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Abstract

Photonic crystals are recently discovered meta-materials whose optical properties
arise from periodic refractive index variations. In this thesis I examine various as-
pects of photonic crystals including a self-assembled photonic crystal, anomalous
properties arising from periodicity, and tailoring absorption and emission spectra.
Fabricating photonic crystals with the desired properties in the infrared and optical
frequencies, including a complete photonic bandgap, is an experimental challenge.
Self-assembly can provide a solution. In Chapter 2, I examine a new type of colloidal
photonic crystal of tetrahedral building blocks in a fcc lattice that is found to possess
a robust and complete bandgap. In Chapter 3, I explore the photonic states that ex-
ist around a zero-group velocity point. Motivated by negative refraction, a measure
of the effective wavevector is constructed that distinguishes various types of zero-
group velocity modes. Around one type of zero-group velocity mode, an anomalous
region of backward effective wavevector is found that enables superior light confining
properties of a mirror-less cavity. In the last two chapters I look at the problem of
efficiently converting radiant energy to electrical power. In Chapter 4, I explore the
extent to which ID multi-layer thin films can enhance the short circuit current of
a 2 pam-thick silicon solar cell. Though such cells are limited by their size, for two
front-layers a relative boost of 45% is possible. Finally, in Chapter 5, motivated by
the problem of low efficiency in thermophotovoltaics, I look at selective emissivity
of a 2D metallic photonic crystal. A semi-analytical theory is developed using only
the material dispersion and geometrical parameters. Applications of the selective
emitter, including power generation and lighting, are discussed.
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Chapter 1

Introduction

Photonic crystals are media that interact with light via a wavelength-scale periodic

refractive index modulation [3, 4, 5], illustrated in Fig. 1-1. This opens exciting pos-

sibilities in the manipulation of light including negative refraction [6, 7], invisibility

cloaks [8, 9, 10], and all-optical computing [11]. The information age we live in today

was born from the understanding of the electronic properties of semiconductor crys-

tals. One can imagine similar control over light would open the possibility of new

technological breakthroughs just as solid state in the past. In this thesis I will dis-

cuss the search for an easily fabricated photonic crystal with a full three-dimensional

bandgap, the novel properties of states around certain zero-group velocity modes,

and how photonic crystals can be used to modify both the absorptivity and emissiv-

ity spectra of material systems. It is of interest to note that while we have recently

discovered photonic bandgap materials, nature has been utilizing them for eons, vis-

ible in the iridescence of butterfly wings [12, 13] beetle scales [14], and sea worms

antenna [15].



Figure 1-1: From left to right, one-, two-, and three-dimensional photonic crystals.
Red and blue denote regions of low and high index.

1.1 The photonic crystal in detail

Since photonic crystals are periodic media, an analogy with semiconductor crystals

can help us understand their signature property: the photonic bandgap. In a semi-

conductor an electron sits in the periodic potential of the positive ions. Quantum

mechanics tells us the electron is a wave, and the electron wave experiences multiple

coherent scatterings that can constructively interfere in certain directions allowing

it to propagate undeflected 1161. For a certain range of electron energy values com-

plete destructive interference occurs and there can be no propagating solutions to

Schrodinger's equation; an electronic bandgap is said to open up in this range of

energy values. Similarly, in a photonic crystal an electromagnetic wave experiences

a multiple coherent scatterings due to the periodic index modulation and can propa-

gate in certain directions undeflected. There may also exist certain frequencies that

do not correspond to a propagating solution. This band of frequencies is called the

photonic bandgap. In other words, a normally transparent material can be made in

a mirror! Moreover, just as doping a semiconductor crystal with atomic impurities

whose energy lies within the electronic bandgap of the host can create spatially local-

ized states, engineering a defect in a photonic crystal can create a spatially localized



electromagnetic state [5]. This is only the beginning of the kind of control we can

achieve.

Let us dig in a little deeper; by assuming a harmonic time-dependence and rewrit-

ing Maxwell's equation as a Hermitian eigenvalue problem we obtain a Hamiltonian

for the photon,
1 w2

Vx VxH=-H (1.1)
E(r) C2

where H is the magnetic field, E(r) describes the dielectric, W the angular frequency,

and c the speed of light. Due to the periodic boundary conditions, the solutions to

Eq. 1.1 appear as bands giving rise to the photonic bandgaps. The states adjacent to a

bandgap display qualitative difference; those that are below store most of the electric

field energy in the high dielectric region and those above the bandgap store most of

there electric field energy in the lower dielectric region. New opportunities open up

with the band gaps- sub-wavelength confinement and guiding of light[5, 3, 4, 17],

slow light[18, 19, 20], and omni-directional reflection [21, 22]. For crystals with a

bandgap, the termination of the crystal can allow solutions that are localized on the

surface. (Such surface states are the subject of Chapter 5.)

Since a photonic crystal possesses periodic translational invariance, a crystal

wavevector can be associated for each solution,

Hk(r) = eik'rhk(r), (1.2)

where k is the Bloch wavevector and hk is a periodic function. Because there is

only periodic translational invariance, the unique set Bloch wavevectors live within

a unit cell of k-space, the Brillouin zone. The set of all solutions to Eq. 1.1 can be

expressed as a relation between the frequency and wavevector, the band structure.



However, symmetries of the real space lattice can be exploited to drastically reduce

the number of points in reciprocal space needed to find bandgaps. Once this reduction

of the Brillouin zone is accomplished, the frequencies of the allowed solutions can

be plotted versus the crystal wavevector along the high symmetry planes of the

irreducible Brillouin zone, Fig. 1-2. Unlike a homogeneous medium with ellipsoidal

equifrequency surfaces, photonic crystals possess more complex dispersion relations

and equifrequency surfaces. Moreover, the gradient of the equifrequency surface gives

the group velocity,

Vg = VkW(k). (1.3)

This opens the way for novel properties such super-collimation [23], all-angle negative

refraction [7], and spinning photonic states [24]. A complete understand these novel

properties will allow us to use them to enable new behaviors of older technologies.

While there are many similarities with the electronic case, differences arise. One

key difference from the electronic case is the photonic Hamiltonian and it's solutions

are scale invariant, solutions at one frequency may be scaled up or down simply by

scaling the geometry appropriately. This flexibility allows the researcher to place

these bandgaps at any frequency they choose provided that all lengths are scaled

accordingly and the same epsilon values can be found at those frequencies.

1.2 Thesis overview

Here, I give a brief overview of the contents of the chapters, motivating each chapter

and highlighting key results. In Chapter 2 I describe a realizable colloidal photonic

crystal, "tetrastack", composed of tetrahedron-shaped particles that possesses a ro-

bust, complete bandgap even for small index contrasts [25]. Next in Chapter 3 I
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Figure 1-2: Band structure of a three-dimensional photonic crystal. The photonic
bandgap is highlighted yellow.

show using a quantity that measures the angle between the group velocity and av-

eraged wavevector that there exists states around certain zero-group velocity points

where the angle is obtuse [26]. A physical manifestation of this unusual character

is given. In Chapter 4 the optimal benefit of thin front coatings on thin silicon is

determined and found to be over 50% even for just two front coatings [27]. Finally

in Chapter 5 I show how with a few geometrical parameters, the emissivity spectra

of metals can be tailored at will with photonic crystals, opening the way for higher

efficiency thermophotovoltaic systems [28].

Though there has been much theoretical and computational advance since 1987,

fabrication of photonic crystals is still laborious. Cheap, scalable fabrication of pho-

tonic crystals with a full three-dimensional band gap has remained elusive. The

techniques that work well for one- and two-dimensional crystals, thin film deposi-



tion techniques such as physical and chemical vapor deposition, and molecular beam

epitaxy, and photolithography and etching, require much effort for building three-

dimensional crystals. An attractive alternative presents itself in self-assembly.

Self-assembly is an attractive route for building three-dimensional crystals since

uniform building blocks can be made in large quantities and can be arranged into

a crystalline pattern by allowing the particles to settle with minimal direct guid-

ance. This process is good enough for nature to take advantage of it- opals are

self-assembled photonic crystals of silica spheres with lattice constants on the order

of 100 nm, giving rise to diffraction in the visible range. However, monodispersed

spheres tend to settle into a closed-packed face-centered cubic structure which does

not't have a bandgap for any value of index contrast[5}. Moreover a diamond-like

structure, which possesses a robust bandgap, is not a thermodynamically favored

structure and will not form via self-assembly. In Chapter 2 of this thesis I show that

crystals made of non-spherical particles allow a bandgap to open. The most promis-

ing of these non-spherical particles is "tetrastack", a particle with four fused spheres

in a tetrahedron. Moreover due to the control over the sphere size and amount of

fusion one could create the bandgap over a wide range of frequencies. A group theo-

retic explanation for the properties of a tetrastack crystal is given, and the effect of

orientational disorder is explored.

In the third chapter I identify and explore certain anomalous regions in the band

structure in two-dimensional photonic crystals. In nature we find that homogeneous

media have positive index, and the group velocity and phase velocity (or equivalently

the wavevector) of light travelling in these media are parallel to one another. In neg-

ative index media, recently realized in certain meta-materials [29], the group velocity

and phase velocity point in exactly opposite directions allowing light to do unusual

things including negative refraction, superlensing, and anomalous Cerenkov radiation



[30, 31]. Periodic media such as photonic crystals possess band structures that at first

sight appear to have modes with opposite group velocity and wavevector. However

the wavevector is a crystal wavevector which does not correspond to a phase velocity

and can be made to point in any direction by adding a reciprocal lattice vector.

For one-dimensional crystals we will see that a mode with negative group velocity

and positive wavevector is actually one with negative effective wavevector. In higher

dimensional crystals, however, it may be possible to find modes with group velocity

and effective wavevector making an obtuse angle with each other. Such modes have

never before been identified in positive effective index media. In Chapter 3 I will

define a measure of the effective wavevector and show that indeed there are certain

regions in the band structure where the angle it makes with the group velocity is

obtuse. These novel regions are associated with a particular type of zero-group ve-

locity mode. In addition, we will see that around those special zero-group velocity

modes it is possible to make mirrorless cavities of unusually high quality factors.

The last two chapters conclude with shaping the spectral response of materials to

boost the efficiency of photovoltaic cells. A thermal source of photons, such as the

Sun, illuminates a photovoltaic diode that converts a portion of the incoming energy

to electrical power. However without modifying the absorptivity of the PV diode or

the emissivity of the source, much of the energy is lost through reflection or delete-

rious heating. In the case of a silicon solar cell, much effort has gone into decreasing

the losses to such an extent that efficiencies for thick silicon solar cells approach the

fundamental limit set by detailed balance and silicon's material properties [32, 33].

However, thick, crystalline silicon is expensive and the use of thin (about 1 pm),

crystalline or micro-crystalline silicon is becoming increasingly cost-competitive. In

Chapter 4, I consider what improvements in efficiency can be made with multiple,

thin front and back coatings on a thin silicon cell. Unlike thick silicon cells where
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Figure 1-3: Photon number flux per unit wavelength of two blackbody emitters, one
at 5600 K (blue) and another at 1000 K (red). The spectrum of the cooler emitter
has been rescaled by 100. Shaded regions denote useful photons for a silicon (blue)
and InGaAsSb (red) PV diode.

any transmitted light is absorbed, thin silicon cells present the possibility of inter-

ference of reflections from the back surface since a single pass is not always enough

to absorb a photon. This presents an unexplored challenge. I show that significant

improvements, a nearly 50% relative increase in efficiency over an uncoated cell, can

be made with simply two front coatings. Moreover, while one could imagine using

many more front coatings, we will see that the majority of the improvements come

from just the first few layers.

