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Abstract

Quantum spin liquids, which are quantum ground states of interacting spin systems
that break no symmetries, have long been a fascination among the theoretical con-
densed matter community. After years of experimental searches, several promising
candidates finally emerged, including herbertsinithite ZnCu3 (OH)6 Cl 2 , which can be
modeled as a spin-1/2 kagome lattice. Theoretically, the U(1) Dirac spin liquid (U(1)
DSL) state is shown to be a plausible description of the system, and previous works
have indicate that this particular quantum spin liquid state may enjoy a host of inter-
esting properties, such as the power-law decay of correlation functions, the existence
of spin-1/2 excitations known as the spinon, and the existence of an emergent U(1)
gauge field.

In this thesis, after the relevant motivation and background information are dis-
cussed, I shall present my work on the spin-1/2 kagome lattice that built upon the
U(1) DSL state. First, I shall present the theoretical study of Raman scattering in
the U(1) DSL state, which shows that in all symmetry channels the Raman intensity
profiles contain broad continua that display power-law behaviors at low energy, which
can be attributed to the excitations of spinon-antispinon pairs. In, addition, for the
A2g channel, the Raman profile also contains a characteristic 1/o singularity, which
arise from an excitation of the emergent U(1) gauge field. The possibility of more
clearly observing the signature of this U(1) emergent gauge field in resonant inelastic
X-ray scattering (RIXS) is also discussed. Next, I shall consider the case when the
spin-1/2 kagome lattice is subjected to an external magnetic field, in which a state
with an additional uniform amount of gauge flux of top of the U(1) DSL ansatz,
which results in the formation of Landau levels in the spinon spectrum, is shown
to be energetically favorable. Unlike the usual quantum Hall system, the Landau
level state is shown to contain a gapless S2 density mode, which in turns indicate
that system is XY ordered in the plane perpendicular to the applied magnetic field.
Third, I shall consider the case in which the spin-1/2 kagome lattice is hole-doped.
Similar to the B-field case, a Landau-level state is shown to be energetically favor-
able, in which a gapless charge density mode is shown to exists, and which through



the Anderson-Higgs mechanism causes the system to become a superconductor. This
resulting superconductor is then shown to be exotic, in the sense that it contains
minimal vortices having a flux of hc/4e, as well as bosonic quasiparticles that have
semionic mutual statistics. The thesis concludes with a short summary and outlook.

Thesis Supervisor: Patrick A. Lee
Title: William and Emma Rogers Professor
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Chapter 1

Introduction

Condensed matter physics concerns itself with the study of macroscopic properties

of ordinary matters made out of electrons and ions, at energy scales that are low

compared to the fundamental scale of its constituents. On the surface, the problem

that confront a condensed matter theorist is much simpler than that of a high-energy

theorist-there is no unknown particles to be discovered, no unidentified interactions

to be pondered about, and no extra dimensions to be unveiled. The interactions

between and among the electrons and ions are well-known and well-understood, and

an undergraduate in physics could have easily written down "the" equation that

governs all condensed matter systems. Thus, at first glance, there seems to be very

little to be done in condensed matter theory.

Fortunately (but also unfortunately) for those of us who aspired to have a career

in condensed matter theory, that deceptively simple-looking equation turns out to be

intractable as it stands. In the early days of condensed matter physics, much progress

has been made by treating the electron-electron interaction perturbatively (after mak-

ing the Born-Oppenheimer approximation of separating the slow ionic motion from

the fast electronic motion). Such "weak-coupling" approach has been successful in ex-

plaining the physical properties of simple metals and superconductors, and its modern

descendants, in the form of, e.g., density functional theory [1, 2, 3], have been ap-

plied to increasing sophisticated physical systems and still manage to produce decent

results.



(a) t 1+

(b) +

Holon Spinon

Figure 1-1: Physical picture of spin-charge separation in a one-dimensional spin-1/2
chain. (a) A physical electron removed from the chain; (b) the resulting spin and
charge excitations. Taken from Ref. [4]

Nonetheless, there remains a large class of materials in which this perturbative ap-

proach fails. Such systems are generally referred to as being "strongly correlated." A

particularly instructive class of examples are the one-dimensional systems [4]. Because

of the strong phase-space restriction, perturbation theory fails no matter how small

the interaction appears to be. To understand these one-dimensional systems, a host

of analytical and numerical techniques, e.g., bosonization [5, 6, 7] and density matrix

renormalization group (DMRG) [8, 9], have been developed. Using these techniques,

it has been shown that one-dimensional systems possess a variety of unusual behav-

iors. In particular, it has been shown that the spin and charge excitations in these

systems are completely decoupled and in general propagates at different velocities, a

phenomena known as "spin-charge separation." Intuitively, one may understood such

behavior by visioning a physical electron splitting into a chargeless spin 1/2 excitation

(spinon) and a charge e spinless excitation (holon). See Fig. 1-1 for illustration.

Motivated by the one-dimensional cases, various proposals have been made in

higher dimensional systems in which a similarly exotic phase of matter may be re-

alized. One such proposal is the so-called quantum spin liquid (QSL) states, which

is a strongly correlated state of matter that is insulating but which has no spin or-

dering. More drastically, it contains fermionic spin-1/2 excitations as well as bosonic

excitations that resembles photons in certain ways. Recently, experiments have re-



veal several materials in which the spin liquid states may be realized, among them

herbertsmithite ZnCu3 (OH)6 Cl 2 , which can be modeled as a spin-1/2 kagome lattice.

In this thesis I will present my theoretical works on the spin-1/2 kagome system,

which are built upon the assumption that the system is well-described by a partic-

ular quantum spin liquid state called U(1) Dirac spin liquid (U(1) DSL) state. In

the first part I will discuss theoretical prediction on how the spin-liquid state will

response under Raman scattering and Resonant inelastic X-ray scattering (RIXS),

which may provides evidence for the existence of the fermionic spin-1/2 excitations

and the "fictitious" gauge boson excitation as mentioned above. In the second part

I will discuss what may happens to the system when an external magnetic field is

applied or when it is hole-doped, and show that an exotic superconducting phase, in

which fractionalized quasiparticles exists, may appear in the latter case.

1.1 Anti-ferromagnetic Heisenberg model and the

quantum spin liquid

As mentioned above, a quantum spin liquid is a strongly correlated insulator. Specif-

ically, it is a Mott insulator [10], in which charge fluctuation is suppressed because

the strong on-site Coulomb repulsion incur a large energy cost when extra electrons

occupy a lattice site. For most Mott insulator, effective spin-spin interaction be-

tween neighboring sites resulting from the virtual hopping of electrons leads to a

magnetic ordering when temperature is sufficiently low. The quantum spin liquid

thus represents an exceptional case in which no ordering exists despite the existence

of interactions.

To be more precise, consider for simplicity a system in which each lattice site

consists of a single orbital. In such case, the system can be described by the Hubbard

model:

HHb Z ijct ej, + U nilni , (1.1)
e (i

where ci, (c$t) is the electron destruction (creation) operator, with iI j labeling lattice



sites and o a=t, . label spins, and which ni, c ci, is the number operator for spin

- on site i.

When U >> t and when the average occupation on each lattice site is less than

or equal to one, the lowest-energy states of the systems are those in which none of

the site is doubly occupied. Using perturbation theory, the effective Hamiltonian

restricted to this nearly-degenerate ground-state manifold is found to be [11]:

= Ps (+ ( S - n - c, + h.c. Ps , (1.2)

where P is the projection operator onto the states with zero double occupancy, ni=

niT + ni, S = E c c (with -r being the usual Pauli matrices) is the spin-1/2

operators constructed from electron operators, and Jij = 4t?2/U. Observe that Jij is

positive and hence corresponds to an antiferromagnetic (AF) interaction. The model

given by Eq. (1.2) is often referred to as the t-J model.

When the average occupation equals to one, the t-J model reduces to the Heisen-

berg model:

HHsb ij Si .Sj , (1.3)
i~j

where the constant term ininj has been dropped. Note that in this case there is no

charge degree of freedom remaining, thus the system is an insulator as claimed. It

should also be remarked that while the derivation of the Heisenberg model sketched

above is specific to the one-band Hubbard model, similar derivation can also be

done in more complicated case, with the spin-1/2 operator Si by spin operators of

appropriate total spin S determined by a combination of Hund's rule and crystal field

considerations, and the value of Jij determined according to the precise scenario [12].

For the nearest-neighbor AF Heisenberg model (which for the rest of this chapter

will be assumed to be the model under consideration, unless otherwise stated), the

classical ground state (commonly referred to as the N'el order) on a bipartite lattice

(i.e., a lattice that can be subdivided into two sublattices A and B, such that the

nearest neighbors of a site in sublattice A all belong to sublattice B, and vice versa)



is easily seen to be an alternating pattern of anti-parallel spins (c.f. Fig. 1-2(a)).

While such state cannot be the exact quantum ground state, quantum fluctuation in

general does not destroy this order, as can be checked from, e.g., a spin-wave expansion

[13]. Indeed, there have numerous observations of antiferromagnetic ordering in real

materials [141, using techniques such as neutron scattering [15].

However, the magnetically ordered N6el state is not the only plausible ground

state. An early example is the spin-Peierl state [16, 17], in which spin-lattice cou-

pling causes the lattice spins on quasi-one-dimensional spin chains to spontaneously

dimerize and deform the lattice. More generally, a spin system may form what is

known as the valence bond solid (VBS) state. In a VBS state, lattice spins form

singlet pairs in which certain singlet bonds are preferred to others, thus breaking the

translation and/or the rotation symmetry of the lattice.

Perhaps more interesting is Anderson's proposal [18] in 1973 of a new possible

ground state for the S = 1/2 triangular lattice. The state, which he termed the

resonating-valence-bond (RVB) state, can be visualized as a linear superposition of

configurations each formed by pairing spins into singlets. The RVB state has no static

magnetic ordering and breaks no spin or lattice symmetry. Moreover, elementary

excitations in this state will be spin-1/2 quasiparticles obtained from breaking a

bond [19], which are now referred to as spinons. The RVB state is thus a quantum

spin liquid, and a first proposal of such beyond one dimension.

While numerical evidence now suggests that the ground state of the nearest-

neighbor AF Heisenberg model on the triangular lattice is ordered [20], the quan-

tum spin liquid state may still be realized in other situations. One influential pro-

posal, for example, is that the pseudo-gap phase in the cuprates superconductor is

well-described as a quantum spin liquid [21]. Moreover, recent experiments have

found several materials (whose effective interactions may be more complicated than

being merely nearest-neighbor AF Heisenberg) in which the quantum spin liquid

state may be realized. These include: (1) the organic salts K-(ET) 2X [22, 23] and

EtMe3Sb[Pd(dmit) 2] 2 [24], whose spins form triangular lattices; (2) the spinel re-

lated oxide Na 4 1r 30 8 [25], whose spins form the so-called "hyper-kagome" lattice;
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(a) (b) (c)

Figure 1-2: (a) Neel order on the square lattice; (b) Geometric frustration in the
triangular lattice; (c) compromised Neel state on the triangular lattice.

and (3) herbertsmithite ZnCu 3(OH)6 Cl2 [26, 27] and Vesignieite BaCu3V20s(OH) 2

[281, whose spins form kagome lattices.

1.1.1 Factors that favor spin liquid state

Under what circumstances will the spin liquid state be favorable? Anderson's pro-

posal of the RVB state in the triangular lattice is partly motivated by the geometric

frustration that is present in the triangular lattice. In general, geometric frustra-

tion occurs when the geometry of the lattice make it impossible for a classical spin

configuration to simultaneously minimize the energy of all interactions. In the case

of the triangular lattice, once two sites on a triangular plaquette is chosen to be

anti-parallel, there is no way for the third spin in the plaquette to be simultaneously

anti-parallel to these two spins (c.f. Fig. 1-2(b)). Hence the lattice is geometrically

frustrated. Because of this geometric frustration, the Neel order in the triangular

lattice is one in which each spin is at an angle of 120' with its neighboring spins, such

that 'E Si = 0 on each triangle (Fig. 1-2(c)) [18]. Compared with the Neel order

on a bipartite lattice, the Nel order on the triangular lattice is less energetically

favorable, thus making the spin-liquid state a more attractive alternative.

It should be noted that frustration can also arise when additional interactions

between the lattice spins, such as next-nearest neighbor Heisenberg interactions, are

taken into account. For example, a square lattice can become frustrated when Jj

is antiferromagnetic for both nearest and next-nearest neighbors. Frustration intro-

duced by additional interactions are particularly relevant for the so-called weak Mott



d= 1 -H-± vs. 1

d=2 vs.

Figure 1-3: Neel state vs. singlet state on d-dimensional square lattices.

insulator, in which strong virtual charge fluctuations requires the inclusion of addi-

tional ring-exchange terms in the effective spin Hamiltonian[29]. Indeed, while the

nearest-neighbor AF Heisenberg model on the triangular lattice is likely to be or-

dered, there are numerical evidence that the inclusion of ring-exchange interactions

may favor spin liquid states [30, 31], which may explain the spin-liquid behavior in

the organic salts organic salts r-(ET) 2 X mentioned above.

In addition to frustration, low dimensionality and small total spin on each site

also play important roles. For an intuitive picture, it suffices to consider a simple

energy comparison between a classical Neel state and a singlet-pairing state of spin-S

in a d-dimensions square lattice (Fig. 1-3), treating both as trial wavefunction to the

nearest-neighbor Heisenberg Hamiltonian Eq. (1.3) (with Jj = J if ij are nearest

neighbor and 0 otherwise). The per-site energy expectation for the N6el state and

the singlet-pairing state are, respectively:

(ENel) dJS2 (1.4)

(Esinglet) = S(S + 1) . (1.5)
2

From this we see that as the singlet state becomes less and less energetically favorable

when d and S increases.

The above criteria still leave us plenty of choices, since there are plenty of two-

dimensional lattices that are geometrically frustrated. Is there any way to see which

one may be more favorable to the quantum spin liquid state? Intuitively, we can



think of the quantum spin liquid as a state in which the classical ground states are

mixed because of quantum fluctuation. With this picture in mind, one loose way

to judge whether a lattice is more favorable to the quantum spin liquid state than

the other is to compare the number of classical ground states that the system has.

For example, while the triangular lattice is frustrated, once the orientation of two

adjacent spins are determined, the N6el ordering pattern is uniquely specified. In

contrast, in the kagome lattice the ground state cannot be uniquely specified by a

local spin configuration, as will be discussed below.

1.2 The Schwinger fermion and slave boson for-

mulation of spin liquid

While Anderson's picture of the quantum spin liquid state as a superposition of singlet

pairs an inspiring one, it is not very convenient for analytic treatments of the theory.

It would be desirable to have a mean-field theory for spin liquid, so that different types

of spin liquid can be specified by choosing different mean-field parameters, and such

that elementary excitations can be expressed in terms of the appropriate operators

in the theory.

For the Heisenberg model, an obvious choice for mean-field parameter is the spin

operator S. However, this choice does not work for a spin liquid, in which (S) = 0.

One way to circumvent this difficulty is to employ a slave-particle formulation, in

which the spin operator is re-expressed in terms of fermion or boson operators. A

famous example for this is the Schwinger boson decomposition [32], in which the spin-

S operator S is expressed in terms of two species of bosons a and b, subjected to the

constraint ata + btb = 2S (the constraint ensures that all states are in the physical

spin-S sector).

For a spin liquid state on a spin-1/2 lattice, it is useful to adopt instead a fermionic

representation of the spin operators, in which two species of fermions fT and f are



introduced, such that:

S+ gx + iS" = f f , (1.6)

S- SX + iSy = ft (1.7)

SZ ~(f t
2 = . (1.8)

Note that the above equations can be more compactly expressed as S = jftrafg,
where -r are the usual Pauli matrices. From this we see that fT and f together form

a spin doublet. As in the Schwinger boson case, the Hilbert space is enlarged. Of the

four possible states, only I t) = f f0) and I 4) =ft |0) are physical. The appropriate

constraint in this case reads:

ft f + ff=1 . (1.9)

In this representation, the Heisenberg Hamiltonian can be rewritten as [33]:

Hsb= - (f~ifjafffig) , (1.10)

where an inconsequential constant has been dropped.

Observe that Eq. (1.10) resembles the Hamiltonians that arise from two-body

interactions. As in that case, we can introduce mean-field parameters to decouple

the four-fermion terms. Furthermore, at the mean-field. level the constraint Eq. (1.9)

can be imposed on average by adding a Lagrange multiplier Ai(E f f - 1) to the

Hamiltonian. In particular, letting Xjj to be our mean-field parameter, determined

self-consistently through Xjj = (E f afjo), Eq. (1.10) becomes:

HMF (xij fia fja + h.c.) - Ix~I)2 t A_ ( f tf - (1.11)
ii i

Intuitively, Xij can be thought of as parameterizing the bond strength of the singlet

bond that connects site i and j. Moreover, we see that f, plays the role of elementary

excitation in Eq. (1.11). We can thus identify f, as the spinons as discussed above.

In this way, different spin liquid ansatzes can be specified by different choices of xjj.



Note however that not all choices of Xij give rises to a legitimate spin liquid state,

since a spin liquid must by definition be invariant under lattice symmetries, which

imposes additional requirements on Xij. In particular, an ansatz in which IXi j varies

among different bonds that are related by lattice symmetry cannot be describe a spin

liquid state, but will instead describe what called a valence bond solid (VBS) state.

Intuitively, in a valence bond solid state the lattice spins also form singlet pairs,

but unlike a quantum spin liquid, certain singlet bonds are preferred to others, thus

breaking the translation and/or the rotation symmetry of the lattice.

Since Eq. (1.11) is a quadratic Hamiltonian of fermionic variables, at the mean-

field level the ground state can be understood as spinons filling up the respective

band structure. Different ansatzes will result in different band structures, which in

turn dictates the physical properties of the resulting state.

1.2.1 Gauge field and deconfinement

The simple mean-field theory presented above missed a crucial feature of the spin

liquid, namely the existence of an emergent gauge field [34]. To uncover this emergent

gauge field, it is advantageous to adopt a path integral formulation. In the path

integral formulation, both of and Xij are to be treated as auxiliary variables, each to

be integrated over in the respective functional integral. The full partition function

thus reads [33]:

Z = DoJ DXj Dfe-t , (12)

where the Lagrangian L is given by:

£Zf aDfi+ ((ijf(ijcfJ ± j, h. c.) - lI) -12 f (fj~ i)

(1.13)

It should be remarked that while the constraint Eq. (1.9) is enforced only on

average in the mean-field Hamiltonian, it is enforced exactly in the path integral

formulation Eqs. (1.12)-(1.13), as long as the fluctuations of Ai are included. Similarly,

the decoupling of four-fermion terms are exact as long as the the fluctuations of Xii



are included (in this context the Xij is often referred to as a Hubbard-Stratonovich

variable, and the transformation that decouples the four-operator terms is referred to

as the Hubbard-Stratonovich transformation). The mean-field Hamiltonian can thus

be thought of as being derived from the path integral formulation by neglecting the

fluctuations of Xij and Ai.

Because of the lyijJ2 term in Eq. (1.11), the magnitude fluctuation of Xij is in

general gapped and thus it is legitimate to ignore it. The same cannot be said about

Ai and the phase of Xij. Letting Xij = Xijleiaj and rewriting Ai as a9, with the

understanding that these are fluctuating quantities, Eq. (1.11) becomes:

HMF - xj iafja+ h.c.) -|xis + Z ( ffga - 1)
ii

(1.14)

from which we see that ac and the phase of Xij naturally form the components of a

U(1) lattice gauge field. Indeed, this gauge field is associated with the gauge redun-

dancy in the definition of fi, since the Lagrangian is invariant under the following

set of transformation:

0-
fi, + e~fia ; aij + azij + 6i - 6O; ao + a0 + (1.15)

Observe that the gauge field thus defined is a compact gauge field, since ai is

identified modulo 27r. Consequently, monopoles of this gauge fields are allowed, and

from the argument by Polyakov [35], the existence of monopole will lead to the con-

fined phase, in which the gauge field forces the spinons to bind together into an object

neutral with respect to the gauge charge (this is analogous to the case in QCD, in

which quarks are forced to bind into gauge-neutral baryons). In such case, the ele-

mentary excitations of the system will no longer be spin-1/2 spinons but rather spin-1

magnons.

