strongly coupled regime in the system of two coupled magnetic

resonances by exploring non-radiative (near-field) magnetic resonant induction at

~ MHz frequencies.

3.3 Coupled-mode theory derivation of the opti-

mal efficiency

Efficient midrange power transfer occurs in particular regions of the parameter space

describing resonant objects strongly coupled to one another. Coupled-mode theory is

a particularly convenient tool for analyzing systems whose physical properties (e.g.,

their loss and interaction mechanisms) can be linearized around their resonant fre-

quency. As argued in Section 2.2, a coupled-mode theory description of a set of N

resonators reads

dm(t) - [iwm + (1 + xm)Fm] am(t) + E ii'mnan(t) + Fm(t), (3.1)

nom

where the indices denote the different resonant objects. The variables am(t) are

defined so that the energy contained in object m is lam(t)|2, Wm is the resonant

angular frequency of that isolated object, Fm is its intrinsic decay rate (e.g., due to

absorption and radiated losses), and Xm is a normalized external loading through

which power can be extracted from the resonator. (Although we omit the specific

loading mechanism for generality for now, Xm may be caused by e.g., a loading circuit

such as a simple resistor.) The Fm(t) are driving terms and the Kmn are coupling

coefficients between the resonant objects indicated by the subscripts.

In this chapter, we limit the treatment to the case of two objects, denoted by source

and device, such that the source (identified by the subscript 1) is driven externally

at a constant frequency, and the two objects have a coupling coefficient K. Work

is extracted from the device (subscript 2) by means of a loading mechanism that

contributes the additional term X2 to Eq. 3.1. The work extracted is determined by



the power dissipated in the load, that is, 2x 2F2|a2(t) 2. Finding the efficiency 7 of the

transfer with respect to the loading involves solving Eq. 3.1 for a 2 x 2 system with

Ki,2 = K, X1 = 0, F1 # 0, and F2 = 0. One finds that the efficiency is highest when

the source and the device are resonant (P = w = W2), in which case the efficiency as

a function of x2 and / 1F2 becomes

z2r2|a2|12

IF1|ai2 + (1 + X 2)F 2Ia 2|2

_ [X2/(1 + x2)2] [r 2 /(FiF 2 )] (3.2)
1 + [1/(1 + X2)][ , 2/(FiF 2)]

Thus we see that the efficiency depends only on the the dimensionless quantity

K//F 1 F2 (which depends on intrinsic properties of the resonators as well on their

coupling) and on the loading factor X2 which can in principle be tuned to any value

we wish. We find that the efficiency is maximized when X2 = l + 2 /(F 1 F2) and

a plot of the optimal efficiency as a function of P/1 ?F2 is shown in Fig. 3-1, from

which it is apparent that the efficiency of energy transfer is sufficiently high for many

applications requiring considerable amounts of power when K2/(P1r2) > 1. This is

commonly referred to as the strong coupling regime and can be intuitively under-

stood by noting that K represents the rate at which energy is exchanged between the

resonators, while VT1F2 is a measure of how fast the resonators dissipate energy. If

the energy can be whisked away from the source resonator to the device resonator

and then to a load which converts that energy into useful work faster than the energy

is wasted (, i> VP12), we would expect the overall energy transfer to be reasonably

efficient. Resonance plays an essential role in this power transfer mechanism, as the

efficiency is improved by approximately w2 /F (~ 106 for typical parameters) relative

to the case of coupled nonresonant objects.

3.4 Theoretical model for self-resonant coils

After some experimentation in the laboratory, we decided to use self-resonant coils

for our demonstration of wireless power transfer. Relative to capacitively loaded
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Figure 3-1: Optimal efficiency as a function of the strong-coupling parameter
i'/ 1Li 2. Notice how most of the upswing in efficiency occurs within one decade
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world applications.

coils [44]-which were the main alternative-self-resonant coils proved to be easy to

build with relatively good reproducibility, had sufficiently low losses for our needs,

and did not require very low loss capacitors that could handle high amounts of power.

For simplicity, both coils were designed to be identical. Self-resonant coils rely on

the interplay between distributed inductance and distributed capacitance to achieve

resonance. The coils are made of an electrically conducting wire of total length 1 and

cross-sectional radius a wound into a helix of n turns, radius r, and height h. To the

best of our knowledge, there is no exact solution for a finite helix in the literature,

and even in the case of infinitely long coils, the solutions rely on assumptions that

are inadequate for our system [71]. We have found, however, that a simple quasi-

static model is in good agreement (within ~ 5%) with experiment. We start our

derivation of our theoretical model by observing that the current must be zero at the

ends of the coil, and make the educated guess that the resonant modes of the coil are

well approximated by sinusoidal current profiles along the length of the conducting

wire. We are interested in the lowest mode, so if we denote by s the parametrization



coordinate along the length of the conductor, such that it runs from -1/2 to +1/2,

then the time-dependent current profile has the form 1o cos(7rs/l) exp(iwt). It follows

from the continuity equation for charge that the linear charge density profile is of the

form Ao sin(rs/l) exp(iwt), so that one-half of the coil (when sliced perpendicularly to

its axis) contains an oscillating total charge (qo = Aol/7r) that is equal in magnitude

but opposite in sign to the charge in the other half. As the coil is resonant, the current

and charge density profiles are r/2 out of phase from each other, meaning that the

real part of one is maximum when the real part of the other is zero. Equivalently, the

energy contained in the coil is at certain points in time completely due to the current,

and at other points it is completely due to the charge. Using standard techniques

from electromagnetism [36], we can define an effective inductance L and an effective

capacitance C for each coil as follows:

L o - ddJ(r) -J(r') (33)
47r Ilol12 Ir - r'/I

1 _ 1 ,p(r)p(r)'
- = woq~i d r r ' (3.4)C 47reo IqO|12 |r - r'|I

where yo is the magnetic constant, co is the electric constant, and the spatial current

J(r) and charge density p(r) are obtained respectively from the current and charge

densities along the isolated coil in conjunction with a parametrization of the geometry

of the object. The integrals in Eqs. 3.3 and 3.4 can then be evaluated by numerical

integration (which takes of the order of a second in MATLAB). As defined, L and C

have the property that the energy U contained in the coil is given by

U = L|Io|2
2

= |qo|2. (3.5)
2C

Given this relation and the equation of continuity &p/8t + V -J = 0, we find that

the resonant frequency must be fo = 1/[27rv LC]. We can now treat this coil as a

standard oscillator in coupled-mode theory by defining a(t) = y L/21o(t). We can

estimate the rate of power dissipation and the Q by noting that the sinusoidal profile



of the current distribution implies that the spatial average of the peak current squared

is |Iol2/2. For a coil with n turns and made of a material with conductivity a, we

modify the standard formulas for the ohmic (Rohm) and radiation (Rrad) resistances

accordingly:

Rohm wa (3.6)

yo 2 wr 4 +2 (wh )2]
Rrad = [ 2 [ - + . (3.7)

CO [12 \c/ 37r 3  c

The first term in Eq. 3.7 is a magnetic dipole radiation term (assuming r < 27c/w,

where c is the speed of light); the second term is due to the electric dipole of the coil

and is significantly smaller than the first term for our experimental parameters. The

coupled-mode theory decay constant for the coil is therefore F = (Rohm + rad) /(2L),

and its quality factor is Q = w/(2F). Finally, we find the coupling coefficient K2,1

by looking at the work done by the source coil on the the device coil, assuming a

steady-state solution in which currents and charge densities have a harmonic time

dependence e-iwt:

W2,1 J drE1 (r) -J*(r)

1 [dd, J1 (r') pi(r') r' - r J(r)
47r _ r - r 6o Ir - r1 2

- -wMII2, (3.8)

where M is the effective mutual inductance and the subscript 1 indicates that the

electric field is due to the source. Upon comparing Eqs. 2.11 and 3.8, one finds

that K = K2,1 = wM/(29/LiL 2). When the distance D between the centers of the

coils is much larger than their characteristic size, r, scales with the D 3 dependence

characteristic of dipole-dipole coupling. Both K and F are functions of the frequency,

and ,1/F and the efficiency are maximized for a particular value of f, which is usually

in the range 1 to 50 MHz for typical geometrical parameters of interest [44]. Thus,

picking an appropriate resonant frequency for a given coil size plays a major role in



Figure 3-2: Experimental setup for measuring the resonant frequency and quality

factor Q of a resonator. The self-resonant coil (center) is excited by a coil connected

to a CW source (right), and the amplitude of its excitation is picked up by coil

connected to an oscilloscope (left). The quality factor is found from the FWHM of

the measured amplitude as the frequency of the CW source is swept.

optimizing the power transfer.

3.5 Experimental measurement of coupled-mode

theory parameters and comparison to theory

The parameters for the two identical helical coils built for the experimental validation

of the power transfer scheme are h = 20 cm, a = 3 mm, r = 30 cm, and n =

5.25. Both coils are made of copper. The spacing between loops of the helix is not

uniform, and we encapsulate the uncertainty about their geometry by attributing

a 10% (± 2 cm) uncertainty to h in the calculations of our analytical model. The



Figure 3-3: Experimental setup for measuring the coupling constant rK. The self-

resonant coil on the right is excited by a CW source by means of a small excitation

coil, while a pickup coil connected to an oscilloscope measures the amplitude of the

excitation of the self-resonant coil on the left. The coupling constant is related to the

frequency splitting between the two peaks of the amplitude detected by the oscillo-

scope as a function of the frequency of the excitation.

expected resonant frequency given these dimensions is fo = 10.56±0.3 MHz (the range

of values corresponds to the aforementioned uncertainty in the dimensions) and the

predicted Q for the loops is estimated to be ~ 2500 (taking o = 5.9 x 107 S/m for

the copper conductor). The resonant frequency and quality factor of each coil are

measured using the setup shown in Fig. 3-2: a CW source excites the self-resonant

coil while a pickup coil measures the amplitude of the excitation. Recasting this setup

in terms of coupled-mode theory variables involves solving Eq. 3.1 for the case of one

driven resonator (denoted by the index 0). The amplitude-squared of the excitation
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Figure 3-4: Comparison of experimental and theoretical values for rs as a function of

the separation between coaxially aligned source and device coils (the wireless power

transfer distance).

is readily found to be
|Fo| 2

|aol2 = o )2  (3.9)
(W - WO)2 + F2'

meaning that the resonant frequency corresponds to the frequency at which the am-

plitude detected by the oscilloscope is maximum and that the Q can be related to

the full width at half maximum (FWHM) of the amplitude-squared. We find exper-

imentally that our coils resonate at a frequency of 9.90 MHz, corresponding to an

approximately 5% discrepancy with the prediction of our quantitative model, with a

Q of 950 ± 50. We estimate that the more significant difference between measured

and predicted values for the Q may be due to our model of resistive losses not taking

into account the proximity losses induced by one turn onto the other turns of a coil.

