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Abstract

The electricity industry has been experiencing fundamental changes over the past
decade. Two of the arguably most significant driving forces are the integration of
renewable energy resources into the electric power system and the creation of the
deregulated electricity markets. Many new challenges arise. In this thesis, we focus on
two important ones: How to reliably operate the power system under high penetration
of intermittent and uncertain renewable resources and uncertain demand: and how to
design an electricity market that considers both efficiency and fairness. We present
some new advances in these directions.

In the first part of the thesis, we focus on the first issue in the context of the unit
commitment (UC) problem, one of the most critical daily operations of an electric
power system. Unit commitment in large scale power systems faces new challenges
of increasing uncertainty from both generation and load. We propose an adaptive
robust model for the security constrained unit commitment problem in the presence
of nodal net load uncertainty. We develop a practical solution methodology based
on a combination of Benders decomposition type algorithm and outer approximation
techniques. We present an extensive numerical study on the real-world large scale
power system operated by the ISO New England (ISO-NE). Computational results
demonstrate the advantages of the robust model over the traditional reserve adjust-
ment approach in terms of economic efficiency, operational reliability, and robustness
to uncertain distributions.

In the second part of the thesis, we are concerned with a geometric character-
ization of the performance of adaptive robust solutions in a multi-stage stochastic
optimization problem. We study the notion of finite adaptability in a general setting
of multi-stage stochastic and adaptive optimization. We show a significant role that
geometric properties of uncertainty sets, such as symmetry, play in determining the
power of robust and finitely adaptable solutions. Ve show that a class of finitely
adaptable solutions is a good approximation for both the multi-stage stochastic as
well as the adaptive optimization problem. To the best of our knowledge, these are
the first approximation results for multi-stage problems in such generality. Moreover,



the results and the proof techniques are quite general and extend to include important
constraints such as integrality and linear conic constraints.

In the third part of the thesis, we focus on how to design an auction and pricing
scheme for the day-ahead electricity market that achieves both economic efficiency
and fairness. The work is motivated by two outstanding problems in the current
practice - the uplift problem and equitable selection problem. The uplift problem is
that the electricity payment determined by the electricity price cannot fully recover
the production cost (especially the fixed cost) of some committed generators, and
therefore the ISOs make side payments to such generators to make up the loss. The
equitable selection problem is how to achieve fairness and integrity of the day-ahead
auction in choosing from multiple (near) optimal solutions. We offer a new perspective
and propose a family of fairness based auction and pricing schemes that resolve these
two problems. We present numerical test result using ISO-NE's day-ahead market
data. The proposed auction- pricing schemes produce a frontier plot of efficiency
versus fairness, which can be used as a vaulable decision tool for the system operation.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor
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Chapter 1

Introduction

1.1 Reliable Operation of the Electric Power Sys-

tems Under Supply and Demand Uncertainty

Over the past decade, significant new development has taken place in the electricity

industry around the world. One of the most important driving forces is the move to-

ward alternative energy resources. Indeed, over the past decade, tremendous amount

of effort and resources have been invested in developing renewable energy technologies

and installing renewable energy generating plants. Many countries in the world have

established alternative energy mandate. For instance, 24 states in the US have renew-

able portfolio standards, and the European Union has a mandate of 20% electricity

generated from renewable energy resources by the year 2020. To keel) the development

of renewable energy sustainable and to realize its full potential, new challenges to the

operations of electric power systems have to be solved. In particular, the following

issue becomes critical:

* How to reliably operate the power system under high penetration of intermittent

and uncertain renewable resources as well as uncertain demand.

To take full advantage of the renewable energy resources, the bulk power system

needs to be operated in a reliable, resilient, and robust way. This need is particularly

felt in the day-ahead power system scheduling problem, i.e., the so-called security



constrained unit commitment (SCUC) problem. The SCUC is a key daily operation

of any large scale electric power systerm in both vertically integrated industry and

deregulated electricity markets. It has been one of the most challenging problems

in the power system operation, due to its large scale, discrete nature, and complex

constraints. Since the unit commitment decisions have to be made a day before

the real-time operation, the uncertainty in the generation and demand forecast is

a significant factor that complicates the planning, especially with the fast growing

renewable energy penetration and demand-side price sensitive response.

The current operational practice heavily relies on deterministic decision models

and heuristic, inflexible reserve requirement [45, 85], which makes it difficult and

economically inefficient to adjust to the emerging system of growing uncertainty in

both supply and demand. Most of the existing proposals that explicitly deal with

uncertainty use the stochastic optimization approach, which requires a probability

distribution of the uncertainty, and often relies on sampling discrete scenarios of the

uncertainty realizations [27, 82, 68, 87, 86]. This approach has practical limitations

in the application to large scale power systenis. In particular, it may be difficult

to identify an accurate probability distribution of the uncertainty. Also, stochastic

UC solutions only provide probabilistic guarantees to the system reliability. It often

requires large number of scenario samples to obtain a reasonable reliability guarantee,

which results in intensive computation. The limitations of the current deterministic

approach and the stochastic optimization model calls for a new methodology for unit

commitment operations.

1.2 Fairness and Efficiency in Electric Market De-

sign

Another important driving force of the significant development in the electricity in-

dustry is the creation of deregulated electricity markets. Since the 1990's, the elec-

tricity industry has undergone deregulation and restructuring in several countries



such as UK, Spain, Chile, Brazil, among others, and several regions of the United

States. Vertically integrated utility companies are restructured; electricity produc-

tion and transmission are separated into different enterprises; Independent System

Operators (ISOs) and Regional Transmission Organizations (RTOs) are established

to manage the regional transmission grids and wholesale electricity markets. Today,

ten ISOs and RTOs serve two-thirds of the electricity consumers in the United States

and more than half of Canada's population. Although more than two decades have

passed, some fundamental issues in electricity market design still remain in active

debate, attracting considerable attention from both academia and industry [79].

The day-ahead (DA) market design is one of the most difficult among electricity

market design problems. In the current reality of deregulated electricity markets,

the Independent System Operators (ISOs) adopt the social welfare maximization

principle in solving a unit commitment problem and a marginal cost pricing scheme

to determine the electricity price as the incremental cost of producing one more unit

of electricity. A long noticed shortcoming of this approach is the so-called uplift

problen, i.e., the electricity payment determined by the electricity price cannot fully

recover the production cost (especially the fixed cost) of some committed generators,

and therefore the ISOs make side payments to such generators to make up the loss.

Recent proposals have focused on augmenting the current social welfare niaxi-

mization auction and marginal cost pricing scheme by imposing prices for integer

decisions [67, 88], or directly using the Lagrangian multipliers of the mixed integer

unit commitment problem to form the electricity price [50, 44). One drawback of the

first approach is that the introduced energy prices are sometimes hard to interpret

and implement in practice, in a sense, they are similar to the uplift payment in na-

ture. The second approach minimizes the total uplift payment, however, its definition

of uplift is different from the one used in current practice, also it does not fully re-

solve the problem - uplift payment can still be positive. Computationally, it requires

solving a Lagrangian relaxation of the mixed-integer unit commitment problem, and

potentially a primal version of the unit connitmnent as well.

Another long standing issue in the current practice is how to choose one market



clearing solution from multiple optimal or near-optimal solutions [53, 48]. We call

this equitable selection problem. Although all solution candidates have the same level

of system welfare, selecting one solution against others can have significant financial

implications on individual generators and consumers. Current practice lacks clear-

cut criteria in choosing from potentially numerous solution candidates. In fact, even

computing all the solution candidates is a highly nontrivial task.

This thesis aims to provide new perspective and proposals to these issues. In our

consideration, both problems are symptoms of a deeper unfairness issue: for the uplift

problem, some generators that produce electricity make no profit, while other market

participants, especially on the consumer side, collect considerable utility surpluses;

for the second problem, choosing one solution from others can clearly cause fairness

and inequity concerns among market participants. Thus, the following question seems

to bear significant implication on the electricity market design problem:

How to design an auction and pricing scheme for the day-ahead market that

achieves both economic efficiency and fairness.

1.3 Exciting Development in Operations Research:

Robust and Adaptive Optimization

As the electricity industry is witnessing exciting development, the operations research

community has also been making significant progress, especially in the area of mul-

tistage decision making under uncertainty. Multistage optimization problems under

uncertainty are prevalent in numerous scientific and engineering disciplines (includ-

ing electric power systems) and have attracted researchers from diverse backgrounds.

Several solution approaches have been proposed including exact and approximate

dynamic programming, stochastic programming, and simulation-based methods. As

early as 1970s, Soyster [80] and Falk [36] considered static linear programming prob-

lems with uncertain matrix coefficients, right-hand side, and cost coefficients. The

goal was to find a solution that is feasible for all realizations of uncertainty to mini-



mize the worst case cost. This new solution concept remained almost unnoticed until

the late 1990's, when a series of papers by Ben-tal and Nemirovski [11, 12, 13], Ben-

tal et. al. [1], El Ghaoui and Lebret [40], El Ghaoui et. al. [41], Bertsimas and Sim

[21, 22], and Bertsimas et. al. [30] considerably extended the previous work in linear

programs to much more general convex optimization problems. Robust Optimization

has since become an active research field. Later, the framework is further extended

by a sequence of papers by Ben-tal et. al. [10, 7, 8], in which the decision is allowed

to be made after the uncertainty was revealed, thus introducing adaptable policies

and Adaptive Optimization. It was shown that an arbitrary adaptable policy typi-

cally results in intractable problems, and proposed a special class of affine decision

rules. In the work by Bertsimas and Caramanis [16], a hierarchy of finitely adaptable

policies with increasing adaptability was proposed.

As is shown, it is an exciting time to conduct interdisciplinary research on the

boundary of electric power systems and operations research. Indeed, this thesis

presents some advances in the above two important directions for power systems

operation and electricity market design, using the recent development in Robust and

Adaptive Optimization. In particular,. we develop a new methodology for the secu-

rity constrained unit commitment operation that is both robust and adaptable to the

uncertain supply and demand. We propose a new design for the day-ahead electricity

market that explicitly considers both efficiency and fairness. We also present a con-

tribution to the theory of multi-stage stochastic and adaptive optimization, where we

found a tight geometric characterization of the power of finitely adaptable solutions

for mutli-stage stochastic optimization problems.

1.4 The Structure and Contributions of the Thesis

The structure and the main contributions of the thesis are summarized below.

* In Chapter 2 of the thesis, we focus our attention on the security constrained

unit commitment problem.



1. We formulate a two-stage adaptive robust optimization model for the se-

curity constrained unit commitment (SCUC) problem with nodal net load

uncertainty. It is a first such SCUC model using adaptive robust optimiza-

tion and incorporating all types of constraints considered in the real world,

such as network, contingency, reserve, ramp-rate, and all other physical,

inter-temporal constraints. The first-stage commitment decision is robust

and the second-stage dispatch solution is fully adaptive to all variations

of uncertainty. This endorses the solution with both robustness and high

adaptability. Special techniques are taken to further reduce the conser-

vativeness of the solution by controlling the size of the uncertainty region

and choosing proper budget of uncertainty levels using the probability law.

2. Due to the complexity and novelty of the adaptive robust model, efficient

algorithms are in great need. We develop a practical two-level solution

algorithm. The algorithm combines a cutting plane type method with

heurstic speed-up in the outer level with an efficient approximate algo-

rithm in the inner level. This algorithm can be viewed as a further gener-

alization to the traditional Generalized Benders Decomposition framework,

where in our case the objective function is given implicitly by a nontriv-

ial bilinear optimization problem. Our algorithm can be useful to many

other problems, where the two-stage adaptive robust optimization model

is applicable, such as capacity expansion, resource planning, and airline

management.

3. We conduct extensive numerical tests on the large scale power system op-

erated by ISO New England with all detailed constraints used in reality

(reserve, transmission, ramping rate, constraint violation penalty, etc).

Based on the numerical results, we compare the performance of the adap-

tive robust UC model to the current practice in three aspects, namely

economic efficiency, real-time operation reliability, and robustness to prob-

ability distributions of the uncertainty. The numerical test demonstrates

the clear advantages of the adaptive robust models in all three aspects.



* Chapter 3 of the thesis is of a theoretical nature, but was originally motivated

by the above adaptive robust SCUC model.

1. We discover a significant role that geometric quantities, such as the sym-

metry of the uncertainty set, play in characterizing the performance of

the finite adaptability solutions in multistage stochastic optimization and

adaptive optimization. In particular, in both two-stage and multi-stage

models, the optimal objective value of a finitely adaptive solution is upper

bounded by (1 + p/s) times the optimal value of a multistage stochas-

tic optimization solution, where s is the symmetry of the uncertainty set

and p E [0, 1] relates how far the set is removed from the origin. The

significance of the result is that it shows the finitely adaptive solution is

a good approximation of a multistage stochastic solution, e.g., when the

uncertainty set is symmetric (s = 1, we have a 2-approximation). While

multistage stochastic optimization is essentially intractable, finitely adapt-

able optimization is computationally tractable.

2. The above geometric result opens the way to characterize performance for

many structured uncertainty set. We investigate and give many examples,

such as budgeted uncertainty set, symmetric sets, uncertainty set moti-

vated by Central Limit Theorem, etc. This provides a useful guideline to

the modelers in choosing and designing proper uncertainty sets.

3. We extend our results to general linear conic inequalities, thus include the

important case of multistage optimization with positive semidefinite (SDP)

constraints. We also extend our results to problems with integral decisions

in the first-stage, which include capacity planning type problems.

* The above two parts correspond to the robustness and adaptability in the thesis

title. Chapter 4 of the thesis deals with the design of an efficient and fair

day-ahead (DA) electricity market.

1. We propose and investigate the notion of -fairness that encompasses a



full spectrum of fairness proposals. The case 3 = 0 corresponds to cur-

rent practice of maximizing social welfare, whereas # = 1 corresponds to a

solution that maximizes the minimum utility among market participants,

the so-called max-min fairness. Under the max-min fairness scheme, every

market participant is guaranteed a nonnegative surplus, so no side pay-

ments are needed, and thus the uplift problem is naturally solved. We

broadly investigate various properties, computational methods, and eco-

nomic implications of the max-min fairness scheme.

2. By varying #, we investigate the tradeoff between efficiency and fairness of

the #-fairness auction and pricing scheme. We formulate a family of mixed

integer optimization models that explicitly parametrizes this tradeoff. The

solutions for different parameter values are used to generate an efficiency-

fairness curve. Such a frontier plot illustrates a flexible tradeoff between

efficiency and fairness achieved by our proposal, and thus, it can be used to

facilitate the ISO's decision-making in choosing an appropriate operating

point of its market. A particular revealing observation from the efficiency-

fairness curve is that the current operational practice (0 = 0) is not Pareto

efficient, and significant improvement can be achieved by our proposed

schemes.

3. We demonstrate that there is a 1o E (0, 1), at which the social welfare is

as high as current practice, while the fairness property is strictly better

and the side payments are strictly lower than current practice. This shows

that, in accordance with well formulated fairness principle, the -fairness

tradeoff scheme with / = 30o automatically selects the most fair solution

from potentially numerous maximum social welfare solution candidates.

This provides a solution to the second issue of the current practice to

achieving fairness and integrity in choosing from multiple optimal social

welfare solutions.

4. We investigate the convergent behavior of /-fairness as 3 -* 0, and fur-



ther propose a new pricing scheme called efficient fairness (EF) scheme,

which decouples from the MaxSW auction and simultaneously achieves the

maximum social welfare and max-min fairness. It also enjoys easier com-

putation (only solves one simple linear program). We also formally show

that among all pricing schemes, the EF pricing scheme is the most likely

to eliminate uplift payment. When uplift is unavoidable under any pricing

scheme, the EF scheme minimizes the largest uplift payment.
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Chapter 2

Adaptive Robust Optimization for

Security Constrained Unit

Commitment Problems

2.1 Introduction

Unit commitment (UC) is one of the most critical decision processes performed by

system operators in deregulated electricity markets as well as in vertically integrated

utilities. The objective of the UC problem is to find a unit commitment schedule

that minimizes the commitment and dispatch costs of meeting the forecasted system

load, taking into account various physical, inter-temporal constraints for generating

resources, transmission, and system reliability requirements.

During the normal real-time operation, system operator dispatches the committed

generation resources to satisfy the actual demand and reliability requirements. In the

event that the actual system condition significantly deviates from the expected con-

dition, system operator needs to take corrective actions such as committing expensive

fast-start generators, voltage reduction, or load shedding in emergency situation to

maintain system security. The main causes of the unexpected events come from the

uncertainties associated with the load forecast error, changes of system interchange



schedules, generator's failure to follow dispatch signals, and unexpected transmission

and generation outages.

In recent years, higher penetration of variable generation resources (such as wind

power, solar power, and distributed generators) and more price-responsive demand

participation have posed new challenges to the unit commitment process, especially

in the independent system operator (ISO) managed electricity markets. It becomes

important for the ISOs to have an effective methodology that produces robust unit

commitment decisions and ensures the system reliability in the presence of increasing

real-time uncertainty.

Previous studies of uncertainty management in the UC problem can be divided

into two groups. The first group commits and dispatches generating resources to meet

a deterministic forecasted load, and handles uncertainty by imposing conservative re-

serve requirements. The second group relies on stochastic optimization techniques.

The first group, so-called the reserve adjustment method, is widely used in today's

power industry. Much of research along this vein, including [2, 24, 23, 43), has fo-

cused on analyzing the levels of reserve requirements based on deterministic criteria,

such as a loss of the largest generator or system import change. Such an approach

is easy to implement in practice. However, committing extra generation resources

as reserves could be an economically inefficient way to handle uncertainty, especially

when the reserve requirement is determined largely by some ad-hoc rules, rather than

a systematic analysis. Also, since the UC decision only considers the expected oper-

ating condition, even with enough reserve available, the power system may still suffer

capacity inadequacy when the real-time condition, such as load, deviates significantly

from the expected value.

The stochastic optimization approach explicitly incorporates a probability distri-

bution of the uncertainty, and often relies on presampling discrete scenarios of the

uncertainty realizations [27, 82, 68, 87, 86]. This approach has some practical limi-

tations in the application to large scale power systems. First, it may be difficult to

identify an accurate probability distribution of the uncertainty. Second, stochastic

UC solutions only provide probabilistic guarantees to the system reliability. To obtain



a reasonably high guarantee requires large number of scenario samples, which results

in a problem that is computationally intensive. To improve the robustness of stochas-

tic UC solutions, Ruiz et al. [74 proposed a hybrid approach combining the reserve

requirement and stochastic optimization methods. A recent work [35] proposed an

interesting framework that combines uncertainty quantification with stochastic op-

timization. This framework could also be integrated with the robust optimization

formulation proposed in this chapter.

Robust optimization has recently gained substantial popularity as a modeling

framework for optimization under parameter uncertainty, led by the work [11, 12,

13, 1, 40, 41, 21, 22, 30]. The approach is attractive in several aspects. First, it

only requires moderate information of the underlying uncertainty, such as the mean

and the range of the uncertain data; and the framework is flexible enough that the

modeler can always incorporate more probabilistic information such as covariance to

the uncertainty model, when such information is available. Second, the robust model

constructs an optimal solution that immunizes against all realizations of the uncertain

data within a deterministic uncertainty set. Such a robustness is a desirable feature,

especially when the penalty associated with infeasible solutions is very high, as the

case in the power system operations. Hence, the concept of robust optimization is

consistent with the risk-averse fashion in which the power systems are operated. There

has been a broad variety of applications of robust optimization in engineering and

management sciences (such as structural design, integrated circuit design, statistics,

inventory management, to name a few. See [9] and references therein).

In this chapter, we propose a two-stage adaptive robust optimization model for

the security constrained unit commitment (SCUC) problem, where the first-stage

UC decision and the second-stage dispatch decision are robust against all uncertain

nodal net load realizations. Furthermore, the second-stage dispatch solution has full

adaptability to the uncertainty. The critical constrains such as network constraints,

ramp rate constraints and transmission security constraints are incorporated into

the proposed model as well. It is key to design a proper uncertainty set to control

the conservatism of the robust solution. We use a special technique proposed in



[21, 22] for this purpose. We develop a practical solution method, and extensively

test the method on a real-world power system. Papers [70, 89] proposed similar robust

optimization UC models. However, their proposals ignored reserve constraints and

did not study critical issues such as the impact of robust solutions on system efficiency,

operational stability, and robustness of the UC solutions against different probability

distributions of uncertainty, neither did they compare the robust UC model with

the current practice in a real world power system. Our research was conducted and

written independently of the works in [70, 89]. The main contributions of our work

are summarized below.

1. We formulate a two-stage adaptive robust optimization model for the SCUC

problem. Given a pre-specified nodal net load uncertainty set, the two-stage

adaptive robust UC model obtains an "immunized against uncertainty" first-

stage commitment decision and a second-stage adaptive dispatch actions by

minimizing the sum of the unit commitment cost and the dispatch cost under

the worst-case realization of uncertain nodal net load. The nodal net load uncer-

tainty set models variable resources such as non-dispatchable wind generation,

real-time demand variation, and interchange uncertainty. The parameters in

the uncertainty set provide control over the conservatism of the robust solution.

2. We develop a practical solution methodology to solve the adaptive robust model.

In particular, we design a two-level decomposition approach. A Benders decom-

position type algorithm is employed to decompose the overall problem into a

master problem involving the first-stage commitment decisions at the outer

level and a bilinear subproblem associated with the second-stage dispatch ac-

tions at the inner level, which is solved by the outer approximation approach

[32, 37]. The proposed solution method applies to general polyhedral uncer-

tainty sets. We present a computational study that shows the efficiency of the

method. Besides the unit commitment studied in this chapter, the proposed

mixed-integer adaptive robust model is applicable to many two-stage decision

making problems, such as robust inventory management problems, robust loca-



tion transportation problems, etc. The efficient solution methodology developed

here, therefore, may be of interest to a much wider community.

3. We conduct extensive numerical experiments on the real-world large scale power

system operated by the ISO New England. We study the performance of the

adaptive robust model and provide detailed comparison with the current prac-

tice, the reserve adjustment approach. Specifically, we analyze the merit of the

adaptive robust model from three aspects: economic efficiency, contribution to

real-time operation reliability, and robustness to probability distributions of the

uncertainty. The extensive computational results show that the adaptive robust

UC model outperforms the current practice in all three aspects. This clearly

demonstrates the advantages of the adaptive robust UC model.

This chapter is organized as follows. Section 2.2 describes the deterministic SCUC

formulation. Section 2.3 introduces the two-stage adaptive robust SCUC formulation.

Section 2.4 discusses the solution methodology. Section 2.5 presents computational

results, including a discussion on the proper way to choose the level of conservatism

in the robust model. Section 2.6 concludes with discussion.

2.2 The Deterministic SCUC Problem

For the unit commitment decision making, the system operator usually has access

to a wide range of detailed data listed below, including economic data of generator's

production costs or supply curve in a market setting, physical characteristics of each

generator, expected load forecast, system reserve requirement, network parameters

and transmission line ratings.

" N,, Nd, Nb. NI. T: The number of generators, loads, nodes, transmission lines,

and time periods (in hours).

. Nl?9, , !N A,. T: The corresponding sets of generators, loads, nodes, transmis-

sion lines, and time periods (in hours).

" S". G', Fj: Start-up, shut-down, no-load costs of generator i at time t.



" C(-): Variable cost of generator i at time t as a function of production levels.

max min" pa I pn Maximum and minimum production levels of generator i (usually

called Ecomax and Ecomin, respectively).

" RUj, RD': Ramp-up, ramp-down rates of generator i at time t.

" MinUpi, MinDowni: Minimum-up and minimum-down times of generator i.

" f"ax: Flow limit on transmission line 1 in base case.

e f,"nax: Flow limit on transmission line 1 in contingency i (i.e. line i is dropped).

" BP, Bd: Network incidence matrices for generators and load.

* a,: Network shift factor vector for line 1 for the base case.

" a11 : Network shift factor vector for line I in contingency i.

" d': Expected demand at node j, time t.

" Nr: The set of system reserve requirements Mr = {TMSR, T10, T30}.

" A: The set of reserve products A = {TMSR, TMNSR, TMOR}.

" Ak: The set of reserve products needed to satisfy reserve requirement k E V,:

ATmIs =- {TMSR}, AT1o = {TMSR,TMNSR}, AT30 = {TMSR,TMNSR,TMOR}.

i : Reserve capacity of generator i, requirement k E AN, time t.

t qik: System reserve requirement of k E N,, time t.

The system operator in the current practice commits extra generation resource, called

reserve, in the day-ahead scheduling. The reserve capacity will be available to the sys-

tem operator in the real-time operation to prepare for unexpected loss of generators

or other system disruptions. According to how fast the reserve capacity can respond

to the emergency, there are three important types of reserves: ten-minute spinning

reserve (TMSR), ten-minute nonspinning reserve (TMNSR), and thirty-minute op-

erating reserve (TMOR). Other types of reserves exist, such as regulation service



(automatic generation control) which responds to frequency changes in the system

second by second, and supplement reserve.

The decision variables of the unit commitment problem are:

* xi C {0, 1}: If generator i is on at time t, xt = 1; otherwise x' = 0.

t u E {0, 1}: If generator i is turned on at time t, n = 1; otherwise u = 0.

* vo C {0, 1}: If generator i is turned down at time t, v = 1; otherwise = 0.

* pi [0, oo): Production of generator i at time t.

* q a C [0, oo): Reserve of generator i, type a E A, time t.

A standard deterministic UC model is formulated below [45, 85].