Fortunately, Hermele et. al. [36] have shown that when the low-energy spinon spec-

trum consists of N Dirac cones and when N is sufficiently large, the system will flow

to the deconfined phase under renormalization group flow, under which the monopole



becomes irrelevant. While the spinons will still be interacting strongly with the gauge

field, it is at least sensible to talk about these spin-1/2 excitations as separate entity

in the system.

1.2.2 Projected wavefunction

While mean-field theory is a convenient way to parameterize different spin liquid

(and VBS) ansatzes and a useful way to consider their low-energy excitations, it

often fails to give accurate estimate as to which mean-field state is most energetically

favorable. One way to think about this issue is to realize that an mean-field ansatz

can be thought of as defining a mean-field trial-wavefunction I mean), which has the

problem of including configurations that are unphysical, i.e., configurations for which

the constraint Eq. (1.9) is not satisfied. Then, a natural way to circumvent this

difficulty would be to instead identify the mean-field ansatz with a projected trial

wavefunction, in which the unphysical states are removed. More precisely, given a

mean-field ansatz that corresponds to the mean-field trial wavefunction |v'mean), we

identify:

P mean) (1.16)

as the projected trial wavefunction that represent the ansatz, in which P = [11(1 -

nitni) is the projection operator. The idea of incorporating projection in evaluating

the energy of mean-field states is pioneered by Gutzwiller [37], and its application to

the RVB state has been pointed out by Anderson [21]. Once the above identification

is made, numerical techniques, such as the variational Monte Carlo (VMC) method

[38], can be applied to compare the energetics of different mean-field states.

1.2.3 Extension to the doped case

The forgoing discussion can be readily extended to the hole-doped case, described by

the t-J model Eq. (1.2), and for brevity I shall only list the major results here.

In the doped case, the projected electron operator Pct? can be expressed as a

composite of a spinless charge-e bosonic particle h (called holon) and a chargeless



spin-1/2 fermionic spinon f [39]:

PctP = fthi . (1.17)

The constraint that need to be enforced is now:

±fit + f -vfe + hlh= 1, (1.18)

which intuitively corresponds to the statement that each site is either empty, or is

occupied by an up-spin or a down-spin. Because a bosonic particle is introduced to

keep track of the charge degree of freedom, the transformation Eq. (eq:c=fh) (and by

extension Eqs. (1.6)-(1.8)) is often termed the slave-boson transformation.

Substituting Eq. (1.17) into the t-J model Eq. (1.2) will again lead to four-

operators interactions, which can again be decoupled by introducing Hubbard-Stratonovich

variables. This yields the mean-field Hamiltonian [40]:

HMF ~E f ' -( tF f'i -- xjj (Jijeai fiafja+ h.c.)

(1.19)

+ ht(ae - pB)hi - E |xjj|(tige'ihthj + h.c.)
(ij)

where Xjj = |Xy, leinj is the Hubbard-Stratonovich variable to be determined at mean-

field by the self-consistency condition xjj = fjtfja), and that ao arises from en-

forcing the constraint Eq. (1.18). Observe that the spinons and holons are decoupled

and interact only through a common gauge field. Note also that the spinons and

holons are governed to the same band structure.

As before, a and emi together form a compact U(1) gauge field and should

be treated as fluctuating quantities. This gauge field is associated with a gauge

redundancy:

00 -
fja + e"'fi, ; h. 4 esahi; aij F-> aij + ; - By; a a + *. (1.20)z i i 0r



Figure 1-4: The kagome lattice.

It should be noted that the slave-boson formulation is among one of the favorite

tools for understanding the microscopic physics of the cuprates [40].

1.3 The spin-1/2 kagome lattice

The name kagome comes from a Japanese word meaning "eye of cage." Geometrically,

it can be described as a lattice of corner-sharing triangles (Fig. 1-4). As in the

triangular lattice, the classical ground states of the lattice is characterized by the

condition that E Si = 0 on each triangle. However, unlike the triangular lattice, the

spin configuration on one triangle does not uniquely determine the spin configuration

of the other triangles. In fact, for planar spins, the problem of enumerating all

classical ground states can be mapped to the problem of enumerating the ways to

color a honeycomb lattice with three colors, such that no adjacent sites share the same

color [41], which yields an extensive entropy of approximately 0.126 kB per site [42].

Moreover, ground states whose spins are non-planar can be obtained from planar ones

by continuously rotating all spins on a closed path in which all their adjacent spins

are of the same orientation [43] (However, this degeneracy in the classical case may be

lifted by the order-by-disorder mechanism [44], which picks out in a particular planar

configuration known as the v/5 x V5 order[45, 46]). From the forgoing discussions,

the kagome lattice is thus an attractive candidate on which the quantum spin liquid

state may be realized.



Figure 1-5: Crystal structure of herbertsmithite in (a) three-dimension; and (b) when
projected onto the kagome plane. Adopted from Ref. [26].

1.3.1 Material realization of the spin-1/2 kagome lattice

Previously, kagome lattices of antiferromagnetically interacting magnetic ions have

been realized in the garnet compound SrCr9 -_Ga3+xOi 9 [47, 48] and the jarosite

materials KFe3 (OH)6 (SO 4) 2 [49, 50, 51] and KCr 3 (OH)6 (SO 4 )2 [51, 52]. However, in

these cases the magnetic ions are either spin-3/2 (for chromium ion Cr3 +) or spin-5/2

(for iron ion Fe3+), and the materials are found to possess spin-glass or Neel ordering

behavior at low temperatures.

The first material realization of spin-1/2 kagome lattice comes in the form of

Volborthite Cu 3V20 7(OH) 2 .2H 20 [53, 54, 55], in which the Cu2+ serve as the mag-

netic ions. Unfortunately, the AF interaction in Volborthite is latter shown to be

anisotropic, and the material is found to have a transition to a (weakly) ordered

phase at low temperature.

Finally, in 2005, reliable method was found to synthesize herbertsmithite [26]

ZnCu3 (OH)6 C12, which appears to be a "perfect" spin-1/2 kagome system with isotropic

AF Heisenberg interaction (however, Dzyaloshinskii-Moriya (DM) interactions may

not be negligible in the material [56], and defects on the copper sites resulting from

zinc and copper ions interchanging may be as high as 5% [57]). So far, experimen-

tal data are consistent with the picture that the material is magnetically disordered:

while fitting the high-temperature susceptibility indicates that the nearest-neighbor



AF interaction is about 190 K, neutron scattering suggests that the material is dis-

ordered down to the lowest measured temperature of 1.8 K [27]; and pSR shows no

signature of spin freezing down to the lowest measured temperature of 50 mK [58, 59].

Moreover, thermodynamic measurements also show interesting behaviors of the ma-

terial: the heat capacity follows a power law behavior for a wide intermediate range of

temperature (approximately from 0.5 to 25 K) [27]; and while the spin susceptibility

increases as temperature decreases towards zero [27, 60], NMR study [61] suggests

that the susceptibility increase is caused by impurities, and that intrinsic susceptibil-

ity actually follow a power law. Taken together, the thermodynamic measurements

seem to favor a state with gapless excitations, even though the evidences are far from

conclusive.

It should be remarked that spin-liquid behavior has also been reported in an-

other material that realizes the spin-1/2 kagome system, namely the Vesignieite

BaCusV 20s(OH) 2. Existing data suggests that it also shows lack any magnetic or-

dering or spin freezing [28]. However, given the rarity of data on this material, it has

yet to provide as much insight into the spin-1/2 kagome lattice as herbertsmithite.

1.3.2 Theoretical studies of the spin-1/2 kagome lattice

Partly motivated by the experimental results, and partly motivated numerical evi-

dences from spin-wave theory [62], series expansion [63], and exact diagonalization

[64] from early theoretical studies, the (nearest-neighbor AF Heisenberg) spin-1/2

kagome lattice is widely believed to be magnetically disordered. However, the nature

of ground state is still under active debate. Specifically, the 36-site valence bond solid

(VBS) state, first proposed by Marston and Zeng [65] and later by Nikolic and Senthil

[66], have shown itself to be a resilient alternative to the spin liquid proposals. Among

recent numerical studies, entanglement renormalization [67] and series expansion [68]

found the VBS state more favorable than spin liquid state, while DMRG [69] found

the spin liquid state more favorable.

An important aspect of this debate is the question of whether a singlet-triplet gap

exists. In general, because a VBS state breaks the rotation and translation symmetry



of the lattice, an excitation from a VBS state is in general gapped. In contrast,

depending on the details of the spinon band structure, a spin liquid may be gapped or

gapless. In an exact diagonalization study by Waldtmann et. al. [70], it was suggested

that a small gap of J/20 exists, thus supporting a gapped scenario. However, a more

recent study from the same group [71] now suggests that this small gap is consistent

with the finite size effect of other known gapless systems, thus suggesting that the

state may be a gapless spin liquid.

Part of the debate also concerns the question of which particular spin liquid state

among the various proposals will be most energetically favorable (many of these pro-

posed state states can be constructed from a common parent state by perturbing the

parameters [72]). In a projected wavefunction study Ran et. al. [73] shows that the

U(1) Dirac spin liquid state, so named because the low-energy spinon excitation of the

system are described by Dirac nodes, stands out in energetics when compared with

other plausible spin liquid candidates, and that the state is locally stable. Moreover,

the energy estimate for the U(1) DSL state is very close to the ground state energy

estimate from exact diagonalization, despite the lack of any tunable variational pa-

rameters. Taken together, this make the U(1) DSL state an attractive proposal for

the spin-1/2 kagome lattice.

1.3.3 The U(1) Dirac spin liquid state

Recall that a spin liquid state is uniquely specified once the set of mean-field pa-

rameters { ij} are specified. Since our underlying model is the nearest-neighbor

Heisenberg model, it suffices to specify xij for all nearest-neighbor bonds. Moreover,

since we are considering a spin liquid state, all Xij must have the same magnitude,

so we may set Xij = Xe A spin liquid state is then uniquely determined once the

phases eaia are specified.

Moreover, since the slave-boson representation has gauge redundancy as described

by Eq. (1.15), configurations of aij that are related to each other by Eq. (1.15) must

be physically equivalent, and it is desirable to describe the mean-field ansatzes in a

more gauge invariant way, which can be achieved by specifying the amount of flux
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Figure 1-6: (a) The kagome lattice with the U(1) DSL ansatz. The (red) dashed
lines correspond to bonds with effective hopping t -xJ while the (blue) unbroken
lines correspond to bonds with effective hopping t XJ. a' and a'2 are the primitive
vectors of the doubled unit cell. (b) The original Brillouin zone (bounded by unbroken
lines) and the reduced Brillouin zone (bounded by broken lines) of the U(1) DSL
ansatz. The dots indicate locations of the Dirac nodes at half-filling, the crosses
indicate locations of the Dirac nodes crossing the second and the third band, and the
thin (gray) lines indicate saddle regions at which the band energies are the same as
that at k = 0.

through each other triangular and hexagonal plaquettes of kagome lattice (the flux

through an oriented plaquette P is defined by the product ]Qs, etaj).

With this prerequisite the U(1) DSL state can be concisely described as the mean-

field ansatz with a 7r flux through every hexagon and 0 flux through every triangle.

[72, 73, 74]. Note that since the 7r and -7 are identified, the U(1) DSL state is

symmetric under time-reversal symmetry, which invert the signs of fluxes.

In order to compute the spinon band structure a particular gauge must be chosen.

Moreover, observe that the total amount of gauge flux through a unit cell of the

kagome lattice is -r. Consequently, let Tai and T 2 be the translation operators that

corresponds to translation along lattice vectors a1 and a 2 , respectively (the convention

for lattice vector and unit cell is shown in Fig. 1-4), it follows that:

Ta 'Ta 2 lTai Ta2  -1 (1.21)

on the single spinon sector. Consequently, it is not possible to simultaneously diago-

a' 3/
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Figure 1-7: The band structure of the kagome lattice with the U(1) DSL ansatz
plotted along (a) kx = 0 and (b) ky = 0, with (c) a magnification of the bottom band
in (b). Note that the top band is twofold degenerate.

nalize the Hamiltonian Eq. (1.11) and the two translation operators Tai, Ta2 . Because

of this, the unit cell must necessarily be doubled when a gauge is fixed. The gauge

convention that will be taken for the rest of this thesis is shown on Fig. 1-6(a), in

which the blue unbroken bond corresponds to aij = 0 while the red broken bond

corresponds to aig = r.

It may appears that the rotation and translation symmetry of the system is broken

by this gauge choice. This, however, is purely an artifact of our description. Specif-

ically, the bond pattern shown in Fig. 1-6(a) is invariant under all lattice symmetry

as long as one follows the physical transformation by an appropriate gauge transfor-

mation. Formally speaking, the symmetry of the U(1) DSL state is manifested in the

so-called projective symmetry group [75].

It is easy to check that, in units where XJ = 1, this effective tight-binding Hamil-

tonian produces the following bands:

Etop = 2 (doubly degenerate) , (1.22)

E±,: = -1± 3 -F v2 3 - cos 2kx + 2 cos k, cos v/5kY . (1.23)

At any k-point, E-,+ 5 E_,_ E+, < E+,+ < Etop. For plots of this band structure,

see Fig. 1-7.



At low energy, the spinon spectrum is well-described by four (two spins times two

k-points) Dirac nodes, located at momentum ±Q = ±r/v/9 [c.f. Figs. 1-6(b) and

1-7(a)]. More specifically, at low-energy we may expand the mean-field Hamiltonian

Eq. (1.11) around the Dirac points, which result in the Dirac Hamiltonian:

HDirac VF E oa,q(qxT + qyTy)<o,a,q , (1.24)

where o =t, J index spins, a = index the location of the Dirac node, and q denotes

the momentum as measured from the Dirac node (note that the component index

of the4, Ot and the Pauli matrices ri have been omitted for brevity). The relation

between the two-component fermionic operators 4, 4f and the spinon operators f,ft

defined on the lattice sites can be found in [74].

At low temperature and at the mean-field level the thermodynamics of the U(1)

DSL state will be dominated by the spinon Dirac node. Specifically, it magnetic sus-

ceptibility is predicted to be linear in temperature while the heat capacity is predicted

to be quadratic in temperature [73].

Recall that the spinons are interacting with a U(1) gauge field (which we shall

taken as being non-compact, following the argument given in Sec. 1.2.1). Conse-

quently, the low-energy effective theory of the U(1) DSL state is essentially the same

as the theory quantum electrodynamics in (2+1) dimensions (often abbreviated as

QED 3). Specifically, in the continuum limit, the low-energy physics of the U(1) DSL

state can be described by the following action [73]:

S = dtdx (X ( ,1 a)2 + Z ,#a([, - ia)bYV)r,a . (1.25)

here g is the effective coupling constant of the U(1) gauge field, which is renormalized

from infinity via renormalization. Using this mapping from the U(1) DSL to QED3,

many correlations in the U(1) DSL state can be inferred, and are shown to be obeying

power laws [74]. Moreover, as the low-energy action Eq. (1.25) possess an emergent

SU(4) symmetry under which the four species of Dirac fermions are rotated into each



other, many different correlation functions turn out to have the same scaling behavior

and are thus "competing" with each other. Because of this, the U(1) DSL state is

said to be a quantum critical phase.

As we have already seen, the Dirac node structure and the emergent gauge field

have far reaching consequences on the properties on the U(1) DSL state, many of

which are novel and interesting. In the remainder of the thesis I will present my own

study on the U(1) DSL state, and we shall again see these features of the U(1) DSL

state playing prominent roles.
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Chapter 2

Raman signature of the U(1) DSL

state

Raman spectroscopy is a "photon-in, photon-out" experimental technique in which

photons at optical frequencies are scattered from a target material. While most of

the incident photons are scattered elastically, some interact with the target material,

resulting in frequency shifts in the scattered photons. By plotting the intensity of

the scattered light as a function of frequency shift, various excitations of the target

material can be probed [76]. Compared to other spectroscopic method such as angle-

resolved photoemission spectroscopy (ARPES), Raman spectroscopy is particularly

useful in probing the collective excitations of the target material. Moreover, since

interaction between the photons and the target material can be affected by the photon

polarization, additional information about the excitations can be inferred from the

polarization mode of the incident and scattered photon.

Because the momentum of an optical photon is in general much smaller than the

inverse lattice scale of the target material, Raman spectroscopy has the disadvantage

that only excitations with small momenta can be detected. This problem can be

resolved by replacing optical light by x-ray, and the resulting technique is referred to

as the resonant inelastic x-ray scattering (RIXS) [77].

Recently, Cepas et. al.[78] considered Raman scattering on the spin-1/2 kagome

system and concluded that a generic spin-liquid state can be distinguished from a



generic valence-bond-solid state by the polarization dependence of the signal. They

also obtained a more detailed prediction of the Raman intensity using a random

phase approximation, which may be too crude given the subtle orders[74] that may

be present in the system.

In this chapter, I will discuss my work on deriving the Raman signature of the

U(1) DSL state, which shows that spinons will produce a broad continuum with

power-law behavior at low energy, while the emergent gauge field will produce a 1/w

singularity near k = 0. The possibility and challenges of obtaining finite-momentum

characteristic of this emergent gauge boson in RIXS will also be discussed.

2.1 Shastry-Shraiman formulation of Raman scat-

tering in Mott system

A formulation of Raman scattering in a Mott insulator can be made starting with the

Hubbard Hamiltonian Eq. (1.1). While Eq. (1.1) does not include coupling to external

photon, it can be incorporated by the replacement ci,,cy, -+t icy, exp(Q fi A -d).

Expanding this exponential and including also the free photon Hamiltonian HY, the

Hamiltonian now reads:

H=HHb +H + HC, (2.1)

where HHb denotes the original Hubbard Hamiltonian as written in Eq. (1.1), and:

H7c = E- tijct cr(y, A( 2 X _ 19c _ 2 ( A( 2 )-X

(2.2)

HW= qa'ta' (2.3)
q

in which a't (a') denotes the photon creation (annihilation) operator at momentum

q and polarization a, and A(x) denotes the photon operator in real space. The -.

are terms at higher order in A.



By treating HC as a time-dependent perturbation, the transition rate from an

initial state |i) to a final state If) is given by:

Ifi 27rl(f lTfi)I 26(Ef - i), (2.4)

where 9i (Ef) is the energy of the initial (final) state and T = HC + H0 (i - HHb -

H + i)~-1 Hc + - - - is the T-matrix.

Since the fine-structure constant e2 /hc - 1/137 is small and since we are interested

in Raman processes (one photon in, one photon out), only terms second order in A

need to be retained. At this order, the T-matrix reads:

T =H2) + Hs) ) H() = TNR + TR, (2-5)
C CEi - (HHb + H ) +siq

where H n denotes the part of Hc that is n-th order in A. The subscript R and NR

on the last equality stands for resonant and non-resonant, respectively.

We are interested in a half-filled system ((E. ni.) = 1) in the localized regime

(U > t), in which both the initial and the final state belongs to the near-degenerate

ground-state manifold nj~ij = 0. In such case, TNR has no matrix element that

directly connects between the initial and the final states. Hence, only TR is relevant

for our purpose.

Let wi (wf), ki (kf), and ej (ej) be the frequency, momentum, and polarization of

the incoming (outgoing) photon, respectively. Then, Ei= w,+ 1E Hb) _ _ (t 2/U),
where HHbIi) _(Hb)ji); and A(x) 4 gieia eki.X + gfe f t e-ikj -, where gi

Vhc2 /wkiQ and gf = hc2 /wkf, with Q being the appropriate volume determined

by the size of the sample and/or the size of the laser spot. In much of the following I

will assume as typical that the momenta carried by the photons are much smaller than

the inverse lattice spacing, and hence e-ik e-ikf 1. I will also assume that

the system is near resonance, so that U > P - U| > |t|. Consequently, henceforth I

will keep only terms that are zeroth order in t/U and expand in powers of t/(wi - U).

