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Abstract

This thesis presents Optimally Scaled Hip-Force Planning (OSHP), a novel approach
to controlling the body dynamics of running robots. Controllers based on this ap-
proach form the high-level component of a hierarchical control scheme in which they
direct lower level controllers, each responsible for coordinating the motion of a single
leg. An OSHP controller takes in the state of the runner at the apex of its primary
aerial phase and returns desired profiles for the vertical and horizontal forces to be
exerted at each hip during the subsequent stride. Controlling the legs so as to match
these profiles is left to the lower level leg controllers. The hip force profiles returned by
OSHP are scaled variants of nominal force profiles based on biological ground reaction
force data. The OSHP controller determines the scaling parameters for these profiles
through constrained nonlinear optimization on an approximate model of the runner's
body dynamics. Additionally this thesis presents an implementation of an OSHP
controller for a simple quadruped model. Evaluation of the controller in simulation
shows that even with very simple leg controllers, the OSHP controller can produce
bounding and pronking gaits in that model. These gaits emerge as the controller at-
tempts to match particular targets for the runners' states at the apex of their strides.
The order in which the feet make contact with ground is not pre-specified. That
evaluation also shows that the OSHP controller can compensate for errors introduced
by the leg controllers to match given target values for the runners' height, pitch, and
pitch rate at the apex of their strides.

Thesis Supervisor: Sangbae Kim
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Context: The MIT Cheetah Project

The research presented in this thesis forms a part of the MIT Biomimetic Robotics

Laboratory's (BRL) Cheetah project, part of the Defense Advanced Research Projects

Agency's (DARPA) Maximum Mobility and Manipulation (M3) program. The goal of

the Cheetah project is the creation of a high-speed quadrupedal robot. The BRL plans

to have a quadruped capable of running at 30 mph by 2014. A conceptual model of

the MIT Cheetah is shown in Figure 1-1. This endeavor requires significant research

efforts in mechanical design, motor design, manufacturing, and controls. This thesis

presents research aimed at providing a high-level controller for the MIT Cheetah;

however, the control approach presented here is not restricted to this particular robot,

nor even to quadrupeds. Rather, it is a general approach that can hopefully be of use

in the control of any running robot. With that hope in mind, it seems appropriate

to begin by considering some of the other strategies that have been used to control

robotic runners.
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Figure 1-1: Conceptual model of the MIT Biomimetic Robotics Laboratory Cheetah,
a high-speed running robot. This thesis presents a high-level control approach for
this and other robotic runners

1.1.2 Terminology

Before we turn to the discussion of controllers for running robots, however, let us

briefly consider some of the terms and concepts used in describing, modelling, and

simulating running systems and quadrupeds in particular. This section introduces

the hybrid nature of running systems and then describes some of the terminology

used to classify different forms of quadrupedal running.

Hybrid Systems

Running models belong to a class of dynamic systems known as hybrid systems.

While a thorough definition of hybrid systems is beyond the scope of this thesis (the

reader is referred to [37]), this section will give a brief discussion of those aspects of

hybrid system theory that are important for the simulation and control of quadrupedal

runners.

A hybrid system can be loosely defined as a combination of continuous dynamics

and discrete events which interact with each other. Running models fit this descrip-

tion in that the system evolves according to one set of continuous dynamics until it

encounters a particular event, at which point it begins to evolve according to a differ-



ent set of dynamics [37]. For example, a runner with no feet on the ground follows a

ballistic trajectory until a foot makes contact with the ground, after which it follows

a trajectory determined by a new set of dynamics that include the forces exerted by

the leg. We call the realms in which particular sets of continuous dynamics apply

modes or phases and the mapping from one phase to another the transition map.

Dynamic systems also contain a set of reset functions that convert the system's state

immediately before an event to its state immediately after. In the case of running,

this reset function is usually an expression of impact losses due to legs making contact

with the ground. To be complete, models of running systems must define a transition

map and reset functions in addition to the equations of motion for every phase.

Quadrupedal Gaits

Bipedal runners are hybrid systems with only four phases: two single-stance phases,

a double-stance phase, and an aerial phase. As a result, there are relatively few

period-one bipedal gaits. Quadrupedal runners, in contrast, are hybrid systems with

sixteen phases, which leads to a wide variety of gaits. Since this work is concerned

with quadrupedal running, we will leave aside walking gaits and describe only those

gaits that may contain one or more aerial phases. For a more detailed discussion of

the gaits of quadrupeds see [17], from which much of the information below is drawn.

Trot In a trot, diagonal pairs of legs make contact together, and the pairs make

contact with 180* phase difference between them. An aerial phase may separate the

stance phases of the two pairs. The trot is the standard running gait for many animals

at low speeds.

Pace In a pace, the front and hind legs on the same side make contact together.

The left and right pairs make contact with a 1800 phase difference between them.

There may be an aerial phase between each double stance phase. The pace is the

typical running gait for the camel at low speeds.



Bound and Half-Bound In a bound, the font legs make contact together, as do

the hind legs. A half-bound differs in that the front legs do not come into contact

with the ground simultaneously. Rather, one leg leads the other by a small amount.

A bound may have one aerial phase and a quadruple-stance phase, or it may have

two aerial phases. A half-bound usually has only one aerial phase. These gaits are

used by small mammals like mice, weasels, and squirrels, and also by some larger

mammals during acceleration.

Transverse Gallop In a gallop, one leg leads the other in both the front and hind

pairs of legs. In a transverse gallop, the leading legs for both the front and hind

pairs of legs are on the same side of the body. Transverse gallops generally have an

aerial phase between the stance phases of the front legs and those of the hind legs.

The transverse gallop is the standard high-speed gait for many animals, including the

horse.

Rotary Gallop In a rotary gallop, the leading legs are on opposite sides for the

front and hind pairs of legs. Rotary gallops can have a single aerial phase between

the stance phases of the hind legs and those of the front legs or it can have two aerial

phases. The rotary gallop with two aerial phases is exemplified by the high-speed

running of the cheetah.

1.2 Approaches To Control Of Legged Robots

Armed with the concepts presented in § 1.1.2, this section presents a sampling of the

techniques that have been used to control legged robots. Particular attention is paid

to controllers for running robots and controllers of quadrupeds.

1.2.1 Heuristic Controllers

Heuristics-based controllers are designed based on empirical or intuitive knowledge

of the robot's performance. Certain measured quantities or behaviors are identified



as important to the robot's locomotion, and controllers are implemented that drive

those quantities to desired values and force the execution of those behaviors. Such

controllers have the advantage of not requiring a detailed model of the robot. It

can be difficult, however, to know under which conditions a heuristic controller will

operate successfully. Additionally, implementation of such controllers often requires

substantial tuning of parameters.

Raibert Controllers

In a series of papers published in the mid-1980s, Raibert et al. set out a class of

heuristic controllers for monopods [28, 29], bipeds [19], and quadrupeds [30]. The

robots treated in these papers have legs with revolute hip joints and prismatic "knee"

joints, both of which are actuated. The control-schemes developed in these papers

consist of controllers for three quantities critical to running performance and a finite

state-machine that governs when each of these controllers is active. The three con-

trollers address the robot's hopping height, body attitude, and forward velocity. The

hopping height controller adjusts the timing and amplitude of a thrust delivered by

the prismatic actuator during stance. The body attitude controller also acts during

stance by using the hip-torque to servo-control the body attitude. The forward ve-

locity controller acts by setting the leg angle during the flight phase which, in turn,

determines the position of the foot relative to the hip at touch-down. The controller

contains a term proportional to the current error in velocity; if the robot is moving

too quickly, the foot is placed farther forwards, if too slowly, farther back. Over a

series of strides this brings the robot to the desired running speed.

The three-controller system described above was first developed for a one-legged

robot [28], but was later extended to control two- and four-legged robots thanks to

two key observations. The first observation is that as long as only one leg is in contact

with the ground at a time, each stance phase of bipedal running is equivalent to a

stance phase of one-legged running. Thus, the controllers developed for one-leg are

directly transferable to two-legged robots [19]. The second observation is that pairs

of legs that contact the ground simultaneously can be treated as a single virtual leg.



This means that the trot, pace, and bound gaits of a quadruped can be treated as

bipedal gaits [30]. For those gaits, four legs can be seen as two legs, and each of those

two legs can be controlled by the one-leg controller.

An extension of this class of controller can be found in BigDog, a quadrupedal

robot developed by Boston Dynamics (a company founded by M. Raibert)[6]. Big-

Dog is a power-autonomous robot with hydraulically-actuated, articulated legs. As

an industrial project rather than an academic one, less information is available on

BigDog's control algorithms. The company's publications do indicate, however, that,

like its predecessors, BigDog uses a state-machine to control transitions between flight

and stance phases of each leg, and a control scheme that decomposes locomotion into

maintenance of certain quantities-orientation, attitude, and forward velocity-each

with its own controller. BigDog demonstrates that the relatively simple heuristic

techniques described above can be used, with some modification, to produce robust

locomotion over varied terrain.