T Ng

min x Fit + ut S + vtG' + C (p|)x Yuv q

x -x +'U > 0,

xx + vu, 2 0,

x1  xt - xT, VT C [t + 1, min{t + MinUpi - 1, T}], t E [2, T],

x3 - x <1- X. VT E [t + 1. min{t + MinDwi - 1, T}j t E [2, T],

Ng Nd

p= 1 ,'

=1 j=1

Vt E T,

- RD < pt pt RU|, ViE A,,t E T,

- f"[ < a'(Bp t - B(d') < j.ax Vt E Tl E A,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

fPi < a'(Bppt - Bad') < ftj.." Vt E T, E CT,i C N,

pnu " p + q+ , <Pax Vi E Ng, t E T,

qqk a tC ke,.aE A

q 2 W, Vt E, kE.N,
N ~g a c-Ak

q i
a(E Ak

V E g, t E T. k c r.

(2.9)

(2.10)

(2.11)

(2.12)

V1 (E No,,t 1, T,

Vi E Nr, t (E T,



Eq. (2.2) and (2.3) are logic constraints between on and off status and the turn-

on and turn-off actions. In particular, a generator i is turned on at time t ut = 1 if

and only if x 1 = 0, Xz = 1. Similarly, a generator i is turned off at time t if and

only if X'-1 = 1, IX = 0. Eq. (2.4) and (2.5) are constraints of minimum up and

minimum down times for each generator, i.e. if a generator is turned on at time t,

then it must remain on at least for the next (MinUpi - 1) periods, and similar for

the shutdown constraint. There are multiple ways to model these constraints. The

specific form that we use here follow the formulation proposed in [83]. The convex

hull of the binary variable x defined by Eq. (2.4)-(2.5) is explicitly characterized in

[58]. Furthermore, the convex hull of the binary variables (x, u) defined by Eq. (2.2)-

(2.3) and Eq. (2.4)-(2.5) is characterized in [71]. In the software implementation of

our robust unit commitment model, we use the strong formulation proposed in [71].

Eq. (2.6) is the energy balance equation that matches the system level supply

and load at each time period. Eq. (2.7) is the ramp rate constraint, i.e. the speed at

which a generator can increase or decrease its production level is bounded in a range.

Notice that the ramping constraint is a complicating constraint that couples many

consecutive time periods.

Eq. (2.8) is the transmission flow constraint for the base case, where all trans-

mission lines are functioning. Eq. (2.9) is the transmission line constraint for the

i-th contingency where transmission line i is tripped. In this situation. the network

topology is changed, so are the shift factor asi and flow limits fj'a. Eq. (2.8) and

(2.9) are the DC approximation of the nonlinear AC power flow equations. In Ap-

pendix, we review the physical laws that govern the power flows and give a derivation

of the DC approximation from the the AC model. Incorporating the nonlinear AC

flow equations into the unit commitment problem would result in a nonlinear mixed-

integer optimization problem, which is significantly more difficult to solve than a

linear imixed-integer problem. In the literature, it has been standard to use the DC

model in the unit commitment problem. It remains a challenging problem to incorpo-

rate AC power flow model into the economic dispatch problem where the commitment

variables are fixed.



Eq. (2.10) is the constraint that the sum of the production output and the reserve

should be within the upper and lower bounds for each generator. Eq. (2.11) describes

the requirement on how much reserve the system should have reserve category k E Ar

at time t. Eq. (2.12) says generator i can provide at most qi,k,t for reserve requirement

k at time t. Since reserve also takes up the generation capacity,

The variable production cost, or the supply curve in a market setting, C(pi) is

an increasing convex piece-wise linear function of the production output pt. In the

ISO-NE's day-ahead energy market, each generator is allowed to submit a supply

curve of up to 20 pieces.

To simplify the notation, we present a compact matrix formulation for the rest of

the chapter.

min cTx + bT yXly

s.t. Fx f, (2.13)

Hy < h, (2.14)

Ax + By < g, (2.15)

Iy = d, (2.16)

x binary.

The binary variable x is a vector of commitment related decision including the on/off

and start-up/shut-down status of each generation unit for each time interval of the

commitment period, usually 24 hours in an ISO setting. The continuous variable y is a

vector of dispatch related decision including the generation output, load consumption

levels, resource reserve levels, and power flows in the transmission network for each

time interval.

The objective function is to mininmize the sum of commitment cost cTx (including

start-up, no-load, and shut-down costs) and dispatch cost bTy over the planning hori-

zon. Constraint (2.13), involving only commitment variables, contains minimum up

and down, and start-up/shut-down constraints. Constraint (2.14) includes dispatch



related constraints such as energy balance (equality can always be written as two

opposite inequalities), reserve requirement, reserve capacity, transmission limit, and

ramping constraints. Constraint (2.15) couples the commitment and dispatch deci-

sions, including minimum and maximum generation capacity constraints. Constraint

(2.16) emphasizes the fact that the uncertain nodal net loads are fixed at expected

values in the deterministic model (J, selects the components from y that correspond

to uncertain resources).

2.3 The Two-stage Fully Adaptive Robust SCUC

Formulation

In this section, we first discuss the uncertainty set, which is a key building block of the

robust model. Then, we introduce the two-stage adaptive robust SCUC formulation

and provide a detailed explanation.

2.3.1 The Uncertainty Set of Net Load

The first step to build a robust model is to construct an uncertainty set. Unlike

the stochastic optimization approach, the uncertainty model in a robust optimization

formulation is not a probability distribution, but rather a deterministic set. In our

model, the uncertain parameter is the nodal net load. We consider the following

uncertainty set of nodal net load at each time period t in the planning horizon T,

Dt(d', dt , A) {dt E R S;dN, (2.17)

it {dt d d + ] V 11 E A rd}

where dt = (di, i E .Md) is the vector of uncertain net loads at time , dt is the deviation

of the uncertain load from the nominal value Pi, and the interval [J - dt, | + dJ] is

the range of the uncertain d', and the inequality in (2.17) controls the total deviation

of all load from their nominal values at time t. The parameter At is the "budget



of uncertainty", taking values between 0 and Nd. When At = 0, the uncertainty

set is a singleton, i.e. D' = {d}, corresponding to the deterministic case. As At

increases, the size of the uncertainty set Dt enlarges, which implies that larger total

deviation from the expected net load is considered. Therefore, the resulting robust UC

solutions are more conservative and the system is protected against a higher degree of

uncertainty. In particular, when A = Nd, D' equals to the entire hypercube defined

by the intervals for each d' for i E Nd.

More compactly, the uncertainty set can be written as the intersection of a 11 ball

and a l ball.

DA(dt, A) = {dt E RNd :b -'(d' - d)1 A t  t A l t }

where D = diag(di, . . . d)

2.3.2 The Adaptive Robust SCUC Formulation

The two-stage adaptive robust SCUC problem is formulated as follows,

min C Tx + max bTy (d) (2.18)
XY(.)dED)

s.t. Fx < f, x is binary,

Hy(d) < h(d). Vd C D,

Ax + By(d) < g, Vd E D,

J,, y (d) -, d, Vd E D.

where d = (dt, t C T) and D = RT D. The objective function has two parts,

reflecting the two-stage nature of the decision. The first part is the commitment cost.

The second part is the worst case second-stage dispatch cost.

In the adaptive robust model, the commitment decision x takes into account all

possible realization of future net load in the uncertainty set. Such a UC solution

remains feasible, thus robust, for any realization of the uncertain net load. In com-



parison, the traditional UC solution only guarantees feasibility for a single nominal

net load, whereas the stochastic optimization UC solution only considers a finite set of

preselected scenarios of the uncertain net load. Furthermore, in our formulation the

optimal second-stage decision y(d) is a function of the uncertain net load d, therefore,

fully adaptive to any realization of the uncertainty. The functional form of y(.) is de-

termined implicitly by the optimization problem, rather than being presumed. This

full adaptability models the economic dispatch procedure in the real-time operation.

The above formulation can be recast in the following equivalent form, which is

easier to see the structure of the two-stage robust model.

min (cTx +max min bTy (2.19)
dED yEQ(x,d)

s.t. Fx < f, x binary,

where Q(x, d) {y : Hy < h, Ax+ By < g, Iuy = d} is the set of feasible dispatch

solutions for a fixed commitment decision x and nodal net load realization d. The first

stage decision is the unit commitment decision x. For a fixed commitment decision,

the second stage implicitly finds the economic dispatch solution for each realization

of the load, and identifies the worst case load that results in the maximum dispatch

cost.

It is useful to write out the dual of the dispatch problem minyeQ(xd) bTy. Denote

its cost by S(x, d).

S(x, d) = max AT (Ax - g) - OTh + lT d (2.20)

- AT B - PTH + I = bT,

p 0, A > 0, 7 free

where p, A and q are the multipliers of the constraints (2.14), (2.15) and (2.16),

respectively.

Now, the second-stage problem maxdED iminyEQ(xd) b Ty is equivalent to a bilinear



optimization problem given below

R(x) = max AT(Ax - g) - pTh + T d (2.21)
d,cp.A,r

- ATB - OTH + ITI, = bT,

d E- E)

p > 0, A > 0, q free.

The uncertainty set D is assumed to be polyhedral. Computing R(x) is non-trivial.

To see this, notice that the objective function of (2.21) contains a non-concave bilinear

term rTd, and bilinear programs are in general NP-hard to solve. Also notice that

the objective function optimized over (p, A, y) results in a convex piece-wise linear

function in d (the pieces are not given explicitly), and maximization over such a

convex function is NP-hard. Throughout this chapter, we assume R(x) < +00 for all

feasible x. This can be ensured by adding penalty terms in the dispatch constraints.

We omit the penalty terms here for a clearer presentation.

2.4 Solution Method to Solve the Adaptive Ro-

bust Model

As analyzed in the previous section, the adaptive robust formulation (2.19) is a two-

stage problem. The first-stage is to find an optimal commitment decision x. The

second-stage is to find the worst-case dispatch cost under a fixed commitment solution.

Therefore, we naturally have a two-level algorithm. The outer level employs a Benders

decomposition (BD) type cutting plane algorithm to obtain x using the information

(i.e. cuts) generated from the inner level, which solves the bilinear optimization

problem (2.21).

2.4.1 The Outer Level: Benders Decomposition Algorithm

The Benders decomposition algorithm is described below.



Initialization: Let x0 be a feasible first-stage solution. Solve R(xo) defined by

(2.21) to get an initial solution (di, pi, A1 , r1). Set the outer level lower bound

LBD = -oo, upper bound UD = +oo and the number of iteration k = 1. Choose

an outer level convergence tolerance level E(> 0).

Iteration k > 1:

Step 1: Solve BD master problem.

The master problem of BD is the following mixed integer program (MIP):

min cT X+0 a(2.22)

s.t. Of > AT(Ax - g) - pfh + TIdi, Vl < k,

Fx < f,x binary.

Let (Xk, ak) be the optimum. Set LBD - CTXk + ak-

Step 2: Solve BD subproblem R(Xk).

We will discuss the methodology to solve R(xk) in the next subsection. Let

(dk+l, Wk+l, Ak+1l I1k+1) be the optimal solution. Set UBD _ CTXk + R(xk)-

Step 3: Check the outer level convergence.

If UBD - L BD < E, stop and return Xk- Otherwise, let k = k + 1, and go to step

1.

To speed up the convergence of the above BD algorithm, we find it helpful to add

dispatch constraints Q(Xk, dk) to the BD master problem (2.22) at certain iteration

k when UBD or LBD has improved slowly.

2.4.2 The Inner Level: Solve R(x)

An outer approximation (OA) algorithm [32, 37] is used to solve the bilinear program

(2.21). Since the problem (2.21) is nonconcave, only a local optimum is guaranteed

by the OA algorithm. To verify the quality of the solution, we test on different initial



conditions and observe fast convergence and consistent results. The OA algorithm is

described below.

Initialization: Fix the unit conmitment decision zk passed from the kth iteration

of the outer level BD algorithm. Find an initial net load di E D. Set the inner level

lower bound L^ = -oc, upper bound UA = +oc and number of iteration j = 1.

Choose an inner level convergence tolerance level 6(> 0).

Iteration j > 1:

Step 1: Solve OA subproblem S(xk, dj).

Solve S(xk, dj), the dual of the dispatch problem defined by (2.20). Let (pW, Aj, 77)

be the optimal solution. Set LOA = S(xk, dj). Define Lj(dj, ?)), the lineariza-

tion of the bilinear term q'd with respect to (dj, vi), as follows

Lj(dj, mj) = n'dj + (y - rjj )'d + (d - d j)inr.

Step 2: Solve OA master problem.

Solve the linearized version of R(xk), defined below:

U (djr) = 'max AT(Ax - g) - pTh+#

< Li(di, rij), Vi 1.j

- ATB - 'pTH + -I = bT,

d E D,

'p > 0, A > 0, ri free.

Since the uncertainty set D is assumed to be polyhedral, U(dj, rm) is a linear

program. Denote (dj±1 , P , 17Agi , #j±1) as the optimal solution. Set the

inner level upper bound as UQA = U(dj, rj).

Step 3: Check the inner level convergence. If UOA - LOA < 6, then stop and

output the current solution. Otherwise, set j = j + 1, go to Step 1 of the OA

algorithm.



The overall algorithmic framework is summarized in Fig. 2-1. In our implemen-

tation, we include all contingency transmission constraints in the BD subproblem.

However, we could also use simultaneous feasibility test (SFT) procedure to generate

transmission security constraints on the fly.

BD Master Problem

BD Subproblem

Outer Approximation

OASubproblem

OA Master

Problem

SFT

Figure 2-1: Flow chart of the proposed two-level algorithm.

2.5 Computational Experiments

In this section, we present a computational study to evaluate the performance of

the adaptive robust (AdaptRob) approach and the reserve adjustment (ResAdj) ap-

proach. We test on the power system operated by the ISO New England Inc. (ISO-

NE). We have the following data and uncertainty model.

The system and market data: The system has 312 generating units, 174 loads,

and 2816 nodes. We select four representative transmission lines that interconnect

four major load zones in the ISO-NE's system. The market data is taken from a

normal winter clay of the ISO-NE's day-ahead energy market. In particular, we have

24-hour data of generators' offer curves, reserve offers, expected nodal load, system

reserve requirement (10-min spinning reserve, 10-min non-spinning reserve, and 30-

min reserve), and various network parameters. The average total generation capacity

per hour is 31,400 MW and the average forecasted load per hour is 14,136 MW.



The uncertainty model: We use the budgeted uncertainty set defined in (2.17), in

which j is the nominal load given in the data. We set the range of load variation to

be d. = 0.1d' for each load j at time t. The budget of uncertainty At takes values33

in the entire range of 0 to Nd. We will discuss the proper way to choose A' within

this range that results in the best performance of the robust solution in the following

subsection.

For the ResAdj approach, we solve the deterministic UC problems presented in

Section II at the expected load level with adjusted reserve requirement. In particular,

we model the reserve adjustment as follows,

At Nd

j, = q t + Nd S
Si=1

where q3 t is the system reserve requirement of type j at time t, composed of the basic

reserve level g0,t and an adjustment part proportional to the total variation of load.

Here, the uncertainty budget At also controls the level of conservatism of the ResAdj

solution.

The computational experiments proceed as follows.

1. Obtain UC solutions: Solve the ResAdj and AdaptfRob UC models respectively

for different uncertainty budgets: At E [0, A].

2. Dispatch simulation: For each UC solution, solve the dispatch problem repeat-

edly for two sets of randomly generated loads, each of which has 1000 samples.

One set of randomly sampled load follows a uniform distribution in the interval

[dj - d§. d' + dj] for each load j at time t. The other set follows a normal distribution

with mean e? and standard deviation d'/1.44, which results in an 85 percentile of

load falling between [d. - d., d' + dj] (the load is truncated for nonnegative values).

Notice that samples from both sets may fall outside of the budgeted uncertainty set,

especially when the budget A' is close to 0. In this way, we can test the robustness

of our model in the situation where the uncertainty model is not entirely accurate.

To mimic the high cost of dispatching fast-start units or load shedding in the



real-time operation, we introduce a slack variable z for energy balance, reserve re-

quirement, and transmission constraints in the dispatch simulation. If the real-time

dispatch incurs any energy deficiency, reserve shortage, or transmission violation, at

least one component of z will be positive. The dispatch cost is the sum of produc-

tion cost and penalty cost, i.e. cTp + rTz, where ii is set to $5000/MWh for each

component.

The proposed two-level algorithm for the two-stage adaptive robust model is im-

plemented in GAMS. The mixed integer program and linear program in the algorithm

are solved with CPLEX 12.1.0 on a PC laptop with an Intel Core(TM) 2Duo 2.50GHz

CPU and 3GB memory. We set the convergence tolerance for the outer level BD al-

gorithm to be c = 10-, and the convergence tolerance for the inner level algorithm

to be 6 = 10- . The MIP gap for the BD master problem is set to 10-. The average

computation time to solve the robust UC problem is 6.14 hours. The average com-

putation time for the reserve adjustment approach is 1.65 hours. The computational

results presented in the following subsections use the above tolerance levels and MIP

gap. If we relax the BD convergence tolerance c to 10-3 and the MIP gap of the

BD master problem to 10-3, the average computation time to solve the robust UC

problem decreases to 1.46 hours with an average of 0.17% increase in terms of the

worst-case total cost, which shows there may be enough room for a fined tuning of

the algorithm paramters to improve the computational time without satisfying too

much on solution accuracy.

We compare the performance of the reserve adjustment approach and the adaptive

robust approach in three aspects: (1) The average dispatch and total costs, (2) the

volatility of these costs, and (3) the sensitivity of the these costs to different prob-

ability distributions of the uncertain load. The average cost indicates the economic

efficiency of the UC decision; the volatility of these costs indicates the reliability of

the real-time dispatch operation under the UC decision; the third aspect indicates

how robust the UC decision is against load probability distributions.

The main conclusion is that (a) by properly adjusting the budget level of the

uncertainty set, the adaptive robust solution has lower average dispatch and total



costs, indicating better economic efficiency of the robust approach; (b) the adaptive

robust solution significantly reduces the volatility of the total costs, as well as the

penalty cost in the dispatch operation; (c) the adaptive robust solution is significantly

more robust to different probability distributions of load.

We want to remark that (a) is quite contrary to the general impression that the

robust solution is always overconservative. In fact, by choosing a proper uncertainty

model, the robust solution achieves better economic efficiency than the conventional

approach. We will present detailed discussion later. The computational results for

normally and uniformly distributed loads are similar in illustrating (a) and (b). We

only present the results for normally distributed loads. For (c), we compare the results

of the two distributions.

2.5.1 Cost Efficiency and the Choice of the Budget Level

Table 2.5.1 reports the average dispatch costs and total costs of AdptRob and ResAdj

solutions for normally distributed load when the uncertainty budget At varies from

0 to Nd. We can see that the AdptRob has lower average dispatch costs for all values

of A'. The average total costs of the two approaches are more comparable.

To quantify the comparison, we define the cost saving as

cost saving = (ResAdj cost - AdptRob cost)/(ResAdj cost).

For the normally distributed load, the AdptR ob approach always has lower average

dispatch cost than the ResAdj approach, and can save up to 2.7% or $472k (at

A OJN). which is a significant saving for a daily operation. The total cost

saving of the AdptRob approach ranges from -0.84% (at A = 0.4N) to 1.19% (at

A = 0.1N(!). Since the AdptRob approach protects the system against the worst-case

load realization, in general it commits more generation resources than the reserve

adjustment approach, which only plans for the expected load.

For both average dispatch and total costs, we observe that the robust solution

performs best when the budget level At is relatively small, e.g. around 0.1NA. This



AdptRob ResAdj
budget dispatch cost total cost dispatch cost total cost
A t/Nd (M$) (M$) (M$) (M$)

0.0 19.3530 20.8503 19.3530 20.8503
0.1 16.9852 18.7290 17.4581 18.9547
0.2 17.0513 18.8265 17.2391 18.7400
0.3 17.0949 18.8773 17.2563 18.7595
0.4 17.1448 18.9425 17.2570 18.7843
0.5 17.1583 18.9569 17.2893 18.8250
0.6 17.1705 18.9723 17.3030 18.8506
0.7 17.1719 18.9896 17.3537 18.9062
0.8 17.1715 18.9892 17.3899 18.9472
0.9 17.1655 18.9898 17.3990 18.9669
1.0 17.1652 18.9894 17.4524 19.0660

Table 2.1: The average dispatch costs and total costs of the AdptRob and ResAdj for
normally distributed load for A t/Nd = 0, 0.1.... ,1.

phenomenon can be explained by the probability law, namely the central limit the-

orem. When a large number Nd of random loads (independent as we assume) are

aggregated. the volatility of the total load scales according to V/Nd. Therefore, a

proper level of uncertainty budget in the uncertainty set (2.17) should be chosen as

At ~ O( /Nd). Table 2.5.1 shows the results for At in 0.51Nd to 3/INd, equivalently

At equals 0.038Nd to 0.227Nd, for Nd = 174 in our system. We can see that, in this

range of the uncertainty budget, the AdptRob has an even higher saving: the aver-

age dispatch cost saving from 1.86% or $321.2k (at A = 1.5 /Nd) to 6.96% or $1.27

Million (at A = 0.5 Nd), and the average total cost saving from 0.34% or $64.1k (at

A = 1.5 Nd) to 5.48% or $1.08 Million (at A = 0.5/Nd). This demonstrates that

the probability law provides a proper guideline for choosing the best budget level.

2.5.2 Reliability of Dispatch Operation

The adaptive robust approach significantly reduces the volatility of the real-time

dispatch costs. Table 2.5.2 shows the standard deviation (std) of the dispatch costs

of the two approaches, and their ratios (ResAdj/AdptRob) for normally distributed

load. We can see that the std for the reserve adjustment approach is almost an order of



AdptRob ResAdj
budget dispatch cost total cost dispatch cost total cost

At/ Nd (M$) (M$) (M$) (M$)
0.5 16.9195 18.6050 18.1855 19.6837
1.0 16.9650 18.6688 17.4907 18.9942
1.5 16.9815 18.7365 17.3027 18.8006
2.0 17.0297 18.7937 17.7403 19.2415
2.5 17.0586 18.8366 17.6567 19.1618
3.0 17.0745 18.8526 18.0804 19.5889

Table 2.2: The average dispatch costs and total costs of the AdptRob and ResAdj for
normally distributed load At/ Nd = 0.5, 1, ... , 3.

magnitude higher than that for the adaptive robust approach (8.15-14.48 times). The

significant reduction in the std of the dispatch cost is closely related to the reduction

in the penalty cost. Table 2.5.2 shows the penalty costs of the two approaches.

Recall that the dispatch cost is the sum of the production cost and penalty cost.

The penalty cost occurs whenever there is a violation in the energy balance, reserve

requirement, or transmission constraints. The system operator has to take expensive

emergency actions such as dispatching fast-start units or load-shedding to maintain

system reliability. All these actions add volatility to the dispatch costs.

AdptRob ResAdj ResAdj
budget std dispatch std dispatch /
A t /N cost (k$) cost (k$) AdptR.ob

0.0 1,769.5107 1.769.5107 1
0.1 47.4900 687.5098 14.48
0.2 46.3647 687.5098 8.62
0.3 45.4248 377.7901 8.32
0.4 44.2397 366.7359 8.29
0.5 44.1075 377.1875 8.55
0.6 43.9936 370.8673 8.43
0.7 43.9263 377.0631 8.58
0.8 43.9338 370.7203 8.44
0.9 43.9023 357.9338 8.15
1.0 43.9431 361.0376 8.22

Table 2.3: Standard deviation of the dispatch costs of
ratio for normally distributed load.

the two approaches and their



AdptRob ResAdj
budget penalty penalty percent of
At/Nd cost (k$) cost (k$) disp. cost

0.0 2377.62 2,377.6237 12.29%
0.1 0 497.8243 2.85%
0.2 0 272.4362 1.58%
0.3 0 268.0298 1.55%
0.4 0 252.3463 1.46%
0.5 0 267.6559 1.55%
0.6 0 259.7954 1.50%
0.7 0 267.6559 1.54%
0.8 0 259.7954 1.49%
0.9 0 241.6133 1.39%
1.0 0 247.4119 1.42%

Table 2.4: Penalty costs of
load.

AdptRob and ResAdj approaches for normally distributed

As we observe, all three types of constraint violations (enery, reserve, and trans-

mission) may occur for ResAdj solutions, indicating the potential ineffectiveness of

a deterministic approach that only considers nominal load and system level reserves.

In contrast, the AdptRob approach commits resources by taking consideration of

all load realizations in the uncertainty model, as well as the transmission network.

Furthermore, the robust solutions remain feasible even when the load realization is

outside of the uncertainty set (as the case for normally distributed load).

In conclusion, the low volatility of the dispatch cost and the zero penalty cost of

the adaptive robust approach demonstrates its operational effectiveness in reducing

costly emergency actions and improving system reliability

2.5.3 Robustness Against Load Distributions

In practice, it is a non-trivial job to accurately identify the probability distribution of

the load uncertainty for each node, especially in a large-scale power system. Thus, it

is important for a UC solution to have stable economic and operational performance

over different distributions of the uncertain load. The simulation results show that

the adaptive robust approach exhibits such desirable property. In comparison, the



performance of the reserve adjustment approach can be significantly affected by the

underlying probability distribution.

As shown in Fig. 2-2, the average dispatch costs of the AdptRob approach are

almost the same for loads with normal and uniform distributions. The absolute

difference between the two curves is between $6.32k and $15.80k for the entire range of

A = O.1Nd,..., 0.9Nd. The relative difference is between 0.037% to 0.092% (defined

as (normal cost-uniform cost)/normal cost).