Since the initial and final states both belong to the near-degenerate ground-state



manifold, it should be possible to re-express TR in terms of spin operators. A proce-

dure for doing so was developed by Shastry and Shraiman.[79, 80] A first step in the

derivation is to expand the denominator of TR:

TR =1 H
C EFi - (HHb + H ) + irq C(26

1 oo______ ()(2.6)
=H(1 1 H, H(1C Ei - Hu - HY+ir7 Ei - Hu - H,+ir ) C

Next, a spin quantization axis is fixed and the initial states li) = |{}) 0|ki, ej)

and final states If) = I{-'}) 0 1kf, ef) are taken to be a direct product of a definite

spin state in position basis with a photon energy eigenstate.1 Then, a complete

set of states is inserted in between the operators in Eq. (2.6). By the assumption

U >> |wi - U| > |tj, the intermediate states are dominated by those having no

photons and exactly one holon and one doublon. Thus, they take the generic form

Ird; rh; {T}) 0 |0), where Ird; rh; {r}) = 1:, criCrh,a) {r}) is obtained from the spin

state I {}) by removing an electron at rh and putting it at rd, and |0) denotes the

photon vacuum state. Henceforth I will adopt the abbreviation that spins are summed

implicitly within pairs of electron operators enclosed by parentheses, so that, e.g.,

(cIc 3 ) = E clcy,

Under this insertion, (Ei - Hu - H^)-1 = (wi - U)- 1 becomes a c-number. More-

over, recall that Ht and (neglecting the photon part) Hc are sums of operators of the

form (cTc). Once a particular term is picked for each of these sums, and given an

initial spin state |{-}), the resulting chain of operators automatically and uniquely

determines the intermediate states (which may be 0). Thus the intermediate states

can be trivially re-summed, and Eq. (2.6) becomes, in schematic form:

'This introduces a small nuance that Ei can no-longer be treated as a scaler but must be considered
as a matrix that depends on the initial and final spin states (but independent of the intermediate
states). However, the off-diagonal terms of this matrix is of order t/U and hence negligible.



({0'}|TRfO(- (Cii1,i2j2,{O2} {0}(c ca )(cLc1)} (2.7)

ilil,i2j2.. (2.7)

+ Cijl.-,i1-,({0-'}|(c3cs)(c c2)(c cl)|{0-) . ..

The sum in Eq. (2.7) is formidable. However, if H0 and Ht connects only between

sites that are a few lattice constants away, then at low order in t/(wi - U), except for

the choice of the initial site (ji in Eq. (2.7)) the number of non-zero terms is finite

and does not scale with the lattice size. Thus, Eq. (2.7) provides a systematic way of

analyzing the contributions to the Raman intensity.

The final step in the Shastry-Shraiman formulation is to convert the chain of

electron operators (c cr) - (c cj) into spin operators using the anti-commutation

relation and the following spin identities:

cc =o./or -6a, + S -a I2 (2.8)
cact, = x I,=S,,01_u - S* Tau,-

where S = c(r-,,,/2)c,- is the spin operator for spin-1/2 and r is the usual Pauli

matrices.

To the lowest non-vanishing order in t/(o - U), the Shastry-Shraiman formulation

reproduces the Fleury-London Hamiltonian, [81] i.e.:

(f jTR I) = ({0-'}HFLifu}) + 0 (
2t2  / (2.9)

HFL=Z U (e i ' i)(f /i) - Sr Sr)

where yL = r' - r is the vector that connects lattice site r to lattice site r'.

For theoretical calculations, it is convenient to decompose the polarization de-

pendence of the Raman intensity into the irreducible representations (irreps) of the

lattice point group, since operators belonging to different irreps do not interfere with

each other (note however that subtractions between various experimental setups are



often required to extract the signal that corresponds to a particular channel[80]).

It is known[61] that herbertsmithite belongs to the space group R3m and hence

to the point group D3d. In D3d, the polarization tensor E., Ca"psye in the

kagome plane decomposes into two one-dimensional irreps A19 and A 2g, and one two-

dimensional irrep Eg:

Aig : se' + eye

A 29 : e X - ey exA2 g : - f(2.10)

E E f - efe 2

E9 : je + efe

To the lowest non-vanishing order in t/(wi - U), the A19 and the Eg component of

the T-matrix are derived from the Fleury-London Hamiltonian Eq. (2.9). However,

the resulting expression for the A19 channel is the sum of a constant and a term

proportional to the Heisenberg Hamiltonian and thus at zeroth order in t/U does

not induce any inelastic transitions. For inelastic transitions in the A19 channel, the

leading-order contribution appears at the t4/(wi - U) 3 order instead. The leading-

order contribution to the A29 channel also appears at the t4 /(wU - U) 3 order. The

detailed calculations will be present in the next two subsections, but I will collect the

final results here. To leading order and neglecting the elastic part, the operators that

corresponds to the different channels are, for the kagome lattice:

E U - SR,3* (SR,1 + SR+a2,1 + SR,2 + SR+a 2 -ai,2)

1
2 SR,2 - (SR,1 + SR+ai,1) , (2.11)

42

OE 2 U (SR,3 (SR,1 + SR+a 2,1) - SR,3 (SR,2 + SR+a2 -a1,2),
g U R 4

(2.12)

O (w- U)3  (2SR,1 - (SR+a 1 ,1 + SR+a2,1) + 2 SR,2 - (SR-,2 + SR+a2-a 1 ,2)

+ 2 SR,3 - (SR-2,3 + SR-a 2 +ai,3) + SR,1 (SR+a2-a1,2 + SR+a1-a 2,3)

+ SR,2 - (SR-a 2 ,3 + SR+a 2,1) + SR,3 - (SR+ai,l + SR-ai,2)) , (2.13)



2V/Nit4

OA29  - U) 3  SR,;R,2;R,3 + 3 SR,1;R-a1,2;R-a 2 ,3

+ SR,1;R,3;R+a 2 -ai,2 + SR+a 2 ,1;R,3;R,2 + SR,3;R,2;R+ai,1

+ SR-a 2 +ai,3;R,2;R,1 + SR,2;R,1;R-a2,3 + SR-ai,2;R,1;R,3

)3 (3 +3V + ++
R

+ ' + + (2.14)

where Si;j;k denotes Si - (S x Sk), and which a graphical representation has been

adopted on the final line.

2.1.1 Derivation of the Raman transition in the A2g channel

In this subsection I shall consider the derivation of Raman transition rate in the E'e -

EYef channel. For completeness, I will present derivations not only for the kagome

lattice, but also for the square, the triangular, and the honeycomb ones. Although

the irreducible representation that corresponds to the polarization Ejef - Eyex may

be named differently in these lattices, I shall abuse notation and continue to refer to

them as the "A29" channel.

For the square lattice with only nearest-neighbor hopping, Shastry and Shraiman

claimed that spin-chirality term Si - (Sj x Sk) appears in this channel at the t4 /(wi -

U) 3 order. However, our re-derivation does not confirm this result and instead con-

cludes that the spin-chirality term vanishes to this order. While it is hard to pin down

3-- . - 3 4 3 4

iv ii i:iv ii iv iv 1

1 p 2 1 y 2 1 y 2 12

(a) (b) (C) (d)

Figure 2-1: Pathways with two internal hops in a square lattice, with the initial holon
fixed at site 1 and initial doublon fixed at site 2.



the source of this discrepancy, two possibilities are plausible. First, the pathways that

contribute to the spin-chirality term includes not only those in which a doublon or

holon hops through a loop [Figs. 2-1(a) and 2-1(b)], but also those in which a holon

"chases" a doublon or vice versa without involving a fourth site [Figs. 2-1 (c) and

2-1(d)]. These chasing pathways are non-intuitive and could be easily missed. Sec-

ond, observe that for ctcy, the spin indices are flipped in Eq. (2.8) when going from

electron operators to spin operators. This, together with the applications of the

anti-commutation relation, can easily produce minus sign errors.

Our conclusion that the spin-chirality term vanishes to the t4 / (wi- U)3 order in the

one-band Hubbard model need not contradict with the experimental claim that the

spin-chirality term has been observed in the cuprates, [82] for in the cuprates-with

the holon being delocalized as Zhang-Rice singlet while the doublon being localized

at the copper site-the holon and doublon hopping magnitude need not be equal. In

that case, the crucial cancellation between the four pathways in Fig. 2-1 no longer

occurs. Furthermore, in the Shastry-Shraiman formalism the spin-chirality term may

also be present at higher order in t/(wi - U) and/or when further neighbor hoppings

are included. Since the ratio t/(wi - U) need not be small near resonance, these

higher-order effects can manifest in experiments.

To extract the A2g channel from the general polarization matrix, note that given

any particular hopping pathway, a "reversed pathway" can be constructed, in which

all electron operators are conjugated and their order reversed [for example, (cIC2 )

(ctc3) (cici) is the reversed pathway of (ctc3) (ctc2) (4ci)]. Then, Ejefe - Ee and

the order the spin operators thus obtained are inverted. Hence, to the t4 /(w - U) 3

order, which corresponds to at most four spin operators, the only terms that survive in

the A2g channel are the spin-chirality operators Si -(Sj x Sk). Thus, in our derivation

it suffices to extract the spin-chirality contributions from pathways whose initial and

final currents are not co-linear.

To depict the hopping pathways efficiently, the following abbreviations are intro-

duced in the diagrams. A thick (blue) arrow is used to indicate the initial or the final

hop in which a holon-doublon pair is created or destroyed. For the internal hops,
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Figure 2-2: Two types of one-internal-hop pathways. Thick (blue) arrows denote
initial or final hops in which a holon-doublon pair is created or destroyed, thin (ma-
genta) unbroken arrows denote the movement of doublons, and thin (magenta) broken
arrows denote the movement of holons. Lower case roman letters are used to indicate
the order of hops. In (a) the internal hop is performed by the doublon while in (b)
the internal hop is performed by the holon.

the movement of a doublon is indicated by a thin (magenta) unbroken arrow and

the movement of a holon is indicated by a thin (magenta) broken arrow. Lower case

roman letters are used to indicate the ordering of hops. Note that in this scheme, a

solid magenta arrow from i to j corresponds to the electron operators (cjcs), while a

broken magenta arrow from i to j corresponds to the electron operators (cic).

The lowest order at which the spin-chirality term can show up is ts/(w -- U) 2,

which corresponds to pathways with one internal hop. Such pathway can be found in

the triangular or the kagome lattice, or when next-nearest hopping is included. I will

show that the contributions to the A29 channel by these pathways cancel in pairs at

this order.

It is easy to see that there are two types one-internal-hop pathways in general,

both involving three lattice sites. In a pathway of the first type, a holon-doublon pair

is created across a bond by an incident photon. Then, the doublon moves to a third

site before recombining with the holon to emit a Raman-shifted photon [Fig. 2-2(a)].

A pathway of the second type is similar, except that it is the holon that moves to a

third site before recombining [Fig. 2-2(b)].

Applying the procedures as explained in Sec. 2.1, the operator that corresponds



to the pathway in Fig. 2-2(a) is given by:

(-it13) (-t32) (-it21)
Ti,e = X13)(ei -21) 2  (ctc 3)(c c2)(cciC)

(P, -- U)2 1 3 2

=( - )(ei X2 1) tit 32t212 tr {X3X2X1} (2.15)
(wi -- U)2

( x 13)(ei x 21) t13t32t21 2i S 3 -S2 x Si
(P, - U) 2

where xij = xi - xz is the vector from site j to site i, and "k" denotes equality upon

neglecting terms that do not contribute to the A2g channel.

Similarly, the operator that corresponds to the pathway in Fig. 2-2(b) is given by:

T1,h = X31) (e% X12) (-it 3 i)(-t 2 3)(-it 2 ) tTi~a (eg- z31ei -zi2) 2  (cici)(cI~cs)(c4c 2)(P, -- U)2 3 2 1

t31t 23t 12=(ef *X3i)(e, *X 2) (P, - U) 2 (- 1) tr f{XX2X3} (2.16)

= (ef x3i)(e X12) t 2i Si - S2 X S3
(w - U) 2

-Ti,e

where tij are assumed to be real in the last step.

Since the two pathways depicted in Fig. 2-2 always come in pair, the contribution

to the A2g channel by one-internal-hop pathways vanishes upon summing as claimed.

Now consider pathways that involve two internal hops, starting with the square

lattice. Henceforth I shall assume that hopping is between nearest neighbors only,

uniform, and real. The abbreviations C2 = t4 /(w, - U) 3 and Si;j;k = Si - (Sj X Sk)

will also be used.

To count the two-internal-hop pathways in the square lattice systemically, first fix

the initial holon at site 1 and the initial doublon at site 2, and align the coordinates

so that y = 0 for site 1 and 2 and that x21 = i. All other pathways are clearly related

to the ones satisfying the above conditions via symmetries. For the final hop and the

initial hop to be non-collinear, a third site not collinear with site 1 and 2 must be

involved, and we may further restrict our attention to pathways in which the third

site lies in the y > 0 half-plane, since the remaining pathways are related to these via



the mirror reflection y -± -y.

There are four pathways that satisfy the above restrictions, which are precisely

the ones depicted in in Fig. 2-1. Applying the procedures as explained Sec. 2.1, the

contributions by these pathways are given by:

T2,a =C2eT(- ) (clc3) (c3c4) (c4c2) (cci)

= -C2exff tr{X3X4X2X1} (2.17)

I -iC 2eff(S3 ;4;1 + S 3;2;1 + S4-2-1 - S3;4;2)

T2,b = C2ef (cc2)(c3c 4)(cIc3)(c2ci)

C2exs) tr{X2X1X3X4} (2.18)

e iC2 eV (S;3 ;4 - S2;3;4 - S4;2;1 - 8213)

T2,c = C2e (-2Y)(c2c 4)(cIc 2)(cc 2)(ctci)

= -C2e<f ((c4ci)(cic2)(cc1) + (c4ct)(cic2)(cc1)) (2.19)

= -C2ePe)(tr{(-1)X 4 X2A1} + tr{X4}tr{X2X1})

- -2iC 2iefsfS4;2;1

T2,d = C2e EY(c cl)(cIc 2)(c c3)(cCi)

= C2eff e((cc 2)(cIc 3)(ctci) + (cc3)(cic2)(cci))

= C2e s)(tr{(-1X 3 X2 xi} + tr{X3}tr{X2A1)

2iC2ie&jS 3;2;1

Summing all four terms, it is found that T 2,a + T2,b + T 2,c + T2,d = 0. Hence, for

the square lattice with only nearest-neighbor hopping, the operator that corresponds

to the Raman transition in the A 29 channel, OA,,, vanishes to the t4A/(W - U) 3 order.

Notice that the orthogonality between the , and y has not been invoked in the

above derivation. Consequently, the above derivation carries to the triangular lattice

upon mapping x and Q in the square lattice to any two of bond directions in the

triangular lattice. See Fig. 2-3 for illustration. It can be checked that all two-internal-
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Figure 2-3: Mapping between the pathways
in the triangular lattice.
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in the square lattice and the pathways

Figure 2-4: The honeycomb lattice (thin gray lines), wherein the site label i, j, the
unit vectors ,, i, & (thin black arrows), and the primitive lattice vector (thick black
arrows), are defined.

hop pathways with non-collinear initial and final hops in the triangular lattice can be

obtained from such mappings and that there is no issue of double-counting. Hence,

it can be concluded that OA2 , vanishes up to the t4 /(wi - U) 3 order in the triangular

lattice also.

Evidently, the criterion that any three non-collinear nearest-neighbor sites belong

to a four-site loop is a crucial ingredient for the cancellations of the two-internal-hop

contributions as seen above. This criterion is not met in the honeycomb lattice or in

the kagome lattice. Hence, OA2 , may not vanish in these lattices at the t4 /(w, - U) 3

order.

First consider the honeycomb lattice, which is shown in Fig. 2-4, wherein the

site labels i, j, the unit vectors i, D, zb along bond directions, and the primitive

lattice vectors a1 , a 2, are defined. For an initial holon at i and an initial doublon
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Figure 2-5: Pathways with two internal hops that contribute to the A 29 channel in
the honeycomb lattice, with the initial holon fixed at site i and initial doublon fixed
at site j.

at j, there are four two-internal-hop pathways, listed in Fig. 2-5. Summing up their

contributions, we get:

T2 i C 2 ( -- + + e sJj-a2jj -+ xve +Sia2 ;j;i + e YSj-ai;ij;i)

(2.21)

If the initial doublon is fixed at j - a2 or j - a1 instead, the contributions are,

respectively,

T2 ,i,j-a2  2iC 2 (e a(S2;j-a 2 ;i) + e e (Sj-a;j-a2;i - Si+aia 2 ;i a2 i))

(2.22)

T 2,i,j-ai 2iC2 (ef (Sj-a 2;j-ai;i - Si+a2 -ai;j-ai;i) + e'f~ (Sj;j-a;i - Si-aj;j- 2;i)) .
(2.23)

And the analog of Eqs. 2.21-2.23, when the holon is fixed at j, are given by:

2 e2iC2 (ey (Si+ai;j;i - Sj-ai;j;i) + eis)(Si+a2;j;i - (2.24)

2iC2 (ele(Si~i~a 2 ;i - Sj+a2;i+a 2;j) + elvEw(Si+a;i+a 2 ;j - Si+a 2 ai;i+a2 ;i))

(2.25)

T2,j,i+ai 2iC 2 (ei 3 (+a 2 ;<+a1.i - SS+j 1 a2.i+a1;i) -+ ef 2(S ; Sj+a1;i+0a1j)) -

(2.26)

Summing Eqs. 2.21-2.26 over all lattice vectors {R}, and reorganize slightly, we

4\ 0 M

j -ai

(d)
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Figure 2-6: The kagome lattice (thin gray lines), wherein the site label i, j, the
unit vectors ,i, i, iZ' (thin black arrows), and the primitive lattice vector (thick black
arrows), are defined.

finally obtain:

T2,hex 4iC2 E ((Sj;i;-ai + Si;j;i+ai)(eis -- )
R

+ (Si-a2;i;j + Si+a2;j;)(eVe - e7e)) + (Sj-a1;i;i-a2 + Si+a1;j;i+a2 )(eY - )

=4iC2 + )(esy - e "a )

± c )(e~fexq)±(+ +<t f-e w

(2.27)

where graphical symbols are introduced on the second equality to denote the spin-

chirality operators. Note that even though the site labels are omitted in the symbols,

upon the summation over lattice vectors {R} there is no ambiguity as to which spin-

chirality operator a particular symbol is referring to.

Using ev = - ex + e and e' = -e - 13ey, Eq. (2.27) can be converted back

to the Cartesian coordinates, which yields:

T2xe2O/Si2(ey sf - ex s" + <-+ V .+ + +.
T 2 ,hex z2fiC(e

R
(2.28)

Finally consider the kagome lattice, which is shown in Fig. 2-6, wherein the site
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Figure 2-7: Pathways with two internal hops that contribute to the A2g channel in
the kagome lattice, with the initial holon fixed at site i and initial doublon fixed at
site j.

labels i, j, f, unit vectors 1, v^, wd, and primitive lattice vectors a1 , a 2 , are defined.

Fixing the initial holon at site i and the initial doublon at site j, four two-internal-hop

pathways contribute to the A29 channel (Fig. 2-7). The sum of their contributions is:

T 2iC2 + exjSe;j;;i - ejefSj. - ex'Se+a1a 2 .j;i + e7wS-ea 2;j;i

=2iC2 (ei f (A + 4 - ei ( + (2.29)

where graphical symbols are again introduced on the second equality. Note again

that upon summing over all lattice vectors {R} there is no ambiguity as to which

spin-chirality operator a particular symbol refers to.

By changing the site where the initial doublon is located, we get, upon summation,

the following contribution to 0
A 2 9 by two-internal-hop pathways whose initial holon

is located at site i:

(2.30)

Obtaining the contributions to OA, by two-internal-hop pathways whose initial

holon is located at site j or f in an analogous manner, we finally get, upon summing



over all lattice vectors and basis sites,

T 2 ,kag a 4iC2  (ee - es+ +

+ (es - eisj f f + + + (.1

RR

(ei f A + or% +(2.31)

Or, converting back to the Cartesian coordinates:

T2m~g 2\iC2 (e'Ex - Ey) > (3A~ + 3%
R (2.32)

+± +* +)

which is what being quoted in Eq. (2.14).

In summary, it is found that, with only nearest-neighbor hopping, the A2g channel

Raman T-matrix does not vanish in the honeycomb lattice or the kagome lattice at

the t 4 (UW) 3 order, but does so to this order in the square lattice and the triangular

lattice.

2.1.2 Derivation Of /A( 9 and Oe to the t4/wo U) 3 order.

In this subsection I shall deriveOA 9 and OE9 to the t 4 / n - U) b orderafor the kagome

lattice. As already noted in Sec. 2.1, at the t2 //w( - U) order the ShastryShraiman

formulation reproduces the FleuryLondon Haniltonian. In the A19 channel this

gives rise to an operator proportional to the Heisenberg Hamiltonian, and in the ]5g

channel it gives rise to the operators O E () and O E (2) as shown in Eqs. 2.11-2.12.