We henceforth use the experimentally observed Q and F1 = F2 = F = w/(2Q) derived

from it in all computations.
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Figure 3-5: Coupling r, vs distance when: (a) the coils are coplanar (b) one of the

coils is tilted by 450 away from the coaxial orientation.

We measure the coupling coefficient r, by placing the two self-resonant coils a

center-to-center distance D apart, exciting one coil with a CW source and measuring

the amplitude of the excitation of the second coil (Fig. 3-3). In coupled-mode theory,

this corresponds to a two-resonator system with F = Fe-it, F2 = 0, and x 1  =2

0. The resulting amplitudes are

[F2 - i(W - W2 )] Fe-iwt
ai = ( w)( w)-[lww)P(- )1PF-K 2  (3.10)

(W - Wi)(W - W2) i [ri(W -1 i) + r2 (W - W2) + rliF2 + r2

-iKFe-iWt
a2=

( - W1)(W - W2) -i Fi(w -w,) + F2(W - W 2)] + F2 + (2

Eq. 3.11 implies that when the two resonators are tuned to the same frequency and

have the same quality factor (Wi = U 2 and L1 = F2 ), the frequency splitting between

the two peaks of 1a212 is given by 2v/ 2 _- F2 . In this work, we focus on the case

where the two coils are aligned coaxially (Fig. 3-4), and although we measured K as

as function of distance for two alternative orientations (Fig. 3-5), we did not proceed

with direct measurements of the efficiency for those.
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Figure 3-6: Comparison of experimental and theoretical values for the parameter I/F
as a function of the wireless power transfer distance. The theory values are obtained
by using the theoretical r, and the experimentally measured F. The shaded area
represents the spread in the theoretical ,/F due to the ~ 5% uncertainty in Q.

3.6 Measurement of the efficiency

Combining the measured Q with the measured and computed r,, we can plot the

strong-coupling parameter r/ /F 1F2 = /F as a function of distance (Fig. 3-6). Com-

paring the results with Fig. 3-1, we find that we are in the strongly coupled regime

throughout the entire range of distances probed.

As our driving circuit, we use a standard Colpitts oscillator [17] whose inductive

element consists of a single loop of copper wire 25 cm in radius (Fig. 3-7); this loop

of wire couples inductively to the source coil and drives the entire wireless power

transfer apparatus. The load consists of a light bulb and is attached to its own loop

of insulated wire, which is placed in proximity of the device coil and inductively
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Figure 3-7: Schematic of the experimental setup. A is a single copper loop of radius
25 cm that is part of the driving circuit, which outputs a sine wave with frequency
9.9 MHz. S and D are respectively the source and device coils referred to in the text.
B is a loop of wire attached to the load (light bulb). The various n's represent direct

couplings between the objects indicated by the arrows. The angle between coil D and
the loop A is adjusted to ensure that their direct coupling is zero. Coils S and D are

aligned coaxially. The direct couplings between B and A and between B and S are
negligible.

coupled to it. By varying the distance between the light bulb and the device coil,

we are able to adjust the parameter x2 so that it matches its optimal value, given

theoretically by V1 + (,/F)2. [The loop connected to the light bulb adds a small

imaginary component to (1 + x 2)F 2, which shifts the frequency of the device coil but

can compensated for by slightly retuning the coil.] We measure the work extracted

by adjusting the power going into the Colpitts oscillator until the light bulb at the

load glows at its full nominal brightness. We determine the efficiency of the transfer

taking place between the source coil and the load by measuring the current at the

midpoint of each of the self-resonant coils with a current probe (which does not lower

the Q of the coils noticeably). This gives a measurement of the current parameters Ii

and I2 used in our theoretical model. We then compute the power dissipated in each

coil from P, 2 = FLIIi,2 2, and obtain the efficiency from r/ = Pw/(Pi + P2 + Pw),

where Pw is the power delivered to the load. To ensure that the experimental setup

is accurately described by a two-object coupled-mode theory model, we position the

device coil such that its direct coupling to the copper loop attached to the Colpitts

oscillator is zero. The experimental results are shown in Fig. 3-8, along with the

theoretical prediction for maximum efficiency, given by Eq. 3.2. We were able to

transfer several tens of watts with the use of this setup, fully lighting up a 60 W
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Figure 3-8: Comparison of experimental and theoretical efficiencies as functions of the

wireless power transfer distance. The shaded area represents the theoretical prediction

for maximum efficiency and is obtained by inserting the theoretical values from Fig. 3-

6 into Eq. 3.2, with x2 = 1l + r 2 /F 2 . The black data points are the maximum

efficiency obtained from Eq. 3.2 and the experimental values of r/F from Fig. 3-6.

The red dots present the directly measured efficiency, as described in the text.

light bulb from distances more than 2 m away (Fig. 3-9). As a cross-check, we also

measured the total power going from the wall power outlet into the driving circuit.

The efficiency of the wireless transfer itself is hard to estimate in this way, however,

as the efficiency of the Colpitts oscillator itself is not precisely known, although it is

expected to be far from 100% [17]. Nevertheless, the ratio of power extracted to power

entering the driving circuit gives a lower bound on the efficiency. When transferring

60 W to the load over a distance of 2 m, for example, the power flowing into the

driving circuit is 400 W. This yields an overall wall-to-load efficiency of 15%, which is

reasonable given the expected efficiency of approximately 50% for the wireless power

transfer at that distance and the low efficiency of the Colpitts oscillator.



Figure 3-9: Photograph of the laboratory setup showing all of the key elements illus-

trated in Fig. 3-7. The self-resonant coils are suspended by pieces of insulated string

attached to the ceiling. (Image credit: Aristeidis Karalis)

3.7 Conclusion and outlook

Although the two coils are currently of identical dimensions, it is principle possible to

make the device coil small enough to fit into portable devices while maintaining the

general performance shown here. It should also be possible to considerably improve

the wall-to-load efficiency by driving the setup with a high-efficiency RF amplifier.

Both of these issues will be addressed in the next chapter.
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Chapter 4

Midrange power transfer to

multiple devices

4.1 Summary

This chapter takes the basic concept of using self-resonant coils to effect midrange

wireless power transfer explored in the previous chapter and expands upon it in a num-

ber of significant ways. For the case of a dilute system of device resonators (where

the direct coupling between the source and each device dominates over the direct cou-

pling between the devices), we provide exact expressions for the maximum efficiency

attainable and for the optimal matching condition, and quantify the improvement

in efficiency that can be obtained by powering multiple devices simultaneously. We

experimentally validate the possibility of using a large source resonator to power one

or more smaller resonators, an important step towards a potential real-world ap-

plication of the technology of midrange wireless power transfer: a larger resonator

embedded in a wall or a piece of furniture powering multiple small resonators embed-

ded in portable electronic devices. We have also employed an improved experimental

methodology which allows for in situ measurements of all the relevant coupled-mode

theory parameters as well as for direct measurements of the efficiency.



4.2 Overview

Although our first demonstration of efficient midrange wireless power transfer [48]

(Chap. 3) used identical resonators for convenience, the method of using high-Q

electromagnetic resonators-or a high-Q resonator of any kind [441-can easily be

extended to asymmetrical designs for the source and device. Indeed, other research

groups applied the same principles to scenarios that featured a high degree of asymme-

try between source and device [70, 11]. These investigations are relevant to potential

applications which require the devices to be small enough to be integrated (preferably

seamlessly) into portable devices, yet the constraints on the size of the source may be

less stringent. One could imagine, for example, a relatively large source embedded in

a wall or a piece of furniture powering a multitude of compact devices.

We can obtain a quick estimate of how the dimensionless coupling coefficient

k = 2r/w of the system scales with the relative sizes of and the distances between

the resonators involved by noting that, if the interaction between the coils is pre-

dominantly magnetic and the the coils are separated by a center-to-center distance

D substantially larger than their characteristic dimensions, then the leading contri-

bution to k will come from the dipole-dipole interaction of the coils, which scales as

D 3 [36]. Additionally, because of Faraday's law, and assuming that the magnetic

field generated by the first coil is approximately uniform over the dimensions of the

second coil, the electromotive force induced around the second coil is proportional to

its area (and vice versa). The simplest dimensionless quantity that we can form out

of the areas of two coils (denoted by A1 and A2) and their center-to-center distance

which has the requisite properties, namely reciprocity, D- 3 dependence, and k -+ 0

if either A1 -+ 0 or A2 -+ 0 is (A1A2)3/4 /D 3 , so we conclude that the leading-order

dependence of the coupling on the geometry of the setup at midrange distances is

kc (AA2)3/4 (4.1)
k c D3

Thus we see that if we keep the product of the areas of the coils constant, the cou-

pling between them should stay roughly constant. Another important consequence



of Eq. 4.1 is that if the source resonator is substantially larger than the device and

provided that the devices are sufficiently separated from one another (i.e. we are

dealing with a "dilute" system of resonators), then the coupling between the source

and each device dominates over the direct coupling between devices and allows us

to derive exactly the optimal efficiency of a dilute system consisting of an arbitrary

number of devices.