The ResAdj approach has a rather different picture, as shown in Fig. 2-3. The

average dispatch costs are significantly affected by the load probability distribution.

The absolute difference of the two curves varies between $174.42k and $382.26k. The

relative difference is between 1.0% to 2.2%. In both measures, the difference is more

than 20 times larger than that of the AdptRob approach.
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Figure 2-2: The average dispatch costs of the AdptRob approach for normally and
uniformly distributed load.

We also study the effect of the load distribution on the standard deviation of

dispatch costs. Table 2.5.3 shows the std of dispatch costs for loads with uniform

distribution and the relative difference between the uniform distribution and the

normal distribution (defined as (normal std - uniforim std)/norinal std, c.f. Table 2.5.2

for normal std). As shown in the table, the relative change of the std is around 18.8%

for the AdptRob approach, and is around 59.6% for the ResAdj approach, which is

more than three times higher. It is also interesting to note that the AdptRob approach

significantly reduces the relative change of the std comparing to the deterministic
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Figure 2-3: The average dispatch costs of the ResAdj approach for normally and
uniformly distributed load.

approach (A = 0) from 64.70% to around 18.8%. On the other hand, the ResAdj

approach is much less effective in this respect (from 64.70% to around 59.6%).

AdptRob ResAdj
budget std. disp. Relat. std. disp. relat.
At /NA7  cost (k$) diff cost (k$) diff

0.0 624.5939 64.70% 624.5939 64.70%
0.1 38.5824 18.76% 227.7822 66.87%
0.2 37.6948 18.70% 153.5149 61.61%
0.3 36.8956 18.78% 157.0428 58.43%
0.4 36.2507 18.06% 150.7548 58.89%
0.5 35.7960 18.84% 156.9203 58.40%
0.6 35.6687 18.92% 154.4555 58.35%
0.7 35.6179 18.91% 156.8091 58.41%
0.8 35.6067 18.95% 154.3305 58.37%
0.9 35.5761 18.97% 148.2292 58.59%
1.0 35.6092 18.97% 151.8466 57.94%

Table 2.5: Standard deviation of dispatch costs for uniformly distributed load and
the relative difference with those of the normally distributed load.

2.6 Conclusion

The adaptive robust model and its solution technique presented in this chapter pro-

vide a novel and practical approach to handle uncertainties in the unit commitment



process. Such a framework naturally fits into the daily reliability unit commitment

process in an ISO environment. We develop a practical solution method with the

goal for the method to be applicable in the real-world large scale power system oper-

ation. We conduct extensive tests on the large scale system operated by the ISO New

England, and compare our model with the current reserve adjustment approach. We

find that by properly setting the level of conservatism in the uncertainty model, the

adaptive robust model exhibits sizable savings on both average dispatch and total

costs, and significantly reduces the volatility of the dispatch cost, thus, improves the

real-time reliability of the power system operation. The robust model also shows

resilient performance under different probability distributions of load.

Some discussions are in order. The stochastic factors that influence the unit com-

mitment problem are associated with both supply (e.g. wind power, etc.) and demand

(e.g. demand forecast errors, price responsive demand, etc.) To address these vari-

ous uncertainty elements, the proposed two-stage adaptive robust framework models

the uncertainty at the individual nodal level. Therefore, the impact of resource level

uncertainty on the transmission system can be evaluated. -Moreover, the proposed

model can be readily extended to include uncertainties related to inter-tie exchanges,

system-wide and zonal level load, and interface limit de-rating.

In our model, we assume that the commitment cost function and the dispatch

cost function are both linear. In reality, the production cost could be a quadratic

function, the start-up cost could follow an exponential function, and the shut-down

cost could be a step function. The nonlinearity in the corresponding cost functions

can be modeled by the mixed-integer linear reformulation proposed in [28].

Our work focuses on polylhe(lral uncertainty sets. However, the model can be

extended to include general convex uncertainty sets, such as ellipsoidal uncertainty

sets. The framework of the proposed solution methodology, especially the outer

approximation technique to solve the second-stage problem, can be generalized to

handle nonlinear convex constraints.

In the current practice, the SFT runs iteratively with the unit commitment proce-

dure by gradually adding violated transmission security constraints to the economic



dispatch problem. Alternatively, as we implemented in our numerical test, we can

impose a set of critical transmission security constraints in the second-stage problem

without running the SFT. These critical transmission security constraints are more

likely to be violated than other constraints based on the expert knowledge and his-

torical data, and they are usually a small subset of the total transmission constraints.

Therefore, this alternative approach can reduce the computation time for solving the

second-stage problem.



Chapter 3

A Geometric Characterization of

the Power of Finite Adaptability in

Multistage Stochastic and

Adaptive Optimization

3.1 Introduction

In most real world problems, several parameters are uncertain at the optimization

phase and decisions are required to be made in the face of these uncertainties. De-

terministic optimization is often not useful for such problems as solutions obtained

through such an approach might be sensitive to even small perturbations in the

problem parameters. Stochastic optimization was introduced by Dantzig [31] and

Beale [3), and since then has been extensively studied in the literature. A stochastic

optimization approach assumes a probability distribution over the uncertain parame-

ters and seeks to optimize the expected value of the objective function typically. We

refer the reader to several textbooks including Infanger [51], Kall and Wallace [55],

Pr6kopa [69], Shapiro [75], Shapiro et al. [76] and the references therein for a com-

prehensive review of stochastic optimization.



While the stochastic optimization approach has its merits and there has been

reasonable progress in the field, there are two significant drawbacks of the approach.

1. In a typical application, only historical data is available rather than probabil-

ity distributions. Modeling uncertainty using a probability distribution is a

choice we make, and it is not a primitive quantity fundamentally linked to the

application.

2. More importantly, the stochastic optimization approach is by and large com-

putationally intractable. Shapiro and Nemirovski [77] give hardness results for

two-stage and multi-stage stochastic optimization problems where they show the

multi-stage stochastic optimization is computationally intractable even if ap-

proximate solutions are desired. Dyer and Stougie [33] show that a multi-stage

stochastic optimization problem where the distribution of uncertain parameters

in any stage also depends on the decisions in past stages is PSPACE-hard.

To solve a two-stage stochastic optimization problem, Shapiro and Nemirovski [77]
show that a sampling based algorithm provides approximate solutions given that a

sufficiently large number of scenarios are sampled from the assumed distribution and

the problem has a relatively complete recourse. A two-stage stochastic optimization

problem is said to have a relatively complete recourse if for every first stage decision

there is a feasible second stage recourse solution almost everywhere, i.e., with prob-

ability one (see the book by Shapiro et al. [76]). Shmoys and Swamy [78, 81] and

Gupta et al. [46, 47] consider the two-stage and multi-stage stochastic set covering

problem under certain restrictions on the objective coefficients, and propose sampling

based algorithms that use a small number of scenario samples to construct a good

first-stage decision. However, the stochastic set covering problem admits a complete

recourse, i.e., for any first-stage decision there is a feasible recourse decision in each

scenario, and the sampling based algorithms only work for problems with complete

or relatively complete recourse.

More recently, the robust optimization approach has been considered to address

optimization under uncertainty and has been studied extensively (see Ben-Tal and



Nemirovski [11, 12, 14], El Ghaoui and Lebret [34], Goldfarb and Iyengar [42], Bert-

simas and Sim [21], Bertsimas and Sim [22]). In a robust optimization approach, the

uncertain parameters are assumed to belong to some uncertainty set and the goal is

to construct a single (static) solution that is feasible for all possible realizations of

the uncertain parameters from the set and optimizes the worst-case objective. We

point the reader to the survey by Bertsimas et al. [15] and the book by Ben-Tal et

al. [9] and the references therein for an extensive review of the literature in robust

optimization. This approach is significantly more tractable as compared to a stochas-

tic optimization approach and the robust problem is equivalent to the corresponding

deterministic problem in computational complexity for a large class of problems and

uncertainty sets [15]. However, the robust optimization approach has the following

drawbacks. Since it optimizes over the worst-case realization of the uncertain param-

eters, it may produce highly conservative solutions that may not perform well in the

expected case. Moreover, the robust approach computes a single (static) solution even

for a multi-stage problem with several stages of decision-making as opposed a fully-

adaptable solution where decisions in each stage depend on the actual realizations of

the parameters in past stages. This may further add to the conservativeness.

Another approach is to consider solutions that are fully-adaptable in each stage

and depend on the realizations of the parameters in past stages and optimize over

the worst case. Such solution approaches have been considered in the literature and

referred to as adjustable robust policies (see Ben-Tal et al. [10] and the book by Ben-

Tal et al. [9] for a detailed discussion of these policies). Unfortunately, the adjustable

robust problem is computationally intractable and Ben-Tal et al. [10] introduce an

affinely adjustable robust solution approach to approximate the adjustable robust

problem. Affine solution approaches (or just affine policies) were introduced in the

context of stochastic programming (see Gartska and Wets [39] and Rockafeller and

Wets [73]) and have been extensively studied in control theory (see the survey by

Beimporad and Morari [6]). Affine policies are useful due to their computational

tractability and strong empirical performance. Recently Bertsimas et al. [20] show

that affine policies are optimal for a single dimension multi-stage problem with box



constraints and box uncertainty sets. Bertsimas and Goyal [18} consider affine policies

for the two-stage adaptive (or adjustable robust) problem and give a tight bound of

O( /dim(U)) on the performance of affine policies with respect to a fully-adaptable

solution where dim(U) denotes the dimension of the uncertainty set.

In this chapter, we consider a class of solutions called finitely adaptable solutions

that were introduced by Bertsimas and Caramanis [16]. In this class of solutions, the

decision-maker apriori computes a small number of solutions instead of just a single

(static) solution such that for every possible realization of the uncertain parameters,

at least one of them is feasible and in each stage, the decision-maker implements the

best solution from the given set of solutions. Therefore, a finitely adaptable solution

policy is a generalization of the static robust solution and is a middle ground between

the static solution policy and the fully-adaptable policy. It can be thought of as a

special case of a piecewise-affine policy where the each piece is a static solution instead

of an affine solution. As compared to a fully-adaptable solution, which prescribes a

solution for all possible scenarios (possibly an uncountable set), a finitely adaptable

solution has only a small finite number of solutions. Therefore, the decision space is

much sparser and it is significantly more tractable than the fully-adaptable solution.

Furthermore, for each possible scenario, at least one of the finitely adaptable solutions

is feasible. This makes it different from sampling based approaches where a small

number of scenarios are sampled and an optimal decision is computed for only the

sampled scenarios, while the rest of the scenarios are ignored. We believe that finitely

adaptable solutions are consistent with how decisions are made in most real world

problems. Unlike dynamic programming that prescribes an optimal decision for each

(possibly uncountable) future state of the world, we make decisions for only a few

states of the world.

We aim to analyze the performance of static robust and finitely adaptable solution

policies for the two-stage and multi-stage stochastic optimization problems, respec-

tively. We show that the performance of these solution approaches as compared to

the optimal fully-adaptable stochastic solution depends on fundamental geometric

properties of the uncertainty set including symmetry for a fairly general class of mod-



els. Bertsimas and Goyal [18] analyze the performance of static robust solution in

two-stage stochastic problems for perfectly symmetric uncertainty sets such as ellip-

soids, and norm-balls. We consider a generalized notion of symmetry of a convex

set introduced in Minkowski [62], where the symmetry of a convex set is a number

between 0 and 1. The symmetry of a set being equal to one implies that it is perfectly

symmetric (such as an ellipsoid). We show that the performance of the static robust

and the finitely adaptable solutions for the corresponding two-stage and multi-stage

stochastic optimization problems depends on the symmetry of the uncertainty set.

This is a two-fold generalization of the results in [18]. We extend the results

in [18] of performance of a static robust solution in two-stage stochastic optimization

problems, for general convex uncertainty sets using a generalized notion of symmetry.

Furthermore, we also generalize the static robust solution policy to a finitely adaptable

solution policy for the multi-stage stochastic optimization problem and give a similar

bound on its performance that is related to the symmetry of the uncertainty sets. The

results are quite general and extend to important cases such as integrality constraints

on decision variables and linear conic inequalities. To the best of our knowledge, there

were no approximation bounds for the multi-stage problemn in such generality.

3.2 Models and Preliminaries

In this section, we first setup the models for two-stage and multi-stage stochastic,

robust, and adaptive optimization problems. We also discuss the solution concept

of finitely adaptability for multi-stage problems. Then we introduce the geometric

quantity of symmetry of a convex compact set and some properties that will be used.

Lastly, we define a quantity called translation factor of a convex set.



3.2.1 Two-stage Optimization Models

A two-stage stochastic optimization problem, H2toch, is defined as,

ZStoch := Min cTx + E,[dTy(b)) (3.1)
x,y(b)

s.t. Ax + By(b) > b, p-a.e. b E U C R',

x E RPI x R" P+

y(b) E RP2 x R P2 Vb E U.

Here, the first-stage decision variable is denoted as x; the second-stage decision

variable is y(b) for b E U, where b is the uncertain right-hand side with the uncertainty

set denoted as U. The optimization in (3.1) for the second stage decisions y(.) is

performed over the space of piecewise affine functions, since there are finitely many

bases of the system of linear inequalities Ax + By(b) > b. Note that some of the

decision variables in both the first and second stage are free, i.e., not constrained to

be non-negative. A probability measure p is defined on U. Both A and B are certain,

and there is no restriction on the coefficients in A, B or on the objective coefficients

c, d. The linear constraints Ax + By(b) > b hold for p almost everywhere on U, i.e..

the set of b E U for which the linear constraints are not satisfied has measure zero.

We use the notation p-a.e. b E U to denote this.

The key assumption in the above problem is that the uncertainty set U is con-

tained in the nonnegative orthant. In addition, we make the following two technical

assumptions.

1. Zst 0c is finite. This assumption implies that zstoch > 0. Since if Zstoch < 0, then

it must be unbounded from below as we can scale the solution by an arbitrary

positive factor and still get a feasible solution.

2. For any first-stage solution x, and a second-stage solution y(-) that is feasible

for I almost everywhere on U, E,[y(b)] exists.

These technical conditions are assumed to hold for all the multi-stage stochastic



models considered in the chapter as well. We would like to note that since A is not

necessarily equal to B, our model does not admit relatively complete recourse.

A two-stage adaptive optimization problem, "Adapt, is given as,

ZAdapt :min
x,y(b)

s.t.

Note that the above problem is

the literature (see Ben-Tal et al.

c x + max dTy(b)
bEU

Ax + By(b) > b, Vb E U C Rm,

x E RPI x Rnl P1,

y(b) E RP2 x Rn +2, Vb E U.

(3.2)

also referred to as an adjustable robust problem in

[10] and the book by Ben-Tal et al. [9]).

The corresponding static robust optimization problem, URob, is defined as,

ZRob :=mm Tx + dTy
xy

s.t. Ax + By > b, Vb E U C Rn,

x E RP1 x R" -"

y E RP2 x Rn2P2

(3.3)

Note that any feasible solution to the robust problem (3.3) is also feasible for the

adaptive problem (3.2), and thus ZAdapt ZRob. Moreover, any feasible solution to

the adaptive problem (3.2) is also feasible for the stochastic problem (3.1) and in

addition, we have

c Tx + Ep[dTy(b)] < cTx + nax d'y(b),
bEU

leading to ZStocIh < ZAdapt. Hence, we have zstoc, ZAdapt < ZRob.

We would like to note that when the left hand side of the constraints, i.e., A and

B are uncertain, even a two-stage, two-dimensional problem can have an unbounded

gap between the static robust solution and the stochastic solution.



3.2.2 Multi-stage Optimization Models

For multi-stage problems, we consider a fairly general model where the evolution

of the multi-stage uncertainty is given by a directed acyclic network G = (A, A),
where /V is the set of nodes corresponding to different uncertainty sets, and A is

the set of arcs that describe the evolution of uncertainty from Stage k to (k + 1)

for all k = 2, ... , K - 1. In each Stage (k + 1) for k = 1, ... ,K - 1, the uncertain

parameters Uk belong to one of the Nk uncertainty sets, "k C.., /,clR'. We also

assume that the probability distribution of Uk conditioned on the fact that Uk E j for

all k =2,. . . , K, j 1,.. . , Nk is known. In our notation, the multi-stage uncertainty

network starts from Stage 2 (and not Stage 1) and we refer to the uncertainty sets

and uncertain parameters in Stage (k + 1) using index k. Therefore, in a K-stage

problem, the index k E {1, ... , K - 1}.

In Stage 2, there is a single node UI, which we refer to as the root node. Therefore,

N 1 = 1. For any k = 1, ... , K - 1, suppose the uncertain parameters Uk in Stage

(k + 1), belongs to UI for some j =1, . Nk. Then for any edge from i to , in

the directed network, Uk+1 E.., with probability p, which is an observable event

in Stage (k+ 2). In other words, in Stage (k+ 2), we can observe which state transition

happened in stage (k + 1). Therefore, at every stage, we know the realizations of the

uncertain parameters in past stages as well as the path of the uncertainty evolution

in G and the decisions in each stage depend on both of these. Note that since we

also observe the path of the uncertainty evolution (i.e. what edges in the directed

network were realized in each stage), the uncertainty sets in a given stage need not

be disjoint. This model of uncertainty is a generalization of the scenario tree model

often used in stochastic programming (see Shapiro et al. [76]) where the multi-stage

uncertainty is described by a tree. If the directed acyclic network G in our model is

a tree and each uncertainty set is a singleton, our model reduces to a scenario tree

model described in [76].

The evolution of the multi-stage uncertainty is illustrated in Figure 3-1. We would

like to note that this is a very general model of multi-stage uncertainty. For instance,



consider a multi-period inventory management problem, where the demand is uncer-

tain. In each stage, we observe the realized demand and also a signal from the market

about the next period demand such as the weekly retail sales index. In our model, the

observed market signals correspond to the path in the multi-stage uncertainty net-

work and the observed demand is the actual realization of the uncertain parameters.

As another example, consider a multi-period asset management problem with uncer-

tain asset returns. In each period, we observe the asset returns and also a market

signal such as S&P 500 or NASDAQ indices. Again, the market signals correspond

to the path in the multi-stage uncertainty network in our model and observed asset

returns are the realization of uncertain parameters in the model.

Pi2

;2

U2,

Figure 3-1: Illustration of the evolution of uncertainty in a multi-stage problem.

Let P denote the set of directed paths in G from the root node, U', to node

U for all j 1,..., NK-1. We denote any path P E P as an ordered sequence.

(ji,... jK-1) of the indices of the uncertainty sets in each stage that occur on P.

Let Q(P) denote the set of possible realizations of the multi-stage uncertainty from

uncertainty sets in P. For any P = (ji ... ,j..).E P,

(P) {w (bi,..., bK) bk EU , Vk= 1,...,K- 1} . (3.4)

For any P (ji. jKl) E P, and k = 1. .. . K - 1, let Pk] denote the index



sequence of Path P from Stage 2 to Stage (k + 1), i.e., P[k] = (ji,. .. ,j). Let

P[k] {P[k] I P E P}. Also, for any w = (bi, . . , bK-1) E Q (P), let w[k] denote

the subsequence of first k elements of w, i.e., w[k] = (bi,.. . , bk).

We define a probability measure for the multi-stage uncertainty as follows. For any

k = 1,..., K - 1, j = 1, ... , N, let be a probability measure defined on U that is

independent of the probability measures over other uncertainty sets in the network.

Therefore, for any P = (j1,..., jK-1) E P, the probability measure pp over the set

Q(P) is the product measure of pI, k = 1,.. . , K - 1. Moreover, the probability

that the uncertain parameters realize from path P is given by HI Pk k+1. This

defines a probability measure on the set of realizations of the multi-stage uncertainty,

UPEP Q(P).

We can now formulate the K-stage stochastic optimization problem UKoch, where

the right-hand side of the constraints is uncertain, as follows.

K-1

zSto- in c x + S EE'p (E, [dky k(w [k], P[k])]]
k=1

s.t. VP E P, pp-a.e. w = (bi, . . . , bK- 1) E Q(P)

K-I K-1

Ax + ( Bkyk(w[k], P[k]) > b (3.5)
k=1 k=1

x E RI x Rn, p,+

yk(w[k), P[k]) E RPk x R AnkPk, Vk = 1. K - 1.

There is no restriction on the coefficients in the constraint matrices A, Bk or on

the objective coefficients c, dk, k - 1,...,K - 1. However, we require that each

uncertainty set Uk C R' for all j =. NA, k = 1, K - 1. As mentioned

before, we assume that z och is finite and the expectation of every feasible multi-

stage solution exists.



We also formulate the K-stage adaptive optimization problem UKdapt as follows.

K-1

Zgdapt min c x + max min dk Y, LO[k], P[k)
PEP wEQ(P) yk(w[k],P[k),k=1,...,K-1 k=1

s.t. VP G P, Vw = (bi,... bK-1) E Q(P)

K-1 K-1

Ax + ( Bkyk(w[k], P[k]) ;> E bk,
k=1 k=1

x E RP1 x Rfl-I,

Yk(W[k],P[k])ER XR" , Vk=l,...,K-1.

(3.6)

We also formulate the K-stage stochastic optimization problem TI d whereStoch(b~d)'

both the right-hand side and the objective coefficients are uncertain, as follows. The

subscript Stoch(b, d) in the subscript of the problem name denotes that both the

right hand side b and the objective coefficient d are uncertain. Here, w denotes the

sequence of uncertain right-hand side and objective coefficients realizations and for

any k = 1, . . . , K - 1, w[k] denotes the subsequence of first k elements. Also, for any

P E P, the measure pp is the product measure of the measures on the uncertainty

sets in Path P.

K-1

z 4och(bd) min c x + > EPE [E,, [diyk(w[k], P[k])]
k=1

s.t. VP E P, pp-a.e. w =- ((biI d1), .... , (b _1, dK-) _1Q (P)
K-1 K-1

Ax + ( Bkyk(w[k] , P[k]) > > bk,
k=1 k=1

X E RPI x R

Yk(w[k],P[k]) E REk x R+ PVk= K - 1.

(3.7)



Also, we can formulate the K-stage adaptive problem flAapt(b,d),

K-1

zdapt(b,d) min C TX + max min dk Yk(w [k], P[k])
PEP,wEQ(P) yk(w[k],P[k]),k=,.,K-1 k=1

s.t. VP (E 'P, VW = ((bi, di), . (bK-1, I K-1)) E Q

K K

Ax +( Bkyk(W[k], P[k]) ;> > bk,
k=1 k=1

x E RPI xR Rnfp,

Yk(w[k], P[k]) E RP x R+ " , Vk = 1,..., K - 1.

(3.8)

In Section 3.7, we consider an extension to the case where the constraints are

general linear conic inequalities and the right hand side uncertainty set is a convex

and compact subset of the underlying cone. Furthermore, in Section 3.8, we also con-

sider extensions of the above two-stage and multi-stage models where some decision

variables in each stage are integer.

3.2.3 Examples

In this section, we show two classical problems that can be formulated in our frame-

work to illustrate the applicability of our models.

Multi-period inventory management problem. We show that we can model

the classical multi-period inventory management problem as a special case of (3.5).

In a classical single-item inventory management problem, the goal in each period

is to decide on the quantity of the item to order under an uncertain future period

demand. In each period, each unit of excess inventory incurs a holding cost and each

unit of backlogged demand incurs a per-unit penalty cost and the goal is to make

ordering decisions such that the sum of expected holding and backorder-penalty cost

is minimized.

As an example, we model a 3-stage problem in our framework. Let Q denote the

set of demand scenarios with a probability measure p, x denote the initial inventory,

yk(bi, .. . bk) denote the backlog and Zk(bi, ... bk) denote the order quantity in Stage



(k + 1) when the first k-period demand is (bi,... , bk). Let hk denote the per unit

holding cost and PA denote the per-unit backlog penalty in Stage (k + 1). We model

the 3-stage inventory management problem as follows where the decision variables

are x, y1 (bi), y2 (bi, b2) and zi(bi) for all (bi, b2 ) E U.

Min Eb1 [hi(x + yi(bi) - bi) +piy 1 (bi) + Eb2 1b1 [h2 (x + zi(bi) + y 2(bi,b 2) - (b1 + b2 ))

+ P2Y2 (b1, b2)]1

s.t. x + y1(bi) > bi, p-a.e. (bi, b2 ) E Q

x + zi (bi) + y 2(bi, b2) > b1 + b2 , p-a.e. (bi, b2 ) E Q

x, y1 (bi),y 2 (bi, b2), zi(bi) > 0.

The above formulation can be generalized to a multi-period problem in a straight-

forward manner. We can also generalize to multi-item variants of the problem. How-

ever, we would like to note that we can not model a capacity constraint on the order

quantity. since we require that the constraints are of "greater than or equal to" form

with nonnegative right-hand sides. Nevertheless, the formulation is fairly general even

with this restriction.

Capacity planning under demand uncertainty. In many important applica-

tions, we encounter the problem of planning for capacity to serve an uncertain future

demand. For instance, in a call center, staffing capacity decisions need to be made well

in advance of the realization of the uncertain demand. In electricity grid operations,

generator unit-commitment decisions are required to be made at least a day ahead

of the realization of the uncertain electricity demand because of the large startup

time of the generators. In a facility location problem with uncertain future demand,

the facilities need to be opened well in advance of the realized demand. Therefore,

the capacity planning problem under demand uncertainty is important and widely

applicable.