At the t3 /(W, _ U)2 order, it can be checked that the two types of pathways

depicted in Fig. 2-2 cancel each other not only in the A 29 channel hut also in the E.

and Al9 channels. Thus, it remains to consider pathways having two internal hops,

which contributes at the t4/W, _ U) 3 order.

By considering pathways and their "reserved" counterparts, in which all electron
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Figure 2-8: Pathways with two internal hops in a kagome lattice, with the initial
holon fixed at site i and initial doublon fixed at site j.

operators are conjugated and their order inverted, it is shown in subsection 2.1.1

that only spin-chirality operators contribute to the A2. channel. From the same

construction, it can be seen that the spin-chirality operators do not contribute to

the E9 and A19 channels. Moreover, we are interested in the inelastic, and hence

non-constant, part of the Raman transition operators. Therefore, to determine the

tAwi - U) 3 order terms in OE, and OA29 , it suffices to extract the spin dot product

terms for each process.

Fixing the initial holon at site i and the initial doublon at site j, there are eight

more two-internal-hop pathways that contribute to the A19 and E channels in addi-

tion to the four depicted in Fig. 2-7. These are listed in Fig. 2-8.

Applying the procedures as explained in Sec. 2.1, the spin dot products resulting

from Figs. 2-7(a), 2-7(b), 2-8(c), and 2-8(d) are, respectively:

Tkag,a C2 e'(-s)) (tr{(-1)xoXjgi} + tr{Xf} tr{Xji}) (2.33)

C2e -&Ev)(Se - Si - Si . Sj - Se )

Tkag,b C2e<(-2f) (tr{(-1)XeXi } + tr{Xt} tr{X i}) (2.34)

C2ex(-E)( Sj-Se - Si . Si - Sf -Si)



Tig- =Cef s) (ci cj)(c c )(jcs(cci) = C2 ef (- Ex) trf e} tr{fXj:iI}Tkagc 
(2.35)

= - 2C2ex(-si)Si Sj ,

Tkagd C2ef (-ej)(c cj)(c ci)(c'ce)(c ci) = C2e(-E) tr{ye}tr{x } (2.36)
f f (2.36)

= - 2C 2 ex (-s E)Si - S,

where = denotes equality upon neglecting additive constants and spin-chirality terms.

The contributions of other pathways in Figs. 2-7 and 2-8 can be obtained by relabeling

sites and vectors that appear in Eqs. 2.33-2.36.

The sum over all pathways in Figs. 2-7 and 2-8 gives:

Tkag,ij C2 (eisz (Sf -_1 + Sj - Si+al + 14Si - Sj - Si - Si+a1 - S- Sj-a1)

+ efsy (Si - Sf+a1 -a 2 + Si - Si - Si - St - Sj - Si+aia 2 )

el(S- S--a + S- SE - Sj -Se - Si -Sf-a 2 ))

(2.37)

The contributions when the initial holon and/or the initial doublon are located at

other sites can be obtained by relabeling. The sum over the locations of the initial

holon and the initial doublon yields:

Tkag = 2C2 E (exs (16S3 -Sj + 16S- Si+al - 2Si -Si+a1 - 2Sj - Sj-ai)
{R}

+ eis y(16Sj - Sf + 16Sj - Sj+a2-a - 2Sj - Sj+a2 a1 - 2 S-a1)

+ ef s(16Si - Se + 16Se - Si+a2 - 22- Si+a2 - 2S. St+a2 )

+ (exisE + eise) (Sj - Sf-a 2 + St - S-a1 - Sa - Sf - Sf-a 2 -Sjai)

+ (exEv + esx))(Si -3+1- 2 + Si -+a1 - i Si Si - ?+a1-a 2 -S-+a1)

+ (efivs + eis, v) (Si - Sj+a2- + Si - Si+a 2 - 52 Sj - a,+2 -a1 Sz+a2))

(2.38)

Projecting onto the A1, channel and neglecting a piece proportional to the Heisen-

berg Hamiltonian yields Eq. (2.13), while projecting into the E., channels yields the



following contributions to OE(1) and O E(2) at the t4/(wi - U)3 order, respectively:
22 9

OE (1) C2 ((-Sj - St-a2 - Sf - S 1  - Si - St+ai a2 - Se -Sj+a1

2Sj -Sj+a2-a1 + 2Sj -Si+G2 ) - (2Sj - Si+a1 + 2Sj -Sj-al

- Si -Si+a2 - St -St+a 2 - Si -Sj+a 2 -a1 - S' St+a2-a1)

+ 7(2Si -Sj + 2Sj -Si+a - Si - Se - Si - Si+a2 - Si -St - St Sj+a2-a)

(2.39)

60 (2) = \/C2 ((Sj . St-a2 + St - S-a - S- St+a1-a 2 - St - Sj+ai)

(Si - Si+a2 + St - Sf+a2 -Sj - 3j+a2-al - St -Sf+a2-a1)

+ 7(Si - St + St -Si+a2 - Si - Sj - Si - Sj+a2 -a1) . (2.40)

2.2 Results for the U(1) DSL state

Under the U(1) DSL ansatz, we may take i) = ji(Hb)) 0 ke) and If) f(Hb)) 0

|kf, ef) in the transition rate Eq. (2.4), where li(Hb)) and f(Hb)) are states obtained

from filling the spinon bands. In particular, at zero temperature (which will be

assumed henceforth), lI(Hb)) is simply a state with spinons filled up to the Dirac

nodes at the top of E+,-, and f(Hb)) are states with a few spinon-antispinon pairs

excited from lI(Hb))
Moreover, the spin operators that appear in Eqs. 2.11-2.14 can be converted to

spinon operators using Eqs. (1.6)-(1.8), which allows the matrix elements between

li(Hb)) and If(Hb)) to be calculated at mean field using Wick's theorem.

At zero temperature, to obtain the overall Raman intensity I, for channel a at a

given Raman shift Ao = wi - wf, all final states that satisfies the energy constraint

EfHb) _ (Hb) = Aw must be summed over. Strictly enforcing this constraint is

difficult in a numerical computation. Instead, the final states are sampled If(Hb))

without imposing the energy constraint, but sort them into bins of energy. The

overall intensity is then obtained by summing all states whose energy fall within the

same bin. The summation is performed numerically using a simple Monte Carlo



sampling of the momenta and band indices of the spinon and antispinon excitations

in If(Hb))

Some calculations are also performed in a slightly different way, by first converting

the summed squared amplitude into a correlation function:

I-(Aw) = (f(Hb) Oce I(Hb) 6 (Hb) ( Hb) _ Aw)

(2.41)

= Jdt eiAwt(i(Hb) IOa (t)Oa(0)|i(Hb))

To calculate this correlation function, the spinon operators that appears in O, (c.f.

Eqs. 2.11-2.14) are converted from real space to momentum space, which introduces

sums over momenta and band indices. Such sums are again computed by simple

Monte Carlo samplings in the manner explained above.

To simplify notations, in the following I shall abuse notation and write i) in place

of li(Hb)) and similarly write f) for f(Hb)) whenever the context is clear.

2.2.1 Eg channel

First consider the Raman intensity in the E9 channel, IE, =IE) + IE (2). By com-

puting the correlation function Eq. (2.41) (with a = E(1 ) and E(2)), we obtain the

Raman intensity profile as shown in Fig. 2-9.

From Fig. 2-9, it can be seen that the Raman response take the form of a broad

continuum ranging from approximately 1.5yJ to approximately 11J, with occasional

sharp spikes. The existence of a continuum is not a surprise, since the operators OE(1)

and O (2) in Eqs. 2.11-2.12 corresponds to two-spinon-two-antispinon operators in the

U(1) DSL ansatz, and hence the final states |f) are spinon-antispinon pairs and thus

there is a continuum of phase space for excitations. The cutoff near 11XJ is also

natural, since the total band-width in the U(1) DSL ansatz is approximately 6 XJ,

and hence with two spinons and two antispinons the excitation energy is at most

12 XJ. The sharp peaks and the low-energy suppression, however, require further

investigations.
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Figure 2-9: Raman intensity in the E. channel, computed using the correlation
Eq. (2.41), with a bin size of 0.05XJ in energy.

To gain more insight into how the various features in Fig. 2-9 comes about, it is

useful to consider the sum over final states explicitly. Given the form of O and

OE(2) in Eqs. 2.11-2.12, there are two types of final states: the first consists of two

spinon-antispinon pairs excited from the ground state 1I) while the second consists of

one spinon-antispinon pair excited from li). Schematically, these take the form:

If2pairs) = fki,ni,,fk2 ,n2,fk30' ,nfk 4 ,n 4 ,' ,i) (

Ifipair) = f1 ,nfk 2 ,n2 , i) . (2.43)

In both cases the momentum conservation EZ odd ki = Eien ki holds, and that the

band index ni denotes one of the top three (empty) bands when i is odd and one of

the bottom three (occupied) bands when i is even.

For the one-pair final state to have a non-zero matrix element with the initial

state, a pair of spinon-antispinon operator must self-contract within O 1> and OE'(2),

e.g.,

f4tafjoJcfi, r', (f- ± ) k f + ft f4,( fkfi.,) - (Kft fie ) f, f.j - ( f],f j7) fit fia,
=ta i f0f + x fy - o(ftfe fIfy)

x - 2 .+ 44)

(2.44)
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Figure 2-10: Plots of density of states (thin red curve) and Eg Raman intensity (thick
blue curve) contributed by final states having two spinon-antispinon pairs, together
with the overall E Raman intensity (broken gray curve), all computed with a bin
size of 0.05XJ in energy. Note that the relative scale between the intensity plots and
the DOS plot is arbitrary and is set here such that both curves are visible.

where the spin indices -, a' are summed in the above. The mean-field parameter Xij

here is the same as the one introduced in Sec. 1.2.

However, one should be mindful that while the constraint E f fj, 1 is strictly

enforced in the exact spin-liquid state, it is enforced only on average in the mean-

field representation. Therefore, while operators of the form f f7 should induce no

transition between i) and If), the matrix element (flf fj i) may be non-zero at

mean-field. To avoid such problem, the f fj terms in Eq. (2.44) are thrown away

by hand.

With this precaution, 1Eg is recalculated by numerically sampling the final states,

and is done so for the one-pair and two-pair contributions separately. The results are

shown on Figs. 2-10 and 2-11. It has been verified that the sum of Raman intensities

from the two figures (with the relative ratio determined by the details of the numerical

calculations) produces an overall intensity profile that matches Fig. 2-9.

The density of states (DOS) for two-pair and one-pair excitations having zero

total momenta have been plotted alongside with the respective Raman intensities in

Figs. 2-10 and 2-11. From the figures, it can be seen that the DOS matches the Raman
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Figure 2-11: Plots of density of states (thin red curve) and Eg Raman intensity (thick
blue curve) contributed by final states having one spinon-antispinon pair, together
with the overall E_ Raman intensity (broken gray curve), all computed with a bin
size of 0.05XJ in energy. Note that the relative scale between the intensity plots and
the DOS plot is arbitrary.

intensity profile very well for two-pair excitations, and less so (but still reasonably

well) for one-pair excitations. This can be understood by rewriting the first line of

Eq. (2.41) as I,(Aw) = |(fyOai)| 2 D(Aw), in which D(E) denotes the density of state

at energy Eand |(f|O i denotes the average matrix element squared at the same

energy. From this, the DOS is expected to match the Raman intensity well as long as

the average matrix element does not change drastically with energy-an assumption

more valid for two-pair states as opposed to one-pair ones, because of the larger phase

space available in the former case.

Moreover, the sharp peak appearing near 5.5XJ in Fig. 2-9 can now be attributed

to one-pair excitations, which can in turn be attributed to a peak in the one-pair DOS.

From the band structure (Fig. 1-7), it can be checked that Aw = 5.41xJ corresponds

to the energy difference between the top flat band and the saddle point k = 0 at the

bottom band. The enhanced phase space near this energy is thus the likely cause of

this peak-like feature.

Next I shall consider the low-energy (Aw < 2XJ) part the of Raman intensity

more carefully, checking if the intensity profile is an exponential or a power law, and
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Figure 2-12: Log-log plot of the DOS (red x symbols) and Raman intensity in the E.
channel (blue + symbols) for two-pair excitations. Simple linear fits (straight lines in
pink and cyan) give a slope of 5.1 for the DOS data and 4.9 for the Raman intensity
data.

determining the exponent if the latter case holds. To enhance the quality of the data,

and since only the low-energy behavior concerns us, the final states are resampled

by restricting the antispinon to the highest occupied band E+,- and the spinon to

the lowest unoccupied band E+,+ (despite this, the two-pair data is consistently non-

zero only above Aw = 0.4xJ). The resulting data are shown in the log-log plots in

Figs. 2-12 and 2-13. Since the smaller exponent dominates as Aw -+ 0, the overall

Raman intensity in the Eg channel scales roughly as IEg c (AW) 3 at low energy.

From the plots, it is clear that the DOS and the Raman intensity both follow

a power law, with a higher exponent for the two-pair excitations as compared to

the one-pair ones. Analytically, it is easy to check that Dpair oc AW for the Dirac

Hamiltonian Eq. (1.24), since the integral involves four components of momenta sub-

jected to three constraints (energy and momentum conservation), and that Jql scales

as energy. Similarly, it is easy to check that D 2 pair oc (Aw) 5 in the Dirac Hamilto-

nian. Furthermore, since the eigenstates of the Dirac Hamiltonian depend only on

0 = tan-1 (q,/q,) but not on |q|, the average matrix element squared | f|OIi)l2 must

be constant in energy. However, to the t2/(wi - U) order in the Eg channel (Eqs. 2.11-

2.12), the matrix element turns out to be exactly zero for all one-pair excitations in

the Dirac Hamiltonian. Hence, at low energy, we expect I2pair oc D2pair oc (Aw)5 and
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Figure 2-13: Log-log plot of the DOS (red x symbols) and Raman intensity in the Eg
channel (blue + symbols) for one-pair excitations. Simple linear fits (straight lines in
pink and cyan) give a slope of 1.0 for the DOS data and 2.8 for the Raman intensity
data.

ipair oc (Aw)' with a' > 1, consistent with the numerical results in Figs. 2-12 and

2-13.

Since Dipair Oc Aw, it leaves open the possibility that 1E, oc Aw at higher order

in t/(wi - U). While this possibility cannot be ruled out in the present work, it is

found that the vanishing of matrix elements in the Dirac Hamiltonian for all one-pair

excitations persist to the t4/(wi - U) 3 order.2 Hence, even if 1Eg oc Aw at some higher

order, its effect will not be prominent unless the system is sufficiently near resonance.

In the data presented above the contributions arising from 0 Eg' and OE(2) have

been summed. By computing the two contributions separately, it can be checked that

each contribute equally. In fact, it has been checked that the intensity profiles are

essentially identical upon an arbitrary rotation in the kagome plane for the one-pair

and two-pair excitations separately. In other words, the quantity IEg (Aw, 0), defined

2To perform the analytic calculations, the expectation (ftfj) for next- and next-next-nearest
neighbors are needed. From the U(1) DSL ansatz these must be real, equal in magnitude, but vary

in signs. As a shortcut, the signs are determined from numerical calculations. It turns out that the

cancellation holds separately for next-nearest neighbor terms and next-next-nearest ones. Thus the

determination of signs is adequate for reaching the present conclusion.



by:

IEg (AW, OS -+ O= 2) sin 8|i)12 X 3 (gjHb) _ c(Hb) - Aw) , (2.45)

f

is found to be independent of 0, and remain so even if the sum is restricted to one-

pair or two-pair states. Our numerical results are thus consistent with the analytical

arguments given by Cepas et. al.[78]

2.2.2 Aig channel

Using OAig in Eg. 2.13 in place of OE(1) and OE(2), the calculation of the Raman inten-

sity profile can be repeated for the A1, channel. The results are shown in Fig. 2-14.

From the figure, we see that the Raman intensity profile of the Aig channel also has

a broad continuum up to a cutoff near 11XJ. However, the sharp peak near 5.5XJ

that appears in the Eg channel is markedly missing.

Intensity (arb. units)
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Figure 2-14: Plots of the overall Raman intensity (thick and blue) and its contribution
by one-pair states (thin and red) in the Aig channel, both with the same vertical scale
and computed with a bin size of 0.05XJ in energy.

Decomposing the Raman intensity into one-pair and two-pair contributions as in

Sec. 2.2.1, it can be seen that the overall Raman intensity profile in the A1g channel

is dominated by the two-pair states. Since the sharp peak near 5.5xJ is originated
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Figure 2-15: Log-log plot of the Raman intensity (blue + symbols) and its contribu-
tion by one-pair states (red x symbols) in the A1, channel. Simple linear fit (straight
line in cyan) for the one-pair data up to Aw = XJ gives a slope of 3.1.

from the one-pair contribution, this explains the absence of sharp peak in the A19

channel.

However, at low energy (Aw < 1.5XJ) the Raman intensity profile is still domi-

nated by the one-pair contribution. And by plotting the Raman intensity profile in

a log-log scale (Fig. 2-15), we see that the low-energy behavior is characterized by

a power law with exponent o ~ 3, similar to the value obtained in the Eg channel.

Again, it can be checked on analytical ground2 that the matrix element vanishes for

all one-pair state in the Dirac Hamiltonian, consistent with the numerical results.

2.2.3 A29 channel

For the A2g channel, to the leading order in t/(wi-U), the Raman process receives con-

tributions from excited states having one, two, and three pairs of spinon-antispinon.

The overall Raman intensity coming from these spinon-antispinon pairs are plotted

in Fig. 2-16. It can be seen that the continuum also appears in this channel, now

ranging from 0XJ up to approximately 16XJ, which corresponds to approximately

three times the total spinon bandwidth. Moreover, sharp peaks not unlike the one

in the Eg channel are observed at various energies. Again, it can be checked that

these sharp peaks can be attributed to the various features of the U(1) DSL bands,

particularly to the flat-band-to-saddle and saddle-to-saddle transitions.
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Figure 2-16: Raman intensity in the A2 9 channel arising from spinon-antispinon pairs

(thick and blue), and its contribution from two-pair (thin and red) and three-pair

(thin and green) states. All computed with a bin size of 0.05xJ in energy.

Note that the low-energy Raman transition is much more prominent in the A2 9

channel than that in the Eg and Aig channels. In particular, the Raman intensity

in this channel has a broad peak near Aw = 1.5xJ, below which it is visibly linear.

From Fig. 2-16, the prominence of low-energy Raman transition trace back to the

relatively large average matrix elements in the one-pair transitions. Moreover, the

linear behavior suggests that (f IOa Ii)12 no longer vanishes in the Dirac Hamiltonian,

so that '1pair OC Dipair o Aw at low energy.

The forgoing discussion neglected an important contribution to the A 2g Raman in-

tensity. Recall that in computing the one-pair contribution, a mean-field factorization

is performed (Eq. (2.44)), in which the Hubbard-Stratonovich variable Xii is treated as

a constant. However, because of the emergent gauge structure in the U(1) spin-liquid

theory, the dynamics of the phase of Xii cannot really be neglected. Fortunately, since

the projection of the T-matrix onto the Eg and A1, channel Eqs. 2.11-2.13 involves

no non-trivial closed path, the results presented above should still be qualitatively

correctly, even though quantitative corrections to the detailed predictions (such as

the exponents of the power laws at low-energy) may be present.

The situation for the A2, channel is different, as can be seen by considering the



full contraction of the spin-chirality term S1 - (S 2 x S3) into Xij:

iS 1 - (S2 x S 3 ) = ((ff f3)(f3f2)(f2f) - h.c.)

S (x0) e13 x0 ei 32 e0) - h.c.) + ... (2.46)

= (C eai(13+a32+21) - h.c.) +

where X(9 denotes the part of xij that can be treated as constant, and C = xO) x /4.

For convenience I shall denote (Cei(cak+ak+aji) - h.c.) as Qijk henceforth.

Note that eia13+aC32+21) is the emergent gauge flux enclosed by the loop 1 -+ 3 -

2 -+1. Since the emergent gauge field is fluctuating, this gauge flux can lead to an

excitation of the kagome system. Physically, the excitations generated by Q can be

thought of as a collective excitation in the system, which exists on top of the individual

spinon-antispinon excitations. This is analogous to the situation in an ordinary Fermi

liquid, where plasmon mode exists on top of the electron-hole continuum.

Since the fluctuation of aij can be considered as a collective excitation in the

system, as an approximation the final states Ifgauge) connected to the ground state by

Q can be assumed to be lying in a separate sector than the spinon-antispinon pairs

previously considered. Then, the total Raman intensity in the A2 g channel can be

obtained by adding the contributions by these collective states to the contributions

by the spinon-antispinon pair states.

