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Abstract

In this work, we calculate various nucleon structure observables using the fundamental
theory of quarks and gluons, QCD, simulated on a lattice. In our simulations, we
use the full QCD action including Nf = 2+ 1 dynamical quarks in the SU(2) isospin
limit. We compute the nucleon vector and axial vector form factors as well as the
generalized form factors, and analyze the nucleon charge, magnetization, and axial
radii, anomalous magnetic moment, and axial charge. In addition, we compute quark
contributions to the nucleon momentum and spin.

Our calculation is novel for three reasons. It is a first full QCD calculation using
both sea and valence chiral quarks with pion masses as low as m, = 300 MeV. We
develop a method to keep systematic effects in the lattice nucleon matrix elements
under control, which helps us to obtain a better signal-to-noise ratio, to achieve
higher precision and to test the applicability of low-energy effective theories. Finally,
we compare the results from lattice QCD calculations with two different discretization
methods and lattice spacings, with the rest of the calculation technique kept equal.
The level of agreement between these results indicates that our calculations are not
significantly affected by discretization effects.
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Title: William A. Coolidge Professor of Physics
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Chapter 1

Introduction: Nucleon Structure

Since the early days of hadron physics it has been known that the proton and neutron

are not point-like particles, as indicated by the deviation of their magnetic moments

from the Dirac equation values [Ste33]. Generally speaking, the non-elementary mag-

netic moments mean that there are circulating currents inside nucleons. Elastic e - p

and e - n scattering experiments showed that their spatial electric charge distribu-

tion is also not point-like. Extensive studies of the quark density and helicity inside

protons and neutrons at SLAC, Fermilab, CERN and DESY resulted in the under-

standing that quarks contribute only some part to the boosted nucleon momentum

and spin, and also contribute only a negligible part of its mass. The rest must be

carried by gluons, which are thus essential and separately relevant degrees of freedom

inside a nucleon.

A new generation of dedicated experiments are planned or already underway to

further explore the structure of the nucleon, including COMPASS [A+07], HER-

MES [A+99, KNO2), CEBAF at Jefferson Lab, PANDA at FAIR [Gia10], MAMI [Are06],

RHIC Spin [Vog04] and others. These experiments aim at higher levels of precision in

measuring nucleon form factors, as well as mapping out the three-dimensional struc-

ture of the nucleon and resolving the long-standing "spin crisis" puzzle [A+88b], or

the origin of the nucleon spin.

There is definitely a need for a theory which could explain such a rich and compli-

cated system as a nucleon. Such a theory should be able to make predictions about



nucleon structure and constrain phenomenological analyses of experimental data. A

vital example demonstrating the need for theory constraints is generalized parton

distribution functions (GPDs) [Die03], which describe the contents of a boosted nu-

cleon(see also Sec. 1.3). The GPDs Fq can be measured in inelastic scattering exper-

iments through their convolutions with parton scattering kernels T

amplitude Jd T( ) Fq((,)

and thus are not accessible directly. Dependence of GPDs Fq(x, , t) on its kinematic

variables can reveal the full three-dimensional structure of the nucleon. However,

to extract physics information from such measurements, one has to assume some

functional form for the GPDs (see, e.g., Ref. [DFJK05]) inevitably introducing model

dependence into experimental results. Although quite a few phenomenological models

explaining certain aspects of nucleon structure have been proposed, none of them is

able to solve all of the nucleon puzzles consistently. Apparently, one has to use the

fundamental theory of strong interactions, quantum chromodynamics (QCD), to fully

understand how nucleons and other hadrons are formed from the elementary particles,

quarks and gluons.

Quantum chromodynamics has been successful in explaining high-energy processes

where asymptotic freedom permits perturbative treatment of scattering events. How-

ever, the low-energy phenomena such as confinement, spontaneous chiral symmetry

breaking, the light hadron spectrum and hadron structure definitely require non-

perturbative methods. Numerical calculations on a lattice have proven to be the only

viable tool so far to extract quantitative predictions from non-perturbative QCD. Al-

though currently there are certain limitations in this approach, such as finite volume,

finite ultraviolet cutoff and difficulties in making the pion of simulated QCD as light

as the real-world pion, all these obstacles can, at least in principle, be overcome using

more powerful computers. For example, recently the Budapest-Marseille-Wuppertal

lattice QCD collaboration reported the first successful calculation of hadron spectrum

using full QCD with three dynamical flavors [D+08]. It would be fair to say that the



current predictive power of lattice QCD is limited by available computing resources,

and eventually, as they advance, more accurate calculations with smaller systematic

errors will be possible.

Lattice QCD is a solution of quantum field theory in Euclidean space on a discrete

lattice. The transition to Euclidean space is required to make all particles "virtual"

in the sense that their correlators decay exponentially along any direction. Because

there are no massless particles in the spectrum of QCD, this system may be simulated

in a finite box with the size limited from below by the inverse mass of the lightest

particle, the pion. To study hadron structure on a lattice, one computes matrix

elements of local operators between single-hadron states. For example, charge and

magnetization distributions in the nucleon are extracted from the vector current;

quark and gluon contributions to the nucleon momentum and angular momentum

are extracted from the energy-momentum tensor. Computations with local twist-two

operators that are related to the Mellin moments of the parton distribution functions

(PDFs) provide theoretic constraints which complement experimental measurements.

In principle, using lattice QCD methods one can "measure" any local operators that

are inaccessible experimentally and fill in the gaps in our picture of nucleon properties.

Although applying brute-force calculations to lattice QCD may help to improve

its results, in practice only a combination of advanced error-reduction methods and

increased computer time might lead to good quantitative predictions. The main rea-

son for this is that lattice QCD is a Monte-Carlo simulation, and the associated

stochastic variation decreases only as o-~ where N is the number of stochastic

samples. At the same time, the computational cost of each sample increases drasti-

cally with the linear size of the box and with decreasing quark masses. In addition,

the size of Monte-Carlo ensembles necessary to suppress noise may vary depending

on the quantity being computed. For example, in the baryon spectrum calculations

many cancellations occur that aggravate their stochastic variation. This effect is even

worse in the calculations of hadron structure because one has to compute three-point

correlators as opposed to two-point correlators for the hadron spectrum. The devel-

opment of methods to extract the answer with small stochastic uncertainty, and to



set a bound on lattice QCD-specific systematic bias constitutes a major part of this

work.

In this work we study nucleon structure observables using the most advanced and

systematic bias-free lattice QCD framework, calculations which only recently became

feasible. To produce reliable results from lattice QCD, one has to solve a number

of problems. First, as will be discussed in Chapter 2, the simulation of fermions on

a lattice is difficult because simple discretizations of the fermion action break chiral

symmetry. Chiral symmetry is essential if one wants to preserve the original sym-

metries of the theory and connect the results of simulations to low-energy effective

theories such as chiral perturbation theory (ChPT). Also, it reduces dramatically the

lattice-specific systematic effects, or lattice artifacts, such as unphysical mixing be-

tween operators relevant to the hadron structure. A number of approaches have been

devised to avoid chiral symmetry breaking on a lattice. However, all of them increase

the cost of simulations significantly. The second problem is that light quarks and, cor-

respondingly, light pions are expensive to simulate. In addition to purely numerical

handicaps, one needs larger spatial volume to preserve long-range meson dynamics.

Moreover, the Monte-Carlo update is more difficult because lighter fermions produce

more rigid "feedback" on the color gauge field and finer and more accurate calcu-

lations are required. Finally, as mentioned above, the stochastic variation of lattice

QCD calculations grows as the pion mass decreases. All these difficulties limit the

current simulations with chiral quarks' to pion masses m, > 300 MeV and finite

volume < (3.5 fm) 2 .

Because of the high cost of realistic lattice QCD simulations, we focus on reduc-

ing the uncertainty as much as possible and extracting precise results for nucleon

structure by fully utilizing the statistics available from the existing lattice QCD en-

sembles [A+08a, B+09, B+01]. For example, we have been able to compute the

nucleon electromagnetic structure with a remarkable precision for pion masses down

1 Lattice QCD is a rapidly changing field, which progresses at least as fast as computing resources.

The cited limitations applied in 2007 to the generation of the gauge configurations used in this work.

Lattice QCD results for nucleon structure presented here are up-to-date since they require significant

additional calculations.



to 300 MeV [S+10]. Currently, lattice QCD simulations are performed in the isospin

limit mu = md = m < ms, and the electromagnetic interactions of quarks are ne-

glected. We used these results to check existing predictions from Chiral Perturbation

Theory with the conclusion that ChPT (at least, to the approximation order used)

is not applicable in this range of the pion masses. In addition, it is very reassuring

that we are able to reach the precision of existing experiments, albeit with the up

and down quark masses still being too heavy for a direct comparison. Furthermore,

by comparing the results from several different lattice QCD methodologies, we check

whether QCD discretization has any effect on the lattice QCD predictions. Fair agree-

ment between mixed quark action [B+10] and unitary chiral quark action [LHP, S+10]

shows that lattice QCD gives consistent results.

The rest of this chapter is devoted to the discussion of some of the nucleon struc-

ture observables which we compute from lattice QCD and compare to experiments

and other theoretical models. In Chapter 2 we briefly describe and compare the ways

to implement QCD on a lattice, and discuss their respective advantages and potential

problems. Chapter 3 is an overview of the methods to create nucleon states on a lat-

tice and control related systematic effects. Good control over systematic effects allows

one to reduce stochastic errors without inducing systematic bias. Since the operators

computed on a lattice require renormalization, we performed such renormalization

nonperturbatively and describe the methods we used in Chapter 4. Chapter 5 sum-

marizes the most physically interesting results:

" Nucleon vector form factors for the space-like momentum transfer 0 < Q2 <

1 GeV 2 , nucleon charge and magnetization mean squared radii, anomalous mag-

netic moments.

" Nucleon axial form factors, nucleon axial charge and axial r.m.s. radii.

. Quark contributions to the nucleon momentum, as well as quark spin and orbital

angular momentum contributions to the spin of the nucleon.

* Nucleon generalized form factors (GFFs) for u and d quarks corresponding to



n 1, 2 and 3 moments of generalized parton distributions, revealing the

dependence of the latter on their kinematic parameters.

Wherever possible, we apply chiral extrapolation formulas to obtain the values at the

physical pion mass m, ~ 140 MeV which is a factor 2 less than the lightest mass in

our simulations.

1.1 Electromagnetic structure

Electromagnetic form factors characterize fundamental aspects of the structure of

protons and neutrons. In particular, they specify the spatial distribution of charge

and magnetization. For nonrelativistic systems the electric and magnetic Sachs form

factors GE(Q 2 ) and GM(Q 2 ) (see Eqs. (1.2,1.3)) would just be Fourier transforms

of the charge and current densities. A probabilistic interpretation of the Dirac and

Pauli form factors F1(Q2) and F2 (Q2) (See Eq. (1.1)) can be obtained from a two-

dimensional Fourier transformation to impact parameter space in the infinite mo-

mentum frame [BurOO, Bur03]. At high momentum transfer, the elastic form factor

specifies the amplitude for a single quark in the nucleon to absorb a very large mo-

mentum kick and share it with the other constituents in such a way that the nucleon

remains in its ground state instead of being excited. It thus describes the onset of

scaling [BF75, BJY03] and the scale at which quark counting rules become applicable,

which is an unresolved theoretical question in nonperturbative QCD. Given the con-

stantly improving experimental measurements of form factors and their fundamental

significance, it is an important challenge for lattice QCD to calculate them accurately

from first principles.

The nucleon Dirac and Pauli form factors, F1 (Q2) and F2(Q2), respectively, are

defined as follows for each quark flavor (q):

(P', S'gy'ql, S) =U(P', S') 7KFf(Q2) + i 2 " Fj'(Q2) U(P, S), (1.1)

where U(P, S), U(P', S') are the initial and final nucleon spinors; S, S' are the corre-



sponding spin vectors; the momentum transfer is q = P'- P with Q2 -_ 2 > 0; and

MN is the nucleon mass. The Sachs form factors GE (Q 2 ) and GM(Q 2) are defined by

GE(Q 2) F1(Q2) _ 2F2(Q 2), (1.2)
(2MN)2

GM(Q 2) F1 (Q2) F2 (Q 2 ). (1.3)

Finally, it is useful to define isoscalar and isovector form factors as the sum and

difference of proton and neutron form factors as follows:

F2(2) = F 2 (Q 2) - F"2 (Q2 ) Fu2(Q2) -- Pf 2 (Q 2) Flud(Q2), (1.4)

F 2 (Q 2) Ff2 (Q 2) + F"2 (Q 2) 1 (F1 2 (Q2 ) + F 2 (Q 2)) F+d(Q2)

where, according to Eq. (1.1), F'" are the form factors of the electromagnetic current

in a proton and a neutron, respectively:

2 1-1
Vem,p = - 2 -- dy"d, V'"m, 1 2-ymd. (1.6)3 3 3m n

Although proton and neutron form factors contain both connected diagrams, cal-

culated in this work, and disconnected diagrams, which are currently omitted, the

disconnected diagrams do not contribute to the isovector form factors F>. Hence, we

will devote particular attention in this work to the isovector form factors.

Precise experimental measurements of the set of all four nucleon form factors re-

mains challenging, and the field is marked both by significant recent developments and

open questions. Although the most straightforward measurement is F1 (Q2) for the

proton, the slope at very small values of Q2 remains controversial. Phenomenological

fits to experimental form factors [FW03, AMT07] appear to be inconsistent with anal-

yses based on dispersion theory [H+76, MMD96, BHM07], with phenomenological fits

yielding larger Dirac radii. Hence, a new generation of precision measurements of form

factors at low momentum transfer is currently being undertaken at Mainz [BerO8].

In addition, a recent measurement of the proton charge radius using the Lamb shift

in the pip system [P+10] disagrees with the earlier results, which may be an indica-



tion that not all the theoretical corrections in these experiments have been assessed

and confirmed. Spin polarization experiments [M+98, P+01, G+02, G+01, P+05]

yielded results for F2(Q2) significantly different from traditional measurements based

on Rosenbluth separation, and there is a consensus that two-photon exchange pro-

cesses contribute much more strongly to the backward cross section used in Rosen-

bluth separation than to polarization transfer [AMT07]. However, there are not yet

precise theoretical calculations of two-photon exchange that fully resolve the discrep-

ancy between the two experimental methods, and hence experiments using positron

scattering, for which the relative contribution of the two-photon term changes sign,

are being prepared [A+04a, OLY09]. Neutron form factors are more uncertain than

proton form factors because of the need to know the nuclear wave function to go

from experimental scattering results from deuterium or 3He to a statement about the

neutron form factor. Over the years, nuclear models and theoretical calculations have

been refined, but it is still a challenge to provide a definitive estimate of the uncer-

tainty in the claimed neutron form factors extracted from nuclear targets. Given the

level of precision to which we aspire in lattice calculations, systematic uncertainties in

isovector and isoscalar form factors are not necessarily negligible. In the future when

lattice calculations reliably include precise calculations of disconnected contributions,

it may well be that lattice calculations play a role in guiding the resolution of some

of these experimental questions.

In Section 5.1 we present our results for the momentum dependence of the nucleon

vector form factors F1 (Q2 ) and F2(Q2 ), their r.m.s. radii

2 6 dF1,2r,2)= F1,2 dQ2

and the nucleon anomalous magnetic moment / = F2 (0). We apply chiral pertur-

bation theory to extrapolate the Dirac and Pauli r.m.s. radii to the physical point.

However, such extrapolation is difficult because these quantities diverge in the chiral

limit.



1.2 Axial form factors

Electroweak probes such as (anti)neutrinos interacting with quarks via chiral currents

give access to the nucleon axial structure [BEM02]. The nucleon axial structure is

characterized by the nucleon axial form factors,

(N(P',S)Aa pj S) -(, S/) PGA(Q2)+ (GP)P (Q2) 15aU(P, S),

(1.7)

where AA = qyl ro5 Taq is the non-singlet axial current. GA(Q 2) is called the nucleon

axial form factor and Gp(Q 2) the induced pseudoscalar form factor at the momentum

transfer Q2 - (p' _ p) 2. On a lattice we work in the isospin-symmetric limit with

M,= Mp =MN, and study the proton matrix elements of the isovector current

A3, " yy _ g'y-y 5d which measures the correlation between the spin and isospin

distributions inside a nucleon.

In experimental measurements, the form factor GA(Q 2) in the range Q2 < 1 GeV 2

is usually parameterized phenomenologically with a dipole formula,

GA(Q 2 ) A9A
(1 + Q 2/M) 2 '

where the dipole parameter MA is called the axial mass. In the forward limit Q2 = 0

the axial form factor gives the nucleon axial charge gA = 1.1267(3) [A+08b) which is

known precisely from measurements of neutron #-decay lifetime.

There are two methods to measure the nucleon axial form factor GA(Q 2) for

Q2 / 0. One method is based on (anti)neutrino scattering off protons [A+88a],

deuterons [K+90] or nuclei [KLN+69]. In the other method, GA(Q 2 ) is determined

from charged pion electroproduction off protons (e.g., Ref. [B+73]). The resulting

world averages for the axial masses are

MA = 1.026(21) GeV neutrino scattering,

JVIA = 1.069(16) GeV pion electroproduction,



which disagree by - 4%, which is approximately 1.6o- deviation with their errors.

The axial mass is connected to the mean-squared axial radius, defined through the

low-energy behavior of the axial form factor, assuming the dipole form (1.8) holds for

Q2-__ 0

1 2 6 dGA(Q 2 )GA(Q 2 ) =gA( - -rQ 2 + Q)), ( G ~ + Q 2  Q (1.9)6 GA(0) dQ Q=0

From the two experimental values above, one can extract the axial radius,

(r) = 0.666(14) fm neutrino scattering,

(r) = 0.639(10) fm pion electroproduction

The induced pseudoscalar form factor Gp(Q 2) is expected to receive its dominant

contribution from a pion pole, which reflects the pion-mediated coupling of nucleons

to the axial current:

G -(Q 4MNF,g-rN + 0(Q 0 ). (1.10)

where gYrN = 9(rNQ 2  -mi) is the pion-nucleon coupling constant in N -+ rN

processes and F, ~ 93 MeV is the pion decay constant. Because of the chiral Ward

identity the induced pseudoscalar form factor is not independent of the axial form

factor [BKM94]. This fact is reflected in the Goldberger-Treiman relation

gA= 

197N1F

MN

which must hold precisely in the chiral limit and approximately for m, / 0 up

to O(m2) corrections from ChPT. Additionally, from ChPT one can find O(Q 0 )

correction to Eq. (1.10) [BKM94, BEM02]:

Gy(Q2 4 MNF , g7 N -2Am 22 2
Gp (Q2) -g4I Fng4N 2 2j) +(Q 2 , MD) (1.12)

m2+Q 2  3A

and this formula is believed to describe Gp well for small momentum transfer Q2.

The induced pseudoscalar form factor can be determined experimentally from



ordinary muon capture (OMC) p + p -+ v,, + n in a pp "atom" at the low fixed

momentum transfer Q20Mc = 0.88m'. However, because of systematic difficulties the

uncertainty is quite large, constituting ~ 30% [BEM02]. In radiative muon capture

(RMC) experiments, where an additional photon is emitted, it is possible to study

timelike momentum transfer values up to Q2 = -m2, which are very close to the

pion pole. However, such events are strongly suppressed by the branching ratio.

Analyses based on the hypothesis of pion pole dominance give values for Gp(Q 2

Q2MC) [J+96, W+98, BF89] that are about 50% larger than expected from theory

and determined from OMC.

Another way to determine the form factor Gp(Q 2 ) is pion electroproduction. The

results [C+93] for the Q2-dependence of Gp agree with pion-pole dominance, but the

precision is not sufficient to separate the pion pole contribution from chiral perturba-

tion theory corrections in the spirit of Eq. (1.12). Currently, the induced pseudoscalar

form factor remains the least known of all electroweak nucleon form factors [BEM02],

which makes its theoretical investigation very important.

We investigate the nucleon axial and induced pseudoscalar form factor on a lattice

and present our results in Sec. 5.3. We compute the nucleon axial charge gA and

axial radius (rA). We also compute the momentum dependence of GA and Gp form

factors and compare them to the phenomenological expectations and experimental

results discussed above. In addition, we attempt to check the pion-pole dominance

hypothesis and the Goldberger-Treiman relations [GT58a, GT58b].

1.3 Generalized form factors

Generalized parton distributions (GPDs) unify and extend the notions of nucleon

parton distributions and nucleon elastic form factors, the principal quantities that

provide information on nucleon structure [DieO3]. Compared to the ordinary parton

distribution functions (PDFs), which simply count the partons with a given longitudi-

nal momentum and polarization, GPDs parameterize scattering amplitudes in which

a parton acquires some momentum from external particle(s), both in longitudinal and



transverse directions. At the same time, compared to the elastic form factors, the

GPDs reveal how the nucleon charge and magnetization are distributed over partons

with different longitudinal momentum fraction. As mentioned before, GPDs depend

on the three kinematic parameters, x, (, and t, and experimental study of GPDs

can potentially provide a three-dimensional image of hadron structure [Buroo]. Also,

knowledge of parton distribution in the transverse plane gives access to the orbital

angular momentum (OAM) of partons.

An attractive feature of the generalized parton distributions is that they occur in

a range of different processes, e.g. deeply virtual Compton scattering [A+01, S+01,

C+03, A+05), wide-angle Compton scattering and exclusive meson production, in

addition to the classic processes that probe the forward parton distributions and

form factors. The challenge of GPDs lies in their more complex structure each

generalized parton distribution is a function of three parameters rather than just

one, and different experimental processes provide different constraints on their form.

Typically only convolutions of these functions in the x variable are experimentally

accessible.

In this work we concentrate on the valence quark GPDs of a nucleon. The GPDs

are defined through matrix elements of bi-local light cone quark operators,

Oq(x) f e i2 q(-An) #W)/(-An, An) q(An), (1.13)

0OY (x) = A eC 2ix(-An) #_Y W (--An, An) q (An), (1.14)

where n is a light-cone vector, n2 = 0, and I is the light-cone Wilson line connecting

points ±An:

V(-An, An) = Pexp - ig J da n -A(an)1

The matrix elements of the operators (1.13,1.14) between single-nucleon states are



parameterized according to their Lorentz tensor structure [Die03]:

(P', S'|OqP, S) =U(P', SI) [#rH(x, (,t) +E±(x, (, t)] U(P, S), (1.15)
2MN

(P', S'IOg5 lP, S) U(P', S') [7{5Ht(x, , t) + n q 7y55q(x, , t)] U(P, S), (1.16)
2MN

where the frame-independent Lorentz scalars H , Eq are the unpolarized and He,

Eq are the corresponding polarized generalized parton distributions. In this work we

do not analyze the so-called transversity distributions Hj,Ej, which are discussed in

a different publication [Bra09]. The parameters in Eqs. (1.15,1.16) are the average

longitudinal momentum fraction of the struck parton x, the longitudinal momentum

transfer fraction ( = -n -q/2 = (P - P') -n/(P'+ P) -n and the total momentum

transfer squared t = Q2 q2, where q = P' - P.

Since lattice calculations deal with operators and matrix elements in Euclidean

space, a direct computation of non-local light-cone operators is not possible. Instead,

to facilitate the lattice calculations one takes x"- 1-moments of Eqs. (1.15) and (1.16),

yielding a tower of local operators whose matrix elements can be related to the corre-

sponding moments of H, E, H and E. In this study, we will compute matrix elements

of the following local generalized currents,

(O Ly5j ) {k =l.. q Yl4L[n5]i}' 2 - - i q

Curly braces around indices represent the symmetrization of the Lorentz i

p[, . . p, and the subtraction of traces over pairs of these indices. The sym

derivative is defined as D D D)

Taking the x"4 -moments of the GPDs we define the generalized moments

(1.17)

ndices

metric

(1.18)
H t) J dx x -1H(x, (, t)

E"n( , t ) dx x"-1 E(x, gt) ,

5"((, t) J dx x"- 5(x , t),

Z"' t) dx x" ZE(x, gt) .

The non-forward nucleon matrix elements of the local operators, Eq. (1.17), can in



turn be parametrized according to their Lorentz structure in terms of generalized

form factors (GFFs) Anmi(t), Anm(t), Bnm(t), Bamn(t), and Cnm(t), for n = 1, 2, 3

S') [7.j1A 1o(t) + i"'q, Bio(t)1 U(P, S),

P', S'l 3912} |P, S) = U(P', S') IP{1p17A /2A 2 o(t) + PIPI 2m B 20 (t)

+ q1qtC20(t) U(P,S),

U(P', S') Lp pb2 1 3A 30 (t) + p{i pbP2 2m B 3 0(t)

+ q{IItq/P2 .ybL3A 3 2 (t) + qlq 112 " 0 B 32 (t)] U(P, 5),
2m

(1.19)

for the vector operators and

(P',I) S'I (o5 )1|IP, S) =

(P', IS (0 5)/1AP21 1p, S) =

(P', S'1 (0745){ 192n P ,/3 Ip S) =

U(P', 5') 7175A10(t) + 7'5bo(t)1 U(P, S) ,

U(P', S') Pj17/72I5A20 (t) + q 7IP1 5520(t U(P, S),
I ~~2m---WI

U(P', S') Pf/i PA27 P31 7 5A 3o(t) + q{P'1 pP'2 PP3} 755f3 o(t)2m

+ q/l1q uA2Y3IT35 A3 2 (t) + q7Pq525qP3 32(t) , U(P, S)
2m

(1.20)

for the axial vector operators. Here we have defined the average nucleon 4-momentum

P = (P'+P)/2. By comparing these expressions with the xn4moments of Eqs. (1.15,1.16)

and using Eq. (1.18), one finds that the i-dependence of the moments of the GPDs

is merely polynomial[Die03],

E"=1 (, t) = Bio(t) ,H"n=1 ((, t) = Aio (t) ,

H =2(, t) = A20 (t) + (2 )2 C2 0(t)

Hn=3(, t) - A30(t) + (2 )2A 32 (t)

E n=2 (, t) B20(t) - (2 )2C20 (t) ,
(1.21)

E n=3 (, t) = B 30 (t) + (2 )2B 32 (t) ,

(P', IA S'0 IP, S) U(P',

(P', S'1 IOM 1is~n 1P, S)



,t) = 1 0(t) ,

ftn=2 ( t) A 20 (t) ,

ftn=3 (, t) A30(t) + (2 ) 2 A3 2 (t)

E==l ( , t) b 1 0 (t),

n=2(,t) = b 2 0 (t)

5n=3(,, t) _5 30 (t) + (2 )2532 (t)

In the forward limit of Eqs. (1.15,1.15) with P = P', we obtain the well-known parton

distribution functions,

q(x) = Hq(x, = 0, t = 0) , (1.23)

It is interesting that in the case ( = 0 and arbitrary t = q2, that is when the momen-

tum transfer is limited to the transverse direction, the GPDs and the corresponding

GFFs can be interpreted as distributions in both longitudinal momentum and trans-

verse position in the infinite longitudinal momentum frame [Bur00].

Taking together Eqs. (1.18,1.21,1.22) and Eq. 1.23 and setting t = 0 will similarly

yield the PDF moments

(X"~ 1 )Aq = H5(0, 0) = Ano(0) . (1.24)

Note also that for n = 1 from Eqs. (1.19,1.20) we recover the nucleon vector and

axial form factors introduced in Sec. 1.1 and 1.2,

F14(Q 2) = A'e(Q2),

F(Q 2 )

GA(Q2) A-(Q2

Gq (Q2) Au-d(Q 2 )

On a lattice, we compute the set of polarized and unpolarized generalized form

factors for n = 1, 2, 32 and present our results in Sec. 5.5. In particular, the results for

2 Computing the generalized form factors with n > 3 currently presents a difficulty because of
stochastic noise. The GFFs with n > 4 on a lattice will mix with lower-dimensional operators
because of broken rotational symmetry, see Sec. 2.4.

and

(1.22)

Aq(x) = 54q(X, ( = 0, t = 0) .

(X"~-1) q= H"n(0, 0) = Ano (0) ,1



these form factors allow us to make predictions on the transverse size of the nucleon,

the dependence of GPDs on the "skewness" parameter ( and on the validity of some

phenomenological Ansitze for the functional form of GPDs. More importantly, the

access to the energy-momentum tensor through n - 2 moments of GPDs allows us

to compute quark contributions to the nucleon spin and momentum, and we present

our findings in Sec. 5.4.



Chapter 2

QCD on a lattice: Overview

In this chapter we describe the methodology of simulating QCD on a lattice. Since

there are many reviews of lattice QCD basics in the literature, e.g., [MM, Rot05),

we only briefly discuss its formulation and simulation in Sec. 2.1. While lattice QCD

reproduces well many non-perturbative phenomena, such as confinement, chiral sym-

metry breaking, and the hadron spectrum both qualitatively and quantitatively, using

it for precise calculation of hadron structure still remains a challenge. In particular,

one has been limited to pion masses significantly heavier than the physical value, and

only recently the simulations close to or at physical pion mass have begun [D+08].