We show that this can be modeled in our framework using the example of the

facility location problem. For illustration, we use a 2-stage problem. Let F denote



the set of facilities and D denote the set of demand points. For each facility i E _,

let xi be an integer decision variable that denotes the capacity for facility i. For each

point j E D, let bj denote the uncertain future demand and let y23(b) denote the

amount of demand of j assigned to facility i when the demand vector is b. Also,

let dij denote the cost of assigning a unit demand from point j to facility i and let

ci denote the per-unit capacity cost of facility i. Therefore, we can formulate the

problem as follows. Let U be the uncertainty set for the demand and let p be a

probability measure defined on U.

min 3 cix + E Zdijyi(b)
i E j ED

s.t. yi(b) > by, p-a.e. b E U, Vj E E)

x - >Zyij(b) > 0, p-a.e. b E L, Vi T
jED

Xi E Z+. Vi E F

yj (b) E R+, Vi E F, j E D, p-a.e. b E U.

3.2.4 Finitely Adaptable Solutions

We consider a finitely adaptable class of solutions for the multi-stage stochastic and

adaptive optimization problems described above. This class of solutions was intro-

duced by Bertsimas and Caramanis [16] where the decision-maker computes a small

set of solutions in each stage apriori.

A static robust solution policy specifies a single solution that is feasible for all pos-

sible realizations of the uncertain parameters. On the other extreme, a fully-adaptable

solution policy specifies a solution for each possible realization of the uncertain pa-

rameters in past stages. Typically. the set of possible realizations of the uncertain

parameters is uncountable which implies that an optimal fully-adaptable solution pol-

icy is a function from an uncountable set of scenarios to optimal decisions for each

scenario and often suffers from the "curse of dimensionality". A finitely adaptable

solution is a tractable approach that bridges the gap between a static robust solution



and a fully-adaptable solution. In a general finitely adaptable solution policy, instead

of computing an optimal decision for each scenario, we partition the scenarios into a

small number of sets and compute a single solution for each possible set. The parti-

tioning of the set of scenarios is problem specific and is chosen by the decision-maker.

A finitely adaptable solution policy is a special case of a piecewise affine solution

where the solution in each piece is a static solution.

For the multi-stage stochastic and adaptive problems (3.5) and (3.6), we consider

the partition of the set of scenarios based on the realized path in the multi-stage

uncertainty network. In particular, in each Stage (k + 1), the decision Yk depends

on the path of the uncertainty realization until Stage (k + 1). Therefore, there are

IP[k]I different solutions for each Stage (k + 1), k = 1 ... K - 1: one corresponding

to each directed path from the root node to a node in Stage (k + 1) in the multi-stage

uncertainty network. For any realization of uncertain parameters and the path in the

uncertainty network, the solution policy implements the solution corresponding to the

realized path. Figure 3-2 illustrates the number of solutions in the finitely adaptable

solution for each stage and each uncertainty set in a multi-stage uncertainty network.

In the example in Figure 3-2, there are following four directed paths from Stage 2

to Stage K (K = 4): PI = (1, 1, 1), P 2 = (1, 1. 2), P 3 = (1, 2, 2), P 4 = (1, 2,3).

We know that Pj [1] = (1) for all j = 1 . 4. Also, P1[2] = P2[2] = (1, 1) and

P 3 [2] = P4[2] = (1, 2). Therefore, in a finitely adaptable solution, we have the

following decision variables apart from x.

Stage 2 y 1(1)

Stage 3 Y2(1l1),Y2(1. 2 )

Stage 4 : y(l, 1, 1), y3(1, 1,2), y 3 (1, 2,2), y3(1, 2,3).
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Figure 3-2: A finitely adaptable solution for a 4-stage problem. For each uncertainty
set, we specify the set of corresponding solutions in the finitely adaptable solution
policy.

3.2.5 The Symmetry of a Convex Set

Given a nonempty compact convex set U c R" and a point u E U, we define the

symmetry of u with respect to U as follows.

sym(u, U) := max{ca > 0 : u + a(u - u') E U, Vu' E U}. (3.9)

In order to develop a geometric intuition on sym(u, U), we first show the following

result. For this discussion, assume U is full-dimensional.

Lemma 1. Let L be the set of lines in R' passing through u. For any line 1 E L,

let u' and uj' be the points of intersection of I with the boundary of U, denoted 6(U)

(these exist as U is full-dimensional and compact). Then,

a) sym(uU) < (fuin - U7'f fu U'11)
- u' |fu

U| - u'I| | - ||
b) sym(u, U) =minmin , -u' .IU )Ie Ef ||Iu - Uu || ||n - U7 |

Proof. Let sym(u, U) = a1. Consider any 1 E E and consider u' E 6(U) as illustrated

in Figure 3-3. Let ujr = u + a1 (u - u). From (3.9), we know that u, E U. Note

that u, is a scaled reflection of u' about u by a factor a1. Furthermore, ul, lies on

{yO(1.I1. 1)}



I. Therefore, n'rE U implies that

|U - U' r ||H -lu'II -> a1 - || - '1 |l| - tj'f,

which in turn implies that

sym(u, U) = ai < U
lu - U'11

Using a similar argument starting with ' instead of u', we obtain that

sym(u, U) < .fU - U11
||n - u '||

To prove the second part, let

- | n n u - u'l ||u - U||)
0/2 = min min EC H 17HU-71let flu - uf||' ||n - u|

From the above argument, we know that sym(uU) < a 2 . Consider any u' E U. We

show that (U + a 2 (U - U')) E U.

Let I denote the line joining u and u'. Clearly, 1 E C. Without loss of generality,

suppose u' belongs to the line segment between u and u'. Therefore, u - u'

-y(u - u') for some 0 < < 1 and

|U - U'Hl ||u - u'll. (3.10)

We know that

a2 <
|| - 11|

- a2|U - ' fl |U - U''1

- a2|U - U'll < ||U - 'iff,

where the last inequality follows from (3.10). Therefore., u + a2||u - u'| belongs to

the line segment between u and u'4 and thus, belongs to U. Therefore, sym(u, U) ;>

(12 . D



sym(u. U) =i min ' -u.lU- I

U

it

Figure 3-3: Geometric illustration of sym(u, U).

The symmetry of set U is defined as

sym(U) := max{sym(u, U) I u E U}. (3.11)

An optimizer uO of (3.11) is called a point of symmetry of U. This definition of

symmetry can be traced back to Minkowski [62] and is the first and the most widely

used symmetry measure. Refer to Belloni and Freund [5] for a broad investigation of

the properties of the symmetry measure defined in (3.9) and (3.11). Note that the

above definition generalizes the notion of perfect symmetry considered by Bertsimas

and Goyal [18]. In [18], the authors define that a set U is symmetric if there exists

uO E U such that, for any z E R'", (no + z) E U M (uo - z) E U. Equivalently,

u C U 4 (2uo - u) E U. According to the definition in (3.11), sym(U) = 1 for such

a set. Figure 3-4 illustrates symmetries of several interesting convex sets.

Lemma 2 (Belloni and Freund [5]). For any nonempty convex compact set U C R",

the symmetry of U satisfies,
1
-- sym(U) < 1.

m

The symmetry of a convex set is at most 1, which is achieved for a perfectly

symmetric set: and at least 1/mn which is achieved by a standard simplex defined
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Figure 3-4: The figure on the left is a symmetric polytope with symmetry 1. The
middle figure illustrates a standard simplex in R"' with symmetry 1/m. The right
figure shows the intersection of a Euclidean ball with Rm, which has symmetry 1// m.

as A = {x E Rm | E' xi < 1}. The lower bound follows from L6wner-John

Theorem [52] (see Belloni and Freund [5]). The following lemma is used later.

Lemma 3. Let U C R" be a convex and compact set such that uO is the point of

symmetry of U. Then,

1+ sym(U) u->u7 VuCU.

Proof. From the definition of symmetry in (3.11), we have that for any u E U

uo + sym(U)(Uo - U)

which implies that (sym(U) + 1)uo

(sym(U) + 1)uo - sym(U)u E U,

sym(U)u > 0 since U c R".

3.2.6 The Translation Factor p(u, U)

For a convex compact set U C R", we define a translation factor p(u, U), the trans-

lation factor of u E U with respect to U, as follows.

p(u,U) = min{a E R+ I L - (1 - a) - u C



In other words, U' := U - (1 - p)u is the maximum possible translation of U in the

direction -u such that U' C R'. Figure 3-5 gives a geometric picture. Note that for

a = 1, U - (1 - a) - u = U C R'. Therefore, 0 < p < 1. And p approaches 0, when

the set U moves away from the origin. If there exists u E U such that u is at the

boundary of RTn, then p = 1. We denote

p(U) := p(uo,U),

where uO is the symmetry point of the set U. The following lemma is used later in

91'

0

Figure 3-5: Geometry of the translation factor.

the chapter.

Lemma 4. Let U C R' be a convex and compact set such that uO is the point of

symmetry of U. Let s = sym(U) = sym(uo, U) and p = p(U) = p(uo, U). Then.

(1+ Uo > U, Vu E U.

Proof. Let U' = U - (1 - p)uo. Let i1 := uo - (1 - p)uo. Also let z := uo - ui -

(1 - p)uo. Figure 3-5 gives a geometric picture. Note that sym(U') = sym(U) = s.



From Lemma 3, we know that

1+ -Ui n', Vu'E U'.

S
Adding z on both sides, we have,

1+ u +z2 _ Vu EbI,

- 1+ )Puo+(1-P)uo>u, VUEZ-,

-1+0 o U , VuEU.

3.3 Our Contributions

Our contributions are two-fold. We present two significant generalizations of the

model and results in Bertsimas and Goyal [18], where the authors characterize the

performance of static robust solutions for two-stage stochastic and adaptive optimiza-

tion problems under the assumption that the uncertainty sets are perfectly symmetric.

Firstly, we generalize the two-stage results to general uncertainty sets. We show

that the performance of a static robust solution for two-stage stochastic and adaptive

optimization problems depends on the general notion of symmetry (3.11) of the un-

certainty set. The bounds are independent of the constraint matrices and any other

problem data. Our bounds are also tight for all possible values of symmetry and

reduce to the results in [18] for perfectly symmetric sets.

Secondly, we consider the multi-stage extensions of the two-stage models in [18]

as described above and show that a class of finitely adaptable solutions which is a

generalization of the static robust solution, is a good approximation for both the

stochastic and the adaptive problem. The proof techniques are very general and

easily extend to the case where some of the decision variables are integer constrained

and the case where the constraints are linear conic inequalities for a general convex



cone. To the best of our knowledge, these are the first performance bounds for the

multi-stage problem in such generality.

Our main contributions are summarized below.

Stochastic optimization. For the two-stage stochastic optimization problem un-

der right-hand side uncertainty, we show the following bound under a fairly general

condition on the probability measure,

ZRob + i + ZStoch,

where s = sym(U) and p = p(U) are the symmetry and the translation factor of

the uncertainty set, respectively. Note that the above bound compares the cost of

an optimal static solution with the expected cost of an optimal fully-adaptable two-

stage stochastic solution and shows that the static cost is at most (1 + p/s) times the

optimal stochastic cost. The performance of the static robust solution for the two-

stage stochastic problem can possibly be even better. For the two-stage problem, we

only implement the first-stage part of the static robust solution. For the second-stage,

we compute an optimal solution after the uncertain parameters (right hand side in

our case) is realized. Therefore, the expected second-stage cost for this solution policy

is at most the second-stage cost of the static robust solution and the total expected

cost is at most ZRob < (1 + p/s) - zStoch . Since ZRob is an upper bound on the expected

cost of the solution obtained from an optimal static solution, the bound obtained by

comparing ZRob to the optimal stochastic cost is in fact a conservative bound.

For multi-stage problems, we show that a K-stage stochastic optimization prob-

lem, stoch , can be well approximated efficiently by a finitely adaptable solution. In

particular, there is a finitely adaptable solution with at most |P| solutions that is a

(1 + p/s)-approximation of the original problem where s is the minimum symmetry

over all sets in the uncertainty network and p is the maximum translation factor of

any uncertainty set. Note that when all sets are perfectly symmetric, i.e., s = 1,

the finitely adaptable solution is a 2-approximation, generalizing the result of [18] to

multi-stage. We also show that the bound of (1 + p/s) is tight.



Note that since 0 < p < 1 and s > 1/m,

(1+ ) <(m+ 1),

which shows that, for a fixed dimension, the performance bound for robust and finitely

adaptable solutions is independent of the particular data of an instance. This is

surprising since when the left-hand side has uncertainty, i.e., A, B are uncertain, even

a two-stage two-dimensional problem can have an unbounded gap between the static

robust solution and the stochastic solution as mentioned earlier. This also indicates

that our assumptions on the model, namely, the right-hand side uncertainty (and/or

cost uncertainty) and the uncertainty set contained in the nonnegative orthant, are

tight. If these assumptions are relaxed, the performance gap becomes unbounded

even for fixed dimensional uncertainty.

For the case when both cost and right-hand side are uncertain in H K the

performance of any finitely adaptable solution can be arbitrarily worse as compared

to the optimal fully-adaptable stochastic solution. This result follows along the lines

of arbitrary bad performance of a static robust solution in two-stage stochastic prob-

lems when both cost and right-hand sides are uncertain as shown in Bertsimas and

Goyal [18].

Adaptive optimization. We show that for a multi-stage adaptive optimization

problem, fat' where only the right-hand side of the constraints is uncertain, the

cost of a finitely adaptable solution is at most (1 + p/s) times the optimal cost of

a fully-adaptable multi-stage solution, where s is the minimum symmetry of all sets

in the uncertainty network and p is the maximum translation factor of the point of

symmetry over all the uncertainty sets. This bound follows from the bound for the

performance of a finitely adaptable solution for the multi-stage stochastic problem.

Furthermore, if the uncertainty comes from hypercube sets, then a finitely adaptable

solution with at most 'PI solutions at each node of the uncertainty network is an

optimal solution for the adaptive problem.

For the case when both cost and right-hand side are uncertain in HK we



show that the worst-case cost a finitely adaptable solution with at most |P different

solutions at each node of the uncertainty network is at most (1 + p/s) 2 times the cost

of an optimal fully-adaptable solution.

Extensions. We consider an extension of the above multi-stage models to the case

where the constraints are linear conic inequalities and the uncertainty set belongs to

the underlying cone. We also consider the case where some of the decision variables

are constrained to be integers. Our proof techniques are quite general and the results

extend to both these cases.

For the case of linear conic inequalities and the uncertainty set contained in the

underlying convex cone, we show that a finitely adaptable (static robust) solution

is a (1 + p/s)-approximation for the multi-stage (two-stage respectively) stochastic

and adaptive problem with right hand side uncertainty. The result also holds for the

adaptive problem with both the right hand side and objective coefficient uncertainty

and the performance bound for the finitely adaptable (static robust) solution is (1 +

p/s) 2 for the multi-stage (two-stage respectively) problem.

We also consider the case where some of the decision variables are integer con-

strained. For the multi-stage (two-stage) stochastic problem with right hand side

uncertainty, if some of the first-stage decision variables are integer constrained, a

finitely adaptable (static robust respectively) solution is a [(1 + p/s)] approximation

with respect to an optimal fully-adaptable solution. For the multi-stage adaptive

problem, we can handle integer constrained decision variables in all stages unlike the

stochastic problem where we can handle integrality constraints only on the first stage

decision variables. We show that for the multi-stage (two-stage) adaptive problem

with right hand side uncertainty and integrality constraints on some of the deci-

sion variables in each stage, a finitely adaptable (static robust respectively) solution

is a [(1 + p/s)-approximnation. For the multi-stage (two-stage) adaptive problem

with both right hand side and objective coefficient uncertainty and integrality con-

straints on variables, a finitely adaptable (static robust respectively) solution is a

[(1 + p/s)] - (1 + p/s)-approximation.

Outline. The rest of the chapter is organized as follows. In Section 3.4, we present



the performance bound of a static-robust solution that depends on the symmetry

of the uncertainty set for the two-stage stochastic optimization problem. We also

show that the bound is tight and present explicit bounds for several interesting and

commonly used uncertainty sets. In Section 3.5, we present the finitely adaptable

solution policy for the multi-stage stochastic optimization problem and discuss its

performance bounds. In Section 3.6, we discuss the results for multi-stage adaptive

optimization problems. In Sections 3.7 and 3.8, we present extensions of our results

for the models with linear conic constraints and integrality constraints respectively.

3.4 Two-stage Stochastic Optimization Problem

In this section, we consider the two-stage stochastic optimization problem (3.1) and

show that the performance of a static robust solution depends on the symmetry of

the uncertainty set.

Theorem 1. Consider the two-stage stochastic optimization problem in (3.1). Let

pL be the probability measure on the uncertainty set U C R', bo be the point of

symmetry of U. and p = p(boU) be the translation factor of bo with respect to U.

Denote s = sym(U). Assume the probability measure p satisfies,

E, 1[b] > bo. (3.12)

Then.

zRob (1+ - zstoc. (3.13)

Proof. From Lemma 4, we know that

1 + )bo > b, Vb E U. (3.14)

For brevity, let T := (1 + p/s). Suppose (x, y(b) : b E U) is an optimal fully-

adaptable stochastic solution. We first show that the solution, (TX, TE[y(b)]), is a

feasible solution to the robust problem (3.3). By the feasibility of (x, y(b) p-a.e.



b E- U), we have

A(Tx) + B(Ty(b)) > Tb, p - a.e.b E U.

Taking expectation on both sides, we have

A(Tx)+ B(TE[y(b)]) 2 TE[b] > Tbo > b, Vb E U,

where the second inequality follows from (3.12) and the last inequality follows from (3.14).

Therefore, (TX, TE[y(b)]) is a feasible solution for the robust problem (3.3) and,

ZRob < T - (CTx + dTE[y(b)]). (3.15)

Also, by definition, ZStoch = CT + TlEb[y(b)], which implies that ZStoch r * ZRob

For brevity, we refer to (3.13) as the symmetry bound. The following comments

are in order.

1. The symmetry bound (3.13) is independent of the problem data A, B, c, d,

depending only on the geometric properties of the uncertainty set U, namely

the symmetry and the translation factor of U.

2. Theorem 1 can also be stated in a more general way, removing Assumption

(3.12) on the probability measure, and use the symmetry of the expectation

point. In particular, the bound (3.13) holds for s = sym(E,[b],U) and p =

p(El p[b], U).

However, we would like to note that (3.12) is a mild assumption, especially for

symmetric uncertainty sets. Any symmetric probability measure on a symmetric

uncertainty set satisfies this assumption. It also emphasizes the role that the

symmetry of the uncertainty set plays in the bound.

3. As already mentioned in Section 3.3, a small relaxation from the assumptions

of our model would cause unbounded performance gap. In particular, if the



assumption, U C R', is relaxed, or the constraint coefficients are uncertain,

the gap between ZRob and ZStoch cannot be bounded even in small dimensional

problems. The following examples illustrate this fact.

(a) U Z R": Consider the instance where m = 1 and c = 0, d = 1, A = 0, B

1, the uncertainty set U = [-1, 1], and a uniform distribution on U. The

optimal stochastic solution has cost zStoch(b) = 0, while zRob(b) = 2. Thus,

the gap is unbounded.

(b) A, B uncertain: Consider the following instance taken from Ben-Tal et

al. [9],

nun x

s.t. 2 x + y(b) > ,Vb e [0, r),
1 b -2 0

x, y(b) 2 0, Vb E [0,'r],

where 0 < r < 1. From the constraints, we have that x > 2/(1 - r). There-

fore, the optimal cost of a static solution is at least 2/(1 - r). However,

the optimal stochastic cost is at most 4. For details, refer to [9]. When r

approaches 1, the gap tends to infinity.

3.4.1 Tightness of the Bound

In this section, we show that the bound given in Theorem 1 is tight. In particular,

we show that for any given symmetry and translation factor, there exist a family of

instances of the two-stage stochastic optimization problem such that the bound in

Theorem 1 holds with equality.

Theorem 2. Given any symmetry 1/i < s < 1 and translation factor, 0 < p < 1

there exist a family of instances such that z4ob = (1 + p/s) . zstoch.

Proof. For p > 1, let

B- {b E R 7 IbHj 1}.
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In Appendix 3.10.1, we show that

sym(B )

and the symmetry point is,

1
bo(B-) = e,ml _/P + 1

where bo(U) denotes the symmetry point for any set U. Also, let (B+)' := B+ + re,

for some r > 0. Then, given any symmetry s > 1/rn and translation factor, p <; 1,

we can find a p> 1 and r > 0 such that

1
P= /P+l)r+l

Now consider a problem instance where A = 0, B = I, c = 0, d e, and a prob-

ability measure whose expectation is at the symmetry point of (B+)'. The optimal

static robust solution is y = (r + 1)e and the optimal stochastic solution is y(b) b

for all b E (BZ)'. Therefore,

Zstoch r +M, ZRob (r + 1)m,

and,

ZRob_ r + 1 p
ZStoch (+i i St

ml /P -1

which shows the bound in Theorem 1 is tight.

3.4.2 An Alternative Bound

In this section, we present another performance bound on the robust solution for the

two-stage stochastic problems, and compare it with the symmetry bound (3.13).

For an uncertainty set U, let bh as b' := maxbEu bj. Also, suppose the probability



measure p satisfies (3.12), i.e., E,[b] > bo, where bo is the symmetry point of U. Let

0* := min{O : 0 - bo > bh}. (3.16)

Using an argument similar to the proof of Theorem 1, we can show that the perfor-

mance gap is at most O*, where the subscript s stands for stochasticity, i.e.,

ZRob < 6 * ZStocII- (3.17)

Let s = sym(bo, U) and p = p(bo, U). From Lemma (4), we also know that

1 + -b> > b, Vb E U.

Therefore, 6* < (1 + p/s). So, O* is upper bounded by the symmetry bound obtained

in Theorem 1. For brevity, we refer to (3.16) as a scaling bound. A geometric picture

is given in Figure 3-6. As shown in the figure, U is obtained from scaling E,,[b] by

a factor greater than one such that U doninates all the points in U, and 0* is the

smallest such factor.

S
0p[b

Figure 3-6: A geometric perspective on the stochasticity gap.

In the following section, we show that the scaling bound can be strictly tighter



than the symmetry bound. On the other hand, the symmetry bound relates the

performance of a static robust solution to key geometric properties of the uncertainty

set. Furthermore, both bounds are equal for several interesting classes of uncertainty

sets as discussed in the following section. In Theorem 2, we show that the symmetry

bound is tight for any p < 1, s > 1/m for a family of uncertainty sets.

The symmetry bound reveals several key qualitative properties of the performance

gap that are difficult to see from the scaling bound. For example, for any symmetric

uncertainty set, without the need to compute bh and O*, we have a general bound of

two on the stochasticity gap. Since symmetry of any convex set is at least 1/m, the

bound for any convex uncertainty set is at most (m + 1). Both these bounds are not

obvious from the scaling bound. Most importantly, in practice the symmetry bound

gives an informative guideline in designing uncertainty sets where the robust solution

has guaranteed performance.

3.4.3 Examples: Stochasticity Gap for Specific Uncertainty

Sets

In this subsection, we give examples of specific uncertainty sets and characterize their

symmetry. Both bounds on the stochasticity gap, the symmetry bound (3.13) as well

the scaling bound (3.16), are presented in Table 3.1 for several interesting uncertainty

sets. In most of the cases, the scaling bound is equal to the symmetry bound. The

proofs of the symnetry computation of various uncertainty sets are deferred to the

Appendix.

An Lu-ball intersected with the nonnegative orthant. We define,

B+: {b E R |||Ibp < 1}

for p > 1. In Appendix 3.10.1 we show the following.

sym(B) = ,bo(B) =-T e. (3.18)
m mi+1



Therefore, if U = B+ and the probability measure satisfies condition (3.12), then

ZRob (1 + m )ZStoch. The bound is tight as shown in Theorem 2. There are several

interesting cases for B+ uncertainty sets. In particular,

1. For p = 1, B is the standard simplex centered at the origin. The symmetry is

1/n and stochasticity gap is m + 1.

2. For p = 2, B+ is the Euclidean ball in the nonnegative orthant. Its symmetry

is 1/vm, and the stochasticity gap is 1 + v/nm.

3. For p =0, B+ is a hypercube centered at e/2 and touches the origin. The

symmetry is 1 and the stochasticity gap is 2.

Ellipsoidal uncertainty set. An ellipsoidal uncertainty set is defined as,

U := {b c R I ||E(b - b)11 2 < 1}, (3.19)

where E is an invertible matrix. Since U is symmetric, the stochasticity gap is

bounded by 2 if U C R7 and the probability measure satisfies (3.12). In Ap-

pendix 3.10.1, we show that the bound can be improved to the following.

ZRob 1 + max E- ZStoch 2 Stoch-
I<i<n b/

Intersection of two L,-balls. Consider the following uncertainty set.

U := {b E R | ||bly, 1,|bl, r}, for 0 < r < 1 and 1 < pi < P2. (3.20)

Assume the following condition holds,

r 11 1
I rm1 > mr2, (3.21)

|e|i2 |iill1n

which guarantees that the intersection of the two unit norm balls is non-trivial. In



Appendix 3.10.1, we show that

1 r
sym(U) = , , e. (3.22)

rmPi rmP1 + 1

The budgeted uncertainty set. The budgeted uncertainty set is defined as,

Ak := b E [0, 1]m b < k , for 1 < k < m. (3.23)

In Appendix 3.10.1, we show that

k k
sym(Ak) - , bo(Ak) - e. (3.24)m mn + k

Demand uncertainty set. We define the following set,

DU:= b E K Z ib- ISI <F VS C N :={1,...,} . (3.25)

Such a set can model the demand uncertainty where b is the demand of m products;

p and F are the center and the span of the uncertain range.