For a thermal source of photons, such as a blackbody, whose spectral distribution

is given by the Planck distribution, a significant amount of power is radiated at

frequencies in the infrared, below the bandgaps of most semiconductors, illustrated



in Fig. 1-3. For thermophotovoltaic schemes which use a radiator at temperatures

much lower than 5600 K, this is disastrous. Consider a typical power generator using

a radiator at 1000 K and indium gallium arsenic antimony (InGaAsSb) as the PV

diode; the ratio of useful power to total radiated power is less than 19%. However, by

modifying the surface of the radiator, it is possible to tailor its emissivity spectrum

to closely match the quantum efficiency of the PV diode.

In Chapter 5 of the thesis I examine a particular type of selective emitter, a

two-dimensional array of holes etched onto a metal, and how one could tailor its

emissivity spectrum. Though the simplest approach would be to use multiple one-

dimensional front coatings, a two-dimensional periodic array of holes offers greater

benefits. Moreover the use of multiple materials is problematic since all of them must

be thermal stable and non-absorptive at high temperatures. Using a one-dimensional

periodicity is not enough since not all polarizations and directions are treated the

same. For thermophotovoltaic applications, one would like a thermal emitter with

minimal emissivity in the infrared and a high melting point. Refractory metals,

including tungsten, satisfy both requirements. The hole array creates photonic res-

onances, solutions to Eq. 1.1 with a complex frequency, that are localized to the

surface. The key to the selective emissivity is that the resonances exist only above a

cutoff frequency that is determined by the geometrical parameters. In addition, the

geometrical parameters determine how strongly these resonances radiate. I look at

how one can analytically predict where these photonic crystal resonances exist and

their lifetimes, which allow one to compute the emissivity spectrum via a scatter-

ing matrix framework, i.e., temporal coupled-mode theory. To study this problem

more efficiently the absorption spectrum is calculated- Kirchhoff's law states that

the absorptivity and emissivity are the same for an object in thermal equilibrium.

While computational methods for computing the absorptivity spectrum, such as



finite-difference time domain or finite-element methods, yield accurate results, they

are computationally intensive. Once one can semi-analytically compute the absorp-

tivity spectrum, then optimization of the spectrum for thermophotovoltaic systems

and other applications becomes possible.



Chapter 2

Tetrastack: colloidal photonic

crystal

Photonic crystals strongly localize photons of certain frequency, offering a novel

means to control light [5]. This control over light is achieved via the periodic refrac-

tive index modulation of the photonic crystal which allows a photonic bandgap to

open in a manner analogous to the electronic bandgap of a semiconductor crystal.

While photonic crystals are expected to enable the production of high performance

optoelectronic devices- lossless waveguides [34], photocatalysts based on extended

lifetimes of excited species [35], low threshold, highly efficient semiconductor lasers

[36], and nonlinear optical switches [37]- few structures have been found that possess

the complete 3D photonic band gap required for the promised degree of light control.

Here one possible solution based on a colloidal photonic crystal is described. The

building block are colloidal tetrahedra arranged in a fcc lattice. A robust omnidirec-

tional bandgap is found and compared to diamond.



(a) (b) (c)

Figure 2-1: (a) SEM images of fabricated tetrahedral colloidal particles. (b)
Tetrastack particles at the lattice points of the photonic crystal. (c) Conventional
unit cell of diamond photonic crystal.

2.1 Introduction

Three-dimensional (3D) periodic structures have been successful made at the micron

length scales corresponding to bandgaps in the infrared [38], however it remains a

challenge to easily fabricate photonic crystals at the submicron length scale necessary

for devices operating within the visible and near-infrared region. Producing such

photonic crystals requires the fabrication of lattice elements with a feature size of

a few hundred nanometers. Relative to 3D lithography approaches [39, 38], colloid-

based solutions for the fabrication challenge are highly attractive due to the ease

of accessing the submicron size regime and relative low cost for the buildup of 3D

structures. Colloidal photonic crystals have been fabricated with a periodicity of

about 170nm which display a partial photonic band gap in the violet-ultraviolet, a

feat not yet duplicated with lithographic based photonic crystals [40].

Self-assembly of monodispersed spheres leads to energetically favorable structures

with high packing density which includes face-centered cubic (fcc). The fcc structure,



however, has no bandgap irregardless of the refractive index contrast nc between the

spheres and the surrounding medium due to degeneracy at the W k-point. On

the other hand, the inverted fcc structure, a lattice of air spheres in a high index

medium, i.e., inverse opal, can possess a bandgap between the 8th and 9th bands

for a refractive index constrast of at least 2.9 [41, 42]. The utility of higher order

bandgaps is lessened since such bandgaps are sensitive to all types of geometric

disorder including variations in the radii of the spheres and random displacements

from lattice sites. Small amounts of disorder in the lattice constant amounting to a

few percent can completely destroy the bandgap. Lower lying photonic band gaps,

such as the one in diamond, are much more robust to disorder.

2.2 Tetrastack

Wide and robust photonic bandgaps between the second and third bands open for the

diamond and inverted diamond crystal structures with relatively low index contrasts

[43]. However neither are thermodynamically favorable colloidal structures and do

not form naturally. Recently, a pick-and-place nanorobotic method of building a col-

loidal diamond structure was demonstrated; however the crystal was composed of just

165 silica spheres each taking an average of 3.8 minutes to place [44]. Alternatively,

non-close-packed structures with diamond-like connectivity could be realized using

colloidal cluster building blocks, with the "openness" of the final crystal structure

and the mechanical stability provided by the geometry of their packing. Nonspher-

ical colloids also offer reduced symmetry at the lattice point, a feature thought to

promote the large stable band gap in the diamond structure [43]. Knowledge of the

photonic properties of crystal structures based on colloidal cluster building blocks is

limited, since only the diamond-like dimer structure has been explored in modeling
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Figure 2-2: Band structure of inverted tetrastack in silicon (n, = 3.4) with sphere
radius 0.27a. Inset, a portion of the tetrastack photonic crystal unit cell.

studies of the photonic bands 144, 451. The present theoretical study reports robust

photonic bandgaps for a diamond-inspired crystal structure with a nonspherical, col-

loidal tetrahedron basis. The plane wave expansion method with more than 4000

plane waves (corresponding to a resolution of 16 pixels per a) was used to calculate

photonic band structures for the newly proposed "tetrastack" by solving Maxwell's

equations in the frequency domain [461. The minimum refractive index contrast

to open at least a 1% complete 3D-photonic band gap in the inverted tetrastack

structure was found to be 1.94, making this one of the lowest threshold refractive

index-contrast photonic crystal structures discovered. A more relaxed requirement

for the refractive index contrast enlarges the range of materials appropriate for fab-

ricating structures with omnidirectional photonic band gaps [47].



The tetrastack photonic crystal structure is composed of tetrahedral colloidal

clusters stacked to connect nearest neighbor sites in the fcc lattice where each sphere

of a tetrahedron connects to a neighboring site. Figure 2-1(a) and Fig. 2-1(b) depicts

the tetrastack structure in comparison with the diamond structure Fig. 2-1(c). The

real-space structure is described as an fcc lattice with lattice vectors R1 = a/2 (y+i),

R2= a/2 (R + i), R 3 = a/2 (R + y), where a is the length of the conventional cubic

cell. The tetrahedron spheres are at positions, 0, R 1/2, R 2/2, and R 3/2. One

threefold symmetry axis of each tetrahedron points along the main diagonal of the

fcc lattice, reducing the symmetry group of each lattice point from Oh (full octahedral

group) to Td (tetrahedral group). Figure 2-2 shows the band structure calculated for

the inverted tetrastack structure of air tetrahedra in a silicon matrix. As in the case

of the diamond structure, the degeneracy between the second and third photonic

bands at the W point for the fcc lattice is replace with a degeneracy in the first and

second bands and a degeneracy in the third and fourth bands [45]. Therefore a sizable

bandgap can open for the appropriate combinations of refractive index contrast and

solid volume filling fraction f.
Table 2.1 compares the relative bandgap width AW/Weenter of tetrastack structures

with those of the diamond and fcc structures and their inverted counterparts. Refrac-

tive index contrast values for zinc sulfide-air (n, = 2.29) and silicon-air (ne = 3.41)

were used in the calculations for both direct and inverted structures. Solid volume

filling fractions that maximized the band gap for each structure were selected. Com-

parable bandgap widths were found for inverted tetrastack and inverted diamond

structures, 25.3% and 26.9%, respectively. The bandgaps were much larger than

those for the corresponding inverted fcc structures at the same index contrast.

A wide range of solid volume filling fractions were found to exhibit full photonic

bandgaps for tetrastack structures, as shown by the band gap maps in Fig. 2-3 for



Structure nah [fill-fraction Gap-Midgap %

2.29 0.46 3.2
Tetrastack 3.41 0.43 13.7

Inverted Tetrastack 2.29 0.28 8.4
3.41 0.21 25.3
2.29 0.43 3.7

Diamond 3.41 0.41 12.9
2.29 0.28 8.9

Inverted Diamond 3.41 0.20 26.9

Inverted FCC 2.29 0.28 0
3.41 0.28 4.8

Table 2.1: Table of gap-midgap percents for fcc, diamond, and tetrastack photonic
crystals.

ZnS-air and Si-air materials. Constituent spheres touch at a solid volume filling

fraction of 0.37 for direct tetrastack and 0.34 for direct diamond. Five distinct

regions corresponding to structures of the same refractive index contrast, symmetry

group, and connectivity of solid material can be identified in Fig. 2-3. The variety of

structures represented by the area of the gap map is nearly as broad for tetrastack

structures as for diamond structures. In particular, inverted structures of the same

index contrast display wider bandgaps than their direct counterparts.

The effect of refractive index contrast on relative bandgap size near the solid

volume filling fractions that optimize the bandgap for each structure is presented

in Fig. 2-4. The bandgaps naturally fall into three groups corresponding to the

connectivity of the high index region. The threshold refractive index contrast needed

to create a full photonic bandgap is nc = 2.1 for direct tetrastack with f = 0.42 and

nc = 1.94 for an inverted tetrastack with f = 0.30. This is one of the few predictions

of a full photonic bandgap in the case of a structure with a refractive index contrast

lower than 2. Large bandgaps of 10% or more can be obtained at index contrasts
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Figure 2-3: Bandgap map of ZnS-air (ne = 2.29) and Si-air (nc = 3.4) colloidal
structures.

that are insufficient to open a bandgap in the inverted fcc structure of air spheres.

For the structure composed of a colloidal dimer basis made from silicon, Li, Wang,

and Gu [48] determined a relative bandgap width of 15.5% relative to the center

frequency when the major axis of the dimer was oriented along the (111) direction

and the solid volume filling fraction was 0.34. Note that for these parameters the

dimer structure is equivalent to diamond. The bandgap was reduced to half its

maximum value for a deviation angle of 50 from the main diagonal. In a similar

manner the dependence of the photonic band structure on the tetrahedra orientation

in the tetrastack structure was studied by calculating the relative bandgap width as

the symmetry axis of the tetrahedra rotates from the (111) direction toward the (100)

and (110) directions. Similar to the case of the diamond-analog dimer structure, the

bandgap is maximized when the axes of the tetrahedra are oriented along the (111)
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Figure 2-4: Relative bandgap size versus index constrast for various structures at

filling fractions corresponding to optimal relative bandgaps.

direction, Fig. 2-5. The bandgap persists for the inverted tetrastack up to an angle

about halfway between the main diagonal and a face diagonal. The bandgap width

decreases to half of its original value for the ZnS-air system at a deviation angle

of 110 - 12' for inverted tetrastack and 5' - 6' for direct tetrastack. Thus a less

severe design requirement is predicted for orientation of the tetrahedra in inverted

tetrastack than for dimers in the diamond-analog structure.