Reflex Controllers

While heuristic controllers can provide full control of a robot's locomotion, as de-

scribed above, they more often supplement other classes of controllers. Robots whose

primary controllers give only general commands, like the oscillatory outputs of central

pattern generators (See § 1.2.3), sometimes use heuristic "reflexes" to fine tune the

behavior of the robot. From the point of view of the primary controller, these reflexes

are part of the plant.

Since animals are the most successful examples of legged locomotors, it is logical

that many heuristic methods take their cues from biological phenomena. This is

especially true for reflex controllers, as reflexes themselves are biological phenomena.

Kimura, Fukuoka, and Cohen include several biologically inspired reflexes on their

robots, Tekken and Tekken2 [13, 21]. These include the vestibulospinal reflex, which

adjusts the hip angles to decrease body inclination due to ground slope in the sagital

plane, the flexor reflex, which decreases the leg length when an obstacle is encountered

during protraction to help avoid stumbling, and a corrective stepping reflex to prevent



falls when encountering a step down. Similarly Lewis and Bekey implemented a paw

extension reflex on their robot, Geo-II, that inhibits leg flexion while a leg is loaded

[22]. All of these reflexes have counterparts described in biological research.

Other reflexes stem from observation of the robot's failure modes. Tekken2 in-

cludes a sideways stepping reflex to counteract its tendency to fall on ground that

slopes in the frontal plane and a crossed flexor reflex to prevent the contralateral foot

from scuffing when a stance leg flexes excessively [21]. Geo-II uses a postural control

method based on equalizing foot pressure. The intuition informing this reflexive con-

troller stems not from biology, but from the author's observations of the relationship

between foot pressures and the robot's axes of symmetry.

1.2.2 Model-Based Controllers

In contrast with heuristic controllers, model-based controllers begin with a mathe-

matical model of the robot's dynamics. This model may be a drastically simplified

model or one that attempts to incorporate as much detail as possible. The resulting

controllers are as varied: they may command only leg touch-down angles, or command

the joint torques at all times.

Approaches Based on Passive Dynamics

At one extreme of the continuum of model-based controllers, lie the so-called passive

dynamic methods. Passive dynamics refers to the movement of a mechanical system

without the application of actuator torques. The simplest of passive dynamic walkers

are childrens toys [42]. In [24], McGeer presents the first contemporary example of a

passive-dynamic walker. The bipedal mechanism he describes is capable of walking

down a ramp without any actuation; rather, the pendulum-like motion of the legs

returns them to the necessary position at the start of the next stride. The ramp is

required to replace the energy lost in the impact of the feet. Collins presents a three-

dimensional version of the bipedal passive-dynamic walker in [11]. Later, an actuator

is added to the ankle of a similar walker to produce a high-efficiency bipedal robot



[10]. The development of these walkers is based on analyzing a mathematical model

of their dynamics and adjusting their design so that their passive-dynamics exhibit

stable periodic limit cycles.

Passive dynamic running has been extensively studied in the context of one and

two legged systems. Inspired by the elastic energy storage observed in running animals

[15], the spring-loaded inverted pendulum (SLIP) model treats the runner as a point

mass connected to one massless, compliant leg [3]. The SLIP model displays stable

passive running for appropriate fixed attack angles of the leg [33, 14]. Passive dynamic

running for a biped with massive, compliant legs is proposed by McGeer in [23].

This approach is extended to a bounding quadrupedal robot in [27]. Poulakakis et

al. study the dynamics of a quadrupedal model based on the robot SCOUT II. Their

model has a rigid back and massless, linearly-compliant legs. They find that for a

given velocity, they can induce a stable bounding gait in the model simply by fixing

the angle of the legs relative to the ground at touchdown. This shows the feasibility

of applying assisted passive-dynamic controllers like the one used in the Cornell biped

[10] to quadrupedal robots. The motion is passive in that it requires no energy to

move the massless legs, but is assisted, rather than truly passive, because the model

controls the position of its legs during flight. Remy et al. go further in [31] when

they show that, in simulation at least, true passive-dynamic walking is possible for a

more realistic quadrupedal model whose legs have mass.

Approaches Based on Inverse Dynamics/Hybrid-Zero-Dynamics

The inverse dynamics of a robot are a transformation that, given the robot's state,

maps desired accelerations to the joint torques required to produce them. If the

inverse dynamics of a robot are known, the robot can be made to track a reference

trajectory in the state-space. Computing the inverse dynamics of fixed-base robots is

a solved problem [35]. Finding the inverse dynamics of a "floating-base" robot (one

that has no single continuous connection to the ground) is much more challenging. A

characteristic example of an inverse dynamics based controller is found in [5], in which

Buchli et al. present an inverse dynamics controller for Boston Dynamics' LittleDog



robot . They find a formulation of the floating-base inverse dynamics for their model

of the robot and then use it to follow center of gravity paths supplied by a higher-level

path planning module.

Controllers based on the concept of zero dynamics are closely related to those

based on inverse dynamics. Indeed, all inverse dynamics methods can be seen as

implicitly enforcing a set of zero dynamics on a robot [39]. Zero dynamics are those

dynamics that a robot can display while satisfying the condition that certain functions

of its state, called outputs, are identically zero. A controller based on zero dynamics

controls the joint torques of the robot so as to drive the outputs to zero. In the

case of the inverse dynamics controller described above, the output functions com-

bine the difference between the robot's current state and acceleration (as predicted

by the model) and the desired state and acceleration supplied by the path planning

module. When dealing with legged robots, we use the term hybrid zero dynamics [39]

to indicate that we are referring to the zero dynamics of a hybrid system, a system

with both continuous and discrete components (See § 1.1.2). Inverse dynamics based

controllers specify zero dynamics indirectly, but controllers can also be designed to

specify the desired hybrid zero dynamics directly. This technique is used by West-

ervelt, Grizzle, and Koditschek to produce stable walking in a simulated biped [39],

by Westervelt et al. to produce stable walking in the bipedal robots RABBIT and

ERNIE [40], and by Sreenath et al. to produce stable walking in the bipedal robot

MABEL [36]. Poulakakis and Grizzle open another intriguing avenue for research -

they use the dynamics of a simpler system, the SLIP, as the desired zero dynamics

for the more complex monopod, Thumper [26, 25]. This approach allows any of the

various existing control laws for the SLIP to be applied directly to the more complex

robot [26].

Approaches based on Trajectory Planning, Optimization, and Stabilization

The most heavily model based approaches use forward simulation of a physical model

to plan the runner's trajectory. This planning may take the form of optimization,

as when Coros et al. present a controller for a simulated quadruped based on opti-



mization of the quadruped's motion [12]. They take the parameters of a closed-loop

controller as their optimization variables and a weighted sum of terms assessing the

runner's performance as their objective function. Alternatively, the planning may use

techniques such as Rapidly Exploring Random Trees (RRTs) to find an open loop

"tape" of control actions that lead the simulated system to a desired state. In this

case, the trajectory must then be stabilized in order to account for differences between

the model and the actual system. Shkolnik et al. employ this approach to control

bounding over rough terrain with LittleDog [34]. That paper also demonstrates the

usefulness of trajectory planning in incorporating knowledge of upcoming terrain.

1.2.3 Central Pattern Generator Based Controllers

Central pattern generators (CPG) are neural networks that control oscillatory mo-

tion, including locomotion, in animals [9]. This idea of oscillatory neural networks

providing the control signals for legged locomotion, has been embraced by many

robotics researchers. The details of their implementations vary, but the common core

is a network of neural oscillators. Each oscillator controls the motion of one joint.

The connections between oscillators allows the state of one oscillator to affect that of

another. With the proper pattern of interconnections, this can produce a variety of

gaits [20]. This approach to the control of quadrupedal robots has produced robots

that can trot and bound [20], robots that can walk on natural outdoor terrain [21],

robots that can adaptively exploit their own natural dynamics [4], and even robots

that can learn to walk in minutes [22]. CPG based controllers have the advantage of

not requiring a detailed model, or, indeed, any model at all, of the robot's dynamics.

1.3 A New Approach

1.3.1 Controller Requirements for the MIT Cheetah

Each of the above approaches to controlling legged robots has its own capabilities

and limitations. The MIT Cheetah project requires a particular combination of con-



troller capabilities. Its controllers should be able to regulate acceleration as well as

quadrupedal running at a variety of different speeds. They should also be able to

easily accommodate changes in mechanical design. This is especially important, as

the MIT Cheetah is still under development.