The bulk of the work for this project consisted of building a wireless power transfer

setup comprising one large source ~1 m 2 in area and two smaller devices ~ 0.07 m2

and experimentally verifying that the optimal efficiency of a system of two dilute

devices behaves as predicted by the coupled-mode theory treatment. Because the

areas of the source and device coils in this experiment are respectively four times and

one-quarter of the area of the coils in Chap. 3, the optimal efficiency as a function of

distance between the source and one device will be reasonably close to that obtained

in the first experiment as expected from Eq. 4.1.

4.3 Coupled-mode theory for a dilute system of

resonators

We once again employ the framework of coupled-mode theory, except that, instead

of the variables Fm and rmn used in Eq. 3.1, we now work directly in terms of the

dimensionless parameters Qm = wm/[2Pm] (the quality factor of the resonator labeled

by m and with resonant angular frequency om) and kmn = 2K1'mn/W (the dimensionless

coupling between resonators m and n), as these parameters are more familiar to large

segments of the electrical engineering community which took an interest in our earlier

work. The coupled-mode theory equations now read

m(t - [iom + (1 + Xm) 2 ] am(t) + iwkmnan(t) + Fm(t), (4.2)

where, as before, the complex-valued mode variables am (t) are normalized so that

the energy contained in resonator m is lam(t)12 , xm is the normalized external load-



ing that extracts the energy stored in mode m so it can be converted into useful

work, and Fm(t) is the external driving term. In the general case, finding a solu-

tion to Eq. 4.2 involves inverting an M x M matrix (M being the total number of

resonators involved), which can lead to a wide range of interesting effects such as en-

ergy hopping [26]. This variety of possible phenomena also precludes the possibility

of making precise statements about the optimal efficiency of an arbitrary system of

mutually interacting resonators. Thankfully, the dilute approximation that we em-

ploy here-and which, as we argued, could be applied to potentially viable real-world

applications-does admit an exact analytical solution for the efficiency and for the op-

timal loading parameters xm. For definiteness, we label the (single) source resonator

0 [so that in Eq. 4.2, Fo(t) is the only non-trivial driving term] and the N devices by

m = 1, 2, ... , N. In the dilute case, the source is much larger than the devices and

the devices are not particularly clustered together so that, by virtue of Eq. 4.1, the

mutual coupling between devices is much smaller than the direct coupling between

the source and each device. We therefore neglect all off-diagonal terms in Eq. 4.2

except for kom = kmo. In the harmonic case am(t) - e-iwt, Eq. 4.2 can be written in

matrix form as

ao Fo

K ({6m}, {Qm}, {xm}, {ko,m}) . (4.3)

aN 0

where 6m = (wm - wm)/m is the fractional detuning of each coil from its resonant

frequency. By inspection of Eq. 4.3, one can see that instead of fully inverting the

matrix K, we only need to find the first row of K- 1 to determine all of the coupled-

mode theory variables am. Using the adjoint method for matrix inversion, we find



that

lN (x 12 F 2 " -i 44
a02  (12Q t  det K

n=1 1
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lam 2 x 0 X on +)ionm (1+ Xm) 2 + 4Q 2  
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x F for m =1, 2,1- -. , N. (4.5)
det K '

It follows from the definition of the unloaded Q of a resonator [w x (total energy

stored) / (average power dissipated)] and from the interpretation of lam 2 as the energy

stored in resonator m that the power dissipated per resonator is Pm = wam2 /Qm.

The normalized loading parameters Xm effectively lower the intrinsic Q's of the res-

onators of the coils by a factor of 1/(1 + xm), and a fraction xm/(1 + xm) of the

total power dissipated in a coil [which now equals Pm = (1 + xm)laml 2/Qm] can

in principle be converted into useful work. Defining the overall efficiency '0 of the

system as the ratio of the overall power delivered to all the loads to the total power

dissipated in all the resonators, we find

EN 12
77 ZiiWXnlanl2/Qn(46

w00|2/Q0 + EN 12wlao2/Qo+ n=1 W (I + Xn) Ian 1/Qn(46

EN )2 2 0n +n)2 Q2'nZ$=1(W/Wn) (ko,nQOQn) /[(1+X +4 n~) (4-7)5
1+EN 2(1 EN 1 (klnOQl) n 1+ n)2 + 4Q2n2]'

where we have used Eqs. 4.4 and 4.5 in going from the first to the second line. We

find that a condition for optimizing the overall efficiency is that all the devices be

resonant at the driving frequency wd. The overall efficiency then becomes

N~Z [x/1±)2] [2,Qo~
1 t-z4 1  [1(1 -+ Xn) [k,nQOQ]~ (48)+ N 2,nO~

1 n_1 [1/(1 + Xn) k ,nQOQn]

Comparing Eqs. 3.2 and 4.8, we notice a significant similarity between the single-

device efficiency and the multiple-device efficiency for a system of dilute devices.

Moreover, we find again that the efficiency depends only on the strong-coupling pa-



rameters ko,m'QaQm. This parallel extends to the optimal values of the normalized

loading parameters xm that optimize the efficiency. To solve for the optimal xm

for m = 1, 2,. .. , N, we can proceed by induction as follows: starting with the

case of two devices Eq. 4.8 can be readily maximized as a function of two variables

to yield xi - X2 =j + k$,1Q0Q1 + k, 2Q0 Q2 as the optimal loading parameters.

Plugging this back into Eq. 4.8, we see that the two device resonators can effectively

be viewed as one effective resonator with an enhanced strong-coupling parameter

k$,1 Q0 Q1 + ko, 2 Q0 Q2. We can then reduce the analysis of Eq. 4.8 for three device

resonators to our previously solved analysis of two device resonators by treating any

two device resonators as one effective resonator and obtain for the optimal normal-

ized loading parameters x1 = X2 = X3 = 1 + k$,1Q0 Q1 + ko,2Q0 Q2 + ko, 3Q0 Q3. We

conclude again that the three device resonators act as one effective resonator with

effective strong-coupling parameter VkoQoQ1 + k0,2Q0 Q2 + ko, 3Q0 Q3. This proce-

dure can be repeated up to some arbitrary number N of device resonators with optimal

loading parameters

N

eff = X1 = X2 XN 1 + E,nQon, (4-9)
n=1 onOn

and effective strong-coupling parameter

N

Ueff Zk ,QoQn. (4.10)

The efficiency is then more concisely expressed as the single-device efficiency (Eq. 4.8)

for Ueff

(zeg(1 ze)2] U2gXeff/( Xeff ff (4.11)
1 + [1/( + Xeff)] Uff '

which makes it much simpler to analyze the effect on the overall efficiency of adding

additional device resonators. One can see that the plot of the optimal efficiency as

a function of the effective strong-coupling parameters (Fig. 3-1) has an inflection

point in the vicinity of Ueff ~ 1 (more precisely, at Ueff = 5/v/2 ~ 0.9306). Thus,



this is the region in parameter space where the addition of extra resonators would

have a larger impact on the efficiency. As an example, a single device interacting

with the source with a strong-coupling parameter of 1 (which one could consider to

be borderline strongly coupled) would have an optimal efficiency of approximately

17.2%. The addition of another device with the same strong-coupling parameter

would increase the optimal efficiency to 26.8%, while four devices with the strong-

coupling value of 1 would have an optimal efficiency of 38.2%. We therefore conclude

that the approach of having one large source power multiple small devices distributed

over a large volume may lead to acceptable overall efficiencies even in cases where the

single device efficiencies are modest (e.g., worse than 20%). Note, however, that this

improvement only applies if the devices are driven simultaneously. In case one were

to split up the single system of one source and N devices into N systems comprising

one device each, e.g., by using time-multiplexing (the source would cycle through

the separate frequencies of operation of devices, each of which would be sufficiently

distinct to prevent strong coupling to the other devices) or by frequency-multiplexing

(the source would operate at a superposition of frequencies, one for each device), the

overall efficiency would necessarily be a weighed average of the efficiencies of the N

separate systems, and hence lower than the optimized simultaneous case studied here.

4.4 Experimental results

To demonstrate the principles outlined above experimentally, we built a large self-

resonant coil [48] that would serve as a source for two smaller device coils, all designed

to resonate at 6.5 MHz, which is in the range of optimal frequencies for this class of

resonators [44] and also close to the ISM (Industrial, Scientific, and Medical [22]) band

at 6.78 MHz. The source coil is a helix made of 4 turns of 1/2" copper pipe, 113 cm in

diameter, and 20 cm in height. The two devices are made of 15.25 turns of 1/4" copper

pipe, 30 cm in diameter and 18 cm in height. In real-life applications, a source coil

of this size (spanning an area of approximately 1 m2 ) could potentially be embedded

in the walls or in the ceiling of a room, while the area of the devices is comparable
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Figure 4-1: Computer-generated image of the experimental setup. For simplicity, the
device coils are placed at identical distances on either side of the source (center coil).
The image is to scale, with a center-to-center separation between the source and each
device of 200 cm. In the laboratory, all coils were suspended by pieces of insulated
string (which have no effect on the measurements) connected to the ceiling. The
excitation and pickup coils are not shown.

to those of some portable electronic devices and domestic robots. We placed the

devices on opposite sides of the source (Fig. 4-1). To couple and impedance-match to

each resonator we used smaller loop-and-capacitor "coupling" coils tuned to the same

frequency as the larger self-resonant coils (Fig. 4-2). Each coupling coil behaved to

a good approximation as a standard RLC circuit, greatly simplifying the impedance

matching procedure. The three coupling coils are then connected to appropriate

driving and loading circuits by means of standard coaxial cables. In order to minimize

the capacitive coupling of the self-resonant coils to the grounded sleeve of the coaxial

cables, we aligned the excitation coils symmetrically with the mid-point of the helical

coils.

By connecting each of the coupling coils to a separate port of a network analyzer

and sweeping the driving frequency of the network analyzer around the resonant

frequency of the self-resonant coils, it is possible to extract all of the coupled-mode

theory parameters in Eq. 4.2 and Fig. 4-2 from a fit of the measured input impedances.