2.3 Fabrication of tetrastack

Up to 1010 colloidal cluster building blocks have been prepared using an emulsion

trapping method [49] or a microfluidic confinement cell where specific configurations

were determined uniquely by the particle diameter relative to the dimensions of
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Figure 2-5: Rotating the tetrastack particles away from the unit cell main diagonal
(111) to a face diagonal (110) reduces the size of the bandgap.

lithographically defined holes [45, 50]. Similarly, Hammond and Lee 151] utilized a

patterned template of positively charged polyelectrolyte dots to capture beads from

a suspension of negatively charged carboxylated polystyrene and to create specific

configurations of clusters determined by the bead diameter and the pattern dimen-

sions. The clusters would be useful for nonspherical bases in inverted structures, but

would not be appropriate for direct structures with a complete bandgap due to the

low refractive index of the polystyrene building block, n = 1.6 [52].

An alternative method is to use tetrahedral clusters made through the controlled

coalescence of high-index building blocks during their chemical synthesis as demon-

strated for ZnS by Liddell [53]. Zinc sulfide spheres ranging from 0.5 to 2pm in

diameter were clustered into dimers, trimers, and tetrahedra Fig. 2-1(a) using the



decomposition of thioacetamide at elevated temperatures in the presence of the metal

salt. The ZnS particles exhibited a refractive index of 2.09 -2.25 in the visible region

[54}. While optical tweezers could be used to prepare ordered structures from the

building blocks [48}, directed assembly in electric, magnetic, and hydrodynamic fields

[55] may be less laborious. A possible route toward fabricating a tetrastack colloidal

crystal would be via a layer-by-layer convective assembly of tetrastack particles onto

a compliment polyelectrolyte dot pattern [51]. A sacrificial film is then deposited

onto the first layer of tetrastack particles to prevent the next layer from settling into

the interstitial spaces between the first layer of tetrastack particles. Finally the poly-

electrolyte pattern could be restamped to repeat the process until the target number

of layers is achieved.

In conclusion, a new experimentally attainable colloidal photonic crystal with

a full and robust photonic bandgap has been described. Moreover for a range of

refractive index contrasts, filling fraction, and tetrahedron orientation a bandgap

will remain. Thus photonic crystals made from colloidal structures have the ability

to substantially widen the range of realizable full 3D bandgaps.



Chapter 3

Distinguishing zero-group velocity

modes in photonic crystals

3.1 Introduction

Propagation of light in photonic crystals can be quite different from that in homoge-

neous media, such differences include photonic band gaps, supercollimation, super-

prism effects [23], and extraordinary or negative refraction [7]. Most of these effects

are closely associated with an unusual feature of the dispersion relation (band struc-

ture), the frequency w versus wavevector k, of periodic systems: there are extrema,

or points of zero group velocity VkW. Such points do not occur in a homogeneous

medium, only in localized modes of certain waveguide structures or in non-localized

modes of periodic media. Since extrema in the frequency bands are so central to the

unique phenomena possible in photonic crystals, we wish to investigate them more

closely, and to ask the question: are there significant qualitative differences between

different band extrema, and what relationship do these differences have to various



physical phenomena? Naturally, there are some obvious qualitative differences: some

extrema are maxima, some are minima, and others are saddle points. And, of course,

the exact eigenmode solutions in the vicinity of the extrema provide, in principle,

complete information about their behavior. But the latter is too much information-

we would hope to have a simpler description of the differences between extrema than

the entire field patterns-and the former is too little, as we shall see. In particular, we

will argue that there are substantial differences between extrema at high-symmetry

k points (such as the center or edge of the Brillouin zone, corresponding to the tradi-

tional criteria for Bragg diffraction) and extrema at other k. And, even among these

non-symmetric extrema, there are distinct differences between those arising from

avoided eigenvalue crossings (anti-crossings) and other band-repulsion phenomena.

As we will show these differences arise from general properties of periodic crystals,

therefore such differences in zero-group-velocity should be found in other periodic

systems, including electronic and phononic crystals.

In order to have a quantitative measure of these differences independent of any

particular physical phenomena, we consider by analogy an important quantity of

homogeneous media that is ill-defined in periodic structures: the phase velocity

v, = wk/|k 2 . In a homogeneous medium, the relative direction of the phase and

group velocities reveals important information such as whether the medium is right-

or left-handed (negative index) [30] and to what degree the medium is isotropic. In

a periodic medium, the phase velocity is ill-defined because k is not unique-it is

equivalent to k+G for any reciprocal lattice vector G [5]. Equivalently, an eigenmode

in a periodic structure corresponds to an infinite number of Fourier components k+G,

given by the Fourier-series expansion of the Bloch envelope, each with its own "phase

velocity". However, we can use the amplitudes of these Fourier components, Hk+G,

to quantify the degree to which the solution resembles that of a homogeneous medium
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Figure 3-1: Typical ID band structure for a Bragg mirror with high dielectric e = 9
and width d = 0.2a

and the degree to which the "average" phase velocity is parallel to the group velocity,

and we find that this average exhibits interesting distinctions between different band

extrema. In particular, we define

G vg| _k+G|I Hk+G12
'qH = gHk±G12  - (3.1)

EG | Hk+G |

as a measure of the anomalous character of a mode. qH is bounded between -1 and 1,

since it is a sum of cosines of the angle between the group velocity and the wavevector

weighted by the Fourier component amplitude. A positive (negative) sign indicates

normal (anomalous) character; in fact in the homogeneous, right-handed medium

limit 'H is 1 for all modes. The form of this function is somewhat arbitrary, e.g. one

could just as easily use the electric field instead of the magnetic field, but as we'll



see later, alternative definitions of q yield similar qualitative results.

This difference has a physical consequence; as we'll see shortly the difference

zero-group velocity modes give rise to very different light confinement behavior. This

behavior is connected to the information presented in 7H-

3.2 r/H in 1D photonic crystals

Consider first a one-dimensional photonic crystal, such as a multilayer film of period

a with alternating E = 9 (thickness 0.2a) and = 1 (thickness 0.8a), whose band

structure w(k) (solved using a planewave method [46]) is shown in Fig. 3-1. In such a

structure, there are bands that have opposite-signed group velocity and k and which

therefore appear "anomalous," but examining 7H, plotted in Fig. 3-2(a), reveals

that they are not. The first band is clearly positive throughout the Brillouin zone.

Moreover, it is the only band in which 'JH approaches a constant non-zero value as

k vanishes, behavior due to the fact that vg approaches a constant non-zero value

at low frequencies. The second band, which looks anomalous since vg is opposite to

k in the first Brillouin zone, is shown to be "normal" in the sense of 7H: most Of

its Fourier components actually lie at negative wavevectors, aligned with vg. Since

all other bands have the behavior of one of these two bands, it appears that all

one-dimensional modes have similar, normal character.

Fourier decomposing the modes of the second band shows the lack of any anoma-

lous character more explicitly. In Fig 3-2(b) the various Fourier components of the

second band are plotted. The Fourier component Ga/21r = -1 is over 60% for most

of the Bloch modes between ka/2r = 0 and 0.5. Effectively the mode at k behaves

like a plane wave with k = k - 2wr/a. So the group velocity and "average" k point in

the same direction. For vanishing k, the modes begin to have an additional mirror
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Figure 3-2: (a) r/H calculated across the 1st and 2nd bands. (b) The magnitudes of
the dominant Fourier components across the second band of Fig. 3-1. Away from the
band edges, where strong mixing occurs, the second band behaves as a plane wave
with ka/27r -* ka/27r - 1.



symmetry plane, so for every G there is a -G component that cancels its contribution

to IIH ensuring that YH goes to zero.

There is a simple argument why one-dimensional photonic crystals should not

exhibit sign changes of YH, and therefore should not exhibit negative 9H for right-

handed materials. To begin with, for a given frequency w, the allowed wavevectors k

in a one-dimensional crystal come from the eigenvalues exp(ika) of a 2 x 2 transfer

matrix [56], and thus there can be at most two distinct real-k solutions at each w.

This precludes the possibility of having more than two extrema in a given band,

and by symmetry (either mirror symmetry or time-reversal symmetry) these two

extrema must occur at the Brillouin-zone edges. By the same symmetry, however,

'7H cannot change sign at these points. The only remaining possibility would be for

"7H to change sign at a point that is not an extremum, where vg does not change

sign, but this seems unlikely and we have been unable to find such a circumstance.

3.3 7H in 2D photonic crystals

For two-dimensional periodic structures there can be zero-group-velocity modes away

from the Brillouin-zone edge or center. For example, a square lattice (period a) of

dielectric rods (e = 9 and radius r = 0.2a) in air illustrates this new type of zero-

group-velocity mode at k = E where E lies on FM, (Fig. 3-3), which itself can be

divided into further subcategories. Around the M-point, repulsion occurs between

the second and fourth bands that causes the second band to develop a local minimum,

where we might hope to find unusual behavior compared to a homogeneous right-

handed medium. The repulsion that drives the second band downward originates

in the shared symmetry character of the second and fourth bands under reflection

about the mirror plane that contains k along FM. Perturbative analysis of the modes
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Figure 3-3: 2D band structure with dielectric profile (inset) e = 9, r = 0.2a. Circled
are the different types of zero-group velocity points; labels indicate location in the
irreducible Brillouin zone and band number.
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Figure 3-4: qH for the first four bands of the two-dimensional crystal in Fig. 3-3.

near M of the second band, by expanding them in the basis of the eigenmodes at M,

shows that the second band is indeed composed partly of the fourth mode at M [57].

Another type of zero-group-velocity mode is due to the avoided crossing along FM in

bands four and five. The difference between these two types of extrema, both located

away from the Brillouin-zone edge or center, is evident in 'H, shown in Fig. 3-4. A

small region in the second band has negative qH (which grows if we increase E to

increase the repulsion between the second and fourth bands). In contrast, the anti-

crossing in the fourth band does not produce a negative qH, though it is responsible

for the dip in 7H. The third band shows that "negative" group velocity (opposite to

k in the first Brillouin zone) does not imply negative 7H-

A look at the amplitudes of the Fourier components, Fig. 3-5(a), explains the



behavior of the second band. Along the second band, one pair of modes dominate

for most of the band, and even when the "positive phase velocity" Ga/2-F = (0, 0)

component increases in value the "negative phase velocity" Ga/27r = (-1, -1) com-

ponent initially compensates for it. This allows the "average phase velocity" to

remain negative and hence allows 'qH to become negative just after the minimum.

For comparison, the third band where the group velocity is always "negative" in

this range of k has a Fourier decomposition that is always dominated by one pair of

"negative phase velocity" components.

It should be emphasized that the sign of 'H does not determine whether there is

negative or positive refraction at a (11) interface of the structure. The direction of

refraction is not determined by the dominant Fourier decomposition, but essentially

by whether the mode has any G = 0 Fourier component that an incident wave

from a homogeneous medium can couple to at the given Bloch wavevector. Thus,

"left-handedness" is not strictly required for negative refraction. For example, in

this structure, first two bands are negative refracting near M with a positive qH,

similar to the structure considered in Ref. [58]. As another example, the negative-

refracting modes looked at by Ref. [7], the entire first band is dominated by the G = 0

component, yielding a positive '7H. (Of course, one can define an "effective index"

by arbitrarily choosing a phase velocity from k in the first Brillouin zone [58, 7], but

this need not coincide with the average phase velocity determined by the Fourier

decomposition.) In uniform cross-section waveguides (in which phase velocity is well

defined), modes with group velocity opposite to phase velocity (and hence q < 0) have

also been identified [59]. However, at any given frequency in these waveguides there

are always both negative- and positive-a modes, whereas in the crystal considered

here it is possible to get only q < 0 modes in a certain frequency range by tuning

the rod radius.
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To ensure that the behavior exhibited by 1H is not an artifact of some arbitrary

choice in our definition, we explored other definitions and verified that the qualitative

results do not change. For example, one can define 77D by simply replacing H with

D, the electric displacement field, in Eq. (3.1). One can also define 4 H, the difference

between the Fourier components with k + G making acute angles with vg and those

with obtuse angles.