In addition, the nucleon structure calculations may be affected by systematic effects

arising from a particular way to implement the theory on a lattice, of which the most

important one is the explicit chiral symmetry violation of lattice fermion actions.

Both these problems arise from the fundamental difficulty in regulating any chiral

fermion theory on a lattice [NN81]. We discuss different fermion action choices in

Sec. 2.3.

Another problem in lattice calculations is that the lattice breaks rotational symme-

try. The consequences of such symmetry breaking for nucleon structure calculations

are discussed in Sec. 2.4.



2.1 Lattice gauge theory

Lattice gauge theories are formulated on a discrete Euclidean space-time grid. The

purpose of introducing a grid is twofold. First, a lattice serves as an ultraviolet

regulator with a cutoff Aia a-1 where a is the lattice spacing. For free fields,

the highest energy mode has momentum Pmax ~ -r/a. Such modes behave as # ~

(-1)X, where x is a coordinate, and may potentially introduce lattice-specific artifacts

because they are not smooth. Therefore, the energies of states studied on a lattice

should be limited to E < ir/a. Second, lattice quantum field theories formulated on

a discrete Euclidean lattice can be simulated on a computer analogously to Statistical

Mechanics systems.

The calculations consist in computing the Feynman path integral numerically,

Z =J DAD@De 4(Fg )2 + (.(D(m)) (2.1)

where D(mq) are fermion operators for each quark flavor. Then, computing v.e.v.'s

of various field operators and their correlators,

(O(X1) -.-. O(Xn)) DA,D@DN O(x1) -.-. O(Xn) e gdbFv2EgN Dm)g

(2.2)

one can study the spectrum of states and their matrix elements for various operators,

e.g. vector charge density and energy-momentum tensor.

It is important to note that the parameters one can control while solving gauge

theory in this way are the same parameters that are present in the original theory,

and no model approximations are made. For QCD, they play the role of the bare

coupling as and quark masses mf in the lattice regularization. Doing a series of

calculations at various parameter values, one can tune the parameters so that some

selected set of computed physical observables match their experimental values.



2.1.1 Formulation of QCD on a lattice

In his pioneering work, Wilson [Wil74] showed how to quantize gauge field theory on

a discrete lattice in Euclidean space-time preserving exact gauge symmetry.

The first step is to convert QCD to Euclidean space-time using the Wick rotation

x0 t

p 0  E

(N(t)N (0))

Note that all the correlators

finite box of size L > const-

state.

Scalar and fermion fields

at each site. To transcribe

note that a scalar field #(x)
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decay exponentially and the problem may be solved in a

1 where mo is the lightest excitation above the vacuummno

are naturally represented by variables #x or Ox specified

the gauge field potential1 A"(x) to lattice variables we

in a non-trivial representation of the gauge group picks

(2.4)

when moved along a contour C(x, y), see Fig. 2-1(a). Therefore, it is natural to specify

a gauge potential variable on each link of a lattice and treat it as an elementary gauge

transporter between the two lattice sites it connects:

(2.5)

1 Note that we include a factor g into the definition of the gauge potential A"(x), so that
Fj1V = D 1A, - ,Ay +i[A, A,] with F,= Fa'A" and A. = A a.

O5(X) - e-fdIaa~y W(Xj Y)O(Y)

Ux,-, = W(X, X + p) pe-i fT" dx.(AA")



Ut
__ __U~l__

............ ...... .............. ..... ........

.................

..... ........&
1PI.................. .................. ...............

............. ... .......

(a) Lattice Wilson lines (b) [P]laquettes and [Rectangles

Figure 2-1: Gauge links, Wilson lines and loops.

This transcription is automatically gauge invariant,

)VV'(X, y) =QX44(X, Y) Y)

/= QXW(x, Y)Qt~ - QYOqi QXO

where Q is a local gauge transformation. In addition, this construction naturally

incorporates non-perturbative fields in the sense that gauge potential is now repre-

sented by a group element instead of an algebra element. Because of this represen-

tation, instantons and other topological configurations can be and have been studied

numerically on a lattice, see, for example, Refs. [ILS+86, B+91, GPGASvB94].

To finalize quantization of gauge field theory on a lattice, one has to use some form

of discretized action S = Sg[U] + SF[U, @, @] and compute a Feynman path integral,

Z = JDUD De-sg[U]-SF [U,#] (2.6)

where integration over DU is understood as the integration with the Haar measure and

D@D@ is the Grassman integration over fermion fields. We postpone the discussion

of possible choices of lattice gauge and fermion actions to Sec. 2.2 and Sec. 2.3,

respectively. One important thing to notice though is that a lattice action must



approximate the continuum action,

Liat = E4) + aL(5C) + a2I( 6 ) +(-) (2.7)

with the higher-order discretization terms aLi(5) +a 2L (6) +... vanishing in the contin-

uum limit a -+ 0. A good discretization of the continuum action must suppress the

contribution of the first correction terms L(5) , L() to the Lagrangian to guarantee

fast approach to the continuum limit.

2.1.2 Numerical simulation

Over the years, simulating QCD on a lattice has developed into a highly technical field.

For comprehensive overviews of algorithms and related theory, interested readers are

referred to Refs. [MM, Rot05, Gup97] and references therein. In this section we briefly

discuss the main obstacles preventing lattice QCD theorists from making predictions

exactly at the physical values of all the parameters.

The lattice version (2.6) of Feynman integrals (2.1,2.2) is computed by the Monte-

Carlo method as a statistical average over a set of gauge field configurations {UX,}

that sample the distribution of the action e-s. This set may be generated using the

Metropolis accept-reject algorithm.

One important remark concerns the simulations of dynamic fermions {@f, Of }

which are integrated implicitly using the rules of Grassman variable integration,

DUD D~q e U-sf[M]-efmo J DU detMj e~S [U]. (2.8)

Computing the determinant detMf exactly is a formidable task. Instead, this deter-

minant is estimated using "pseudofermion" fields #, #f,

detMf -f D~fDe)0-01"1 1 (2.9)

and the inverse of the operator Mf arises because of different statistics of fermions

and pseudofermions.



The fact that one has to invert the lattice Dirac operator Mf is the main reason

why simulating QCD with dynamical fermion fields is very expensive. Basically, for

each step of the Metropolis accept-reject algorithm, one has to solve the equation

Mfo = X (2.10)

many times, which is a very expensive task. Inverting the lattice Dirac operator is also

required for computing correlators involving quark fields, i.e. any hadron correlator.

This fact can be illustrated with the simplest case of a quark propagator, which,

according to (2.8), is equal to2

J) = DUDh/) fD)je $x2ye-s-f Mf f DU [M]- detMf e-Sg[U]. (2.11)

Correlators of composite fields such as hadrons must be evaluated according to Wick

contraction rules and may require computing separate solutions of Eq. (2.10).

Below we summarize the main factors contributing to the cost of solving QCD on

a lattice.

1. The light quark mass is so far the most difficult obstacle to overcome. The lattice

Dirac operator Mf in Eq. (2.10) has a bad condition number as the quark mass

approaches zero, and its inversion demands significant computational resources.

2. Finite lattice volume presents a difficulty because increasing the linear size of

the box entails increase of the number of lattice sites to the fourth power.

3. A lattice spacing should be small enough to suppress the discretization effects.

Smaller lattice spacings, or denser grids, evidently lead to increased computa-

tional complexity, if one keeps physical volume fixed.

Presently, lattice QCD calculations approach the physical pion mass. Chirally-

symmetric fermions, however, are more expensive to simulate on a lattice, and so far

2 A quark propagator is a gauge-dependent quantity. Computing the lattice ensemble average

in Eq. (2.11) requires gauge fixing. We discuss the quark propagator merely for the illustration

p)urpose.



thorough studies have been performed only for in, > 300 MeV and current simula-

tions are performed with the pion masses down to m7, ~ 180 MeV. An approximate

scaling formula used recently [RBC07] predicts simulation costs with chiral fermions

in fixed physical volume

Cost - ( L )95_ (M)7. ~ (2.12)
fm a 'M '

where L is the box dimension, a is the lattice spacing and m, is the pion mass.

Although superficially it seems that the cost depends on the pion mass much weaker

than on the box size or the lattice spacing, finite volume effects require increasing the

box size L with decreasing m7, as L - 1/m..

One must also take the continuum limit a -- 0 to get rid of discretization effects.

Practically, one has to perform simulations at a few values of a and extrapolate the

results to a -+ 0. Fortunately, with properly chosen chiral fermion action,the limits

a --* 0 and m, -+ 0 are independent [A+08a], and chiral extrapolations may be

performed independently of taking the continuum limit.

2.2 Discretization of gauge action

Because the gauge action must be gauge-invariant, it can be built only from closed

loops W(x, x) [Gup97]. The simplest gauge action consisting of 1 x 1 lattice Wilson

loops, so-called "plaquettes" (see Fig. 2-1(b)),

S~Z ReTr(1 - UP), Up , U,,+v U U , (2.13)

approximates the continuum gauge action up to 0(a 2) corrections, which can be seen

from the Taylor expansion of a plaquette Up, ,

Up I= - ia2Ft, - F2 )2 + 0(a6) , (2.14)
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where F,,=, A- , A, + i[A,, A,] and F,, and A,, are matrices representing

elements of the algebra of the gauge group.

Sg[U] =ZZ ReTr(1 - Up1 ,) - dx (F1 , )2 , a -- 0. (2.15)

To bring the lattice theory closer to the continuum, one can eliminate the effect

of the 0(a 6 ) terms in the expansion (2.14). This can be done by combining 1 x 1

(plaquettes) and 1 x 2 (rectangles) Wilson loops (see Fig. 2-1(b))

Sgmp [U] = ( 8c1) ZReTr (1 - Up ,) + ci ZReTr (1 - UR1,) (2.16)

with coefficients chosen so that the leading nontrivial term in Eq. (2.14) reproduces

the continuum action term - (F,,,)2 . The value of the parameter ci can be fixed

from the Taylor expansions of Up and UR Wilson loops. Such gauge action is called

Symanzik, or tree level, improved gauge action.

However, the tree-level Symanzik improvement does not take into account quan-

tum fluctuations. The optimal value of ci must be computed either perturbatively [Iwa85]

or non-perturbatively [dF+00), with the criterion that the couplings ci and c2 = 1-Sc1

stay on the same trajectory c1 (c2) under renormalization or blocking, i.e., with chang-

ing the cutoff scale A = a-. Such choice guarantees faster approach to the continuum

limit and restoration of the rotation symmetry even on coarse-grained lattices [HN94].

2.3 Discretization of fermion action

2.3.1 Chiral symmetry on a lattice

As mentioned before, one wants to preserve as many symmetries as possible in lattice

formulation of QCD. One important symmetry is the chiral symmetry of quarks.

Unfortunately, when fermions are regularized on a lattice, chiral symmetry can be



preserved only at the expense of introducing so-called doublers [NN81] 3. On a 4D

hypercubic lattice, one obtains 24 - 1 15 additional fermion species with naive

discretization of the Dirac operator,

Onaive = 7p~V + m , (2.17)

in which the continuum derivatives are replaced with the finite differences [V,@]j
1
2a (qbx+, - Ox-f.). These species appear as poles of the Dirac operator (2.17) at the

wave numbers kl, - {0, Z} with k2 # 0.

Evidently, one must have the correct number of fermion species in order to have

the correct QCD low-energy dynamics. Below in this section, we will discuss the

methods to amend this problem. However, one must realize that this problem has

no simple solution, and avoiding the no-go theorem [NN81] either breaks chiral sym-

metry explicitly (Section 2.3.2) or is expensive (introducing additional dimension,

Section. 2.3.3). Other solutions, so-called overlap fermions [NN93], are currently

even more expensive and prohibit dynamical fermion simulations unless the volume

is unphysically small.

Despite the difficulties involved, it is important to preserve the chiral symmetry

of fermion action for a number of reasons. First and foremost, it is the fundamental

symmetry of the QCD Lagrangian, which is spontaneously broken by QCD vacuum

structure. In order to guarantee the correct chiral dynamics, our simulations must

reproduce this feature. Second, chiral symmetry prevents occurrence of some dis-

cretization error terms in a Lagrangian. For example, an 0(a) term in a fermion

action cannot be chirally symmetric because of its mass dimension, and must disap-

pear provided the Lagrangian does not contain any hard chiral symmetry breaking

terms. Therefore, lattice QCD with a chirally-symmetric Lagrangian will be automat-

ically 0(a 2 ) improved. Third, in a chirally-symmetric lattice theory, renormalization

3 In fact, the theorem proved in Ref. [NN81] states that any regularization of chiral (Weyl)
fermions must break one of the following conditions: (1) invariance under gauge symmetry, (2)
different number of left- and right-handed fermion species, (3) correct ABJ anomaly or (4) action
being bilinear in the Weyl field.



and mixing of operators built of quark fields are significantly simpler.

2.3.2 Wilson fermions

In agreement with Eq. (2.7), one may add irrelevant terms to the lattice QCD La-

grangian that will disappear in the continuum limit. Wilson [Zic77] suggested a

solution to the fermion doubling problem by adding a dimension five operator

a Wilson= -a rVA?/, (2.18)

where A is a lattice Laplacian. Doubler fermion poles appear at the wave numbers

k -- in a naive lattice fermion propagator (2.17), and the term (2.18) lifts the

doubler degeneracy so that their energy is ~ and they decouple from the onlya

physical propagator pole at the wave number close to k,= 0. With the commonly

used value r = 1, the final form of the Wilson action is

Sw kg7] = ax [(amq+ 4)65xx - Z ( 2 Ux,tt6x+X + l+"LUt_ 6-,_Xi) ] .W

(2.19)

The Wilson fermion action is easy to simulate on a lattice and many calculations

with heavy pion masses have been performed with it. As the pion mass goes down,

simulations become more expensive (with any fermion action) because of the cost

of inverting the Wilson-Dirac operator, although the Wilson action (2.19) is still

significantly cheaper than chirally-invariant actions (see Sec. 2.3.3).

However, the term (2.18) breaks the chiral symmetry explicitly. This term gen-

erates -- additive correction to the quark mass, so that the bare quark mass must

be tuned to cancel this effect. Also, the Wilson action has O(a) discretization effects

and requires calculations with very small lattice spacing values to keep systematic

errors under control. A way to get rid of 0(a) effects while keeping only one fermion

species [SW85] is to add another dimension five operator,

SSW = SW- iaCsw oFj'tO (2.20)



with Csw = 1 from tree-level perturbative analysis. This additional, so-called Clover,

term is site-local and adds negligible incremental cost to simulations with the Wilson-

Clover action. With careful tuning, about an order of magnitude reduction of sys-

tematic effects is possible [EHK98].

This type of action allowed the BMW collaboration to succeed in calculating the

hadron spectrum from lattice QCD [D+08]. We perform initial calculations for several

pion masses using gauge configurations generated by the BMW collaborations (see

Appendix A.3) and report preliminary results in Sec. 5.1 and Sec. 5.3.

2.3.3 Domain wall fermions

The domain wall fermions (DWF) [Kap92] and its variation [Sha93] is a method to

simulate chirally-symmetric fermions on a lattice with finite lattice spacing at the

expense of introducing an additional discrete dimension s, sometimes misleadingly

called a "flavor" dimension:

SDw = 4 DDWq' =Jx,s + 6ss' [Dw(-M)], + Txx, [Di(mg)] sss , (2.21)

where Dw is a Wilson fermion operator

[Dw(-M5)]x, = 4 M5 - 15 2 _ ,jz- , + 2 2 Uq52+p,x j

and D1 is a finite-difference "differential" operator in the fifth dimension with a defect

at s = 0,

qP+L-1,s' ~ - 1,', s = 0,

[Di(mq)]ss' = -P+- 1-,s' - -6s+i,s', 1 s < L5 - 2,

-P+Ls-2,s' + nqP-6 0,s', s = L5 - 1,
1 ± 5

where P± 2Y
2



Because the action is asymmetric with respect to left-handed and right-handed fermions,

the light boundary states that appear at s = 0 and s = L5- 1 are left- and right-

handed, respectively. These chiral modes are thus separated in the fifth dimension

and do not interact with each other. The physical chiral 4D fermion fields are related

to the 5D fermions as

SP±IL5 -1 qL =P-1, (2.22)

qR XIL5 -1 P- , qL = F0 P+,

The chiral symmetry is exact (up to the mass term ~mq) in the limit of infinite extent

of the fifth dimension, L5 -+ oo, at which the boundary states can decay completely

in the bulk in the 5th direction. Because of the - mq mass term in D1 , right- and

left-handed modes can "talk" to each other with the term

rm ~ q [qRqL + qLqRl (2.23)

However, in practice one has to limit the extent of the fifth dimension (an often used

value is L5 = 16), and carefully tune the other parameters such as M 5 and gauge

field parameters to maximize the localization of chiral modes at the boundaries. The

residual interaction of left- and right-handed modes is parameterized as additional

"residual" quark mass,

6Lm~ mres [qRqL + qLqR] (2.24)

and can be extracted as using an analog of PCAC relation for 5D fermions, see below.

Because the interesting states are boundary states decaying exponentially in the 5th

dimension away from the walls, the residual mass, with careful choice of parameters

is decaying as mres ~- L 5 with L5.

Essentially, the domain wall operator (2.21) is a 5D Wilson operator with a defect

in the fifth dimension. Similarly to Wilson fermions, the domain wall fermions have

U(1)v symmetry that generates the 5D conserved current that, after the summation



over s provides the 4D vector current

VX, =L , 2 L UtW, -2''s 2 U,9F+f1S (2.25)

We are, however, more interested in the (partially) conserved axial current that

is constructed by the transformation [B+02]

6A4Fx,s 6X's I~ 65A'Dx,s z7qj,

and e,, has opposite signs in the "left-handed" 0 < s < L5/2 and "right-handed"

L 5/2 < s < L5 halves along the 5th dimension,

{E'eX , 0 < s < Ls/2,
+EX , L5/2 < s < L5

The axial current is then

Ax,, - E AX,,S + E

O<s<L 5 |2

AX,,,S, (2.26)
L 5 /2<s<L 5

where AXII,, = X+AS 2 UX,,WF,, - q''' 2 UX,1 x+,S

Computing the divergence of such current, we arrive at the Ward identity

V~Ax,, = (Axi - A -, ) 2 m, [q? 5 q] + 2J2q

where V,-A,, =_',(AIL - A ,) is a lattice vector field divergence and

j 5 q- = - L / - 75 1 5 _x,L/2-1-X - x,L 5 /2-1 2 x! ,L5/2 + qjx,L_5 /2 2 xL/-

(2.27)

(2.28)

The second term in Eq. (2.27) plays a role of residual mass mentioned before. Its

modifies the bare quark mass mg > nq + mres according to Eq. (2.24) and it can be



estimated from its matrix elements including the pion,

mres = _ (2.29)
(0|qwsqlr)

Similarly, because the axial current (2.26) satisfies the Ward identity (2.27), its

renormalization constant ZA - 14 and it can be used to renormalize the local axial

current [. One usually computes the following ratio using the

ZA _(0|A0|x)

ZA ( _ly o l-q ) . (2.30)

2.3.4 Mixed action

Simulating dynamical fermions is expensive because one has to invert the fermion

operator many times to generate the next sample of a Monte-Carlo sequence. There-

fore, using chiral fermions described in Sec. 2.3.3 can be prohibitively expensive. At

the same time, cheaper actions that break chiral symmetry allow one to accumulate

substantial statistics. Thus, the MILC collaboration have generated large ensembles

at light pion masses and large spatial volumes [B+01] using so-called Asqtad improved

staggered quarks [B+98, OT99, OTS99], which are now freely available to the lattice

community.

It is natural to assume that the type of valence quark action has more influence

on the nucleon observables than the type of sea quarks. For example, the valence

quark-bilinear operators will have the symmetry governed by the symmetry of valence

quarks, and must renormalize accordingly at least at one-loop level. Therefore, a

hybrid scheme of calculations, in which we simulate chiral valence quarks in the gauge

background with the inclusion of non-chiral sea quarks, is advantageous, because we

combine the symmetries of chiral valence quarks and the availability of non-chiral sea

quarks.

We have performed extensive calculations with mixed action where sea (dynami-

cal) quarks are staggered Asqtad quarks and valence quarks are chiral (Domain Wall).

4 See also the discussion in Sec. 4.1.3.



The summary tables of the ensembles used are collected in Appendix A.2. Because

the operators we compute are constructed from valence, hence chirally-symmetric,

quarks, we use the same renormalization procedures as in the Domain Wall calcula-

tions, e.g., Eqs. (2.29,2.30).

Low-energy theory analysis, however, is generally more complicated because one

has to use so-called Partially-Quenched Chiral Perturbation Theory (PQChPT) to

take into account the difference between valence and sea quark actions in the lattice

theory. Doing so would require tracking the dependence of lattice QCD results on

both sea and valence quark masses separately, which is computationally demanding.

Instead, since we do not focus on any aspects of PQChPT, we tune the Domain

Wall valence quark masses to reproduce the pseudoscalar meson mass for each value

of Asqtad quark mass. Then we use the conventional chiral perturbation theory to

analyze our results and extrapolate them to the physical pion mass. One must be

aware, however, that the low-energy constants extracted from such hybrid lattice QCD

calculations may not be directly related to calculations with unitary quark action (in

which SF,sea SF,valence), thus making simultaneous chiral fits with Domain Wall

results impossible.

2.4 Rotation symmetry on a lattice

Introducing a discrete space-time grid breaks the 0(4) symmetry, the rotation sym-

metry of 4D Euclidean space. It has been shown that rotation symmetry is restored

in long-range lattice QCD; one can also choose an action discretization that reduces

rotation symmetry breaking [HN94]. However, short-range effects such as operator

mixing generally cannot be avoided because the rotation symmetry is reduced from

the continuous group 0(4) to the discrete hypercubic group H(4), which leads to

complicated operator renormalization and mixing.

This statement can be illustrated with tensors on a lattice. In the continuum, ten-

sors of any rank n constitute a direct sum of irreducible representations of the rotation

group 0(4). All (symmetric traceless) tensors belong to different representations of



the 0(4) group, which protects them from mixing with each other. There are infinitely

many irreducible representations of 0(4). On the contrary, all tensors on a hypercu-

bic lattice are sums of a finite number of irreducible representations of H(4) [G+96a]:

4 one-dimensional, 2 two-dimensional, 4 three-dimensional, 4 four-dimensional, 4 six-

dimensional, and 2 eight-dimensional. For example, the 0(4) vector corresponds to

the 41 representation. Tensors of rank n = 2 and n = 3 are [Dol00]

(41 )02 = 1- 11 e 1- 31 T 1 -61 T 1 -63 ,

(41 )3 = 4. 41 @ 1- 43 ) 1 44 ( 3- 81 E 2- 82.

One important consequence of the rotation symmetry breaking is that the number

of operators that can be calculated on a lattice is limited. For example, the twist-

two operators (1.17) discussed in Sec. 1.3 can be computed only up to some rank,

because the remnant H(4) symmetry does not discriminate higher-rank operators

from low-rank operators.



Chapter 3

Nucleon Matrix Elements on a

Lattice

In this chapter, we describe the methodology of computing nucleon structure observ-

ables on a lattice. This chapter is based on the analysis performed in [S+10] where

the nucleon electromagnetic form factors were calculated, but the methodology is

applicable to any hadron three-point correlator calculation. We begin with the dis-

cussion of nucleon creation and annihilation operators in Sec. 3.1. In the fundamental

theory we are simulating, the correlation functions may contain any physical states

permitted by the symmetries, not just nucleons. Hence, to keep systematic errors

under control it is essential to choose nucleon operators properly.

To extract the nucleon form factors reliably, we have to compute large sets of nu-

cleon three-point correlators. In Section 3.2 we summarize the common method [BDHS]

to minimize the number of required quark propagator inversions. We also present a

general method to derive the required valence quark field contractions and illustrate

it with an appropriate example.

The nucleon (generalized) form factors are extracted from the nucleon matrix

elements by solving overdetermined systems of equations, see Sec. 3.3. Finally, in

Section 3.4 we discuss our methodology to set bounds on the contamination from the

excited states accompanying a nucleon on a lattice.



3.1 Creating nucleon states on a lattice

Nucleon matrix elements (NJO|N) are computed on a lattice from the three-point

correlators of nucleon fields N, N and the operator 0. Thus, we have to introduce

appropriate nucleon interpolating fields that create and annihilate the nucleon states

on a lattice.

In the Euclidean quantum field theory all on-shell states are exponentially decay-

ing with the (Euclidean) time, and heavy states decay faster than light ones. Hence,

the propagation in Euclidean time can be thought of as a filter selecting the lightest

(ground) state from a set with given quantum numbers. However, for the precise

calculations to be possible, the nucleon field operator must be as close as possible to

the "ideal" one, creating ground states with little admixture of excited states.

3.1.1 Basic nucleon operator

First of all, the nucleon interpolating field should possess correct spin (reduced to the

hypercubic group representations), isospin, parity and be a color singlet. Starting

from the nonrelativistic quark model wave function for an I = , S = baryon

NNRQM E abcua[ujd - 'idc], one has a relativistic generalization [D+02] using

bispinors

Na(u, u, d) =acu"[(u)T CYsdc] (3.1)

where C =Y4 72 and 75 = 717213141. However, such a generalization is not unique.

In particular, one may drop the lower (antiquark) components completely without

significant reduction of the overlap with a nucleon ground state [Gra92] by using the

projected quark fields
1 + 74(.2

qp 2 q. (3.2)2

Such a choice may be beneficial for the two reasons discussed below.

One reason is that it automatically projects the nucleon operator (3.1) on the

positive-parity component, thus removing the negative-parity partner of the nucleon

Here and below we use Euclidean conventions for gamma-matrices, -/= .



(corresponding to the ground state with I(JP) = (f), N(1535) [A+08b]) from the

state at rest and also reducing its component in the state moving with small velocity

= < 1. The degree of this suppression in a moving nucleon state can be estimated

from the ratio of the upper and lower bispinor components in the Dirac plane wave

up, (p - m)u, = 0:

lu- (1-4)up| I E _ -mN P3
-u+J |(1 + 4 )u,| VE + mN 2mN (

and for a realistic lattice computation with (amN) ~ 0.5 and (ap) 0.2 (for

L 32) the suppression of the negative-parity state amplitude is NN 0.2.( N+IN)I

The other reason to use the projected quark fields in Eq. (3.1) is that such pro-

jection reduces the number of Dirac operator inversions required to compute nucleon

correlators. For example, computing a general hadron two-point correlator requires

solving the Dirac equation for each of the N, - Nc = 12 components. If the projec-

tion (3.2) is used, only six of these components participate in the nucleon field and

thus the cost of the calculation is reduced by a factor of two.

In the discussion of baryon two- and three-point correlators below we will use the

following convenient parameterization of baryon operators [RenO4):

BS (u, u, d) = Cabcf B a, b d' (3.4)

where fagy6 is the spin tensor determining the quantum numbers of the field B. From

Eq.(3.1) with parity-projected quarks, for the nucleon operator we have

2 2 ) 2 )S-Y,(

1 + 74where Sy, (7m3 2



For completeness, we add the expression for the antibaryon field:

B&, (N) (-y4)66 =y (py ud) t(-Y4) 66'-u 

(3.6)
= f B B

where fB, 1, - *(4)Qa(,4)3 -(4),,(Y4)61 (3.7)

and the antisymmetrization over the color indices is implied.

3.1.2 Suppression of excited states

The operator in Eq. (3.1) creates a superposition of states with the same quantum

numbers. Let |T) - C-1/ 2 VIQ) denote the normalized state obtained by the action

of the nucleon interpolation field on the vacuum, and In) denote the nh eigenstate of

the system. In addition to the nucleon ground state, there are nucleon excited states

as well as multiparticle (scattering) states, for example 7r + N with the pion in a p-

wave to preserve positive parity. These states contaminate the relevant ground-state

nucleon signal and introduce systematic bias to the nucleon matrix elements being

computed. According to the transfer matrix formalism, the contributions of different

states to the three-point function are

(N(t3)O(t 2)N(ti)) - C Z(n)(n|Olm)(mIV)e-En(t3-t2)-Em(t2-ti) (3.8)
n'm

In principle, one can rely on the Euclidean time propagation to filter out wrong

states since they have higher energy, E, > Eo, n > 1. However, doing so requires

increasing the distance in the corresponding three-point correlation functions. The

ratio of the signal to stochastic noise in the case of a nucleon falls off with distance

as [Lep]
signal -(MN 9')
noise

We have two objectives while choosing the nucleon interpolating fields appropriate

for accurate lattice calculations of hadronic matrix elements. The first one is to



minimize the overlap with excited states (1 I (0|[F)|2). Since we cannot construct the

nucleon ground state precisely without knowing its structure, which itself is studied

in this work, we can only attempt to suppress excited states as much as possible

using some general assumptions. So, it is reasonable to assume that quarks in the

ground state are smoothly distributed over the size of the nucleon. As we do not know

these distributions precisely, we approximate them with spatially smeared quark fields

and construct the nucleon interpolating field from them. Our second objective is to

minimize the fluctuations arising from the nucleon interpolating field itself. Such

fluctuations arise because extended (smeared) quark fields must be constructed in a

gauge-covariant way, thus entangling the gauge noise into the nucleon fields.