We found experimentally that the quality factor of the source coil was Qo = w/2Fo =



730 i 50. Due to imperfections in their (manual) fabrication, the two device coils

had somewhat different quality factors, with device coil 1 having Qi = 1650 i 100

and device coil 2 having Q2 = 1850 ± 100. The variation in the values of the quality

factors was due in part to the systematic effect of having to manually retune the coils

as they were moved to different positions, and in part due to uncertainties in the

least-square fits through which the strong-coupling parameters were obtained.

In the approximation where the current distribution along the length of the self-

resonant coils is a half-wave, we can apply the analytical model for self-resonant coils

developed in section 3.4 to predict the coupling between the resonators as a function

of distance. (In fact, before building the coils in the laboratory, the model was a

valuable tool for estimating what the geometry of each coil should be.) Although

this analysis does not take into account the imperfections of the coils, the calculated

values are within 10% of the experimental values of k (Fig. 4-3), obtained in the

same data fits as the experimental Q value. We found that the coupling ko, 2 between

the source and the second device was consistently higher than ko,1 , a discrepancy

that persisted even after we switched the positions of the two devices to control for a

potential effect of the walls and extraneous metallic objects in the laboratory on the

coupling between the resonators. We thus conclude that the difference in the coupling

must is due to variations in the exact construction of the device coils (as were the

differences in the quality factors of the two devices).

In order to effect power transfer at the resonant frequency, one can adjust the cou-

pling between each coupling coil and its associated resonator by varying the distance

between them or pitching the angle of the coupling coil, so that the system is properly

matched to the 50 Q ports of the network analyzer. After properly tuning the system,

the efficiency can be directly measured by the network analyzer. We measured the

efficiency between the source and each device separately, as well as the overall effi-

ciency between the source and both devices simultaneously (Fig. 4-4). Note that, as

a consequence of Eq. 4.9, the impedance-matching in the case of simultaneous devices

differs from that of a single device. The directly matched efficiency at the optimal

matching parameters matches the efficiency predicted from the coupled-mode theory



parameters derived from the fits to within 0.5%.

Once the matching is done with the help of a network analyzer, one can connect

the coupling coils at the devices to a loading circuit with 50 Q input impedance

and drive the source with a 50 Q RF amplifier to provide significant amounts of

power to the devices. In our setup, we were able to supply upwards of 25 W to

each device (the power being dissipated in resistive dummy loads) even when the

devices were farther than 2 m from the source, the power level being constrained by

the maximum output of the amplifier. Since RF amplifiers with efficiency greater

than 90% are common [251, they have a minor effect on the wall-to-load efficiency,

especially compared to the Colpitts oscillator used in Chap. 3.

It can be readily seen from Fig. 4-4 that the relative improvement in overall

efficiency due to having two devices coupled simultaneously to the source (green)

compared to having each device couple separately to the source (blue and red) is

more significant when the devices are placed at longer distances from the source, i.e.

when the coupling and strong-coupling parameters are lower, as predicted by our

couple-mode theory analysis.

4.5 Conclusion and outlook

We have derived analytically and shown experimentally for the case of two devices

the effect on the overall efficiency and on the optimal loading of the devices of adding

multiple device resonators to a system of strongly-coupled resonant modes. We find

that the approach of powering multiple devices simultaneously can result in a good

overall efficiency for the wireless power transfer even if the efficiency of the transfer

to each individual device is relatively low. Although the area of the self-resonant

device coils in this chapter is one-quarter of the area of our original self-resonant coils

(Chap. 3) and more comparable in dimension to the area of a wide range of electronic

devices, their significant height (18 cm) presents a major difficulty to their seamless

integration with existing equipment. Planar coils, in which the conductor is confined

to a plane and spirals towards the center starting from some outer radius, would



present a much reduced profile (i.e. of the order of the diameter of the conductor

from which the coil is formed), but our analytical model indicates that, for a fixed

area and relative to helical coils, their coupling would be significantly reduced if the

spiral terminates too close to the center (this can be be intuitively understood by

noting that the inner turns of the spiral enclose a smaller area and therefore capture

less of the magnetic field produced by another coil). An electrical conductor that

offers similar resistance to the heavy gauge wires used up to now yet takes up a

much smaller volume would go a long way towards resolving these issues. In the

next chapter, we present a new design for an electrical conductor that meets these

characteristics.
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Figure 4-2: Schematic representation of the experimental setup showing all the
quantities of relevance to a coupled-mode theory analysis of the system and to the
impedance-matching to three ports of a network analyzer. The source coil is at the
center (compare to Fig. 4-1). The angular resonant frequencies and quality factors of
each resonator are shown above the respective self-resonant coils. Uo,1 and Uo,2 are
the strong coupling parameters between the self-resonant coils (the cross-coupling Ui,2
being negligible by comparison). Also shown are the strong-coupling parameters Wo,
W1, and W2 between each self-resonant coil and its coupling coil, the series resistance

(ro, ri, and r 2 ) of each coupling coil, the input impedance seen by the source port of
the network analyzer and the output impedance of the device ports of the network
analyzer (Zo = 50 Q). All of the parameters shown can be extracted from the data
measured by the network analyzer.
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Figure 4-3: Coupling k = 2r/w between the source and each device as a function of
center-to-center distance. Because of imperfections in the fabrication of the device
coils, the measured coupling at the same distance for the two devices (blue and
red) differs by - 10%. Since QoQi,2 ~ 1100, each device is strongly coupled to

the source (k QoQi,2 > 1) over the entire range of distances. Also plotted is the
coupling predicted (black) by a simple (and relatively easy to calculate) model that
ignores the imperfections of the coils, but nevertheless gives predictions within 10%
of the measured results.
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Figure 4-4: Efficiency as a function of distance for the cases where each device alone
is coupled to the source and where both devices are coupled simultaneously to the
source, and properly matched according to Eq. 4.9. The losses due to the small
resistance of the coupling coils have been subtracted out. Because of differences in
the construction of the devices, their Q's and coupling to the source (see Fig. 4-3)
are different, thereby leading to a somewhat higher efficiency for device 2.



Chapter 5

A low-resistance electrical

conductor for the multi-MHz range

5.1 Summary

We propose a new design for a conductive wire composed of several mutually insu-

lated coaxial and conducting shells. With the help of numerical optimization, it is

possible to obtain electrical resistances significantly lower than those of a heavy-gauge

copper wire or litz wire (the best currently available alternatives) in the 2-20 MHz

range. Moreover, much of the reduction in resistance can be achieved for just a few

shells; in contrast, litz wire would need to contain - 104 strands to perform com-

parably in this frequency range. Although the original motivation for this work was

to create a conductor that would significantly improve the performance of high-Q

coils for midrange wireless power transfer and to facilitate their miniaturization and

integration with portable devices, our results could also be pertinent to a number of

other uses such as RFID or applications operating at the ISM frequency bands at

6.78 and 13.56 MHz [221.



5.2 Overview

In this chapter, we show that a structure of concentric cylindrical conducting shells

can be designed to have much lower electrical resistance for - 10 MHz frequencies

than heavy gauge wire or available litz wires. At such frequencies, resistance is

dominated by skin-depth effects, which forces the current to flow within approximately

one skin-depth 6 (which is ~ 20 pm for copper at 10 MHz) of the surface of the

conductor, rather than being uniformly distributed over the cross section. As a result,

the electrical resistance at radio-frequencies scales inversely with the linear dimension

of the cross-section of the conductor, rather than as the inverse of the cross-sectional

area characteristic of direct-current (DC) resistance. The skin-depth effect is typically

mitigated by breaking the wire into a braid of many thin insulated wires (litz wire [76,

24, 57]), but the short skin depth at these frequencies makes traditional litz wire

impractical, as they would need to be composed of - 104 pm-scale strands. In

contrast, we show that, in the case of a cylindrical conductor with cross-sectional

diameter 1 mm, as few as 10 coaxial shells can improve resistance by more than a

factor of 3 compared to solid wire, and thin concentric shells can be fabricated by a

variety of processes (such as electroplating, electrodeposition, or even a fiber-drawing

process [6, 50, 18]). We derive an analytical expression for the impedance matrix of

both litz wire and nested cylindrical conductors starting from the quasistatic Maxwell

equations; in particular, a key factor turns out to be the proximity losses [49] induced

by one conductor in another conductor via magnetic fields. Using this result combined

with numerical optimization, we are able to quickly optimize all of the shell thicknesses

to minimize the resistance for a given frequency and number of shells. As a check

of our analytical results, we also perform finite-element method simulations for both

litz wire and concentric shell structures.

For a cylindrically symmetrical system of nested conductors oriented along the

z direction, we shall see that Maxwell's equations reduce to a Helmholtz equation

in each annular layer. In the quasistatic limit of low frequency (which causes the

conductivity term to dominate over the dielectric constant), we show that this further



simplifies into a scalar Helmholtz equation for E, alone, which can be solved in terms

of Bessel functions. The coefficients of these Bessel functions are determined by

the boundary conditions at each interface: continuity of Ez and of He ~aE,/Br.

Once the solution for Ez, and thus the current density uEz (for conductivity a)

and the magnetic fields (from Ampere's law), are obtained, the impedance matrix

can be derived from energy considerations. Of course, a real wire is not perfectly

cylindrical because of bending and other perturbations, but these effects can typically

be neglected to good approximation (e.g., if the bending radius is much larger than

the wire radius).