(k+G)-vg>O (k+G)-vg<o

lH = E Hk+G 12 - Hk+G 12. (3.2)
G G

A corresponding quantity YD using the Fourier components of D can also be

defined. Figs. 3-6(a)-3-6(b) plot these alternative definitions, compared with 'H,

for bands two and three, and show that the qualitative behavior around the zero-

group-velocity point is preserved. The ij definitions do become negative near F, but

this is an artifact of weighting the Fourier components that are only slightly on the

"positive" side, such as Ga/27r = (1, -1) and (-1, 1), equally with very positive

Fourier components such as Ga/27r = (1,0) or (1, 1), rather than weighting them

with the dot product vg - (k + G). (Similarly for the fact that the third band has

non-zero at the M point.)

3.4 Mirrorless cavity

One manifestation of the differences between the zero-group-velocity modes can be

found in the dependence of cavity quality factors on the cavity length. Here, we are

considering the simplest one-dimensional realization of an optical cavity: a slab of

some material (or crystal structure) terminated by two mirrors on either end, which



Figure 3-7: Photonic-crystal Fabry-Perot cavity, formed by a finite number of layers
of the crystal in the (11) direction. Here, the thickness is L = 12d, where d =

a/v' is the distance from one row of rods to the next. Blue/white/red indicate
positive/zero/negative E2 field of a resonant mode with Q ~2000.

confines standing wave modes that leak out slowly due the imperfect reflectivity

of the ends. Even simpler, we can omit the mirrors and just rely on the innate

reflectivity of the interface between the cavity material/structure and the surrounding

material (e.g. air). The quality factor Q is a conventional dimensionless lifetime (the

number of optical periods for the energy to decay by e-->). Normally, the quality

factor increases monotonically as the size of a cavity is increased, all other things

equal, simply because a smaller portion of the mode is exposed to the edge of the

cavity where it can escape (or equivalently because the round-trip time through

the cavity increases). However, if the cavity material has a band extremum, more

unusual length dependence can occur at frequencies near this extremum. Given

the wavevector k of the extremum, the component of k perpendicular to the cavity

interface k1 introduces a length scale ir/k1 , and as the cavity length changes by

multiples of this length scale there are interference effects that lead to periodic peaks

in Q [60]. If the extremum occurs in a periodic medium, however, there are multiple

length scales corresponding to the different Fourier components k ± G (unless one



component dominates), and the phenomena are more complicated. Moreover, in a

periodic medium the thickness of the cavity cannot be increased continuously without

changing the crystal termination, and so at best one expects periodic peaks in Q at

the least common multiple of ir/ki and the crystal period.

In particular, we consider structures like the one depicted in Fig. 3-7: a finite

number of layers of our square-lattice 2D crystal, oriented in the diagonal (11) di-

rection, with thickness L in units of d = a/-,/ (the distance from one layer to the

next along the diagonal direction). This structure is periodic along the vertical (11)

direction, and so the modes would be characterized by a k Bloch wavevector along

this direction (parallel to the cavity interfaces), but we only consider k = 0 modes

which couple to normal-incident radiation. Note that for wa/27rc < 1/V'2, there are

no diffracted plane waves. Even for k = 0, there are many resonant standing-wave

modes at different frequencies, associated with different zero-group-velocity band

edges along the IFM direction. One such mode, at a frequency corresponding to the

E2 extremum of the second band, is depicted in Fig. 3-7 for L = 12d.

We then compute the Q of modes associated with four different band extrema

as a function of the cavity size L, and plot the results in Figs. 3-8(a)-3-8(c). (Q
is computed using a filter-diagonalization analysis [61] of a finite-difference time-

domain simulation [62] implemented in a free software package [631.) In each one

of these plots, as discussed above, we might expect to see periodic peaks in Q at

intervals of AL = ir/ki, but this will be complicated by the periodicity of the

underlying structure (and the corresponding non-uniqueness of k). The simplest

behavior occurs for the band extrema M1 and M2 at the M point ka/2x = (0.5, 0.5),

for which kI = w/d. In this case, since the primary length scale (corresponding to

the largest Fourier component G = 0) induces a length scale w/k± = d equal to the

increment in L, the graphs appear smooth and monotonically increasing as expected
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from above. In fact, Q goes as L3 . This cubic dependence of the radiative Q on

cavity length will be seen again in the context of metallic waveguides in Chapter

5. The most interesting results are shown in Fig. 3-8(a) corresponding to the E2

extremum, ka/27r = (0.293,0.293), for which Q exhibits dramatic spikes (increasing

by up to two orders of magnitude to Q ~ 106) at apparently irregular intervals. The

ability of E2 modes to exhibit extremely large Q compared to other band extrema

lies in interference between the four modes in the crystal around such an extremum,

as discussed further below. The irregularity of the peaks lies in the fact that the

induced length scale 7r/k 1 = d/0.586 does not have a small least-common multiple

with d. In contrast, consider Fig. 3-8(c), which comes from the E4 anti-crossing

extremum at ka/27r = (0.318,0.318), which has an induced length scale r/ki that is

close to 3d/2, and hence Q displays nearly periodic peaks with period 3d. The peaks

in this case are not nearly so large as for Fig. 3-8(a), as discussed below, because

the distinctness of the modes surrounding the extremum inhibits interference effects.

To further reinforce our understanding of the Q peaks in Fig. 3-8(a), verifying that

they indeed stem from an interference effect associated with k at the extremum, we

examined a slightly modified structure: we tweaked the index contrast to shift the

E2 extremum to ka/27r = (0.33, 0.33). In this case, the induced length scale of the

dominant Fourier component is r/k ~ 3d/2, and we expect to see periodic Q peaks

at intervals of roughly 3d. This prediction is confirmed in Fig. 3-9, which displays Q
vs. L for this tweaked structure. (Q is still not exactly periodic because there are

multiple G components present, but the largest peaks are separated by AL = 3d.)

The unusual behavior of the cavity Q in Fig. 3-8(a), with its many sharp peaks,

lies in an interference phenomenon: as shown in fig. 3-10, near a band extremum

away from the edge of the Brillouin zone we have four modes out of which to build

a standing-wave resonance, instead of only two modes as for an ordinary extremum



Figure 3-10: Differences in the number of
in Figs. 3-8(a) and 3-8(b).

excited modes (circles) for the two cases



at the zone edge or center. These four modes, or two pairs of counter-propagating

modes, can form a superposition of two standing-wave patterns whose radiative fields

destructively interfere, thus increasing Q. This can happen for both the extremum of

the second band, where '7H changes sign, and for the extremum of the fourth band,

where T/H does not change sign. But as shown in fig. 3-8(a) the former have much

more pronounced peaks in Q than the latter. This difference is directly connected to

the change of sign in qH! As a general principle, one expects that modes that are more

similar will interfere more readily, and hence have larger Q peaks. Perhaps counter-

intuitively, the fact that 'JH changes sign, is an indication that modes just on either

side of the extremum in the second band are more similar than the corresponding

modes for the fourth band where qH does not change sign The reason for this is that

'JH changes sign only when the Fourier decomposition of the field pattern is similar

(and hence has a similar "phase velocity") on either side of the extremum despite

the change in sign of the group velocity. Hence, the change in sign of 'qH is correlated

to the higher Q peaks for the second band.

In conclusion, it has been shown that a new measure of anomalous behavior,

'qH determined by the average phase velocity, which was motivated by homogeneous

negative-index media, can yield new information differentiating among the zero-

group-velocity modes. This characterization of anomalous behavior appears to be

independent of the arbitrary choice of norm used to define "average" phase velocity.

Zero-group-velocity modes away from high-symmetry points exhibit qualitatively

different behavior than zero-group-velocity modes at the band edge, and even among

themselves have distinct behaviors depending on the sign of TH-



Chapter 4

Optimization of front coatings

4.1 Introduction

Thin film photovoltaic cells are an increasingly attractive route to solar based energy

due primarily to reduced material costs. However most of the useful photons for

generating the photo-current lie in the infrared where silicon is a poor absorber.

Here, I describe efforts to boost the absorption of the long wavelength photons with

optimized multiple front coatings.

Front coatings are a critical feature of the highest-efficiency photovoltaic cells,

ranging from monocrystalline silicon cells with double-layer anti-reflection (AR) coat-

ings [32] to thin-film CIGS cells with single-layer AR coatings [64]. The most effec-

tive front coatings allow light over a broad range of wavelengths to enter the cell

and be absorbed. This broad range of wavelengths extends from long-wave ultra-

violet (around 300 nm [65]) to the bandgap wavelength (for silicon, 1108 nm 11]).

While single-layer front coating designs are well known, multiple layers could con-

ceivably allow higher admittance over a broader bandwidth. The problem of opti-



mizing multilayer coatings for solar cells has been a topic of great interest for some

time [66, 67, 68, 69, 70, 71, 72, 73, 74, 75], but the full range of possible designs

had not been explored, especially for thin absorbers and/or multiple coatings. Here,

we attack this problem with global optimization to find the best possible multilayer

film designs in several regimes and quantify the degree of improvement which can

be achieved in each case. We show that two front coatings produce the majority of

improvement; additional front coatings yield rapidly diminishing improvements. For

the most common type of solar cell, made from silicon wafers, the front-coating de-

sign problem mostly reduces to a broad-band anti-reflection problem with dispersion.

However, due to the dispersion of silicon [1] and the non-uniformity of the AM1.5 so-

lar spectrum [76], this problem can only be solved approximately with an analytical

approach [77]. More precise solutions require a numerical approach-Refs. [78, 79, 80]

treat the cases of single-layer and double-layer AR coatings; Ref. [81] treats single-

through triple-layer AR coatings. Similar approaches have been taken for other re-

lated wide-band absorption problems, as in Refs. [82, 83, 84]. Some authors have

even expanded this problem to include long wavelengths beyond the bandgap of

silicon [75].

On the other hand, emerging thin-film solar cell technology presents an entirely

different challenge for front coating design. First of all, reflections from the front

and back interfere over a broad range of wavelengths. Furthermore, unlike a narrow

bandwidth problem, where the principles of Q-matching resonant absorption (also

known as "impedance-matching") can be applied, the portion of the solar spectrum

considered is broad-bandwidth, 600 nm to 1100 nm. Moreover the absorption length

over the bandwidth is typically greater than the physical optical path length [85].

As a consequence, even light that initially passes through the front coating often

reflects back out through the front without being absorbed-an effect not accounted



for in Refs. [78, 80, 81, 86], and [87]. Since the front coatings need to both trans-

mit light and trap it to be absorbed, this increases the complexity of the problem

while diminishing the accuracy of any analytical approximations. This was examined

through ray tracing on a non-systematic basis for thick multicrystalline wafer-based

cells [88, 89]. Some recent work on the opposite limit of extremely thin (15 nm) or-

ganic cells has demonstrated 40% boosts in relative efficiency [901 with appropriately

designed front coatings. Also, the application of multiple reflections to ultra-thin

(5-55 nm) amorphous silicon has been discussed [73}.