The set DU has different symmetry properties, depending on the relation between

y. and F. If p > F, the set DU is in fact symmetric. Intuitively, DU is the intersection

of an L, ball centered at pe with (2 ' - 2m) halfspaces that are symmetric with

respect to pe. If p, < F, DU is not symmetric any more - part of it is cut off by

the nonnegative orthant. In Appendix 3.10.1, we present a proof of the following

proposition, which summarizes the symmetry property of DU for all the cases.

Proposition 1. Assume the uncertainty set is DU.

1. If p > F. then,

sym(DU) = 1, bo(DU) = pe. (3.26)



1
2. If F < p<F, then,

m/np.+F T (vmp+F)(p±+F)
sym(DU) = ( bo(DU) p + ( + )e. (3.27)

(1 + s/'f ' vnip + (2 + v45-)F

1
3. IfO<p< F, then,

sym(DU) = -bo(DU) = + N 2 m)e. (3.28)
Vhi(lp + 1-)' 2 v/-np + (1 + vfm-)T

3.5 Multi-stage Stochastic Problem under RHS Un-

certainty

In this section, we consider the multi-stage stochastic optimization problem, I StochI

under right hand side uncertainty where the multi-stage uncertainty is described by

a directed network as discussed earlier. We show that a finitely adaptable class

of solutions is a good approximation for the fully-adaptable multi-stage problem.

Furthermore, the performance ratio of the finitely adaptable solution depends on the

geometric properties of the uncertainty sets in the multi-stage uncertainty network.

The number of solutions at each Stage (k + 1) for k = 1, . . . , K - 1 depends on the

number of directed paths in the uncertainty network from the root node to nodes in

Stage (k + 1). Therefore, if P is the set of all directed paths from Stage 2 to Stage

K, the total number of solutions in any stage in the finitely adaptable solution policy

is bounded by |PI.

Theorem 3. Let s = nin.j sym(ukj,14i) and p = maxkxj p(u,,UI). Suppose

Eb[b | b c U] > uh,, where Uk.j is the point of symmetry of UJh C R' for all

j = 1..., NA, k = 1,., K - 1. Then there is a finitely adaptable solution policy

that can be computed efficiently and has at most |P| solutions in each stage. where

P is the set of directed paths from the root node in Stage 2 to nodes in Stage K in

the multi-stage uncertainty network, such that the expected cost is at most (1 + p/s)



times the optimal cost of 1Koch

3.5.1 Algorithm

We first describe an algorithm to construct a finitely adaptable solution. In each Stage

(k + 1) for k = 1, . , K - 1, the set of finitely adaptable solutions contains a unique

solution corresponding to each directed path from the root node in Stage 2 to a node

in Stage (k + 1). Therefore, we consider P[k] I solutions in Stage (k + 1) each indexed

by P[k] for all P E P. In other words, the finitely adaptable solution is specified by

the first-stage solution x, and for each Stage (k + 1) for k = 1, ... , K - 1, yk(P[k])

for all P[k] E P[k]. Recall that for any P = (ji, ... , JK-1) E P, the probability that

the uncertain parameters realize from the path P is given by,

K-2

Pr(ji . . )K-1 p = k jk+1' (3.29)
k=1

and the measure pp is defined as a product measure of the measures on the uncertainty

sets in Path P. We first show that for any k = 1, K - 1, j = 1, ... , Nk, (1 +p/s)-

Ukj dominates all points in Uk coordinatewise.
3

Lemma 5. For any k = 1...,K. j 1, Nk, for all u EH>

1 + Ukj > U.

Proof. Let pi = p(uk. "j), s1 = sym(uk.j, Uk) From Lemma 4, we know that

+ - U* > U, VU EL.

By definition in Theorem 3, we know that p1 < p and si > s. Therefore, for all

U E Uk

+ -Ukj > 1 + i Uk > U.



We consider the following multi-stage problem to compute the finitely adaptable

solution.
K-1

ZA min cT x + ( Epep[dk yk(P[k])]
k=1

s.t. VP = (j1 . . K- 1) E
K-1 K-1

Ax + ( Bkyk(P[k]) > (l + 1 Z ukik (3.30)
k=1 k=1

X E R"' x Rn

Yk(P[k]) E RPk x R n~-P, Vk K - 1.

The number of constraints in (3.30) is equal to P| - n, where mn is the number of

rows of A, Bk for all k =1,..., K - 1. Also, the number of decision variables in each

Stage (k + 1) for k = 1,..., K - 1 is IP[k]1, namely, yk(P[k]) for all P[k] E P[k].

Therefore, the solution is finitely adaptable as there are only a finite number of

solutions in each stage. Furthermore, in some cases, the number of directed paths

is small and polynomial in the size of the uncertainty network. For instance, if the

uncertainty network is a path, we require exactly one solution at each stage in our

finitely adaptable solution. If the network is a tree, then there is a single path to each

uncertainty set from the root node in Stage 2 and therefore, the number of solutions

in the finitely adaptable solution is exactly equal to the number of uncertainty sets

in the uncertainty network. However, in general, the number of directed paths can

be exponential in the input size. For example, for the case of a recombining directed

network in Figure 3-1. the number of directed paths from the root node to the node

j in Stage (k + 1), j = 1,. . . , Nk is equal to ('), which is exponential in k, while the

input size is 0(k 2 ).

In the next subsection, we show that the finitely adaptable solution computed

in (3.30) is a good approximation of a fully-adaptable optimal stochastic solution.



3.5.2 Proof of Theorem 3

For brevity, let r (1 + p/s). The proof proceeds as follows. We first consider a

particular finitely adaptable solution feasible to (3.30), which implies that its expected

cost is at least zA. We then extend this particular finitely adaptable solution to a

fully-adaptable one without changing its expected cost. Finally, we show that the

expected cost of the extended solution is equal to T times the expected cost of an

optimal fully-adaptable solution.

Let r, yk(w[k], P[k]) denote an optimal fully-adaptable solution for 1-[t for all

k 1,...,K - 1, P E P, pp-a.e. w E Q(P). For the first step of the proof, we

consider the following particular finitely adaptable solution for (3.30). For all P C P,

k = 1,...,IK - 1, let

Yk(P[k]) = r - EwE(P) [k(wjk, Pk])] . (3.31)

Also, let Y = r - -. We show that the above finitely adaptable solution is feasible

for (3.30). Consider any P (ji,... , JK ) E P. Now,

K-I K-I

As + Z Bk(wo [k], P[k]) > > b, pp-a.e. w = (b, ... , bK-1) Q(P).
k=1 k=1

Taking conditional expectation with respect to pp on both sides, we have that

K-1 K-i K

A. + ( BE,,p[yk (w[k], P[k])] > E Et,[bk] (Uk. (3.32)
k=1 k=1 k=1

where the last inequality follows as EY, bk] > UkJk. Therefore, for any P = (ji . JK 1) E



K-1

Az+( B+ jgk(P[k])
k=1

K-1

= A(T. -k)+(5 Bk (T - E, d[k (w[k], P[k])])

= T- AX+ Z BkK-,
k=i

[dfTpk(W[k], P[k])]

> T- S UkJk),
(k=1

(3.33)

where (3.33) follows from (3.32). Therefore, the solution Y, Y is a feasible solution

for (3.30). Let - be the expected cost of Y, V, i.e.,

K-I

S= c+ E Epp[d ik(P[k])].
k=1

Clearly, ZA < -. For the second step of the proof, we extend the finitely adaptable

solution Y, V to a feasible solutioii z, y for Ul1es as follows.

(3.34)
Y (w[k], P[k]) = Yk (P[k]), VP e P, Vk =1 K -1.

We show that the extended solution z, is a feasible solution for H'oci- Consider

any P (i,.4 ) E P, w = (bi . bK-1) E Q(P). Therefore,

A- +

Axz+( ByfA(wti]P[k])
K- I

- Az+ ( Bkak(P[k])

K-1

> T - UkJk

K-I

> E b,
k=1

where (3.35) follows from the feasibility of the solution 2, V for (3.30) and the last

(3.35)



inequality follows from Lemma 5. Let Z be the expected cost of z, y, i.e.,

K-1

z = cT' + Y EpEp [IEp[d Tk(w[k], P[k])]]
k=1

K-1

- cTY+ EEpp [EtP[dk(P[k])]
k=1
K-1

-CTY + E3 Epe p[dkjYk(P[k])] (3.36)
k=1

where (3.36) follows from (3.34). Now, we compare z to the expected cost of an

optimal fully-adaptable solution as follows.

K-1

- cTi+ Z Epep[dgkk(P[k])]
k-k

k=1
K-1

cT(T - x) + ( EpE [di(7 - E1, [Pk(w[k] , P[k])] )]
klk

k=1

= r(3.37)

where (3.37) follows from the optimality of i, 9 for [K Combining ZA < - and

(3.37), we obtain that zA < _ - zscl-

Stochastic problem under cost and RHS uncertainty. For the multi-stage

stochastic problem, -Ie where both the objective coefficients and the rightStoch(b~d) we

hand side are uncertain, a finitely adaptable solution performs arbitrarily worse as

compared to the fully-adaptable solution. It follows from one of the results in Bertsi-

mas and Goyal [18], where the authors show that a static-robust solution may perform

arbitrarily worse as compared to an optimal fully-adaptable two-stage solution for the

stochastic problem when both cost and right hand side are uncertain.



3.6 Multi-stage Adaptive Problem

In this section, we consider multi-stage adaptive optimization problems and show that

a finitely adaptable solution is a good approximation to the fully-adaptable solution.

Furthermore, the performance bound of a finitely adaptable solution is related to the

symmetry and translation factors of the uncertainty sets as in the case of stochastic

optimization problems. The approximation guarantee for the case when only the right

hand sides of the multi-stage adaptive problem are uncertain, Hdapt, follows directly

from the approximation bounds for the stochastic problem. Surprisingly, we can also

show that a finitely adaptable solution is also a good approximation for the multi-

stage adaptive problem when both the right hand sides and the objective coefficients

are uncertain, Adapt(bd), unlike the stochastic counterpart. Our results generalize the

performance of a static robust solution for two-stage adaptive optimization problem

under right hand side and/or objective coefficient uncertainty.

3.6.1 Right-hand Side Uncertainty: Hff

We show that there is a finitely adaptable solution with at most |PI solutions for each

stage and each uncertainty set, that is a good approximation of the fully-adaptable

problem. Furthermore, such a finitely adaptable solution can be computed efficiently

using exactly the algorithm described in Section 3.5.1. The performance bound of the

finitely adaptable solution policy follows directly from its performance bound with

respect to the stochastic problem in Theorem 3. Therefore, we have the following

theorem.

Theorem 4. Suppose s = ink,3 sym(U) and UkJ G Uk C Rtm is the point of

symmetry for allj 1,... ,ANk, k = 1,... K - 1. Let p = naxA.j p(U) for all

J = 1. Nk. k 1,. K - 1. Then there is a finitely adaptable solution policy

that can be computed efficiently and has at most [P| solutions in each stage, where P

is the set of directed paths from the root node to any node in Stage K of the multi-

stage uncertainty network, such that its worst-case cost is at most (1 + p/s) times the

optimal cost of Iadapt-



3.6.2 RHS and Cost Uncertainty

In this section, we consider the multi-stage adaptive optimization problem where

both the right hand side and the objective coefficients are uncertain. While for the

stochastic problem, the performance of a finitely adaptable solution can be arbitrarily

bad with respect to an optimal stochastic solution, surprisingly, we can show that

there exists a finitely adaptable solution with at most |PI solutions for each stage for

each uncertainty set, that is a good approximation for the multi-stage problem.

Theorem 5. Suppose s = mink,3 sym(d4) and Uk, E U1  C R'+"k is the point

of symmetry for all j - 1,...,Nk, k = 1,...,K - 1. Also, let ub, i denote

the right hand side and the objective coefficient uncertainty in Ukj respectively. Let

p = maxkJp(U) for all j 1,...,Nk, k = 1,...,K - 1. Then there is a finitely

adaptable solution policy that can be computed efficiently and has at most |P| solutions

where P is the set of directed paths from, the root node to any node in Stage K of the

multi-stage uncertainty network, such that its worst-case cost is at most (1 + p/s)2

times the optimal cost of HK
Adapt(b~d)

Proof. From Lemma 4, we know that for any uncertainty set in Stage (k + 1),
u <; (1 + p/s) -ukg for all u E Uk. We compute a finitely adaptable solution

by solving the following multi-stage problem similar to the one used to compute a

finitely adaptable solution for the stochastic counterpart.

K-1

min cTx + max muin dTy k(P[k])
PEP Vk(P[kI),k=1,...,K 1 k=1

s.t. VP (j . , jK- 1) E P
K-1 K-1

Ax + > Bkyk(P k ( + -> u- (3.38)
k=1 k=1

x (E RPI x Rn'+

yk(wlk],P[k]) E RPk X R' -P - - K - 1.

Note that the above problem is similar to (3.30) except the objective function. Using

an argument similar to the second part of the proof of Theorem 3 (see Section 3.5.2),



we can show that a finitely adaptable solution of (3.38) can be extended to a feasible

fully-adaptable solution for 1 atK )of the same worst-case cost.

Suppose (P, yk(w[k], P[k))) for all k = 1,..., K - 1, P E P, w E Q(P) denote

a optimal fully-adaptable solution for H'dapt(b, d). As defined earlier, for any P =

(ji... jK-1) E ,let

WP = (UI , --.... .UKJK ) (3.39)

Consider the following approximate solution for (3.38).

z 1+ - (3.40)

and for any P E P, for all k=1.K-1

(3.41)

For brevity, as before, let T = (1 + p/s). We first need to show that the solution z, Q
is feasible for (3.38). For any P = (ji,1 ... ,jK-1) E P,

K-1 ( K-1 K-
A. + E Bk'Ik(P[k]) = T - A + r > P k] ;> r T

k=1 k=1 (k=1

where the last inequality follows from the feasibility for QO for Wp. Thus, the solution

x, y is feasible for (3.38).

To bound the worst-case cost of the solution, we show that for any P E P, the cost

of the approximate finitely adaptable solution is at most (1I+p/s)2 times the worst-case

cost of the optimal fully-adaptable solution. Consider any P = (ji . jK1) E P.

yk(P[k]) =I( + &k (w[k], P [k]).



Now,

K-1 K-1

c i+(dkf4(P[k]) = r.(cT+(d Q (wp[k], P[k]))
k=1 k=1

K-1

<_T- (c + ( (r . k w k(wp[k], P[k])) )(3.42)
k=1

T*~ ~~~~j c 2( 1 uJ)ik(wpt[k], P [k]))

< T 2  K (34
ZAdapt(bd), (3.43)

where (3.42) follows as d r - a. for all (b, d) E Uj, k 1,... ,K - 1. Inequal-

ity (3.43) follows as wp E Q(P) and thus, is a feasible scenario in rAdapt(bd)- D

3.6.3 An Alternative Bound

In this section, we discuss an alternative bound for the performance of the finitely

adaptable solution as compared to the optimal fully-adaptable solution similar to the

one we present for the stochastic problem. For the sake of simplicity, we present this

alternative bound for the adaptive problem under right hand side uncertainty, Hapt -

The bound extends in a straightforward manner to the case of both right hand side

and cost uncertainty.

The proof of Theorem 4 (and also Theorem 5) is based on the construction of

a good finitely adaptable solution from an optimal fully-adaptable solution in the

following manner. For each P E P, we consider the scenario op where in each stage

the uncertain parameter realization is the point of symmetry of the corresponding

uncertainty set on path P. We show that the solution for scenario Wp scaled by a

factor (1 + p/s) is a good feasible finitely adaptable solution for all o E Q(P). Since

wp E Q(P), the cost for an optimal solution for this scenario is a lower bound on

z4Aapt which implies a bound of (1 + p/s) for the finitely adaptable solution with

respect to the optimal. Now, if for some other scenario w'(P) E Q(P), a smaller

scaling factor than (1 + p/s) suffices to obtain a feasible finitely adaptable solution

for all w E Q(P) for all P E P, this would imply a smaller bound on the performance



of the finitely adaptable solution.

Following the discussion in Section 3.4.2, we define bh(U) as follows. For all

j1 . m,b (U) :maxbeu b. Let

0(U) = min{0 | Jb E U,0 . b > bh(U)

Note that 0(U) < (1+p/s) as (1+ p/s) -bo > bh(U), where bo is the point of symmetry

of U, p = p(bo,U), and s = sym(bo,U). Let bl(U) denote the vector b E U that

achieves the minimum value of 0. Let

a0 max 0(Uj).
ak=1,...,Kj=1,...Nk

For each k 1,..., K - 1, j= 1,. . . , Nk, 0(Uj) is defined by a feasible uncertainty

realization from U . Therefore, scaling the solution corresponding to b(Uf) by a

factor 0* > 0(U) produces a feasible finitely adaptable solution. Also, as we note

above, 0* < (1 + p/s). Therefore, 0* is upper bounded by the bound in Theorem 4.

We refer to 0* as a scaling bound as earlier.

We can interpret the scaling bound geometrically as follows. For any U C R", let

0 = 0(U), b = bl(U), and bh = bh(U). We know that

0 b1 > bh - b > - b.
__0

Therefore, 1/0 is the minimum scaling factor for bh such that it is dominated by some

point in U coordinate-wise. Note that (1/0) . b does not necessarily belong to U but

is always contained in,

U = {b c R n IE b' c U, b' > b}. (3.44)

To see this, consider the following uncertainty set. U C R', where U is the convex hull

of ((0, 0, 0), (1, 0, 1), (0, 1, 1)). We can alternatively define U as U = {b E [0, 1]3 | b3 =

bi + b2 }. It is easy to observe that bh = (1, 1, 1). We show that bl = (1/2, 1/2, 1) E U



and 0 = 2. We know that Ob) > 1 for all j = 1, 2. Therefore,

2
bl = bl + bl 2 -

- 14 2+

Furthermore, b' < 1 which implies that 0 > 2. For 0 = 2, bl = (1/2,1/2, 1) E U

satisfies 0b' > bb. Now,

- - bh = -- ( 1) V U .
0 2

However, bl > (1/0)bh, and bl C U which implies that (1/0)bh E O2 as defined

in (3.44). The geometric picture is given in Figure 3-7. Note that in Figure 3-7,

bl = (1/0)bh but this is not true in general as illustrated in the above example.

Figure 3-7: A geometric perspective on the adaptability gap.

For certain uncertainty sets, the scaling bound of 0* is strictly

bound in Theorem 4.

better than the

1. Hypercube. Suppose each uncertainty set in the multi-stage uncertainty net-

work is a hypercube. Therefore, s = 1. Also, suppose p = 1 where p is as

defined in Theorem 4. The bound in Theorem 4 is (1 + p/s) = 2. On the

other hand, 0* = 1 since bh(lU) E U,, when U is a hypercube. Therefore, the

two bounds are in fact different. The scaling bound implies that the finitely

2b



adaptable solution is optimal, while the symmetry bound implies that it is only

a 2-approximation for the multi-stage adaptive optimization problem.

2. Hypersphere. Suppose the uncertainty sets are all hyperspheres in R', i.e.,

L 2 -balls, with unit radius and centered at e - (1, 1,...,1). Therefore, p = 1

and also s = 1 which implies that the bound from Theorem 4 is 2. On the other

hand, it is easy to note that the scaling bound,

2

In this case, the scaling bound is not significantly better than the bound in

Theorem 4.

3.7 Extension to General Convex Cones

We consider extensions of our results to the case where the constraints are general

linear conic inequalities and the uncertainty set belongs to the underlying cone. For

simplicity, we discuss the two-stage case. The generalization also applies to the multi-

stage problems.

3.7.1 Stochastic Problem with Linear Conic Constraints

Ve consider the following two-stage conic stochastic optimization problem.

z : min cTx + E d'y(b)]
'soh x~y(b) I d ()

s.t. Ax + 13y(b) bc b, p-a.e. b E U, (3.45)

x E RP' x R"' P1

y(b) E RP2 x Rn2--P2

where K is a closed pointed convex cone in a finite dimensional space, such as the

nonnegative orthant R', the second-order cone (SOC) {(b, t) (E R" b : 11b||2 <_ t},



and the semidefinite cone S'. Here A, B are mappings from R"1 and Rn2 to the

finite dimensional space that contains K, respectively. For example, if K is the

nonnegative orthant or the second-order cone, both A and B are matrices of the

appropriate dimension. If K is the semi-definite (SDP) cone, then A, B are linear

mappings defined as,
ni n2

Ax=( xiA, By = Z yiBi,
i=1 i=1

where Ai and B are symmetric matrices. The linear conic inequality (3.45) is equiv-

alent to the inclusion in the cone, i.e., Ax + By(b) >-K b e Ax + By(b) - b E K.

Lemma 6. Suppose the convex, compact set U C K, and bo is the point of symmetry

of U. Then,

1 + j bo >- b, Vb E U.

Proof. By the definition of symmetry and the assumption that U C K, we have for

any b c U, bo + sym(U)(bo - b) = (sym(U) + 1)bo - sym(U)b E K. I

Theorem 6. Consider the two-stage stochastic optimization problem in (3.45). Let

p be the probability measure on the uncertainty set U, bo be the point of symmetry

of U, and p =- p(bo,U) be the translation factor of bo with respect to U. Denote

s = sym(U). Assume the probability measure p satisfies, Ep[b] -c bo. Then the cost

of an optimal static solution is at most (1 + p/s) - zsh-

The proof of the above theorem is similar to the proof of Theorem 1. For the sake

of completeness, we present the proof of Theorem 6 in Appendix 3.10.2. A similar

result holds for the corresponding adaptive optimization problem as well.

3.8 Extensions to Integer Variables

We can extend our results to the case when some decision variables are integer con-

strained for both the stochastic as well as the adaptive optimization problems. In the

case of the multi-stage stochastic optimization problem with right hand side uncer-

tainty, we can handle integer decision variables only in the first stage. Whereas for



the multi-stage adaptive problem, we can handle integer decision variables in every

stage for both versions, UIIapt and HK
Adapt Adapt(b,d)'

3.8.1 Multi-stage Stochastic Problem

We consider the multi-stage stochastic problem, H as defined in (3.5) with an

additional constraint that some of the first-stage decision variables x are required to

be integers. Even for this case, we show that a finitely adaptable solution provides a

good approximation.

Theorem 7. Consider the multi-stage stochastic problem HOI (3.5). with additional

integer constraints on some first stage decision variables. Suppose Eb[b | b E U]=

UkJ for all j = 1, ... , Nk,. k = 1, . .,K - 1. Let s = minkJ sym(UkJy, U) and

p = maxk.I P(UkJJb1). Then there is a finitely adaptable solution policy that can be

computed efficiently and has at most |P| solutions in each stage. where P is the set of

directed paths from the root node to nodes in Stage K in the multi-stage uncertainty

network, such that the expected cost is at most [(1 + p/s)] times the optimal cost.

The proof of Theorem 7 is exactly similar to the proof of Theorem 3 except

that we need to handle the integrality constraints in constructing a feasible finitely

adaptable solution. Therefore, instead of scaling the optimal fully-adaptable solution

by a factor of (1 + p/s) to construct a feasible finitely adaptable solution,we need

to scale by [(1 + p/s)] to preserve the integrality constraints. This implies that the

performance ratio of the finitely adaptable solution with respect to an optimal fully-

adaptable solution is at most [(1 +p/s)]. Note that the stochastic problem, with both

right hand side and objective coefficients uncertainty, can not be well approximated

by a finitely adaptable solution even without the integrality constraints.

3.8.2 Multi-stage Adaptive Optimization Problem

For the multi-stage adaptive problem, we can handle integer decision variables in all

stages. In particular, we have the following theorems.



Theorem 8. Consider the multi-stage adaptive problem, UK1 (3.6), with addi-

tional integer constraints on some decision variables in each stage. Suppose s

mink,3 sym(U4) and Uk, E Uk is the point of symmetry for all j 1,..., Nk,

k = 1,... ,K - 1. Let p = maxkJp(U 3 ) for all j = 1,...,Nk, k = 1,..., K - 1.

Then there is a finitely adaptable solution policy that can be computed efficiently and

has at most |P| solutions where P is the set of directed paths from the root node to

any node in Stage K of the multi-stage uncertainty network, such that its worst-case

cost is at most [(1 + p/s)] times the optimal cost.

Theorem 9. Consider the multi-stage adaptive problem, Udaat(bd) (3.8), with ad-

ditional integer constraints on some decision variables in each stage. Suppose s =

minkJ sym(U ) and Uk. 3' E U is the point of symmetry for all j = 1...,Nk,

k - 1,..., K -1. Also, let u b, U d denote the right hand side and the objective coeffi-

cient uncertainty in Ukj respectively. Let p - maxk,3 p(uk,,j ) for all j = 1..., Nk,

k= 1,.,K - 1. Then there is a finitely adaptable solution policy that can be com-

puted efficiently and has at most |P| solutions where P is the set of directed paths

from the root node to any node in Stage K of the multi-stage uncertainty network,

such that its worst-case cost is at most [(1 + p/s)] - (1 + p/s) times the optimal cost

ofAdapt(bd)-

3.9 Conclusion

In this chapter, we propose tractable solution policies for two-stage and multi-stage

stochastic and adaptive optimization problems and relate the performance of the

approximate solution approaches with the fundamental geometric properties of the

uncertainty set. For a fairly general stochastic optimization problem, we show that

the performance of a static robust solution for the two-stage problem and a finitely

adaptable solution for the multi-stage problem is related to the symmetry and trans-

lation factor of the uncertainty sets. In particular, the performance bound is (1 + p/s)

where p is the translation factor of the uncertainty sets and s is the symmetry. We

also show that the bound is tight, i.e.., given any symmetry and translation factor,



there exists a family of instances where the uncertainty sets have the given symmetry

and translation factor, and the cost of an optimal static robust solution is exactly

equal to (1 + p/s) times the optimal stochastic cost. For most commonly used un-

certainty sets, the performance bound gives quite interesting results. For instance,

if the sets are perfectly symmetric, i.e., s = 1, the bound is less than or equal to 2.