The extended (smeared) quark fields are created with some smooth kernel K(x),

q(x) dx K(x - x')q(x'), (3.10)

where q(x) is regular quark field, and the smeared nucleon field is then

N(x) = N (ii(x), ii(x), d(x)). (3.11)

Note that a nucleon field has the serious limitation that spatial quark wave functions

in the state created with it are independent, i.e. the 3-quark state wave function

is factorizable into the spatial distributions of separate quarks. We will discuss an

attempt to overcome this limitation in Sec. 3.1.3.

While different choices for the kernel K(x - x') are possible, for example, using

wave functions from non-relativistic potential models [PS], the one whose use is most

wide spread is the Wuppertal [G+89, GO], or equivalently, Gaussian form,

(x) = [(1 + A)Nq] (x), (3.12)4N

where A is the gauge-covariant spatial Laplacian. This form is very easy to imple-

ment on a lattice in a gauge-covariant way and it is hard to outperform in terms of

suppression of excited states [PS]. Another advantage is that Gaussian smearing has



effectively only one parameter, the width ~ -, while the number of iterations N is

chosen so that (3.12) is numerically stable. Finally, this construction is spherically-

symmetric after averaging over a gauge configuration ensemble, which corresponds

to an S-wave distribution of quarks inside the nucleon, and suppresses any states in

which quarks have non-zero orbital angular momentum. Again, it is not given that

quarks in the nucleon are only in the S-wave state, but it is reasonable to assume

that in the nucleon ground state quarks have less angular momentum than in nucleon

excited states.

The first objective of optimizing the nucleon operator is met by using smeared

propagators and treating the r.m.s. radius of the smearing kernel as a variational

parameter,

i __ [f d 11/2
rrms = (r2) d3Xq( 2 1 (3.13)

It is clear that the point-like nucleon field Nx = N(ux, ux, dx) may have significant

overlap with various excited states in the spectrum. For example, if the quark wave

function is too narrow, it will have significant overlap with wave functions having

nodes and corresponding to radially-excited nucleon-like states. In the other extreme

case, if the quark wave function is too wide, because of its tails it is likely to have

significant overlap with states including pion(s). Clearly, there must exist an optimal

value for the width of the quark wave function or, equivalently, r.m.s. radius (3.13).

To attain our second objective of minimizing the fluctuations arising from the

source itself, it is highly advantageous to perform so-called APE smearing of the

gauge links [FPPT85] used in generating the source on the time slice of the source.

In each iteration of APE smearing, each link is replaced by a linear combination of

itself and the sum of staples within that time slice, and projected back onto SU(3)

as follows

3

U = ProjsU( 3) Ui + # E U - U U ,(3.14)

where U( 0) is the original field and U(NAPE) is used in the covariant Laplacian in



Eq. (3.12). Applying the APE smearing has the effect of suppressing ultraviolet

fluctuations of the gauge field and thus reducing the noise in the operators constructed

with it. At the same time, this procedure is gauge-covariant and thus does not require

any gauge fixing to build extended color fields.

A simple measure of the noise introduced by the gauge field into the nucleon

field is its fractional fluctuation (0) ,where 0 is the norm of the state

( OIIOQ) 2 created by the nucleon field. Figure 3-1(b) shows the dramatic effect that

the APE smearing has on reducing these fluctuations for both lattice spacings. Since

the incremental benefit of successive smearing becomes small beyond 25 smearing

steps, we have chosen to use 25 steps throughout. Note that for the largest number of

Wuppertal smearing steps, this reduces the noise by a factor of more than 5 in each

case.

We can control the r.m.s. radius (3.13) of smeared sources through the smearing

parameters, however, only the r.m.s. radius has physical sense. Because the APE

smearing smooths the gauge links, the r.m.s. radius for given Gaussian smearing

parameters increases slightly with the number of APE smearing steps. We performed

a scan of the parameter region shown in Fig. 3-1(a)

In lattice gauge theories for which one can construct a transfer matrix and quarks

and antiquarks are properly normal ordered at zero time separation in the quark

propagator [Lus77], the source may be optimized straightforwardly by maximizing

the overlap between the normalized state created by the action of the source |-O =

C- 1/ 2N(r)IQ), where the source N(r) has r.m.s. radius r, and the normalized ground

state of the nucleon |0). Denoting the momentum projected normalized eigenstates

of the nucleon by n) and their energies by En, the momentum projected two-point

correlation function may be expanded:

C (r)(t) d3 XKN(r)(x, t)N(r) (0, 0)) C L (rn) 2 ~E"' (3.15)
n

where C is an unknown normalization constant. Since one can directly measure the
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Figure 3-1: Scan of the Wuppertal and APE smearing parameter space.

correlation function at zero time separation

A(r) = C(r) (0) = C E (r) 2 ((3.16)



and reliably fit the large t behavior of the correlation function to extract the ground

state contribution

B) = C (q(r) |0) , (3.17)

the probability that the source contains the nucleon ground state may be calculated

by

p) B= = I |(r) 10) 2 (3.18)

For domain wall fermions, which do not have a local transfer matrix, we consider

the following generalization of Eqs. (3.16-3.18), which compares the ratio of the cor-

relation function and the extrapolated ground state contribution at time t instead of

time t = 0:

A(r)(t) C(r)(t), (3.19)

B (r(t) C |(4"|0) 2 , (3.20)

ip~) -BMr(t)p (t) A(r) . (3.21)
A (r (t )

This ratio, P(r)(t), ranges from the overlap P(r) at t = 0 to 1 in the limit t -+ oc.

We expect that for small t, it is still a good measure of the presence of excited state

components in the source and should have a maximum close to the maximum in P(r).

This expectation is borne out in the case of Wilson fermions, and we note that this

criterion gets even better as the lattice spacing decreases. Since we are only interested

in the dependence of p)(t) on the r.m.s. radius r and the absolute normalization

for t $ 0 has no physical significance, it suffices to calculate the following ratio for

large to
C(r)(to) to CI (r0)|2C-Eoto _ p(r)(t)E -t (3.22)
C (t) C(r) (t)

For each value of t, it is convenient to normalize the curve such that its maximum

value is unity. Hence, defining the r.m.s. radius at the maximum as r*, our final



criterion for optimizing the smearing is the ratio

Cr) (to)/C(r)(t)
R ((t) = to . (3.23)

Equation (3.23) has the computational advantages that all oscillating terms in the

time dependence of the correlation functions cancel out of the ratios and that jackknife

or bootstrap resampling analysis enables accurate measurements on small ensembles.

1.2 1.2
t=2 t=1
t 3

1 t=41

S0. 0.8

0.6 . 0.6

04-" 0.4 0.-

0.2 0.2

0 0
0 0 1 2 1' 4 5 6 7 8 9

sqrt(<r2>) sqrt(<r2 >)
(a) Coarse Domain Wall lattice, m,= 328 MeV (b) Fine Domain Wall lattice, m, = 297 MeV

Figure 3-2: Source optimization criterion (3.23) vs smeared source r.m.s. ra-

dius (3.13).

Figure 3-2 shows the primary result of the calculation for both lattice spac-

ings. The solid curves are splines passing through the mean values to guide the

eye. For the coarse lattice, the ratio Rr)(t) is calculated at six values of the num-

ber of Wuppertal steps, N = 10, 20, 30, 50, 70, 100, corresponding to r.m.s. radii, r =

2.07, 2.89, 3.51, 4.46, 5.19, and 6.06 lattice units respectively. We chose r* = 4.46 fm

and calculated bootstrap error bars using 32 configurations. Instead of normalizing

at a single value of to as in Eq. (3.23), the errors in the ratios in Fig. 3-2 were fur-

ther reduced by normalizing to an exponential fit to each correlation function in the

region t = [6 - 12]. These results are completely consistent with those of a single

to, but display the shape of the maxima more precisely. Note that for all four values

t = 1, 2, 3, and 4, the curves are accurately determined and the ratio R(r)(t) has a

maximum at approximately the same point, r - 4.0, corresponding to N - 40. Thus,

we believe our optimization criterion is robust and statistically accurate for domain



wall fermions.

For the fine lattices, the ratio R(r)(t) is calculated at 5 values of the number

of Wuppertal steps, N = 30, 50, 70, 100, and 150, corresponding to r.m.s. radii

r = 3.76, 4.77, 5.56, 6.51, and 7.77 lattice units respectively. We chose r* = 5.56,

normalized by exponential fits to each correlation function in the region t = [6 : 12],

calculated error bars with jackknife resampling method, and only included t =1 and

2 to avoid making the graph confusing due to the larger error bars. The maximum

occurs at approximately r - 6.0 lattice units, corresponding to 84 Wuppertal smear-

ing steps. This result appears reasonable, since assuming a constant r.m.s. radius in

physical units would imply that the r.m.s. radius on the coarser lattice of 4.0 lattice

units would scale to 4.0 x 0.114/0.084 = 5.4 lattice units on the present lattice, and

the pion mass on the finer lattice is somewhat lighter.

Table 3.1: Parameters for optimal sources as defined in Eq. (3.14) and (
lattice APE smearing Wuppertal smearing Size
a [fm] # A = 1/0 NAPE a o- Nw (r2)12
0.114 0.3509 2.85 25 3 5.026 40 4.0
0.084 0.3509 2.85 25 3 7.284 84 6.0

3.24).

We summarize the final

ble 3.1. The definitions of

given by

parameters for optimal sources used in this work in Ta-

Wuppertal smearing in different parameterizations are

3 N-2 N2N N

+-1Y U) (x~ yO (1- 4N '

( 2 jN ( + 1 - 2 /4N Ujx, )6 + Ut](X - i, i6 N)I+ - 3u2 /21' -1,] '

(3.24)

and the parameters are related by

o-2 /4N
1 - 3u2 /2N

2 2Na
3 a + 1/2



3.1.3 Composite nucleon operators

In the conclusion of this section, we discuss a method to tune the nucleon interpolating

field [PS] that could potentially perform better than those discussed in Sec. 3.1.2. This

method is not used for calculations in the present work, however, it may be vital for

the future studies.

As pointed out after Eq. (3.11), its main disadvantage is that the quark wave

functions are independent. A simple way to improve this is to construct a "composite"

nucleon operator

N(x) = aiN (ii(A) (X) jj(Bi) (X), (Ci) (x)), (3.25)

where {A, B, C}2 denote the combinations of different types of spatial smearing of

the quark fields. Then, our goal is to tune the smearing combinations {A, B, C}2 and

their coefficients a so that the interpolating field creates a state which is orthogonal

to a number of the lowest excited states2

In principle, one can combine Gaussian smeared quarks (3.12) with different width

parameters. However, a series of Gaussian-smeared nucleon operators tends to create

states which are very close to being "collinear" in the Hilbert space. For example, if

the nucleon operators smeared with two different values o1 and Or2 create states

N1|I) A(IO) + ai l1)) + other exc. states, (3.26)
N2| ) = B(10) + a 2|1)) + other exc. states,

with the main contamination given by the state 1) and a1 is close to a 2, the linear

combination of these states canceling the |1) state will be very noisy. Instead, one can

try adding node(s) to the quark wave functions used in Eq. (3.11) to create a different

superposition of 10) and |1) states and combine it with one of Eq. (3.26). Further, a

number of such operators constitutes a basis of states in which the orthogonalization

2 We emphasize that one has to suppress the excited states that are separated by the smallest
gap from the ground state. The rest of the contamination will be suppressed by the evolution
factor e-AEnot



procedure is more stable and reliable, especially when noisy lattice data are used for

source optimization.

For example, if some potential model is taken as a crude description of a nucleon,

the simplest form one may try is

N (x) = A N i(fO), fi(O), i(0))+B [N(6i), -() J 0 ))+N( ( 0 ,), 1), j(0))+N (6(4) GO), J)),

(3.27)

where 4(o) is the spherically-symmetric ground state wave function (without nodes)

of a quark in some model potential and 4(l) is the first excited state (with one node).

By tuning A and B one may obtain better overlap with the ground state than by

tuning the first term alone.

As a preliminary study, we compute an 8 x 8 two-point nucleon correlator matrix

(N(t)Nj(0)) corresponding to eight different nucleon operators at the source and the

sink using the BMW ensemble,

Ro = N (ft(0), ii(0), j(0))

N1 = N (6l), f(O), jC0))

N2 = N(( 0 ), gi(l), j(O)), (3.28)

N7 =N( , ),

where 0CO) is the Gaussian-smeared quark field (3.12) and 4() is the same profile with

the covariant Laplacian applied,

2

40() = A (1+ ' A)Nq] (x) (3.29)AN

Applying the Laplacian to the Gaussian distribution should produce a profile with a

node, as indicated by the free-field case

1'2 r 2 -3u02  
r2

Ae 22 = r2 2-3 2

54

65
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Figure 3-3: Eigenvalues extracted from the nucleon correlator matrix with 8 com-
posite sources and sinks (3.28).

Analyzing the data using traditional variational method [LW90], we extract eigen-

values of the 8 x 8 correlator matrix with the sources and sinks (3.28) described above.

We show the results in Fig. 3-3 for both Gaussian e A-Gaussian smearing and 10) e 11)

states in the linear potential. It is notable that in both methods we obtain very simi-

lar results, and they do not improve the overlap compared to the factorizable nucleon

operator with the optimal choice of the smearing parameters. This may be explained

by potentially suboptimal choice of basis in Eq. (3.28), and further study is required

to clarify this.

An additional important observation from Fig. 3-3 is that the gaps between the

ground state and the excited states are significant and are of the order of the mass

of the ground state so that mexc ' mN. This result is reassuring because it indicates

that our operators create little or no admixture of "scattering" N + 7 states which

may have much smaller energy gaps from the ground state. This observation will be

used in the discussion in Sec. 3.4.



3.2 Three-point correlators on a lattice

3.2.1 Quark-bilinear operators

Computing three-point correlators of nucleons with quark-bilinear operators on a

lattice

C'(x, y) = (N(x) [qFq](y)N (0)) (3.30)

requires pairing all quark fields with antiquark fields in all possible ways and substi-

tuting lattice quark propagators for each pair. There are two types of contractions,

connected and disconnected (see Fig. 3-4). Disconnected contractions give non-trivial

contributions because the quark loop in Fig. 3-4(b) is evaluated in the presence of

the gluon background that connects this loop with the valence quark lines by virtual

gluon exchanges.

N N N N

(a) Connected (b) Disconnected

Figure 3-4: Wick contractions of quark fields in three-point correlators.

The disconnected contribution is very hard to calculate. Generally, one needs to

compute momentum-projected correlators and thus has to sum over the position y

in Eq. (3.30). Doing so requires inverting the Dirac operator for all the L3 lattice

sites in the spatial volume. Although there is some progress in such computations

(most notably, see Refs. [D+09, BCSO9a, BCSO9b]), they are still limited to heavy

pion iasses and non-chiral fermions.

It is worth noting that the calculation of disconnected contractions is crucial for



such problems as the strange quark content of the nucleon, quark spin contributions

to the nucleon spin and, in general, any isosinglet nucleon structure observables or

observables associated with one specific flavor. Computing connected contractions

gives the complete result only for flavor-nonsinglet contributions, for example, the

axial charge and the isovector form factors. However, even if advanced techniques

or resources to compute the disconnected contractions become available, one will

still have to reduce the noise in MC simulations and contaminations from excited

states. Therefore, in this work we focus mostly on isovector observables as a test case

to understand the precision that is possible to achieve, and lay the foundations for

complete nucleon structure calculations in the future.

3.2.2 Connected three-point quark correlators

In our calculations we use the so-called sequential source method [BDHS]. The se-

quential source method in this work is motivated by the same reason as in Ref. [H+08,

D+02]: it allows one to compute quark-bilinear operators with any Dirac matrix in-

sertion in Eq. (3.30) as well as covariant derivatives. However, when using the se-

quential source method, one has to fix the time locations of the nucleon source and

sink, thus making studying the systematic dependence on the source-sink separation

prohibitively expensive. Thus, a separate study of this potential source of systematic

effects is necessary, see Sec. 3.4.

Inversion of the Dirac operator on a lattice is a costly procedure, and, unless one

uses special stochastic estimator techniques [D+09], one can only compute a small

number of fermion propagators x <- y where y is a fixed point on a lattice:

01a(x, y) = (qa (xq(,3 (3.31)

In addition, one can use the so-called y5-hermiticity of Dirac operators, 73'$S - -

(the conjugation is applied to all the pairs of "indices", spin, color and coordinate),



to obtain the propagator x <- y where x is a fixed point:

[$[(x, y)] = 'Y [$ (y, X)Y5] ab (3.32)

Every lattice propagator (3.31) or (3.32) requires 12 inversions of the Dirac operator

7 on a lattice to compute all the combinations of spin and color indices.

The main idea of the sequential propagator method is to represent the three-point

correlator (3.30) as a trace of the product,

C3I4(x, y) = Trspin,color [SqNN(; X) (X, y') Fld(y', y) (y, 0)] (3.33)

where U(y, y') is the product of the gauge links along some path y -+ y' 3 and

SqNN (0; x) is the sequential source for the pair of a nucleon source and a sink at

points 0 and x, respectively. On a lattice, one successively computes the forward

propagator $1(9,0) ', the sequential source SNR(0; x), the backward propagator

SqN(0; x)$W(x, e) and, finally, the three-point function(s) (,y).

A sequential source SNN depends on a particular type of the nucleon interpolating

field, the source and sink locations, the nucleon polarization matrix, and the quark

flavor q. One may think of a sequential source as a two-point correlator with one of

the valence quark lines in Fig. 3-4(a) cut to insert an operator. Symbolically, one can

express a sequential source as

[SgNR(0; X)]" = IPO N6r (x) . g()R(0)) , (3.34)

where the angular brackets (( .)) denote (connected) contractions of the remaining

valence quarks. One usually computes three-point correlators with a momentum-

projected sink, summing S(0; x) over Y with an appropriate phase factor e',, and

3 These link paths allow one to construct the finite differences approximating covariant derivatives
on a lattice. Computing the three-point correlators with the full set of link paths up to some length

("building blocks") was first used in Ref. [RenO4] and allows efficient computation of a number of
point-split quark-bilinear operators in a single run.

4 The dot "o" here and below denotes any point on the lattice. Thus, 01 (0, 0) is a lattice
"vector" of fermion matrices.



using the fact that doing so commutes with the rest of the computation of three-point

functions.

If the nucleon interpolating fields are constructed from smeared quark fields one

has to apply the smearing kernel from Eq. (3.10)

" to both sides of the lattice quark propagators U and D, Q(x, y) -+ Q(x, y)

f dx' dy'K(x - x') Q(x', y')K(y' - y)

e and to the sequential source, S(0; x) -+ S(0; x) = f dx'S(0; x')K(x' - x).

Finally, to illustrate the sequential source method, we derive explicitly the ex-

pression for the sequential source S7 corresponding to the matrix element (ndfujp)

between proton and neutron states. Since we are working in the isospin limit, this

matrix element is equivalent to the (u - d) combination of the proton matrix elements,

Su = u S -S.(3.35)

This derivation is useful for calculations with so-called twisted boundary conditions

(TwBC) in which the spatial boundary conditions on a lattice are non-trivial and

different for the u and d quarks allowing one to have fractional (with respect to the

lattice momentum quantization) momentum transfer values Q2  -(P' - P)2.

We use the definition for the proton and neutron interpolating fields as

p=N(u,u,d), n=N(d,d,u). (3.36)

The variations of the proton and neutron fields with respect to the quark fields are

equal to

Sus -t n 6 a o E f3.-3 dfu

a/ f/ b/ C/
12~' = Ec +±ocl1 do, un,,

Substituting the above expressions into Eq. (3.34) and using f, -y (1+_4 ),, 3 and



1+ PO' = FP 2 = , we get22

[ Qril3 o X 1 -a ]pPol ab'c' 6abc [ b D '

du1 (0 xf63,yj5 aa -o /a/ 16 f 16  ±a-y f+'&' [fa 5 ±o f0,]
~a/b/c/'Eabc [FPO'/(SUl) bc (DS*)bc + S pl a'(D*)b

-(SUS*) a0(FPO1D) ±o (s oDS*)',a +±S)a0(P'S ~

where U = o=$ (x, 0) and D = (ddo) = .0 (x, 0).

We leave it to the reader to check that the relation (3.35) holds.

3.2.3 Composite sources

In this section we would like to summarize briefly the problems of computing three-

point functions with the composite sources discussed in Sec. 3.1.3. As we have de-

scribed in Sec. 3.2.2 one must plan carefully the order of computing quark propagators

and contracting them into two- and three-point correlators to maximize the useful

output of a calculation. Generally, with simple ("factorizable") sources one has to

compute one forward propagator and, separately, one backward propagator for each

flavor and sink position (or, equivalently, sink spatial momentum). The parity pro-

jection l-PY4 further reduces the number of inversions by a factor of two.

However, if one constructs a nucleon state with a composite nucleon operator,

each term in Eq. (3.25) requires the calculation of a separate full set of inversions

and contractions multiplying the cost by an integer factor. It is remarkable that the

composite nucleon sink does not require additional computations except for smearing

and computing contractions in the sequential sources Sq.

Thus, the most effective strategy is to use a composite nucleon sink and a simple

nucleon source. Unfortunately, such approach will result in asymmetric plateaus even

for forward matrix elements which are usually the "gold-plated" quantities computed

on a lattice. One needs to implement a convoluted fitting procedure to extract nucleon

matrix elements from such plateaus that takes into account the fact that the data

points closer to the sink are more credible than those closer to the source.



In practice, however, calculations with an asymmetric source-sink pair may be

the only reasonable choice to study the nucleon form factors at non-zero momentum

transfer. According to the recent study in Ref. [LCE+10], optimal source parameters

may depend on the momentum of a nucleon state. However, in the present calculations

momentum projection is performed for sink and operator locations while the position

of a source is fixed and thus contains all possible momenta. Hence, it is impossible

to tune both the source and the sink to suppress the most dangerous excited states.

Instead, tuning of the sink can be performed at each sink momentum separately with

negligible additional cost required for separate smearing of quark propagators.

3.3 Form Factors

3.3.1 Transfer matrix expressions

In order to calculate nucleon matrix elements, we compute the three-point polarized

nucleon correlators involving the vector current, along with the two-point correlators

[H+08):

C2 pt(t, P) = e~ (Fpoi). (Ng (2, t)Na(0 , 0)), (3.37)

x o

(3.38)

where N, N, are the lattice nucleon operators; (| NQ(x)I P, o) = \Z(P)USY (P)e
with Z(P) parameterizing the overlap with the nucleon ground state; (P0, 1)C'O

2 1 ~ is the spin and parity projection matrix5 ; and 0 is the operator in ques-

5 In this subsection, we use Euclidean 7-matrices, (7i)t = -y4, { =4, "} =26".



tion. In the transfer matrix formalism, these correlators take the form

C2 ~(t,) -Z(P)e-Et

C2pt(tip) = 2E Tr [Fpoi (i4 + MN)] + excited states, (3.39)

C (P - Z (P ) .Z (P )e E'(T -r)-Er
Cpt (Ti T; P, P')=x

2E'- 2E

x Tr Kpoi (ip ' + MN) P P) ( MN) (3.40)

+ excited states,

where E and E' are the ground state energies of the initial and final nucleon states

and F (P', P) is the vertex corresponding to an operator 0,

(N(P', S')10(0)1N(P, S)) = U(P', S')F(P', P)U(P, S), (3.41)

which is parameterized with corresponding form factors, e.g. Dirac and Pauli form

factors for the electromagnetic current operator. Excited state contributions have

generally similar forms with different Z-factors, vertices and higher energies Eexc > E.

The systematic effects related to them will be discussed in Sec. 3.4.

Equations (3.39,3.40) describe the evolution of an on-shell particle with energy

E = P 2 + My with the Euclidean time. After the Wick rotation, the Euclidean

4-momentum P must have an imaginary time component, resulting in

PEuc = (, -iE) (j, - p2 + MN). (3.42)

Note that the polarization matrix (iP + MN) constructed with Euclidean 7-matrices (3.43)

directly corresponds to the polarization matrix (P Mink + MN) constructed from Minkowski

4-momentum and 7-matrices,

(7,,)Euc _ -. 1,2,3 Mink, (- )Euc _ ( 4 Mink , (75Euc =-f 1 )a (1234Euc 5)Mink

(3.43)
.pEuc =( pEuc7 EUc) -'Mn F>)ik (' 0

-jMink . 5 Mlink) (34



3.3.2 Nucleon matrix elements

In order to extract nucleon matrix elements (3.41) we combine lattice nucleon cor-

relators (3.39, 3.40) into the usual ratio of three- and two-point correlation func-

tions [H+08], which we find useful to write in a convenient and illuminating new form

as follows. First, we define two ratios, a normalization ratio, RN, and an asymmetry

ratio, RA,

Cpt(T, T; P, P')

VC2pt (T, P) C2pt (T, P'

RN C2pt(T - r, P)C2pt (T, P') (3.46)
FC2p t (T - r, P')C2pt (7, P)

The physical matrix element is then given by the product

C-9pt(T, T; P, P') C2pt(T - r, P)C 2pt(T, P')

RC2pt(T P) C2pt(T P') C2pt (T - T, P')C 2pt (T, P) (3.47)
{T, r, T-r}-*oo ZSS' (UpP S)FPolU(P', S')) - (P', S' 0 P, S)

2E (E±+ MN ) -2E'( E'±+ MN )

The normalization ratio RN has the property that all the lattice-dependent overlap

factors Z for the ground state cancel out, which motivates its name, and in the case

of forward matrix elements P = P' it yields the final result for the corresponding

matrix element. The asymmetry ratio RA compensates the asymmetric exponential

T dependence of the three-point correlator, thus motivating its name. In the absence

of excited states, it would be equal to exp [-(E' - E)(r - T/2)] and in the forward

case, P' P, this ratio is trivial and equal to one, RA(T) ,s 1. In the general

case, P' -f P, this ratio is still identically one in the center of the plateau, r T/2,

and by construction possesses the following symmetry around the plateau center:

RA(T - T) = 1/RA(r).

The limits {T, -r, T - r} - oc should be taken to get rid of excited state con-

taminations. In practice, this requires adopting a value of source-sink separation T

large enough so that the excited state contributions to Eq. (3.47) are negligible com-



pared to the other sources of errors and using only points that are close to the center

of plateaus. We will explicitly explore the contributions of excited states to R0 in

Sec. 3.4, where the decomposition into the product RNRA will prove extremely useful.

Table 3.2: A set of momentum combinations satisfying 1pi < 1 for the high precision
form factors.

# (outlin) Q2 [GeV2 )
1 (0,0 000, 0,0, 0) (-1, 0, 0|-1, 0, 0) 0.0
2 (0, 0, 011, 0, 0), (-1, 0, 010, 0, 0) 0.203
3 (-1, 0, 0|-1, 0, 1) 0.204
4 (0, 0, 0|1, 1, 0) 0.391
5 (-1, 0, 0|-1, 1, 1) 0.395
6 (-1,, 000, 0, 1) 0.422
7 (0, 0,1 011, 1) 0.568
8 (-1,0 000, 1, 1) 0.626
9 (-1, 0, 0|1, 0, 0) 0.844

10 (-1, 0, 0|1, 1, 0) 1.048

In order to obtain the most precise information on the form factors, one may

constrain the in- and out- lattice nucleon momenta to have components 0, ±1. A list

of such momentum combinations (one representative for each group with respect to

spatial symmetry) is given in Table 3.2, together with the corresponding momentum

transfer values Q2 for the fine Domain Wall lattice with m, = 297 Mev. Higher

momentum components are subject to stronger finite lattice spacing effects, i.e., dis-

cretization errors and dispersion relation deviations from the continuum expression.

There is also an indication (see Sec. 3.4.1) that such states have larger excited state

contaminations.