The contribution to the Raman intensity by |fgauge) can be computed from the

QQ correlator. To do so, we start with Eq. (2.46), take the continuum limit, and

Taylor expand the exponential. Then, a 13 + a32 + a 21 - f0 - dx = ff1 b d2

where b = Bxay - ,ax is the emergent "magnetic" field. Here 9132 denotes the

closed loop 1 --+ 3 -+ 2 -± 1 and Q132 denotes the area enclosed by this path. Thus,

Qijk ~ 2i|C| (sin(#0o) + cos(#0o) ff, b d2X) ~ 2i|C| (sin(o) + cos(O)Qijk b(rijk)) ,

where C = |C le'00 and rijk denotes the position of the three-site loop. 3 The QQ

3 Since the photon momentum is small, we can ignore distances at the lattice scale. Thus, the
precise definition of rijk do not concern us.



correlator is thus converted into a b correlator. Hence:

I~~~~q (k) ge j)-qrj

(2.47)

where C' is a numerical constant, and will not be kept track of below. Note that

the photon momentum has been restored, which introduce the factor e-iqrijk, with

q = ki - kf the momentum transferred to the lattice. The EA,, is a shorthand for

summing over the different three-site geometries on a unit cell with the appropriate

coefficients, as is shown in Eq. (2.14).

Since = = = >Ek(ik x Ek)akeik'k - (ik x E*)a e-ik~, where Ek

is the polarization of the emergent gauge field at momentum k. Moreover, ak i) = 0

and (ilat = 0. Hence, upon Fourier transform,

I(gauge) o (il(iq - eq)ag(Aw)O(0)(-iq -E*)Ii) . (2.48)

The correlator that we need to compute is thus one of a gauge field in 2+1 dimen-

sions coupled to relativistic fermions (i.e., fermions described by the Dirac Hamilto-

nian Eq. (1.24)). This situation has been considered by Ioffe and Larkin[83] under

the context of high-Tc superconductivity, who found that:

1 W 2 -- +viq2 6a8 - v2qaq1Uay (q, WE) = 8 ( +2 q2 )1/ 2 F (2.49)

where fly(q, WE) is the polarization function of the gauge field in Euclidean space-

time, and VF = XJa/\/-h is the Fermi velocity at the Dirac node. Hence,

I(gauge) _ 2 Im 8
A2g 2 q2 _ AW2 _+ i71/2

q2e(Aw - vFq) (2.50)

(Aw2 
- v2q

2 ) 1/ 2

For herbertsmithite, VF is estimated[74] to be 5.0 x 103 m/s. Hence, even at back

scattering and with optical light at wavelength A ~ 500 nm, vFq corresponds to a

frequency shift of approximately 4.0 cm- 1 only, which is too small to be resolved by



current instruments. Therefore, the collective excitation associated with the gauge

flux will appear as a characteristic 1/w singularity in experiments.

Physically, if the gauge boson is non-dissipative, the Green's function would have

a simple pole, corresponding to a sharp delta-function-like signal. That we have a

17w singularity in place of a delta function tells us that the gauge photon mode

is strongly dissipative and is in fact overdamped. Following the analogy with the

ordinary plasmon mode as stated above, this dissipative behavior of the emergent

gauge boson can be thought of as the analog of the Landau damping.

2.2.4 Discussions

In this chapter I have presented calculations of Raman intensity profile based on

the Shastry-Shraiman formalism, assuming the validity of the U(1) Dirac spin-liquid

state. The results show a broad continuum in the Raman intensity profile in all

symmetry channels, each displays a power-law behavior at low energy. Moreover,

the profiles are found to be invariant under arbitrary rotations in the kagome plane.

For the Eg and the A2g channels, the continuum is accompanied by occasional sharp

peaks that can be attributed to the various features of the U(1) DSL bands. In

addition, the Raman intensity profile in the A2g channel also contains a characteristic

1/w singularity, which arose in our model from an excitation of the emergent U(1)

gauge field.

However, several caveats in our theoretical predictions should be noted. First, in

order to compare with experimental data, XJ must be converted to physical units. In

Ref. [74), Hermele et. al. estimated x by fitting the spectrum of projected one-particle

excitations to the mean-field band structure, and found that x ~ 0.40. Together with

J 190K, this gives XJ ~ 56 cm 1 . However, there is considerable uncertainty in

this estimation, and so it may be a good idea to take x as a fitting parameter when

comparisons with experiments are made.

Second, when the contribution to the Raman intensity profile by spinon-antispinon

pairs are calculated, the excited spinons and antispinons have essentially been treated

as free fermions. However, they should really be regarded as complicated composite



fermions, which interact with each -other through an effective gauge field. Conse-

quently, the actual excitation spectrum of the quasiparticles will almost certainly

look quantitatively different from the ones presented here. Specifically, there may be

finite lifetime effects, particularly prominent at high-energy, that causes the Raman

intensity profile to be "washed out" compared with the ones presented here. Because

of this, the sharp peaks that appear in Figs. 2-9 and 2-16 may not be present in the

actual data. Furthermore, while the low-energy power-law structure of the Raman

intensity profile is expected to survive, the detailed exponent is almost certainly mod-

ified from their mean-field values. Similarly, the contribution of Raman intensity in

the A2g channel by the emergent gauge boson may scale as 1 (gau) c (Aw)&, with a

modified from -1.

Third, in the derivation of the operators that correspond to the Raman transitions

in the different channels, Eqs. 2.11-2.14, we stopped at the zeroth order in t/U and

the leading order in t/(wi - U). While terms higher order in t/U can be safely

neglected, the same cannot be said for t/(wi - U), particularly near resonance (wi e

U). Therefore, these higher-order contributions, which modify the Raman intensity

profile from those presented in the previous sections, may show up in actual data.

In particular, the Raman intensity profile may not exhibit the abrupt drops as in

Figs. 2-9 and 2-14. Furthermore, since D-pair oc Aw, a power-law with exponent

much closer to 1 may be found in the Eg and A1, channels at low energy.

Fourth, while it is argued that a 1/w singularity should be present in the A2g

channel, we have lost track of the ratio between its contribution and that by the

spinon-antispinon pairs. Since the intensity of this singularity is proportional Iq12,

it may be difficult to detect in optical Raman spectroscopy, in which the momentum

transfer q is much smaller than the inverse of lattice constant.

In the beginning of this chapter I have mentioned the proposal by Cepas et. al. to

distinguish between the spin-liquid state and the VBS state by the angular dependence

of the Raman intensity profile. In light of the results presented in this chapter, there

is another feature in the Raman spectrum that can be used to distinguish between

the two states. For in general, in a VBS state the spin excitations is gapped, while



in a spin-liquid state it is gapless. Consequently, the Raman intensity profile should

show an exponential dependence in the former case, and a power-law dependence in

the latter case.

Recently, Wulferding et. al.[84] have obtained Raman intensity data for herbert-

smithite. Their data, extending from 30 to 1500 cm-', shows a broad background that

persists beyond 500 cm-1, in addition to a quasielastic line and several sharp peaks at

finite frequency shifts. Furthermore, at low temperature (5 K) the quasielastic line is

suppressed and the low-energy portion of their data shows a linear dependence with

respect to the Raman shift. While their data are quantitatively different from the

results of our theoretical calculations presented in Secs. 2.2.1-2.2.3, the existence of

a broad continuum can be seen as consistent with the U(1) Dirac spin-liquid model,

even though the appearances of the other features would require the consideration of

extra contributions (e.g., from the Zn impurities[57, 61]) that are not present in our

model.

2.3 Extension to RIXS

In the previous section I have discussed the possibility of detecting the emergent gauge

boson in Raman scattering. From Eq. (2.50), it can be seen that the resulting signal

will be suppressed by a factor of q2 . Moreover, since the threshold for the signal, vFq,

is expected to be small, one has to look at the scaling behavior of the signal at low

frequency shifts, which may not produce as clear a signature as a well-defined peak at

finite frequency shifts. Given that RIXS can in principle probe excitations that are

at finite momenta, one may wonder if RIXS offers a better opportunity for detecting

this emergent gauge boson.

Because of the exponential decay of atomic orbital wavefunction, and because the

electromagnetic fields of the photons may complete many cycles of oscillation across

the distance between two atomic sites, in most RIXS experiments the transitions

that accompany the absorption or emission of photons are dominated by virtual

states in which the core hole and the extra valence electron are located on the same



site [85, 86, 87]. Compared to the inter-site transitions in the Raman case, the

polarizations of the incident and scattered photons in such intra-site transitions are

not coupled to the chirality of the hopping pathways. Consequently, the spin-chirality

terms from hopping pathways that carry opposite chiralities will cancel out each other.

However, intra-site transitions can in principle be suppressed if the photon fre-

quency is tuned to a forbidden atomic transition (e.g., an is-3d transition in Cu2+).

Moreover, the issues of reduced wavefunction overlap for inter-site transition and

rapid electromagnetic field oscillation can be partially alleviated by tuning to transi-

tions to and from core electrons of higher principal quantum numbers, and the issue

of rapid electromagnetic field oscillation can be further alleviated by arranging the

photon momenta to be at large angle relative to the direction of the site-to-site bond.

Unless the inter-site transitions are forbidden by symmetry reason, such setup offers

a possibility in which effects of spin-chirality terms can be observed in polarization

filtered signals.

In the specific case of herbertsmithite, the half-filled 3d orbital in Cu2+ are oriented

such that the electron lopes are pointing roughly at the direction of the oxygen,

which is tilted away from the kagome plane by an angle of approximately 300 and

is making an angle with the Cu-Cu bond by approximately 15' (see Fig. 2-17(a)).

While the orientation of the half-filled 3d orbital may not be optimal in maximizing

the matrix element of the transition, there is no general symmetry reason for it to

vanish either. Moreover, from the available data in cuprates, the transition energy

of the is-3d (pre K-edge), 2s-3d (pre L-edge), and 3s-3d (pre M-edge) in Cu2+ are

of the order of 10 keV, 1 keV, and 100 eV respectively [85, 88, 89]. Compared with

the Coulomb repulsion U of the top 3d orbital in Cu2+, which is less than 10 eV,

the enhancement to the Raman signature of the emergent gauge boson from the q2

factor in these transitions can be substantial. Furthermore, since the nearest-neighbor

Cu-Cu distance in herbertsmithite is approximately 3.5 A [26], in both the 2s-3d

(wavenumber - 0.5 A) and 3s-3d (wavenumber - 0.05 A) transitions the photon

electromagnetic field will be relatively in-phase across the Cu-Cu bond even without

arranging photon momenta to be at large angle relative to the kagome plane. Thus,
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Figure 2-17: The orientation of the half-filled 3d orbitals of Cu 2+ in (a) herbert-
smithite and (b) cuprates. The Red and blue shading of the orbital indicates relative
signs. For simplicity the tilt of the orbitals from the kagome plane in herbertsmithite
is omitted.

even after the reduced matrix element in the photon-induced transitions are taken

into account, the 2s-3d and 3s-3d may still be promising for detecting the emergent

gauge boson of the U(1) DSL state.

Focusing on RIXS processes that involves inter-site photon induced transitions,

one can modify the Shastry-Shraiman formulation to obtain an effective T-matrix in

terms of spin operators. The major changes are: First, the electron-photon coupling

HC now corresponds to photon-induced hopping in which a core hole and a valence

3d electron are created or annihilated. To describe such process, one of the valence

electron operator in Eq. (2.2) should be replace by the respective operator for the

core electron, and the constants tij in Eq. (2.2) must be replaced by the appropriate

constant that take into account of the matrix element of the core-to-valence transition,

whose magnitude I shall denote by j. Observe that from symmetry consideration

the sign of j now depends whether the hop is clockwise or anticlockwise relative to

the center of the triangle, as evident from Fig. 2-17(a). Similarly, for the case of

cuprates, the sign of j depends on whether which crystal axes the hop is aligned to

(c.f. Fig. 2-17(b)). Second, while both the doublon and holon can hop around in the

Raman case, in RIXS it is more appropriate to assume that the core-hole is immobile.
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Figure 2-18: Pathways that contribute to RIXS to order (t, j)4 /EF.

Third, the energy denominator U - wi that appears in the original Shastry-Shraiman

formulation must be replaced by the appropriate energy difference between the initial

and virtual state, which I shall call E1. Note that the finite lifetime of the core

hole can be incorporated in this formulation by adding an imaginary part iF to E1.

Finally, in the RIXS case the core hole and the valence doublon can co-exist on the

same site. However, since the two interact with each other via (possibly screened)

Coulomb interaction, the energy denominator must be modified from Si to S1 - Uc

when they reside on the same site (numerically, U, is estimated to be approximately

7 eV for cuprates, which is about 0.8 of U that appears in Hubbard model in that

case [86]). Since it is assumed that we are near resonance (t < E1 < U) and that

t < U, pathways that contains intermediate states in which core hole and valence

doublons reside on the same site should be considered as contributions first order in

the expansion in t/U.

With the above changes, one can repeat the derivation of transition matrix in the

Shastry-Shraiman formulation. Up to the choice of the initial site and initial current,

pathways that contribute up to the order O(t 2j 2 /,E) are listed Fig. 2-18. Note that

the contributions from the pathways in Fig. 2-18(d) and Fig. 2-18(e) are identical to

that from Fig. 2-18(c) upon relabeling the third lattice site. The contributions from
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Figure 2-19: Pathways that contribute to the spin chirality term in RIXS.

the pathways in Fig. 2-18(a) - Fig. 2-18(c) are (recall that our convention of unit

vectors have been defined in Fig. 2-6):

(ij)((-ij) j

TI =

(2.51)

(2.52)

A-2S 2 .S3)I

(ij)(-t)2 (-ij) t
T ( 3  (cCc2)(c c3)(c c2)(cCc)

- t2j2
fS 3

t2j2
S 2 exf etr{X 3 } tr{X2}S2 'if

I

(2.53)

where cc (ct) denotes the electron annihilation (creation) operator associated with

the core hole.

Unfortunately, none of these pathways give rise to a spin-chirality term. In fact,

it can be checked that the lowest-order terms that contribute to the spin-chirality

terms are the ones in which the doublon hops through a hexagon, as depicted in

tj 2 1
= (f E 2 2



Fig. 2-19(a), which is of order t4 j 2/E5:

tPj2
= t e'e/ tr{X6X5X4X3X2} (2.54)

: -(ei) itj Sa - (Sb X Sc)
61 2<a<b<c<6

where I retain only the spin-chirality contributions on the third line. As in the Raman

case, one can then sum over all possible initial current and initial site to obtain a non-

zero overall contribution to the spin-chirality term in the A2g channel.

Alternatively, if one counts also the pathways that are first order in the expansion

in t/U, the process in which the doublon hops through the core-hole site to the third

site of the triangle (Fig. 2-19(b)) also contribute to the spin chirality term:

TUC = ) -2 (c 3 1 2 (ij)(-t)((ccc) = E) (E Uc)- eE tr{XAXiX2}'6(e7 &(s, - UC) S

= (eiEf) S3' (Si x S 2)
Ei -S Uc)

(2.55)

If we assume that Ei in RIXS and (wi - U) in Raman spectroscopy are of the

same order, we see that the coefficients of spin-chirality term in the RIXS T-matrix

is down by a factor of j 2 /(t 2 U) or j 2 /S when compared to the Raman case. While

this counts as a disadvantage to RIXS, one should also remember that the coupling

between the emergent gauge boson and the spin-chirality term is enhanced by a

factor of q. Thus, when both effects is accounted for, RIXS may still holds hopes for

observing the emergent gauge boson in the U(1) DSL state. In addition, because of

the finite momentum transfer in RIXS, the signal from the emergent gauge boson will

now have a threshold at Aw - vFq in addition to the 1/(Aw2 - v~q2F)1/2 decay, which

may help to distinguish the emergent gauge boson from other signals.

It is also interesting to remark that the dichotomy of the square lattice versus

kagome lattice is essentially reversed here: While contribution to the spin-chirality

term vanishes at the t2j 2 /ES order in the kagome lattice, it is non-vanishing for the



square lattice at this order. Specifically, the only legitimate pathway that remains

from Fig. 2-1 is the one in Fig. 2-1(a), which contributes:

Ta =ei(- )(cc3)(c) =- e r{X3X4X2}

1 - (2.56)
2it2 2

=-(eEV) 3 3 - (S3 4 X S 2)-
1

It can then be easily check that sum over different directions of initial current produces

a non-vanishing contribution to the spin-chirality term. Consequently, the effect of

spin-chirality term in RIXS may be much more prominent in the cuprates as compared

to herbertsmithite.
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Chapter 3

The U(1) DSL state in B-field

In this chapter I shall consider the effect of weak magnetic field on the U(1) DSL state.

As explained in the introduction, the U(1) DSL state can be considered as a quantum

critical phase with many competing orders. The application of an external magnetic

field as a perturbation is thus likely to tilt the delicate balance between the various

orders and thus lead to new behaviors of the system. What I will show is that at the

mean-field level, the Landau level (LL) state obtained by adding a uniform emergent

gauge flux on top of the U(1) DSL ansatz will produce a lower energy than the Fermi

pocket state in which the background emergent gauge flux pattern is unmodified.

Unlike in the familiar case of quantum Hall systems, the LL state obtained this way

contains a gapless mode, which turns out to carry S2 = 1. Importantly, the existence

of this gapless S, fluctuation implies that the XY-symmetry is broken in the system.

In other words, in addition to the tilting of spins along the direction of the applied B-

field, the component of spins perpendicular to the applied B-field will also be ordered

in this phase.

3.1 Landau level state vs. Fermi pocket state

Recall that the charge degree of freedom is frozen in a Mott insulator. Conse-

quently, the only effect of an external magnetic field is to add a Zeeman term

AHz = -- 9gB E1 B - Si to the Heisenberg Hamiltonian Eq. (1.3). For convenience
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Figure 3-1: The formation of Landau levels in the spin-1/2 kagome system when an
external B-field is applied.

we shall choose our spin quantization axis such that the B-field is along the +i di-

rection (note that the spin quantization axis and the axes of the kagome lattice need

not be related). Then, if we assume that the mean-field state is still described by

the U(1) DSL ansatz of having 0 flux through the triangles and 7r flux through the

hexagons, then in the mean-field picture the only change from the zero-field case is

that the filling fraction of the up and down spins are modified, which results in spinon

Fermi pockets for the up-spins antispinon Fermi pocket in the down-spins. For future

reference, such state will be referred to as the "Fermi pocket" (FP) state.

However, it is possible that other mean-field ansatzes will produce lower ener-

gies. Recall that in the zero-field case the U(1) DSL has been argued to be a global

minimum in energy. Thus, if the external B-field is sufficiently small, the new global

minimum should be related to the U(1) DSL state by small perturbation in the mean-

field parameters.

In particular, one can imagine perturbing the U(1) DSL ansatz such that an

additional amount of uniform background emergent gauge flux is introduced. In such

case, from the Dirac node structure of the spinon bands at low energies and from

elementary quantum mechanics, it is easy to see that the spinon energy spectrum

will then be described by Landau levels (LLs) having energy S, = tv2nb and

degeneracy Nn = bA/27r, where b = B.ay - Bya, is the "magnetic field" associated

with the emergent gauge field a and A is the area of the lattice, both taken in an

appropriate continuum limit.

Observe that the Landau level spectrum has zero energy states, in which there

is no energy cost to occupy a spinon. As a result, in the spinon sector it would be

energetically favorable to have Landau levels opened. To be precise, if we set aside
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Figure 3-2: Energy difference between the FP state and the LL state for a single

direct cone when An is held fixed while 6 varies.

the Zeeman energy (which is common to both the FP state and the LL state) and

define the Dirac cone filled to the Dirac point as the zero-energy reference point, then

for a single Dirac cone, the energy density of the FP state with excess spinon density

of An > 0 is given by:

ACFP VF d2k Fk 2 dk 2 (/ n /2

J|k<;kF k i

while under a uniform emergent "magnetic" field b, the energy of the corresponding

LL state is given by:

AEL &F L1/2J A- -2, -1]_o k 2dk

27L=E EL; - sgn(n)V2rnlIb+E[_- 2 ~A l~ 2dk

(3.2)

where A 27rAn/b, and which sgn(x), Lx, [x], and [xj denotes the sign, floor,

ceiling, and fractional part of x, respectively. Note that the lower limit of the sum

and the integral in Eq. (3.2) has to be taken together in a consistent manner, since

each expression is by itself divergent.