The first of these requirements entails either switching between controllers, each

designed for a certain range of speeds, or using a single controller that can operate

at any of the desired speeds. The former approach requires that the designer choose

the conditions at which transitions will occur. In order to avoid imposing such a

constraint unnecessarily, each controller should be able to accommodate as large a

range of speeds as possible, tending toward a controller that fits the latter approach.

To enable rapid adjustment to mechanical design changes, the MIT Cheetah

project has adopted a hierarchical control scheme. In this scheme, a body controller

issues commands to individual controllers for each leg. The leg controllers use knowl-

edge of the legs' structure and dynamics to apply forces and torques to the body

that approximately match those specified by the body controller's commands. Leg

controllers are therefore specific to a particular leg design, but the body controller

should be able to work with a wide array of legs.

1.3.2 Design Goals for a Body-Level Control Approach

The requirements listed in § 1.3.1, suggest two main goals for approaches to body-level

control of the MIT Cheetah. The first of these goals is modularity. Leg controllers for

the MIT Cheetah's legs are being developed in parallel with the research presented

here. Approaches to body control should therefore be modular, not relying on the

dynamics of any particular leg design.

The second goal suggested by the requirements of the MIT Cheetah project is

generality. Control approaches should yield controllers capable of handling many of

the different tasks performed by running robots, such as acceleration, steady-state

running, and traversing obstacles. To be valuable for future projects and for the rest

of the research community, control approaches should also be general in the sense of

being easily applicable to a wide range of running systems.



These goals pose problems for many of the control approaches described in § 1.2.

Controllers based on either passive dynamics or inverse dynamics are infeasible be-

cause they would require knowledge of the leg dynamics. Traditional trajectory op-

timization, performed with detailed models, presents the same problem. CPG based

approaches typically apply to a particular gait and speed, which goes against the goal

of generality.

1.3.3 Optimally Scaled Hip-Force Planning

The following chapters develop Optimally Scaled Hip-force Planning (OSHP), a new

approach to controlling the body dynamics of running robots, that combines heuris-

tics and trajectory optimization. An OSHP controller uses an approximation of the

runner's body dynamics to prescribe the forces and torques the legs should exert at

the hips (and shoulders) during the following stride. It does this by selecting scal-

ing parameters for nominal hip-force profiles via constrained nonlinear optimization.

This approach offers two advantages over traditional trajectory-optimization. First,

the use of approximate dynamics allows the formulation of simpler constraints and

objective functions for the optimization. Second, taking the hip-forces as control

outputs makes the body controller independent of the particular type of leg used in

the runner. This satisfies the goal of modularity mentioned above, allowing the same

OSHP controller to be used for systems with different leg dynamics.

OSHP also offers a great deal of generality, both in terms of its utility for diverse

tasks and in terms of its applicability to diverse running systems. OSHP controllers

could be designed for runners with any number of legs. However, this thesis develops

OSHP in the context of quadrupeds. This is primarily because this research is being

carried out in the context of the MIT Cheetah Project, but also because it is easier

to describe OSHP with reference to a single type of runner.

The remainder of the thesis is organized as follows: Chapter 2 presents the

quadrupedal model used in this research and outlines the control approach, OSHP,

that is the major contribution of this work. Chapter 3 gives a full description of OSHP

and details the specific implementation used to validate OSHP in simulation. Chap-



ter 4 presents the results of this evaluation and provides discussion and directions for

future research. Chapter 5 concludes the work.
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Chapter 2

Defining the Plant: A Simple

Quadrupedal Running Model

This chapter presents the model of quadrupedal running used in the description of

OSHP (Chapter 3) and in the simulated evaluation of a specific implementation of

OSHP (Chapter 4). The model assumes that the runner's front and hind pairs of legs

each act as a unit. The result is a two-legged "quadruped" with one leg in the front

and one in the rear. This model can only portray bounding and pronking gaits, but

its simplicity makes it an excellent vehicle for presenting OSHP and a useful test-case

for implementation of an OSHP controller.

2.1 Equations of Motion

Figure 2-1 shows a schematic of the two-legged quadruped. The body of the runner

is modeled as a single rigid body with an asymmetric mass distribution. The legs

are modeled as being massless, therefore this model is suitable only for systems in

which the mass of the legs is very small relative to that of the body. Each leg has two

actuators: a prismatic actuator that acts along the leg and a rotary actuator that

acts about the hip or shoulder joint (for the sake of simplicity, I will hereafter refer to

the proximal joints of both front and hind legs as "hips"). Contact between the feet

and the ground is modeled as being instantaneous, that is, the foot velocity goes to
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Figure 2-1: Two-legged "quadruped." This model treats the front and back pairs of
legs as one leg each. It provides a simple platform for designing and testing controllers
while incorporating many of the characteristics of quadrupedal running

zero as soon as the foot touches the ground. However, because the legs are massless,

there are no impacts associated with these contact events.

Take the generalized coordinates of the body to be

x t)t)qX)= y t

q yt

The state of the body is

x(t) q

t (t)}

Let the forces and torque exerted on the body by leg i be given by fi,x, fi,y, and ri

respectively. Note that these quantities are not independent but are related by

ri (t) = 1 (t) [fi,2 cos (t) + fi,y sin (t)].,

where 1 and y are the length and angle of the leg as shown in Figure 2-1

With these definitions, the equations of motion for the body are

[fiy (t) + f2,y (t)] - g

1z t 1 [fi,x (t) + f2,2 t]
m

1
m

(2.1 a)

(2.1b)



M(t) = - [- sin 0 (t) - fi,x (t) + cos 0 (t) -fi,(t)]

d2 [- sin g (t) - f2,x (t) + cos 0 (t) - f2,y (t)] (2.1c)

1I
+ 7[r1 (t) + r2 ()

2.1.1 Dimensionless Equations of Motion

To make the results of this research as broadly applicable as possible, we recast (2.1)

in terms of dimensionless characteristics and use the resulting dimensionless equations

of motion in all following sections. The results obtained in subsequent sections are

therefore applicable to any system having the same values for those dimensionless

characteristics.

Let the characteristic length of the system be the maximum leg-length, 10, the

characteristic mass be the mass of the body, m, and the characteristic force be the

weight of the body mg. The dimensionless time is therefore

t* = C t .

The dimensionless state is

x 10

y* 1Ly

0* 1

x* - 1 (2.2)

dy* 1

dO*

The geometric and physical properties can likewise be transformed to yield dimen-

sionless analogs. The dimensionless versions quantities along with the hip forces and

torques are given in Table 2.1 With the definitions given in (2.2) and Table 2.1, (2.1)

simplifies to the following dimensionless equations of motion

z* (t) = fx (t) + f2,x (t) (2.3a)



Dimensionless Quantity Symbol Definition

Distance from CoM to hip d* di = lod*

Moment of inertia I* I = mljI*

Hip-force f* fi = mgf,*

Hip-torque T* T = mglor*

Table 2.1: Dimensionless analogs for properties, forces and torques in (2.1)

* (t) = f* (t) + f2,y (t)- 1 (2.3b)

- sin 0(t) -fj*(t~)+ Cos 0(t) - fjV(t)]

d*
- - sin 9 (t) - f2, (t) + cos 6 (t) f2, (t)] (2.3)

1
+ -[r1 (t + r2* (t)]

From this point forward, all quantities used in this thesis are dimensionless. To

avoid visual clutter, therefore, we will omit the star notation used here in all subse-

quent sections. Also, throughout the rest of this thesis, the expressions (-) and (-),

refer to derivatives with respect to dimensionless time. Thus, when angular quanti-

ties are given in terms of degrees (as they will be in later sections), angular velocities

have units of degrees, not degrees per second.

2.2 Transition Map

As stated in § 1.1.2, to simulate a quadrupedal runner, one needs not only the equa-

tions of motion given by (2.3) but also a mapping of the possible transitions between

phases and the events that cause them. Figure 2-2 shows such a transition map for

the two legged model shown in Figure 2-1. These maps could be implemented as a

set of instructions for what the new phase should be for every combination of current

phase and event, but this would be cumbersome, especially in the four-legged case.

However, a simple approach borrowed from computer science allows the transition

between any two phases to be accomplished with a single bitwise operation. More-
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Figure 2-2: Transition map for the two-legged quadruped. Phases are represented

by ellipses. Transitions are represented by arrows and labeled with the event that

triggers the transition.

over, that operation is independent of the number of legs, allowing the same code to

be used in simulating models with different numbers of legs.