3.3.3 Overdetermined analysis of form factors

The nucleon matrix elements computed in Sec. 3.3.2 are parameterized by linear

combinations of form factors. These form factors depend only on Lorentz-invariant

momentum transfer Q2  (B'_ p )2 . At any fixed Q2, there is usually a set of

nucleon matrix elements corresponding to different in- and out-momenta and/or op-

erator components, e.g., the four components of the vector current. Hence, for this



usual case of multiple matrix elements, one can extract form factor values by solving

an overdetermined system of equations. This is best demonstrated with the vector

current form factors, Dirac F1 and Pauli F2 ,

l'" (P', P) =1(Q 2) 2MNI' q F( -2 -q (3.48)

Transforming the above expression to Euclidean space and substituting it into Eq. (3.40)

and then Eq. (3.47) and neglecting the excited states, we obtain an overdetermined

system of equations for the form factors F1,2(Q2):

Aa1 F1 + Aa 2 F2 - Ru', (3.49)

where a is a composite index specifying the component of the current, "P", and the

initial and final nucleon momenta. The right-hand side in Eq. (3.49), R., is a set of

matrix elements evaluated using Eq. (3.47) from nucleon correlators computed on a

lattice.

We find the solution of the overdetermined system (3.49) from a linear fit, which

minimizes the functional

F = E (AnjF - R,))C-1 (A,, F. - Rl), (3.50)

where C,, is the estimation of the covariance matrix of R0 ,

1
CGo3  - (((RKRR)) - ((Ra))K(R))), (3.51)

N - 1

with the double brackets denoting an ensemble average. Using the covariance matrix

is crucial because the lattice correlation functions are often correlated.

Since the estimated covariance matrix may be ill-determined, it can introduce

uncontrollable errors into the extracted form factors. In general, a covariance matrix is

notoriously difficult to estimate reliably in statistical analyses. To make sure the linear

fitting gives correct result, we repeat the analysis with only the diagonal elements of



the covariance matrix C,,, which is equivalent to an uncorrelated linear fit. The

comparison of these two schemes is presented in Fig. 3-5, for a fine Domain Wall

lattice with m, = 297 MeV. We find that the form factors determined with the

uncorrelated fit ("uncorr") are consistent with the results from the correlated fits

(C"full" ).

The overdetermined system (3.49) contains a subclass of equations which have

an exactly zero left-hand side: A0 j = 0, i = 1, 2. The computed lattice value of

the right-hand side RQ is not required to be zero identically. In an uncorrelated

fit, such equations decouple and do not contribute to the solution. In contrast, the

correlated fit result depends on the r.h.s. of such equations because of the correlation

matrix, and thus utilizes the input from lattice calculations better. In addition, by

fitting the equations with a vanishing left-hand side, we check the symmetries of the

electromagnetic vertex (3.48) statistically. Figure 3-5 also shows the agreement of the

full overdetermined system solution ("full") and the system without zero left-hand

side equations ("non-zero"), confirming the consistency of our analysis.

1.14 1.2
avg-egmyvbm=16 avg-equivbin=16

1.12 avg-equiv, bin 65 - avg-equiv bin=64
full bin=16 1.15 full bin- 16

1.1 non-zero bin-16 non zero bin=16 -
uncorr bin=16 11ncorrbin=16

1.08

1.06 - 1.05

1.04.
1.020.95

g.T *0.9 -
0.98

0.96 -. 0.85

0.94 0.8
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

mom# mom#

(a) Dirac F form factor (b) Pauli F2 form factor

Figure 3-5: Comparison of the nucleon isovector form factors extracted from the
full overdetermined system, only nonzero equations, uncorrelated fit the system with
averaged equivalent equations (avg-equiv), for the momentum combinations listed in
Tab. 3.2. These types of analysis are also described in the text.

The dimension of the overdetermined system may be large, especially when many

momentum combinations are included. For example, the most precise point for

Q2 > 0 corresponds to the matrix element (0, 0, 0| V(0) 1,0 0). Including all VP



components, together with spatial rotations and reflections gives 48 equations, only

16 of which are nonzero. It is useful to combine all the nucleon matrix elements for

each fixed Q2 into equivalence classes based on the spatial (rotational and reflection)

symmetry. We adopted the following heuristic equivalence criteria 6 for three-point

functions:

1. The momenta of in- and out-states must be equivalent under the spatial sym-

metry.

2. The corresponding coefficients Aj in Eq. (3.49) must be equal up to an overall

sign.

3. The components of the current operator must be both temporal or both spatial

and both real or both imaginary parts of a matrix element.

Blocking the three-point correlators within equivalence classes is advantageous for

two reasons. First, this reduces the dimension of the system of equations (3.49) and

the covariance matrix we need to estimate, and we note that blocking strongly corre-

lated values improves the covariance matrix condition number. Second, we may block

the three- and two-point correlators separately before computing the ratio (3.47). Do-

ing so improves the ratio method in Eq. (3.47) by reducing the fluctuations of the

denominator because of the two-point correlators. We compare the form factor ex-

traction results using this method ("avg-equiv") to other methods in Fig. 3-5 and find

that this averaging does not introduce any systematic errors.

The main method we use to extract the final set of the form factors is the correlated

fit to the reduced (i.e., the system with no equations whose left-hand side is zero)

overdetermined system with blocked equivalent equations.

6 We did not classify the matrix elements according to the hypercubic lattice symmetry. Instead
we use the relations derived in the continuum theory. Thus these criteria may be thought of as
numerical means to improve the condition number of a linear system we need to solve.



3.4 Role of excited states

The lattice matrix elements may have systematic bias due to the excited and/or

unphysical oscillating states [SN07, LBO+08, OY08] present in' two- and three-point

correlators. The oscillating states appear because there is no transfer matrix for

the Domain Wall action [SN07]. To control it, we solve the overdetermined system

separately for each location of the operator and examine the plateau for the extracted

form factors. Examples are shown in Fig. 3-6. Because of the tuning of the quark

sources, the contributions from contaminating states to the matrix element plateaus

close to their centers are suppressed and very small.

1.2 I 1 1 I i2.5

1

0.8

-~0.6

0.4
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1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

T T

(a) Dirac form factor F (b) Pauli form factor F2

Figure 3-6: Nucleon isovector form factor plateaus for the lightest m, = 297MeV
ensemble.

Analyzing plateaus is usually reduced to observing that they have little curvature

from decaying "tails" from the source and the sink. This method has two problems.

First, there is no figure of merit that could tell us if a particular plateau is good

enough to be credible. Second, the form of the plateau provides little information

about contributions which are not tail-like but are suppressed by the total separation

between nucleon operators, ~ e--"T, T =ts k - tsrc.

A method to ensure that excited state contaminations present no problem is to

compute three-point correlators with a number of different separations T= tsnk -

tsrc. However, doing so requires proportional increase in the cost of the calculations.

In addition, the discrepancy between the results with different separations T can

1100 a (-1001010 :10 a0

F- -a 10 1 1-Q 1'1



be hidden by larger stochastic errors at larger T, and one will have to quote the

uncertainties from the calculation with the largest separation, thus making precise,

small separation calculations useless.

Instead of comparing different separations T, we analyze the lattice data at a fixed

separation to understand how big the excited contaminations are. In Section 3.4.1

we estimate such contaminations from a simple model and in Section 3.4.2 we fit the

plateaus directly.

3.4.1 Two-state model

To put quantitative bounds on excited state contributions to the matrix elements,

we study first the excited states in the nucleon correlators. The nucleon two-point

correlation functions have less stochastic variation and thus can provide very precise

information on the presence of states other than ground. For example, with our

current statistics the parameters of a fit with three states can be constrained very

well:

C2p (t; P) = Zo(P)eEot i+ Z(P)eElt + (1)tZosc(P)e-Eosct, Zo,1 > 0, (3.52)

where Z0 , Z 1, and Zscs denote the overlaps of the nucleon interpolating field with the

ground, the first excited and the unphysical oscillating states, respectively. Having

estimated the energy gap AEio(P) = E1 (P) - Eo(P) and the magnitude of the con-

tamination Z 1(P)/Zo(P), one can put bounds on the excited state contribution to the

matrix elements computed from the two- and three-point lattice nucleon correlators.

The ratio formula (3.47) for physical matrix elements has two factors: RVP -

RNRA. Excited states can potentially contribute to either one. First, we study the

asymmetry ratio, RA, defined in Eq. (3.46). As was pointed out above, this factor

compensates the asymmetric T dependence in RN, and in the absence of excited

states it would be equal to exp [-(E' - E)(r - T/2)]. Although this factor involves

different two-point functions, their excited state contributions appear to cancel each

other to a large extent, as shown in Fig. 3-7. Figure 3-7(a) shows the ratio of RA to



the exponential result in the absence of excited states

RA(T)

-(E'-E)(r -T/2)

C2pt (T-rP)C2pt (-r,P')
C2pt(T-/,P)c2pt(,P)

-(E'-E)(-r-T/2) ,

where (E' - E) in the denominator is determined by the best fit to RA in the range

3 < r < 6. The fact that this ratio is unity within 1% over the plateau in the range

3 < T < 9 indicates that excited state contributions are negligible.

Figure 3-7(b) shows the effective ground state energy difference

Furthermore,

JE eff~(t) log C2pt (t, P') C2pt (t, F) ]
_ C2pt(t + 1, P') C2pt(t + 1, P)

(3.54)

which in the absence of any excited state contaminants, would simply be 6E*ff(t) =

(E' - E). For comparison, the values of E' - E determined above are plotted on the

same graph, and agree nicely in the fiducial range 2 < T < 10. Thus, we neglect small

contaminations from this factor.
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Figure 3-7:
j' f 0 and

Illustration of remarkable
P = 0 two-point correlators.

cancellation between contaminations in all

Second, we estimate the contribution to RN defined in Eq. (3.45) assuming only

(3.53)



one excited state and no oscillating term7 :

C3pt(rT) C3pt(, (T + e-AEr Z{' -AE'(T-)

p 1 0 0010 rZ 0II

Z1Z 1 01'1 -AE'(T-r)-AEr

Z 0ZO 0 010 e

C3pt (T, T) C 3pt (T, T) x1 rR (
90 xi 1+ (" 6R'O (T -T)

C2 pt~, (T) Cp, (T) C2pt (T) C2pt (T) ' o' 0

0 - 1
+ 0 Rio(T)R'O(T - T) -(6R + 6R')-

00,0 2

(3.55)

where

6R(') (r) e -AE(')r

0

Z(') -AE(')T - [3R( 2 (3.56)

and we have expanded Eq. (3.45) assuming that 6R(' < 1. The value of the suppres-

sion factor SR(')(r) is shown in Fig. 3-8. Its values are estimated using parameters

Zo, 1, E1,0 from the fit using Eq. (3.52), and the errors are computed using the jack-

knife procedure. It is remarkable that 6R(')(T) falls off steeply with T. As a result,

its contribution can be easily detected and removed by fitting the plateau with

R0 ,r) Co + C1 e-AEr + C -AE'(T--r) (3.57)

From Fig. 3-8 one may estimate the last two terms in the contamination formula (3.55),

suppressed by 6R(' and 6Rio(r)OR'O(T - T). If one assumes further that the excited

state matrix elements are at most of the same order as the ground state matrix el-

ements, ':", < 1, the effect of the last two terms in Eq. (3.55) is well below 1%. It

is also worth noting that higher momentum matrix elements with p = (0, 0, 2) may

contain substantially larger contamination, as compared to lower momentum matrix

7 We neglect the contribution of oscillating states because they decay even faster than excited

states.



elements. Such matrix elements are excluded from our analysis.
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Figure 3-8: Suppression factor for the excited state contributions 6Rio(T) (3.56), as
estimated from fitting the two-point function.

3.4.2 Plateau fits

Finally, we compare the form factors extracted using the plateau average with those

from fitting the T dependence to Eq. (3.57). Because of the uncertainty in the two-

point correlator fitting parameters, we perform fits for a range of mass gaps AMN

0.4, 0.6 and 0.8 (see also Sec. 3.1.3), which bracket the fitted values from different

fitting ranges and fitting with or without the oscillating term in Eq. (3.52). The energy

gaps AE for the P # 0 states are computed using the continuum dispersion formula

E = MN + P2 for both the ground and the excited states. The result is statistically

independent of the mass gap value used (see Fig. 3-9) and is stable when fitting inside

the region 2 < T < 10. The complete consistency between conventional plateau

averages and results from the analysis with excited state contaminants separated

from the physical ground state contribution clearly indicates the absence of systematic

errors from excited state contaminants in our present results.

In addition, we also compare the results of the calculations with two different

source-sink separations, T = 12 and T - 14. We expect that the noise from the

coherent sink technique [B+ 101, if any, is worse for the larger T, for which an unwanted

adjacent sink is closer. Hence, in the case of T = 14, we have used independent

backward propagators to check that this is not a problem. The typical plateaus for
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Figure 3-9: Comparison of the isovector nucleon form factors extracted from plateau
averages and from fitting plateaus
fine Domain Wall lattice with m,

to the formula (3.57). Results are computed on a
= 297 MeV, with T = 12 and T = 14 Euclidean

time separations. Horizontal axis corresponds to momentum combinations listed in
Tab. 3.2.
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Figure 3-10: Comparison of F d plateau using coherent backward propagators with
T = 12 and independent backward propagators with T = 14. The momentum transfer
Q2 corresponds to (000|011).

T 12 and T = 14 separations computed on a subset of the fine Domain Wall

lattice with m, = 297 MeV ensemble are shown in Fig. 3-10 and they demonstrate

agreement within statistics. The results (plateau averages) for the vector form factors

for different momentum transfer Q2 with separations T

in Fig. 3-9 above.

12 and 14 are also compared

The agreement of results using two different separations and

techniques directly indicates that our method does not suffer from the systematic
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effects due to excited states or the coherent propagator technique [B+10].

Summary

The procedure summarized above enables construction of states on a lattice that re-

produce the nucleon ground state to the precision necessary for computing nucleon

matrix elements. We find out that nucleon excited states and states with wrong quan-

tum numbers can be suppressed by a combination of methods, and the parameters

can be tuned for each gauge configuration ensemble. In addition, we can estimate

and set an upper bound on the systematic errors coming from excited states. Finally,

we point out that development of additional techniques to create nucleon states on a

lattice may be required as lattice calculations approach the physical pion mass.
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Chapter 4

Renormalization of Lattice

Quark-Bilinear Operators

In this section we discuss how the nucleon structure observables calculated on a lat-

tice should be renormalized before comparing with experimental results. Generally,

it requires matching between lattice and continuum calculations quark correlators.

In Section 4.1 we discuss some general aspects of renormalization of lattice observ-

ables. We mention briefly the renormalization using lattice perturbation theory in

Sec. 4.1.1, and proceed to the nonperturbative renormalization methods in Sec. 4.2,

which is used as the main method in this work. We present the details of match-

ing between continuum and lattice observables in Section 4.3, and analyze possible

sources of systematic bias arising from this matching. The final numbers for lattice

renormalization coefficients are collected in Appendix C.

4.1 General aspects of renormalization

4.1.1 Linking lattice calculations and experiment

Lattice QCD is a gauge theory regularized by the introduction of a space-time lattice,

making path integrals finite-dimensional. Generally an operator constructed on a

lattice requires renormalization since their computed matrix elements are bare values



with fixed ultraviolet cutoff determined by the inverse lattice spacing At = a- 1. To

make comparisons to experimental values possible, one has to convert these values to

an appropriate renormalization scheme, which is usually the MS scheme at the scale

p2 = (2GeV) 2 widely used in phenomenology.

One possible approach to this problem is to compare perturbative calculations in

lattice and continuum theories. While the perturbation theory in continuum QCD

is well-developed and boasts calculations up to four loops, the perturbative compu-

tations in lattice QCD are much more complex. So far, most of lattice perturbative

calculations are limited to one loop. This limitation is especially bad because one

usually has a rather small ultraviolet cutoff; current lattice simulations are performed

with lattice spacing values a- 1 < 4 GeV. One might worry that the strong coupling

o's at this scale is large, and the convergence of lattice perturbation calculations is

expected to be slow, invalidating one-loop calculations. In addition, it is very hard

to estimate the systematic effects due to perturbative series truncation [B+10].

The convergence of perturbative renormalization factors may be improved by the

tadpole improvement of perturbation theory [LM93]. For example, the one-loop per-

turbative renormalization factors were computed for mixed action calculations [Bis05].

Below in this chapter we will compare the calculation in Ref. [Bis05] to the nonper-

turbative calculation (see Sec. 4.4).

4.1.2 Mixing of lattice operators

Under renormalization, different lattice operators can mix with each other. In this

section we discuss what consequences this mixing may have for our calculations and

how it can be avoided.

Firstly, there is physical mixing between flavor-singlet quark and gluon contribu-

tions to the nucleon structure observables, e.g., nucleon momentum, angular momen-

tum and structure functions. In the DGLAP evolution equations this corresponds

to the mixing of quark and gluon distribution functions, if the former are not pro-

tected by conservation laws'. For proper renormalization of the quark contribution

' This is not the case for the isovector components, e.g. u(x) - d(x) which is protected by the



to the nucleon structure the gluon counterpart which mixes with it must also be

computed. However, because of the stochastic noise associated with fluctuations in

the gluon field, the gluon contributions requires roughly the same computational re-

sources as disconnected diagrams and therefore have been neglected in this work.

Therefore, presently we have to neglect the mixing of quark and gluon observables.

The uncertainty because of quark-gluon mixing is relevant only to isosinglet quark

observables. Since the isosinglet channel has also uncertainty from the disconnected

contractions (see Sec. 3.2), we find it useful to concentrate on isovector observables,

which do not have such complications, and treat the results for isoscalar observables

as approximate.

Secondly, the lattice regularization reduces the rotational symmetry, as was dis-

cussed in Sec. 2.4. This results in irreducible "spin" representations of SO(4) breaking

up into a finite number of representations of the hypercubic group H(4) [G+96a]. If

operators of different spins and/or dimensions have components in the same H(4)

representation they can mix; this mixing is unphysical and a pure lattice artifact.

In our study, we compute the matrix elements of twist-2 operators, which are the

series of operators with growing dimension and spin. In the continuum, these op-

erators are protected from mixing because they belong- to different representations

of SO(4). On a lattice, however, the number of representations of the lattice "rota-

tion group" H(4) is finite, and the higher-dimensional operators will imminently mix

with lower-dimensional operators. The mixing coefficient is necessarily dimensionful

and determined by the lattice cutoff Aat = a- 1 and it diverges in the continuum

limit [BBCR95, G+96b] prohibiting reliable calculation of higher-dimensional oper-

ators on a lattice [G+96a]. Practically, we are limited to computing the twist-2

operators up to dimension d = 6. For the operators with d < 6 we have to choose

carefully the H(4) representations to avoid mixing [D+02, H+03].

In principle, it is possible to find the mixing coefficients nonperturbatively and

subtract the lower-dimensional contributions as was done in Ref. [G+05a].

isospin conservation.



4.1.3 Special cases of lattice renormalization

In some special cases the renormalization of lattice operators is not required or is

very simple. For example, in the computation of vector form factors one can use

the forward value of the Dirac form factor as the renormalization factor. Because

the vector current is conserved, the total charge gv = Fen(0) is determined by the

number of valence quarks. Thus, renormalizing the vector current gy Iq is trivial:

(N|sN = Fva ) (N I [q-y" q] atN), (4.1)

where Qvai is the total charge of the valence quarks in the state |N). Although we

say that the vector current is conserved, its particular lattice representation may

still have multiplicative renormalization. There is, of course, the true conserved

current generated by the U(1)v symmetry of the action, but it usually involves fermion

fields from several lattice sites, i.e., it is not site-local, and it is inconvenient for

numerical reasons. Instead of it, one usually employs the site-local current $274#

and renormalizes it with Eq. (4.1).

In the case of Wilson(-Clover) fermions, the conserved current has the form

Vwilson + ___U_' -2 #+ (4.2)

for which one may directly check using the equations of motion for 7P following from

Wilson(-Clover) action (2.19,2.20) that its divergence is zero,

(V -V,) =3 [Vxl - V2 ,,] = 0, [eqn. of motion] (4.3)

and the correlators with this current operator satisfy the corresponding Ward identity.

Using the Ward identity for the conserved current, one can show that Zv = 1 in the

lattice gauge theory with Wilson(-Clover) fermion action. As we will see below in

Sec. 4.2, in the nonperturbative renormalization method one can extract the quark

field renormalization Zp using the fact that the conserved current is not renormalized.



Another important case of renormalization is the 5D partially-conserved axial

current of domain wall fermions. As we have seen in Sec. 2.3.3, one can construct the

axial current A, which is partially conserved. This current should also satisfy the

corresponding Ward identity and have no renormalization, ZA - 1. However, because

of an effect of the residual mass, this equality is not satisfied identically [Sha07). In

Ref. [A+08a] this effect was analyzed and it was found that |ZA - 11 < 1%. For our

current level of precision of results discussed in Chapter 5 such accuracy is definitely

adequate.

4.2 Nonperturbative approach to renormalization

The main idea of nonperturbative renormalization is to compute the Green functions

of operators and quark fields both in the continuum and lattice field theory with

the same renormalization condition. Since the MS scheme is tied with dimensional

regularization and cannot be realized on a lattice, a special (modified) momentum

subtraction-like scheme is used for transformation from the lattice to the continuum.

This scheme, called RI'-MOM [MPS+95), has been well described in the litera-

ture [MPS+95, B+02]. In addition to fixing the external bare quark and operator

momenta, one fixes the Landau gauge. Both these conditions are easy to implement

on a lattice. The matching coefficients between RI'-MOM and MS schemes in the con-

tinuum field theory have been computed with 3 loops of perturbation theory [Gra03a].

Thus, the final matching between the operators renormalized in RI'-MOM and MS

schemes is straightforward, and will be discussed in Sec. 4.3.

In this section we summarize the nonperturbative renormalization method and

illustrate it with the calculations on a Domain Wall ensemble configurations.



4.2.1 Rome-Southampton method

First, we summarize our conventions for the renormalization coefficients:

OR(p) = Zo(p, a)O1at (a), (4.4)

V$ -- a) a(a) , (4.5)

m =Zm(p, a)mat (a). (4.6)

Note that these definitions agree with [Gra03a, Gra06] for operator and renormal-

ization constants Zo. This choice also agrees with the conventions adopted in the

initial [MPS+95 and subsequent works on the nonperturbative renormalization in

lattice QCD.

To find the nonperturbative renormalization constants for lattice operators, one

has to compute on a lattice their amputated correlators with quark fields following

the prescription of RI'-MOM-scheme. In this scheme, the in- and out-quarks have

the same off-shell momentum 2 p - p' determining the scheme scale, [p2 
= p 2. It is

understood that the scale is in the window A2CD < 2 < At a 2 because, on one

hand, the scale must be above the non-perturbative regime and, on the other hand,

low enough to suppress discretization errors. As we will see in Sec. 4.4, sometimes

such a window does not exist.

2 Note that in such a scheme the operator insertion momentum is zero. This may lead to ill-

behaved correlators, for example, pseudoscalar density qYq [S+09). In this work we neglect such

effects because we renormalize only the twist-two Wilson operators.



One proceeds by computing the following Fourier-transformed correlators:

Slat(X, p) = (qxgy)eP = ($ I(x, y))e*Y, (4.7)
y y

1 1

Sla()~~qxj2(x i(~0(x, y),iPY) i(4.)

Ar"(p) = (Sla) (p)Gr"(p)(Sl4)l'(p), (4.10)

where A la is the amputated Green function for off-shell quarks. The propagator

z <-- eipx with a plane-wave source is reused to compute both correlators (4.8,4.9). In

such a computational scheme we have to compute a separated propagator for each

momentum p, however the gain in statistics from the volume averaging is so large that

20-50 gauge configurations are sufficient to achieve negligible stochastic variation. In

addition, the correlators with non-site-local operators can be computed.

Remembering the definitions in Eqs.(4.4-4.6), for a simple site-local operator Or=

qFq we obtain the following renormalization condition:

Zr i e 14 Tr [Alrt(p) - F]Zrat (P) = ) r. (4.11)
Zo 'r F Zr Tr [F - F]

For a multi-component operator Or,,i = griq (e.g., the vector current with {Fi} = {}
or any other lattice symmetry multiplet) there is a straightforward generalization that

averages over current components,

Z lat _ Tr [Alrt(p) . Fi
(p) = IIr = ' (4.12)

Zr _ETr [Fi - Fj]

4.2.2 Operators with derivatives

Operators with derivatives require more complicated treatment than Eq. (4.12) for

a few reasons. First, a lattice vertex function (4.10) may have a correction with



different (non-Born) spin structure. For example, the Green function of the one-

derivative operator On-2 =qYy{ 1iDq can have two possible structures [Gra03b],

[A 2]vap)1= ) (p2) - [AT]{I + 1j(12 (2) - [AT(]{ ,, (4.13)

where the tree-level structures are

[AIj T(2 -f 1 (.4

In perturbation theory [GraO3b], H(12) appears only as an 0(a) finite correction. One

has to solve the equation system (4.13) to project on the correct vertex structure and

extract the relevant renormalization factor 11(). Similar mixing may occur for other

operators, e.g., the n = 3 twist-two operator can have two terms while transversity

operators can have tree terms. The corresponding spin structures are given in the

Appendix C.1.

The second problem is that the components of the same tensor on a lattice may

renormalize differently if they belong to different H(4) representations. The running

with the scale is the same and should agree with perturbation theory, but the match-

ing coefficients may differ. We solve this problem by extracting separate matching

coefficients for each representation. We renormalize components of each representa-

tion separately before substituting them into the right-hand side of Eq.(3.49) or its

analog to extract form factors.

Equation (4.12) should be modified to extract the relevant components of operator

vertices (4.13). We introduce a "scalar product" in each particular H(4) representa-

tion,

Tr [Ai A] = (Aa, A[) (4.15)

where i enumerates the elements of a given H(4) irreducible representation. Using



this product, one can write the equations for I(4) as follows:

AabIIb =A T(a), Alt), (4.16)
b

where Aab - T(a), AT(b) (4.17)

The linear equations (4.16) are fully determined and can be solved directly.

Finally, in the spin structure of operator (4.13), the derivative gets replaced with

the quark field momentum. It is not clear what momentum, lattice P, = sin(k1 ) or

continuum p, = k,,, one should use to reproduce the spin structure (4.14). On one

hand, the discretization of the derivative in the operator is a hint that the lattice

quark momentum P, = sin(kg) should be used in its Fourier transformed vertex; on

the other hand, the quark off-shell momentum,

S Tr [,(Slat (p))l] , (4.18)
t'=4Nc

is more natural for the quark polarization matrix P and thus is an additional vector

not necessarily equal to P that can generate other terms in addition to those in

Eq. (4.13). Because we have to match the perturbative RG behavior, we have to use

large momentum p > AQCD comparable to the lattice cutoff leading to the sizable

difference between pw, P, and p, representing discretization effects. We will study the

"quark polarization" momentum p, in Sec. 4.2.3. Unfortunately, we cannot resolve

this issue unambiguously, and we use an extrapolation procedure to get rid of possible

discretization effects (see Sec. 4.3).

4.2.3 Quark field renormalization

A traditional way to compute the lattice quark field renormalization is from the

inverse of a lattice quark propagator [G+101,

,tr [p(aS )- (4.19)
Z,() =12 El pl



where P, = sin(kg) is the lattice momentum and k, is the dimensionless lattice wave

number. This method is based on the assumption that the lattice quark propagator

has the form

(aSiat (p))-i = Zg (i + ypp, + Zmm) + 0(a 2 ). (4.20)

However, as we will see below, this is not necessarily the case.

To explore the dependence of the quark propagator on the quark wave number kA

and the scale (ap)2  k2 we study the numerical value of &, defined as

Z1 = Tr[-,(aSiat)-1 (4.21)
12z'

Because the renormalization constant Z also depends on the scale p 2, the Pi value

itself cannot be isolated without additional data. However, using different orientations

of the wave vector ki we can still draw conclusions about the relation of Pi and ki.

In Figure 4-1 (a) we show the ratio Zp (p)P/kj for different momentum components

and values of the total momentum k2. From this ratio at fixed ki we can extract the

running of the quark field renormalization ZO(p). We observe that the Zp running

deviates strongly from both the perturbative running and the non-perturbative run-

ning computed using Ward identities, which are also shown on the figure. In addition,

it is clear that the naive continuum relation pi = .1ki does not hold and there is no

linear relation between Pi and ki.

In Figure 4-1(b) we explore further the relation between i and ki. In the double

ratio the field renormalization Zp cancels, and we can test our expectations

for the relation between Pi and ki against the numerical results. First, Figure 4-1(b)

indicates that the lattice momentum Pi = i sin(aki) # Pi and the assumption (4.20)

is not correct. Indeed, the plotted values of the double ratio disagree with horizontal

lines representing s /8"7  . Finally, we observe small (~ 1%) deviations of the

double ratios from being horizontal. This fact indicates that there is no unique

dependence between pi and ki, and Pi also weakly depends on the total momentum

k2

Note that each branch in both Figures 4-1(a) and 4-1(b) corresponds to varying
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wave number components kj, j # i, thus demonstrating that these branches are

universal and that Pi depends on kj, j # i only through the total momentum k2 .