The behavior of the cell designs depicted in Fig. 4-1, a photovoltaically active

silicon region backed by a perfectly reflecting metal region with a varying number

of dielectric coatings added to the front and back, is considered. It will be shown

that as long as the back reflector consists of low-loss planar layers, its specific design

will have negligible impact on the wide-bandwidth problem, though it will have a

large impact on the narrow-bandwidth problem. The thicknesses and indices of each

front and back coating are chosen by an exhaustive global-optimization procedure to

maximize the short-circuit current of each cell.

4.2 Formulation of the problem

The key factor that enables the use of global optimization to exhaustively search the

parameter space of possible front-coating films is the availability of extremely efficient

algorithms to model the optical properties of multilayer films. In particular, the

light-trapping properties of the structures discussed in this paper are studied using

a transfer-matrix approach known as the S-matrix method [91, 92]. The structure

is broken up into homogeneous slabs of chosen thicknesses, boundary conditions are

imposed at the interfaces, and fields are propagated throughout the structure. The
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Figure 4-1: Schematic illustration of solar cell designs studied here: (a) a photo-
voltaically active silicon region (green), backed by a perfectly reflecting metal (gray),
(b) diagram (a) with one or more front coating depicted in shades of blue, and (c)
diagram (b) with one back dielectric coating layer.

boundary conditions employed in this work correspond to light normally incident

from above the solar cell. Light absorption is calculated by modeling the c-Si regions

with a complex refractive index that depends on wavelength, as in Ref. [1]. The

c-Si region is treated as if it is only intrinsic, i.e., the doping of the p- and n-doped

regions can be considered to have a negligible impact on the optical properties of the

device. Since most dielectric materials have very large band gaps, the dispersion and

absorption of the front and back coatings is assumed to be negligible over the range

of wavelengths considered in this work 178]. The metal back-reflector is modeled as

a frequency independent, negative permittivity (lossless) medium (as shown later,

the exact details of the back-reflector have almost no impact on the optimal front

coating design for the full solar bandwidth problem). In principle, the calculation of

the model's optical properties is exact apart from these approximations. Verification



has been performed for several structures using the finite-difference time-domain

method [93] with perfectly-matched boundary layers [94]. While the results are in

good agreement, the FDTD method is much slower for the same level of accuracy,

so it is not used for the reminder of the calculations.

In order to calculate the efficiency of the light capture of the model it is assumed

that each absorbed photon with energy greater than the band gap energy generates an

electron-hole pair, and both carriers reach the electrical contacts. This corresponds

to the statement that the diffusion length LD is much greater than the distance

traveled by each carrier (i.e., LD > d), a reasonable assumption for thin Si films

with high mobilities.

The optimized quantity is the generated short-circuit current Jc, given by [95]:

J c = dA A (A) - dA w(A)A(A) (4.1)
hc dA

where i represents the light intensity experienced by the solar cell per unit wave-

length (given by the ASTM AM1.5 solar spectrum [761), and A(A) is the absorption

calculated above. (The integration was carried out by a 1000-point trapezoidal rule.)

The coefficients w(A) capture the relative importance of absorption at each wave-

length, and will be referred to as "current weights" for short. This allows us to define

a figure of merit (FOM) by:

FOM=f dA w(A)A(A) (4.2)
f dAw(A)

which is proportional to the objective function we wish to maximize. It gives us a

measure of the absorbing efficiency of the structure weighted for the solar-cell appli-

cation; perfect absorption at all wavelengths within the range of silicon's absorption
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(300 nm to 1108 nm) yields FOM = 1.

Important spectra factoring into the Jc calculation are displayed in Fig. 4-2:

the real indices and absorption lengths of silicon, and current weights w(A). In

each plot, the experimental data is shown in blue, while the smooth fit used to

calculate the results in the following section is shown in red. For the case of the

real index of silicon, a Lorentzian plus a polynomial fits the data well. Since the

absorption length grows exponentially with wavelength, a polynomial fit was made
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Figure 4-3: A contour plot of the FOM of a cell with two front-coating layers versus
the layer thicknesses (the indices of each layer are fixed at 1.27 and 4.35). The FOM
ranges from 0.30 (blue) to 0.38 (red). The presence of many local optima necessitates
a global optimization approach.

to the logarithm of the imaginary part of the index. Finally, the current weighting

function w(A) in Eq. (4.1), which is based on the AM1.5 solar spectrum [76], was fit

with a degree-100 Chebyshev approximation, which displays more stability than its

standard polynomial counterpart [2].
For the calculations, the front coating thicknesses were bounded by 0 nm and

700 nm and the indices by 1 and 5. The range of thicknesses includes the largest

quarter-wave thickness in the lowest index material; the range of indices includes

most materials that can be easily fabricated as a front coating. However, as discussed



at the end of Section 1.3, restricting the range of indices to a narrower range, or even

fixing the indices entirely to the values for selected materials and optimizing only

over the thicknesses, yields a FOM only slightly lower than when a wide range of

indices is explored.

In general, this problem may have many local optima, especially as the range

and number of parameters are increased. This is illustrated in Fig. 4-3, which plots

the FOM as a function of two of the four parameters (two coating thicknesses)

and exhibits many local optima. To avoid these suboptimal solutions, we apply

a global optimization technique that exhaustively finds all local optima and picks

the best one. In particular, we employ the MLSL algorithm [96], which combines

efficient local search (we used the limited-memory BFGS algorithm [97] with an

open-source implementation[98]) with quasi-random starting points based on a Sobol

low-discrepancy sequence [99, 100, 101]. The MLSL algorithm is distinguished by

clustering techniques to avoid repeatedly searching the same local optimum, and is

guaranteed to find all local optima in a finite number of local searches [96]. We

also compared MLSL to several other global-optimization techniques, such as the

DIRECT-L algorithm [102], via a free-software package implementing many opti-

mization algorithms 1103], and found MLSL to find the same optimum in a shorter

time. Because the BFGS algorithm requires the gradient of the objective function

(the FOM), a computationally efficient method for calculating the gradient based on

the adjoint method was used. Adjoint methods allow the gradient to be computed

in a time comparable to the time required in calculating the objective function and

independent of the number of parameters [104].



4.3 Results and discussion

In order to understand the physically-relevant problem of maximizing short-circuit

current in a solar cell subject to the AM1.5 solar spectrum, it is instructive to start at

the simpler, opposite limit of zero bandwidth. In this zero-bandwidth limit, it is well

known that 100% absorption can be achieved when the rate of radiative escape from

a resonant cavity is equal to its rate of absorption [5, 105]; this is referred to as the

Q-matching condition. Thus, it is predicted that the optimal design of Fig. 4-1 with

an arbitrary number of front layers should be capable of reaching 100% absorption

at any given wavelength, simply by employing a periodic Bragg-mirror structure to

confine the light at that wavelength with the appropriate lifetime. For a bounded

number of layers, on the other hand, 100% absorption should only be reached up to a

certain wavelength At, since for A > At the absorption will be too small (corresponding

to a high absorptive Q that cannot be matched by a small number of layers). Thus,

the value of At will be determined by the maximum possible value of the radiative

Q achievable for a fixed number of front-coating layers and a fixed range of indices.

The absorption and radiative Q must be large enough in order for it to be accurately

described by a resonance process, the absorption length must be much larger than

the silicon thickness, and the light must be trapped for a time much larger than

the period. For instance, consider a front coating design of a 3 layer quarter-wave

stack. The absorption Q, due to the silicon layer with complex index of refraction

n(A) + m(A), is n(A)/K(A). The radiative Q of the quarter-wave stack is,

47rtn(A) vf
Q = (4.3)

where n(A) is silicon's real index, t is the silicon layer thickness, and the reflectance

of the quarter-wave stack given by
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1 - n(A) (n 2/ni) 3

R = -(4.4)
1 + n(A) (n2/ni) 3

where ni and n2 refer to the indices of the layers. It found that for At > 1000.2 nm

the absorption Q is too large and Q-matching becomes impossible for the 3-layer

quarter-wave stack.

This prediction is tested numerically using the simulation framework discussed in

the previous section; the results are shown in Fig. 4-4. For zero front coating layers,

the large dielectric contrast between silicon and air allows effective transmission at

only a handful of wavelengths (due to destructive interference of the reflected wave).



For a single front coating, the absorption is given by A =1 -- |r|2 , where:

e 2 (ei+1 + rir 2) + r 2eiol + r 1

eie2(riei + r 2 ) + rir 2e*1 + 1

where layer 0 is air, layer 1 is the front coating, and layer 2 is the silicon; nr is

the real part of the refractive index of layer j, Kj is the imaginary part, t, is the

thickness, A the vacuum wavelength. At normal incidence, #q = 4wr(n + irj)ty/A

and r = (nm+irj-, -n--iy-1)/(n+isj+ nj- +iiy-1) are the phases and Fresnel

reflection coefficients[ 106].

The reflectivity can be divided into three regimes, depending on the fractional

absorptance of the silicon layer:

Sle i*2I < r2 : here, virtually no light reaches the back reflector. Thus, the

problem reduces to that of creating an anti-reflection coating between two

semi-infinite regions, as discussed in Ref. [106]. The reflection is now written

as r ~ -(r 2ei'O + r1)/(rr 2e§1 + 1). With the proper choice of front-coating

layer index and thickness, 100% transmission (and thus, 100% absorption),

can be achieved at a single A [106]. This is exhibited by our results up to a

wavelength of 575 nm in Fig. 4-4; for wavelengths between 575 and 700 nm

complete absorption is instead due to Q-matching.

1 eie2 I r2 : here, partial absorption after one pass through the cell means that

interference between reflections from the front and back surfaces is possible.

Furthermore, it is impossible to fully optimize this system by controlling a

single, uniform dielectric layer. Mathematically, solving for the root of the nu-

merator of Eq. (4.5) requires three independent variables because it has four

linearly independent terms. If only two independent variables are present, a

constant value is added to a term which rotates in the complex plane. This
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coatings versus wavelength. Below 550 nm Q-matching is unnecessary, since the
absorption length is equal to or less than the silicon layer thickness, and absorption
is due to an anti-reflection coating.



results in Fabry-Perot-type oscillations, which are seen in Fig. 4-4 for wave-

lengths ranging from 675 to 1050 nm. However, these Fabry-Perot oscillations

can be suppressed with an additional single back layer, illustrated in Fig. 4-1(c),

which shifts the Fabry-Perot oscillations of the silicon slab to a maximum at

each A. To enhance light-trapping at wavelengths where the absorption length

of silicon is large, the optimal index of the front coating is the maximum al-

lowed value. Because of the ir-phase shift from this layer, the Fabry-Perot

peaks are shifted by half a period with respect to the zero front-coating FOM.

This trend continues with the two front-coating FOM, there are two ir-phase

shifts realigning the peaks with the zero front-coating FOM. Finally, note that

the onset of these oscillations is red-shifted as the number of front coatings

increases, from 675 nm for one front layer, up to 725 nm for two front layers,

and 950 nm for three front coatings due to improved light-trapping with an

increase in the number of front coatings, as predicted above. Note that this is

consistent with where the radiative Q begins to deviate from the absorptive Q
in Fig. 4-5.

ei02 I -> 1: here, the absorption strength is virtually nil, and Q-matching

cannot be achieved without a number of front layers proportional to Ilog(1 -

ei)2 )1, since the maximum radiative Q grows exponentially with the number

of layers {5]. Mathematically, the amplitude of the reflection coefficient Irl will

approach unity. This limit is approached on the right-hand side of Fig. 4-4.