To implement this approach we let the niegs-bit binary number <b represent the

phase of the runner. Each bit of CD is 1 if the corresponding leg is in contact with

the ground and 0 otherwise. We also express the event that has necessitated the

phase transition as another nleg,-bit binary number, E. Each bit of E is 1 if the

corresponding leg changes state (stance -+ swing or swing -+ stance) and 0 otherwise.

The event can then be used as a bitmask to toggle the appropriate bits of the phase,

which simply requires applying the bitwise exclusive OR operation (XOR) to <D and

E.

2.3 Apex-to-Apex Model

All of the gaits described in § 1.1.2 are periodic: the runner's state at time t is the

same as its state at time t + T, where T is the stride period. This can be used to



analyze the performance of a given running controller: if the controller is inducing a

periodic gait, the state of the runner at a given point in the stride will converge to

a fixed-point over multiple strides. The mapping of the runner's state at a certain

point in the current stride to its state at the same point in the next stride is a type

of mapping called a Poincari return map or simply a return map. In the analysis of

running models and controllers, it is often useful to consider the apex-to-apex return

map rather than return maps based on other points in the stride. The apex of a stride

occurs when the runner's center of mass reaches its highest point during the aerial

phase (or principal aerial phase if there are two). The apex-to-apex return map offers

two advantages over other possible return maps, such as one between touch-down

times of a given leg. First, the apex occurs in every stride, while it is possible that

other conditions may not. Second, the vertical velocity of the runner is zero at apex

by definition, which decreases the dimension of the return map by one.

2.4 Problem Statement

The previous sections of this chapter provide all of the components necessary to

present the full problem statement that forms the starting point for the development

of OSHP:

Given a desired behavior and a runner defined by the equations of motion

in (2.3) and the transition map in Figure 2-2, set (fi (t), -ri (t)) whenever

leg i is in stance and (1, (t) , -y (t)) whenever it is not, such that the runner

displays the desired behavior.

Chapter 3 presents an approach to the control of a runner's body dynamics that,

in conjunction with appropriate controllers of the runner's leg dynamics, provides

a solution to this problem for many desired behaviors, including acceleration and

steady-state running.



Chapter 3

Optimally Scaled Hip-Force

Planning

3.1 Body Control and Leg Control

3.1.1 Different Controllers for Disparate Tasks

Successful running, as laid out in § 2.4, requires an appropriate combination of the

runner's configuration at the touch-down of each leg, and the behavior of each leg

during stance. The control of a running robot, therefore, consists of two primary

tasks:

Task 1: Choose appropriate touch-down configurations and leg behaviors

Task 2: Ensure that the robot's touch-down configurations and leg behaviors match

those chosen in Task 1

In Raibert's one legged hopping machine, for instance, one part of the controller

chooses the desired touch-down angle of the leg, while another servo-controls the hip

actuator to attain that angle [28].

These two tasks are inherently different. Task 1 is really a planning task that may

need to consider the behavior of the robot over an extended period of time. Task 2,

in contrast, is a true control problem that can typically be expressed as a function of



the robot's current state. It makes sense, therefore, to view the controller design for

a running robot as two distinct, but interconnected problems. We will refer to the

planning problem of Task 1 as body control, since it involves the dynamics of the entire

robot, and the control problem of Task 2 as leg control, as it is primarily concerned

with the action of the legs.

The remainder of this section describes a particular approach to body control.

This approach considers the motion of the runner on the stride level, that is, from

one apex to the next. A stride-level approach takes advantage of the fact that running

can be viewed as a discrete process in the state of the runner at apex. Periodic gaits

correspond to fixed-points on the apex-to-apex return map. Controlling the state of

the runner at apex, therefore, can provide a means to produce such gaits. This does

not mean that the behavior of the robot during the stride is ignored, but rather that

the stride is the basic unit over which the controller acts.

3.1.2 Stride-level Body Control: A Constrained Nonlinear

Program

In its most general form, stride-level control of the body dynamics consists of choosing

the forces and torques at the hips as functions of time, fi (t), i = 1, .. . , nieg., such that

the body trajectory, x(t) satisfies some criteria. That choice fits quite neatly under

the umbrella of nonlinear programming. Nonlinear programming is the solution of

the optimization problem

minimize J (x)
x

subject to x G X,

where the constraint set, X, is continuous and either the objective function, J, or

the constraint set X is defined by nonlinear equations or inequalities [2]. In the case

of stride-level control, the transformation that maps the current apex state, xO, and

the hip-forces and torques to the body trajectory, together with the criteria on that

trajectory, serves to define both the cost function and the constraint set.

Although it is possible to define a nonlinear program for stride-level body control



in its most general form, the resulting program has the disadvantage of involving the

arbitrary functions fi (t) which makes it a problem in infinite dimensions. We must

reduce it to a problem in a finite number of dimensions if we want it to be tractable.

One way to do this is by parameterizing fi (t) by a vector of n parameters, ui E R"",

and a function p : Rn- - [R -+ R 3], such that

fi(t) = p(ui), for i = 1,... ,rn1 zeS. (3.1)

Time-discretization falls into this form of parameterization and is used extensively

in trajectory optimization. In a tirne-discretization, ui is a "tape" of force values at

n points in time and the range of p is a set of functions that interpolate between

those values. Common interpolation schemes include the zero-order hold, piecewise

linear interpolation, and splines of various orders. In the following section we will

describe a different parameterization scheme, one based on scaling certain nominal

force profiles.

If we let u E Rhr"""g be a single vector composed of all of the elements of u 1

through uri1 ,, and let (3.1) define our force vectors, we can write the following

nonlinear program:

minimize J (u)
(3.2)

subject to u E U,

where J and U are the same cost function and constraint set as for infinite di-

mensional problem, re-expressed in terms of u. The goal in designing a stride-level

body controller is to choose the objective function, J (u), and constraint set, U, such

that the solution of (3.2) yields a body trajectory x (t) that satisfies the criteria for

running.

3.2 Scaled Hip-Force Profiles

3.2.1 Motivation

We can convert the problem of choosing the function fi (t) to that of choosing a finite

number of parameters ui by making the elements of ui scaling factors for certain



nominal force profiles. Equation (3.3) shows the application of some possible scaling

factors to a function f"nom(t)

f (t) = u3f"""'(u2 t - Ui) (3.3)

where ui is a time offset that shifts ffno" (t) along the time-axis, u2 is a scaling factor

for duration, and U3 is a scaling factor for magnitude. In general, the nominal force

profiles could be defined by any function. However, the choice of f'' provides an op-

portunity to use insights from the most successful running systems: animals. If we use

nominal force profiles that have a similar shape to the corresponding force profiles for

animals, the resulting force profiles will have more structure than a time-discretization

for the same number of parameters. In the case of controlling a quadruped, insight

can be drawn from bio-mechanical investigations of galloping. Walter and Carrier

present the ground reaction forces exerted by galloping dogs in [38]. The results

shown in Figure 3-1 provide a starting-point for choosing nominal force-profiles for

an OSHP controller of the two-legged quadruped model.

3.2.2 Selection of Force-Profiles for an OSHP Controller

Criteria for Force-Profiles

The previous section mentioned one possible consideration in designing a parameter-

ized force-profile: Matching the nominal profile to observed profiles. Additionally, the

parameterization should require as few parameters as possible. The former makes it

more likely that the parameterized force profiles can produce the desired behavior.

The latter decreases the computational time needed to solve (3.2), which is critical if

the planner is to be run online.

Vertical Force

In Figure 3-1 we see that each leg's vertical force profile starts and ends at zero and

is concave down everywhere, except for an initial spike. This spike is most likely

due to the impact with the ground. Since the model described in Chapter 2 has

massless legs, it experiences no impact and the spike can be disregarded. A first pass
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Figure 3-1: Ground reaction force curves for a galloping dog as presented by Walter
and Carrier [38]. Reproduced with permission from The Journal of Experimental
Biology.
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at a nominal force profile could therefore be a quadratic with a negative coefficient

of the squared term and f "(0) = 0. If the stance phase has unit duration, then

fYo m (1) = 0, and we have

f = (-ct2 + ct) [H (t) - H (t - 1)], (3.4)

where H is the Heaviside step function and c is an arbitrary constant. To assign a

value to the constant c, assume that the nominal force applies a unit impulse in unit

time. The nominal force is then,

f M = (-6t2 +-6t) [H (t) - H (t - 1)]

This can be parameterized by a time-offset, ui, a scaling factor for duration, u2 , and

a scaling factor for magnitude, u3 , to yield

fy (t) = u3 [-6u2(t - UI) 2 + 6u 2 (t - U1 )] [H (t - u1) - H (t - - u2 1)] (3.5)
=py(u).