Refer to Table 3.1 for a list of examples of several interesting uncertainty sets and

corresponding bounds. In any model, the uncertainty set is the modeler's choice. Our

bound offers important insights in this choice of uncertainty set as well.

While we show that the stochastic problem with only right hand side uncertainty

can be well approximated, the static robust solution and the finitely adaptable solu-

tion are not a good approximation for the case where both the right hand side and the

objective coefficients are uncertain. However, for the adaptive optimization problem,

we show that the static robust and the finitely adaptable solution are a good approx-

imation for the two-stage and multi-stage version respectively, even when both the

right hand side and the objective coefficients are uncertain. The performance bound

in this case is (1 + p/s)2 where again p is the translation factor of the uncertainty sets

and s is the symmetry. This bound is not as strong as the bound for the stochastic

problem. We also present an alternate geometric bound for this case.

3.10 Appendix

3.10.1 Examples: Symmetry of Specific Sets

Our main tool in calculating the symmetry of a convex compact set is the following

proposition in Belloni and Freund [5],

Proposition 2 (Belloni and Freund [5]). Let S be a convex body, and consider the

representation of S as the intersection of halfspaces: S =x C R'|aTx < bi i. E I}

for some (possibly unbounded) index set I. and let of :naxxes{ -ax} for i E I.

Then for all x - S.
(bi-a T x

sym(x. S) = inf b a
16 f + a x



General L, half-ball for p > 1.

Define an L, half-ball as

HB: {b E Rm | ||bI, < 1, bi > 0}.

The dual norm is the Lq norm with 1 + = 1. The symmetry of L, half-ball isp q

summarized as follows,

Proposition 3. The symmetry and point of symmetry of an L, half-ball are,

sym(HB,)=
2 ~

bo(HBp) =- 1 ei
25 + 1

Proof. The L, half-ball can be represented by halfspaces as

HB, = {b E Rm | - bl < 0, 7tT b < 1, Vl|7r||q < 1, 7r1 ;> 0}.

For each 7r in the dual unit ball (i.e., ||7r||q = 1), define

6*(-7r) := max -7t Tb,
||b||p<1,bi>0

whose optimum b* satisfies b* = 0, |b*I|p = 1. Therefore we have,

*(7r) - m ax - -r b = * 1q = (1 - 7 )l/I ,

||b||q=1

where b = (bi; b) and 7r = (ri; f). Also define 6*(ei) =max 61
bEHB,

= 1. Now we can

compute the symmetry of HB,. Due to the geometry, the point of symmetry has the

form bo = ae 1 . We have,

sym(HBp) = max min
aE[0,1] I

inf
7i E[O.1} (1 _ 7 ± rr

The maximum is achieved when the inf term is equal to the second term, because the

inf term is decreasing in a and the second term is increasing in a. The inf term has
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optimality condition,

-a((1 + -rr)+7ria) = 1-Tia) 7r 1 + a).

Therefore, we have,
a a

-a 1

(1--1)1

which implies that = 1, i.e., 71 = ( and a .
(1-71)P 2P+1

Intersection of an L, ball with R' for p > 1.

Recall that an La-ball intersected with the nonnegative orthant is defined as B :

{b E R'" |1 |bl| 1. b > 0}. We show that the symmetry and symmetry point of B+

are as defined in (3.18). The L, half-ball can be represented by halfspaces as

B = {b E R' | b < 0, 7b 1,V|7r|< 1, 7r > 0}

where |1|.q is the dual-norm with 1+ 1 = 1. Therefore, define 6*(r) := max -7 rT b = 0,P q bEB/
and *(ek) =max bk = 1. Therefore, the symmetry can be computed as,

bEB+p

sym(B ) : max imi inf 1-aeIr a
symE{0,(}) ]P C O~ P 117rq 1.ir>O CVeTir -

where we use the property that the symmetry point b0 = ae for some a E [0, 1 /1 e|p].

The maximum is achieved when the inf term is equal to the second term. The inf

term can be computed, since max eT7r =|ell. Thus, at the symmetry point,
l7irjq=1,7t>O

1 a 1 1
we have 1 - . Therefore, a , which gives thealle||, - -a |ell +1 m1 + 1
results.
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Ellipsoidal uncertainty set.

An ellipsoidal uncertainty set that is contained in the nonnegative orthant can be

defined as,

U := {b I |JE(b - b)11 2 < 1} C R (3.46)

We assume the ellipsoid has full dimension, thus, b > 0. The symmetry of an ellipsoid

is 1. But the translation factor depends on the position of the center b. The following

proposition computes the translation factor.

Proposition 4. Assume the uncertainty set U is defined in (3.46). The translation

factor p(b, U) is given as,

p(b, U) = max - ,

where E,-i is the i-th diagonal element of the inverse matrix E-.

Proof. From the definition, the translation factor is the smallest p such that

b := min{bi|11E(b - pb)112 < 1} 0, Vi = 1, 2, . m.

From the optimality conditions, we can get that b' = pIi - E71, which gives the

result.

Intersection of two L, balls with R".

Consider the uncertainty set U defined in (3.20) where 1 < pi < P2, 0 < r < 1, and

suppose (3.21) holds. We show that the symmetry and symmetry point of U are as

defined in (3.22).

The uncertainty set U can be represented by the intersection of halfspaces,

U {b C R' | - b < O,7 rTb <1 A b< r V||7r||q1 - 177r 0, IAJ2I rA >0 01
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where ± + y 1, ± + = 1. Compute the following quantities,Pi qj P2 q2

*(7r) := max - 7rTb
bEU

0, V||Tr||ql < 1, 7r > 0,

*(A) :=max AT b = 0, VIAI|q2 < r, A> 0,
beU

6*(ek) := inaxbk = r,
bc=U

Vk = 1. n.

Since the set U is symmetric with respect to the direction e, the symmetry point

must have the form bo = ae. The symmetry can be computed as,

sym(U) :=max min
aE[OI(-ML) { I

1 -aeTK
inf

|17 j=1,7r>0 OZeT7r

1-aeTA a .
inf

IAIlq2=1,A>O aeTA r - a

(3.47)

As is shown in the proof of the previous proposition, we have,

1 - aeTir 1
in - 1, 7 7

||-|1q,=1,7r>O aeT7r a||e||1 1

iif 1 - aeTA r

IAlle2 =1,A>0 aeCTA a||e||,,

Using condition (3.21), we know the first term is dominated by the second term for

any a, therefore, the maximum in the symmetry formula (3.47) is achieved when

1 a

a||e||,, r - a

r
Therefore, a = r||e||p, + 1 rn , which gives the results.

rmap + 1

Budgeted uncertainty set.

An important type of uncertainty sets is the budgeted uncertainty set, Ak as defined

in (3.23). We show that the symmetry and the symmetry point are as defined in (3.24).

First, we observe that the symmetry point bo(Ak) must be of the form bo = ae,
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due to the geometry of Ak. Then, use Proposition 2, for k > 1, we have,

sym(Ak) - max min
o<ca (k

a k - ma
1-aa ma

By the monotonicity of 1 a and M0 , the maximum is achieved at a k Thus,mnk

the symmetry point of Ak is bo = e and sym(Ak) = .

Demand uncertainty set.

Proof. Proposition 1 For p > F, the hypercube centered at pe is completely contained

in the positive orthant. For each S, define

6*(S+) := max -e b
bcDU = -ISp + yIfSIF.

*(S-) := max e b = ISly + V/ISIF.
bEDU

The symmetry of b is given as follows,

mmiS T I± IS IF - eb
SCDU -+y (SIF+ejb

-ISIp + vISjF + e~b
Sp + yISIF - e-b

Therefore, sym(pe, DU) = 1, which proves (3.26).

For 'SF < p < F, p is in one of the intervals of [IF, F), [ F, '], ... , (' F F).

We show that (3.27) holds for p E [ F, F]. A similar argument works for other in-

tervals.

Let us assume p E [ F, F]. Notice that |Slp - VI-SIF > 0 for all ISI > 2.

Therefore, the constraints in the definition of DU (3.25) can be written as,

ISIy - V/I5IF < ) bi < |Sip + -/IfSlE, VIS| 2 2.

But for all IS= 1, since p - F < 0, we will have 0 < bi < p + F for all i. = 1,.. .,Tm.

Thus, according to Proposition 2, we can compute the following quantities for all
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|S| > 2,

*(S+) :=max -e - -Tb ISly + VIIF,
bEDU

6*(S_) :=max elsb = |S~p + VI5IF,bEDU

and for ISI = 1, we have 6*(i+) := maxbEDU -bi = 0, *(=) maXbEDu i = y- + F

for all i 1, ... , m. Since DU is symmetric about the direction e, the point of

symmetry has the form be ae. The range of possible a is determined by the

constraint myT - VhmF < ma < my + m/nF. Now we can compute the symmetry of

ae,

sym(ae, DU) = min + F)
a

a a (ISII + /Sr) -SIla
(p1 + F) - Oz' (-|lyl- + 0/I5IF) + Isla,

( SII + SIIF)
(ISIvp + IS/IF) -

+ Isla, VISI >
- ISla

2 1. (3.48)

The symmetry of DU is given as,

1
sym(DU) = max{sym(ae, DU) : a E [p - IF, p

/irn

1
+ F]}.

O/n-

Observe that (ISlu+ SIP) ISjO is a decreasing function in a, and ISIf'+ SIP)+ is

an increasing function in a. Both functions have value 1 when a = , and decrease

when |Sj increases. The formula (3.48) can be simplified as,

sym(ae. DU) .m { (p + F) a (mp+ if)-ma
a '+(p +F) - a ( -mp + FniF) + ma

( -mp + FnmiF) + ma

(np + /mF) - ma

The maximum of sym(ae, DU) is achieved at the following intersection,

a (mp + fimF) - ma

(p + F) -a (-mp + /ni +F) ma'

which gives the symmetry and the symmetry point in (3.27). Since (3.49) also holds
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when p is in any other interval, it implies that (3.27) is true for all 1_ < p < F.

When 0 < y < 1 F, following a similar argument, we have,

sym(ae, DU) min{(!S~p + 95 ) - ISIa ISIa
isi;>1 |SIa (| S IpI + yI(I± F) - S I

Then, the maximum is achieved when a (mp + mF)-ma
(p + F) - a ma

gives the results in (3.28).

which

11

Parallel slabs.

A parallel slab is defined as PS := {b E R' I L < eTb < U} for 0 < L < U and

U > 0. The symmetry and symmetry point of a parallel slab is given as,

Proposition 5.

sym(PS) (3.50)
U7

(3.50)

(3.51)bo(PS) = - e.
(m + 1)U - Le

Proof. Define the following quantities,

6* := max eT b = U,L bEPS
6* T

* := max -e b
bEPS

and for each k 1,...,m,

6*(ek) := max eT b = U.
bEPS

According to the geometry of the set, the point of symmetry is of the form bo = ae.

Thus, the symmetry can be written as,

max mina,
aE[L-L U -ma'

U -ma a

ma - L' U - a

The first two terms are inverse of each other, therefore one increasing and the other
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decreasing in a; the third term is increasing in a. Thus, the maximum is attained

when the second term is equal to the third, i.e.,

u - ma a

ma - L U - a

which gives the results.

U = Conv(Ai, {e}).

The convex hull of the standard n-simplex A1 = {b E Rrn | eTb < 1, b > 0} and a

point e = (1. 1)T has a slightly improved symmetry comparing with the simplex

itself, as shown below.

Proposition 6. The symmetry and point of symmetry of U = Conv(Ai, {e}) are

given as.
1

sym(U) = ,I
rn - 1

1
bo(U) = -e.

mn

Proof. The set U can be represented by halfspaces as

U b E R'" | - b < o,7r b < 1,VI = .,

where 7ri has (2 - m) in the i-th entry and 1 elsewhere. For each i, define,

-max bi
beU

1. (7ri)* - max -7r Tb = i - 2.
beU

By the symmetry of U, we know the symmetry point should be on the e direction.

Therefore, we have,

sym(U) = max min
(Ilo0il {I

1 - Tzf
air e

(rn - 2) + air fe'

{ 1-a 
a '

= max min , .
oCl,1) m - 2+ a' - a

The maximum is achieved when 21 = 1 which gives amm2+- I and symmetry is
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The matrix simplex.

Define the uncertainty set U as follows,

U = {B E Sn I I B < 1}, (3.54)

where ST is the cone of positive semidefinite matrices, I is the identity matrix. We

use it as an example of uncertainty sets for robust SDP problems. The following

proposition shows that U has a similar symmetry property as a simplex in Rm

Proposition 7. Let U be defined in (3.54) and BO be the center of symmetry of U.

We have.
1 1

sym(U)-= , Bo- I.
m m + 1

Proof. The set U can be written in the form of intersection of halfspaces,

U = {B E S' T) * B < 1,Vll42 1-

Then, we can compute the following quantities,

(q) = max (qqT) * B = max (q p) 2  1, (3.55)
BGU p:IIpII=

*(I)=-mi IB =0. (3.56)
BEU

The second equality in (3.55) comes from the fact that the extreme points of U are

rank-i matrices ppT with pTp = 1. (3.56) follows from I * B > 0 and the minimum

is achieved at B = 0. Now we can compute the symmetry of U as,

1 - I * B (qq)*B
sym(U) = max min , iB f T) B (3.57)

BEu I*eB 'q:jjgn=1 1 - (qq)eB

To compute the inf term is equivalent to solving the following problem, which admits

a closed form solution by Courant minimax theorem: A, (B) min gq=1 qTBq,

where A, (B) is the smallest eigenva.lue of B, denoted as (A,, Am) in ascending
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order. Then, (3.57) can be rewritten as,

sym(U) max min 1 TA I, ,
eTx<l,x>o e'A 1-__J'

which can be reformulated as,

sym(U) = max{z : eTA < I , eTA 1, A > 0,&
z,'A -z+ 1

From the constraints, we have

1 rnz
z+1 z+1 n

In fact, z = 1/rn can be achieve by the feasible solution Ai 1/(n + 1) for all i. This

completes the proof.

3.10.2 Proof of Theorem 6.

Proof. Theorem 6 Let U' be the translation of the uncertainty set U with the trans-

lation factor p, i.e. U' U - (1 - p)bo. Let b1 := bo - (1 - p)bo.

z := bo - bi = (1 - p)bo. Following a similar argument as in the proof of Theo-

rem 1. we have

+ - bi >- b', Vb' E U'.

Translating back to the origiial uncertainty set U by adding z on both sides, we

have,

+ bi + z >- b, Vb E U,

( + )pbo + (1 - p)bo >, b,

1 + bo -ic b,

Vb E U,

Vb E U. (3.59)

For brevity, let T := (1 + p/s). Suppose (x, y(b), y -a.e. b E U) is an optimal solution
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of the stochastic optimization problem (3.45). We have,

A(-rx) + B(ry(b)) >-x Tb, pu-a.e. b E U.

Equivalently,

A(TX)+B(Ty(b))- Tb E K, p-a.e. b E U.

Therefore, the expectation with respect to the probability measure y satisfies,

A(TX) + B(E,[Ty(b)]) - E,[Tb] c K.

Thus, we have

A(TX)+ B(EI, [ry(b)]) >-c E,[rb] >-r Tbo >-K b, Vb E U.

The last inequality uses (3.59). Therefore, (Tx, E.[TY(b)]) is a feasible static robust

solution. Therefore, the cost of an optimal static robust solution is at most,

CT(TX)+ dTE, [TY(b)]

Furthermore, zstoch CTx + dTIE, [y(b)], which implies that the cost of an optimal

static solution is at most r - zT e
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No. Uncertainty set Symmetry Stochasticity gap

{b: ||bl|| < 1, b > O}

{b : ||b - blip < 1, b1 > b1} C R M
1 p < oo

3 {b :b - b 1, b1 > b}c R

{b: ib - blip < 1} C RT

{b :||E(b- b)||12 < 1} C Ri

6 {b : I|b|,, < 1, I|b|I, 2 <r,b2 0O

7 Budgeted uncertainty set Ak
(1 < k < rn)

Demand uncertainty set DU(p, F)
8 (p>F)

Demand uncertainty set DU(p, F)

9 ( F < p < F)

Demand uncertainty set DU(p , F)
10 (0 < p< F)

{b: L < eTb < U, b > 01

conv(A,, {e})

conv(bi,..., bk)

{B ST I IeB < 11

1/

1/

1

1

1

1

1
1I+ mT n .P

1+ max b (b)
1<i< m

1 + max (ab)
1<i<m

1+ max b (ab)
1<i<mn

E'
1+ max >(ab)
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Table 3.1: Symmetry and corresponding stochasticity gap for various uncertainty sets.
Note that footnote (a) or (b) means the tight bound is from the symmetry bound
(3.13) or the scaling bound (3.17).
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Chapter 4

A Fairness-based Proposal for

Electricity Market Design

4.1 Introduction

The electricity industry has undergone significant deregulation and restructuring in

several regions of the United States since the late 1990s [79]. Vertically integrated

utility companies have been restructured; electricity production and transmission

were separated into different enterprises; Independent System Operators (ISO) and

Regional Transmission Organizations (RTO) have been established to manage the

regional transmission grids and wholesale electricity markets. Today, ten ISOs and

RTOs serve two-thirds of the electricity consumers in the United States and more

than half of the population in Canada,. Although more than a decade has passed,

some fundamental issues on electricity market design still remain hotly debated in

both academia and industry. Our work aims to provide new perspective and proposals

to some of these issues.

We focus on the day-ahead (DA) electricity market, which exhibits some of the

most difficult issues in market design. A day-ahead market schedules the supply

and consumption of electricity for the next day. Two essential components of a DA

market include an auction scheme that determines the production and consumption

levels of all market participants. and a pricing scheme that determines the electricity
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price [29, 49]. Most ISOs adopt the social welfare maximization principle and a

marginal cost pricing scheme (throughout the chapter, we denote them as MaxSW

and MCP, respectively). In this scheme, the auction decisions are made by solving a

unit commitment problem - a mixed integer optimization problem with the objective

to maximize the total social welfare while satsifying various operation, reliability, and

security constraints; the electricity price is determined as the incremental cost of

producing one more unit of electricity, which is derived from the dual solution of a

linear economic dispatch problem with fixed integer decisions.

A long noticed shortcoming of the MaxSW-MCP scheme is the so-called uplift

problem [59]. The uplift problem is that the electricity payment determined by the

electricity price cannot fully recover the production cost (especially the fixed cost) of

some committed generators; the ISO has to arrange side payments for such generators

to make up the loss.

Both academic researchers and industrial practitioners are in active search for a

solution. Recent proposals have focused on augmenting the current MaxSW-MCP

scheme by introducing prices for integer decisions [67, 88, 50, 44]. Enhancing market

transparency and competitiveness is clearly an important goal as claimed by the

existing proposals. In our opinion, the uplift problem is a symptom of what we

consider a deeper fairness problem in the currently used MaxSW-MCP scheme: some

generators that produce electricity make no profit, while other market participants,

especially on the consumer side, collect considerable utility surpluses.

To address this inequity, we introduce and investigate the notion of I-fairness that

addresses the tradeoff between social welfare and fairness. The case # = 0 corresponds

to current practice of maximizing social welfare, whereas 3 = 1 corresponds to a so-

lution that maximizes the minimum utility among market participants, the so-called

max-min fairness. Under the max-min fairness principle, every market participant

is guaranteed a nonnegative surplus, so no side payments are needed, and thus the

uplift problem is naturally solved. By varying 4, we investigate the tradeoff between

efficiency and fairness of the auction and pricing scheme. We formulate a family of

mixed integer optimization models that explicitly parametrizes this tradeoff. The so-
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lutions for different parameter values are used to generate an efficiency-fairness curve,

which demonstrates a significant improvement of fairness in our proposed schemes.

Such a frontier plot also illustrates a flexible tradeoff between efficiency and fairness

achieved by our proposal, and thus, it can be used to facilitate the ISO's decision-

making in choosing an appropriate operating point of its market. We further show

that the current operational practice (/ = 0) is not Pareto efficient, while there is a

,30 < 1, at which the social welfare is the same as current practice, while the fairness

property is strictly better, and the side payments are strictly lower than current prac-

tices. This gives a solution to another long noticed problem of the current practice,

namely achieve fairness and integrity of the auction in choosing from multiple (near)

optimal solutions. We broadly investigate the properties of such 4-fair solutions both

theoretically and empirically.

The chapter is organized as follows. In Section 4.2, we review the auction and

pricing scheme implemented in the current day-ahead electricity markets, and il-

lustrate the uplift problem in a simple example. In Section 4.3, we introduce the

concept of max-min fairness, and propose a new auction and pricing scheme based on

max-mi fairness. We discuss in detail the properties, computational methods, and

economic implications of max-min fairness. In Section 4.4, we introduce the notion

of 4-fairness that interpolates between maximum welfare and max-min fairness and

explore its properties. In Section 4.5, we investigate the case of 4-fairness as # -3 0

and propose a new pricing scheme. We show that under this pricing scheme the social

welfare is the same as current practice, while the max-min fairness is achieved, and

the side payments are strictly lower than current practices. We also show such a

pricing scheme is, in a sense, the most likely to eliminate uplift payment among any

pricing schemes. In Section 4.6, we apply the proposed 4-fairness to a large scale

problem based on ISO New England day-ahead market. Finally, we conclude with

some discussion of future research.
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4.2 The current day-ahead market auction and pric-

ing scheme

A day-ahead electricity market is a forward market that determines the supply and

consumption of electricity for the next operating day. In such a market, generating

units submit offer bids to the ISO. An offer bid is usually composed of two parts, a

variable cost part which specifies the functional relation between the supply quantity

and the marginal cost of production, and a fixed cost part which comprises of start-

up cost, shut-down cost, and no-load cost. Other information such as the ramp rate

(i.e., how fast a generator can change its output level) is also requested by the ISO

for scheduling purpose. The demand side is composed of fixed demand, which has

a fixed consumption level regardless of the electricity price, as well as price-sensitive

demand, whose consumption level is a function of electricity price as described in a

demand bid.

Using the bidding information collected from the market participants, the ISO

solves an auction and pricing problem that clears the market by determining the

commitment status and production levels of generators, consumption levels of de-

mand, and the electricity price. For this purpose, most ISOs in the United States

adopt the social welfare maximization auction and marginal cost pricing (IaxSW-

MCP) scheme. The objective is to maximize the total utility of the system, subject to

energy balance constraint, transmission network constraints, and other physical and

security constraints. Then, the electricity price is determined by the shadow price of

the energy balance constraint. This price is also called the uniform electricity price,

since it is constant at all different locations in the network. In reality, the shadow

prices of the transmission constraints are also incorporated, so that the electricity

prices are the sum of the uniform price and a component that is locational depen-

dent. In the following, we present a simplified IaxSW-MCP model, where we only

consider a single period auction with no transmission constraints. We also assume all

the demand bids are price sensitive. We will discuss later the implication of relaxing

these limitations.
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Let g be the set of generators, D be the set of consumers in the day-ahead mar-

ket. Let p and Pi be the minimum and maximum levels of production specified in

generator j's offer bid. Similarly, di and di are the minimum and maximum levels of

consumption specified in consumer s's demand bid. For each generator j E G, the bi-

nary variable xj is the commitment status (i.e., xj = 1 if the generator j is committed

to production, xj = 0 otherwise), and the continuous variable pj is the production

level in mega-watt (MW). The generation cost, Cj(p, xy) = fjx + cj(pj), contains

both fixed cost fj and variable cost cj (pj) as a function of pj. For each consumer

i E- D, di is the consumption level, and Bi(di) is the bid price function. In the current

bidding convention, Cj(pj, xj) is a piecewise nondecreasing linear function of the pro-

duction level p. Each linear piece is described by a bidding block. The consumer bid

Bi(di) is usually a linear function of consumption level di. The MaxSW-I\ICP scheme

is implemented by the following constrained mixed integer optimization model,

max E Bi(di) - C (pj,x )x,p,d E 9isD jEG

s.t. p- di = 0, (A), (energy balance)
jE9 ieD

p.xi < Pi pixi, Vi C G, (production level bounds)

K di < di, Vi E D, (consumption level bounds)

X E {0, 1), Vi E G.

The electricity price A (in dollars per mega-watt hour) is the dual variable of the

energy balance constraint in the corresponding linear optimization problem, where

the binary variable x is fixed at its optimal value. Using the interpretation of shadow

prices, we know that the electricity price A is the marginal cost of supplying one more

unit of electricity at the optimal level of production and consumption.

The above objective function can also be written as the sum of the utilities of

all generators and consumers, thus illustrating the nature of the social welfare maxi-

mization. In particular, the utility uj of a generator j E G is defined as the difference

between its revenue and bid costs, i.e., u - Apj - Cj(pj, xj). The utility ui of a
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consumer i E D is defined as the customer surplus, i.e., ui = Bj(di) - Adj. Then,

applying energy balance constraint EJEg Pi =ZEiED di, we have

S Bi(dj) - ( Cjp3 ,x ) = (Bi(d) - Adj) + E (Apj - Cj(pj, xj))
iEV ie jg

= (u, + 5 uj = Social Welfare.
i ED jc9

Thus, the MaxSW solution maximizes the total wellness of the system, and, from

a cost point of view, it is regarded as economically efficient. It is worth noticing

that the social welfare is independent of the electricity price. In other words, the

maximum economic efficiency can be obtained with different electricity prices. The

auction determines the overall efficiency of the solution, while the pricing scheme

affects the distribution of utility among participants. Other pricing schemes can be

used together with the MaxSW auction to achieve certain welfare distribution purpose

without sacrificing the system efficiency. We will propose one such pricing scheme

later in the chapter.