5.3 Analytical procedure

We start by analytically solving Maxwell's equations in each medium (air, copper,

and insulator):

V2 E(r) + (k2 + 2is 2 ) E(r) = 0. (5.1)

Here k = ye-w/c, w is the angular frequency, er is the relative permittivity, c is

the speed of light in vacuum, , = 1/6 = Vopof/2 (6 is commonly called the skin

depth [49]), [yo is the magnetic constant, and a is the conductivity (5.9 x 107 S/m

for copper, zero otherwise). Since the wavelength (A = 27/k ~ 15 m in vacuum

at 20 MHz) is much longer than the conductor thickness or the skin depth, the k2

term in Eq. 5.1 is negligible for solving within a given cross-section z. Under these

approximations, the z-component of Eq. 5.1 becomes

a 2 Ez (r, #) 1 BE, (r, #) 1 82 Ez (r, #) 2
+ . + - +2i E (r, #=0, (5.2)B9r2 r r r2 002

which can be solved by separation of variables. The general solution Ez (r, #) of

Eq. 5.2 in the conductor has the form

00
Ez (r, #) = [AmJm(nl) + BmYm(rn)] [Cm cos(m#) + Dm sin(m#)] (5.3)

m=o



where Jm(r) and Ym(ri) are Bessel functions, and r/ = V'Yr'r. The magnetic field

can then be found through Faraday's law: iwBo =E_/8r. The constants Am, Bm,

Cm, and D, are determined by continuity of E, and Ho at interfaces, and by using

Ampere's law to relate a line integral of the magnetic field around a conductor to the

enclosed current. Equivalently, we could have replaced Jm(r/) and Ym(l) in Eq. 5.3

with the Hankel functions H$ (rq) = Jm(rI) ± iYm (2q), which are sometimes more nu-

merically convenient. Finiteness at r = 0 dictates that the innermost layer must have

E,(7) ~ J,(r/). Given a set of N conductors, one can find the impedance matrix by

first using the procedure above to solve for the electric and magnetic fields associated

with the N distinct cases where a single conductor k (k = 1, 2..., N) carries a net

current Ik exp(iwt). The impedance matrix can then be derived by enforcing conser-

vation of energy [491. For example, one can find the complex-symmetric impedance

matrix Zk,l by exciting the elements with currents Ik exp(iwt), superposing the pre-

viously computed solutions for the electric and magnetic fields, and computing the

(complex) energy U of the system by integrating the net Poynting flux S = E x H*/2

flowing into each shell and integrating the magnetic energy density B -H*/4 else-

where. Zk,I then follows from U = Zk,l IkZk,I*/(2iw). Once the impedance matrix

is known, it is straightforward to compute the power dissipated by any currents

Ik exp(iwt): P'i, = Ej, Re {IkZk,l,*} /2. Since the total current is I:N Ik exp(iwt),

the overall resistance is

(N N 2

R=Re ( IkZkI* E Ik 2 (5.4)
k,1=1 k=1

Alternatively, if the current distribution is known beforehand (as in litz wire), one

can compute the power dissipated and thus the overall resistance of the system by

solving for the fields and integrating the Poynting flux into each conductor without

computing Z.



5.4 Analytical treatment of a litz wire

We begin by reviewing traditional litz wire. It is convenient to split the problem

into two steps: we first solve Eq. 5.2 for an isolated cylindrical strand of diameter d

carrying current Istrand, and then consider the proximity effect on a single strand from

the net magnetic field of all strands. The first step is cylindrically symmetric, and

the electric and magnetic fields in the interior of the wire and the power dissipated

per length are respectively

Ez(r) = 2 ) 'strand, (5.5)

H,(r) = iIstrand, (5.6)

Pown )Re ,, } IIstrand|2, (5.7)

where = v'2rd/2. If there are N identical strands carrying identical currents

adding up to a total current I = N x Istrand, and uniformly arranged into a circular

bundle of overall diameter D, then the magnitude of the total internal magnetic field

at a radius R from the center of the bundle is well approximated by

IHint(R)I = 21R/(7rD2 ). (5.8)

If d/D < 1, JHintl is essentially uniform over each strand, in which case the induced

fields and induced power dissipated (the "proximity loss") in a strand subjected to

the overall field |HintJ are

Ez(r, #) = (1) [|q.9 Hint I sin(#) (5.9)

HO(r, #) = J2(q(-U((7) Hinti sin(#) (5.10)

Pprox = (1)Re {rls J1(?7) [J2(T1) -2J(?9] |Hint| (5.11)



where the angle # is measured relative to the direction of Hint. Because the two sets

of solutions described by Eqs. 5.5-5.6 and 5.9-5.10 are orthogonal in #, there are

no additional loss mechanisms due to interference between the two solutions and we

can compute the overall power dissipated in the litz wire by summing the computed

losses due to the strands carrying a net current (Eq. 5.7) and to the proximity losses

(Eq. 5.11). The former are simply N times Eq. 5.7 (keeping in mind that strand =

I/N). To compute the proximity losses, we would in principle need to evaluate IHintI

at the position of each strand and plug it into Eq. 5.11. Because of our assumption

that the strands are uniformly distributed in the bundle and that N >> 1, we can

substitute the sum over the position of all strands by an integral over the cross-section

of the bundle and substitute JHint 12 in Eq. 5.11 by its average [lHint 2] ave = 1112/(2D 2 ).

Adding up the losses from all the strands we find that the resistance per length of a

litz wire is (ignoring a small correction from the finite strand-winding pitch due to

the braiding of the strands)

Nz e2 {J' o + N nRe {J 1 (ns) [J2(77) - Jo('s)]* (5.12)
N7rd2 J, J(,q,) 7rD2U I JO(TI,) 1

In the limit rd < 1, we can expand the Bessel functions in Eq. 5.12 to find the

lowest-order deviation from the DC resistance of N strands [4/(N7rd 2 g)]:

Ruiz ~_( 1 + I N 2(rd)4 . (5.13)
N7rd2or 128 (D

Thus, to keep the resistance near the DC resistance of a solid conductor of diameter

D [4/(7rD2 u)], one would need the scalings N 1/d2 and d 1/t 2  1/w. For

example, with D = 1 mm at 10 MHz, one would need about N ~_ 104 strands and

d < 10 pm diameters in order to have a total resistance within a factor of 3 of the

target value. As we shall see next, common commercially available litz wires (~ 102

strands per mm 2) would typically perform significantly worse than a solid copper wire

of the same overall diameter in this frequency range.
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Figure 5-1: Results of the finite-element modeling (FEM) of a litz wire with overall
cross-sectional diameter 1 mm and comprising 745 individual AWG 48 strands (strand
diameter d = 31.6 pm). The litz wire carries an overall current of 1 A into the page
and the solution shown is for a frequency of 10 MHz. The image on the left shows the
magnitude of the magnetic field generated by the electrical current flowing through
the strands, which closely follows Eq. 5.8. The panel on the right shows the magnitude
of the current density in the strands. The induced current density manifests itself
as the significant non-uniformity of the current density over the cross section of the
strands (inset). Note that the induced currents become more significant closer to the
surface of the bundle, where the magnetic field is strongest.

5.5 Finite-element modeling of a litz wire

In order to check the validity of our derivation of Eq. 5.12, we performed a finite-

element analysis [13] of a litz wire (Fig. 5-1) of overall diameter D = 1 mm made of

745 uniformly distributed strands of diameter d = 31.6 pm [corresponding to Amer-

ican Wire Gauge (AWG) 48, the thinnest strands commonly used in litz wire [58]].

Fig. 5-2 compares the resistance per length of this litz wire to a solid copper wire of

same overall dimensions. Although the litz wire has an initial advantage at 1 MHz,

the resistance of the copper pipe increases approximately as ~ V while the resis-

tance of the litz wire initially increases as w2 (because of Eq. 5.13) and-despite

its complexity-the litz wire delivers considerably worse performance than the solid

conductor above 5 MHz. Also of note in Fig. 5-2 is the good agreement between the

PJ (x 10P NIM2HJ (Alm)
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Figure 5-2: Semi-logarithmic plot comparing the resistances as a function of fre-
quency of a solid copper conductor of diameter 1 mm and the litz wire from Fig. 5-1.
The resistances are normalized to the DC resistance of the solid copper conductor
(21.6 mQ/m). The resistance of the litz wire is computed using both the analytical
model derived in the text (Eq. 5.12) and a full FEM analysis.

finite-element modeling (FEM) and analytical results (in spite of the simplifications

made in the deriving the latter), especially at frequencies below 10 MHz. The dis-

crepancy between the two models widens as the frequency increases, and is ~- 20% at

20 MHz. Closer inspection of the FEM models shows that the considerable induced

currents at higher frequencies cause a substantial deviation of the magnitude of the

magnetic field from the form assumed in Eq. 5.8. Although our analytical litz wire

model could be suitably. modified to be more accurate at higher frequencies by intro-

ducing higher order terms to the internal magnetic field, there may be little practical

benefit in doing so considering the poor performance of a litz wire compared to the

much simpler solution of a solid conductor in this regime.
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Figure 5-3: Optimal current density at 10 MHz for a copper conductor with diameter
1 mm when the wire consists of: (a) one piece of copper (resistance per length of
265.9 mQ/m), (b) 25 mutually insulated conductive concentric shells of equal thick-
ness 20 prm (148.7 mQ/m), and (c) 25 elements whose thicknesses are optimized so
as to minimize the overall resistance (51.6 mQ/m). In (c), the inset shows the ra-
dial locations (blue) of the interfaces between shells. The overall current is 1 A. For
simplicity, the insulating gap between shells is taken to be negligibly small. These
geometries were solved analytically in the text, whereas these images were generated
by a finite-element method [13] as a check. The color scales of the images are distinct
for the sake of readability.

5.6 Solution of a coaxial and conducting shell struc-

ture

We now consider concentric shells and solve for the electromagnetic fields when shell k

is excited by a current Ik exp(iwt). This scenario can be reduced to two cases: a

shell carrying a current with no external field and a shell carrying no net current

but immersed in a magnetic field He generated by a current-carrying inner shell.

In either case, the solutions are determined by continuity and by the fact that the

magnetic field in a non-conductive medium at a radius r is He = I/(27rr), where I is

the total current inside the radius r. For a shell with inner radius a, outer radius b,

and carrying current I, the fields are then:

Ez(r) = 2 [ C H () + C(HI-)(r) (5.14)

H()= C H ( ) + C H, () (5.15)



where the constants C) are given by

C(*) FH (na)/b (5.16)
a,b H () - H (r)H (2)

with na = v"2a and 77b v~/Y'ib. Similarly, for the case of a shell with no current

but enclosing a total current I, the fields are identical to Eqs. 5.14 and 5.15 except

that C are replaced by
a,b

-F [H (a)/b - H (n)/a
D =Yb .- (5.17)

a,b H ) (M) -H (Ma) H (

As in the analysis of litz wire, we also conducted FEM simulations of various concen-

tric shell structures. Since the solutions in this section are exact, they agree with the

FEM results up to numerical accuracy, and the latter serve mostly as a consistency

check of our derivations.