Horizontal Force

The fore-aft forces shown in Figure 3-1 also start and end at zero, but change sign at

some point during the stride. The negative portion is concave up, while the positive

portion is concave down. A cubic polynomial provides a simple approximation of

such a profile. Consider a cubic with roots at 0, 1/2, and 1

fjj m (t) = c (-2t3 + 3t 2 - t) [H (t) - H (t - 1)]. (3.6)

This force profile fits the description above, but has a significant flaw: it maintains

odd symmetry about mid-stance under all of the forms of scaling presented in (3.3). A

horizontal force profile with odd symmetry about mid-stance exerts zero net impulse

and therefore cannot accelerate the runner. To allow for asymmetric horizontal force

profiles, let the intermediate root of the cubic be located not at 1/2, but at r E [0, 1].

This gives

fxasyrn (t) = c (-t 3 + (1 + r) t2 - rt) [H (t) - H (t - 1)]. (3.7)



Define a new parameter, u5 - [-1,1], as a measure of the asymmetry of the x-force

profile:

U 5 = 2r - 1.

Thus, when u5 = -1, the intermediate root falls at the beginning of the force-profile,

when u5 = 0, it falls at the center, making the force-profile symmetric, and when

U5 = 1, the intermediate root falls at the end of the force-profile. Substituting the

definition of u5 into (3.7) and incorporating a factor of /2 into c yields

fxasym (t) = c (-2t3 + (3 + U5s) t3 - (1 + U5) t) [H (t) - H (t - 1)].

This suggests a succinct way of presenting the asymmetric force-profile as a modifi-

cation of (3.6)

fasYr (t) = f 0m (t) + (cust 2 - cust) [H (t) - H (t - 1)].

For the purpose of simplifying the expression of some constraints (See §3.3.2), 6 is a

convenient choice for the constant, c. Taking c = 6 gives

f7o m (t) = -1213 + 18t2 - 6t [H (t) - H (t - 1)]

and

f smYr (t) = f2 0m(t) + 6u5 (t2 - t) [H (t) - H (t - 1)]

It is reasonable to assume that the vertical and horizontal forces will begin and end

at the same times. Therefore, the parameters u1 and u2 can also be applied to the

horizontal force. Let U4 be a scaling factor for the magnitude of fx. The expression

for the parameterized horizontal force is therefore

fx (t) = u4 fasym (U2 (t - U1 ))

=6u4 [-2 (t -ui) 3 + 3 (t - u) 2 - 6 (t - u1) (3.8)

+ U5 (t 2 + U2 - 2tui - t + ui)] [H (t - ui) - H (t - U1 - u-1)]

= p (u) .



Hip-Torque

Since the model described in Chapter 2 has only two actuated degrees of freedom

in each leg, no leg controller will be able to match arbitrary vertical and horizontal

forces as well as an arbitrary hip-torque. Multiple studies have shown, however, that

idealized quadrupedal runners can run without any hip-torques [27, 8]. Therefore,

while the planner will not attempt to prescribe a hip-torque profile, it will, in most

cases, assume the hip torques to be zero throughout the stride:

po (u) = 0. (3.9)

An exception to this rule is described in j 3.3.3.

3.3 Control Algorithm

3.3.1 Philosophy and Approximate Dynamics

We return now to the construction of a constrained nonlinear program for the problem

of stride-level control of a running quadruped. With the parameterizations given in

(3.5) through (3.9), (3.1) becomes

p. (ui)

PV (ui)

p (u) - ,WP u)(3.10)
f2 (t) P. (U2)

Py (u2)

\PO (u2)/

For the two-legged quadruped described in Chapter 2, the variable to be optimized,

u, is a ten-element vector.

Many algorithms for solving (3.2) numerically require the computation of gradi-

ents, and possibly Hessians, of both J (u) and the constraint functions that define U.

There are many methods for calculating the gradients of functions whose values are

determined by numerical simulation [32, 7, 18], such an approach could be used to



define gradients for constraints on the body trajectory x (t). However, the simplicity

of the parameterizations (3.5), (3.8), and (3.9), opens the possibility of constructing

analytical expressions for constraints and objective functions related to the body tra-

jectory. Such expressions can then be differentiated analytically to yield the required

gradients and Hessians.

The objective function and constraints presented in §§ 3.3.2 and 3.3.3 require

expressions for the state of the runner at two times: the time when the runner reaches

its next apex, tj and the time at mid-stride, tmid = tf/ 2 . These times can be found

by noting that y(O) = 0 = (tf). This requires that

tf

(jfiv (t) + f2,9 (t) - 1) dt = 0

Integrating and solving for tf, yields

U3  
U8

-f +
U2 U 7

In order to solve the system of differential equations defined by (2.3) and (3.5) through

(3.10) in closed form, we make the simplifying assumption that the pitch, 0, is small.

This decouples (2.3) yielding

(z\ f , + f2,x
gj) = fi~+ f2,y 11, (3.11)

L jfi,y + d2,

where di and d2 are the distances from the runner's center of mass to the anterior

and posterior hips respectively. (3.11) can be integrated twice to yield expressions

for x, y, and 0 at specific times.

From (3.11), it is apparent that the state trajectories are the sum of four or five

terms:

" Constant term due to the initial state

" Linear term due to initial velocity

" Quadratic gravitational term (y only)



e One term for each applied force

This is the trajectory that the state would follow if only that force were applied

to it.

Finding the state at tf is simply a matter of adding the final values of each of these

terms. The constraints in §3.3.2 require the y, 9, 1, and 0 components of the state.

A full derivation of these quantities is given in the appendix. The results of that

derivation are:

gravitational term term from fi,y

1 u U8 8 2U 2usu2 -2U 3 + 1
yf= yo- + - +U3 ( 22 (U2 U7 u2Ur 22 (3.12a)

3 ( - 2u3 -- 2u 8 + 1)

term from f2,y

term from fi,y

Of 00 + U3 + U8 (1 3 2u2)u 8  2U3 + 2uiu2)
U2 U7 2I* u 22U7 (3.12b)

7j1 (u) Q - 2U7U3 - 2u8 + 2u6u721* u7 U2

term from f2,y

if =o - U4U 5 -U 1 0L 9  (3.12c)
U2  U7

d1 U3 d2 U8
Of =50+ - + (3.12d)

I (U2) I (U7)

Finding expressions for the necessary components of the state at mid-stride, Ymid

and 0 mid, is more involved. By definition, tf is reached after both legs have finished

their stance phases. Mid-stride, however, can fall during the stance phase of either

leg or of both. As a result, the state at tmid must be defined piecewise or with step

functions. Since fi,,, f2 ,x, and f2,y are defined using step functions, we will do

the same here. For notational convenience we define the following functions of t in

terms of the parameters of fi:

Pi,x (t) = 6u 4 [-2t 3 + 3t 2 - 6t + U 5 (t 2 - t)] (3.13a)



P1,y (t) u3 [-6u'(t - ui) 2 + 6u 2 (t - Ui)] , (3.13b)

P1,x (t) = J Pi,x (T) dT, (3.13c)

t

Piy (t) = j Pi,y (r) dT, (3.13d)

and

P1,y (t) = Pi,y (T) dT . (3.13f)

Analogous terms, P2,x, P2,y, etc., can be defined using the parameters of f2 . With this

notation,
fix (t) pi,x (t) H (t - ui) - P1,x (t) H (t - u1 - u )

and
fi,y (t) pi,y (t) H (t - ui) - pi,y (t) H (t - ui - u2 1)

As shown in the appendix, the height at mid-stride is given by

Ymid (u) = Yo - td + Piy (tmid) H (tmid - Ui) (3.14)

+ [-P1,y ([mid) +P1,y (-ui- )+P 1 ,1 (1+u2) (tmid-Ui -- 1)] H (tmid--U- 1 )

+ P2,y (tmid) H (tmid - U6 )

S[--P2,y (tmid)+IP2,y (U6 +Uv7)+P 2 ,y (U6+u- 1 ) (mid -U6 -U7 1 )] H (tmid -U6 -U- 1 )

and the pitch at mid-stride is given by

Omid (u) = 0o + QOtmid + diP,y (tmid) H (tmid - ui) (3.15)

+7 [--P1,y (tmid)+P1,y (u+U2 )+P 1 ,y (ui u- 1 ) (tmid-Ui -u2')] H (tmid-U -U 1)

+ -2P 2,y (tmid) H (tmid - U6 )I

+ [-P2,y (tmid)+P2,y (a6 + - )+P 2,y (U6 +U- 1) (tmid -- eU-71 )] H (tmi7an-y)

Despite the fact that Ymid and m id are defined in terms of step functions, they are,

in fact, continuous and twice-differentiable. They can be differentiated simply by

treating the step functions as constants and proceeding as usual. This is not the case

in general; it is possible only because of the nature of the expressions for Ymid and

Omid-



Table 3.1: Upper and lower bounds on the elements of u

Parameter Lower Bound Upper Bound

U1  0 2

U2 0 20

U3  0.5 4

U4 -0.2 2

U5  -1 1

3.3.2 Constraints

For appropriate initial conditions, the constraints described in this section, together

with the objective function described in § 3.3.3, make the solution of (3.2) a valid

body planner.