This dependence cannot be represented through the common factor ZP(k 2 ), and the

general form of a lattice quark propagator is:

(aSlat(p))-l = Z(k2)(i -yap,(ki, k2) + Zm(k 2)m) + O(a2), (4.22)

where the dependence of P,, on k2 is weak but not trivial. Whether this can be

understood as an O(a2) effect is not clear.

Motivated by our findings above, in this work we extract the quark field renor-

malization from vertex functions of operators which satisfy Ward identities and are

not renormalized, instead of Eq. (4.19). In the case of domain wall fermions, we use

the local axial current operator,

A =Op qY5q (4.23)

Because it is only a discretized version of the true partially conserved axial current

A, it is renormalized with a scale-independent factor ZA/ZA =(IAoIQ) and ZA - 1(irjAoIJ2)- 1

(see also Sec. 2.3.3, 4.1.3) also determined from lattice calculations. In the case of

Wilson fermions, there is no conserved axial current, and we have to use the point-

split vector current (4.2) with Zv - 1. In both cases, we extract (eliminate) the

quark field renormalization [B+02, B+04] ZO as

ZV = ZA,VYJA,V, ZO = Z A,v (4.24)
'H 0

4.2.4 Vector and axial currents renormalization

Since Domain Wall fermions possess good chiral symmetry, it is instructive to compare

the vertices of local vector and axial vector currents HA and Hv. They are expected to

agree as p 2 -> oc and chiral symmetry breaking effects become less relevant. Figure 4-

2 shows HA,v and their ratio for three quark masses and extrapolation mq -+ 0. The
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Figure 4-2: Comparison of vector and axial vector renormalization constants in the
Domain Wall calculations.

main working region, as we will see below, will be limited to p 2 > 6 GeV 2 or (ap)2 y 1

In Section 4.3.3 we will implicitly use ZA -(11A + Uv) as an estimate of Zp(p), and

from Fig. 4-2 its error is

6ZO 6(UIA -|-Uy) 11A - Uy|~ ~ < 0.25% (4.25)
ZI HA + HV IA + HV

because the relative error in ZA is negligible.

Figure 4-3(a) shows ratios of renormalization constants for helicity-dependent and

helicity-independent operators. Because of chiral symmetry, these coefficients must

be equal. All ratios in Fig. 4-3(a) are very close to one indicating that chiral symmetry

breaking effects in the renormalization are negligible. In the following sections, both

helicity-independent and helicity-dependent operators will be renormalized with the

same sets of coefficients.

4.3 Matching to the MS scheme

In order to extract the coefficients which transform the lattice operators to the MS

scheme, we have to

1. Extract the scale-independent (SI) factors between the lattice and RI'-MOM-
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tion coefficients for Wilson twist-2 operators.

renormalized perturbative Green functions.

2. Transform the RI'-MOM to MS operators.

3. Convert the MS values to our reference scale yo2 = (2 GeV) 2.

In this section we summarize each of these steps in detail. In addition, in Sec. 4.3.4

we carefully analyze the systematic errors arising from both lattice and perturbative

calculations involved.

4.3.1 Perturbative running of renormalization factors

The 3-loop perturbative anomalous dimensions and matching coefficients between MS

and RI'-MOM are given in [Gra03a, Gra06]. For consistency, we continue to use our
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conventions in Eq. (4.4-4.6)3.

We integrate the differential equations for the anomalous dimensions and the

running of the coupling constant

do'das s2 M(as) < 0,d In y

d In Z(chem)scheme)

x 2  (cheme)
d hn p_2- -7 (s

(4.26)

(4.27)

with initial conditions Zx(po = 2 GeV) = 1. Such starting values are convenient for

eventual rescaling of the operators to the reference scale pto = 2 GeV. The results for

the RI'-MOM scheme are shown in Fig. 4-4. The -y and # functions are computed

with Nf = 3 flavors to correspond to the simulated lattice QCD with Nf = 2 light +

1 heavy flavors. Note also that the running of as is identical in MS and RI'-MOM

schemes [Gra03a].

pt [GeV]

Figure 4-4: Perturbative
scheme.

3-loop running of renormalization coefficients in the RI'

Since the perturbative renormalization factors depend on as its uncertainty can

contribute to final results. Therefore, we describe in detail how the as(po) value

is obtained and where its uncertainty comes from. We take the global fit value

3 Note that our definitions for Zm, and Z, disagree with [CR00] for the mass and wave function

renormalization factors.
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asis(mz) [Bet09] and integrate the /3-function with Nf 5 in mb < p < mz and

with Nf = 4 in mc < p- < mb to find a'(me) Then, aMS,Nf =3(2 GeV) = 0.295(5)

is found by integrating the 7-function with Nf = 3 in m, < p < po to mimic the

simulated QCD. The values of quark masses used as matching thresholds are taken

from Ref. [A+08b]:

mc = 1.25+0 0 GeV,

mb = 4.20+0- GeV,

mz = 91.188 GeV,

(4.28)

(4.29)

(4.30)

(4.31)as(mz) = 0.1184 ± 0.0007

The variation of a MS,Nf:
S :3(2 GeV) corresponding to the above uncertainties is

a = 0.2956-.0 -(c0(m7 (a nz)) (4.32)

For the rest of this work, the coupling constant is fixed at as(2 GeV) = 0.295(5).

4.3.2 Extraction of scale- independent factors

The scale-independent (SI) matching coefficients between the operators in the lattice

and perturbative calculations are extracted by extrapolating the ratios

Zo ) lat
ZA p2 12

with [p2 - 0, where in the left-hand side the "anomalous" [[-dependence of renormal-

ization coefficients should cancel between Zat and ZRI', the ratio ZO/ZA eliminates

the field renormalization Zp (4.24) and the second term ~ (ap)2 in the right-hand

side represents finite lattice spacing effects.

4 The correct procedure is to match some scheme-independent observable [CKS97] instead of a
scheme-dependent coupling constant; however, the corresponding change in as from matching at mb
is only 0.2% [Bet09], which is negligible compared to the uncertainty in as itself, nonperturbative
matching coefficients, and the lattice scale determination.
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The numerical values (4.33) and their extrapolations are shown in Fig. 4-5 for the

Wilson twist-2 n = 2 operator and in Fig. 4-6 for the n = 3 operator. Extrapolation

is linear in (at)2 in the region p 2 > 6 GeV 2 . Judging from the spread of points

the systematic error of estimating Zlat/Zpert is below 0.2% for n = 2 and below 1%

for n = 3 operators. The results and their estimated uncertainties are collected inl

Tab. 4.1.

In addition, we attempt to trace the origin of the discretization errors with a
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Table 4.1: Results for the renormalization factors Znal (4.35) in the Domain Wall
calculations.

O H (4) Zs' (4.33) at pert Z Zinal
7-(3)I 

2 GeV

7(3) 1.708(4) 0.0020 0.0002 0.8414(42) 1.070(6)
q{,zDL,}q 7(6) 1.749(2) 0.0014 0.0002 0.8414(42) 1.096(6)

r(4) 2.598(17) 0.0064 0.0002 0.7496(68) 1.450(17)
q',zDLiDq 7(8) 2.502(8) 0.0033 0.0002 0.7496(68) 1.397(14)

simple model, Testing different models of discretization effects is plausible because

of the extremely small stochastic variation of nonperturbative quark correlators with

volume sources. An example of quantity which characterizes the rotational symmetry-

breaking on a cubic lattice can be generated by higher orders in the expansion of the

lattice momentum , (cf. Ref [B+08a]). Since the magnitude of the effect is not

known, it is preferable to normalize this quantity so that it is dimensionless:

Ca2 k ,
2

p2
Adiscr 2

(e.g., from p, - I sin(ak,,) k, - k )

- k 2 kN 11

((2)2 {2})2  (k2)2

wh (k " " it

where kO' 1 Zk>r

We plot this quantity (vertically offset and scaled for convenience) in Fig. 4-5 and

compare it to the irregular behavior of Zlat/ZPert at small momentum k2 . We observe

that it resembles the plot for the (6) (off-diagonal) irreducible representation, while

we see no resemblance with the (3) (diagonal) representation.

4.3.3 Final renormalization coefficients

In this section we summarize the results for overall renormalization constants relating

lattice operators and operators normalized at to = 2 GeV in the MS-scheme,

0 Ms(2 Gev) =Zinal 0 iat (4.35)
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for the quark-bilinear operator studied in Chap. 5. The overall renormalization con-

stant is computed as the combination

Znai =Zia (Zr) Zo lat ZR'(po) )(4.36)
OG A 0)Z Zl(p (a/t)2__o'

scale-independent ZS'

where the first factor ZA = 0.74470(6) was determined in Ref. [S+10], the second

factor is a 3-loop conversion function [CRI' (aS(IO))] 1  (ZS/ZRI'), 0 and the third

factor is extracted as described in Sec. 4.3.2. The final results for renormalization

coefficients in the Domain Wall calculations are collected in Tab. 4.1. Column elat

shows fractional error from lattice calculations, and column eper shows fractional

error from perturbative anomalous dimensions. The latter will be discussed in detail

in Sec. 4.3.4. The error from the conversion function CRI'(cs([bo)) is given below

in Tab.4.2. All the uncertainties including 6Zp (4.25) are added in quadrature and

shown in the last column Zinal

4.3.4 Systematic errors

There are several different sources of uncertainty in the determination of non-perturbative

renormalization factors. We study each source separately to find out which has the

most influence. First of all, we note that the stochastic fluctuation of the lattice

correlators is negligible, compared, for example, to the nonlinearity of (Zlat/ZR.I') in

(ap)2 , and it will not be discussed further. The other sources of errors fall into the

following categories:

" irregular (nonlinear) dependence of (Zlat/ZRI') on (at)2 ;

* uncertainty in the strong coupling as;

" perturbative series truncation.

Note that the uncertainty in as and the truncation of perturbative series con-

tribute to Z.nai in two distinct ways. First, the variation in the slope of (Zlat/ZRV)
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vs (apt) 2 leads to the variation in the extrapolated value Zs' 4.33. Second, the con-

version coefficients C = ZRI'/ZMs computed to the same order as the anomalous

dimensions are additional multiplicative factors in Znal. Contributions from each

source are collected in Tab. 4.2. Rows Z"' show the uncertainties from the extrapo-

lation (ap)2 -> 0 because of RG running, and rows Cs' show the uncertainties of the

conversion functions. The columns indicate the contribution from the uncertainty of

as as well as the series truncation at O(av) and Q(a3) compared to O(a4)'.

Table 4.2: Comparison of different sources of uncertainty contributing to the deter-
mination of lattice renormalization factors. Quoted numbers are fractional errors.

O -as = 0.005 O(ac) vs O(as) O(a4) vs O(as) ZNJ=4 /Ng=3

+0.00004 0.00015 10 1.0026

Cqy piDq ±0.0042 -0.028
ZtY iD~iDpjq 0.00023 0.00002 1.0041

Cqy{,iDviDP q ±0.0068 -0.046

It is interesting that the highest-order terms in Cc that come from the O(a3)

terms in the perturbative Green functions and are neglected in the anomalous dimen-

sions contribute to the renormalization coefficients at a few percent level. Potentially,

the perturbative series truncation has the largest effect on the renormalization coef-

ficients, although it is hard to estimate properly its uncertainty.

We estimate separately the dependency of the matching coefficients on the number

of flavors in the perturbative calculations. This is relevant because lattice data are

matched at all scales using Nf = 3 QCD, while the QCD phenomenology may take

into account the number of active flavors. To estimate such discrepancies, we compare

IS anomalous dimensions integrated in the region mc < pt < pto with NJ = 3 and

Nf = 4 flavors in the last column of Tab. 4.2. In all cases the difference in the final

renormalization factors remains below a fraction of a percent (see Tab. 4.2).

5 In the comparison of the series truncation at O(a) and O(a.) only the QCD #-function gets
changed because only 0"S is known up to four loops.
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Figure 4-7: Determination of scale-independent renormalization coefficients in the

Hybrid ensemble. See explanations in the text.

4.4 Comparison of perturbative and nonperturba-

tive renormalization

In this section we briefly summarize the effort to compute the non-perturbative renor-

malization for the Hybrid ensemble. We have applied the strategy described in Sec. 4.2

and 4.3 to this ensemble. The preliminary results are shown in Fig. 4-7 In the Hy-

brid calculations the lattice spacing a = 0.124 fin is substantially larger than in the

Domain Wall calculations. Therefore, we expect larger discretization effects in all

our calculations. In addition, as discussed in Chap. 2, the mixed action does not

such good synmnetry as the domain wall fermion action, for which the symmetry

automatically reduces the discretization errors to 0(a 2).

In Figure 4-7 we show the scale-independent ratio (4.33) for the n = 2 Wilson

operator (1.19) in r(3) (diagonal) and r(6) (off-diagonal) representations, as well as

the n = 3 Wilson operator (1.19) in T(') (diagonal) and r(4) (off-diagonal) representa-

tions. The straight lines show extrapolations according to Eq. (4.33) It is clear that

the systematic uncertainty is so large that there is even no approximate plateau, in

contrast with Figs. 4-5 and 4-6. Thus, we cannot use such renormalization constants

for our calculations. One possible way to amend large discretization effects is to sub-

tract the 0(a 2 ) corrections computed in lattice perturbation theory [G+10]. However,
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such calculation is beyond the scope of the present work.

Instead, we use the perturbative renormalization constants Zert computed in

Ref. [Bis05]. In addition, because the quark field renormalization enters implicitly all

the operator renormalization factors, we correct them as [H+08, B+10]

Ziat
ZO = ZPert A (4.37)

where Zlt is determined from the 5D partially-conserved axial current on each gauge

configuration ensemble and Zpert = 0.964 was computed in Ref. [Bis05].

Table 4.3: Comparison of perturbative and non-perturbative renormalization factors
for Hybrid ensemble.

O H (4) Zpe""(Alt) [H+08] 71-0- Z(po) ZNPR(

[-"(3) 0.962 1.047 1.139
q[ (6) 0.968q T -8/3

i0.968 1.054 1.174

T2"4r 0.980 1.053 1.268
r( 0.982 1.055 1.259

In Table 4.3 we summarize the perturbative renormalization factors at the lattice

scale a =b = 1.591 GeV as well as the final renormalization factors at the reference

scale y = 2 GeV corrected with Eq. (4.37) using the massless limit axial renormaliza-

tion constant Z>' = 1.075 at (mq + mres) -+ 0.. The transformation between scales

follows from the formula [BisO5]

Zpert = + .162 F ('O log (a2
[t

2 ) (Blat -Bus)) (4.38)

where Biat'S are the finite parts of loop diagrams and the I-loop coupling evaluated

from the lattice plaquette calculation is 92c = 1/53.64 [Bis05].

In the last column of Tab. 4.3 we collect the estimates of renormalization factors

computed using extrapolations shown in Fig. 4-7. The comparison of fully non-

perturbative and perturbative renormalization factors provides a way to estimate the

uncertainty of computing the twist-2 operators on a lattice because of renormalization
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in Hybrid calculations:

n = 2 Zo/Z ~ 6%,

n - 3 6Zo/Zo 10%.

Summary

In this section, we have calculated the renormalization constants for the twist-two

lattice operators of rank n = 2 and n = 3 nonperturbatively for the Domain Wall

lattices. We use the standard procedure described in the literature on lattice opera-

tor renormalization, which provides precise determination of lattice renormalization

factors even with small statistics.

We repeated a similar calculation for the Hybrid lattices, for which perturbative

calculation of renormalization constants previously existed, to compare the lattice and

analytic determinations. Nonperturbative renormalization is problematic because the

scale window AQCD < p < a I nay not exist or very narrow. Nevertheless, the

results of the perturbative and lattice calculations agree within ~ 10% and allow us

to estimate the systematic error because of the renormalization of lattice operators

in the Hybrid calculations.
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Chapter 5

Select Results

Equipped with the methods summarized in the previous chapters, we can compute a

wide array of nucleon structure observables. To demonstrate how these calculations

compare to experiments, in this section we present our results, including vector form

factors and charge/magnetization radii in Sec. 5.1 for isovector and 5.2 for isoscalar

components, axial charge and form factors in Sec. 5.3, quark contributions to nucleon

momentum and spin in Sec. 5.4, and generalized form factors in Sec. 5.5. In addition,

we can assess the systematic uncertainties of our calculations by comparing the results

obtained using different lattice QCD discretizations listed in Appendix A.

Since our calculations are done with pion masses m, > 300 MeV we use chiral ex-

trapolations to obtain physical observables at the physical pion mass m - 140 MeV.

Generally, there is little understanding of whether a particular formulation of baryon

ChPT is adequate for the range of pion masses we are working with. In addition,

the applicability of different formulations of baryon ChPT may depend on nucleon

structure observables in question. Throughout this section we will use the following

baryon ChPT formulations:

" CBChPT , [covariant] baryon chiral perturbation theory, in which baryons and

mesons are relativistic [GSSS8];

" HBChPT , heavy baryon chiral perturbation theory, additional expansion in

m,-/MN with consistent power counting demonstrated in Ref. [BKKM92];

111



* HBChPT+A , heavy baryon chiral perturbation theory including the A(1232)

degree of freedom, also called Small Scale Expansion (SSE) [HHK98].

For completeness, we summarize the details of these formulations in Appendix D.

Although we perform full QCD simulations with dynamical Nf = 2 + 1 flavors, in

all our ensembles the s-quark has a fixed mass near its physical value. Therefore, we

have no means to study how the chiral dynamics changes with the s-quark mass and

constrain the ChPT parameters related to the SU(3)f symmetry breaking. For this

reason, we resort to SU(2)f chiral perturbation theory to analyze our data.

5.1 I =1 vector form factors

In this section we present our results for the isovector Dirac and Pauli form factors and

the corresponding r.m.s. radii. After discussing the momentum transfer dependence

of the form factors, we compare the chiral extrapolations for the nucleon radii using

the SSE (HBChPT+A ) and covariant baryon chiral perturbation theory (CBChPT

5.1.1 Momentum transfer dependence

As will be discussed in the following section, ChPT describes the Q2 -dependence

of the form factors for values of Q2 much less than the chiral symmetry breaking

scale (typically of the order of the nucleon mass). Lacking a model-independent

functional form applicable in the large-Q2 region, we study the Q2 dependence using

the phenomenological dipole and tripole formulas. Although there is no theoretical

understanding of this fact, the dipole formula (5.1,5.3) is used to fit experimental

results for the form factors. We also use fits to the tripole formula to show that

the dependence of the extracted radii and the anomalous magnetic moment on the

functional form is irrelevant at our level of precision.

The Dirac form factor is fixed to 1 at Q2 = 0 under our renormalization scheme,

and we use the following one-parameter dipole or tripole formula to describe the Q2
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dependence:

F((Q) Q2)

1 + _ 2

1

(1 + AT)3

(one-parameter dipole),

(one-parameter tripole).

The Pauli form factor at Q2 = 0, F2(0), cannot be measured on the lattice directly.

We thus fit the data using the two-parameter dipole or tripole formula,

F( F2 (0)
( 1+ D 2 )

F2 (Q2) =
F2(0)

(1 + A02)

(two-parameter dipole),

(two-parameter tripole).

We are interested in mean squared Dirac and Pauli radii, which are defined by the

slope of the form factors at small Q2:

F1,2(0) 1 -

and are related to the pole masses by

for the dipole fits, and

(r

for the tripole fits.

- (ri,2) 2 Q2 +
6

AD 2 ,

Note that results at different Q2 from the same ensemble may be highly corre-

lated [B+08b], therefore we perform correlated least-X2 fits to the data. We investigate

the extent to which the dipole and tripole Ansaitze describe our data and the stability

of the fits by varying the maximum Q2 values included in the fits.

In Table 5.1 we show the fit results for Flj d(Q2) using the one-parameter dipole

and tripole formulas in Eqs. (5.1) and (5.2) for the fine Domain Wall lattice with
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C(Q4)]
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Table 5.1: Comparison of different fits to the isovector Dirac form factors Ff-d with
different Q2 cutoffs for the fine Domain Wall lattice, m, = 297 MeV.

Dipole Tripole

QMax [GeV2  2 /dof M3 [GeV 2 /dof M- 2 [GeV -2]
0.3 0.2(6) 0.670(22) 0.2(6) 0.436(14)
0.4 0.3(6) 0.659(19) 0.8(9) 0.424(12)
0.5 0.5(6) 0.653(17) 1.0(9) 0.418(11)
0.6 0.4(5) 0.652(17) 1.0(8) 0.417(11)
0.7 0.5(5) 0.649(17) 1.2(8) 0.414(11)
0.9 0.9(7) 0.638(16) 1.9(1.0) 0.404(10)
1.1 1.4(8) 0.632(16) 3.0(1.1) 0.398(10)

m, = 297 MeV. Comparing the X2 /dof for the dipole and tripole fits, we see that

the dipole fits are slightly preferred when larger Q2 values are included in the fits.

However, the Dirac radii determined from both the dipole and tripole fits agree within

errors. In general, the dipole form describes the data reasonably well throughout the

whole Q2 range. We see the general trend that when large Q2 points are included in

the fits, the / 2/dof becomes slightly worse, while the fit parameters do not depend

significantly on the choice of the Q2 cutoff, indicating that the dipole fits are stable.

Table 5.2: Comparison
different Q2 cutoffs for

of different fits to the isovector Pauli form factors F L-d with
the fine Domain Wall lattice, m , = 297 MeV.

Dipole Tripole

Qnax [GeV2  2 /dof F2 (0) MD2 [GeV -2] 2 /dof F2 (0) M 2 [GeV-2]
0.5 1.2(1.3) 2.89(12) 0.820(70) 1.2(1.3) 2.85(11) 0.505(40)
0.6 1.1(1.1) 2.92(11) 0.846(63) 1.0(1.0) 2.87(10) 0.516(36)
0.7 0.9(8) 2.93(11) 0.847(60) 0.8(8) 2.87(10) 0.513(33)
0.9 0.9(8) 2.98(9) 0.888(46) 0.7(7) 2.89(8) 0.526(15)
1.1 0.8(7) 2.97(9) 0.881(41) 0.9(7) 2.85(8) 0.509(21)

We do the same comparison for F2d(Q2) as shown in Table 5.2. Judging from

the X2/dof values, we do not see significant differences between the dipole and tripole

fits. Since the Pauli form factor is not constrained at Q2 = 0, including larger Q2 in

the fits does not seem to affect the quality of the fits significantly. The fit parameters

F2 (0) and MD,T prove rot to be affected as well.

As an example, we show the dipole fit curves with a Q2 cutoff at 0.5, 0.7 and
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Figure 5-1:
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Results for F,2d(Q2) at m, = 297 MeV and the dipole fits with three
different Q2 cutoffs (top panels). The ratios of the lattice results for Fd to the
dipole fits using Eq. (5.1) (three bottom panels).
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1.1 GeV 2 for the m, = 297 MeV ensemble in the top panel of Fig. 5-1. To show

the quality of the fits more clearly, we plot the ratios of the form factor data to the

dipole fit with the Q2 cutoff at 0.5 GeV2 in the bottom three panels of Fig. 5-1.

The error bands reflect the jackknife errors in the dipole fit parameters. We see that

although the data included in the fits can be described reasonably well by the dipole

formula with discrepancies that are generally within 2 to 3 standard deviations, the

clear systematic tendency indicates that the dipole Ansatz is not a good description

of the data over the whole momentum transfer region. In particular, for Fl-d, the

precisely measured points in the region of 0.2 GeV2 are systematically lower than

the dipole fit, whereas at high Q2, the lattice data are systematically higher. For

Fuj , the high Q2 lattice data are systematically lower than the dipole fit. This is

consistent with the empirical fits to the experimental data in Refs. [FW03, AMT07],

where the phenomenological corrections to the dipole form are negative in the region

of 0.2 GeV 2 and positive at about 0.4 GeV 2. For comparison, we also plot the dipole

fits with Q2 cutoffs at 0.7 GeV 2 (dashed line) and 1.1 GeV2 (dotted line) relative to

the 0.5 GeV 2 dipole fit (solid line). The differences between different Q2 cutoffs are

small, indicating that the fits are stable.

It is worth noting that the Dirac and Pauli radii, rj and r', and the anomalous

magnetic moment, rv, are defined in the Q2 = 0 limit. We thus restrict the fits

to the smallest Q2 points possible to extract these quantities while still including

enough data points to constrain the fits. For uniformity we choose to determine these

quantities from the one-parameter dipole fits for F,-- , and the two-parameter dipole

fits for F--d, with a Q2 cutoff at 0.5 GeV2.

We also perform dipole fits to GE(Q 2) and GAI(Q 2) to see how well the dipole

Ansatz describes the data. We find that the dipole fits to G'-d and G'-d are qual-

itatively similar to Ff--d and F2jd. However, it appears that the fits are even more

stable over the whole range of Q2 than Dirac and Pauli form factors. This is indicated

by little change in the ratio plots in Fig. 5-2 with different Q2 cutoffs.

Figure 5-3 shows a comparison of the lattice results for GE at three different pion

masses from the fine ensembles (the lattice spacing a = 0.084 fm) and one pion mass
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Figure 5-2: Results for G - (Q2) at m, 297 MeV and the dipole fits with three
different Q2 cutoffs (top panels). The ratios of the lattice results for G'- d to the
dipole fits using Eq. (5.1) (three bottom panels).
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Figure 5-3: Lattice results for G -d for the fine and coarse Domain Wall ensembles,
compared with a phenomenological fit [Ke104] to experimental data.

from the coarse ensemble (the lattice spacing a = 0.114 fin) with a phenomenological

fit to the experimental data using the parameterization in Ref. [Kel04] (with no

indication of the experimental errors). The solid curves are dipole fits to the form

factor results with the Q2 cutoff at 0.5 GeV2 . As the pion mass decreases, the slope of

the form factors at the small momentum transfer mnonotonically increases. The results

from the coarse ensemble at m, = 330 MeV is nicely surrounded by the results from

the fine ensembles at in, = 297 and m, = 355 MeV, indicating that the effect of the

finite lattice spacing error should be small.

5.1.2 Chiral extrapolations using HBChPT+A

To compare the lattice results for the nucleon form factors at finite momentum transfer

with the experimental results, we need to do extrapolations for both the m, and Q2

dependence using baryon chiral perturbation theory. This combined dependence has

been worked out both in SSE at leading one loop accuracy and in BChPT up to

NNLO order in Ref. [BFHM98] for both Dirac and Pauli form factors.

ChPT describes the Q2 dependence of the form factors for values of Q2 much less

than the chiral symmetry breaking scale and Q2 counts as a small quantity, of the

order of m2. In fact, we have attempted simultaneous fits to both the m., and Q2
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dependences of Ff -d using the SSE formula in Ref. [BFHM98], and found that the

fits fail to describe data even with Q2 < 0.4 GeV 2 (X 2 /dof ~ 10). This is consistent

with the findings of Ref. [BFHM98], where the applicability of the O(cs) SSE results

for the isovector nucleon form factors at physical pion mass was found to be limited

to Q2 < 0.2 GeV 2 . Lacking a model-independent functional form applicable in the

large-Q 2 region, we resort to studying the pion-mass dependence of the mean squared

Dirac radius, (r') 2, Pauli radius, (r-,) 2 , and the anomalous magnetic moment, Ko,

as obtained from the dipole fits discussed in Sec. 5.1.1. We tabulate these values in

Table 5.3.

Table 5.3: Results for the isovector Dirac and Pauli radii and anomalous magnetic
moment from dipole fits with Q2 < 0.5 GeV 2.

m, [MeV] (ru) 2 [fm 2 ] (rv) 2 [fm 2] ,norm (r) 2 [fm 2] norm
297 0.305(8) 0.382(33) 0.938(117) 2.447(99)

355 0.281(5) 0.372(18) 0.938(66) 2.518(57)
403 0.272(5) 0.379(16) 0.954(58) 2.508(51)
330 0.290(9) 0.445(26) 1.230(105) 2.758(84)

Our results for the form factor F 2 and sv are given in terms of a nucleon (hence,

quark) mass-dependent "nmagneton" (see Eq. (1.1)), which is not accounted for
N

in SSE at the order at which we are working (see Eq. (D.2) in the Appendix). There-

fore, in order to fit our lattice data to the SSE predictions, we follow Refs.[G+05b,

AKNT06] and define 0n"" measured relative to the physical magneton . A,' :

N. N
M/phys M/phys

snorrnm N lat __ Na F2(0). (5.8)

We then identify MN in the SSE expressions as the physical nucleon mass. In the

following comparisons of our results with chiral perturbation theories, the normalized

magnetic moment norm will be used throughout, and we drop the superscript "norm"

unless there is an ambiguity.