5.7 Optimization of a coaxial and conducting shell

structure

Now that we know the analytical solution to an arbitrary system of concentric shells,

it is straightforward to derive the full impedance matrix, as described previously, to

compute the resistance of any given current distribution via Eq. 5.4. A uniform cur-

rent distribution over N shells of equal thickness t, for instance, would have losses

similar to those of a litz wire, although with a much smaller number of components

(N ~ vNstrands/7, where Nstrands is for a litz wire with d = t). Given that the

exact impedance matrix is known, elementary calculus yields the currents lk that

minimize Eq. 5.4 [Fig. 5-3(b) shows an exemplar current distribution]. A more dra-

matic reduction in the resistance, especially when N - KD, comes from letting the

inner and outer radii of each shell vary (allowing the impedance matrix to vary) and

then minimizing Eq. 5.4 using numerical optimization (more precisely, the COBYLA



algorithm [64] implemented in a freely available software package [39]) [Fig. 5-3(c)].

Fig. 5-4 compares the lowest resistance (as a function of N and the frequency) achiev-

able by fixing the overall diameter of the conductor at D = 1 mm and optimizing both

the dimensions of the individual shells and the current distribution to the resistance

of a solid, heavy-gauge, conductor (typically the best currently available solution as

shown in Fig. 5-2) of the same overall D [resistance/length ~ r/(7rDo-) for KD > 1],

while Fig. 5-5 compares it to the DC resistance per length of a solid copper wire

[4/(7rD2 )] (which corresponds to the N -+ oc limit where proximity losses van-

ish and the current flows uniformly over the cross section). Fig. 5-6 compares the

optimized coaxial shell structure to the best resistance achievable with a structure

consisting of N shells of equal thickness, illustrating the significant improvements

that can be obtained with optimization of the geometry of the structure, even while

the total number of shells is fixed.

5.8 Conclusion and outlook

A potential disadvantage of a concentric-shell structure compared to traditional litz

wire is that the braiding of the latter automatically takes care of the problem of

impedance-matching. However, one can see from Figs. 5-4 and 5-7 that much of the

relative improvement of an optimized concentric shell conductor over a solid conduc-

tor occurs for structures with only a handful of elements, where even a brute force

approach of individually matching the impedance of each shell to achieve the opti-

mal current distribution could be implemented. As shown in Fig. 5-7, an optimized

concentric shell conductor with 10 elements and overall diameter 1 mm would have

roughly 30% of the resistance of a solid conductor of the same diameter over the

entire 2-20 MHz range. Equivalently, since the resistance of a solid conductor in the

regime ,D > 1 scales as 1/D, our optimized conductor with ten elements would have

the same resistance per length as a solid conductor with a diameter - 1/0.3 ~ 3.33

times greater (and ~ 10 times the area). Considering specific applications to high-Q

resonators for midrange wireless power transfer, our results suggest that it should be
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Figure 5-4: Ratio of the resistance per length of an optimized conducting-shell struc-
ture with overall diameter 1 mm to that of a solid conductor of the same diameter
(Fig. 5-2).

possible to build resonators with height ~1 mm and performance similar to those of

the device coils in Chap. 4.
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Figure 5-6: Ratio of the resistance per length of an optimized conducting-shell struc-
ture with overall diameter 1 mm to that of a conducting-shell structure (of same
overall dimensions) comprising the same number of shells but of uniform thickness
(not optimized) [Fig. 5-3(b)].
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Figure 5-7: Semi-logarithmic plot comparing the resistances per length (normalized
to the DC resistance per length of a solid copper conductor of same diameter 1 mm)
for a few optimized coaxial structures of increasing complexity. For reference, the
resistances per length of a solid conductor and the previously discussed litz wire
(Fig. 5-2) are also shown.
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Chapter 6

Supercollimation in a slab of

silicon rods

6.1 Summary

In this chapter we present our key contributions to a collaborative project that led

to the first experimental demonstration of supercollimation in a photonic crystal slab

composed of nanoscale rods. Using numerical simulations of the photonic crystal

and informed by the constraints of the fabrication process, we helped define the final

dimensions of the structure that was fabricated for the experiment. We also analyzed

how well a supercollimating photonic crystal would perform as a chemical sensor,

and explored how the supercollimation length would be affected by the frequency of

operation.

6.2 Overview

Among the rich variety of phenomena [83, 38, 37] enabled by photonic crystals, su-

percollimation enables the propagation of a light beam inside a photonic crystal with

nearly no diffraction [45]. Much of the recent work on supercollimation has focused

on photonic crystals composed of periodic arrays of air holes in a dielectric slab

[46, 81, 84, 3, 66, 65]. Here, we focus instead on a periodic structure of rods in air.



The basic strategy for achieving supercollimation is the same regardless of the par-

ticulars of the photonic crystal: solve for the photonic band structure and look for

equifrequency contours with flat sections. The group velocity vectors vg = aw/Dk for

the electromagnetic modes lying along such a flat section point substantially in the

same direction, leading to a dramatic reduction in the diffraction of a beam composed

of such modes. The degree of supercollimation achievable for a given contour can es-

timated quantitatively using a two-dimensional beam propagation method (BPM)

based on the paraxial approximation [14, 5], and we use this model to compare the

frequency bandwidth of supercollimation in the rod structure to that of a previously

demonstrated photonic crystal hole slab [66]. Finally, we use perturbation theory to

calculate the sensitivity of our photonic crystal to changes in the dielectric constant

of the surrounding medium and evaluate its potential usefulness as a sensor. We

find that while the frequency bandwidth for supercollimation in rods in significantly

narrower than that for holes, rods are significantly more sensitive to perturbations; a

sensor (such as a Mach-Zehnder interferometer) based on supercollimation in a slab

of rods would only need to be about one-sixth of the length of a similar sensor based

on slab of air holes. These results indicate that supercollimation in a rod slab would

be better suited for sensing, while hole slabs would be more suitable for applications

in communication.

6.3 Design of a supercollimating photonic crystal

subject to fabrication constraints

Our first task was to design a photonic crystal that would support supercollimation at

a free-space wavelength of 1550 pm, which was the optimal wavelength of operation

for the infrared laser to be used in the experimental verification of supercollimation.

The structure was to consist of a square lattice of 700 pm tall silicon rods (dielectric

constant esi = 12.4) supported by a 3 pm thick substrate of SiO 2 (Csio 2 = 2.35),

and air elsewhere. Given these constraints, the main geometrical parameters left to



vary were the lattice spacing a and the diameter of the rods d. After calculating

the equifrequency contours (using preconditioned conjugate-gradient minimization of

the block Rayleigh quotient in a plane wave basis [41]) for a number of structures

covering the parameter space for d and a, we eventually settled on a structure with

a = 437.5 nm and d = 250 nm, whose equifrequency contours for the TM-like modes

around the wavelength of interest are shown in Fig. 6-1(a).

6.4 Bandwidth analysis and comparison to a slab

of air holes in silicon

Once the equifrequency contours are known, we can propagate a beam in the photonic

crystal slab as follows: imagine that we form a focused monochromatic beam out of

the Bloch modes lying on one of the contours in Fig. 6-1(a). On the plane defined by

og = 0 [x11 is the direction of propagation of the beam and is parallel to kl indicated

in Fig. 6-1(a)] each of these Bloch modes will have a relative phase dictated by the

initial focusing of the beam, but after propagating up to the plane x1 = L, each mode

will have acquired an additional phase eikl L, where k1l is in principle different for each

mode. (We ignore the additional phase e-iwt due to time evolution as it is the same

for all modes in the beam and consequently does not contribute to diffraction.) The

field profile at x1 = L is then found by resumming the phase-shifted modes at that

position. In our computations, we approximate the modes on each contour as plane

waves (identified by their wave-number k1 perpendicular to the axis of propagation)

and the initial beam as having the initial gaussian profile

Ez (x1 , x1 = 0) = Eoe~x/" , (6.1)

where E0 is the magnitude of the electric field at the center of the beam and wo is

the initial beam waist. The Fourier transform of the initial beam profile with respect

to xi is then

Zz (ki, x = 0) - woE 0 ek ", (6.2)
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Figure 6-1: (a): Equifrequency contours of the first band (TM-like) of a rod slab
in air. The lattice constant is a = 437.5 nm and each contour is labeled by its
equivalent free space wavelength. The dimensions of the photonic crystal have been
selected so as to achieve the flattest contour close to A = 1550 nm (blue contour).
The dashed arrows indicate the direction of the group velocity at the designated
contour, while the solid arrows define the axes parallel (k11) and perpendicular (k1 )
to the propagation of the beam. (b): Eigenfrequency contours plotted against the
k --kj axes after subtracting a constant from k11 so that all contours pass through the
origin. These contours are then fitted to a fourth-order polynomial to extract the
coefficients used in the beam-propagation method calculation.

and based on our earlier discussion, the field profile at zg = L can be found by

computing

E. (x1r, L) = wo EjF dkreik x1ikI (6.3)

where k1l (k1 ) denotes the dependence of k11 on kI, which we obtained by fitting a

fourth-order polynomial to the equifrequency contours [Fig. 6-1(b)] of the photonic

crystal.

As the beam propagates, its profile (Eq. 6.3) will deviate significantly from its

initial gaussian shape. After experimenting with a few alternatives, we found that

a robust definition of the spread of a beam was the width containing erf(V2') ~

0.9545 of the beam intensity (which is oc E, 12). This definition has the desirable

property of reducing to twice the beam waist when the beam propagation remains
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gaussian (e.g., in free space) and also varies smoothly as a function of the propagation

distance. (Another possible measure of the width of the beam, the full width at half

maximum, did not fare well in that regard because the beam profile often became

non-monotonic in our computations.) We then defined the supercollimation length

Lsc as the distance at which the width of the beam would spread by a factor of v2_

relative to its initial value. In the special case of free-space propagation, this definition

conveniently reduces to the Rayleigh length (LR = rw2 /A) widely used in the theory

of gaussian beams.