Bounds on Parameters

Let Ulb, Uub E Rfl4"gs be vectors containing lower and upper bounds on the elements

of u respectively. The bounds used in simulation are shown in Table 3.1. Only u1

through u5 are shown, as the bounds for u6 through uio are the same. The lower

bounds on u2 and u3 arerequired for the parameters to retain their meaning: the

stance phase cannot have negative duration and the leg cannot pull up on the ground.

A loose upper bound on u3 can be derived from the plots in Figure 3-1, which show

that the vertical force exerted by one leg never exceeds three times the body weight.

The maximum value of f, is one and a half times the body weight; therefore a

single leg should never exert a vertical force greater than 2fy""". Since each leg of

the two-legged quadruped model represents a combination of two legs, this limit is

doubled to give the result shown in the table. The remaining bounds were chosen by

hand and do not appear to affect the solutions of (3.2).

Return Time Constraint

Since the legs of our model are massless, they can, in principle, return to a forward

position arbitrarily quickly after the end of stance. Allowing this would, however,



make the planner unusable for any real system. Physiological research shows that,

for humans at least, there is a minimum time required to return each leg that does

not differ significantly over runners whose maximum attainable speeds vary widely

[41]. We therefore impose a return time constraint on ni and U6

U1  tr - tl,sw

U6  tr - t2,sw

where tr is a minimum return time and ti,sw and t2,s2 are the elapsed times since

the front and hind legs respectively finished stance in the previous stride. For the

implementation presented here, the minimum (dimensionless) return time was set to

be 1.4. For a runner the size of the MIT Cheetah, this corresponds to a return time

of 0.35 s. This is a conservative value for the minimum return time as it is slightly

longer than return times reported for galloping cheetahs [16].

Constraints on the Direction of Time

The time-at-next-apex, tf, is the first time that the vertical velocity equals zero, after

both legs have finished their stance phases. To ensure that both stance phases end

before tf, we impose the constraints

1 1-u 3  U

U 2  U 7

and

1 1-us s
U7 + -- tj= Us+ U <0.

U8 U 7  U2

Friction Cone Constraints

The friction cone of the front leg is defined by

fX(t) 5 y for all t E [ 1 , U1 +-]
fy,(t) 2

Where p is the static friction coefficient between the foot and the ground. When

combined with (3.8) and (3.5) this becomes

2u 2 u4  _ (1 + U5 + 2u 1 u2 ) u4 < (3.16)
U3 U3



Because the term between the absolute value bars is linear in t, the end-points of the

stance phase are the only candidates for extrema. When t = ui, (3.16) evaluates to

U4(U5 + 1) <
U3 (3.17)

When t = Ui + 1/U2, it evaluates to

u4(us-1)<

213
(3.18)

To avoid using the absolute value function, which is non-smooth, we rewrite (3.17)

and (3.18) as four constraints. Thus, the friction cone constraints for both legs are:

us9(uio + 1)
Uq(Uj - p < 0

U8

9 (t10 - 1) K

u(u10 - 1) 0.U8

-p< 0

-p0

(3.19)

Bounds on State at Next Apex

Let Yf,lb, Yf,ub, Of,lb, Of,ub, 0 f,lb, and 0 f,ub be lower and upper bounds on yf, Of, and 6f

respectively. These constraints can be written as

Yf,lb - yf (u) _ 0

Yf (U) - Yf,.b < 0

Of,lb - Of (U) 5 0

Of (u) - Of,ub < 0

Of,lb - Of (U) < 0

#f (U) - #f,ub < 0.

Bounds on State at Mid-Stride

Analogously, the constraints bounding Ymid and 0 mid are

Ymid,lb - Ymid (U) 0

Ymid (U) - Ymidub <0

(3.21)Omid,lb - Omid (U) 0

Omid (U) - Omidub < 0-

U4(U 5 + 1)

U3

u4(u5 + 1)

U3
U4(215 1)

U3

U4(U5 - 1)

U3

(3.20)



Bounds on Approximate CG-Print Length

This constraint is a heuristic measure to keep the planner from requesting stance

phases so long that the leg would have to exceed its maximum length. The CG-print

is the set of points over which the runner's center of mass passes during stance. If we

approximate the height and horizontal velocity as being constant during stance, with

i(t) = if (3.22a)

and

YW Yrnid,lb + Ymid,ub (3.22b)2

the length of the CG-print can be approximated as

ICG (3.23)
U2

since u 2 is the duration of the stance phase. To constrain the leg length at the start

and end of stance to be less than one is therefore to require that

if )2 + (Ymid,lb + Ymidub 2 _ 1 < 0 (3.24a)
2U2 2

and

(f)2 + (Ymid'lb + Ymidub - 1 0. (3.24b)

3.3.3 Objective Function

To produce bounding and pronking in the two-legged quadruped model, we have

adopted an objective function that is the weighted sum of five terms. The first seeks

to bring the runner to a desired forward apex-velocity and the second seeks to bring

the runner to a desired apex-height, while the third and fourth attempt to match

a desired pitch and pitch rate at apex respectively. The fifth seeks to minimize the

hip torque that the legs must exert in order to produce the requested horizontal and

vertical forces. The complete objective function is

5

J (u) = wi Ji (u) ,
i=1

where the scalars wi,. . .. , w5 are the weights on each term.



Minimize Errors in Apex State

Given a desired horizontal apex-velocity, if,d, a desired apex-pitch, 0 fd, and a desired

apex-pitch-rate, Bf,d, along with the apex states defined by (3.12), the first three

(unweighted) terms of the objective function are

Ji (u) = (i (u) - xf,d)2, (3.25a)

J2 (u) = (y (u) - Yf,d)2, (3.25b)

J3 (u) = (O (u) - Of,d)2, (3.25c)

and

J4 (u) = (6f (u) - f,d) (3.25d)

Minimize Approximate Hip-Torques

Here we adopt the approximations of the height and horizontal velocities given by

(3.22). Furthermore, we assume the pitch and pitch rate to be identically zero during

stance. In that case the height and velocity of the hips is the same as that of the center

of mass. Since the legs are massless, the hip torque of each leg must counteract any

moment produced by the vertical and horizontal forces on that leg. The moment arm

of the horizontal force on the leg is simply y(t). The moment arm of the vertical force

is the relative horizontal distance from the hip to the foot. Given the assumption of

constant horizontal velocity, (3.22a), and the approximation of the CG-print, (3.23),

the approximate relative horizontal distance is

Xl,rel (u, t) = -o + (u) t - i )
2 2U2

The approximate torques exerted by the two legs during their respective stance phases

are therefore

71 (u, t) = pi, (u, t) -mid lb + Ymidub pi(u, t) [t f (u) t u --

and

r2 (u, t) = p 2,2 (u, t) Ymid,lb + Yrnid,b P2 ,y (U, t) [±o±±f (u) t - 6E -.
2 1 2 2U7



The fourth objective function term is the sum of the integral of the torque squared

for each leg
U1 

U6+U
7

Weights of the Objective Function Terrns

The weights, w1, ... , w5 , were tuned by hand to yield satisfactory performance. The

values used are

w =1 w3 = 2 w5 = 3 x 10 2

w2 =10 w4 =1

3.3.4 Integral Control of the Stride-to-Stride Dynamics

The constraints and objective function given in the previous sections provide a non-

linear program whose solution is the optimal vector of parameters, u, for a system

with the dynamics described by (3.11). However, as (3.11) contains at least two non-

trivial assumptions (very small pitch-angles, and no hip-torques), it is unlikely that

an actual system using the solution of (3.2) as input to leg controllers would reach

the target yf,d, Of,d, and f,d. To compensate for the steady-state error caused by

these assumptions, a simple integral control is applied to the target state (y, , ) .

To do this, YJ,d, Of,d, and f,d in (3.25) are replaced by

k-1

Y',d [k] = Yf,d - kr  (yf [i] - yf,d)
i=1

k-1

O' d [k] = Of,d - kr (Of [i] - Of,d) (3.26)
i= 1

k-l

9 f d [k] =fd - kr z (i] - fd)

i=1

where k is the current stride number, and k, is an integral control gain.

Because (3.26) takes the difference between the actual state and the desired state,

the integral controller should not be used until the planner believes it is attaining



the desired state. During acceleration, this is not necessarily the case. Therefore, the

integral controller was not activated until the magnitude of the differences between

the values of yf, Of, and df on consecutive strides fell below 5 x 10'.