Next, consider what happens to the FOM as the window of absorption wave-

lengths expands from zero up to the width of the usable solar spectrum for silicon-

based solar cells (300-1108 nm). The results for optimized structures with 0-3 front

layers are plotted in Fig. 4-6; three distinct bandwidth regimes can be seen. First, the



smallest bandwidths (below 1 nm) are similar to the zero bandwidth problem plotted

in Fig. 4-4, for A =902.8 nm. Since the absorption length of silicon at A =902.8 nm

is about 50 pm, several front layers are necessary to increase the radiative Q for

Q-matching to be achieved. Second, it is evident that Q-matching starts to break

down for bandwidths greater than 1 nm. That is because Q-matching relies on the

accuracy of coupled-mode theory, which assumes a narrow-bandwidth cavity (i.e.,

one that is weakly coupled to losses so that its decay rate is long compared to the

optical period) [5]. When that assumption is violated, it is no longer possible to

achieve 100% absorption over the entire bandwidth; the severity of the violation dic-

tates the extent of the decrease in the average absorption. Third, the increase in

the FOM for large bandwidths (above 265 nm) demonstrate that absorption can be

boosted by blue-shifting the central wavelength and adding in more wavelengths for

which even a thin film is optically thick.

Now let us consider the problem of absorption over the whole solar spectrum

in more detail. The absorption spectra of optimized thin-film crystalline silicon

solar cells (t = 2 pm) are plotted in Fig. 4-7 for structures with no front layers

[based on Fig. 4-1(a)] as well as optimized structures with 1-3 front layers [based

on Fig. 4-1(b)]. It is evident that the optimal design employs a peak absorption

around 450 nm, which represents a trade off between the shorter absorption lengths

at smaller wavelengths [illustrated in Fig. 4-2(a)] and the greater current weights at

longer wavelengths [illustrated in Fig. 4-2(b)].

The values of the front coating indices, thicknesses and figure of merit for the

optimized structures of Fig. 4-7 are listed in Table 4.1. The layers slowly increase in

index towards the silicon layer, consistent with the intuition that a front layer with a

smoothly increasing index profile would allow 100% transmission to the silicon layer.

(The optimal front coating is not a total transmission AR coating, however, be-
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Table 4.1: Table of optimized front-coating designs for one, two, and three front-
coating layers, as in Fig. 4-1(b). Layers are ordered from closest to air. Coating
thickness d in units of nm.

Number of front coating layers 1 2 3
Figure of merit 0.439 0.455 0.458

Layer indices and thicknesses n d n d n d
2.08 60.0 1.54 82.3 1.34 91.0

3.02 38.9 2.39 53.1
3.79 29.9
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cause it must act as a partially silvered mirror, particularly in the narrow-bandwidth

limit). Moreover, as one might expect, each of the optimized front coatings generates

destructive interference between reflections from their front and back at the central

frequency (corresponding to a phase shift ~ 7r). In addition, the optimized structure

for the 1 front-coating and 1 back-coating structure was found to be d = 60.0 nm,

n = 2.070 and d = 20.7 nm, n = 1, respectively; the corresponding figure of merit

was 0.440, which is nearly the same as the 1 front-layer structure. While it appears

that the back coating is not of much use in a broad bandwidth problem, for a lossy

metallic back reflector the back coating can help to reduce unwanted absorption loss.

Let us consider the effects of thickness over a broad range of silicon thicknesses,

from thin-film values of 1 pLm to effectively semi-infinite values of 1.6 cm. For the case

of 2 pm-thick thin films, increasing the number of front coatings from zero to one

yields a relative increase of 39.8% to the FOM (from 0.314 to 0.439); adding a second

front coating yields a relative increase of 3.6% to the FOM (to 0.455), and adding a

third coating yields another relative increase of 0.6% (to 0.458). For wafer-based cell

thicknesses, e.g., 256 pam, increasing the number of front coatings from zero to one

yields a 42.3% relative increase in the FOM (from 0.614 to 0.874); adding a second

coating yields a relative increase of 6.1% (to 0.927); adding a third coating yields a

relative increase of 1.3%. For effectively semi-infinite cells, e.g., 1.6 cm, increasing

the number of front coatings from zero to one yields a 42.0% relative increase to the

FOM (from 0.645 to 0.916); adding a second coating yields a 6.6% relative increase

(to 0.976); and adding a third coating yields a relative increase of 1.5% (to 0.991).

These numbers illustrate the diminishing returns associated with adding more

front layers for the broad-bandwidth problem. Thus, it is no surprise that increasing

the number of layers to 10 provides no more than a 0.9% relative improvement over

3 layers, for a 2 pm-thick thin film. This result contrasts strongly with the zero-
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Figure 4-8: Figure of merit versus silicon slab thickness, both for a structure with
no front layer (based on Fig. 4-1(a)) and optimized structures with 1-3 front layers
(based on Fig. 4-1(b)).



bandwidth results shown in Fig. 4-4, where each additional layer results in a large

improvement (up to the critical number required for Q-matching). As discussed

previously, this crossover occurs in the intermediate bandwidth regime (1-265 nm),

as illustrated in Fig. 4-6. Furthermore, the relative and absolute gains are greater

for the thicker, wafer-based cells than for thin films. This can be explained by noting

that the long wavelengths that are poorly absorbed by thin cells with a single front

coating layer can be absorbed well by thick cells. Thin-film cells are simply too

thin to ever strongly absorb longer wavelengths without compromising their shorter-

wavelength absorption, whereas wafer-based cells are free from this limitation. This

assertion is also supported by the absorption spectra of Fig. 4-7, in which the optimal

designs display increasing absorption with the number of front coatings primarily at

shorter wavelengths.

For thin films exposed to the full solar bandwidth, the FOM and the optimal

front-coating design are insensitive to the type of back-reflector. Considering only

lossless planar back-reflectors and limiting ourselves to completely specular reflec-

tion, different back-reflector schemes (different materials, Bragg mirrors, etc.) are

distinguished only by the phase 0 of the reflected wave. However, we show here that

the FOM is essentially independent of the back-reflector phase. Of course, this phase

generally varies with wavelength, but it is sufficient to demonstrate this independence

using a constant phase (employing n = 3.5 for silicon and a constant imaginary index

for the back-reflector, as explained previously). The FOM relative difference, which

measures the influence of the back-reflector on the absorption, versus 0 is shown in

Fig. 4-9. For each back reflector, the FOM must be calculated twice, once with the

optimal front coating design for that particular back reflector and again with the op-

timal front coating design of the original back reflector (0 = 0). We find the relative

difference to be very small, less than 0.0001 for the single front-coating structure.
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Figure 4-9: Relative difference in figure of merit, calculated as the relative difference
of the FOM for the optimized structure with the given reflection phase and the
FOM of a structure with the given phase and with the optimized front coating of
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This robust behavior is enabled by the large bandwidth of the incident flux that

averages out the change at each A; while the location of the absorption peaks can

shift, the total absorbed flux will show almost no change as illustrated in Fig. 4-10.

Therefore, metallic backings where absorptive losses are present, such as aluminum,

can be replaced with a lossless backing, such as a ID Bragg mirror.

Though the refractive index bounds exceed those of common materials, we find

that optimization with a smaller range of indices, 1 to 3, does not significantly

change the FOM. In fact with a restricted refractive index range, the 3 front-coating

structure FOM decreases by less than 0.5% (0.458 to 0.456). (The thicknesses and
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Figure 4-10: Absorption spectrum of the optimized single front coating reference
structure for two different back-reflector phases, r/4 (blue) and -r (red). The back-
reflector simply shifts the peaks, but has a only negligible effect on the integrated
absorption or the FOM.

indices of each layer of the optimal structure changes, including those in the original

structure with an index less than 3.) Moreover, if the indices of the front coatings

were fixed to values corresponding to experimentally accessible materials and allow

only the thicknesses to vary, we find very little change in the FOM, less than a 0.2%

relative change in all three cases. If the front coatings were chosen to be MgF 2,

ZrO 2 , and TiO 2 with indices 1.38, 2.39, and 3.9 yields a FOM of 0.457, a relative

decrease of just 0.2% compared to the optimal 3 front-coating structure in Table 4.1.

These specific materials are insulators with large electronic bandgaps, and therefore

exhibit negligible absorption over the solar bandwidth considered. The Kramers-



Kronig relation predicts that the real index must have very small dispersion as well;

for example, the real index of MgF 2 ranges from 1.380 at A = 825 nm to 1.398 at

A = 300 nm.

The designs presented in this work are also robust against small fabrication errors.

For example, vertical LPCVD systems can routinely achieve uniformities of better

than 2% in the deposition of silicon nitride 1107. For our designs, that corresponds

to an error of ±2 nm or less. However, it's clear that this corresponds to a variation

in the objective function of less than 0.001, which shows that our designs can tolerate

typical experimental errors.

4.4 Conclusions and future work

In conclusion, the proper design and optimization of front coatings of crystalline sili-

con solar cells has a critical impact on their overall efficiency. For narrow bandwidths

in optically thin absorbing media, it is best to employ the Q-matching condition. The

benefit of additional layers is large until this criterion is achieved. When the band-

width is equal to the portion of the solar spectrum that can be absorbed by crystalline

silicon, it is necessary to take a different approach. It is found that just two opti-

mized layers suffice to realize most of the benefits of a multilayer front coating design.

The relative improvement associated with going from one to two front layers is 6.1%

for 256 micron-thick wafer-based cells, and only 3.6% for 2 micron-thick thin-film

cells. This result comes about because weak absorption of near-IR by planar thin

films limits the utility of broadening the bandwidth of strong transmission through

the front coating. Adding a third layer yields relative improvements of 1.3% and

0.6% for wafers and thin films, respectively; the results for four or more layers show

even smaller additional improvements. The broad bandwidth results achieved do not



depend on the type of back-reflector used.

Though the effect of non-radiative recombination was neglected here, it can be

simply incorporated for thin-film cells just by multiplying the short-circuit current

with a pre-factor that is independent of the front-coating design. That is because

in a thin-film solar cell geometry, the ratio between the contact spacing and the

cell thickness is generally 1000:1 or greater. As a result, the system can be treated

in a quasi-2D approximation, allowing the charge collection efficiency to be treated

independently of the front-coating design. For example, one could construct a model

of contact strips spaced by a distance D with a minority carrier collection probability

P = e-1yI/LD, where y is the distance of the electron-hole pair generation from the

nearest contact, and LD is the minority carrier diffusion length (the diffusion length

for majority carriers is infinite by assumption). Spatial averaging yields an overall

pre-factor of (2LD/D)[1 - e-D/2LD]. For a minority carrier diffusion length of 10

mm and a contact spacing of 1 mm the pre-factor is 97.5%. Radiative recombination

can be calculated following the approach outlined in Ref. [331. Under short-circuit

conditions, the radiative recombination current cancels with the thermal current,

leaving only the Jc term.

The results outlined in this work provide a clear baseline to which more complex,

non-planar photonic structures ought to be compared. Future work should address

the weak absorption of near-IR by thin-film cells by optimizing 2D or 3D patterns

introduced in the front or back coatings, whose purpose is to convert incoming nor-

mal incidence radiation to transversely propagating, waveguided modes that achieve

a longer optical path within the absorbing layer. Ref. [95] demonstrates how pho-

tonic crystals can improve reflection off of a realistic, lossy metal (such as aluminum)

while also redirecting light in the near-IR into guided modes. However, periodic pat-

terning has its greatest impact near the diffraction limit where the density of guided



modes is largest. One can also consider the impact of a random surface, in partic-

ular correlated roughness. Such a surface profile would resemble some incoherent

superposition of multiple gratings and conceivably created more guided modes that

enhance absorption. The random and periodic patterning should also enable front

coatings to improve absorption over a broader wavelength range than would be pos-

sible in a planar structure. This combined approach may result in efficiency gains

equal to the sum of their contributions. Finally it may also be beneficial to consider

the effect of non-normally incident radiation, one could maximize the performance

over a range of incident angles [85].