As specified in Appendix D.1.1, at the order 0( 3 ) all the couplings in Eqs. (D.2

D.4) are meant to be taken in the chiral limit. Replacing them with the corresponding

quantities at the physical point amounts to the inclusion of higher-order effects. As
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long as the deviation between the values in the chiral limit and at the physical point

is small, one expects such a replacement to yield little effect. To test this statement,

in some cases we have performed the chiral fits using both the physical values and the

chiral limit values for the low-energy constants and found no significant differences.

In the following we will only present results obtained using the chiral limit values as

inputs, which are summarized in Table 5.4.

Table 5.4: Input values for the low-energy constants in the fits: the nucleon axial
charge YA, the pion decay constant F, and the mass difference A = MA - MN. These
values correspond to the chiral limit m, -+ 0.

9A F, [GeV] A [GeV]
1.2 0.0862 0.293

Among the low-energy constants discussed in Appendix D.1.1, CA and cv are the

two least known. In addition, we have little knowledge of the counterterms, B] 0 (A)

and E[(A), as well as the anomalous magnetic moment in the chiral limit, <0, from

phenomenology. Lattice calculations in the chiral regime have the potential to con-

strain these parameters to unprecedented accuracy. Our attempt here is to check

the consistency of our data with the predictions of chiral effective field theories, to

estimate the range of applicability of the ChPT formulas, and to determine these

low-energy constants when the formulas are applicable. To disentangle the inves-

tigation of the applicability of the ChPT formula from the possible discretization

effects, we only include the results from the three fine ensembles in the chiral extrap-

olations discussed below. However, we want to point out that including the coarse

results in the extrapolations does not change the central values of the fit parameters

significantly, nor does it reduce the errors on the parameters since it only adds an

additional interpolating point and does not provide a much stronger constraint on

the parameters.

Since CA appears in the formulas (D.2,D.3,D.4) for (rv')2 , (r5)2 and s,, a simulta-

neous fit to all these three quantities would give a better constraint for the value of

CA. However, we have only three data points for each of these quantities, and 1% alone

has four parameters, three of which [cV, E[(A) and K,] are not constrained by any
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other quantity. Thus the quark-mass dependence of K, cannot be used to constrain

CA. Therefore we choose to fit simultaneously' only (rj)2 and Kv - (rv) 2 to determine

CA and Bljo(A), and then use the resulting CA as an input for the fit to KV. This way

the three free parameters in K. are exactly specified by the three data points.

Table 5.5: Fit parameters from the SSE fits to the isovector Dirac radius (,")2, Pauli
radius (r) 2 and the anomalous magnetic moment Ko. The HBChPT+A scale is
A = 600 MeV.

2/dof CA cv K 0 B 0 (A) Er[(A) C

[GeV--'] [GeV -3] [GeV -3]
No C 17.0(4.0) 1.54(6) 8.7(5.8) 4.13(95) 1.20(17) -4.67(42)

With C 3.8(2.2) 1.97(7) 7.5(4.5) 4.32(95) 2.58(25) -5.58(42) -0.51(7)

We present the resulting y 2 /dof and fit parameters normalized at scale A -

600 MeV in the first row of Table 5.5 and plot the fit curves as the solid lines in

Fig. 5-4. As indicated by a / 2 /dof of 17, the simultaneous fit to (rv) 2 and K., (rK) 2

does not describe the data. The problem is that our results for (r) 2 and i- (rv) 2

favor different values for CA. In fact, an independent fit to (rv) 2 yields CA = 1.98(7),

while an independent fit to 1- (rK) 2 gives CA = 1.39(10). The tension between these

two quantities results in the large X2 /dof in the simultaneous fit, indicating that the

formulas given in Eqs. (D.3) and (D.4) do not describe our data consistently. As we

can see from Fig. 5-4(b), the solid fit curve lies systematically higher than the data

points, which then motivates us to use the ((m0,)-corrected result in Eq. (D.5) in-

stead of Eq. (D.4). With this modification, the simultaneous fit to (r") 2 and V, -(r) 2

now using Eqs. (D.3,D.5), appears to describe the average value of the data much

better, but still not the pion-mass dependence. We show the results in the second

row of Table 5.5, and the fit curves (dashed lines) in Fig. 5-4. The fit describes (r) 2

very well, but cA turns out to be larger than the range discussed earlier, which, not

1 We note however, that in Ref. [G+05b] it was already observed that the leading one-loop SSE
formula for (rV)2 [Eq. (D.3)] is dominated by the leading chiral logarithm and dropped below the level

of the lattice data available at that time for values of the pion mass as low as n, < 200 MeV. This
prompted the authors of Ref. [G+05b] to exclude the isovector Dirac radius from the simultaneous
fit. Likewise, the authors of Ref. [AKNT06] obtained huge, unrealistic values for the isovector Dirac
radius when trying to enforce a fit of the logarithm-dominated behavior onto their data. Given these
two negative precedents, we consider our "fit" to the isovector Dirac radius data to be of exploratory
nature, testing the limits of applicability of the leading one-loop SSE results given in Eq. (D.3).
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Figure 5-4: Chiral extrapolations for the isovector radii and the anomalous magnetic

moment using the 0(d) SSE formula, with (solid curves) or without (dashed curves)

the constant term in Eq. (D.5). (rv)2 and , (r2) 2 are fit simultaneously, and K, is

fit separately with CA determined from the simultaneous fit.

surprisingly, gives rise to a smaller extrapolated value for (r )2 than the experiments.

Our new Domain Wall data extend the trend of the weak pion-mass dependence in

(rv)2 observed in Refs. [G+05b, AKNT06] now down into the range of pion masses

~ 300 MeV. The appearance of such a "plateaulike" behavior down to such light pion

masses, which was also observed in Ref. [Y+09], is surprising. The leading one-loop

SSE formulas (D.4, D.5) for this radius cannot accommodate such a behavior, with

or without the inclusion of the higher-order core term.

Using CA determined from the above fits either with or without the constant

term in Eq. (D.4) to (rv) 2 and Kv . (r-)2, we fit 'v to Eq. (D.2) with three unknown

parameters, ,, cV and E[(A). The results are shown in Table 5.5. The value for
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cv from our fit turns out to have a different sign from that determined in [DMW91,

HHK97] mentioned earlier. This is not surprising given that we only have three data

points, which have little or no pion-mass dependence. We do not have the freedom to

check the consistency of the fit, and we do not expect to obtain a reliable estimation

for cv, which, judging from Eq. (D.2), is very sensitive to the curvature of the data.

To compare chiral extrapolations with experiment, we have also plotted selected

experimental data in Fig. 5-4. As noted in the introduction, there are still unresolved

experimental questions, and we have indicated the range of possible values of (r v)
2

that can be extracted from present experiments by showing two extreme results from

the literature. The highest value is from PDG 2008 [A+08b] and the lowest value is

from a dispersion analysis including meson continuum contributions [BHM07]. We

note that none of the chiral fits simultaneously yields a good fit to the lattice data

while also agreeing with experiment within statistical errors.

To see how strongly the lattice results deviate from the SSE formulas, we also

try to determine some of the low-energy constants using experimental results at the

physical pion mass. We use the values in Table 5.4 as input, and also set CA =1.5 and

cv = -2.5 GeV-'. Now for (r-v)2, we have only the counter-term B"O to determine.

Constraining the curve to go through the higher experimental value of (r,) 2 = 0.637

fin 2 gives B'0 (A = 600 MeV) = 1.085, resulting in the solid curve shown in Fig. 5-

5(a). For comparison, we also plot the dashed curve that is fixed to go through the

lower experimental value (rv ) 2. The curve rises much more rapidly than the lattice

data as the pion mass decreases. From the slope of the leading one-loop SSE curve

near the physical point and the weak pion-mass dependence displayed by our data we

estimate that the applicability of Eq. (D.3) for (r) 2 may be much less than 300 MeV.

Without the constant term in Eq. (D.5), r% . (r) 2 does not have any free param-

eters, which yields the solid curve in Fig. 5-5(b). The curve undershoots the physical

point by about 5%, which may be well accounted for by the uncertainties in the cho-

sen values of the low-energy constants. Including the higher-order term C of Eq. (D.5)

can of course shift the curve up to exactly reproduce the product of physical Pauli

radius and anomalous magnetic moment. However, the departure of the quark-mass
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Figure 5-5: SSE chiral fits to the isovector radii and the anomalous magnetic moment
constrained to go through the physical points using the input in Table 5.4 as well as

CA = 1.5 and cv = -2.5 GeV-'. The mixed-action results at m, = 355 MeV are

shifted slightly to the right for clarity.

dependent curve from the lattice data displayed in Fig. 5-5(b) indicates that the lead-

ing one-loop SSE formula for r- (rv) 2 of Eqs. (D.4, D.5) should only be trusted for

pion masses much less than the currently available 300 MeV. Judging from the steep

slopes displayed by both the curves for the Dirac and Pauli radii as opposed to the

almost mass-independent nature of the lattice data, it is conceivable that the leading

one-loop SSE formulas may only be applicable at pion masses well below 300 MeV,

as already suggested in Ref. [G+05b].

The anomalous magnetic moment still has two free parameters, Er and K<. In

addition to the physical point, we need another data point to determine both param-

eters. We choose to use our m, = 355 MeV result in the determination, since this
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point is the most accurately calculated and its relatively large pion mass makes it

less susceptible to finite-volume effects. The resulting curve (the solid line) is given

in Fig. 5-5(c). For comparison, we also show the curve using the leading-order SSE

formula in Eq. (D.1) (the dashed line). In this case, only the experimental point is

included to determine K<. We can see that the dashed line deviates greatly from the

lattice data. This is not surprising, as the dominating contribution to K. is the term

linear in m, the coefficient of which is determined by . This is clearly not the

case in our data. Regarding the limit of applicability of Eq. (D.2) [which includes

the dominant next-to-leading one-loop corrections to the strict 0(E) SSE result of

Eq. (D.1)], the plot in Fig. 5-5(c) does not give us a clear indication up to which

pion mass the formula can be quantitatively employed. Furthermore, we observe that

the "normalized" anomalous magnetic moments display a flat pion-mass dependence

around 2.5 nuclear magnetons. The new dynamical Domain Wall data extend this

"plateau" of the normalized magnetic moments which was already observed at much

larger pion masses in the quenched simulation of Ref. [G+05b] now into the region

of pion masses as low as 300 MeV. Surprisingly, we can find no indication of a rise in

the magnetic moment at these low pion masses, although the onset of such a rise had

been anticipated for pion masses around 300 MeV in the fit results of Ref. [G+05b]

(see Fig. 11).

Overall, these curves show much stronger curvatures than our lattice results. Even

with pion masses as light as 300 MeV, the 0(E3 ) SSE formulas do not seem to be

consistent with our data. There are several possible explanations for the inconsisten-

cies. One is that the pion masses in our simulations are still too heavy for the SSE

formula at this order to be applicable, and the higher-order contributions may not be

negligible in this range. The other possibility is that our results still suffer from un-

controlled systematic errors, such as finite-volume effects, especially at the light pion

masses. We want to point out that our limited number of data points is not sufficient

to constrain the chiral fits, which clearly demonstrates the need for calculations at

lighter pion masses. Thus we do not regard our results in Table 5.5 as conclusive.

Rather, we take it as an indication of the difficulty of chirally extrapolating currently
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available lattice data.

Also plotted in Fig. 5-5 are our domain wall results at m, = 330 MeV at a

coarser lattice spacing [A+08a) (a ~ 0.114 fm), as well as our updated mixed-action

calculations [B+10] at a lattice spacing of about 0.124 fin. These results are roughly

consistent with the fine domain wall results, indicating that the discretization errors

are small.

5.1.3 Chiral extrapolations using CBChPT

In this section we perform chiral extrapolations based on a formulation of SU(2)

baryon chiral effective field theory without explicit A (1232) degrees of freedom but

treating both the nucleon and pion as relativistic particles. The chiral extrapolation

formulas are collected in Appendix D.1.2.

In our chiral extrapolations, we treat gA, F, c2 , c3 and c4 in Eqs. (D.20,D.22,D.21,D.23)

as input parameters. The available information about the chiral limit values of 9A

and F, is discussed in Sec. D.1.1. We set the second-order couplings consistently with

Refs. [BKM97, FMS98, EM02] 2 . We summarize these values in Table 5.6.

Table 5.6: Input values for the covariant baryon chiral fits.

9A F, [GeV] c2 [GeV-'] c3 [GeV-] c4 [GeV-1]
1.2 0.0862 3.2 -3.4 3.5

We determine M10 , ci and ej(A) appearing in M1/,vI(m,) by fitting the nucleon masses

from the three fine Domain Wall ensembles to Eq. (D.21). The fit values are tabulated

in Table 5.7 and the resulting fit curve is shown in Fig. 5-6. The fit (denoted as "Lat-

tice only" in the table) is in excellent agreement with the physical nucleon mass, but

the small number of data points included in the fit gives substantial statistical errors.

To better constrain the value of A10 , which is needed in the subsequent fits, we also

fit the data with the experimental point as a constraint (denoted as "Lattice+Exp.").

The results are again shown in Table 5.7. The two fits give consistent results, and we

2 For a discussion about the value of c3 see [PMW+06, AK+04].

126



will use central values of MO, ci and er(A) determined from the "Lattice+Exp." fit

subsequently.

Table 5.7: Low-energy constants from the O(p4 ) BChPT fit to the fine Domain Wall
lattice results of the nucleon mass. In the "Lattice+Exp" fit we also impose that the
curve goes through the physical point.

Fit Mo [GeV] ci [GeV--1] e" A = 1 GeV)([GeV -]
Lattice only 0.883(79) -1.01(26) 1.1(1.3)

Lattice + Exp. 0.8726(29) -1.049(40) 0.90(32)

0.2 0.4
m, [GeV]

0.6 0.8

Figure 5-6:
mula in Eq.

Chiral extrapolation for the nucleon mass using the O(p 4 ) BChPT for-
(D.21). The solid line is the fit to only the fine domain wall data (solid

circles). The square is the coarse domain wall result, and the diamonds are the
mixed-action results from Ref. [WL+09].

For comparison, we also plot the coarse (a = 0.114 fin) domain wall result at

m, a 330 MeV, as well as the mixed-action results [WL+09] at a = 0.124 fin in Fig. 5-

6. We see that these results are qualitatively consistent, indicating the discretization

errors are small.

Table 5.8: Fit parameters for the simultaneous fit to (rz)2 , e- (r")2 and r, using
the O(p4 ) CBChPT formulas. The scale is set to A = M0 .

2 /dof c d(A) [GeV] e4 (A) [GeV 2 ] e,06 (A) [GeV4]
7.3(2.4) 4.290(46) 0.839(7) 1.350(45) -0.132(37)

We determine the remaining four low-energy constants, c6 , dr(A), er4 (A), and

e 06(A), from a simultaneous fit to (rv) 2 , - (r) 2 and v using 0(p 4 ) BChPT ex-

pressions (D.20,D.22,D.23) presented in Appendix D.1.2, with the results shown in
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Figure 5-7: Simultaneous fit to the isovector radii and anomalous magnetic moment
using the CBChPT formula (solid lines). The SSE formula fits without the constant
term for K, - (rv) 2 (dashed line).

Table 5.8. The large X2/dof value indicates that the O(p 4 ) BChPT does not describe

our data either. We compare the chiral extrapolations using both the BChPT for-

mula and the 0(E3 ) SSE formula in Fig. 5-7. The solid curves with error bands are

the results of the BChPT simultaneous fit, and the dashed curves are the SSE fits

using Eqs. (D.3), (D.4) and (D.2) as described in Sec. 5.1.2. It appears that both

the SSE and BChPT expressions are not compatible with our data, but since many

of the low-energy constants in BChPT are fixed from phenomenology or the nucleon

mass, the fit is better constrained than that using the 0(6) SSE expressions. This is

especially important for Ko, for which the SSE expression involves more parameters

than currently available lattice data. Nevertheless, both formulations fail to describe

our data at this mass range.
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5.2 I = 0 vector form factors

Although the isoscalar components of the nucleon form factors may contain unknown

contributions from disconnected diagrams, we currently neglect them. In this section

we give results for the isoscalar form factors as defined in Eq. (1.5) from the connected

diagrams only. First, we study the Q2 dependence of both the isoscalar Dirac and

Pauli form factors using phenomenological models, and then discuss briefly the chiral

extrapolations of the results.

5.2.1 Momentum transfer dependence

We perform dipole fits to F+d Q 2) separately for each ensemble using the formula in

Eq. (5.3). Similar to the isovector case (see Sec. 5.1.1), the dipole Ansatz describes

the data reasonably well at small Q2 values, typically below 0.6 GeV 2 . As large Q2

values are included in the fit, the fit quality becomes worse, but the fit parameters

do not change significantly. Furthermore, the fitted values of F+d(0) are consistent

with the expected value of 3.

+'

0 0.2 0.4 0.6 0.8 1

Q2 [GeV 2

Figure 5-8: The lattice isoscalar Dirac form factor,
phenomenological fit [Kel04] to experimental data.

FT+d(Q 2 ), dipole fits to it and the

To demonstrate the quality of the fits, in Fig. 5-8 we show the dipole fits to

all the Q2 values. One can see that the data are reasonably well described by the
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fit curves. Also plotted is the phenomenological fit to experimental data using the

parameterization in Ref. [Ke104], although we note that no error estimate is provided

and the empirical analysis involves many potential systematic errors discussed in the

introduction. To determine the isoscalar mean squared Dirac radii, we follow the

same reasoning as in Sec. 5.1.1 and obtain them from the dipole fits with a cut at

Q2 < 0.5 GeV2 . The results are shown in Table 5.9.

Table 5.9: Results for the isoscalar Dirac and Pauli mean squared radii and the
anomalous magnetic moment from dipole and linear fits.

m, [MeV] X2 /dof (rs)2 [fm] X2 /dof r" ""m- (r)2 phys - fmn 3 orm physl

297 0.12(35) 0.428(5) 3.3(2.1) -0.021(21J -0.038(37)
355 0.97(98) 0.403(3) 1.4(1.4) -0.015(11) -0.030(22)
403 1.7(1.3) 0.385(3) 2.2(1.7) -0.003(11) 0.011(21)

1 T I

0.4- . m = 297 MeV

Sn = 355 MeV

Sm = 403 MeV

Phenomenology
0.2 -

-0.2 -

-0.4 --

0 0.2 0.4 0.6 0.8 1

Q [GeV 2]

Figure 5-9: The isoscalar Pauli form factor, F2" d(Q 2), const(Q 2) fits and the phe-

nomenological fit [Ke104] to experimental data.

In experiments, the isoscalar Pauli form factor shows a notable bump at Q2  0.4

GeV 2 (solid curve in Fig. 5-9), although again there are no error estimates. Our data

are too noisy to distinguish this feature at this moment. In fact, the results, shown in

Fig. 5-9, are rather flat. We show the constant fits to each ensemble separately, and

find that the constants are consistent with zero within 2 standard deviations. The

error band corresponds to the constant fit to the m, = 297 MeV data.

If we restrict the fits to only the small Q2 region (< 0.5 GeV 2 ), we are able to
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perform linear fits to the data and obtain both K - (rs) 2 (from the slope) and K. (from

the intercept), the results of which are also shown in Table 5.93.

5.2.2 Chiral extrapolations using HBChPT+A

As is well known in ChPT (e.g. see the discussion in [BFHM98]), chiral dynamics

in the isoscalar form factors of the nucleon starts at the 3-pion cut, i.e. at two-loop

level, corresponding to 0(c5) in the power-counting of SSE. Hence, the 0(E 3 ) SSE

expressions (D.6) have trivial pion-mass dependence and cannot be used for chiral

extrapolations. Therefore, in this section, we simply extrapolate linearly in m2 the

mean squared Dirac radius to the physical point. This is shown in Fig. 5-10(a), where

we can see that the linear extrapolation gives a result at the physical pion mass which

is much lower than the empirical value. Similarly, we perform a linear extrapolation

for K, . (r-) 2 , which is shown in Fig. 5-10(b).

For K, beyond order E3, additional terms arise including a term linear in the quark

mass. Following Ref. [HW02], we write

Ks = O - 8E 2 MNm2, (5.9)

where K" and £2 are two unknown LECs. This linear dependence describes our data

well, as is shown in Fig. 5-10(c).

5.2.3 Chiral extrapolations using CBChPT

The BChPT formulas up to 0(p 4 ) for (rs)2 , (rs)2 and K,, have also been derived

in [Gai07, GH]. We collect them here for completeness in Appendix D.1.2. We

note, however, that the next-to-leading one-loop BChPT results for the isoscalar

form factors of the nucleon as presented in this section just as in the case of the

leading one-loop SSE-analysis discussed in the previous section do not contain their

dominant chiral dynamics arising from the 3-pion cut. Such effects would only become

3 Like in the isovector case, the anomalous magnetic moment quoted here is normalized to the
physical nuclear magneton according to Eq.(5.8).
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Figure 5-10:
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SResults
riment

5 0.2

Linear extrapolations for the isoscalar radii and the anomalous mag-
netic moment. Shown also are the phenomenological values for radii obtained in
Ref. [MMD96] and the experimental value [A+08b] for K, (stars).

visible at the two-loop level, i.e. starting at O(p') in BChPT. The results presented

here are therefore to be interpreted with care, as several important contributions with

potentially large impact on the chiral extrapolation functions are not included at this

order. For the isoscalar mean squared Dirac radius, Pauli radius and anomalous

magnetic moments are given by Eqs. (D.24,D.25,D.26)

Table 5.10: Fit parameters from the simultaneous fit to (r) 2 , ,, - (rs)2 and K, using
Eqs. (D.24), (D.25) and (D.26).

X2 /dof KO d7 e54  M)
8.5(2.6) -0.172(23) -0.458(24) -0.0159(41) 0.598(26)

As in the isovector case, we use the values in Table 5.6 as input in the extrapola-
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Table 5.11: Fit parameters from independent fits
Eqs. (D.24), (D.25) and (D.26).

to (rs) 2 K- (r-) 2 and K8 using

x2 /dof K d
(ri)2 0.2(9) 2.67(44) -0.581(19)

X2 /dof K C54
S - (if) 2 0.08(55) 1.6(2.0) -0.055(44)

x2 /dof105(el 1-(A Mo)
S 0.4(1.3) -0.247(53) 0.506(63)

0.2 0.3
mE [GeV]

(a) Dirac radius (r") 2
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Figure 5-11: Simultaneous (dashed lines) and independent (solid
fits to the isoscalar radii and anomalous magnetic moment.

lines) O(p4 ) BChPT

tions, leaving i0, d7 , e5 4 and eL 5 (A) as free parameters. Since (rs)2 , -(?-)2 and is all

contain the low-energy constant i, naively we should perform a simultaneous fit to

all three quantities, as we have done for the isovector case. However, as stated earlier,

the dominant chiral dynamics for the isoscalar quantities only appears at O(p 5 ). We

do not expect these O(ps) expressions to describe our data. In fact, the simultaneous
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fit to these three quantities gives a X2/dof of about 9 (see Table 5.10), showing the

difficulty in fitting these quantities consistently. Looking closely at each quantity

separately, we find that independent fits to (rK2 , s- (rs) 2 and /, lead to an incon-

sistency in the estimation of the common parameter r<, as shown in Table 5.11. For

demonstrative purposes, we compare the resulting fit curves from the simultaneous

fit and the independent fits in Fig. 5-11, from which we see that the independent fits

provide reasonable extrapolations for the data, while the simultaneous fit misses the

data points badly, indicating inconsistencies of the BChPT expressions at this order.

We also note that the extrapolated value for (rs)2 at the physical pion mass is about

20% lower than the phenomenological value. These observations lead us to conclude

that the BChPT expressions at 0(p 3) are not applicable in the pion-mass range of our

calculation. Of course, since we have not included the disconnected diagrams in our

calculations, there are uncontrolled systematic errors which may also affect the pion-

mass dependence. Further investigations are required to draw definitive conclusions

for these isoscalar quantities.

5.3 Axial form factors

5.3.1 Axial charge

The nucleon axial charge is an important phenomenological quantity, which, for ex-

ample, determines the rate of the neutron /-decay (see Sec. 1.2). The lattice axial

current operator [q-y,' 5q] must be renormalized, and the renormalization procedure

for Wilson-clover quarks is different from that for domain wall quarks. We have not

renormalized the axial current. However, we can study the ratios in which the renor-

malization constant cancels to extract, for example, the axial radius in Section 5.3.2.

In order to compare our three calculations, in Figure 5-12 we show the ratio of

the nucleon axial charge to the pion decay constant gA/F, in which the axial current

renormalization ZA is canceled. The values for F, are taken from Ref. [col]. On a

small panel within Fig. 5-12 we show the ratio gA/gv that will give the renormalized
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Figure 5-12: Nucleon axial charge to pion decay constant ratio, gA/F, for Domain
Wall , Hybrid and BMW calculations. The upper right panel shows bare gA/gv ratio.

axial charge value in the chiral limit. Physical values are marked with black stars.

It is notable that the data points for Hybrid and Domain Wall calculations lie ap-

proximately on the same line going towards a point slightly below the physical value.

Although the uncertainty for small pion masses is still significant, it is reassuring that

the newer calculations with BMW action (see Appendix A.3) continue the same trend.

Note also that the two data points for Hybrid m, 356 MeV calculations in Fig. 5-

12 correspond to the two different spatial volumes, (2.5 fm) 3 (filled diamonds) and

(3.5 fm)3 (open diamonds) and they are very close. The agreement between the

results for different spatial volumes demonstrates that the finite volume effects are

small. This fact also provides somewhat more optimistic estimate for the finite vol-

ume effects in gA calculations compared to that in Ref. [Y+09]: in our calculations

the difference between the small volume (mL 4.5) and large volume(m , L ~~ 6.3)

is equal to ~~ 0.006(22), while the authors in the reference above state that one has

to have the spatial size of the box at least L > 6m; 1 in order to have finite volume

effects ,< 1%. On the other hand, the value for the Domain Wall lattice with the

lowest pion mass n , = 297 MeV lies significantly below the heavier pion masses and

may signal that the finite volume effects start to contribute to our calculations at the

corresponding value of mL ~ 4.05. Thus, the question whether finite volume affects

calculations of 9A remains to be understood, and one has to do calculations with two
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different volumes at the same small pion mass to do a direct comparison.
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(a) Hybrid data extrapolation
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Figure 5-13: Chiral extrapolations of the nucleon axial charge for the Domain Wall
and Hybrid calculations. In the two-parameter HBChPT fit gi = 2.5 is set.

The renormalized gA results enable a direct comparison between Hybrid and Do-

main Wall calculations. In Figure 5-13 we show data for both ensembles and perform

a chiral extrapolation using the HBChPT prediction [HPW03]

gA (rr27 ) = 9A - A6w2 +
1 7T

4m 2{fC(A)
C2

+ CA 155 g1- L7g ]22
7 2 3

+ 7log 9 
+ AcgA 8cgm2 [1

277F A 277r2F

+ 81i2 F2 (25g,
272

- 57gA){ log

where y = 16r 2F 1

Mn
2 1

- ] log R(m)

-log R(m,,)
M, A2

2 1 - 2 3
cAg1 -gA - ca9g -A

The choice for the chiral limit parameters F1., A = mA - MN, CA = 9 7rNA is

discussed in Sec. D.1.1. In addition, to perform the fits, we have to fix

CA = 1.5,

for a three-parameter fit and also

9
g = 2.5 -9A

5
[quark-flavor symmetry]
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for a two-parameter fit. The only remaining parameters are the chiral limit value

g A the counterterm C(A). The two-parameter fit is more reliable because there are

data only three distinct values of m, < 500 MeV in both Domain Wall and Hybrid

calculations, and applying the HBChPT+A formula for m, > 500 MeV is question-

able. From the two-parameter fits we extract the values of extrapolated axial charge

9A (m, ~ 140 MeV),

phys 1.160(14) [Hybrid ],

gA4hys = 1.139(20) [Domain Wall ],

in our two calculations. Both results underestimate the experimental value 9A

1.126(3). This disagreement may be the result of the following:

1. heavy pion mass data points used for chiral extrapolations,

2. insufficient order of approximation in HBChPT+A

3. finite-volume effects contributing to the lightest pion mass valuesm, - 300 MeV,

to which the chiral extrapolations are most sensitive.

5.3.2 Momentum transfer dependence

From our lattice calculations we can also extract dependence of the nucleon axial

form factors on the momentum transfer Q2. Currently, the form factor results only

for the Domain Wall and Hybrid calculations are available, because additional work

to renormalize the axial current in the BMW calculation is required.