According to current practice, if a committed generator j has a negative utility,

that is., the revenue Apj is strictly less than the as-bid generation cost C (p, xr), then

the ISO compensates such a generator by paying a side payment that covers any loss,

i.e., the side payment is equal to max{C(pj, xj) - Apj, }. This payment is called the

uplift payment. The following simple example of four generators and two consumers

illustrates the MaxSW-MCP scheme and the uplift payment.

Consumer Bid Price d d

1 30 0 120

2 30 0 120

Generator Var Cost Fixed Cost p T)

1 15 150 50 100

2 16 140 0 100

3 19 120 50 100

4 22 100 0 100
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Throughout this chapter, the price or cost is always in $/MWh, and the produc-

tion or consumption level is in MW. The utility is measured in dollars. Under the

MaxSW-MCP scheme, both consumers are served at their maximum demand level.

The following table shows the electricity price, the generation levels, and the utilities.

The first four utilities are the utilities of the generators, and the last two are con-

sumers' utilities. The last column is the social welfare. As expected from the MaxSW

property, this is the highest level of social welfare achievable in this example.

Scheme Price Production Utilities SW

MaxSW-MCP 16 [100,90,50,0] [-50, -140, -270, 0, 1680, 1680] 2900

The uplift payment for the generators can be easily calculated as $50, $140, $270,

and $0. All the committed generators lose money without uplift payment, and the

distribution of utility is very lopsided toward consumers, who have very high sur-

pluses. This small example illustrates that the marginal cost pricing scheme does not

take into account the fixed generation cost, and the social welfare maximization could

potentially provide discriminating solutions that sacrifice utilities of certain partici-

pants in order to gain an overall high utility for the system. Both of these features

are critical in causing the uplift problem.

The current make-whole payment approach can be seen as a way to redistribute

utility among generators and consumers. Although it is easy to implement, the make-

whole payment is an out-of-narket action, and seems rather ad hoc. There are several

recent proposals that aim to solve the problem by a more systematic approach. For

instance, certain "commitment ticket prices" were introduced for binary commitment

variables in [67]; "stay-online" was considered as a type of service in addition to

electricity, and dual variables of some artificial "no-load constraints" were defined

as "6no-load clearing price" in [88]: dual variables of the mixed integer unit commit-

ment problem were used as electricity price in [50, 44], where it was shown that the

resulted electricity price minimizes the total uplift payments defined to cover both

the production costs and the lost opportunity costs (it is worth noticing that this

definition of uplift payment is different from the current ISO definition.) A detailed

comparison of the above three proposals can be found in [59]. All these schemes keep
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the social welfare maximization as the auction objective and determine the electricity

price using dual variables of either a linear economic dispatch problem with additional

artificial constraints, or a mixed integer unit commitment problem to reflect integer

decisions in the electricity price, which can be viewed as an extension of the marginal

cost pricing idea.

However as we pointed out, both the social welfare maximization auction and the

marginal cost pricing scheme contribute to the presence of the uplift payment. To

resolve this issue, essentially a certain form of redistribution of utility must occur

among the players. A new angle to look at the problem is to consider the fairness

property of the auction and pricing outcomes. In the next section, we introduce a new

auction and pricing formulation based on the notion of max-min fairness. Under this

scheme, the uplift problem is naturally resolved. Then, we consider the important

issue of tradeoff between economic efficiency and fairness, and propose the notion of

3-fairness and a family of new auction and pricing schemes.

4.3 Max-Min Fairness Based Electricity Market

Design

4.3.1 Fairness Concepts

Fairness issues in resource allocation problems have been extensively studied in many

areas, notably in social sciences, welfare economics, and some engineering applications

such as network commnunication[60, 651, air traffic flow management[19, 84], and some

financial management problems [56]. Many principles of resource allocation have been

proposed over the years, from the oldest theory of justice by Aristotle's equitable prin-

ciple that allocates the resources in proportion to some pre-existing claims or rights

that the participants have, to 18th century classical utilitarianism founded by Jeremy

Bentham that dictates an allocation of resources that maximizes the total utilities, to

Nash's proposal [63 , which allows a transfer of resources between two participants if

the gainer's utility increases by a larger percentage than the loser's utility decrease,
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to John Rawls's theory of justice [72] and Kalai-Smorodinsky's solution concept [54]

in bargaining problems, both of which give priority to the participants that are the

least well off, so to ensure the highest minimum level of utility that every participant

derives. For a comprehensive review and an investigation of the price of fairness in

resource allocation problems see [17].

Aristotle's equitable principle has been widely used in situations where partici-

pants have specific pre-existing rights to the resources such as in the case of profit

sharing between the shareholders. This is not the case for scheduling and trading

electricity in a deregulated electricity market. Therefore, Aristotle's principle is not

considered further. Bentham's utilitarianism is also extensively used in resource al-

location problems especially when the sum of all the utilities serves as a measure of

system efficiency. In fact, as mentioned in the first section, it has been adopted as the

auction scheme in ISO's electricity markets. However, the utilitarianism approach has

been criticised for its fairness properties, because some participants may suffer greatly

reduced utilities in order to confer a benefit to the system, as we demonstrated in the

simple example in Section 4.2. Nash's comparison principle and Kalai-Smorodinsky's

solution concept, are both derived from rigorous axiomatic foundations, see also [17].

We next introduce the concept of max-min fairness and an optimization formu-

lation for finding such a solution. We refer to Appendix (Section 4.8) for a formal

discussion of the basic properties of max-min fairness.

4.3.2 Max-Min Fairness

Let Q be the set of all achievable utilities in a resource allocation problem with n

participants. Let u be a vector of utility allocation, u - (Ui, 02, . . . , un) E Q. Then,

u is lexicographically greater than or equal to another v E Q, denoted as u Ix V, if

i1 2 vi, or if u1 = vi and U2 > V2, or if 11 = Vi, U2 = v 2 and a3 > v 3 , etc. In other

words, the first component of a vector is compared first, whose order determines the

order of the two vectors. If the first components are equal, the second components are

compared, and so on. Ve denote the problem of finding a lexicographically maximum

vector as lexmaxUEQ (Ui, 02,. .,un).
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If we sort u in a nondecreasing order, and denote the sorted version as

(U(1), U(2), - - . , U(n)),

the max-min fairness solution is defined as an optimal solution to the following lexmax

problem,

lexmaxEQ (UMi), U(2), . - - ,u(n)). (4.1)

Intuitively, a max-min fairness solution first maximizes the lowest utility level among

all the participants, then maximizes the second lowest utility level while ensuring

every participant derives at least the lowest level utility, and so on. Notice that

(4.1) involves sort operation, which is highly nonlinear. The following equivalent

formulation is more convenient to work with (see Lemma 15 in the Appendix).

lexmax (ri - eTsi, 2r 2 -e T 2 ... nrn-e sn)

s.t. ric-si<u. Vi =1,...,n,

si;>0, Vi=1,...,n,

u - Q.

Let (r*, s*..r*, s* ) and u* be an optimal solution to the above problem. Then

u* is a max-min fairness solution, and kr* - eTs* is the sum of the first k smallest

utilities of u*. Thus, the sorted utilities are given as u = r* - eTs* and u -

(kri - e si) - ((k - 1)ri? - e s-_,) for all k = 2..., n. The above formulation

suggests a simple algorithm that iteratively solves for each level of the sorted utility.

In fact, it is proven that the max-min fairness solution cannot be obtained by a single

optimization problem.

A simple iterative algorithm for max-mi fairness:

1. For k = 1, solve the following problem to obtain the smallest level of utility in a
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max-min fairness solution,

t* = max r1-eTsi

s.t. rie - s i < u,

Si > 0,

uEQ.

2. For k > 2, keep the previous k - 1 smallest utility levels and solve for the k-th

level. The variables are r1 , .. . , r, S1,..., sk, and u,

* = max krk - e Sk
r,s7u

s.t. jrj - e s ;j> t, Vj=l,..., k -1,

rje - sj < U, Vj =1.,k,

s;>0, Vj=1.-k,

u E Q.

3. At k n. the max-min fairness solution is obtained.

It is worth mentioning that t*1 < t* < ... < t*, as t* is the sum of the first k

smallest utilities.

4.3.3 Max-min Fairness Auction and Pricing Scheme

Assume N generators and I consumers participate in the market. Denote g
{1,. . ., N} as the index set of generators, and 'D = {N+1, ... , N+M} for consumers.

As discussed in Section 4.2, the ISO has bidding information of each generator's cost

function Cj, production range p ,pJ, and each consumer's value function Bi, demand
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range di, di. We propose the following max-min fairness auction and pricing scheme,

(MMF) lexmax (r1 - eTs1 , 2r 2 - eTs 2 , . ., (N + M)rN+M - eT SN+M) (4.2)

s.t. rk - Ski < Api - Ci(pi, xi), Vi E 9, k E G U D, (4.3)

rk - ski < Bi(di) - Adi,Vi E D, k E g U D, (4.4)

Sk > 0, VkcguD, (4.5)

eTp - e'd = 0, (4.6)

P xi < pi < Pixi, ViE g, (4.7)

d < di < di, Vi D, (4.8)

A>0,xiE(0,1}, ViEg. (4.9)

Constraint (4.6) is the energy balance equation. (4.7) and (4.8) are production and

consumption limits for generators and consumers. Note that the lower consumption

level of a consumer is always zero, following the current bidding practice, i.e., d = 0

for all i. Thus, no binary variables are required for loads.

The above max-min fairness problem can be solved by applying the simple iterative

algorithm outlined in the previous subsection. In particular, we have the following

algorithm.

1. k = 1, maximize the minimum utility level: t* denotes the maximized minimum

utility level.

(AIMM 1) t* max ti

s.t. t1  AIpi - Ci(pi, xi), Vi E

t i < Bi(di) - Aidi, Vi E D,

e p - edd = 0,

d < di < di, Vi E D.

A 2 0,x i E {0, 1}, ViEg .
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2. k = 2, . .. , N+M, t* is the maximized k-th smallest utility level, while ensuring

the first (k - 1) smallest utility levels are at least t*,. . .t*

(AMF) t*,= max krk - eTSk

s.t. rj - si < AkAp - Ci(Pi, Xi), Vi E g,Vj = 1,..., k,

rj - si < Bj(d) - Akdj, Vi E D,Vj = 1,..., k,

jrj - eTsj > t* , Vj = 1, ... , k - I,

s3 > 0, Vj = I, ..., k,

eTp - ed = 0,

pxi _p < pixi, ViE g,

d di < di, Vi E D,

Ak > 0, Xj E (0, 1, ViEg.

3. k N + Ml, the optiial solution (x*, p*, d*) of (AIAIFN+AI) is the final max-min

fairness auction decision, and the final electricity price A* = A*

Each (AIMMFh.) is a mixed-integer optimization problem with nonlinear constraints

caused by the terms Akpi and Ad4. To solve (MMFIk), we use a two-level strategy:

first fix the price variable Ak and solve the corresponding linear M1IP by a commercial

solver such as CPLEX, then search over Ak which is a one-dimensional variable. Some

special properties of (MMFA.) are shown in the next subsection that help make the

computation more efficient.

4.3.4 Properties of the MMF Scheme

In this subsection, we explore various properties of the proposed NIIF scheme from

both economic and computational perspectives. In particular, we study the effect

of the MIF scheme on utility distribution and uplift payment, and the behavior of

the electricity price and its implication (Theorem 10, Lenna 7, and Corollary 1).

Structural properties of the subproblem (AMFk), such as the activity of market

players. the quasi-convexity and continuity of the first k smallest utility as a function
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of Ak, are discussed in Lemmas 8, 9, and 10. These properties are exploited in the

solution algorithm to accelerate the computation.

Theorem 10. t* > 0 for all k - 1,..., N + M. Thus, the uplift payment is always

zero.

Proof. Observe that the zero solution, (A, x, p, d, r, s) = 0, is feasible for (MMF)

problem, where every participant's utility is zero. This zero solution must be domi-

nated in lexicographic order by the utilities of the max-min fairness solution. There-

fore, the minimum level utility must be nonnegative, i.e., t* > 0, which implies every

generator and consumer has a nonnegative utility in the max-min fairness solution.

Thus, each generator's production cost including both variable and fixed costs is fully

covered by its electricity revenue. The uplift payment is always zero in a max-min

fairness solution. ]

This is a simple but important result. Among various forms of fairness, the max-

min fairness is regarded as the strongest. Our results show that improving the fairness

property of the auction and pricing solution is effective in resolving the uplifty pay-

ment problem. Another interesting implication is that if some consumer has a fixed

demand regardless of the electricity price, then the all zero solution may not be fea-

sible for the (MMF) problem anymore, and the uplift payment can again be positive.

This indicates that increasing demand responsiveness is helpful in reducing uplift

payment in the max-min fairness scheme.

Next, we characterize the electricity price in the MMF scheme. The production

cost function C (pj, xj) of a generator includes the variable cost and the fixed cost

such as startup and no-load costs. We assume a simple case where both generators

and consumers have single-block bids. Then, the utility of a generator j is u=

(A - c)pj - f , where cj is the variable cost and fj is the fixed cost. The utility of

a consumer i is ui = (bi - A)dj, where bi is consumer i's valuation of electricity. We

call a committed generator or a served load an active participant.



Lemma 7. The final electricity price A* satisfies

mrax (c + )< A* < min b,. (4.10)
j active pi i active

Proof. To avoid triviality, we assume there exists at least one nonzero feasible solution

to the (MMF) problem. Then the active participants in the final auction decision

must have positive utilities, i.e., (A - cj)pj - f3 > 0 and (bi - A)di > 0, therefore,

c. + f < A < bi, for all active i, J's. D

The above lemma shows that the final electricity price is strictly higher than the

average cost (thus marginal cost) of any active generator. This 'premium' over the

variable production cost provides sufficient revenue for active generators to recover

their fixed cost.

Furthermore, the price is strictly lower than the valuation of electricity of any

active consumer. We assume a linear valuation function Bi(di) = bidi in the lenma.

However, for a more general Bi(di), a similar relationship holds as A < BBi(di)/&di for

any active demand i. This clearly shows that the price sensitivity of demand strongly

affects the final electricity price. In the industry, there is a consensus that increasing

demand-side responsiveness will help lower the electricity price. This lemma rigor-

ously demonstrates this effect in the max-min fairness auction and pricing scheme.

From (4.10), it may seem that the generators can simply increase their bidding

costs or consumers can decrease their offer price to manipulate the price. However,

because only active participants affect the price and who will be active is not known

a priori, naive manipulation of price may put them in disadvantage. An analogy can

be found in the traditional MaxSW-MCP market: since generators do not know in

advance who will be the marginal unit, simply increasing the bid cost might make

the generators not committed. It is an interesting topic to systematically study the

bidding behavior in a max-min fairness market.

The following corollary of Lemma 7 shows that bids of excessively high cost or

offers of excessively low valuation will not be active.
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Corollary 1. In the max-min fairness scheme, a generator is not committed if its bid

cost is higher than every consumer's offer price. Similarly, a consumer is not served

if its offer price is lower than every generator's bid cost.

Proof. Because the served consumers' offer prices and the committed generators' costs

are strictly separated by the electricity price shown in Lemma 7. D

Since the electricity price A is a decision variable in the (MMF) problem, each sub-

problem (MMF) is a bilinear mixed integer optimization problem. Solve (MMFk)

is nontrivial. In the following, we show some properties of the (MMF) problem that

are useful for simplifying computation.

A participant that is active at one level might not be active in the following levels.

However, in the following case. all participants are active in the final max-min fairness

solution, and the integrality constraints in the MMF problem can be dropped.

Lemma 8. If t* > 0, then all participants are active, and at subsequent levels, all

participants remain active.

Proof. A participant's utility is positive if only it is active. In subsequent levels, all

participants must remain active to have nonzero utility, since t* > t* > 0. O1

On the other hand, t* = 0 implies that, for any electricity price A,, there is always

a participant who would have a negative utility if it becomes active. When t* = 0,

the electricity price A, is not uniquely defined. Therefore, the first level k that has

t* > 0 is important in determining the final electricity price. At this level, we can

discard the first (k - 1) players that have zero production and consumption levels,

and set the rest players to be active, thus reduce the situation to the case of t* > 0.

Without loss of generality, we can analyze the property of ti(A) as a function of A,

which can be writen in a more compact form as follows,

ti(A) = max min{(A - cj)pj - fj.. (bi - A)di, . . .1} (4.11)
(pd)EY

where Y is the polytope of the feasible p and d, defined by constraints (4.6)-(4.8).
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Definition (4.11) might seem to suggest a piecewise linear structure of ti(A). In-

terestingly, this is not the case. Simple examples show that ti (A) is piecewise dif-

ferentiable, but some pieces can have nonzero curvature. Function ti (A) can be also

written as a standard linear optimization problem with constraint matrix linearly

parametrized by a single variable A. This type of problems with general matrices

are discussed in [38], which shows that t1(A) could be nonconcave and even discon-

tinuous. Fortunately, the special structure of our problem makes ti(A) a continous

quasi-concave function.

Lemma 9. The function t 1 (A) is quasi-concave in. A E [maxi ci, minj bj.

Proof. Define a function h(-y, p, d) = min{fy pj - fL,... , yjdj, . . } with domain 'y >

0, p > 0, d > 0, and f;'s are nonnegative constants. Then h(y, p, d) is a quasi-

concave function, because the upper level set {(-, p, d) I h(7, p, d) 2 r, (y, p, d) > 0}

is a convex set.

Define an affine transformation as yj -+ 'y-c, 7_ -+ by -- yj, pi -+ pi, di -> dj on the

same domain, i.e., 'Yi - ci > 0 and by - > 2 0, p, > 0, dj > 0. The resulting function

h(-y, p, d) is still quasi-concave. Then, restricting all -v= A where max c < A <

minm bj, h(A. p, d) is quasi-concave in (A, p, d). Then, t1 (A) = max(p~d)EY h(A, p, d) is

quasi-concave. D

For the continuity of ti (A), we have the following more general result.

Lemma 10. Assume function .f(x, y) is jointly continuous in (X, y) E dom(f) and

C is a compact set in R"' then g(x) := maxyc f(x, y) is continuous in dom(g).

Proof. VX 1 , X 2 c dom(g), we have

|g(Xi) - g(X2)|= I |max f(iy) - max f(x 2 , y)
-YEC yEc

< mnaxif (Xi, Y) -- f(X2 Y)-

Since f(x, y) is jointly continuous in (x, y) and C is compact, f(x, y) is uniformly

continuous on C. Hence, Ve > 0, there exists 6 > 0. such that if(xi, y) --f(x 2, Y)I < e
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for any ||(x1,yi) - (x2,y 2)|| < 6. Therefore, jf(x 1,y) - f(x 2,y) < E, for any

|(xi, y) - (x2, y)| = X1 - X211 <_ 6.

Based on our computational experience, we conjecture that ti(A) is actually con-

cave in the domain where ti(A) is strictly positive, and ti (A) has a unique maximizer.

The quasi-concavity and continuity of ti (A) makes the one dimensional maximization

problem over A easier than the case of a general nonconcave function. Using the

results from [38], we can do a binary search over A to find the maximizer.

We can compute the MMF solution of the simple example of four generators and

two consumers given in Section 4.2. Both MaxSW and MMF solutions are listed

below. Two consumers are served at the maximum level di, so they are omitted from

the table.

Scheme Price Production Utilities SW

MaxSW 16 [100,90,50.0] [-50, -140, -270, 0, 1680, 1680] 2900

MMF 27.0945 [50,44.043,57.895,88.062] [454.72,348.63, ", ", ", "] 2197.89

The notation " means the last four utilities are all equal to 348.63. In the MaxSW

solution, the electricity price is set by generator 2. The utility distribution among

generators and loads is quite uneven. All three active generators have negative util-

ities [-50, -140, -270], i.e. their production costs are not covered by electricity

revenues. The MMF solution has a higher electricity price $27.0945. All generators

are committed, and are making positive profit, therefore no uplift payment is needed

as anticipated by Theorem 10.

In the max-min fairness scheme, utilities are more equalized between generators

and consumers. An inevitable consequence of the improved fairness is the relative

reduction in system efficiency. In fact, as shown in the table, the social welfare of

the max-min fairness solution is $2197.94, about 75.8% of the MaxSW solution. In

general, the social welfare of a. fairness solution is lower than that of an MaxSW

solution. While it is desirable to improve the fairness of an auction solution, it is

also important to achieve a high economic efficiency. In the next section, we propose

a notion of 3-fairness and a family of auction and pricing schemes, which explicitly
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explores the tradeoff between fairness and efficiency. The max-min fairness scheme

proposed in Subsection 4.3.3 is a special realization of this family.

4.4 0-Fairness

Since the max-min fairness solution may incur low social welfare, and the MaxSW

solution suffers from fairness issues, we propose a notion of -fairness that interpolates

these two extremes. The following is the definition of s-fairness in an algorithmic

framework.

1. Fix a # E [0, 1). For k = 1, solve the following problem,

(PI) max (1 - 3) (B (dj) - Ci(pi, xi) + 3t1

s-t. ti Aip, - Ci(pi, Xi), Vi E 9,

ti Bi (dj) - AId i , V E D,

e lp - e7id = 0,CP Cd 0,

pX 1 li Apixi, Vi C,

di di < di, Vi E D,

A2 . 0Forxi E o, 1}, VI p E

2. For k =2,. ... , N + A]I solve the following problem,

(Pa) max (1 -#) Bj(dj) -( C(pix) + 3(krk - e'
\iED iEg

s.t. ry - sp < Akpi - Ci(pixi), Vi C G, Vj =, ... , k,

r - s Bi < B1 (dj) - Ad1 , Vi E D, Vj 1. k,

jri - eT s ;> t*,j Vj ... , k - 1,

Si > 0, Vj=1,...,k,

s3)



e Tp - eTd = 0,

xi A p Ax ii, Vi E G

di < di < d, Vi E D,

Ak >0, i E {07I, Vi Eg.

Let Rk be the set of optimal (r*, s*) of the above problem.

Let t* +- max(r*,s*)Eak{krk - e s[}.

The final auction and pricing solutions are obtained at stage N + M, denoted as

(z* 1p * , d* , A*).

In the following, we first show that the solution of the above /-fairness trade-

off scheme is Pareto optimal. To prove for a general setting, we use the notation

introduced in Section 4.3.2: Let Q be the set of all achievable utilities in a re-

source allocation problem with n participants. Let u be a vector of utility allocation,

u = (u 1 ,. .12 .- un) E Q, and (ut(i), U(2), u(,)) is the utility sorted in a nonde-

creasing order. Then, the k-th level problem in the 3-fairness scheme can be written

as,

n k

(Ps) max (1-j)Zui + u(i)

s.t. Z t) t> j=1. k-i

aQ.

Theorem 11. Let u* be an optimal solution of the 3-fairness tradeoff scheme. Then.

U* is Pareto optimal.

Proof. Suppose u* is not Pareto optimal, then there exists another utility vector

u E Q such that ni > u* for all i =. n and for at least one i, ui > u. Then, we

have E" ua > E' U*.

Now we want to show that the sorted version of u also dominates the sorted version

of u*, i.e., uj) > u*) for all i. Without loss of generality, assume u* is already sorted,
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i.e., u = u() for all i. For a specific i E {1,.. . , n}, let j be the original position of

u(i), that is, u(i) = uj, and let k be the sorted position of ui, i.e., ui = utk). If j i,

then (L(*) 2u; 2 - U). Ifj < i and k < i, then ) (k) = i > * = Ui)

If j < i and k > i, then among u(i),..., u(i_1), at least one of them is from an element

in ui 1, .... t,, i.e., there exists a E 1, . .. t, - 1} and b E {i + 1, ... , n} such that

U(a) = Ub. Then, u(i) U(a) = Ub > ub - Ui = U. Therefore, uw > vu. for all i.

Hence, for any j = 1,..., k - 1, it holds that >Ie uti) > E Uj > t5. Thus,

u is a feasible solution of the tradeoff scheme. But K" ui + Eje u(i) > E" Ua +

E3- u), which contradicts with the optimality of u*. As a special case, this also

shows the well-known fact that the max-min fairness solution (for 3 = 1) is Pareto

optimal.

The parameter # controls the degree of tradeoff between the social welfare and

fairness. The case # - 1 is the max-min fairness scheme proposed in Subsection 4.3.3.

When / approaches zero, more weight is put on the social welfare part. In particular,

we have the following property of t* that is analogous to the fairness solution.

Lemma 11. t* maximizes the sum of the first k smallest utilities among all the

optimal solutions of (P4).

Proof. For each optimal solution (r*, s* , u*) of the problem (P), by Lemma 14 (see

Appendix), (kr* - e s*) is equal to the sum of the first k smallest utilities. Since

we choose t* as max(.,,-)c f{kr* - es*}, t* is the maximum over all the optimal

solutions. L1

Theorem 12. Let Zk(/3) be the optimal value of the tradeoff scheme (P4), and Z* be

the maximum. social welfare of the MaxSW scheme. Then, the following limit holds

for all k = 1,..,N,

lin Zk() Z*.