In Fig. 3-2 the energy difference between the FP state and the LL state is plotted



as a function of the emergent "magnetic" field b at a fixed An (note that by particle-

hole symmetry of the Dirac cone the energy difference between the FP state and the

LL state is independent of the sign of An). From the plot, it is clear that the spinon

energy is minimized for a LL state in which there are two flux quanta of the emergent

gauge flux per Dirac cone spinon, which corresponds to the case where the zeroth LL

is exactly filled (or, when An < 0, exactly emptied). In such case the energy of the

LL state is known to have the closed form expression [90, 91]:

(3/2)(An)3/2  (3.3)

LL 2ir

where ((x) is the Riemann zeta function.

Since at the mean-field level the fluctuation of the emergent gauge field costs no

additional energy, from the above argument we see that if (NT - Nt)/A = x, then the

ansatz in which b = x/2 uniformly on top of the U(1) DSL flux pattern will be the

most energetically favorable state at the mean-field level. In the following we shall

focus on the physical property of this particular LL state.

3.2 Chern-Simons theory, gapless mode, and XY

order

To describe the low-energy properties of this LL state, it is useful to adopt a hy-

drodynamic approach well-known in the quantum Hall literature[92, 93, 94]. In this

approach, a duality transformation is applied, in which a gauge field is introduced to

describe the current associated with a matter field, and which the two are related by:

1
J = I 6,-A , (3.4)

27

where J1 is the current of the matter field and a, is the associated gauge field.

Here p, v, and A are spacetime indices that run from 0 to 2, and ey" is the totally

antisymmetric Levi-Civita symbol.



In this formalism, a single-layer quantum Hall system of filling fraction (a.k.a.

Hall number) v = 1/m is described by the following effective Lagrangian:

= eIM"Aa,8a\ - e CAVa,,Ax + ... (3.5)
47 2w

where A' is the external electromagnetic field and "..." represents terms with higher

derivatives, and hence unimportant at low energies. In particular, at the lowest order

in derivatives among the terms dropped is the "Maxwell term":

Lmaxwell = - 2
1 2 (Dua - 9,al,)(01a" - &"a"). (3.6)

The effective Lagrangian Eq. (3.5) can be understood by considering the equation

of motion (EOM) with respect to the dual gauge field a", which in the time-component

gives y = 27J 0/(-eB), in agreement with the LL picture and the interpretation of V

as the filling fraction.

For an N-layer quantum Hall system, Eq. (3.5) generalizes to:

L = a , a,,KJjvaJA - 6v e" qia91 Ax + ...
47r 27 (37)
= 6,eUa,KO9a - e El'" (q - a,,)VAA + . . .

47r 27r

here ay is the dual gauge field that corresponds to the matter field in the I-th layer,

a, = (ar, ... , a")T and q = (q,... , qN)T are N-by-1 vectors, and K = [K1j] is an

N-by-N real symmetric matrix.

Except that external EM field At is replace by an emergent gauge field at here

(recall that the external electro-magnetic field appears only in the Zeeman term, and

has no implication on orbital motion), the LL state discussed in the previous section

is completely analogous to a multi-layer quantum Hall system. In particular, recall

there there is one flux quanta of emergent gauge field per excess up-spin (and for each

excess up-spin there is one deficient down-spin). Thus, if we treat the up-spin and

down-spin as separate species, then the up-spin has Hall conductance +1 while the

down-spin has Hall conductance -1. The low-energy effective theory that describes



the LL state is thus given by the following Chern-Simons theory: 1

E = ej"Watvt + a + "(at" + a,) a8ax + ...
47 47 27 (3.8)
1 lpvA TJ{c

11

476 CKv,

where the K-matrix is given by:

0 -1 -1

K= -1 1 0 . (3.9)

- 1 0 -1

As before, the . . ." denotes terms higher in derivatives, including first and foremost

the Maxwell term analogous to Eq. (3.6). In the second line, we have combined the

three gauge fields internal to the system into a column vector c' = (&!; a", a2)T. For

brevity, henceforth we shall omit spacetime indices that are internally contracted,

e.g., writing ca~b instead of evAa,8,bx and (caa)" instead of c-VAva. In a similar

spirit, we shall write 8aaa instead of (0, a , - &,a)(a,a, - Ba/) for the Maxwell

term.

Note that unlike Eq. (3.7), we have included the emergent gauge field a" in c".

This is because a" is internal to the system and can be spontaneously generated while

the EM field in the usual quantum Hall case is external and fixed. This distinction

is crucial when considering the compressibility of the system. Usually, the formation

of LLs implies that all excitations (single-particle or collective) are gapped, which in

turn implies that the state is incompressible. However, this is true only if the gauge

field that couples to the matter fields is external. Since the a field is internal to the

system, it can fluctuate smoothly in space while keeping the LL structure intact and

the overall spin imbalance unchanged. Intuitively, if the a field varies across space

at a sufficiently long wavelength, then the spinons in each local spatial region can

still be described by the LL picture, but the LLs will have a larger (smaller) spacing

1In a more detailed treatment each Dirac nodes can be treated as a separate species. This,
however, will introduce an unnecessary complication for the present purpose. For more details, see

Sec. 4.2



Figure 3-3: The physical picture of the breathing mode when external magnetic field
is applied. The filled LL states are indicated by thick horizontal lines while the
unfilled LL states are indicated by the thin (black) horizontal lines. The original
band structure for spinon when no additional a flux is introduced is also indicated in
the background (gray).

in regions where the a field is stronger (weaker). Since the LL structure is intact

and the wavelength of this variation can be made arbitrarily long, the energy cost of

such "breathing mode" can be made arbitrarily small. This breathing mode is thus a

gapless density mode of the system. See Fig. 3-3 for illustration. Note that all species

of spinons co-fluctuate with the a field in this density mode.

The other excitations of the system can be grouped into two general types. The

first type consists of smooth density fluctuations in which the fluctuations of spinons,

and a field are mismatched. The second type consists of quasiparticle excitations

that involve spinons excited from one LL to another. Both types of excitations are

gapped.

In terms of the Chern-Simons formulation, it is easy to check that the K-matrix in

Eq. (3.9) contains exactly one zero eigenvalue, with eigenvector po = (1; 1 -1 )T. Let Ai

be the eigenvalues of K, with pi the corresponding eigenvectors, let P = IPO p1I, p 2] be

the orthogonal matrix form by the eigenvectors of K, and let c' = (c', c', c')T = ptc.

Then, Eq. (3.8) can be rewritten in terms of c' as:

/ = - Aj c Oc' + g~c'co +..- (3.10)
j>O

The Maxwell term gac'ac' for c' in Eq. (3.10) originates from the terms in ... " of



Eq. (3.8), which is ordinarily suppressed by the Chern-Simons terms. However, since

the Chern-Simons term ecic vanishes for c', the Maxwell terms term becomes the

dominant term for c'O at low-energy. Note that although at the mean-field level the

a field itself does not have a Maxwell term, the zero-mode c' does have a Maxwell

term originated from the matter-field components.

The existence of this gapless mode is in fact a rather general consequence of zero

total Hall number (i.e., Zaii species v = 0). See Ref. [93]. Since the Maxwell term has

a gapless linearly-dispersing spectrum, we see that the c' indeed corresponds to a

gapless excitation. Moreover, since all other gauge-field components have non-zero

Chern-Simons terms, excitations in these gauge-field components are gapped (these

excitations corresponds to the "mismatched" density fluctuation mentioned earlier),

verifying the earlier assertion that there is only one gapless density mode.

From the physical picture depicted in Fig. 3-3, it is evident that the fluctuation

of the gapless mode is tied (via the variation of LL degeneracy across space) to the

fluctuation in Sz. More specifically, since each quanta of a flux is tied to one excess

up-spin and one deficient down-spin in the gapless mode, and since the two spin

species carry Sz = ±1/2 quantum numbers, it follows that each flux quanta of the

gauge field c"' that corresponds to the gapless mode carries S,, 1 quantum number.

In the Chern-Simons formulation this is manifested by the fact that s - po = 1, in

which s = (0; 1/2, -1/ 2 )T is the "spin vector" that marked the S, quantum number

carried by the different matter field species.

Recall that the S, quantum number of the system is conserved at a fixed external

magnetic field B. The existence of a linearly-dispersing gapless mode of this conserved

density as the only gapless excitation of the system is, amazingly, an indication that

corresponding symmetry is spontaneously broken in the ground state [95, 96]. The

more familiar example is that of superfluidity, where the phonon mode is the signature

of Bose condensation. The argument relies on the duality between the compact

U(1) gauge theory L = !(e 2 - b2) and the XY model L = EmO) 2 in 2 + 1

dimensions [35, 97], in which the magnetic field b corresponds to 0 and the electric

field e corresponds to a vector normal to VO (to be precise, ej = eQOjO). The latter



relation implies that electric charge which is the source of 1/r electric field in the

gauge theory corresponds to a vortex in the XY ordered phase. In the deconfined

(Coulomb) phase, the photon is the only gapless excitation. It corresponds to the

Goldstone mode of the ordered XY model.

By definition the insertion of a monopole at time T creates an additional flux

quanta, which in our case is tied to the addition of S2 = 1. Since the total spin is

conserved, the appearance of free monopoles and anti-monopoles is strictly forbidden

and we are in the Coulomb phase. On the other hand we can insert by hand a

monopole at position i and remove it at position j. The action of the monopole-anti-

monopole pair in 2 +1 dimensions is the same as the Coulomb energy between charges

in 3 spatial dimensions and goes as 1/r. Hence (V(r)tV(r')) ~ exp(-Ir - r'l- 1 ) has

long range correlation. Since the slowly varying field operator Vt increases S, by

1, it is related to the lattice-scale spin operator St, but with a possible staggering

pattern. i.e., we may write Vi ~ E eidiS , where the sum is restricted to the lattice

sites in the vicinity of where the flux is inserted. The above reasoning thus indicates

that the spin is ordered in the XY plane (i.e., the plane perpendicular to the applied

field).

Note from the above argument that the monopole operator Vt in the effective

QED 3 description of the U(1) DSL state is essentially the staggered magnetization

operator of the XY order. Moreover, since the B-field is coupled to conserved quanti-

ties, it has scaling dimension 1 in the QED 3 description. From these, it follows that

the staggered magnetization M in the XY plane must scale as M ~ B2, where z is

scaling dimension of the monopole operator in the U(1) DSL state.

3.3 Discussions

While the mean-field arguments given in the above sections suggest that an XY order

will develop when the spin-1/2 kagome system is subjected to an external magnetic

field, there are some loose ends that need to be addressed. First, since the above

arguments are made at the mean-field level, one may doubt if the preference of the
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Figure 3-4: VMC results for the U(1) DSL state under external B-field: (a) Energy

density Ae of the LL state and the FP state as a function of spin imbalance density

An. The solid and dotted lines are obtained by fitting the data to the scaling form

e aAna 2 + bAn2 . (b) The XY spin order in the LL state, in which the number

besides each spin is the relative phase of S operator computed by projected LL state

in units of 7r Note that the relative phase of the spin at the left-bottom corner is set

as zero. Both figures are taken from Ref. [98]

LL state over the FP state will remain unchanged when the fluctuation of the emergent

gauge field is taken into account. Second, while the above argument suggests that

the system will be XY ordered, the precise ordering pattern has not been determined.

Since the ordering pattern of a spin system can be measured in neutron scattering, it

is particularly desirable to obtain this information for the LL state.

Fortunately, the two issues mentioned above can be resolved by preforming varia-

tional Monte Carlo calculations on the projected wavefunction (c.f. Sec. 1.2.2), which

has been carried out by Ying Ran in the paper that we published on this subject [98].

From the results, it is indeed confirmed that the projected LL state has a lower energy

than the projected FP state (Fig. 3-4(a)). Moreover, the ordering pattern is found to

be the q = 0 state in the literature of classical kagome spin system (Fig. 3-4(b)).

In addition, one may also wonder how the picture may have changed if further

interactions, in particular the Dzyaloshinskii-Moriya term, is added to the system.

Interestingly, it turns out that if the DM is treated as a perturbation to the U(1)

DSL state, then the effect it has in the low-energy effective theory is completely



analogous to the effect of the Zeeman term [74]. Thus the presence of the DM term

is likely to enhance the XY order that have appeared in this chapter.

As mentioned in Sec. 1.3.2, the question of whether the ground state of the spin-

1/2 kagome system is a valence bond solid or a spin liquid has not be settled conclu-

sively. If the spin-1/2 kagome system is a VBS, it will surely not break S2 symmetry

in a small magnetic field because the VBS phases are fully gapped. The S, symmetry

can be broken at an external magnetic field larger than the spin gap due to the triplon

condensation. However the XY magnetic order generated in this fashion is unlikely to

be the q = 0 pattern because the VBS orders itself breaks translation symmetries and

thus the corresponding XY orders are also likely to break translation symmetries and

result in a large unit cell. Therefore the spontaneous spin ordering presented in this

chapter can be used to differentiate the U(1) DSL from VBS states experimentally.

Furthermore, since the LL state breaks the parity and S, rotation symmetry, it

is separated from the high temperature paramagnetic phase by at least one finite

temperature phase transition. This transition can be first order or continuous. If

the transition is a continuous one that restores the S2-U(1) symmetry, it is expected

to be in the Kosterlitz-Thouless universality, and the transition temperature can be

estimated as Tc ~ B when IBB < XJ. This is because the external magnetic field

B is the only energy scale if it is much smaller than the spinon bandwidth. Since

these are intrinsic properties of the U(1) DSL state in magnetic field, they can be

used to experimentally detect the possible DSL ground state in Herbertsmithite and

other materials where a U(1) DSL state may be realized.
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Chapter 4

Doping the U(1) DSL state

So far much of the theoretical and experimental efforts of the kagome system has been

focused in the half-filled (i.e., spin-1/2) case, including the works I presented in the two

previous chapters. However, given Anderson's proposal that the pseudo-gap phase of

the cuprates can be considered as a spin liquid [21], it would be interesting to consider

what may happen to the spin-liquid state when the system is doped. Experimentally,

doping in herbertsmithite can be achieved by substituting the chlorine with sulfur

in herbertsmithite. And as explained in the Sec. 1.2.3, a theoretical description of

the doped case can be obtained by extending the Schwinger fermion representation

Eqs. (1.6)-(1.8) to the slave-boson representation Eq. (1.17).

In this chapter I shall present my work on the theoretical study of doping the

U(1) DSL state. In light of Anderson's proposal [21] and the phase diagram of

the cuprate, one may expect that the system becomes superconducting once it has

been doped. This is indeed what we shall find. However, the superconducting state

thus obtained turns out to be more interesting than usual. In particular, I shall

argue that the superconductor contains minimal vortices of flux hc/4e, and may

contain fractionalized quasiparticles having semionic mutual statistics. As the the

case of external magnetic field studied in Chapter 3, the emergent gauge field and the

possibility of a Landau level structure will play important roles in producing these

properties of the doped system.



4.1 Landau-level picture of the doped state

If we assume that the doped kagome system is described by the U(1) DSL ansatz as

in the undoped case, and that the doping is x per site, then each doubled unit cell will

contain 6x holons and 3 - 3x spinons per spin. By Fermi statistics, the spinons will

fill the lowest 3 - 3x bands and thus can be described by anti-spinon pockets at each

Dirac node. Similarly, by Bose statistics the holons will condense at each quadratic

band bottom. As in Chapter 3, such state shall be referred to as the Fermi-pocket

(FP) state.

However, as in Chapter 3, one may consider an ansatz in which an additional

amount of uniform a flux is included, whose effect would be to produce Landau levels

(LLs) in both the holon and spinon sector. As before, such state shall be referred

to as the LL state. Recall that in the absence of holons, both mean-field calculation

and projection wavefunction study indicate that the LL state is energetically favored

over the FP state. Since the spinon bands are linear near half-filling while the lowest

holon band is quadratic near its bottoms, at the mean-field level the energy gain from

the spinon sector (which scales as 3/2 power of the b field) will be larger than the

energy cost in the holon sector (which scales as square of the b field) at low doping.

Therefore, even after the holons are taken into account, the LL state is expected to

have a lower energy than the FP state.

Furthermore, from mean-field it can be seen that the energy gain will be maximal

when the a field is adjusted such that the zeroth spinon LLs are exactly empty. Since

each flux quanta of the a field corresponds to one state in each LL, and that each

anti-spinon pocket contains 3x/2 states for a doping of x per site, the flux must be

3x flux quanta per doubled unit cell for this to happen.

As for the holon sector, there are 6x holons per doubled unit cell or equivalently

3x/2 holons per band bottom. Since the holon carries the electric charge and are

hence are mutually repulsive, one may expect them to fill the four band bottoms

symmetrically.' In such case the first LL of each of the holon band bottom would be

exactly half-filled, which implies that the holons would form four Laughlin v = 1/2



quantum Hall states. Since the Laughlin v = 1/2 state is gapped and incompressible,

this symmetric scenario should be energetically favorable. 1

4.2 Chern-Simons theory of the doped state

From the physical arguments given above, it can be seen that the effective description

of the doped system is again analogous to that of a mulit-layered quantum Hall

system, and thus may contain non-trivial topological orders, manifesting in, e.g.,

fractional quasiparticles with non-trivial statistics. As in Chapter 3, a hydrodynamic

approach, in which a gauge field is introduced to describe the current associated with

a matter field as in Eq. (3.4), will be adopted to describe the system.

For the holon sector, we can represent the holons at each of the four band bottoms

by a dual gauge field b' (J = 1, 2, 3, 4). Since the holons at each band bottom form

a Laughlin v = 1/2 state, the total Hall number for the holon sector is E vj = 2.

For the spinon sector the situation is more subtle. Since the zeroth LL is empty and

all the LLs below it are fully filled at each Dirac node, we may represent the spinons

near each of the four Dirac nodes by a dual gauge field a' (I = 1, 2, 3, 4) having Hall

number v = -1. However, since a is internal to the system, the combined system of

holons and spinons must be a neutral, which requires Eali species P= 0 and hence in the

spinon sector E, v, = -2. To circumvent this problem, we introduce two additional

dual gauge fields a' and a', each having Hall number v = +1. The two fields a' and

aI can be thought of as arising from the physics of spinons near the band bottoms

of the two spin species. In this setting, aP, ... , am are expected to carry good spin

and k quantum numbers,2 while a' and ao are expected to carry good spin quantum

number only. Note also that a,..., 4 possess an emergent SU(4) symmetry of spin

and pseudo-spin (i.e., k-points).

'The stability of the Laughlin v = 1/2 state of boson can be seen by flux attachment argument.
Since there are two flux quanta per boson, attaching one flux quanta to each boson maps the
Laughlin v = 1/2 state of boson to an integer quantum Hall state of fermion, which is gapped and
incompressible. In contrast, a v = 1 quantum Hall state for boson is mapped to a free fermion gas
upon attaching one flux quanta to each boson, and hence is unstable.

2The k quantum numbers should be regarded as center-of-mass crystal momentum of the Hall
condensate.



In the present case we will be interested in the vortices and the quasiparticles

in the system, which can be included in the Chern-Simons formulation by adding a

"charge" term to the Chern-Simons Lagrangian. In particular, for a single vortex or

quasiparticle, the Lagrangian of the single-layer quantum Hall system, Eq. (3.5), is

modified to:

= m ev"a & a,\ - e e/VA a,JA , + fa,j(' + ... (4.1)
47r 27

where j is the current density associated with vortices or quasiparticles. Note that

from the duality transformation Eq. (3.4), the charge term AL = fajl in the dual

Lagrangian Eq. (4.1) can alternatively be viewed as a source of vortex in the matter

field current JP, in agreement with the interpretation of this term as a physical

vortex. To see that the charge term can also be interpreted as a quasiparticle, one

can consider the equation of motion with respect to the dual gauge fields. With a

stationary quasiparticle at xO such that j = (6(x - xo), 0, 0), the EOM reads, in the

time-component:

Jo - V B + fv6(x - xo) +... (4.2)
27

which confirms that j1 = (S(x - xo), 0, 0) is a source term for a quasiparticle having

charge tv. In particular, a physical electron at xo can be associated with j"V
(6(x - xo),0,0) and f= v-

The statistics of the quasiparticles can be deduced by integrating out the dual

gauge field a" in Eq. (4.1), from which we obtained the well-known Hopf term:

' =7 0rv +(4.3)

where j" = -(e/2r)e""AD"AA + fjI is the sum of terms that couple linearly to a".