3.4 Implementation

The model described in Chapter 2 and the OSHP controller described above are im-

plemented in MATLAB@ [1]. The model is simulated on a hybrid system simulator

written by the author, with the MATLAB function ode45 used for numerical integra-

tion of the continuous segments. The optimization described by equation (3.2) and

§§ 3.3.2 and 3.3.3 is solved with the MATLAB function fmincon, which implements

an interior-point method with a logarithmic barrier function. A full listing of the

author's code can be found in the appendices.

Variable Bounds and Optimization Tolerance

The MATLAB function fmincon uses two different tolerances to determine feasibility

and optimality. The OSHP controller implemented here uses the default feasibil-

ity tolerance of 1 x 10-6 for every stride. The default optimality tolerance is also

1 x 10-6. However, when the bounds on yf, Of, and Of are loose, as they must be

during acceleration, fmincon does not converge on a solution in a reasonable number

of iterations (< 500). Since the goal during acceleration is simply to move towards

the desired apex state, we loosen the optinality tolerance to 1 x 10-2 during accelera-

tion. When the integral controller is turned on, the optimality tolerance is decreased

in proportion to the maximum error in state until it reaches 2.5 x 10-. Simulta-

neously, the bounds on 0 and 0 are tightened in proportion to the error in each of

those states until they reach 7 x 10' above and below 0 f,d and Bf,d respectively. This

ensures that fmincon can meet the tighter optimality tolerance.



Chapter 4

Evaluation of an Optimally Scaled

Hip-Force Planning Controller in

Simulation

This chapter describes evaluation of the OSHP controller described in Chapter 3 on

a simulation of the two-legged quadruped model.

4.1 Leg Models Used in Simulation

Since the ability to work with disparate leg designs is one of the primary design goals

for the development of OSHP, this section evaluates the performance of the same

OSHP controller for runners with two different leg models. One is the leg model

described in § 2.1: a massless leg with a revolute hip joint and a prismatic knee

joint both of which are actuated and are subject to actuator limits. The other is

an idealized leg that exerts no torque at the hip and can supply arbitrary vertical

and horizontal forces, f. and fy. These leg models are denoted by revolute-prismatic

(R-P) leg and idealized leg respectively.



4.1.1 Revolute-Prismatic Leg

Because the R-P Leg has two degrees of freedom, it can, within its actuator limits,

supply any requested combination of f, and fy. § 2.1 gave the definition of the torque

that the leg must exert on the body to meet these conditions. Together with the

corresponding definition of the required axial force, this gives the following definition

for the actuator force and torque exerted by the linear and prismatic actuators if

those actuators subject to the limits ri, Tct < Tmax and fmin f 5 fmax:

Tact (t) = max {Tmin, min {Tmax, -1 (t) [fx (t) cos y (t) + fz (t) sin Y (t)]}}

f (t) = max {fmin, min {fmax, - (fx (t) sin -y (t) - fz (t) cos y (t))}} ,

where I and gamma are the leg length and leg angle respectively (See Figure 2-1.

The actual torque exerted on the body during simulation is

( (t)ract (t) - f (t) sin - (t)

f (t)= i(t)Tact (t) + f (t) cosy 7(t) , (4.1)

1(t) [fx (t) cos-y (t) + fy (t) sin 7 (t)]

the first two elements of which will evaluate to fx (t) and f, (t) respectively as long

as the actuator limits are not reached. The actuator limits used in simulation are

approximately twice the limits specified in the design requirements for a single leg of

the MIT Cheetah. Note that the third element of f, the hip-torque, will generally be

non-zero.

4.1.2 Idealized Leg

The idealized leg provides exactly the forces and torque requested by the OSHP:

f (t) = . (4.2)

\s0

It is not subject to force limits.



Table 4.1: Parameter values used in evaluation of an OSHP controller for the two-

legged quadruped model

Parameter

I*

d *

d*2

(Tmin, Tmax)

(fmin, fmax)

(yf,lb, Yf,ub)

(Ymid,lb, Ymid,ub)

( 6 f,lb, Of,ub)

treturn

U0

(00(60

Value

0.3

0.6

0.9

(-1, 1)

(0, 6)

0.8

(0.75, 0.81)

(0.75, 0.81)

- 3.5 0 + 3.50)

- 3.5, 0 + 3.50

1.4

(0, 1,1, 1, 0,0, 1,1, 1,0)T

4.2 Results

The parameters used for the simulations in this section are given in Table 4.1.

4.2.1 Bounding

This subsection presents the simulated performance of the controller described in

§ 3.3 on two runners accelerating from rest to a bound with i = 2. For a runner the

size of the MIT Cheetah (lo ~ 0.5 in), this corresponds to a velocity of approximately

4.5 m/s or 10 mph. The first runner has idealized legs and the second has R-P legs.



Both runners begin with the initial state

zo 0

Yo 0.8

xo 00 0 , (43)
z o 0

yO 0

\0 \0

and the desired apex state for both is defined by

Yf,d 0.8

fd 
(4.4)

if,d 2

\0 f,c/ \-8

Figure 4-1 shows the height, pitch, forward velocity and pitch rate of both runners

over the course of their acceleration. Figure 4-2 shows the state trajectories for a

typical stride at steady state for both runners. Figure 4-3 shows the hip-forces and

torques exerted by each leg of both runners during a typical stride at steady state.

4.2.2 Pronking

This subsection presents the simulated performance of the controller described in

§ 3.3 on two runners accelerating from rest to a pronk with i = 2. As before, the

first runner has idealized legs and the second has R-P legs. Both runners begin with

the initial state given by (4.3), and the desired apex state defined by

Yf,d 0.8

Ofd 
(4.5)

Xf,d 2

\f,c 0

Figure 4-4 shows the height, pitch, forward velocity and pitch rate of both runners

over the course of their acceleration. Figure 4-5 shows the state trajectories for a

typical stride at steady state for both runners. Figure 4-6 shows the hip-forces and

torques exerted by each leg of both runners during a typical stride at steady state.



4.3 Discussion

Figures 4-1 and 4-4 show that the OSHP controller described in Chapter 3 can co-

ordinate the acceleration of a bounding or pronking quadruped over level ground. It

does this without prescribing the footfall order of the legs or their touch-down angles.

The two runners simulated have substantially different types of legs, but the same

OSHP drives both of them to periodic gaits. Moreover, the simple integral-controller

applied to the apex height, pitch, and pitch rate is sufficient to elminate the steady

state error in those states.

Figure 4-4 clearly shows the effect of the hip-torques that the R-P legs exert on

the body. Here the two runners are attempting to accelerate from rest, while keeping

all other states at their initial values. Note that the forward velocity and height

of both runners are the same after the first stride. This is because both leg-types

impose exactly the vertical and horizontal forces requested by the OSHP controller.

However, as Figures 4-4(b) and (d) show, the pitch dynamics of the two runners

diverge as early as the first stride. The R-P legs must exert hip-torque in order to

supply the requested combination of vertical and horizontal force. The controller

tries to minimize an approximation of this torque, as described in § 3.3.3, but that

term is weakly weighted in the objective function. As a result the torque is small

enough to remain within the actuator limits, but large enough to impose a substantial

disturbance on the body's pitch dynamics. After this pitch disturbance in the first

stride, the apex state of the runner with R-P legs is different from that of the runner

with idealized legs until both of them reach steady-state. This is to be expected as

the two runners are faced with different initial conditions at the start of each stride.

Figures 4-4(a), (b), and(d) show that the y, 0, and 0 fluctuate during acceleration

for the runner with idealized legs. In principle, this runner ought to be able to accel-

erate while maintaining zero pitch at all times, thereby eliminating the disturbance

called by the small angle approximation on 0. There are three reasons that it does

not. Firstly, the OSHP seeks to set the pitch to zero only at the next apex at

mid-stride, it merely imposes bounds on the pitch. If the controller chooses force-



profiles that result in a non-zero pitch at any point during the stride, the small-angle

disturbance comes into play. Secondly, the error in apex-pitch, (3.25d), is only one of

four terms in the objective function, (3.3.3). The force-profiles that minimize (3.3.3)

may result in a non-zero intended apex-pitch. Thirdly, in the first few strides, the

optimization tolerance is very high, as described in § 3.3. As a result the chosen

force-profiles may only approximate the optimal profiles.

Despite their differing behavior during acceleration, the two runners reach steady-

state gaits that are remarkably similar. On the one hand, some similarity is to be

expected, as the two runners have the same apex-state in their final gaits. On the

other hand, however, the torque exerted on the body by the P-R legs continues to be

large (> 0.3mglo), while the idealized legs exert no torque.