Proof. It suffices to show that Zk() is continuous in /3 at i3 = 0. Notice that

the parameter 3 is only in the objective function, and does not affect the feasible
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region. Using perturbation theory developed in [25, Proposition 4.41, a set of sufficient

conditions for the continuity of Zk(3) are: (a) the objective function

f(p, d, X, r, s,3) :=(1 -p3) Bi(di) -- Ci(pi, xi) + 0(krk - eTsk)
\iED iEg

is continuous in (p, d, x, r, s, #); (b) the feasible region of Problem (Pk) is closed and

bounded.

Condition (a) is guaranteed by the continuity of Bi(di) and Ci(pi, xi), especially

if we only consider linear functional form for Bi(di) and Ci(pi, xi), i.e., Bi(di)

bidi, Ci(pi, xi) = cipi + fixi. For Condition (b), the original feasible region is closed,

but unbounded, because r, s, A may take arbitrarily large values. However, we can

restrict their values without affecting the optimal value. The price A can be limited as

0 < A < maxiED bi, since the optimal price must be below the highest offer price from

consumers. From the production and consumption level constraints, we know the

feasible region for (p, d, x) is closed and bounded, combining with the boundedness

of A, it implies that the set of possible utilities is closed and bounded, independent

of /.

By Lemma 11, for any fixed 0, the optimal (jr* - eTsj) is equal to the sum of the

first j smallest optimal utilities. Then, we can apply Lemma 14 (proved in Appendix)

that u> < rj < u*,), 0 sp < utj+1) - uz for I E {(1).... (j)} (i.e., for all i such

that un is among the first j smallest utilities), and sp, - 0 for all other i's. Since

the utility set is bounded, r; and s* are bounded for all j 1,. . . , k. Therefore, the

entire feasible region of (Ps) is closed and bounded, independent of 3. D

The above theorem confirms with the intuition that as 3 -+ 0, the tradeoff scheme

converges to the MaxSW scheme. However, notice that this convergence is not trivial

in the sense that the continuity of the objective function alone is not sufficient to

guarantee the continuity of the optimal value. The compactness of the feasible region

is also crucial (see discussion in [25, Section 4.1]).

134



Production
[50, 44.0, 57.9, 88.1]

[50,44.0,57.9, 88.1]

[50, 44.0, 57.9, 88.1]

[55.9. 60.5, 83.3, 40.3]

#
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.069

0.068

0.05

MaxSW

Price
27.1

27.1

27.1

26.1

25.4

25.4

25.4

24.9

25.4

25.9

27.45

27.47

27.47

16

Utilities
[454.7,348.7, 348.7, 348.6, 348.7]

[454.7, 348.7, 348.6, 348.6, 348.7

[454.7, 348.6, 348.6, 348.6, 348.6]

[469.9, 469.8, 469.8, 64.7, 469.9]

[548.8,548.7, 522.6, 0, 535.2]

[550.2, 550.0, 520.1,0, 548.9]

[550.3,549.6, 520.7,0, 548.7]

[627.4, 626.7,303.3, 0, 626.2]

[712.1,712.1,303.5,0, 553.2]

[781.9, 781.9, 303.5 ,0, 492.0]

[1095, 889.1, 303.5, 0, 306]

[1097, 892.3. 303.5, 0. 303.6]

[1097, 892.3, 303.5, 0. 303.6]

[-50, -140, -270. 0. 1680

Table 4.1: #-fairness tradeoff schemes for the simple example. For each #, the first
four utilities are the utilities of generators; the last one is the consumer utility (since
both consumers have the same utility, only one is shown).
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[67.0, 73.0,

[67.2. 73.2,

[67.2, 73.2,

[79.5, 87.3,

[83.0, 90.7,

[85.5, 93.1,

[100, 89.9,

[100, 90,

[100, 90,

[100, 90,

99.9,

99.6,

99.7,

73.2,

66.3,

61.4,

50.1,

50, 0]

50, 0]

50, 0]

SW
2197.9

2197.9

2197.9

2414.1

2717.2

2718.3

2718.1

2809.8

2813.1

2851.4

2899.6

2900

2900

2900



We apply the tradeoff formulation to the simple example of four generators and two

consumers. The solutions for different 3's are shown in Table 4.1. The consumption

levels are ignored, since the consumers are always served at d.

As shown in the table, the social welfare of the tradeoff solutions increases when #
decreases to 0. The utility vectors of larger #'s tend to dominate the utility vectors of

smaller /'s in lexicographic order. These reflect the decrease in fairness as # decreases

to 0. Also notice that none of the tradeoff solutions needs any side payments, while

the MaxSW scheme requires considerable side payments of $50, $140, $270 for the

three committed generators.

As / approaches 0, social welfare of the tradeoff solution converges to the maxi-

mum level achieved by the MaxSW solution (see # = 0.05), as expected from Theorem

12. Note that the production levels also converge to the MaxSW solution, and the

corresponding electricity price is strictly higher than the MaxSW price.

Also notice that there exists a 3o = 0.068, such that for all 3 in the range 0 <

# 0, the tradeoff scheme achieves maximum social welfare, as well as the same

production levels as in the laxSW solutions. Furthermore, the fairness property of

the tradeoff solution is strictly better than the MaxSW-MCP scheme reflected by the

more even distribution of utilities, and the side payment is zero, which is strictly less

than the current practice.

This property of the 3-fairness tradeoff scheme has an important implication on

another long noticed problem in the current practice, namely, how to achieve fairness

and integrity in choosing from numerous optimal or near-optimal MaxSW solutions

[53, 48]. Although all these solutions have the same system level social welfare,

choosing one solution from others could have significant financial implications on the

welfare of individual generators and consumers. The current practice does not impose

any criteria in choosing one unit commitment solution from other solution candidates.

In fact, it is nontrivial to even compute all the (near) optimal solutions. Our proposed

tradeoff scheme provides a solution to this problem. When /3 < 3o, as shown in the

above table, the tradeoff solution achieves the optimal social welfare and max-min

fairness. In other words, in accordance with well formulated fairness principle, the i3-
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fairness tradeoff scheme automatically selects the most fair solution from potentially

numerous maximum social welfare solution candidates. Furthermore, this is done

without explicitly computing other social welfare solutions.

In the next section, we further explore this convergent property of the #-fairness
scheme and propose a decoupled, sequential auction and pricing model that achieves

maximum social welfare and strictly improved fairness with the advantage of much

simplified computation.

4.5 Efficient Fairness Pricing Scheme

As shown in Theorem 12 and the computational experiment, when # -+ 0, the #-
fairness tradeoff solution achieves the same level of maximum social welfare as the

MaxSW scheme, but strictly improves the fairness and lowers (or eliminates) the side

payment. However, if 3 is exactly equal to zero, the objective function of Problem

(Pk) only has social welfare and loses control over the fairness term, thus the electricity

price is not properly constrained. This suggests an interesting 'limiting' auction and

pricing scheme, where the auction follows the laxSW practice, and the electricity

price is determined by the max-min fairness principle. We call such a pricing scheme

efficient fairness (EF). In particular, we propose the following auction and pricing

scheme,

1. Auction: Maximize social welfare.

(AEF) max E Bi(di) - E Ci(pi, xi)
iED icG

s.t. e Tp - eid = 0,

App - Add < f,

ixi - pi <- Pixi, VII E g,

d < di < di, Vi D,

A 0, xi E {o,1, ViEg.
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Denote the optimal solution as (*EFI PEF, dEF).

2. Pricing: Fix an auction solution and solve for electricity price. Denote the

optimal electricity price as AEF-

(PEF) t: max t

s.t. t < Ap' - Ci(p* x*), Vi E g and active,

t < Bi(d') - Ad*, Vi E D and active.

The pricing step chooses an electricity price that maximizes the minimum utility level

among the active players (i.e., committed generators and served consumers). In the

following, we will show this achieves the max-min fairness solution, thanks to the

uniqueness of the electricity price in this pricing model. The pricing scheme is a

simple linear optimization problem.

Theorem 13. The pricing problem (PEF) has a unique solution A*, under which the

obtained utility is a max-min fairness solution.

Proof. The pricing problem (PEF) can be written as

maxmin{Ap* - (cjp + f), - - -, bid* - Ad, ...
A>O

for active generators and consumers i.e., pj* > 0, d* > 0. The objective is a piece-wise

linear concave function. The maximum is achieved at a breakpoint, where a linear

piece of a generator utility intercepts with another linear piece of a consumer utility.

Since the slope of each linear piece is nonzero, the interception is unique. Thus, the

(PEF) pricing model has a unique optimal electricity price A*. Any other price would

lead to a strictly lower minimum level utility. Therefore, the utility determined by A*

is a max-min fairness solution. E

For a fixed auction solution (p*, d*, z*), different pricing models, such as the

conventional marginal cost pricing, the convex-hull pricing of [50, 441, or the proposed
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EF pricing, determine potentially different prices to dictate the distribution of utility.

In fact, we can characterize the necessary and sufficient condition under which the

EF pricing has zero uplif payment.

Theorem 14. For an auction solution (p*, d*, x*), the efficient pricing model (PEF)

has zero uplift if and only if

max (ci + mn bi. (4.12)
j active p / i active

Proof. If the uplift payment is zero under EF price A*, then for any active generator

j, (A* - cj)p, - fj > 0, thus A* > cj + fl/pj. Also, for any active consumer i,

(b, - A*)d* > 0, hence A* < bi. Therefore, we have (4.12).

Conversely, we already know from previous theorem that the EF price A* is the

unique solution of the interception of a generator's utility and a consumer's utility.

Denote these two players as generator k and consumer 1, then (A* - ck)pk* - f-

(b - A*)d*, so A*= (ck + fk + bd*)/(p* + d*). If (4.12) holds, then c< + A/p. K bi.

Therefore, we have A* < bi, which implies that the minimum level utility (b, - A*)d* >

0, thus the uplift is zero. D

In fact, the above proof shows that (4.12) is a necessary condition for any pricing

scheme to have zero uplift payment. However, it may not be a sufficient condition for

certain pricing schemes. For example, recall the simple example of four generators

and two consumers. For the MaxSW auction solution [100,90, 50,0, 120. 120], the

average generation cost of active generators can be computed to be [16.5, 17.5., 21.4]

(the first three active generators), while the bid price of active consumers is 30.

Therefore, (4.12) holds for this solution. However, there is significant uplift payment

(all active generators need uplift) under marginal cost pricing, which means (4.12) is

not a sufficient condition for the MCP to have zero uplift. It turns out that (4.12)

is not a sufficient condition for the convex-lull pricing scheme proposed in [50, 44]

either. Indeed, the convex-hull price can be computed to be 20.2 in this case, and

the utilities of generators and consumers are [370, 238, -60, 0, 1176, 1176], so the third
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generator needs uplift. Note that we always adhere to the definition of uplift used in

the industry.

From the above discussion, the efficient fairness pricing scheme can be viewed

as a pricing scheme that is the most likely to have zero uplift. If (4.10) does not

hold, or equivalent if the efficient fairness pricing scheme has uplift, then there will

be uplift payment under any pricing scheme. If this happens, the EF pricing scheme

minimizes the largest uplift payment among all pricing schemes, because the minimum

level utility is maximized.

As a summary, our proposed schemes represent a complete spectrum that spans

from the maximum social welfare auction (MaxSW) and marginal pricing with no

fairness consideration (the current practice), to the MIF scheme with full max-min

fairness consideration. We proposed #-fairness scheme as a controlled tradeoff of

fairness and efficiency. When 3 is close to zero, we empirically showed that there

exists a So > 0 such that the maximum social welfare is achieved, the fairness is

strictly improved, and the uplift is eliminated or reduced. This also bears a significant

implication on a long noticed problem of choosing from multiple optimal UC solutions

to maintain certain fairness and integrity. In particular, the I-fairness tradeoff scheme

with < o can be used to automatically select a UC solution of maximum social

welfare and satisfies a well-defined fairness principle. We further proposed a Efficient

Fairness pricing scheme that achieves the maximum social welfare while impoving the

fairness property. We showed that among all possible pricing schemes, the EF pricing

scheme is the most likely to eliminate uplift payment. When there has to be uplift

under any pricing scheme, the EF scheme minimizes the largest uplift payment. In

the following section, we apply the proposed schemes to a large scale problem, and

introduce a frontier plot of efficiency versus fairness.

4.6 The Efficiency-Fairness Tradeoff Curve: An

Example Using Real-World Data

In this section, we apply our proposed schemes to an auction and pricing problem

of 143 supply bids and 109 demand bids in a single hour based on the bidding data
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of the day-ahead market operated by ISO New England. For simplicity, we only use

the first bidding block of each bid and price-sensitive bids. Transmission network

is assumed to be non-congested (which is the case as indicated by the published

data), therefore network constraints are omitted. Recall that our proposed scheme

is parametrized by a scalar quantity / (0 < # 1). The case / = 1 corresponds to

the max-min fairness scheme; # = 0 corresponds to the current ISO MaxSW-MCP

scheme; the intermediate values of / correspond to the tradeoff with an objective of

(1 - 3) - EFFICIENCY + / - FAIRNESS.

Scheme Social Welfare Scheme Social Welfare

MMF 64499.70 # = 0.3 80126.85

3 = 0.9 69593.76 EF 80267.25

# = 0.7 74677.97 MaxSW 80267.25

# = 0.5 75894.90

The above table shows the efficiency of the max-min fairness scheme (MMF), the

tradeoff scheme with t3 = 0.3,0.5,0.7,0.9, the EF scheme, and the current ISO's

MaxSW scheme. The social welfare, thus the efficiency, increases from MMF scheme

to MaxSW scheme. The Efficient Fairness (EF) scheme achieves the same social

welfare as the MaxSW scheme and strictly improves fairness properties.

Figure 4.6 shows four efficiency-fairness curves constructed from solutions of the

above seven schemes. In each curve, the efficiency of a solution is measured by its

total utility, and the fairness is quantified by one of the four well-known inequity

measures (See Figure 1 for definitions) [61]. Notice that higher value in the 'Fairness'

axis means more unfair.

We can see from Figure 1 that our proposal establishes a spectrum of tradeoff

between efficiency and fairness. At one end, the current practice MaxSW-MCP has

the highest efficiency, but suffers from the worst fairness property indicated by all four

inequity measures. At the other end, the max-min fairness scheme (0 = 1) achieves

the best fairness property with a 20% reduction in efficiency. In between, by varying

#, our proposed scheme significantly increases fairness while controlling the decrease
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Figure 4-1: Efficiency-fairness tradeoff curve. Let u be the utility vector of a solution
and U be its mean. Four inequity measures are defined as variance: Ei(ui - f)2

sum of absolute deviations: >j Ej I ui - ng|; reversed Jain's index: " ; Gini in-
Ei Ej ui-flu

dex: . In each plot, from the highest efficiency are the solutions of
the MaxSW-MP scheme, the limiting pricing scheme, and the tradeoff scheme with
# = 0.3, 0.5, 0.7,0.9.
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in social welfare. Moreover, the EF pricing scheme achieves the same efficiency as

the MaxSW-MP scheme, while improving the fairness. This suggests that the current

electricity market is not operating on the pareto frontier of efficiency versus fairness.

The efficiency-fairness curve generated by our schemes provides a valuable decision

tool for the ISO to identify a proper operating point of its market. For example, as

shown in Figure 1, the tradeoff scheme at 3 = 0.3 considerably improves fairness with

little decrease in efficiency. Thus, such a scheme could be a desirable candidate for

the ISO electricity market's operating policy.

4.7 Conclusion

Motivated by the evidence of unfairness revealed by the uplift problem, we introduced

the well-defined max-min fairness concept into the electricity market design problem,

and proposed the max-min fairness (MF) auction and pricing scheme. Various

computational and economic properties of this scheme are investigated. An important

outcome is that under the IMF scheme, the uplift payment is always zero.

Then, we proposed a new notion of -fairness auction and pricing scheme, which

explicitly trades off fairness and efficiency. We investigated the Pareto optimality

property of the solution, and the convergent behavior as # -4 0. We empirically

showed that there exists a range of 3 E (0, lo], where the tradeoff scheme achieves

the same level of social welfare as the MaxSW scheme, strictly improves the fairness,

and eliminates or reduces the uplift payment. An important implication is that

such a tradeoff scheme provides a solution to a long standing problem of the current

practice in choosing a proper solution from multiple optimal or near-optimal social

welfare solutions (as first raised in [53, 48]).

We further introduced efficient fairness pricing scheme as a limiting case of j -+0,

which decouples the auction and pricing, and simultaneously achieves the maxiumm

efficiency and the max-min fairness. We showed that the necessary condition for any

pricing scheme to have zero uplift payment is also sufficient for the EF scheme. In this

sense, the EF scheme is the most likely pricing scheme to eliminate uplift, payment.
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In the situation where the uplift is unavoidable by any pricing model, the EF scheme

minimizes the largest uplift payment among all possible pricing schemes.

We test our models on a large scale problem using data obtained from ISO-NE's

day-ahead electricity market. Using four well-known equity measures, we construct

efficiency-fairness curves, all of which show a consistent picture of tradeoff between

fairness and efficiency achieved by our models. A particularly revealing observation

shown by the efficiency-fairness curves is that the current ISO practice is not operating

on the Pareto frontier of efficiency versus fairness. Proposed #-fairness tradeoff scheme

and EF pricing scheme strictly improves fairness while obtaining the same level of

efficiency as the MaxSW scheme. These frontier curves can be a valuable tool to

facilitate the ISO decision in choosing a proper operating policy of its market.

4.8 Appendix: Max-Min Fairness

In the following, we introduce the definitions of lexicographical order, lexmax problem,

and the concept of max-min fairness. Then we discuss the formulation of max-min

fairness as a lexmax problem and the solution algorithm. Most of the properties and

formulations presented here have appeared in previous papers on fairness, including

[4, 26, 57] and a series of papers by Ogryczak [64, 65, 66].

Let Q be the set of all achievable utilities in a resource allocation problem. Let u

be a vector of utilities of all the participants of a resource allocation solution.

Definition 1. A vector U = (u1 ,'u2 , . ,un) E ]R" is lexicographically greater than or

equal to another v E R", denoted as u Ie, v. if and only if u1 > v 1 , or u1 = v1 and

'12 V2 , or Ui = Vi, U2 = v 2 and 113 v 3 ,. etc.

In other words, the first component of a vector carries the most weight and is

compared first. The order of the first components determines the order of the two

vectors. If the first components are equal, the second components are compared, and

so on.

Definition 2. Problem, leximaxuEQ (u1 2 . Un) is to find u E Q such that u iex
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v for all v E Q.

That is, the lexmax problem is an optimization problem under the lexicographical

order. We also use the notation (u(i), u(2), ... , u(n)) to denote a nondecreasing order

of the components of u, i.e., u(i) U(2 ) - - - _ U(n).

Definition 3. Given a utility set Q, an optimal solution to the lexmax problem,

lexrmaxUEQ (u(1), U(2),... , U(n)) (4.13)

is called a max-min fairness solution.

Intuitively, a max-min fairness solution first maximizes the lowest utility level

among all the participants, then maximizes the second lowest utility level while en-

suring every participant derives at least the lowest level utility, and so on. The

existence of the max-min fairness solution is guaranteed by the following lemma.

Lemma 12. Assume the utility set Q is compact. Then, the max-min fairness solu-

tion u* always exists and the ordered vector (u* ,u 2)- , U ) ) is unique.

Proof. Follow from the definition of lexmax and the fact that lexicographical order

is a complete order, i.e. any two vectors can be ordered by it. However, the max-

min fairness solution may not be unique. Consider a case where the utility set Q =

{(0, 1), (1, 0)}. Then both points are max-inn fair. 0

Notice that problem (4.13) is not a standard lexnax problem, because the objec-

tive involves sorting a utility vector, where the sorting itself is a nonlinear operator.

The following lemna gives an equivalent formulation that leads to a standard lexmax

problem shown in Lemma 15.

Lemma 13. An optimal solution of

71

(P) lexmaxUEQ (7(l), U(i) + U(2). U(i))
i1

is a max-mhin fairness solution and vice versa.
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Proof. If u* is a max-min fairness solution, and u is any given point in Q, then

u*) > u(1); if -li) = u(1), then u*2) > U(2), thus u*1) + u*2) U(1) + u(2), etc. So u* is

also an optimal solution to problem (P).

If u* is an optimal solution to problem (P), and u is any given point in Q, then

U(1) > u(1); if u*) - U(i), since u*1 ) + u*<) U(1) + u(2 ), then u* (2) and so on.

Therefore, (P) gives max-min fairness solutions. D

Lemma 14. Given u E IR" and 1 K k K n, ( u(i) can be found by the following

linear program and its dual,

k

Zui)=min {uTy|eTy=k,O<y<e},
i=1

=max {kr - eTs re - s <u, s > O}

where r R R and s E R"n. Further, the following relation holds.

U(k) < r* < U(k+1)

0 < Si U (k+1) - u ,Vi E {(1). (k)

si = 0,Vi {(1),. (k)}.

Proof. The intuition for the primal LP is clear. For the dual LP, r - si < ui for all i.

thus summing over any subset Ik of k indices, we have kr - Eik si < iEk ut. Since

s>Okr- " s> 0 kr - Z i <i- Si < (2Ik, u1 for all Ik. therefore kr - (" si <

k u(i). By the complementary slackness, yj(r -si -ai) = 0 and (y - 1)sj = 0 for all

i. Hence, if yj = 1 (i.e. ui is among the first k smallest components of u, denoted as

i E {(1) . (k)}), then r -si = ui, r > ui; if y = 0, then si = 0, which implies r < Ui.

Therefore U(k) 5 r < U(k+1). For i E {(1). (k)}, 0 < si = r - u i U(k+1) - ui. For

other i, Si = 0.

Use Lemma 13 and Lemma 14, we have

Lemma 15. Let (r*, s,..., r*,s*) and u* be an optimal solution to the following
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problem,

lexmax (r1 - eTs 1 , 2r 2 - eTs 2 , .. ., nr - eTs)

s.t. rie - si < U, Vi- 1, ... ,n,

si > 0. Vi = 1,. n,

U EQ.

Then u* is a max-min fairness solution, and the ordered utilities are a1 =-r - e1s*

and u* ) = (kr* - e s*) - ((k - 1)r*- eTs* 1 ) for all k = 2,. .. , n.

Several algorithms are proposed in [65] to solve the above lexmax problem. When

the utility set Q is a convex set, an efficient algorithm that uses the dual solution is

available. However, the electricity market auction and pricing problem is intrinsically

discrete and nonconvex. The following simple sequential algorithm is needed in this

case.

1. k = 1, solve

niax

s.t.

r 1 - eTs1

rie - Si < U,

Si > 0,

uEQ.

2. For k > 2, maximize krk - eTsk with constraints that keep the previous

k - 1 objective functions at its respective optimal values. The variables are
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ri,...,rk, Si,..., Sk, and u,

-* Max
r,s,u

krk - e sk

s.t. jrj - e Tsj ;> t* , Vj= 1,...k- 1,

re - s3 < u, Vj= 1,...,k,

Si > 0, Vj=1,...,k,

uEQ.

3. k = n gives a max-min fairness solution.
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Chapter 5

Conclusion and Future Research

In the first part of this thesis, we focus our attention on the security constrained

unit commitment (SCUC) problem, which is a key daily operation of any large scale

electric power system in both vertically integrated industry and deregulated electricity

markets. We proposed an adaptive robust model for the SCUC under nodal net

load uncertainty. The effectiveness of the robust approach is demonstrated by an

extensive computational study on the ISO New England's power system. Comparing

to the current reserve adjustment approach, the robust UC model has significant

improvement in economic efficiency, real-time operational reliability, and robustness

to uncertain demand distribution.

Many interesting research questions are open. It would be interesting to study

re-commitment that is adaptive to load forecast. We can easily adjust the parameters

such as d. in the uncertainty set and re-run our model for future re-commitment when

a better estimation of uncertainty is available. This could be very useful when the

system has high percentage of price responsive demand and variable supply. We al-

ready show that the robust solution significantly reduces the volatility of the dispatch

cost. It would be interesting to study the extent that the volatility in the energy price

is reduced. It would also be very interesting to model explicit correlation between

different uncertain loads, such as spatial correlation between adjacent wind farms, or

temporal correlation between consumption levels. Such correlation can be captured

by modeling covariance matrices in the uncertainty set.
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In the second part of the thesis, we studied the more general concept of finite

adaptability, and provided a geometric characterization of the power of robust and

finitely adaptable solutions for a rather general class of multistage stochastic and

adaptive optimization models. Some further directions can be pursued. For example,

it would be interesting to study the performance of affine decision rules in a general

multistage setting. What would be the key geometric quantity, if there is any, in

determining the bound?

In the third part of the thesis, we proposed and investigated the notion of 3-

fairness that addresses the tradeoff between social welfare and fairness for the day-

ahead electricity market auction and pricing. The case / = 0 corresponds to current

practice, whereas 3 = 1 corresponds to a solution that maximizes the minimum

utility among market participants, the so-called max-min fairness. Such a max-min

fair solution eliminates side payments, thus resolves the uplift payment problem. We

investigated the tradeoff curve, and showed that the current operational practice

(,3 = 0) is not Pareto efficient, while there is a #0 < 1, at which the social welfare is

the same as current practice, while the max-min fairness is strictly better, and the side

payments are strictly lower than current practice. This gives a solution to another

long standing problem of achieving fairness and integrity of the auction in choosing

from multiple (near) optimal solutions. We investigated the properties of such /-fair

solutions both theoretically and empirically. Several interesting directions are open

for future research. It is interesting to explore the transmission network effects and

locational pricing concept under the fairness framework. It is also interesting to study

the incentive property of the fairness scheme.
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