In Figure 5-14 we show our results for the GA form factor from both Domain

Wall and Hybrid calculations with the two lightest pion masses approximately equal

to m , = 300 and 350 MeV. Additionally, we show the results for the second (larger)

volume V - (3.5 fm) 3 from Hybrid lattice with m, = 350 MeV, which indicate no

noticeable difference from the other (smaller) volume V e (2.5 fm) 3. This agreement

demonstrates that the finite volume effects are small and negligible at our current
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Figure 5-14: Q2 -dependence of the nucleon isovector axial form factor GA-dQ2

level of precision. For comparison we also show the phenomenological dependence

GG )d(Q2),

G"~d(Q2) 9A (5.11)A 1 _+ Q2/My2

where the axial mass MA is obtained from neutrino scattering experiments. It is clear

that our lattice data points disagree with the phenomenology, both in the slope G' (0)

and the forward value GA(0) = YA. The disagreement in the slope may be ascribed

to the pion mass being heavier than the physical pion.

Despite the disagreement with phenomenology, it is useful to check whether the

lattice dependence of GA on Q2 is similar to the phenomenological dipole form (5.11).

Therefore, we fit our data to the dipole form and present the results for the axial mass

and the radius in Tab. 5.12. Because the axial current renormalization is multiplica-

tive, we can also extract the axial mass MA for the BMW ensemble calculations.

In Figure 5-15 we show the axial radius

Kr2 - 1 dGA(Q 2) 12
6GA(0) dQ 2  Q2=0 M(

for our three different calculations and the pion masses 300 < m, < 600 MeV. It is

clear that the axial radius is significantly underestimated in our lattice calculations,

which is also apparent from Fig. 5-14. However, the results from different lattice
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Ensemble M, [MeV] V [fm 3] MA [GeV] rA [fin]
Domain Wall 297(5) (2.7) 3  1.55(4) 0.441(10)

355(6) (2.7)3 1.58(2) 0.432(6)
403(7) (2.7)3 1.55(2) 0.441(6)

Hybrid 293 (2.5)3 1.57(6) 0.436(15)

356 (2.5)3 1.66(3) 0.411(8)
356 (3.5)3 1.59(3) 0.431(7)
495 (2.5 )3 1.65(2) 0.413(4)
597 (2.5)3 1.69(1) 0.405(3)

BMW 200 (3.7)3 1.42(8) 0.482(27)
250 (3.7)3 1.50(6) 0.455(18)
250 (2.8)3 1.38(11) 0.495(40)

0.51 1 1 1

0.2 0.3 0.4
m1 [GeV]

0.5 0.6

Figure 5-15: Nucleon isovector axial radius (r2).

methodologies agree demonstrating that this is a systematical trend, and the small

values for (r2) are the consequence of simulating QCD with heavy pion masses.

Moreover, our lattice results for the axial radius (r2) show very little dependence

on the pion mass. It is worth noting that the prediction of heavy-baryon ChPT at

next-to-leading order (NLO HBChPT+A ) does not contain dependence of (r 2) on

m, whatsoever [BFHM98],

Q2
GAd(Q2) yA rrbr) - 53 (47F,)2 1

where B 3 is a low-energy constant. This prediction is in a striking disagreement with

139

0.4 H
rl

*v scattermng
Mixed-action, a=0.124 fm

. Domain wall, a=0.082 fm
Wilson, a=0.116 fm

JE 3-

0.3-

0.2

0.1-

lattice axial form factor G'-d(Q2).Table 5.12: Dipole mass for

gi__

0.1

65f3
a -e ,(5.13)rA )u



the need to continue the accurate lattice data points to the physical pion mass value

that is also shown in Fig. 5-15. Simulations at the lighter pion masses are necessary

to reveal the (r' dependence on the pion mass and to provide a basis to extend chiral

perturbation theory accordingly.

In addition, in Fig. 5-15 we show the results for two different volumes for Hybrid

lattices with m, = 350 MeV, which disagree for less than 2 sigma. This disagreement

is insufficient to state that we have significant finite volume effects, although we

cannot exclude such possibility. Note that the larger volume corresponds to mL > 6

which is believed [Y+09] to be sufficient for finite volume effects in the nucleon axial

charge calculations to be negligible.

20
m,,=597 MeV (Hy (2.7 fm) )

m =356 MeV (Hy (3.5 fm) )

15 m =356 MeV (Hy (2.5 fm) )

m =355 MeV (DW (2.7 fm) )

7)+ m =293 MeV (Hy (2.5 fm) )

10 em =297 MeV (DW (2.7 fm) )

5 -

0 0 0.2 0.4 0.6 0.8 1 1.2

Q2 [GeV2]

Figure 5-16: Nucleon isovector induced pseudoscalar form factor G- d(Q2)

The induced pseudoscalar form factor Gp(Q 2) has an important phenomenological

meaning. As was discussed in Sec. 1.2, this form factor is expected to be dominated

by the pion pole. Hence, this is an important check for lattice QCD calculations at

because one should observe significant variation of the Q2-dependence of this form

factor with the pion mass. In Figure 5-16 we show the Gp(Q 2 ) for the two lightest

pion masses, and one heavy pion mass from the Hybrid calculation. Unfortunately,

it is not possible to compute G in the forward case Q2 = 0 on a lattice. Our lowest

Q2 data point corresponds to Q2 ~ 0.2 GeV 2 . Without small Q2 ,< M data points,

it is hard to check whether the data agrees with the pion-pole prediction or not.
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Figure 5-17: Pole mass from a fit using Eq. (5.14) and mnpole = mr .

To answer this question, we fit our lattice data to a pole form

Gp (Q2) = 2  + 2 + ,
mpoie+Q

(5.14)

where a, b and mpole are free fit parameters. The results of the fits for all ensembles

and pion masses are presented in Fig. 5-17. Our lattice data for Gp form factor shows

fair agreement with the pion pole model: the pole masses from the fit lie on the line

Rpole = m, with the exception of the heaviest pion mass in, ~ 600 MeV.

To conclude the discussion of the nucleon axial form factors, we attempt to check

the Goldberger-Treiman relation 9,NN (Q 2 
- 0) 9 MN 9A that must hold in (or close

to) the chiral limit. Away from the chiral limit, the chiral perturbation theory pre-

dicts [BFHM98] that

Gp(Q 2) 4 9A -
M2 + Q2 -

2m 2 ~
(4 17r, )2 2

~ 4M2
(47rF,)2-

and the residue at the pole is determined by the axial charge gA = GA(0) up to a

correction proportional to m1i,

9NN 2
GT ~

9 , NN

where gGT MN
rNN F,9A
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Figure 5-18: Check of GT relation. RPIA(Q 2 ) from Eq. (5.17) should be extrapolated

to Q2 - 0 to obtain gr9NTg . NLO Chiral perturbation theory predicts that 1 -
rr7rN

9 rN ,/r

Using only our lattice data, we cannot check this relation because direct calculation

of the forward value Gp(0) is not possible. In addition, because of the strong pole

dependence of Gp on Q2, the extrapolation Q2 -> 0 is not reliable. Instead, we study

the ratio
m2 + Q2 Gp(Q 2) 9,rNN (0)

RP/A (Q2) 7TT2 (Q)Q,)0 GT ,(5.17)
4N GA(Q 2 ) Q0 9,rNN

that should give the ratio(grNN 9NjTN) in the limit Q2 -+ 0. Indeed, as Fig. 5-

18 shows, this ratio depends weakly on the momentum transfer Q2 and thus it is

a good way to do the extrapolations and check the GT relation. However, the

extrapolated values deviate significantly from one, indicating the violation of the

Goldberger-Treiman relation by ~ 20%. Furthermore, comparing the results for the

pion masses ~ 300 + 600 MeV, we observe no dynamics with decreasing mr, and the

NLO HBChPT+A prediction (5.16) does not agree with our data. This apparent

violation may result either because the pion masses are too high or the method to

do Q2 -- 0 extrapolations is not correct. We definitely need to calculate the Gp(Q 2)

form factor for smaller non-zero values of Q2 than performed in our work to control
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Q2 extrapolations better.

5.4 Quark energy-momentum tensor

As has been discussed in Sec. 1.3, one can compute quark contributions to the nucleon

energy-momentum tensor by evaluating matrix elements of the twist-two Wilson n=

2 operator,

Ta' = g[7}{iDiI]q, (5.18)

which can be parameterized with three generalized form factors, A 20 , B 20 and C20 [Die03]:

(P'q[7y{ iD] qlP) = U(P') FA O(Q2);{Pp

+ Bq (Q2) z" f/ "a (5.19)
2MN

+ Ci (Qq2) q'j U(P).
MN

In order to compute quark momentum fraction and angular momentum, we need to

extrapolate A 2 0 and B 20 form factors to Q2 -+ 0 and m,_ -_ mphys

5.4.1 CBChPT fits of generalized form factors

For our extrapolations we use relativistically-covariant chiral perturbation theory

(CBChPT ) calculations [DGH08] for the nucleon n = 2 generalized form factors

that have recently become available. Although Ref. [DGH08] provides the formulas

for the full Q2 and m2 dependence of the generalized form factors, we do not use

them to fit our data with Q2 > 0.2 GeV 2 because they can be outside of the ChPT

applicability range. Instead, we extrapolate our lattice data to the point Q2 = 0

and fit the forward values of these generalized form factors. In addition to the form

factors themselves, we include their slopes pA,B,c

dX
pOX = - (5.20)

d Q2 Q2=0
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into our chiral fits to impose further constraints on fit parameters. Formulas for

PA,B,c are also available in Ref. [DGH08]. This approach is slightly different from

Ref. [B+10] where Q2 # 0 points were also included into fits.. However, because the

data for GFFs with small momentum transfer are scarce (2 or 3 distinct Q2 points),

one can actually extract only slopes and intercepts of A20 , B 20 and C20 dependence

on the momentum transfer; more detailed structure of GFF dependence on Q2 is not

revealed by our current level of precision. We also find that including the GFF slopes

PA,B,C to our chiral fits has very limited impact on constraining the fit parameters.

Therefore, we conclude that the outcome of our procedure should be very close to the

one used in Ref. [B+10].

0.3

0.2

0.1

0

0.1 0.2 0.3 0.4
m [GeV]

0.5 0.6

(a) Generalized form factors

Figure 5-19:

(b) GFF slopes

Chiral extrapolations of the isovector generalized form factors A2d"
Bu-d, A2od and their slopes PA,B,c using the Domain Wall calculations.

Table 5.13: Covariant chiral perturbation theory fits to the forward values of n= 2
generalized form factors at t2 = (2 GeV) 2 , using the Domain Wall calculations.

GFF Q2 - 0 extrapolation n, = 140 MeV chiral limit chi 2 /ndf
AQ220 dipole Q2 <0.5 GeV2 t 0.204(6) 0.177(6)

B- dipole Q2 < 0.5 GeV 2  0.317(8) 0.306(7) 1.50

C2o-d linear Q2 < 0.5 GeV 2  0.0036(31) 0.0037(29)
A2"ojd dipole Q2 < 0.5 GeV 2 t 0.539(12) 0.531(13)

B20jd linear Q2 < 0.5 GeV 2  -0.021(31) -0.030(10) 0.48

C0jd linear Q2 < 0.5 GeV2  -0.123(26) -0.131(38)

i Extrapolation is used only to extract the slope PA = -A'20(0).
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Figure 5-20: Chiral extrapolations of the isoscalar generalized form factors A,+d,
Bljd, Agjd using the Domain Wall calculations.

To extrapolate the GFFs to the point Q2 = 0, we use a dipole form and switch to

a linear form for form factors that are close to zero. The methods used in each case

are listed in Tab. 5.13. Best fit curves to A'a~d(Q 2 ), B td(Q 2 ) and CoId(Q2) data

are shown in Fig. 5-29 and Fig. 5-30 for the Domain Wall and Hybrid calculations,

respectively. The dependence of the Q2 -- 0 extrapolated values on fit forms used is

not significant, because the estimated uncertainties of the data points are dominated

by their stochastic variations.

We perform a simultaneous fit to the isovector generalized form factors A'-~d, B- d

and C2- d and their slopes PA,B,C using Eq. (28,31,32) and Eq. (34-36) of Ref. [DGH08],

which include the 0(p2 ) terms in the effective Lagrangian. In addition, these formulas

include terms that "estimate" 0(p3) corrections. Our numerical analysis shows that

these terms are important, in agreement with the results in Ref.[DGH08]. We fix

the value of the parameter Aao = 0.165, which is known from the analysis of other

lattice data [E+06a], and the other 8 fit parameters

a'U,0, b2",o, c,O, C7, )C12, 6t, oI 6 o , (5.21)
Sf h r oA B C

are free. The results of the fits to the Domain Wall data are shown in Fig. 5-19. In
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this fit we use 18 data points and have 10 degrees of freedom. As indicated by the

value x 2 /dof a 1.5, our data are described well by the chiral perturbation theory. We

summarize the physical and chiral limit values of GFFs at Q2 = 0 in Tab. 5.13.

We also perform a simultaneous fit to the isoscalar generalized form factors A"d,

Bujd and Cojd using Eq. (44,46,47) of Ref. [DGH08] and varying six parameters

as, , bs0, c0  , c9, o0, 60, (5.22)

where 60 and o' also parameterize the 0(p 3 ) contributions to the generalized form

factors. Our data agree with the chiral perturbation theory results as indicated by

the value X2/dof ~ 0.1. Judging from such a small X2 /dof value, we conclude that

additional data and/or higher precision are required to constrain the fit parameters

better. The physical and chiral limit values of the GFF at Q2 - 0 are collected in

Tab. 5.13.

Table 5.14: Covariant chiral perturbation theory fits to the forward values of n 2

generalized form factors at t 2 = (2 GeV)2 using the Hybrid calculations.

GFF Q2 - 0 extrapolation m, = 140 MeV chiral limit chi 2 /nqf

A20 7 7 dipole Q2 < 0.5 GeV2 t 0.186(4) 0.159(4)

B0u-d dipole Q2 < 0.5 GeV 2  0.292(7) 0.283(7) 1.25

C20ud linear Q2 < 0.5 GeV 2  0.0027(48) 0.0028(45)

A2"fd dipole Q2 < 0.5 GeV 2 t 0.500(8) 0.488(8)
B f linear Q2 < 0.5 GeV 2  -0.022(27) -0.067(28) 1.4

Cujd linear Q2 < 0.5 GeV 2  -0.125(28) -0.118(39)

t Extrapolation is used only to extract the slope PA = -A'(0).

We perform the same analysis for the Hybrid calculations results. The correspond-

ing physical and chiral limit values are collected in Tab. 5.14.

5.4.2 Quark momentum fraction

In this section we present our results for the quark momentum fraction (x) determined

from the GFF A 20 (0) (4 We use the methods outlined in the previous section to

extrapolate lattice results to the physical point for both the Domain Wall and Hybrid

calculations.
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Figure 5-21: Comparison of the isovector quark momentum fraction from the Domain
Wall and Hybrid calculations.

Figure 5-21 shows the isovector quark momentum fraction (x)ud. In addition to

our lattice results, we show the CTEQ6 PDF-parameterization result [DDG] (X)_TQ6 -

0.155(5). Both the Domain Wall and the Hybrid results overshoot the phenomeno-

logical value significantly. As one can see from Fig. 5-21, chiral perturbation theory

predicts rapid change of (x)ud as the pion mass approaches the physical pion mass.

For this reason, more precise simulations at the lighter pion masses are required to

resolve this disagreement.

Both lattice calculations lead to extrapolated values which are a 2.5 standard

deviations apart. This deviation can be explained either by discretization effects or

by the perturbative renormalization used in the Hybrid calculations. Nevertheless, the

agreement within - 10% between these independent lattice calculations is reassuring.

Figure 5-22 shows the isoscalar quark momentum fraction (x)ud. In addition to

our lattice results, we show the CTEQ6 PDF-parameterization result [DDG] (x) + 6

0.537(22). Note that the disconnected contractions are omitted from our results

presented in Fig. 5-22. Therefore, the apparent agreement between lattice and phe-

nomenology must be taken as qualitative, potentially indicating that the disconnected

contributions to the quark momentum fraction are small. As in the case of the isovec-

tor (x)u+d, two our lattice calculations agree within ~ 8%, indicating that both lattice
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Figure 5-22: Comparison of the isoscalar quark momentum fraction from the Domain

Wall and Hybrid calculations. Disconnected contractions are not included.

methodologies lead to reasonable results.

5.4.3 Quark angular momentum

The quark angular momentum inside the nucleon is a very important nucleon struc-

ture observable. As has been observed in DIS experiments, the quark spin contributes

only 30 - 50% to the nucleon spin [FJ01]. The rest must come from the quark or-

bital angular momentum and the gluon total angular momentum. On a lattice, the

quark angular momentum is accessible through the matrix elements of the energy-

momentum form factors A' 0 and B' . According to Ji's sum rule [Ji97],

1
jq - (A qo(0) + B q(0)). (5.23)

2 22

The same is true for the gluon angular momentum,

1
Jg - (Ago (0) + Bg (0)), (5.24)

2 22

and the evident sum rule for the nucleon spin Jq + Jg = leads to an estimate

for the gluon angular momentum, which has not been constrained experimentally.

Furthermore, the sum rule for the momentum fraction carried by quarks and gluons
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(X)q + (X) = A 0 (0) + A' 0 (0) = 1 automatically leads to another sum rule [Die03]

Bjo(0) + Bg (0) = 0. (5.25)

This sum rule has also been understood in terms of light-cone wave functions [BHMSO1).

For future lattice calculations of nucleon structure the sum rule (5.25) may be use-

ful because the direct computation of gluon contribution to the nucleon structure is

difficult.

0.3

0.25

0.2

0.15

0.1

0.05

0.1 0.2
2 [GeV2
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Figure 5-23:
Domain Wall

Comparison of the isovector quark angular momentum Ju-d from the
and Hybrid calculations.

Table 5.15: Covariant chiral perturbation theory extrapolations of the
momentum contributions to the nucleon spin. The renormalization

quark angular
scale is p2

(2 GeV) 2 .

Domain Wall Hybrid
m, = 140 MeV chiral limit m, = 140 MeV chiral limit

J"--d 0.260(5) 0.239(5) 0.239(4) 0.219(4)
ju+d 0.243(16) 0.213(17) 0.239(13) 0.212(14)
J"t 0.252(9) 0.226(10) 0.239(8) 0.215(8)
Jd -0.009(8) -0.013(9) 0.000(7) -0.003(7)

Using the chiral extrapolations of our data in Sec. 5.4.1, we determine the angular

momenta carried by quarks in the chiral limit and at the physical pion mass. The

results are summarized in Tab. 5.15 for the u and d quarks as well as for the isovector
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Figure 5-24: Comparison of the isoscalar quark angular momentum ju+d from the
Domain Wall and Hybrid calculations. Disconnected contractions are not included.
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Figure 5-25: Separate a and d quark contributions to the nucleon spill and their
chiral extrapolations. Disconnected contractions are not included.

u - d and isoscalar u + d combinations.

The isoscalar angular momentum Ju+d represents the full contribution of quarks

to the proton nucleon spin4 . We determine this contribution at the physical pion mass

as jq = Ju+d = 0.24(1), or approximately 48% of the total nucleon spin. Although

this result must be taken with some caution because of omitted contributions and

disagreement of chiral extrapolations of isovector calculations with experiment, we

note that it is in very close agreement with an estimation based on the QCD sum

4 We emphasize once again that in this work we do not study the s quark contribution, as well
as disconnected lattice field contractions (see Sec. 3.2).
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rules [BJ97]. The determinations from the Domain Wall and Hybrid calculations

agree perfectly, as illustrated by the comparison of their chiral extrapolations in Fig. 5-

24.

In Figure 5-23 we show the isovector component of the quark angular momentum

J"a - J"L - Jr'. The results of the Domain Wall and Hybrid calculations for Ju--d

disagree by 8%. We note that this disagreement is of the same order as the estimate

of the uncertainty in the perturbative renormalization of Hybrid results (see Sec. 4.4).

On the other hand, this disagreement may arise from different fermion actions used

in the Domain Wall and Hybrid calculations.

Note that the values of Ju+d and JU d are very close. Correspondingly, the main

contribution to Jq comes from the u quark, while the angular momentum of d quark is

negligible. We show separate contributions of u and d quarks in Fig. 5-25. Although

disconnected contractions are not included in J",d the presented result is a strong

indication that the major contribution to the nucleon spin as seen at our working

scale p 2 = (2 GeV)2 comes from u quarks and gluons and not d quarks. For the

d-quarks, as our investigation shows, the spin and the OAM cancel each other almost

precisely, and this remarkable feature remains to be understood in nucleon models.

5.4.4 Quark spin and OAM

Finally, we want to discuss the decomposition of the quark angular momentum in

terms of the quark spin and the quark orbital angular momentum (OAM) inside the

nucleon. As it has been shown in Ref. [Ji97, Ji98], such decomposition is gauge-

invariant:

Jq = S + L= dJ x [qtg12q + t (x1 iD 2  
2 iDl)q], (5.26)

where Jq, S9 and Lq are the projections of total angular momentum, spin and OAM of

quarks, respectively, on the z-axis. This decomposition may be useful for connecting

the fundamental calculations in lattice QCD to quark models, which can be thought

of as effective QCD models at much smaller scale yt < mN [Tho08].
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Figure 5-26: Comparison of the total quark spin contribution to the nucleon spin

from the Domain Wall and Hybrid calculations. Disconnected contractions are not
included.

The quark spin can be extracted from the forward value of the generalized form

factor Aq0 ,
1 1 1-

S - A = - -= A (0). (5.27)
q 2  2 2

Note that the isovector combination AE-d = (I)Au-Ad is equal to the axial charge

gA that has already been discussed in Sec. 5.3.1, and in this section we will use the

chiral extrapolation based on HBChPT+A presented there. In order to compute the

individual quark spins, we perform chiral extrapolations of the isoscalar combination

AEu+A = A0() =(1)A+Ad using the HBChPT prediction [DMS07]

A"+(t =0) =Au+,(O) ]2(+o Au+d,( 2
,m)m20) - AudO) I -gm (I+ og ir nO 7r (5.28)

nO L (47TF 7r )2 ( plo

with two free parameters, A'd() and Au'(2,m), where pX is a HBChPT scale. Fig-

ure 5-26 shows the comparison of the Domain Wall and Hybrid results as well as their

chirally extrapolated values shown as the shaded bands. We collect the extrapolation

results at the physical pion mass and in the chiral limit in Table 5.16. Note that the

Domain Wall and Hybrid results show reasonable agreement.

Using the decomposition (5.26) above, we subtract the spin component from the

quark angular momentum to obtain quark OAM. A summary of the results for both u
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Figure 5-27: Comparison of the quark orbital angular momentum contributions
to the nucleon spin from the Domain Wall and Hybrid calculations.
contractions are not included.
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Figure 5-28: Contributions of the u and d quark spin and orbital angular momenta
to the nucleon spin from the Domain Wall calculations. Disconnected contractions
are not included.

and d quarks as well as their combinations is presented in Tab. 5.17. Again, we note

that the results from the Domain Wall and Hybrid calculations reasonably agree.

The small discrepancy between them can be explained either by the different lattice

QCD actions, lattice spacings, or the renormalization procedures.

In Figure 5-28 we show the comparison of u and d quark spin and OAM contri-

butions to the nucleon spin. We would like to discuss the decomposition of jq into
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Table 5.16: Covariant chiral perturbation theory extrapolations of the quark spin
contributions to the nucleon spin.

Domain Wall Hybrid
m, = 140 MeV chiral limit m, = 140 MeV chiral limit

1A E-d 0.570(10) 0.552(9) 0.580(7) 0.564(6)
2AzE+d 0.234(14) 0.191(14) 0.204(9) 0.164(8)
2~AE" 0.402(11) 0.372(10) 0.392(7) 0.364(6)
lAzd -0.168(6) -0.180(6) -0.188(4) -0.200(4)

S"Ad and Lud in detail because it demonstrates a number of peculiar features. First,

as has been noted in the previous section, the total d-quark angular momentum is

very small. However, its spin and OAM are not small separately, and jd being small

is a result of almost precise cancellation between the spin Sd and the OAM Ld of the

d-quark, and

jd| < {Sd"| ILd|}.

Second, in Figure 5-27 we show the sum of u and d quark OAM. Again, although the

individual quark orbital angular momenta L'd are not small, they are opposite and

compensate each other so that

| Lu+I <|L"l.

Both these observation are in complete agreement with the previous calculations

in Ref. [H+08] and [B+10]. Similar observations in the Domain Wall and Hybrid

calculations lead to the conclusion that this is indeed a physical effect and it should

be accounted for in nucleon models.

Table 5.17: Covariant chiral perturbation theory extrapolations of the quark orbital
angular momentum contributions to the nucleon spin. The renormalization scale is
pL2 = (2 GeV2 ).

Domain Wall Hybrid

m = 140 MeV chiral limit m, = 140 MeV chiral limit

LU-d -0.309(10) -0.313(10) -0.341(7) -0.346(6)
Lut+d 0.009(21) 0.022(22) 0.035(15) 0.048(15)
L" -0.150(13) -0.146(14) -0.153(9) -0.149(9)
Ld 0.159(10) 0.168(10) 0.188(8) 0.197(8)
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5.5 Generalized form factors

In this section we present an overview of our results for the nucleon generalized form

factors. In Section 5.4 we have already discussed the n = 2 unpolarized GFF A 2 0

and B 20 . Now we will discuss these and other generalized form factors in more detail.

However, because the topic of the nucleon GFFs is vast, we only highlight their most

peculiar features revealed by our calculations and demonstrate the precision we are

able to achieve, and postpone the systematic discussion to future publications.

5.5.1 Momentum transfer dependence
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Figure 5-29: n = 2 spin-independent generalized form factors from the Domain Wall
calculation. Disconnected contractions are not included in the isoscalar parts.

In Figures 5-29 and 5-30 we present the dependence of the isovector and isoscalar

GFFs A20 , B 20 and C20 on the momentum transfer Q2. We fit these form factors

with a dipole form, with the resulting bands shown on the figures. The dipole form
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n = 2 spin-independent generalized form factors from the Hybrid cal-

culation. Disconnected contractions are not included into the isoscalar parts.

is chosen because it is also employed in various phenomenological parameterizations

of the GFFs, e.g., in Ref. [GV98). For the form factors Be+d and C- d that are

consistent within their error bars or very close to zero we resort to a linear form to

guarantee the stability of fits.
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Results of both the Domain Wall and Hybrid calculations demonstrate similar

trends for the magnitude of n = 2 unpolarized GFFs,

|Cje"| < |A'd- I< |B d

B ,+d < |Cugd| < |A u/d l.

The relative magnitude of the form factors is of interest because according to Eq. (1.21)

C2o(t) determines the dependence of the generalized moments H n=2(, t) and E n=2( t)

on the longitudinal momentum fraction . The (approximate) independence of the

n = 2 isovector generalized moments H =2 and En=2 may be a relevant constraint

for phenomenological analyses of future experimental data.

In addition, comparing isovector and isoscalar GFFs, we find qualitative agree-

ment with the large-Nc scaling rules [GPV01],

|A u-d|~ Ne <|A jd|~ N ,

|B20 ~0 NC> Bj|~N

Clod 3 N 7<jC~d 2N

|Cqu0-6 ~ Ne < |Cgu|d ~ 2|

The data for spin-dependent form factors has generally more stochastic variation.

In Figure 5-31 we show the Q2-dependence of the spin-dependent generalized form

factors A 2M and B20. There is no spin-dependent counterpart of C20 . We fit A 20 with a

dipole form and B 2 0 with a linear form in the entire available range 0 < Q2 < 1 GeV 2 .

We also present our observations how the Q2-dependence of the zero-skewness

generalized moment H"(( = 0, Q2) = A,,o changes with n. It is easy to see from

Eq. (1.18) that increasing n leads to amplifying the contribution of the quarks with

large longitudinal momentum fraction x to the H"( = 0, Q2) moment. On the other

hand, the 2D Fourier transform of the distribution H(x, = 0, -Q2) in the transverse

plane

H(x, b2) f T$e ib9 q-L H(x, = 0, t = -q) (5.29)

has a probability interpretation [BurOO] for a quark to be found at the transverse
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Figure 5-32: Transverse isovector radii as extracted from dipole fits with momentum
cut Q2 < 0.5 GeV 2 to unpolarized Ao and polarized Ao generalized form factors.

distance b_ from the center of momentum of the nucleon. If one quark carries a

significant portion of the nucleon momentum, the density distribution must be a
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narrow peak around zero, H(x -+ 1, bI) -> 62 (bI) [H+08]. To study this question,

similarly to Ref. [H+08, B+10, RenO4] we compute the transverse distribution radius

Kri,) defined as

H"'((=0, q) H(= 0, 0)(1
1
-(ri ,) qj + O(q)),

4 dH"(=0,qg) 8
" Hl"( = 0,qi = 0) dqi 2 41=20 M2so

We present our dipole fits to the GFFs A10, A20 and A30 in Fig. 5-33 and the extracted

radii in Fig. 5-32. We find that the following rule holds approximately:

(rI2) > (rI,) > (rI,), (5.30)

supporting the expectation that the distribution H(x -> 1, bI) becomes narrower
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with x -> 1.