The statistical phase 0 when one quasiparticle described by f = f1 winds around

another with f = f2 can then be computed by evaluating the quantum phase eis =

ef L', with j" = fij~1 +E2jtj2 being the total current produced by both quasiparticles.

Performing the calculation, this yields [94] 0 = 27v f12.



In particular, for the statistical phase accumulated when an electron winds around

a quasiparticle of charge f = v-1 to be a multiple of 27, e must be an integer. This

provides a quantization condition for the possible values of f.

In the multi-layer case, vortices and quasiparticles can similarly be included by

adding a charge term:

AL= ( ay) j f =(-ap)jp (4.4)

where f = . . , fN)T is an N-by-I integer vector.

Assuming that det K # 0, the procedure for integrating out the dual gauge fields

can similarly be carried out, which yields:

T' = ( ) - a . . . (4.5)

where j" = -q(e/2)ec"vAvAA + j . The statistical phase 0 when one quasiparticle

described by e = i1 winds around another with f = f2 can then be computed in a

similar way as in the single-layer case, which yields 0 = 27 JfK-l 2. The information

of quasiparticle statistics is thus contained entirely in K- 1 .

Assembling dual gauge fields of the different species of holons and spinons as

described above, the low-energy effective theory for the doped kagom6 system is thus

given by the following Chern-Simons theory:

4 6

I=1 I=5

I-J J
2+ 1CZA jd /IVA2

+ (S aI,+Sp JJp +--- (4.6)

1 _ WA TKaeA + Et"A (q - c,)aAx + (- cy)j +. (4.7)
47 27r

As before, the "."denotes terms higher in derivatives, including first and foremost



the Maxwell term analogous to Eq. (3.6). Similar to the previous chapter, the eleven

gauge fields internal to the system, including the emergent gauge field a&, are com-

bined into a column vector c = (a'; a", . . . , aP; bi, ... , bf)' in the second line. The

"charge vector"

takes the block

q in this case is

form:

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 0 0 0 0 0 0 0 0

-1 0 -1 0 0 0 0 0 0 0 0

-1 0 0 -1 0 0 0 0 0 0 0

-1 0 0 0 -1 0 0 0 0 0 0

-1 0 0 0 0 1 0 0 0 0 0

-1 0 0 0 0 0 1 0 0 0 0

-1 0 0 0 0 0 0 2 0 0 0

-1 0 0 0 0 0 0 0 2 0 0

-1 0 0 0 0 0 0 0 0 2 0

-1 0 0 0 0 0 0 0 0 0 2

(4.8)

Note that the three terms in Eq. (4.7) can be understood as follows: the first

term describes smooth internal dynamics of the system; the second term describes

its response under an external EM field; and the third term describes the topological

excitations of the system, which can be thought of as combinations of vortices in

various matter-field components. As explained above, f must be an integer vector.

Furthermore, since the a field is not a dual gauge field and contains no topological ex-

citation (otherwise the local constraint Eq. (1.18) will be violated), the a-component

of t for a physical topological excitation must be zero.

As in the original quantum Hall case, The coefficients that appear in K and q

can be understood by considering the EOMs resulting from it. Upon variations with

q = (0; 0, 0, 0, 0, 0, 0; 1, 1, 1, 1)T , and the K-matrix K



respect to ay, b", and a", we get:

1
Ja"I = IEI1VA vxA (I = 1,2,3,4) , (4.9)

27r

JaI = " BLVAa (I = 5,6) , (4.10)
27r

JL =- - E1VA8ax + e ii" AA , (4.11)
2 2-r 27r

0 = JaZJ + Jb. (4.12)
I J

The first three equations are in agreement with the picture that spinons form integer

quantum Hall states while holons form Laughlin v = 1/2 states under the presence of

a flux, and that spinons carry no EM charge while holons carry EM charge e. More-

over, the fourth equation can be seen as a restatement of the occupation constraint

Eq. (1.18).

As in the previous chapter I shall omit spacetime indices that are internally con-

tracted for brevity. In addition, I shall write vectors and matrices in block form

whenever appropriate, which will be abbreviated by using E to denote an n-by-n

identity matrix, Om,n to denote an m-by-n zero matrix, and Em,n to denote an n-by-

n matrix with all entries equal to 1 (such that cEm,n denotes an m-by-n matrix with

all entries equal to c). In this notation, the q-vector becomes q = (0; 01,4, 01,2, E 1,4)T

and the K-matrix in Eq. (4.8) becomes:

0 --E 1,4  -E1,2 -E 1,4

K = -E 4 ,1  -14 04,2 0
4,4 (4.13)

-E 2,1  02,4 112 02,4

-E 4,1  04,4 04,2 2]I4

4.3 Superconductivity and physical vortices

Neglecting the external electromagnetic field for the moment, it can be seen that the

quantum Hall system described by Eq. (4.6) is again compressible, i.e., the system

contains a gapless linearly-dispersing density mode, in which the fluctuation of the a



sector

Figure 4-1: The physical picture of the breathing mode in the doped case. The
filled LL states are indicated by thick horizontal lines while the unfilled LL states are
indicated by the thin (black) horizontal lines. The original band structure for spinon

and holon when no additional a flux is also indicated in the background (gray).

field, the spinon densities, and the holon densities are tied together, keeping the local

constraint Eq. (1.18) and the LL structure intact. See Fig. 4-1 for illustration. Since

the holon carries charge +e, the gapless mode in this case is a charge-density mode.

As before, the other excitations of the system can be grouped into two general

types. The first type consists of smooth density fluctuations in which the fluctuations

of holons, spinons, and a field are mismatched. The second type consists of quasipar-

ticle excitations that involve holons or spinons excited from one LL to another. Both

types of excitations are gapped. Since the breathing mode is the only gapless mode,

it is non-dissipative, and hence the system is a superfluid when the coupling to EM

fields are absent. Moreover, since the breathing mode is charged under the EM field,

the system will be a superconductor when the coupling to EM field are included. Alter-

natively, as in the previous chapter we can treat the gapless mode as the Goldstone

mode associated with a spontaneous symmetry broken ground state. With this asso-

ciation, the superconductivity can be seen as arising from the usual Anderson-Higgs

mechanism in which this Goldstone mode is "eaten up" by the electromagnetic field.

It should be noted that a similar superconducting mechanism has been proposed in

the context of cuprates [99].

Note that this superconductor described above spontaneously breaks the time-

reversal symmetry, since the sign of the additional amount of a flux is flipped under

time reversal. Furthermore, since all four species of holons are binded together in the



breathing mode, each carrying charge +e, a minimal vortex in this superconductor is

expected to carry a flux of hc/4e. We shall now show these claims more vigorously

from the Chern-Simons theory Lagrangian we derived in Eq. (4.7).

It is easy to check that the K-matrix K in Eq. (4.8) contains exactly one zero

eigenvalue, with eigenvector po = (2; -2E 1 ,4 , 2E1 ,2; E 1 ,4)T. Let Ai be the eigenvalues of

K, with pi the corresponding eigenvectors, let P = [po, pi, .. ,pio] be the orthogonal

matrix form by the eigenvectors of K, and let c' = (C,... , ciO)T P t c. Then,

Eq. (4.7) can be rewritten in terms of c' as:

1 e
L = 1 Aec'ac'. + -- e(q -Pc')OA + (- Pc'),j

47r i3 2,7r
j>o

+ gac' 09c' + . .. (.4

e (q . po)cc'aA + (- po )c'ji + gac'aco + ...
27r

+ (terms without c'),

where, as in the previous chapter, the Maxwell term gac'ac' for c' in Eq. (4.14)

originates from the terms in ... ". . of Eq. (4.7), which is ordinarily suppressed by the

Chern-Simons terms. Since the Maxwell term has a gapless spectrum, we see that

the zero-mode c' indeed corresponds to a gapless excitation. Again, the existence of

the zero-mode can be seen as a rather general consequence of zero total Hall number

[93].

Note that the eigenvector pi can be interpreted as the ratio of density fluctuations

between the different field components in the mode c'. Thus the zero-mode indeed

involves the fluctuations of all species of spinons and holons, tied together by the

internal a field.

Moreover, since all other gauge-field components have non-zero Chern-Simons

terms, excitations in these gauge-field components are gapped (these excitations cor-

responds to the "mismatched" density fluctuation mentioned earlier), verifying the

earlier assertion that there is only one gapless density mode. Moreover, since q-p o -/ 0,

we see that the zero-mode is indeed charged under the external EM field. Hence, as



argued above, the doped system is a superconductor.

Since the system is a superconductor, when a sufficiently large external B field is

applied, physical vortices, with the amount of flux through each vortex quantized, are

expected to form. In the Chern-Simons formulation, these physical vortices manifest

in the topological term (f -c,)j" in Eq. (4.6). Taking an isolated topological excitation

with (j , j, j2) (6(x-xo), 0, 0), considering the EOM associated with c' as resulted

from Eq. (4.14), and remembering that (cA)0 - eGM"8,Av = B is the physical

magnetic field, we obtain (in units which h = c = 1):

B =0 (x- o)+.. . . (4.15)
e q -po

This is the Meissner effect, which again confirms that the system is a superconductor.

Moreover, it is easy to check that non-zero I(t -po)/(q -po) has a minimum of 1/4

(attained by, e.g., an t-vector having a single "+1" in one of its bi components and "0"

in all its other components). From this we conclude that the magnetic flux through

a minimal vortex is hc/4e, justifying the intuitive claim given above.

4.4 Quasiparticles-Statistics

It is important to note that not all topological excitations are EM-charged. The struc-

ture of these EM-neutral topological excitations highlights the differences between this

system and a conventional superconductor, and hence qualify the -adjective "exotic."

We shall call these EM-neutral topological excitations "quasiparticles," to distinguish

them from the EM-charged "physical vortices" considered in the previous section.

From Eq. (4.15), a topological excitation carries a non-zero magnetic flux if and

only if f -po # 0. In other words, a topological excitation is EM-neutral if and only if

it does not couple to the zero-mode. Note that the quantity t -po can be regarded as

the zero-mode "charge" carried by the topological excitation. A topological excitation

with e-po # 0 couples to the zero-mode and carries its "charge," which induces an 1/r

"electric" field of the zero-mode and gives rise to a diverging energy gap A - In L,
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where L is the system size. In comparison, a topological excitation that satisfies

f -po = 0 is decoupled from the zero-mode and hence has a finite energy gap and short

ranged interactions. These EM-neutral topological excitations are thus analogous to

the (possibly fractionalized) quasiparticles in quantum Hall systems, and it is sensible

to consider the (mutual) statistics between them.

Recall that the set of f-vectors (which may have non-zero a-component) form an

eleven dimensional vector space. The set of t-vectors satisfying I - po = 0 forms a ten

dimensional subspace of this eleven dimensional space. The K-matrix restricted to

this subspace, K,, is invertible. Hence we can integrate out the gauge fields associated

with this subspace (i.e., the gauge fields c'i, . . . , c'O in Eq. (4.14)). This will convert

the terms we omitted in Eq. (4.14) under the texts "terms without c'" into a Hopf

term. Explicitly, upon integrating out c',. .. , c' 0 the Lagrangian takes the form:

L"= e (q p o )cOOA + (i - pO)c'Oj +gc'0c' + ...
27r

+ 7(j )"Kr- ( -.. (4.16)

- (terms with c') + -r(J ),K;-' + ...),

0 a2

(c.f. Eq. (4.5)), where j = U+ (e/27r)(cA)ttq.

As in the quantum Hall case, from Eq. (4.16) the statistical phase 0 when one

quasiparticle described by jUl winds around another described by j( 't' can be read

off as 0 = 27reTK;-eI'. For identical quasiparticles, 0/2 gives the statistical phase

when two such quasiparticles are exchanged.

For explicit computation a basis for e-vectors for this ten-dimensional subspace

must be specified. Naively one may simply choose this basis to be the set of eigen-

vectors of K having non-zero eigenvalues. This choice turns out to be inconvenient

as some of the eigenvectors of K are non-integer while the quantization condition

requires all i to be integer vectors. Hence, instead we shall use the following basis:
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i1 = (0; -11, 0, 0, 01,2; 0 1,4 )T

2 = (0; -1, 0, 1, 0, 01,2; 0 1,4 )T,

s= (0; -1, 0, 0, 1, 01,2; 0 1,4 )T

f4=(0; (D1,4, (D1,2; 0, 0, 1, -- 1)T,

4 = (0 ; 1,4 , 0 1,2 ; 0, 1, 0, 1)T (4.17)

4 ; (D1, 4, 01,2; 1, 0, 01, -)T,

t7 (0; 0, 1, 0, 0, 01,2; 0, 1, 1, 0) T ,

4 (0 ; 1, 0, 0, 0, 1, 0; 01,4 )T

4 = (0; E1,4, Ei,2; E 1,4)T,

tio (-1; 01,4, 0, 1; 0 1,4 )T.

It can be shown that all integer e-vectors satisfying I - po 0 can be written

as integer combinations of the above basis vectors. It should be remarked that 4i
through 4e are indeed eigenvectors of K, with 4i through 4 having eigenvalue -1 and

4 through 4 having eigenvalue 2. However, 17 through tio are not eigenvectors of K.

In this basis, K,- 1 takes the form:

-2 -1 -1 -1 1

-1 -2 -1 03,3 0 1 03,2

-1 -1 -2 0 1

1 1/2 1/2 1/2 0

03,3 1/2 1 1/2 1/2 0 03,2

1/2 1/2 1 0 0

-1 0 0 1/2 1/2 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 1
02,3 02,3 0 0 1 1

Note that tio contains a non-zero ae-component and is thus unphysical. Moreover,
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from our interpretation of a5 and a6 as arising from the physics of band bottoms, we

expect a topological excitation in these two components to be much more energetically

costly than those of the other matter fields. Hence we can also neglect 1s and 4s.

Thus only the top-left block of K-' is relevant for the statistics of low-lying physical

quasiparticle excitations. Henceforth we shall restrict the meaning "quasiparticle" to

those whose e-vector is an integer combination of 4i through 17.

From K;-' it can be seen that the system contains quasiparticles with non-trivial

mutual statistics. In particular, there there are fermions having semionic mutual

statistics (i.e., a phase factor of ir when one quasiparticle winds around another),

manifesting in, e.g., quasiparticles described by f4 and 4.

The self-statistics and mutual statistics of different quasiparticles can be under-

stood intuitively. Recall that our system is constructed by coupling integer and

fractional quantum Hall states via a common constraint gauge field ai. If we assume

that the different quantum Hall states are independent of each other, i.e., a "charge"

in one matter-field component has trivial bosonic statistics with a "charge" in a dif-

ferent matter-field component, then the statistics of these quasiparticles can be read

off by considering their underlying constituents. For example, since f4 and 45 over-

laps in one y = 1/2 component, their mutual statistics is semionic. Similarly, since

4 overlaps with itself in two y = 1/2 components, its self-statistics is fermionic.3

From this intuitive picture, it is evident that a "+1" in a spinon component in the

t-vector should be identified with a spinon excitation on top of the integer quantum

Hall state that formed near the corresponding Dirac node, while a "+1" in a holon

component in the f-vector should be identified with half-holon excitation on top of

the v = 1/2 quantum Hall state that formed near the corresponding band bottom.

Similarly, a "-1" in a spinon (holon) component in the t-vector should be identified

as an anti-spinon (anti-half-holon). See Fig. 4-2 for illustration.

To discuss these quasiparticles further, it is useful to divide them into three classes.

The first class consists of quasiparticles with spinon components only and will be re-

3For this intuitive picture to be accurate, the sign of the component must also be taken into

account.
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Figure 4-2: Physical interpretation of e-vector: (a) a single "+1" in a spinon com-
ponent identified as spinon; (b) a single "-1" in a spinon component identified as
anti-spinon; (c) a single "+1" ("+2") in a holon component identified as half-holon
(holon); and (d) a single "-1" ("-2") in a holon component identified as anti-half-
holon (anti-holon). The thick (red) horizontal lines indicate filled LLs that forms the
ground state of the system, while the thin (black) horizontal lines indicate unfilled
LLs.

ferred to as "spinon quasiparticles" (SQP). The second class consists of quasiparticles

with holon components only and will be referred to as "holon quasiparticles" (HQP).

The remaining class consists of quasiparticles that have both spinon and holon compo-

nents, and will be referred to as "mixed quasiparticles" (MQP). The first two classes

can be constructed by compounding "elementary" quasiparticles of the same type.

For SQP, the "elementary" quasiparticles are described by e-vectors having exactly

one "+1" component and one "-1" component in the spinon sector (e.g., the i,2,

and fa in Eq. (4.17)). For HQP, the "elementary" quasiparticles are described by

i-vectors having exactly one "+1" component and one "-1"' component in the holon

sector (e.g., the 4,4, and f6 in Eq. (4.17)). As for the MQP, one can start with

"minimal" quasiparticles with exactly one "+I" component in the spinon sector and

one "+2" components in the holon sector, and build all MQP by compounding at

least one such "minimal" quasiparticles together with zero or more "elementary" SQP

and HQP. Alternatively, one may start with a second type of "minimal" quasiparti-

cle in the MQP sector, which has exactly one "+1" component in the spinon sector

and two "+1" components in the holon sector, and build all MQP by compounding

at least one such "minimal" quasiparticles together with zero or more "elementary"

SQP and HQP (note that the second-type of "minimal" MQP is simply a "minimal"
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Figure 4-3: Visualization of the (a) "elementary" SQP; (b) "elementary" HQP; (c)
"minimal" MQP of the first type; and (d) "minimal" MQP of the second type.

MQP of the first type compounded with an "elementary" HQP. The introduction of

two different types of "minimal" MQP will be clear in the following).

These "elementary" and "minimal" quasiparticle excitations can be visualized

in the following way: The "elementary" SQP can be visualized as a particle-hole

excitation in the spinon quantum Hall levels, in which a spinon is removed from

one Dirac node and added in another. The elementary HQP can be visualized as a

particle-hole excitation in the holon quantum Hall levels, in which a half holon is

transferred from one band bottom to another. The minimal MQP can be visualized

as adding both spinon and (half) holons into the original system. See Fig. 4-3 for

illustrations.

With this classification, the information on the self- and mutual- statistics of the

quasiparticles contained in K;-1 can be summarized more transparently in terms of

the self- and mutual- statistics of the "elementary" SQP, "elementary" HQP, and

"minimal" MQP. The result is presented in Table 4.1.
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Table 4.1: Self- and mutual- statistics of the "elementary" and "minimal" quasi-

particles in the doped kagome system. The adjective "elementary" or "minimal"

are omitted but assumed in the table entries. The subscript I and II indicates the

type of "minimal" MQP considered (see the main text for their definitions). When

an entry contain multiple cases, both cases are possible but are realized by different

quasiparticles in the respective sectors.

Mutual Statistical Phase2

Type Self-Statistics SPH HPH MQP1 MQPn
SQP b 2r 27r 27 27

HQP f 27 r or 27 27 7 or 27r

MQP 1  f 27r 27 27r 2r

MQP 1  b 27r r or 27r 2r 7 or 27

1 b=bosonic, f=fermionic, s=semionic
2 Phase angle accumulated when one quasiparticle winds around another, modulo

27r.

4.5 Quasiparticles-Quantum Numbers

Since the quasiparticles have finite energy gaps and short-ranged interactions, they

may carry well-defined quantum numbers. In particular, it is sensible to consider the

k quantum numbers for these quasiparticles, since they arise from LLs that form near

Dirac points or band bottoms with well-defined crystal momentum k. Similarly, it

is sensible to consider the S2 quantum numbers for quasiparticles with spinon com-

ponents. We shall see that this program can be carried out for "elementary" spinon

quasiparticles and for the "minimal" mixed quasiparticles of first type, but not easily

for the "elementary" holon quasiparticles and the "minimal" mixed quasiparticles of

the second type.