Chapter 5

Tailoring thermal emission via

Q-matching of photonic crystal

resonances

A rigorous framework for analyzing the emissivity spectrum of a 2D metallic photonic

crystal via coupled-mode theory is constructed. Applying the Q-matching condition

to resonant modes allows one to tailor the spectrum to display high emissivity over

a specified range of wavelengths; this is verified with finite-difference time-domain

simulations. This approach is used to explore a frequency selective emitter for ther-

mophotovoltaics as well as an incandescent lighting element.

5.1 Introduction

The spectral emissivity of a blackbody is unity for all frequencies and is the upper

limit that any material can achieve. However, in certain applications it is desirable



to have instead an emitter that radiates only within a certain frequency bandwidth,

a selective emitter. Photonic crystals, metallo-dielectric structures with periodic

wavelength-scale refractive index modulations, are well-suited for creating a selective

emitter by virtue of possessing photonic bandgaps [3, 4, 5, 108, 109]. The addition

of metal introduces more flexibility in creating a selective emitter; below the plasma

frequency of the metal, electromagnetic fields are strongly attenuated [110, 111],

which allows broadband frequency selectivity [110, 111, 112, 113, 114, 115, 116,

117, 118]. However, the high infrared reflectivity of metals implies via Kirchhoff's

law [119], a low emissivity and therefore requires a modification of the surface, for

example by a ID array of grooves [112] or a 2D array of holes [113, 114, 115, 116], to

suppress reflection at those frequencies. The surface periodicity allows light to couple

to diffracted plane waves or surface plasmon-polaritons, if they are present. Moreover

if the grooves or holes are large enough they will support waveguide resonances that

couple to one another providing another mechanism for enhancing thermal emission

by increasing the interaction time of light with the material. While previous work

[112, 113, 114, 115] has demonstrated that the resonant peaks due to waveguide

resonances occur at frequencies corresponding to the isolated waveguide resonant

frequencies, the mechanism and quantitative prediction for the amplitude of the

peaks was missing. Here we show that matching the radiative and absorptive rate of

the photonic crystal resonances dictates the emissivity spectrum. By tuning a small

number of geometrical parameters, tailoring a broadband, selective thermal emitter

becomes possible.

In particular, one such application of a selective broadband emitter is in ther-

mophotovoltaics (TPV). In TPV, the emitter, such as a slab of tungsten, is heated to

a high temperature and radiates the majority of its energy in the infrared and onto

a photovoltaic (PV) cell with a bandgap designed to lie in the infrared [120, 121].
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Figure 5-1: Emissivity spectrum of flat, bulk tungsten (blue) and of an ideal selective
emitter (green) designed to match the 0.6 eV/h bandgap of InGaAs.

InGaAs, for example, possesses a bandgap of 0.6 eV/h [114, 122]. However, a low

efficiency and power density results since the typical greybody has too low emissivity

in the infrared; this is remedied with the selective emitter as we'll see.

5.2 Loss rates of waveguide resonances

Consider the emissivity spectra illustrated in Fig. 5-1. The ideal selective emitter

should emit only photons with frequency above a cutoff frequency. Here, the cutoff

frequency corresponds to the electronic bandgap of InGaAs. Tungsten, chosen here

because of its high melting point and low emissivity beyond the cutoff frequency,

falls far short of being an ideal selective emitter. However, upon introduction of a



Figure 5-2: A periodic array of cylindrical holes with period a, depth d, and radius
R etched into a slab of tungsten. The hole depth is less than the tungsten slab
thickness.

periodic array of holes, illustrated in Fig. 5-2, its selectivity can vastly improve via

the creation of extra states on the surface that couple to external radiation.

Since the radiative and absorptive rate of these coupled waveguide resonances

depend much more strongly on the hole radius R and depth d than on the period a,

consider first a single, isolated hole (a -> oc). Because the field can penetrate into

tungsten, the resonant mode within an isolated hole will be a linear combination

of HE and EH-like modes. Only resonances with angular number v = 1 will be

considered since only they will couple to normally incident plane waves in a periodic

array of holes. In addition, for the R and d values considered here for Q-matching,

y = 1 yields the lowest resonances. The hole resonances experience three types

of losses; radiation through the top, absorption on the side walls and bottom, and

absorption on the front tungsten surface. The first and second loss mechanisms

contribute much more to the total loss rate than the last mechanism, so it is neglected.



If the two remaining loss rates are not too large compared to the resonant frequency,

then each can be calculated in the absence of the other [123]. For each loss mechanism

a quality factor Q = wT/2 is calculated, where w, is the resonant mode frequency

and T the lifetime (or inverse loss rate) associated with it. (The quality factor is

a dimensionless lifetime: after Q periods a resonance decays by exp (-7r).) When

these two loss rates are equal- the Q-matching condition- complete absorption of

incident radiation occurs.

The loss rate due to absorption can be obtained by closing the top with a perfectly

conducting metal. A perfect magnetic conductor cover, corresponding to a electric

field maximum at the opening, could just as well be employed since the absorptive

rate does not depend much on which boundary condition is used. Finite-difference

time-domain (FDTD) simulation is used to simulate the structure [62, 1241. A point

source is placed in the cavity, and resonant modes are excited whose loss rates are

extracted by a filter-diagonalization method [61]. The resonant frequency wea/2rrc

and absorptive quality factor Qabs = WoTabs/2 are plotted in Fig. 5-3(a) and Fig. 5-

3(b) as functions of R and d for the first three hole resonances. The general trend of

Qabs decreasing toward the left can be understood from an equivalent definition of Q,
Qabs = WoU/Pabs. Decreasing the hole volume reduces the total field energy U of the

mode and forces a larger value of the electric field on the tungsten surface thereby

raising Pabs. The power absorbed on the bottom increases with the wavevector in

the z-direction, hence Qabs decreases with the mode order.

The radiative quality factor Qrad = WoTrad/2, plotted in Fig. 5-3(c), is obtained by

replacing tungsten with a perfect conductor in simulations. The lack of an intrinsic

length scale implies that Qrad will depend only on the ratio d/R and is manifested

in Fig. 5-3(c) as lines emanating from the origin. To leading order in d/R it can be
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shown that

Qrad ( -)3 (5.1)
R

through Qrad = WoU/Prad. The stored field energy is approximately the product of

the hole volume and the electric field intensity at the hole center, U ~ EOR 2 d|Ecenter|2 .

The radiated power is the product of the Poynting field at the cavity opening and

the area of the opening, Prad ~ R 2 Eopening| 2/(cpo). From simulations of holes

with R and d varied separately one obtains JEopening|/jEcenterl ~ 2R/d, which gives

Qrad oc wed 3 /(cR 2). Expressing the resonant frequency w, in terms of the geometric

parameters yields the desired result to leading order in d/R. Simulations confirm

Eq. 5.1, but with an exponent slightly less than 3.

Q-matching is attained wherever the two surfaces, Qabs(R, d) and Qrad(R, d),

intersect. For the first resonance this occurs on the white line in Fig. 5-3(c). Above

the line Qrad is too large, the hole is under-coupled to external radiation. Below

it Qrad is too small and the hole is over-coupled to external radiation, power can

effectively couple into the hole, but it's trapped for too short a time to be absorbed.

Critical coupling can be achieved by tuning the radius to increase Qrad to a high

enough value.

5.3 Effect of period

The optimal dimensions for an isolated hole may not be the same for a periodic array

of holes, Qrad may increase if the far field of neighboring holes interfere destructively.

Moreover, Q-matching has been achieved for spherical waves converging onto the

hole. The effect of a on Qrad can be determined through a field-matching formalism
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Figure 5-4: Qrad versus period of unit cell with R = 0.545pom and d = 1.89pam.
Resonance with a diffracted plane wave sets up an anti-crossing, visible as large
jumps in Qrad. Since we consider resonances that couple only to normal incidence,
the period is bounded from above.

described in Ref. [125] where the field above the perfect conductor slab is expanded

in a plane wave basis and the field inside the holes expanded as a linear combination

of waveguide modes. The number of waveguide modes needed here is quite small, it is

sufficient to use just the fundamental TE and TM waveguide modes since the cutoff

frequencies of higher order modes lie far above the range of frequencies considered.

From matching the parallel components of the fields, a scattering matrix connecting

the waveguide amplitudes with the incident field is formed,

[G(w) - ()] E=I (5.2)



where E is a two-component vector of the waveguide mode amplitudes, I is a two-

component vector of the incident field overlap with each waveguide mode, G(W) is a

frequency dependent 2 x 2 matrix formed from the overlap of the waveguide modes

and the plane waves above, and E(w) is a diagonal matrix that determines the self-

energy of the waveguide modes. By setting I = 0, the poles of the scattering matrix

can be found, giving both the resonant frequency and radiative rate. In addition

the resonant field can be obtained; it is found that the near field is composed of

diffracted, evanescent plane waves (i.e., those plane waves that carry no power away

from the slab). Qrad is typically larger than that of an isolated hole due to partial

destructive interference of the far field. The period can change Qrad by about 50%

relative to the isolated hole Qrad illustrated in Fig. 5-4 for the first resonance. Most

of the variation in Qrad occurs near periods where there exists diffracted plane waves

that are resonant with a waveguide mode. During this resonance it is possible for

Qrad to be less than that of the isolated hole value. Qabs, on the other hand, is not

expected to change by more than a few percent for holes that are separated by a

skin depth or more since that coupling is exponentially dependent on the separation

[18]. Nonetheless, the Q-matching condition of the isolated holes can serve as a guide

toward the optimal hole parameters for the photonic crystal slab.

Using the previously built intuition we simulate a tungsten photonic crystal with

hole dimensions predicted to satisfy Q-matching, R = 0.5 pm and d = 1.89 pm, and

period a = 4.8 pm. A normally incident, linearly polarized plane wave is directed

at the tungsten photonic crystal slab. Perfectly matched layers (PML) terminate

the computational cell above the slab and periodic boundary condition (ki1 = 0) on

the sides. (PML is unnecessary below since the slab is opaque.) The absorptivity

spectrum is calculated from the reflectivity spectrum, A(w) = 1 - R(w). The emis-

sivity spectrum, for normal emission, is obtained from the absorptivity spectrum
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Figure 5-5: Absorption spectrum for the tungsten photonic crystal slab with
a = 4.8tpm, R = 0.104a, and d = 0.394a. Diffraction appears as sharp peaks
and weak resonant peaks due to photonic crystal modes appear at approximately 2.7
and 3.4 27rc/a.

via Kirchhoff's law which states that for a body in thermal equilibrium, emissiv-

ity and absorptivity must match at each frequency, wave vector, and polarization

[ 119, 126, 127]. Due to the large period, the emissivity spectrum of the a = 4.8 pm

crystal, Fig. 5-5, is essentially that of flat tungsten with sharp diffraction peaks and

broadened photonic crystal resonances superimposed. The holes occupy a small frac-

tion of the surface, and the photonic crystal resonances radiate into many allowed

diffracted plane waves increasing the reflectivity. The period does not seriously spoil

Q-matching; Qrad of the first resonance for the isolated hole and photonic crystal

slab are 14.3 and 12.7, respectively. To realize a stronger frequency selectivity it is



necessary to adjust a; plotted in Fig. 5-6 are the emissivity spectra for various a. As

a is decreased, the first resonant peak eventually appears below the diffraction limit,

wa/27rc = 1. Further reduction of a pushes the diffraction limit above additional

resonances, increasing the bandwidth of the high emissivity region. This can be

continued up to a = 2R at which point the hole resonances are strongly coupled to

each other through the tungsten side walls in addition to the nonradiative coupling

via evanescent plane waves. If the period is further reduced (a < 2R) creating an

array of posts on the surface, then the photonic crystal resonances can no longer be

described as coupled waveguide resonances, such as for a = 0.75 pm where tungsten

posts occupy 7% of the surface. Note that at wavelengths much larger than a, dif-

ferent absorptivities occur due to the varying ratios of air hole to tungsten side wall

volumes. In the long wavelength limit the free electron density makes the dominant

contribution to the permittivity and effective medium theory is valid. Decreasing

the tungsten fraction decreases the free electron density. This lowers the effective

plasma frequency which increases the absorption rate.