Finally, we note that the computed dependence of GFFs on the momentum trans-

fer Q2 has implications for phenomenological analyses of generalized parton distri-

butions. Because of the lack of theoretical understanding of GPDs, one has to use

various GPD Ansdtze to analyze experimental data. Because the fall-off of nucleon

GPDs is expected to be approximately as steep as the elastic form factors, the most

often used form is a factorized Ansatz (e.g., in Ref. [GV98]) having separate Q2- and

x-dependence,

Hq(x, , Q2 ) = Aq0 (Q2)Hq(x, , 0),

Eq(x, 1, Q2) = Bl0 (Q2 )Eq(x, , 0).

However, such an Ansatz contradicts our data. Otherwise, the Mellin moments (1.18)

would demonstrate similar dependence on the momentum transfer Q2. Our data,

however, indicate that the Q2-dependence is different even for small Q2 < 1 GeV 2.
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Chapter 6

Summary

In this work we have performed high-statistics, high-precision calculations of nucleon

structure observables in the framework of lattice QCD. This is the first calculation

of nucleon structure observables using QCD on a lattice with chiral quarks and pion

masses as low as ~~ 300 MeV. We have carefully studied the systematic effects that

can arise in computing nucleon matrix elements of quark operators, and applied

optimization techniques to eliminate them as much as possible. As a result, we

are able to reduce the Euclidean time distance in the nucleon correlation functions,

which would otherwise be necessary to prevent systematic bias, and thus to improve

considerably the signal-to-noise ratio in our calculations.

We perform our calculations using three different discretizations of the QCD action

with Domain Wall (chiral sea and valence quarks), Hybrid (non-chiral sea and chiral

valence quarks), and Wilson-Clover, (non-chiral valence and sea quarks), or BMW,

fermions. The motivation to use the three different actions is twofold. First, a

direct comparison of the results allows us to estimate systematic effects arising from

simulating QCD on a lattice and assess the level at which different discretizations

affect the observables we calculate. Second, Wilson-Clover action is significantly

cheaper and allows us to obtain results at lighter pion masses at the expense of chiral

symmetry breaking.

Because the differences in fundamental theory can lead to differences in effective

theory parameters, one may not perform simultaneous chiral extrapolations of these
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calculations Nevertheless, the results of both calculations agree reasonably well for

all the observables we compute, and this fact reassures us that our methodology is

correct and systematic effects are under control. In addition, since the lattice spacing

is different in these two cases, the agreement of our results indicates that discretization

errors in our calculations are small.

The results we report include the nucleon vector and axial form factors, the gen-

eralized form factors, the quark spin and angular momentum contributions to the

nucleon spin. We observe that the dependence of the nucleon form factors on the

momentum transfer is qualitatively similar to phenomenology and experiments. For

example, we successfully use a dipole form to model the isovector Sachs electric form

factor. However, the size parameters we extract from our calculations, such as the

r.m.s. radii of charge, magnetization, and axial distributions in the nucleon, are

considerably smaller than experimental values. This is not surprising since we are

working with pion masses at least twice as heavy as the physical pion mass, and the

nucleon is known to be surrounded by a virtual pion cloud, which contributes to the

nucleon structure probed by experiments and our calculations.

The most precise results of our calculation, the nucleon vector form factors, pro-

vide a unique opportunity to test the predictions of chiral perturbation theory. Pre-

viously, either heavy pion masses or large stochastic variation prohibited testing pre-

dictions of ChPT, as well as extrapolating the results of lattice calculations to the

physical pion mass reliably. Our new data indicate, however, that neither O(Es)

HBChPT+A (also known as small-scale expansion, or SSE) nor 0(p 4 ) CBChPT ef-

fective theories can accommodate both our new lattice data and experimental results

simultaneously. We draw the conclusion that these chiral perturbation theory calcu-

lations of Dirac and Pauli radii, at this specific order of approximation, cannot be

valid in the range of pion masses above m, ;> 300 MeV.

One part of our results is renormalized non-perturbatively, and the other part is

renormalized using perturbative lattice renormalization factors. We compare the per-

turbative renormalization factors to non-perturbative calculations, and estimate their

difference as ~ 10%. We thus establish a remarkable result that lattice perturbative
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renormalization may introduce a systematic bias of order of 10%. This conclusion is

an important enhancement of the previous studies of the nucleon structure reported

in Refs. [H+08, B+10].

Finally, as has been discussed before, our calculations of nucleon structure are

not complete yet. We do not compute the s-quark contribution to the nucleon struc-

ture, and omit disconnected diagrams contributing to nucleon isoscalar observables.

However, the methods we developed to control the lattice systematic effects in nu-

cleon matrix elements arising from excited state contributions will be necessary for

reliable calculations of these quantities. Therefore, in this work we have laid essential

foundation for studies of full quark contributions to nucleon structure in lattice QCD.
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Appendix A

Lattice QCD simulation ensembles

A.1 Hybrid action ensembles

The Hybrid calculations are performed with the Asqtad action for sea quarks and

domain wall action for valence quarks generated by the MILC collaboration [B+01].

The lattice spacing is a = 0.1240(25) fm = (1.591(32) GeV)-' as determined from

heavy quark spectroscopy [A+04b]. The bare mass of Domain Wall valence quarks

is tuned so that the mass of the pion [H+08] is equal to the Asqtad Goldstone boson

mass. The gauge field was HYP-smeared to reduce the density of zero eigenmodes

of the hermitian Wilson operator Hw - 35Dw to suppress the tunneling of fermion

modes between the boundaries resulting from lattice artifacts. The parameters of the

domain wall action are summarized in Ref. [H+08].

Table A.1: Summary of Hybrid ensembles.

Id L3 x Lt am " amDW am/ X 103  ZA # confs # meas
Hy007  203 x 64 0.007/0.050 0.0081 1.58(1) 1.0839(2) 463 3704

Hy20 203 x 64 0.010/0.050 0.0138 1.57(1) 1.0849(1) 631 5048
Hy2, 283 x 64 0.010/0.050 0.0138 1.58(1) 1.0850(1) 274 2192
Hyo2o 203 x 64 0.020/0.050 0.0313 1.23(1) 1.0986(1) 486 3888
Hyo3o 203 x 64 0.030/0.050 0.0478 1.016(7) 1.1090(1) 563 4504

We collect the size and parameters of the Hybrid gauge configuration ensembles

in Tab. A.1 and the numerical results for the pion and nucleon masses and the pion
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Table A.2: Hadron masses and decay constants in lattice and physical units in Hybrid
ensembles.

Id (am), m, [MeV] (af), f, [MeV] (am)N mN [MeV]
Hyoo7 0.1842(7) 292.99(111) 0.0657(3) 104.49(45) 0.696(7) 1107.1(111)
Hy 0.2238(5) 355.98(80) 0.0681(2) 108.31(34) 0.726(5) 1154.8(80)
Hyoj 0.2238(5) 355.98(80) 0.0681(2) 108.31(34) 0.726(5) 1154.8(80)
Hy 0 20  0.3113(4) 495.15(64) 0.0725(1) 115.40(23) 0.810(5) 1288.4(80)

Hy 03  0.3752(5) 596.79(80) 0.0761(2) 121.02(34) 0.878(5) 1396.5(80)

decay constant in Tab. A.2. The number of measurements for nucleon form factors

("# meas." column) includes a factor of 8 for each gauge configuration (a factor of 4

for m,, F,, m'res).

The axial renormalization constant values in Tab. A.1 are determined from Eq. (2.30).

Its variation over the range of pion masses is a 3%, and its extrapolated value at

m +m -* 0 is ZA ~1.0750.

A.2 Domain wall fermion ensembles

For our analysis we used one gauge configuration ensemble with coarse and three

ensembles with fine lattice spacing. The former, coarse, ensemble was also used for

setting the scale of fine ensembles, and to check the dependence on the lattice spacing.

These configuration ensembles were generated by the RBC and UKQCD [A+08a] col-

laborations. The coarse lattice spacing acoarse = 0.1141(18) fm = (1.729(28) GeV)-'

was determined in Ref. [A+08a], and the fine lattice spacing a fine = 0.0840(14) fm =

(2.34(4) GeV)-1 was determined in Ref. [S+10]. The parameters of the domain wall

action are summarized in Ref. [S+10].

Table A.3: Summary of Domain Wall ensembles.

Id L 3 x Lt a [fm] T # meas. ami/amh a res 3 ZA
DWogrse 243 x 64 0.114 9 3208 0.005/0.04 3.15(1) 0.71724(5)
DWfon~e 323 x 64 0.084 12 4928 0.004/0.03 0.665(3) 0.74503(2)
DWone"; 323 x 64 0.084 12 7064 0.006/0.03 0.663(2) 0.74521(2)
DVWoin" 323 x 64 0.084 12 4224 0.008/0.03 0.668(3) 0.74532(2)
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Table A.4: Hadron masses and decay constants in lattice and physical units in
Domain Wall ensembles.

Id am, mr (MeV] aF, FT [MeV] aMN MN [MeV]
DVesarse 0.1901(3) 329(5) 0.06100(11) 105.5(1.7) 0.657(4) 1136(20)
DWne 0.1268(3) 297(5) 0.04400(15) 102.9(1.8) 0.474(4) 1109(21)
DWneg 0.1519(3) 355(6) 0.04571(09) 107.0(1.8) 0.501(2) 1172(21)
DW 5 s* 0.1724(3) 403(7) 0.04755(18) 111.3(2.0) 0.522(2) 1221(21)

We collect the size and parameters of the gauge configuration ensembles in Tab. A.3

and the numerical results for the pion and nucleon masses and the pion decay con-

stant in Tab. A.4. The number of measurements for nucleon form factors ("# meas."

column) includes a factor of 8 for each gauge configuration. T is the source-sink

separation in lattice units used in the calculation of three-point functions to obtain

nucleon matrix elements.

The axial renormalization constant values in Tab. A.3 are determined from Eq. (2.30).

Its variation over the range of pion masses is < 0.1%, and its extrapolated value at

mq + ms -> 0 is ZA = 0.74470.

A.3 Wilson-Clover ensembles

The gauge configuration ensembles with Wilson-Clover dynamical fermions generated

by the BMW collaboration [D+08, col] are used for exploratory purposes. The sig-

nificantly lighter pion mass and different fermion action require additional efforts for

tuning nucleon sources and renormalization. Below we summarize the ensembles used

in Chap. 5.

Table A.5: Summary of BMW ensembles.
x Lt a [fn] T # meas. ami/amh m., MeV]

243 x 48 0.116 10 2514 -0.0953/ - 0.04 250
323 x 48 0.116 10 2520 -0.0953/ - 0.04 250
323 x 48 0.116 10 2742 -0.09756/ - 0.04 200
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Appendix B

Irreducible representations of the

hypercubic group H(4)

Here we summarize the bases for tensors belonging to irreducible representations of

the H(4) group used in this work which are appropriate for the calculation of the

twist-2 Wilson operators [G+96a]. These irreducible representations are generated by

the rank n = 2, 3, 4 tensors, or r 4)] reducible representations similar to rank-n

tensors in SO(4) group,

The discussion below does not include pseudotensors. For the rank-n operators

including '7, one should choose an appropriate representation from [(4)] based on
(1)i

symmetry and multiply it by r.

The representations for rank n = 1 tensors (vectors) do not split into separate

irreducible representations under the H(4) group action and do not require special

treatment for renormalization, and are not discussed here.

Symmetric traceless rank-2 tensor irreducible representations:

(11 + 022 - 033- 044), -(033 - 044), (On -Q22),

(6) 1 +1 (0y < 473 - v2 -v+< 4
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Symmetric traceless rank-3 tensor irreducible representations:

(4)
60{234} {60f134}, 60{124}, {60123}

{(Of122} - O{133})

(8) : 2jQ{211} - O{233})

1i -{311} {- O322}),

V(Q{411} - O{422})

2(0{122} + O{133} - 20{144}),

(211 + O{233}

{(0311 + 0{322}

- 20{244}),

- 20{344}))

1411}+ 422 -- 20{433}),

Antisymmetric traceless rank-2 tensor 0

(6) 1 0 -v - LP
T 2

Mixed-symmetry traceless rank-3 tensor 0 ,f{I"pj} (first symmetrized in v, p, then

antisymmetrized in y, p, cf. Eq (4.19) and (4.9) in Ref. [G+96a]):

13((122)) O((133))) 1(0((122)) + ((133)) - 20((144))),

1 (G((211)) - O((233))),

13(0((311)) - ((322))>

1 ( (411)) -- ((422))),

6(C((211)) + O((233)) - 20((244))),

6(0((311)) + Q((322)) - 20((344))),

6(O((411)) + O((422)) - 20((433))),

where ( =V23) O-1V 2v 3 + 0
21V3Vv2 OsV3 1V 2 - OV3V21
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Appendix C

Renormalization of lattice

operators

C.1 Structure of Born terms and corrections

lattice vertex functions

In this section I collect the spin structures of possible terms in vertex functions of

operators for which we have to match lattice and perturbative calculations [Gra03b,

Gra03a, Gra06].

Notations: symmetrization and antisymmetrization (chosen so that for a sym-

metric tensor the relation Xf{1 l X1"'" and for an antisymmetric tensor the

relation Y1"..1-] = Y1./n hold):

1
n!

1

a

0~

(C.1)

(C.2)
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The spin structure of the Wilson twist-2 n = 2 operator (also given in (4.13)):

n=2 [ q[{75] [7Y}iD" - (trace)] q, (C.3)

[A 2a' (p) 2(I)(P2) - [AI)21 P"I + rl(12)(P2) - [A( 2 )]2fv) (CA)

where the tree-level structures are

L21 [7"} - p 1 06[t ) (C 5)

where [Y51 means that the same structure holds for helicity-dependent operators.

Similarly, the spin structure of the Wilson twist-2 n = 3 operator is

-3 75][7{"iD"iDP - (traces)]q, (C.6)

[A> 3 ]a (p) = H()(2) - [A) 2]L""P + Il( 1 2)(P2) . [A (2)] 2"WP" (C.7)

where the tree-level structures are

A(' 7{tW'Pl f vpp{ )P} !2h{LL6NIP}

) 3 6(C.8)

A 2 -- p2P - 2I '
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Appendix D

Chiral extrapolation formulas

D.1 Electromagnetic structure

D.1.1 Small Scale expansion (HBChPT+A)

The small scale expansion (SSE) is a triple expansion in a combination of small

parameters E E {m, p, A} [HHK98], where A = JA - MN.

Isovector structure

The isovector anomalous magnetic moment to order 0(E3) is given by [BFHM98)

gmMN
-vm) = x 47rF3

+ 2cA N 1 log [R(m)] + log .+ (M 7) (D.1)

In order to capture the most prominent O(m2) corrections, Hennert and Weise [HW02]

proposed a modification of the standard SSE power counting to promote the leading

term of the magnetic N -+ A transition into the first order NA effective Lagrangian.
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This leads to the following expression for r, (m,):

o 9i mMJrN 2cAMN 1
47F2 97r 2F LV
8 r ~ 4CACVgA-A/I~VM2

- 8E (A)MNm2 + 7cvAN

1 7 972F,2

8cAcvgA A 2MN
27-r2F

2)3/2

A2 f)
l

(1I

log [R(rn,)1 + log [~r
F2A2A

log RA] +

Og [R(mn,)] +

4CACV9AMNm r
277FlA

3m02
2A2 f)

log2A

(D.2)

where cv is the leading magnetic photon-nucleon-A coupling in the chiral limit and

K0 denotes the anomalous magnetic moment in the SU(2) chiral limit.

The 0( 3 ) SSE formulas for (r,) 2 and (r) 2 can be derived from the chiral expres-

sions for F 2, respectively, and are given by [BFHM98]

1
(4-rF1,) 2

2

+ CA
54r 2F2

+ 7gA + (10g + 2)Alog [7}

LA]* + 30 log
A 2 -_M2

+ c AN log
9 72 F ? /2 - M,2

12B () (A)
(47F,)2

A A2
- + 1m m7 I

(D.3)

+ - I + O(MO.

(D.4)

Systematic disagreement of the ChPT prediction for the Pauli radius and lattice

data because of insufficient approximation order motivates one to add the O(m,)

correction to the leading one-loop result of Eq. (D.4) (the so-called "core" contribution

in Ref. [G+05b]) to s' - (r) 2 , such that

gAMN

8irFjm~ +

CAJN
F A - log

92F2 /-2 - m2

[A A2

- + 1 + 24MN-

(D.5)

174

riv)2

26 + 30 log

gA MN

87rF m,
KV (m,) - (r")2

-

+ O(m) ,
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Isoscalar structure

The 0(Es) SSE expressions for the pion-mass and momentum transfer dependence of

the isoscalar Dirac and Pauli form factors have been derived in [BFHM98]: Note that

chiral dynamics in the isoscalar form factors of the nucleon starts at the 3-pion cut,

i.e. at two-loop level [BFHM98]), corresponding to 0(c5) in the power-counting of

SSE.

Fi (Q2 ) = + 51 2, (D.6)

Fj(Q2 ) = 2, (D.7)

Low-energy parameters

The common low-energy constants (LECs) which enter the chiral Lagrangian to this

order are the SU(2) chiral limit values of F., the pion decay constant, gA, the nucleon

axial charge, CA, the leading-order pion-nucleon-A coupling1 , and A, the A (1232)-

nucleon mass splitting. Additionally, Eq. (D.2,D.3,D.5) involve KO and cv LECs,

as well as counter terms Bl(,(A) E[(A) and C. For more details on the effective

Lagrangians and the definitions of the LECs, we refer the reader to [BFHM98].

Ideally we would like to determine all these constants from simultaneous fits to

lattice results. However, this is not feasible with the limited number of measured

observables and pion masses in the present calculation, and we thus fix some of the

low-energy constants using their phenomenological values. We describe our choices

for these values below.

The pion decay constant F, convention is such that at the physical pion mass

F hys : 92.4 ± 0.3 MeV. (D.8)

In Ref. [CD04], Colangelo and Diirr analyze numerically the NNLO expression for

the pion-mass dependence of F, [BCT98]. They use available information from phe-

nomenology to fix all low-energy constants but the chiral limit value of F,, use the

The coupling CA corresponds to y,1rA in the notation of Ref. [HHK98].
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physical value (D.8) and obtain

F', chiral limit = (86.2 ± 0.5) MeV. (D.9)

In the absence of reliable chiral extrapolations of both nucleon and A (1232)

masses (see the discussion in Ref. [WL+09]) 2, we identify the A-nucleon mass split-

ting in the chiral limit with its value at the physical m, . The position of the A (1232)

resonance pole in the total center-of-mass energy plane has been determined from

magnetic dipole and electric quadrupole amplitudes of pion photoproduction. Ac-

cording to the Particle Data Group average [A+08b], the A-pole position leads to

MA = (1210 + 1) MeV and FA = (100 ± 2) MeV. If one instead defines the A (1232)

mass and width by looking at the 900 rN phase shift in the spin-3/2 isospin-3/2

channel, the PDG averages give MA = (1232 ± 1) MeV and FA = (118 ± 2) MeV.

With MN = 939 MeV, one obtains, respectively,

A = (271 ± 1) MeV, (D.10)

or

A = (293 + 1) MeV. (D.11)

The A (1232) decays strongly to a nucleon and a pion with almost 100% branching

fraction. From the PDG values of masses and widths [A+08b] and from

2

FA-N,= CA (E 2 - m 2 )3 / 2 (MA + MN - E7,), (D.12)
12r F2 MA

where
M2 - MN2 + M2

E7, - 2M (D.13)

2 For an analysis of the quark-mass dependence of nucleon and delta masses in the covariant SSE
at order c we refer to [BHM05].
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one obtains, respectively 3,

CAJ = 1.50 ... 1.55 if F = (100 ± 2) MeV and A = (271 ± 1) MeV(D.17)

CA = 1.43. .. 1.47 if F = (118 ± 2) 1\eV and A = (293 ± 1) MeV(D.18)

Chiral extrapolations of different sets of lattice results [HPW03, E+06b, PMHW07,

AK+06] based on SSE at leading-one-loop accuracy lead to a chiral limit value for gA

of about 1.2. From the relativistic tree-level analysis of the process of pion photopro-

duction at threshold -yp - r0p, one obtains [DMW91, HHK97] (for CA =1.5)

cv ( 2.5 ± 0.4) GeV- . (D.19)

D.1.2 Covariant Baryon ChPT (CBChPT)

In this section we collect the nucleon structure results obtained in the formulation

of SU(2) chiral effective field theory in the baryon sector, without explicit A (1232)

degrees of freedom: covariant BChPT as introduced in Ref. [GSS88] with a modi-

fied version of infrared regularization (IR-scheme). For details about the formalism

and differences from the standard infrared regularization introduced by Becher and

Leutwyler [BL99], we refer the reader to Refs. [DGH08, Gai07, GH].

3 Calculating the strong decay width of A (1232) to leading order in (nonrelativistic) SSE kine-
matics, one obtains

FAN rr A - M2)3/2. (D.14)

We note that this expression corresponds to the leading term in a 1/MN expansion of the result
given in Eq. (D.12), which utilizes the full covariant kinematics. Using the ranges of masses and
decay widths mentioned above, this expression yields the lower values

cAl = 1.11 .. .1.14 if F = (100 ± 2) MeV and A = (271 ± 1) MeV; (D.15)

|cAI = 1.04 ... 1.07 if F = (118 ± 2) MeV and A = (293 ± 1) MeV. (D.16)

Furthermore, SU(4) spin-flavor quark symmetry gives cA = 3 gA/(2 2) = 1.34.
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Isovector structure

The expressions for the m, dependence of the mean squared isovector Dirac and Pauli

radii and the isovector anomalous magnetic moment have been derived in [Gai07] up

to order p4 i.e. at the next-to-leading one-loop accuracy and are collected below4.

For the isovector mean squared Dirac radius, the expression is given as

()2 = Bc1 + [(rv)2]( 3 ) + [(rv)2](4) + O(m), (D.20)

where

Bc1 = -12dr(A),

r 7gqM 4 + 2(5g2 + 1)M4 log + M - 15gimnM 2
167r2FAM4 167 A

+ g2m 2 (15m 2 - 44M 2 ) log

2

+ g[m" 15m 4 - 74m2M 2 + 70M 4] arccos
167r2F2M 4  -4M2 -m2 7 2M

(rv)2] _ 32 - 3MJ)arccos m
167 2F 2 M 4M 2 - M2 2Mo

+ 4M - m2 MO2 + (M m ) log .]

The terms contributing up to and including 0(pi) are denoted by the superscript

(i). Without any loss of generality, the regularization scale A is set equal to MO, the

nucleon mass in the chiral limit. The low-energy constants d6 and c6 appear, respec-

tively, in the third- and second-order rN effective Lagrangian. The mass function M

must be identified with M0 if one truncates the previous expression at O(p3), whereas

4 In Ref. [Gai07] the form factor slopes pv and pv are used, which are related to our notation for
ry and r' by p' = 1(r ) 2 and p' = - (r,)2.
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at order p4 , according to Ref. [Gai07), A should be replaced by [DGHO8]

AN (mr ) =-Ao
3g 2m,3

4cim2 + 3 A7r
327r2F 4 -

0I 0

12872 I 2 +

4 3Cig 2M 6
+ 4e(A)m4 - Ag 7r log

7 8r 2F7 M2

4 (A11

i)

where 5

Bc2 = 24Moe74 (A),

2 m4
4 + "7_ + 4c1 3

M0 MA/s

- 8c1 + c2 + 4c3)

)arccos

log

(D.21)

where ci, c2 and c3 are second-order low-energy constants and e(A) denotes an effec-

tive coupling consisting of a combination of fourth order low-energy constants. In our

current analysis, we always include terms up to O(p'), hence M in all the BChPT

expressions presented here should be identified with MN(mr).

The pion-mass dependence of the isovector Pauli radius is given by

_ giMo
167r2F2M5(m2 - 4M 2)

124M 6

+ 6(3m6 - 22M12m + 44M 4m -

2f -Al0o

87r2F2M 5m, (4jV2

216M 6m2 + 16MA8

+ 105m2M 4 - 18mn4M 2

16M 6) log mI

m)/ 9m8 - 84M 2 n + 246M 4m4

- m )3/2 T r

are cos (M

5 We note that C in Eq.(D.5) is equivalent to e 4(A).
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N(B 2 + [K- (r")2 (3) + [K- (,")2](4)) + O(m), (D.22)so (m~r) -r") =W

[Kv - (r v)2] (3)



2 3(
[ - (r4)2((4) - g-c M 2/ [4 - 27m7Mr + 42M] arccos m

167 2 rM (4M - m2 3/2  2Mo)

+ 2F72 4 2 - 4A2) 16c4Mo + 52g AI( - 4c4muM - 14c 6gm M1672j o (m - 4M/1 )

- 13gm MNo4 + 8(3g2 - c4 Mo)(m2 - 4AI)M4 log + 4c6g2m 4 M2

- ginm - 4M,)(4ccn - 3c6 nM, + 24M4) log .

For the isovector anomalous magnetic moment, the 0(p4 ) BChPT expression is

- M c6 - 1o 2 06 ) + 63) + (4) 0(M3
MO C 1Mn 160 V V7

(D. 23)

where

(3) g9A27r~

- 82 rF M3 [(3m2 - 7M2) log M

g 4M2

87 rFM3 _ 4M2 - M2

- 3M2I

[3M4 - 13M 2m2 + 8M 4] arccos

3 2

3 2 2 2~M[4g(C 6 + + 1)M - gA(5c 6rm!

+ 4M (2c6g2 + 7g + c-

2 3
g cm " (5m2

327 2 F M 4M -m

+ 28Mg) log

4c4Mo) logn ]

- 16M )arccos m
(2Mo)

Note that N C6 is equivalent to K< in Eq.(D.2), where MN is the physical nucleon

mass and MO is the nucleon mass in the chiral limit.

Isoscalar structure

The BChPT formulas up to 0(p4) for (rs)2 , (,I)2 and K, have been derived in [Gai07,

GH]. Note that the NLO one-loop CBChPT results for the nucleon isoscalar form

factors do not contain their dominant chiral dynamics arising from the 3-pion cut,

(M 
r

V



and such effects would only become visible at the two-loop level, i.e. starting at O(p5 )

in BChPT.

(rs)2 = Bs + [(rs)2] ( + [(r)2 ] (4)

where

B = -24d 7 ,

3gm 5m M2
16r 2F2 M4 (m2 - 4M 2) [

m(5m4 -34M 2m2 + 54M 4)
Q4M2 -M2

- 18M 4

ma
arecos (M

- (M2 - 4M 2)(5m2 - 4M 2 ) log

(r (4) - 9g2irm 0

16 2F2M 4
log m + mmi 3M)arcos

Mo Q4M - m2

Here, again, when the expression is truncated at 0(p 3 ), M should be identified with

MO, while at 0(p 4 ), it should be replaced by MN(n) in Eq. (D.21). Similarly, for

(rs)2 , we have

s) (r) 2 MN Be2 + [s (rs) 2] (3) + [n, - (r) 2 ] (4) (D.25)

with

B 2= 48Moe5 4,
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s)2] (3)

m7

2Mo
m2 + (M2 - m')2



3g2m Mo
167 2FM 5 (4M 2 - ml)

mn(6m4 - 40M 2 m + 60M 4) mo

L 4M2 - (2M)

- 2 (1OM4 - 3m2M 2 + (4M 2 - mir)(2M 2 - 3m) log MIT

s)2] (4) 3 g m M 2
2s ()] 172F2 4d (mT - 4M2)

m (4M4 - 27M( m' + 42MI0)

f4Ms -m

+ 14MO - 4rn M2 + (m 2 - 4M )(4m2 - 3M ) log '.

The BChPT expression for the isoscalar anomalous magnetic moment is written

MNV
KS I K - 16MOmn2er5 N A- V,()+ 4 (D.26)

- 3g 2 ri 2MO
S 82F2M

M7 (M 2n -3 3M 2 )7F F arccos
4M/I 2- ;T ( )+ M2 + (Ml 2

- ml

3g 2m 26(4) = Ag m
, 327r2F M02

4M2 + KO(3m2 - 4Mg) log -S 7* Mo
- omI(3m - 8MO2) areos

" f4Ms m2,
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Appendix E

Abbreviations

DWF domain wall fermions

BMW Budapest-Marseille-Wuppertal [collaboration]

(L)QCD (lattice) quantum chromodynamics

CBChPT covariant chiral perturbation theory

HBChPT heavy-baryon chiral perturbation theory

SSE small-scale expansion (HBChPT with A-resonance)

GPD generalized parton distribution(s)

GFF generalized form factor(s)
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