Once we had defined an appropriate figure of merit for the supercollimation, we

used it to quantify the degree of supercollimation that can be achieved in a photonic

crystal as the initial beam waist and wavelength of operation are varied. As a point

of reference, we defined Asc as the wavelength at which the quadratic term in our fit of

the equifrequency contours vanished (~ 1545nm in our rod slab). For comparison, we

performed an identical analysis for a hole slab structure (also made of silicon on a SiO 2

substrate, and with lattice spacing 350 nm, hole diameter 220 nm, and height 205 nm)

in which supercollimation had been previously demonstrated [66]. One can see from

Rods: Log[L /a] Holes: Log[L /ca]



Fig. 6-2 that the hole structure has a considerably wider frequency bandwidth for

supercollimation, which is due to its equifrequency contours being flatter and closer

to the F point. Another striking property of Fig 6-2 is that the optimal wavelength for

supercollimation varies as a function of the beam waist. This is because, for A > Asc,

the quadratic coefficient in the polynomial fit of the equifrequency contours becomes

negative (Fig. 6-1) while the higher order term remains positive. This causes the

contour to be effectively flatter for larger values of kI. As the initial beam waist

increases, the Fourier modes of the beam are more closely bunched about the origin

(Eq. 6.2) meaning that the quadratic term dominates and the optimal wavelength

asymptotes to Asc. Predictably, Lc increases monotonically with the beam width

since a wider beam experiences a flatter portion of the equifrequency contour.

6.5 Sensitivity analysis

We now turn to the analysis of how well our rod slab would be able to sense a

perturbation in the dielectric properties of the surrounding medium. As a concrete

picture of a sensor, we consider a Mach-Zehnder interferometer consisting of two

arms of length L: one unperturbed and the other passing through a perturbed region

with slightly different dielectric properties. As a collimated light beam propagates

through the unperturbed arm, it acquires a phase k x L, where k is the propagation

constant. In order for the sensor to detect the perturbation, the perturbed light beam

would have to acquire a large enough phase shift to interfere destructively with the

unperturbed beam. Thus, if the propagation constant through the perturbed region

is k + k, the sensor can detect the perturbation if

6k x L ~ 7r. (6.4)

We now need to relate 6k to the perturbation in the dielectric properties of the medium

surrounding the photonic crystal. Using first-order perturbation theory applied to

Maxwell's equations [37], one finds that the fractional frequency shift of a given



Bloch mode due to a change 6c (r) in the dielectric profile is

6W o 1 f droE (r)IE (r)12

w 2 f drE (r)E (r)|12

In case 6c is constant and limited to one domain, Eq. 6.5 reduces to

-= -o --n (6.6)

where o is the fraction of electric-field energy in the perturbed domain and n = fE~
is the refractive index of the medium. 6k is then readily found to be

6k = 6- n (6.7)
n |vg

For our rod slab at Asc ~ 1545 nm, we find w = 0.282 x (27rc/a), o- = 0.30, and

|vgI = 0.223c. Combining this with Eq. 6.4 we find that the length of a sensor

capable of detecting a perturbation on/n needs to be

Lrod ~ (En) x 0.58 pm. (6.8)

A 5 mm long sensor (of the order of the experimentally demonstrated supercollimation

in a hole slab [66]) based on supercollimation in a rod slab should therefore be able to

detect a relative shift in the refractive index as small as ~ 10-4 . A similar calculation

for the hole slab results in

Lhole L (L) x 3.4 pm, (6.9)

whence we see that the rod slab is approximately six times more sensitive than the

hole slab. This is because the fraction of electric energy in air is roughly six times

greater in the rod structure.
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Figure 6-3: Side view SEM of the fabricated supercollimating photonic crystal. Inset:
plan view SEM of the same crystal. (Image credit: Ta-Ming Shih.)

6.6 Experimental results

After we concluded our theoretical analysis, our collaborators fabricated a number

of samples of the rod slab (Fig. 6-3) using a variety of photolithography and etching

techniques [72]. They were then able to couple a tunable infrared laser source to the

photonic crystal and, by detecting the light scattered out of the slab by imperfections

in the structure (Fig. 6-4), were able to to observe supercollimation for up to 1000

lattice constants. The optimal wavelength for supercollimation varied between 1530

and 1550 nm depending on the sample and was therefore in good agreement with our

numerical predictions.



A=1530nm A=1550nm A=1570nm A=1590nm

Figure 6-4: Plan view far-field infrared images showing the wavelength dependence
of the propagating laser beam inside the photonic crystal of rods. The optimal wave-
length for supercollimation for this particular sample is close to 1530 nm, and the
beam diverges more strongly as the wavelength is detuned. The image is to scale,
and its width is over 200 lattice periods wide. (Image credit: Marcus Dahlem.)

A=1610nm
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Chapter 7

Abrupt coupling between strongly

dissimilar waveguides with 100%

transmission

7.1 Summary

We present numerical experiments showing how coupled-mode theory can be system-

atically applied to join very dissimilar photonic crystal waveguides with 100% trans-

mission. Our approach relies on appropriately tuning the coupling of the evanescent

tail of a cavity mode to each waveguide. The transition region between the waveguides

may be as short as a few lattice spacings. Moreover, this technique only requires vary-

ing a small number of parameters (one discrete and one continuous for each waveguide

in our example) and the tuning to each waveguide may be done separately, greatly

simplifying the computations involved.

7.2 Overview

In this chapter, we provide a general prescription for, and specific examples of, how

abrupt interfaces between a photonic crystal cavity and two waveguides may be tai-

lored so that 100% transmission between the waveguides is achieved. Photonic crys-



tals enable an extraordinary degree of control over the propagation of light and a

wide variety of novel physical effects [83, 38, 37]. Connecting different photonic crys-

tal devices in an efficient manner could be critical to enabling complex integrated

photonic devices. Slow-light waveguides, for example, have greatly enhanced sen-

sitivity to nonlinear effects, thus facilitating the design of compact electro-optical

devices [82, 73, 4, 1], but coupling to them can be particularly challenging [63]. For a

variety of applications, our proposal may present an alternative to approaches such as

butt-coupling [54, 67], mode-field matching [53, 80], anti-reflection coating-like injec-

tors [79, 15], optical stub tuners [8, 9], and tapered transitions between waveguides

[52, 27, 40, 68, 69, 16, 62, 34, 56]. The approach explored here exploits the prop-

erty known as "Q-matching" in the abstract framework of coupled-mode theory [29],

which for photonic crystals as well as for our previously discussed resonant coils

(Chaps. 3 and 4), provides a very accurate phenomenological approximation to the

full physics, provided that the coupling coefficient between any two distinct structures

is sufficiently weak. We begin by introducing three different photonic crystal waveg-

uides within a square lattice of silicon rods in air. Next, we show how coupled-mode

theory may be applied to split the overall problem into substantially more tractable

parts by allowing each waveguide to be separately matched to a single-defect cavity.

Finally, once all three waveguide-cavity structures are properly tuned, we check the

validity of the tuning procedure and demonstrate 100% transmission by fully sim-

ulating the transmission for all combinations of two distinct waveguides. Both the

tuning and verification are done via full simulations of Maxwell's equations with no

approximation except for the discretization [60].

7.3 The three dissimilar waveguides

For concreteness, we consider three different kinds of waveguides formed by intro-

ducing linear defects into a two-dimensional square lattice (with lattice constant a)

of rods of radius r a/4 and permittivity chigh = 12.25 embedded in a dielectric

material with elow 2.25. (These values of the dielectric constants approximately
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Figure 7-1: Images of the z-component (parallel to the rods) of the electric field of the
TM modes at w = 0.265 x (27rc/a) of our three exemplar waveguides: a singly-wide
linear defect waveguide (a), a triply-wide linear waveguide (b), and a coupled-cavity
slow-light waveguide (CCW) with periodicity 4a (c). All three waveguides are single-
mode (for TM modes) at the frequency indicated.

correspond to those for silicon and fused silica in the near infrared, respectively.)

The first waveguide [Fig. 7-1(a)] is a standard linear defect waveguide formed by

substituting one column of rods in the original square lattice by a column of rods

with smaller radius a/12. The second waveguide [Fig. 7-1(b)] is a triply-wide linear

defect wherein three adjacent columns of the square lattice are replaced with rods of

larger radius 0.325a, and the last waveguide [Fig. 7-1(c)] is a coupled-cavity waveg-

uide [85, 59] (CCW) in which every fourth rod along a column is replaced with a rod

of radius a/12. The permittivity of the defect rods is the same as that of the original

rods (ehigh) in all three waveguides. Fig. 7-2 shows the dielectric function profiles

for the three waveguides analyzed as well as the relevant TM bands (computed by

preconditioned conjugate-gradient minimization of the block Rayleigh quotient in a

plane wave basis [41]) and the projected band diagram for TM modes of the square
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Figure 7-2: Projected band diagram along the F X direction for TM modes in a square
lattice of rods of radius a/4 (shaded region) and band structures for a singly-wide
line defect, triply-wide line defect, and coupled-cavity waveguide (identified by their
dielectric profile). The defect radii are, respectively, a/12, 0.325a, and a/12. The
constant A (x-axis of the figure) is 4 for the CCW and 1 for the other structures due
to the longer primitive cell (4a) of the former along the direction of the propagation.

lattice of rods. Since the CCW has its inflection point (and thus zero group velocity

dispersion) at the center-gap frequency wo = 0.265 x (27rc/a), we take wo as the target

frequency for which the transmission is to be maximized.