Recall from Sec. 1.3.3 that the unit cell is doubled in the tight-binding model

of the U(1) DSL state, because a flux of -r is enclosed within the original unit cell,

which causes the translation operators that correspond to different lattice vectors fail

to commute (c.f. Eq. (1.21)). Consequently, let Ta, and Ta2 to be the translation

operator that corresponds to the lattice vectors ai and a2 as defined in Fig. 1-4, the

single-spinon and single-holon states in the U(1) DSL ansatz generally form multi-

dimensional irreducible representations under the joint action of Tai and Ta2 (i.e.,
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Tai and Ta2 manifest as multi-dimensional matrices that cannot be simultaneously

diagonalized when acting on these states), and cannot be labeled simply by a pair

of numbers (ci, c2) as in the ordinary case4 . Furthermore, the matrices for Tai and

Ta2 will in general be a-gauge-dependent. However, when an even number of spinon

and holon excitations are considered as a whole, the total phase accumulated when

the particles circle around the original unit cell becomes a multiple of 27r, and thus

[Tai, Ta2 ] = 0 in such subspace. Hence it is possible to reconstruct the crystal mo-

mentum in the original Brillouin zone via projective symmetry group if our attention

is restricted to such states. Physically, the gauge dependence of single-spinon and

single-holon states indicate that they cannot be created alone.

It can be checked that all SQP are composed of an even number of spinons and

anti-spinons. The above discussion then implies that they carry well-defined k quan-

tum numbers in the original Brillouin zone. To derive the transformational properties

under Ta1 and Ta2, we compute the transformation properties of the original spinon

matter fields. The procedures for doing so have been described in details in Ref. [74],

here we shall just state the results.

Let 1, -... , 74 denote the topological excitations near the four (two k-vectors and

two spins) Dirac nodes as indicated in Fig. 4-4(a). Then, assuming that they have the

same transformational properties as the underlying spinon fields at the same Dirac

nodes,

Tal [171] =ei/ 121 2 , Ta2 [171] = e' 2 1

Ta1 [72] - e11i 1 2 71, Ta2 [7 2] = e-i/212 (4.19)

Ta, [73] = ei/ 1274 , Ta2 [13] = i7 /27 3

Tal [1741 - e1 1 / 12 13 , Ta2 [4] - ei7r/ 2 ii4

Furthermore, we assume that Tai and Ta2 satisfy the generic conjugation and compo-

sition laws:

= (T[$] )*, T [V$ . V'] = T [V] . T [']. (4.20)

4In the ordinary case, (ci, c2) are simply eigenvalues of Ta1 and Ta2 , respectively, and are related

to the crystal momentum k in the original Brillouin zone via exp(ik . ) ci and exp(ik . r2) = c2.
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Figure 4-4: (a) The labels for the four spinon topological excitations. (b) Physical

interpretation of the "missing states" in the fixed S, quantization and doubled unit

cell Chern-Simons formulation. (c) Spectrum of "elementary" SQP, with k and S2

quantum number indicated, before restoring full symmetry. (d) Spectrum of "elemen-

tary" SQP after restoring the SU(2) symmetry by adding extra quasiparticles. The

dotted arrows indicate equivalent k-point upon translation by the original reciprocal

lattice vectors (spanned by 2ki and k 2 in Fig. 1-6(b)). For dimension of the Brillouin

zone, c.f. Fig. 1-6(b).

where 4, 4' denotes generic quasiparticle states, @* denotes an anti-particle of 4, and

-)' denotes a bound state composed of 4 and 4".

A general basis for "elementary" SQP is spanned by qi77 with i # j. There are

twelve distinct "elementary" SQP, which form six reducible representations under Tai

and Ta2 . Upon diagonalization, the resulting "elementary" SQP in the new basis each

carry distinct S, and k (in the original Brillouin zone) quantum numbers. These are

summarized in Fig. 4-4(c).

Notice that Fig. 4-4(c) is somewhat unsettling. First, even though we have

not performed a PSG study on rotation operators, intuition on rotation symme-

try suggests that there should be four states (with Sz = 1, -1, 0, and 0) located at

k = (-, -- F/V'3). Second, although our Chern-Simons theory is formulated with a

fixed quantization axis for spin, the SU(2) spin-rotation symmetry should remain un-

broken. Therefore, the S eigenvalues should organize into SU(2) representations for

each k value. While this is true for k = (7r, 7r/03) and k = (0, 27r/v'3), where the "ele-

mentary" SQP form l(0 representations, the same does not hold for k = (r, -r/'f)

and k = (0, 0).

The two issues mentioned above indicate that some topological excitations are
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lost in our formulation. In other words, there are topological excitations that have

trivial S, quantum numbers but non-trivial S quantum numbers. Similarly, there are

topological excitations that have trivial k quantum numbers in the reduced Brillouin

zone but non-trivial k quantum numbers in the original Brillouin zone. Physically,

the original of these missing excitations can be understood as follows: in the hydro-

dynamic approach, an e-vector with a single "+1" in a spinon component represent

a spinon at a Dirac node, while e-vector with a single "-1'" in a spinon component

represent an anti-spinon at a Dirac node. The previously defined set of e-vectors that

characterized the "elementary" SQP fail to captured an excitonic state in which a

spinon is excited from a filled LL to an empty LL, thus leaving an anti-spinon behind

(see Fig. 4-4(b) for an illustration), which precisely carry trivial Sz quantum numbers

and transform trivially under T1 and T,. Note that there are four possible excitonic

states of this form, hence we expect four states to be added. In our Chern-Simons

formulation, these excitations may be disguised as combinations of density operators

(~ Dc).

From Fig. 4-4(c) and the forgoing discussions, it is evident that extra states should

be added at k = (r,7r/v/5) and k = (0,0), so that the states at k = (0,0) and

k = (7,7r/x/5) each form a 1 G 0 representation of SU(2). The final result after

making this reparation is shown in Fig. 4-4(c). Formally, the same result can be

reached if we allow objects of the form mrg to be counted as elementary SQP, then

apply Eq. (4.19) and the procedure of diagonalization as before in this extended basis.

Observe that the "elementary" spinon SQP (and hence the entire SQP sector)

all carry integer spins. However, we also know that a conventional superconductor

contains spin-1/2 fermionic excitations (i.e., the Bogoliubov quasiparticles). From

our assignment of S, quantum number and from the table of quasiparticle statistics

Table 4.1, it is evident that the "minimal" MQP of the first type play the role the

these Bogoliubov quasiparticles in the doped kagom6 system. In contrast, minimal

MQP of the second type are spin-1/2 quasiparticles that carry bosonic statistics and

hence is another distinctive signatures of this exotic superconductor.

Since a "minimal" MQP of the first type can be treated as a bound state of a
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Figure 4-5: (a) The labels for the four holon excitations. (b) Spectrum of "elemen-
tary" MQP of the first type, with k quantum number indicated. Each point in k
space forms a S = 1/2 representation in spin. The dotted arrows indicate equivalent
k-point upon translation by the original reciprocal lattice vectors.

spinon and a holon (c.f. Fig. 4-3(c)), the k quantum number in the original Brillouin

zone are again well-defined for them. To construct their quantum numbers, we need to

know how holons transform under Ta and Ta2 . Let 01, . . . , 04 denotes the half-holon

excitations near the four holon band bottom as indicated in Fig. 4-4(a), such that

2 ,...2,S0 denotes the corresponding holon excitations (c.f. Fig. 4-2(c)). Following

the same procedure that produces Eq. (4.19), we obtain the transformation laws:

Tai [(PI 4 Ta2a [(iPj (P

Tal [(P2j 3pd., Ta2 [] - o2 1(4.21)

Ta [P ] = e ir/3 P , Ta2 [P] = e

T 2[p] =ein/sp ,2 2!] = eM7/ 2Tat [(P4 (- I~3 p Ta2 [soP1 - P

A general basis for "minimal" MQP of the first type is spanned by rqjO. There

are sixteen distinct first-type "minimal" MQP, which form eight reducible represen-

tations under Tal and Ta2 . Upon diagonalization, the resulting first-type "minimal"

MQP in the new basis each carry distinct S2 and k (in the original Brillouin zone)

quantum numbers, and the full SU(2) representation in spin can be recovered triv-

ially by combining spin-up and spin-down states. The final results are summarized

in Fig. 4-5(b).

Having considered the SQP sector and the "minimal" MQP of the first type, one
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may attempt to carry out similar analysis for the HQP sector and for the "minimal"

MQP of the second type. However, in doing so, issues arise from the fractionalization

of holons into half-holons. Recall that in deriving the transformational rules of the

quasiparticles, we identify the components of f as being spinon and holon excitations,

and assume that these excitations carry the same quantum numbers as the underlying

spinons and holons that form the LLs in the first place. However, the HQP sector

and the "minimal" MQP of the second type are bound states that involve half-holons,

whose quantum numbers cannot be directly inferred from the underlying spinons and

holons. More concretely, we need to know the transformation laws T[pipo] for half-

holon-anti-half-holon pairs ViV* in order to construct their quantum numbers, but

we only have information about transformation laws T[ o] of holon excitation pa.

It is far from clear how T[ pjp] can be related to T[yj]. The answer for such

question may even be non-unique. We have already seen an analogous situation in

the forgoing discussion: while the spinon-anti-spinon pairs r/iq have well-defined

gauge-invariant k quantum numbers in the original Brillouin zone, the single spinons

ri form gauge-dependent two-dimensional representations under Tai.

The possible ambiguity in the transformation law T[p*] of half-holon-anti-half-

holon pairs ,oji signifies that it may not be possible to produce these quasiparticles

alone. Although a half-holon-anti-half-holon pair can be thought of as resulted from

removing a half-holon from one band bottom and adding one in another, it is not clear

that the process can be done in via single half-holon tunneling. This is analogous to

the case when two fractional quantum Hall system are separated by a constriction,

where it is only possible to tunnel physical electrons. [100]

Combining the results from Sect. 4.4 and 4.5, we see that there are two very

different class of quasiparticle excitations in the doped kagome system-which can

be termed as "conventional" and "exotic," respectively. The "conventional" class

consists of quasiparticles that can be created alone, which carry well-defined crystal

momentum k in the original Brillouin zone and possess conventional (fermionic or

bosonic) statistics. These include the spinon particle-holes, the holon (but not half-

holon) particle-holes, the "minimal" mixed quasiparticles of the first type (a.k.a. the
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"Bogoliubov quasiparticles"), and their composites. It should be noted that these

"conventional" quasiparticles can all be considered as descendants of the "Bogoli-

ubov quasiparticles." Indeed, it can be checked that the spinon particle-holes shown

in Fig. 4-4(d) can be obtained by compounding the appropriate "Bogoliubov quasi-

particles" (and their antiparticles) that appears in Fig. 4-5(b).

In contrast, the "exotic" class consists of quasiparticle that cannot be created

alone, whose crystal momentum may not be well-defined, and whose statistics may

be fractional. These include the half-holon particle-holes and the "minimal" mixed

quasiparticles of the second type (which are "Bogoliubov quasiparticles" dressed with

a half-holon particle-hole). In terms of the underlying electronic system, the former

class are excitations that are local in terms of the underlying electron operators c and

ct, while the latter class are excitations that are non-local in terms of c and cf.

It should be warned that questions regarding the energetics (and hence stability)

of the quasiparticles have not been touched in Sect. 4.4 and 4.5. In particular, it is

not clear whether the bosonic or the fermionic spin-1/2 excitation has a lower energy.

Though this information is in principle contained in the Maxwell term Eq. (3.6), to

obtain it requires a detailed consideration of the short-distance physics in the t-J

model, and is beyond the scope of this thesis.

4.6 An alternative derivation by eliminating the

auxiliary field

It is a curious result that in Eq. (4.18), once the unphysical e10 is removed from the

spectrum, the quasiparticle represented by t4 becomes purely bosonic (i.e., having

trivial bosonic mutual statistics with all other quasiparticles and trivial bosonic self-

statistics). This suggests that 49 corresponds to some local density excitation of the

system and thus should not be regarded as topological. Moreover, the procedure of

first treating tio as part of the spectrum in computing K;-' and then removing this

degree of freedom at the very end of the calculation seems somewhat dubious. Recall
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that the gauge field a" is introduced to enforce the occupation constraint Eq. (1.18).

This gauge field is thus an auxiliary field that is void of self-dynamics (i.e., the term

ca~a vanishes) and topologically trivial (i.e., the a-component of e must be zero).

Therefore, one may attempt to re-derive the previous results by eliminating this a

field right at the beginning by enforcing the constraint directly. This can indeed be

done, as we shall show in the following.

Recall that the EOM with respect to at leads to the constraint equation Eq. (4.12)

in the Chern-Simons formulation. From this, one may argue that the effect of intro-

ducing the a field can alternatively be produced by setting Er a+ E± b', = 0 directly.

To do so, we perform a two-step transformation on the Lagrangian Eq. (4.7). First,

we set:

6'j = ay and a'= a" for I#=6; (4.22)

b' aft and b' bp for J # 1. (4.23)

Then the constraint becomes as" + b't' = 0, which we enforce directly by setting:

p" =-a'A" = b' , (4.24)

thus eliminating one variable.

Note that since the a field appears in Eq. (4.7) only through the term e(E a, +

E bj)aa, it got dropped out of the transformed Chern-Simons Lagrangian. Letting

(p; a', ... , a's; b, ... , b'4), which is a column vector of only nine (as opposed to

eleven) gauge fields, Eq. (4.7) becomes:

L = I T - - c(q - e)BA + ( ), + (4.25)
47 27r

where n (1; 01,5; 0 1 ,3 )T is the transformed charge vector, and K is the transformed
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K-matrix:
(3 1 11 1 1 -2 -2 -2 N

1 1 1 0 1 1 05,3

k= 1 1 1 1 0 1 (4.26)

1 1111 2

-2 4 2 2

-2 03,5 2 4 2

-2 2 2 4

As for topological excitations, from the transformation between c and i, it can be

seen that the correspondence between f and i reads:

I = (0; n..... n.a6;ni,. ..' nb4)T

(4.27)

e (nbl -na; nalia6,... , na5 -na6;

nb2 - b1, - .,b4 -- nbl)

Hence, I is an integer vector if and only if t is also an integer vector. Moreover, from

Eq. (4.27) it can be seen that 4o is mapped to e = 0, which is consistent with our

previous argument that the quasiparticle corresponding to 4e is purely bosonic and

hence should be considered as non-topological.5

Although K and k look rather different superficially,6 all the major conclusions

from Sect. 4.3-4.5 can be reproduced with K. In particular, we shall check that the

existence of a single gapless mode, the hc/4e flux through a minimal vortex, and the

semionic quasiparticle statistics can all be obtained from K.

It is easy to check that k has exactly one zero eigenvalue, with PO = (4; -2E 1 ,4, 2; E, 3 )T

its eigenvector. Using the transformation equations Eqs. (4.22)-(4.24), we see that

5More generally, given i in the transformed basis, the corresponding t is determined up to mul-

tiples of 19.
61t can even be checked that K contains irrational eigenvalues that are not eigenvalues of K.
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this eigenvector corresponds precisely to the eigenvector po we found in Sect. 4.3.

Thus, again we conclude that the system contains a gapless mode associated with su-

perconductivity, and that this gapless mode can be interpreted as fluctuations of all

spinons and holons species whose ratio is matched (through their common coupling

to the gauge field &).

Moreover, the amount of magnetic flux that passes through a physical vortex is still

described by Eq. (4.15) upon the obvious modifications. Since 4f -po = 4, we recover

the conclusion that a minimal physical vortex carries a flux of hc/4e. Furthermore,

it can be checked that f -po = i -PO for e, i satisfying the correspondence Eq. (4.27).

Hence the flux carried by a vortex calculated from k agrees with the value calculated

from K.

As before, the quasiparticle excitations (which are EM-neutral, short-ranged inter-

acting, and have finite energy gaps) are characterized by the condition that t -ebo = 0,

which defines an eight-dimensional subspace of the nine-dimensional space in this

case. The K-matrix restricted to this subspace, Kr, is invertible. We may choose a

basis for this subspace that corresponds to the basis choice Eq. (4.17) in the original

representation. Explicitly,

t1 = (0; 0 -1, 1, 0, 0; 01,3 )T

t2 = (; 0, -1, 0, 1, 0; 01,3)T

t 3 = (0; 0, -1, 0, 0, 1 01,3)T

= (0; 0, 01,4; 0, 1, 1 )T (4.28)

£5 = (0; 0, 01,4; 1, 0, -- 1 )T

6= (1; 0, 01,4; -I, 1, 2 )T

t7 = ( 0 ; 0, 0, 1, 0, 0; 1, 1, O)T

8 (0; 1, 1, 0, 0, 0; G1,3)
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Then, it can be checked that:

-2 -1 -1 -1 1

-1 -2 -1 03,3 0 1

-1 -1 -2 0 1

1 1/2 1/2 1/2 0
K,-= (4.29)

03,3 1/2 1 1/2 1/2 0

1/2 1/2 1 0 0

-1 0 0 1/2 1/2 0 0 0

1 1 1 0 0 0 0 0

in agreement with the results in Sect. 4.4.

4.7 Discussions

In this chapter we have considered the theory of a doped spin-1/2 kagom6 lattice

described by the t-J model. We start with the slave-boson theory and the assumption

that the undoped system is described by the U(1) Dirac spin liquid, from which we

argued that the doped system is analogous to a coupled quantum Hall system, with

the role of the external magnetic field in the usual case taken up by an emergent

gauge field a. The analogy with quantum Hall systems compels us to introduce

the Chern-Simons theory as an effective description of the low-energy physics of the

system. This allows us to describe the superconductivity, the physical vortices, and

the electromagnetically neutral quasiparticles in a unified mathematical framework.

We show that there are two alternative Chern-Simons theories that produce identical

results-one with the auxiliary field a kept until the end, and the other with the

auxiliary field and a redundant dual matter field eliminated at the beginning.

In our scenario, the coupled quantum Hall system consists of four species of spinons

and four species of holons at low energy. We show that such system exhibit supercon-

ductivity and that the flux carried by a minimal vortex is hc/4e. The system also con-

tains fermionic quasiparticles with semionic mutual statistics, and bosonic spin-1/2
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quasiparticle. As for the quantum numbers carried by the quasiparticles, we analyzed

the spinon sector in details and found that it is possible to recover the full SU(2)

and (un-enlarged) lattice symmetry of the "elementary" quasiparticles in this sector,

upon the inclusion of quasiparticles that are not easily represented in the original

fixed-spin-quantization-axis, enlarged-unit-cell description. The same classification

of quantum numbers are also carried out for the spin-1/2 fermionic quasiparticles,

which are the analog of Bogoliubov quasiparticles in our exotic superconductor.

In this chapter we have argued that the doped spin-1/2 kagom6 system may ex-

hibit exotic superconductivity that is higher unconventional. However, it should be

remarked we have presented only one possible scenario for the doped kagom6 system.

For example, it is possible that the ground state of the undoped system is a valence

bond solid and hence invalidate our analysis. Furthermore, experimentally realizing

the idealized system considered considered in this chapter may involve considerable

difficulties. For instance, in the case of Herbertsmithite, it is known that the sub-

stitution between Cu and Zn atoms can be as big as 5%. It is our hope that this

chapter will generate further interests in the doped spin-1/2 kagom6 system, as well as

other systems that may exhibit analogous exotic superconducting mechanisms, both

experimentally and theoretically.
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Chapter 5

Conclusions

While the works presented in this thesis focus specifically on the U(1) Dirac spin

liquid state in the spin-1/2 kagome lattice and its descendants, they do illustrate

the great potential offered by geometrically frustrated low-dimensional systems in

realizing exotic phases of condensed matter that are accessible to experimental studies.

It is important to note that much of the unusual properties of the U(1) DSL state

arise from the exotic elementary excitations that it carries-these include the spinons,

the holons, and most important the emergent gauge field. In Raman scattering, the

spinons (and their antiparticles) are responsible for the broad continua that vanish

as power laws at low energies, while the emergent gauge field is responsible for a

characteristic 1/w singularity. In the cases where an external magnetic field is ap-

plied or where the system is doped, the emergent gauge field causes Landau levels

to open up in the spinon spectrum, and lead to an XY-ordered state and an exotic

superconductor, respectively.

Given the interesting physics that may manifest in the U(1) DSL state, it may be

a worthwhile pursue to consider other situations in which the emergent gauge field

may play a predominant role. And as my works on the effects of external magnetic

field and doping on the U(1) DSL state illustrates, the emergent gauge field may

continue to dictate the physical behavior of the system even if it is perturbed away

from a spin liquid state. Consequently, it may be fruitful to extend our investigation

to phases that are derived from the spin liquid state. As in the case where the
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U(1) DSL state is doped, such phases can exhibit exotic behaviors (e.g., semionic

quasiparticles) that are hidden under conventional ones (e.g., superconductivity). It

is the hope of the author of the present thesis that such investigations will eventually

lead to the discovery of other theoretical models with interesting physical properties

that would, with the increasing sophistication of experimental techniques, be realized

in actual materials.
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