5.4 Coupled-mode theory

With a handle on the resonant frequency and both the absorptive and radiative rates,

we now focus on the a = 1.2 pm emissivity spectrum and understand it through

temporal coupled-mode theory [128, 129, 1301. The tungsten photonic crystal slab

can be thought of as a multimode resonator, illustrated in Fig. 5-7. Associated with

each resonance is a resonant frequency La, absorptive lifetime Tabsi, and radiative

lifetime Trad,i. In addition they can radiatively couple to each other with a lifetime

ri (i j) on the order of Trad,i [131]. The coupled-mode equations for the multimode
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Figure 5-6: Absorption spectra for photonic crystal slabs with various a but R and
d fixed at 0.5 and 1.89 pm, respectively.
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Figure 5-7: A multimode resonator with resonant frequencies w, absorptive and
radiative lifetimes Tabs,i and Trad,i, respectively. Resonances i and j radiatively couple
to each other with rate 1/Tij.

resonator are,

d = (-iQo - F)a + DTs+ (5.3)
di

_= Cs+ + Da, (5.4)

from which the reflectivity is R = Is/s+|2 . The three component vector a describes

the resonant mode amplitudes, Qo is a 3 x 3 diagonal matrix of the resonant mode

frequencies, F is a 3 x 3 matrix of decay rates, D is 1 x 3 matrix of the resonance-

port coupling amplitudes, C is the direct pathway scattering matrix/amplitude, and

s+ are the incoming/outgoing port amplitudes. The decay rate matrix F can be



separated into a radiative contribution I, and an absorptive contribution Fa with

F,ii 1/Trad,i and Fa,ii 1/Tabs,i. The resonance-resonance coupling rates, 1/rij, are

given by the off-diagonal elements of F, and are dependent on 0,,4. The dependence

comes about through the matrix relation 27, = DtD, which is a consequence of en-

ergy conservation and reciprocity. In addition, the direct pathway scattering matrix

constrains the phases of D via the relation CD* = -D. Since the front surface ab-

sorption is neglected, the front surface is approximated as a perfect conductor and C

is set to -1. The phase of the elements of D depend on how many ways the photonic

crystal resonances can couple to each other [131]. In the case of hole depth equal

to slab thickness, the photonic crystal resonances couple via the top and bottom,

and if the phases of the resonances are different at either opening, as in the case of

resonances with opposite parity, then the resonances will not couple, i.e., -rFi - 00.

Here the hole depth is less than the slab thickness by more than a couple skin depths,

parity is broken, and so all resonances will radiatively couple to one another. This

also implies that the resonance-port coupling amplitudes will have the same phase.

From FDTD simulations we obtain Ws, Tabs,i, and Tradi for the first three reso-

nances. In particular, Trad,i is obtained from simulating a unit cell of the photonic

crystal with the radius widened by a skin depth. The resulting emissivity spectrum

is compared with the emissivity spectrum obtained from the full FDTD simulation

in Fig. 5-8. Since coupled-mode theory is a perturbation theory, it is most accurate

for resonances with total Q > 1; here the resonances have total Q of 8.0, 4.4, and

6.3, respectively, and unsurprisingly, the spectra display some differences. The res-

onances above the diffraction limit of w = 27c/a are not taken into account, doing

so requires not only their resonant frequencies and lifetimes, but also modifying the

couple-mode equations to include the extra ports that correspond to diffracted plane

waves. Clearly this would greatly complicate the coupled-mode equations- account-
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Figure 5-8: Absorptivity spectrum for a = 1.2pm calculated by FDTD simulation
(blue) and coupled-mode theory (red).

ing for just the first order diffraction would require s± to be a 5 x 1 vector, D a

5 x 3 matrix, and C a 5 x 5 frequency-dependent matrix. It is also clear that the

coupled-mode equations here will not work for frequencies much less than the cut-off

frequency where the absorption is due primarily to the front surface of tungsten. In

principle it can be accounted for in the coupled-mode equations by considering the

front surface absorption as another port [131]. Surface plasmons due to tungsten's

permittivity can be ignored; while there are material resonances below wa/2'rc = 1,

the loss rates associated with the surface plasmons are too large to allow significant

absorption peaks.



5.5 Applications and conclusions

Demonstrating that it is possible to predict the emissivity spectra with only a few

input parameters- the optical constants of tungsten, a, R, and d- attention can

be directed toward applications. In TPV and solar TPV (STPV), the radiated

photons from a high temperature radiator are captured and converted into electron-

hole pairs via a photovoltaic cell 120, 121]. In the case of STPV, concentrated

sunlight is used to heat the tandem absorber-emitter structure which then radiates

onto a photovoltaic cell [132, 133]. In both cases, the emitter is heated to over 1000 K.

The selective emitter described here can dramatically improve both the efficiency and

power density of the TPV/STPV system by enhancing the above bandgap energy

photons that directly generate electron-hole pairs in the PV cell, and suppressing low-

energy photons that would only heat the photovoltaic cell. Moreover retaining the

low-energy photons contribute toward keeping the emitter hot [134]. One possible

structure would be the tungsten photonic crystal in Fig. 5-8 which has a cutoff

frequency of 0.67 eV/h. It can be made to match the 0.6 eV/h bandgap of InGaAs

[122] by slightly widening the holes.

Another potential application of the selective emitters is higher efficiency tung-

sten incandescent elements. The tungsten filament is notoriously inefficient, less

than 5% of the energy radiated is in the visible spectrum, due to the fact that the

temperature of the filament, about 2800 K, implies via Wien's law a peak emitted

wavelength slightly over 1 pm and that tungsten displays significant absorption in

the near-IR and not enough absorption in the visible. Previous work has considered

the use of a separate 2D metallic photonic crystal to act as a low-pass filter [134],

those photons with wavelengths greater than the cutoff of the filter are reflected

back to the hot filament. However, separating the filter and filament function lead



to added complexity with alignment and thermal separation. Patterning a photonic

crystal on the surface of tungsten can address the issue of low visible radiation emis-

sion. A nonlinear optimization package [1031 is used to find the neighborhood of the

optimal photonic crystal parameters and the extent of improvement. The product of

luminous flux and luminous efficiency serves as the figure of merit to optimize. The

luminous flux is defined as the amount of useful radiation, i.e., the product of the

emissivity spectrum, blackbody spectrum, and the eye's luminosity function which

describes the eye's visual sensitivity to different wavelengths. It is approximately a

gaussian centered at 0.55pum with a FWHM of 0.1prm [135]. Luminous efficiency is

defined as the ratio of luminous flux to total radiated flux. The emissivity spectrum

is calculated via the coupled-mode theory outlined above with semi-analytical ex-

pressions for all coupled-mode parameters. It is found that the optimal a, R, and d

are 0.46pm, 0.15pum, and 0.35pm, respectively. The luminous flux is double that of

flat tungsten, and the luminous efficiency is 34% larger than flat tungsten's. Plotting

the emissivity spectrum shows that the peak is placed just above 0.55pm. The single

resonance possesses a total Q of 2.55; clearly the conditions for coupled-mode theory

are violated and FDTD simulations are needed to truly find the optimal set of param-

eters. For the same parameters FDTD simulations predict an improvement of 92%

for the luminous flux and 30% for the luminous efficiency. In each case the relative

difference from the semi-analytic prediction is less than 10%. While the photonic

crystal improves the performance of the tungsten incandescent element, compared

to current alternatives on the market, fluorescent and LED bulbs, the gains are not

nearly enough. However this does not rule out the possibility of using other kinds of

resonances such as surface plasmons.

In conclusion we have demonstrated how Q-matching, via the geometrical param-

eters, can be used to tailor the emissivity spectrum of 2D metallic photonic crystals.



Because the thermal radiation field is incoherent, the emissivity at all k is needed.

Since the resonant peaks are due to photonic crystal resonances arising from coupled

hole resonances, it is expected that the location and shape of the resonant peaks

change little with k1l [18]. Therefore the emissivity spectrum, at least the portion

below the onset of diffraction, should change little and continue to display high selec-

tivity. Finally a fabricated photonic crystal is expected to have some disorder. While

moderate disorder in the hole radius and depth will mainly red-shift and broaden

the resonance peaks through a spread in the resonant frequencies, the same amount

of disorder in the period is expected to be more destructive.



Chapter 6

Conclusion

In this thesis I've explored a wide range of phenomena in photonics: self-assembly

(Chapter 2), zero-group velocity modes (Chapter 3), and tailored absorption and

emission spectra (Chapters 4 & 5). A few more comments can be said about each.

While self-assembly and colloidal photonic crystals can provide a simpler route to-

ward fabricating 3D photonic crystals, issues related to the use of complex building

blocks must be addressed. The first issue is the separation of the tetrahedra from

spheres, dimers, and trimers that are also produced during the nucleation and con-

glomeration stage. This is still a challenge. The other issue is that of orienting the

tetrastacks properly; this could be circumvented by using external fields and coating

the tetrastacks to ensure that they stack properly. Another possible solution would

be to envelop the tetrahedra with a spherical sacrificial coating. These spheres are

then used to build the crystal. Once this is done the sacrificial coating can be etched

away.

In Chapter 3, anomalous regions in two-dimensional band structures have been

identified. The modes in these regions have an effective wavevector that makes an



obtuse angle with the group velocity.

In Chapter 4, we have found that sizable gains can be realized: over 40% relative

to uncoated cells and almost 4% relative improvement going from 1 to 2 front coat-

ings. Moreover for ID coatings, the majority of the benefit is realized with just the

first few layers. However, the simplicity of ID front coatings is also their weakness;

performance is limited by weak absorption in the long wavelength part of the solar

spectrum. An area of future research is the use of back-surface correlated texturing.

By optimizing over a spread of periods it may be possible to couple into guided

modes in the near-IR and attain larger improvements in the short circuit current. Of

course the front coatings must be optimized simultaneously with the back texturing

to account for increased absorption in the longer wavelengths.

There is also more to be done with the 2D selective emitter described in Chapter 5.

While focus has been on circular holes, it is clear that this approach will work with

any type of holes. In fact, selective emissivity may benefit from less symmetric

cross-sections. For example, elliptical holes break rotational symmetry and lift the

degeneracy between the counter-rotating modes effectively doubling the number of

peaks that appear below the diffraction limit. Another area of future work would

be to explore the benefit of quasi-crystalline order. It is known that extraordinary

transmission, which relies on resonant photonic crystal modes, can be observed on a

thin film that has only orientational order [136, 137]. It is reasonable to expect the

appearance of photonic quasicrystal modes here as well. Again, the idea would be

to broaden the high emissivity range with more resonances.
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