7.4 Design and tuning of the coupling cavity

We now turn to the design of a compact resonant cavity to mediate the transmis-

sion between any two waveguides. If we impose the requirement that the resonant

structure be weakly coupled to each waveguide and that the direct coupling between



waveguides be in turn negligible compared to their interaction with the cavity, then

the key phenomenon of interest is well described by the temporal coupled-mode theory

equations introduced in Section 2.3:

A = -iw( 1 - i E 2  A + 0S , (7.1)

Sf-) = -SM +F A, (7.2)Qm

where A(t) denotes the complex amplitude of the cavity's excitation and is normalized

such that the energy associated with the cavity is A 12, wo is the resonant frequency of

the cavity, the index m denotes the different waveguides, and Qm is the quality factor

of the cavity's decay into waveguide m. SMi and SS-i represent, respectively, the

complex amplitudes of the waveguide modes going towards and away from the cavity,

and are normalized such that the power flowing in each mode is given by S .

A schematic of the coupled-mode theory of the particular system considered in this

treatment (one cavity coupled to two waveguides) is shown in Fig. 2-1. The transmis-

sion T(w) = 2 /S for this setup is readily found by solving Eqs. 7.1 and 7.2

when S( is set to a constant and S( = 0:

T(w) = W/(Q1Q2) (7.3)

(wo - w)2 + 1 + 1

which-as shown in Section 2.3-equals unity (100% transmission) at w = wo if

Qi = Q2, a property often referred to as the Q-matching condition [20]. It fol-

lows that we can approach the problem of coupling two dissimilar waveguides with

a three-step process: 1) design a cavity that resonates at the desired frequency, 2)

separately model the cavity in conjunction with a single waveguide and tune each

cavity-waveguide interface so as to achieve a target coupling Q, and 3) as a check

(if desired), simulate the full system with two waveguides and the cavity. For each

step, we performed simulations using the finite-difference time-domain method [75]

(FDTD), implemented in a freely available software package [601, with a resolution of
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Figure 7-3: Results of a finite-difference time-domain (FDTD) simulation of a cavity
resonant at wo = 0.265 x (27rc/a) decaying into a singly-wide line defect waveguide
(a), a triply-wide line defect waveguide (b), and a slow-light coupled-cavity waveguide
(c). The top panels show the z component (parallel to the rods) of the electric field.
The insets show the dielectric profile of the area indicated. The lower panels show the
dependence of the cavity Q on the defect radius of the rod closest to the waveguide
(insets, in red). The latter are tuned so that the Q of the cavity is 550 in each case.
The values of the defect radii indicated in blue are used in the full simulations of the
coupled waveguides.

16 pixels per lattice spacing. In the first two steps, we used the filter-diagonalization

method [51] to extract the resonant frequency and Q of the cavity and the waveg-

uide. We found that a point-defect formed by replacing one lattice rod with a rod

of same dielectric constant Chigh and radius 0.1095a had a resonant frequency within

0.05% of the target wo = 0.265 x (2-rc/a). For tuning the Q of the cavity coupled to

each waveguide (Fig. 7-3), we varied two parameters: the number of of lattice peri-

ods separating the cavity from the waveguide (a discrete parameter) and the radius

of the rod closest to the waveguide. We found that at a separation of four lattice

spacings, all three systems had local minima in the vicinity of Q = 550, which we

chose as our target. (Note that it may often be desirable to tune Q to a value close

to a local minimum, as this is where the slope of Q as a function of the continuous

parameter is smallest, thereby improving the robustness of the tuning with respect

to perturbations in the tuning parameter due to imperfections in the fabrication.)
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Figure 7-4: FDTD simulations showing the z component of the electric field (top
panels) and the transmission spectrum of a singly-wide line defect waveguide coupling
to triply-wide waveguide (a), a singly-wide waveguide coupling to a CCW (b), and
a triply-wide waveguide coupling to a CCW (c). Each system is tuned to the points
indicated (in blue) in Fig. 7-3 and exhibits 100% transmission near wo = 0.265 x
(27rc/a).

7.5 Full simulation of the waveguide junctions

After finding the optimal tuning parameters for each system, we verified that all com-

binations of dissimilar waveguides coupled by means of the cavity and properly tuned

intervening structure exhibited 100% transmission at w = wo by directly exciting the

leftmost waveguide (Fig. 7-4) and measuring the flux through the second waveguide

and the reflected flux in the first waveguide. We found the FDTD simulations of

the direct transmission to be considerably more subtle than those for the tuning of

the cavity Q, particularly in systems comprising a slow light waveguide. Although

we terminated the waveguides with perfectly matched layers (PML [7, 47]) with the

expectation that they would fully absorb the outgoing waves at the boundary of the

computational cell, in practice we experienced significant reflection [61] that inter-

fered with our calculation of the transmitted and reflected fluxes. As a work-around,

we ensured that the computational cell was large enough (in the range of 1000-1500

(b)



lattice constants depending on the simulation) that any reflection from the boundary

would not have time to propagate back to the locations through which the fluxes

were computed before the end of the simulation. This had to be balanced with the

requirement that the the simulation had to run for a sufficient time to allow the (un-

reflected) electromagnetic wave-packets to fully propagate through the flux locations

(Fig. 7-5). Because of these subtleties and the necessity of modeling two waveguides

simultaneously, these final simulations are considerably more numerically intensive

than those shown in Fig. 7-3 and it would be far less practical to use them directly

to search for the appropriate tuning parameters, especially for three-dimensional sys-

tems. Nevertheless, they fully bear out the predictions from the coupled-mode theory

combined with a set of much simpler simulations.

7.6 Conclusion and outlook

Note that due to the symmetry of the square lattice of the underlying photonic crystal,

the junctions shown in Fig. 7-3 could have just as well been used in a 900 bend

coupling one waveguide to another. Indeed, the prescription outlined here may be

applied directly to any system comprising two single-mode waveguides and a single-

mode cavity that fulfills the condition of sufficiently weak coupling required for a

coupled-mode theory treatment. It could, for instance, be used to couple modes of

very different symmetry and polarization (e.g., TE to TM or TEMoi to HE,1 ) and

is not limited to photonic crystals. Finally, it should be possible obtain broader

transmission bandwidths by extending this technique to multi-mode cavities [74].
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Figure 7-5: Example of a consistency check for the FDTD direct simulation of trans-
mission from the singly-wide linear defect waveguide to the CCW [Fig. 7-4(b)]. (o
denotes the spectrum of electromagnetic power that the source deposits in the linear
defect waveguide. (T is the flux spectrum measured through a plane in the CCW
and (R is the reflected flux spectrum measured through a plane in the linear defect
waveguide. As there are no loss mechanisms, the condition (o = DT + (R should
hold. If the simulation is run for only 2000 time units (c/a) after the source has
been turned off, the electromagnetic fields have not finished propagating through the
flux planes where '1 R and 4 T are measured, thus violating our consistency condition
(a). If the fields propagate for 4000 time units after the the source is turned off, the
equality is met to within < 1% (b).
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Chapter 8

Conclusion and possible directions

for further research

Most of this thesis is devoted to topics related to wireless power transfer. Although we

have demonstrated-theoretically and experimentally-the fundamental feasibility of

efficient midrange power transfer through near-field electromagnetic interactions in

the strongly coupled regime, analyzed potential efficiency improvements made possi-

ble by simultaneously powering multiple devices in the dilute regime, and proposed

a novel design for an electrical conductor that could lead to significant improvements

in the efficiency of the transfer and the miniaturization of the resonators, there are

several outstanding problems whose treatment would lead to further gains in perfor-

mance and, perhaps, a widespread adoption of this approach in practical applications.

Within the realm of the coupled-mode theory formalism, it might be interesting to

analyze a system that is in some ways the opposite of the dilute approximation we

treated in Chapter 4: a daisy chain in which a source couples strongly to one de-

vice, which in turns couples strongly (and relays power) to another device (which

is weakly coupled to the source), and so on. A particular case of this scenario was

studied in [26], and it seems likely that systems of this kind could be exploited to

substantially increase the distances over which wireless power transfer can be effected

with good efficiency. Although it may be impractical to make general statements

about arbitrary systems of multiple strongly coupled sources and devices, it is possi-



ble that a statistical approach to the general problem (e.g., by averaging over likely

spatial configurations and applying a max-min condition on the overall efficiency or

on the power delivered to each device) might lead to useful design guidelines for the

resonators and their tuning parameters. We may also be able to obtain major per-

formance gains by optimizing the physical design of the resonators; one possibility

would be to perform a numerical optimization similar to that done in Chapter 5 for

the electrical conductor design, but applied to the entire geometry of the resonators.

The optimization could also be extended to cases where a resonator is embedded in a

particular object and one has to account for the extraneous losses due to the object as

well as the effect of the latter on the coupling of the resonator to other coils. Such an

analysis would be of particular relevance to real-world applications of wireless power

transfer.

We mentioned in Chapter 5 that one drawback of our electrical conductor con-

sisting of concentric shells relative to litz wire is that, in order to enforce the optimal

current distribution through the structure, each shell must be matched to a different

impedance. While this can be done by brute force (e.g., by using a proper matching

circuit), there may be simpler and more elegant solutions to this problem; perhaps

a physical structure that couples to the shells and performs the impedance-matching

in an economical way can be designed. It would also be useful to extend our anal-

ysis to cases consisting of multiple turns of concentric shell conductors (which may

be approximated in 2D as parallel cylinders) and take into account the proximity

losses induced by the overall magnetic field due to all the turns when performing the

minimization of the resistance. Our treatment could also be extended to concentric

structures with shapes other than cylindrical: since the Helmholtz equation is sep-

arable in elliptic cylindrical coordinates [55], the analytical solutions we found for

cylindrical shells can be generalized to shells of confocal elliptic cylinders. Finally,

it should be possible to fabricate our proposed conductor (and experimentally verify

our predictions) using existing methods such as electroplating and electrodeposition

and perhaps even by building on existing fiber-drawing techniques [6, 50, 181.

As noted at the end of Chapter 7, the Q-matching technique for coupling waveg-



uides could be applied to a much greater variety of modes than the particular examples

we have considered, and is not limited to waveguides in photonic crystals (although in

systems without a complete photonic band gap, the design of the coupling structure

would need to take radiative losses into careful consideration). Since a major advan-

tage of this approach is its relative computational simplicity, it may be particularly

useful when applied to fully three-dimensional structures, and could therefore be of

help in designing waveguide couplers for fabrication.
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