4.4 Next Steps

The tests described in the previous section demonstrate the effectiveness of an OSHP

controller for the two-legged quadruped. The next steps in this research will expand

on this work in three ways: extension to a true (four-legged) quadruped model, in-

vestigation of robustness, and improvement of inter-stride control. The first involves

formulating the constraints described in § 3.3.2 for a four-legged runner and investi-

gating the effects of speed, pitch, and pitch rate on the gait chosen by the planner. The

freedom of OSHP controllers to determine the touchdown order of the legs will play

a much larger role for these more complex runners. It is here that OSHP can provide

a significant advantage over control approaches that require the control designer to

design the runner's gait as well. The second expansion of this work, investigating the

robustness of OSHP controllers for both the two-legged and four-legged quadrupedal

models, will entail simulated tests of the controllers performance when subjected to

a variety of disturbances, including inaccurate measurements and changes in ground

level.

Improvement of the inter-stride control, which is currently a simple integral con-

troller on the desired apex state, could take many forms. More complex controllers



could be applied to the desired apex state in order to allow convergence to a wide

range of apex states. A better approach, however, may be to eliminate the controller

on the desired apex state and instead adjust the planner's approximate model of the

body dynamics after every stride. In this way the planner would learn a model of the

body dynamics that is accurate about the desired operating point.
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Chapter 5

Conclusion

The previous chapters have introduced and defined Optimally Scaled Hip-Force Plan-

ning as a stride-level approach to control of a running robot's body dynamics. They

have also presented an implementation of OSHP for a two-legged model of a quadruped

and demonstrated its effectiveness in simulation. The OSHP controller for the two-

legged quadruped model is shown to be capable of producing running gaits with

specified apex-states on two systems with substantially different leg models. More-

over, it does so without a pre-defined touchdown order for the legs; rather, pronking

and bounding emerge as the controller seeks to set the pitch and pitch rate at the

apex of the stride to zero (pronking) and non-zero (bounding) values. This research

forms a first step towards the creation of a quadrupedal running controller for the

MIT Cheetah project, and provides the foundation for a control framework that can

be applied to diverse robotic runners.
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Appendix A

Derivation of Selected States at

End of Stride and Mid-Stride

This appendix presents a derivation of the expressions for the two-legged quadruped

model's state at the end of the stride and at mid-stride given in equations (3.12),

(3.14), and (3.15).

A.1 States at the End of Stride

As stated in § 3.3.1, the state trajectories during a

terms:

. Constant term due to the initial state

stride are the sum of four or five

" Linear term due to initial velocity

" Quadratic gravitational term (y only)

" One term for each applied force

Of these terms, the first three depend only on the elapsed time, t, since the start of

the stride. This makes those terms simple to calculate for any t. When t = tf, both

legs have completed their stance phases and the remaining terms, those due to the

applied forces become simple to calculate as well.



A.1.1 Calculation of yf

The terms of yf due to the applied forces are

Yf,fi - J1,y (Ui +u) + P1,Y (u1 +I- 1 ) (tf - U1 - u2) (A.1)

Yf,f 2 = IP2,y (n 6 + U~) + P2,y (U6 + U7 1 ) (tj - U6 - U7y1 ) , (A.2)

where Pi,y and Pi,y are defined by (3.13d) and (3.13f). Evaluating Pi,y and Pi,y yields

P1,Y (ui + u2) = 3 (A.3)
U2

and

IP1,y (i 1 + u2l) = 2 (A.4)

Recall that tf = u3u21 +s u8u- 1. We can therefore express (A.1) and (A.2) entirely in

terms of the elements of u. This gives

U3  U3
yf, = 2+

U 2 U7
us us U

U8 U8
yf, 2 = 2+--

U8 (in13

U7 U2

U3 - 1(U2 +-- U 18
U7

2u1 u 2 - 2U3 + 1
2U2

U8 -1
U 7

+--U
/2

2nU6 -- 2u 8 + 1

2U7

There is no linear term in the y-trajectory because yo - 0. The final expression

for yf is therefore the sum of (A.6) and (A.7) along with the constant term, yo, and

and

(A.5)

(A.6)

(A.7)



the quadratic term, jt2:

I U3
yg =Yo-- 2 (U2

8 2
+ U

U7)

+U3 (u8 2t 1t 2 - 2U3 + 1
U2 U7 2U2

A.1.2 Calculation of Of

Because of the small-angle assumption on 0, only the vertical forces enter into the

calculation of Of. The small-angle assumption also yields constant moment arms for

those forces. As a result, the terms of Of due to the applied forces are

f f d i
fy,fi = 'ygjgf (A.8)

and

(A.9)di
0
f,f2 = yff2

The conditions at the start of the stride define the constant and linear terms of Of.

The final expression for Of is therefore

Of = 00 +0

d2 U8)

I(U7)

U3 U8

U2 U7)

U3
U2

di
.1

U3 U8
U2) (U7

2u 1u2 - 2U 3 + 1
2U 2

2U6U7 ~ 2u8 + 1

2U7

A.1.3 Calculation of if

The terms of if due to the applied forces are

if,f 1 = PX (U1 + U2 1) (A.10)

and

if,f 2 = P2,x (U6 + 7 1)

U8 (3

U7 U2

2U6U7- 2U8 + I

2U 7

(A. 11)



where P,, is defined by (3.13e). Evaluating Pi,. and adding in the constant term due

to the initial conditions yields the following final expression for Xf.

. .4U 5  U9 U 1 0
Xf=.XO'- ~~

U2 U7

A.1.4 Calculation of 6f

The terms of 6f due to the applied forces are

di
#f,fi = 1, (a1i + u+1) (A.12)

and

/,f2= - d2P2,, (U6 + U-1) (A.13)

Evaluating Pu and adding in the constant term due to the initial conditions yields

the following final expression for 6f.

di u3) d2 us)
I (U2) I(U7)

A.2 States at Mid-Stride

Because tmid can fall during the stance phase of either leg, expressions for the states at

tmid must either be piecewise functions or functions that include Heaviside steps. Since

these expressions will later be used in a second-order, gradient-based optimization,

they must be continuous and twice-differentiable.

A.2.1 Calculation of ymid

We use the following version of the Heaviside step function:

(t) = 0 if t < 0
1 if t > 0.



That function allows us to write an expression for the height of the runner's center

of mass at any time, t:

y (t) = yo - - + P1,y (t) H (t - ui)
2

+ [-]Piy (t) +JPi,y (ui +u 2 1) +P 1 ,y (ui +u 2 1) (t - 1 - u2 1)] H (t -ui - u2

+ P2,y (t) H (t -U6e)

+ [-P 2,y (t)±+P 2,y (U6 +U7 1)+ P2,y (U6 +-U71) (t-U 6-u 1)] H (t - U6 -U7 1 ).
(A.14)

The step functions and their coefficients define the height of the runner's center of

mass during the different portions of the stride (before, during, and after each leg's

stance phase). At tmid, therefore, we have

Ymid (u) = Yo -

+ -P1,Y

U3
2U2

)8 2+ Us
2U 7

( U32u 2

+ Pl,y
(2U2

Us

2u 7
+ U)

2Ur
- U1i)

+ ) + P1,Y (ui + U2
1)

+ Pi,y (ui + U2') ( + +
(2U2

+ P2,y (s + U
(2U2 2u

+ [-P2,y ( s +
2P2

+ P2,y (U6 +U7y-)
U3

2u2
U

2Ur

Us

2U7
-- U 21

+ u U
2U7

+ U8
2U7

+ Us
2U7

_U6 -1

U1  U2 )

-U 6 -7

(A. 15)

It can be shown that the following equalities hold

Ymid (u)

Ymid (u)
U2 u3  2u 3 U7

Ymid (u)
U3 (2u1U2- -8)

Ymid (u)
U7 u

8 2u 8 u2

= Ymid (u)

=ymid (u)
U 2 u2 2u 7 )

= Ymid (u)

U=(212
2 8)*

= Ymid (u)
7 u8 2u 8 i2 )

7)

8) + P2,y (U6 + U-)
2U7

(A. 16a)

(A. 16b)

(A. 16c)

(A.16d)

H U

(2U2



Ymid (u)
U8 =(2ulu7 - 2u2

Ymid (u)
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U3 2u1 U2-u ±a2)

Ymid (U)
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Ymid (u)
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The corresponding equalities for the first and second partial derivatives of y with

respect to the elements of u can also be shown to hold. Therefore, the expression for

Ymid given in (3.14) is continuous and twice-differentiable.

A.2.2 Calculation of 0 mid

We can use Heaviside steps in the same manner to define the runner's pitch at tmid:

SU3

2u2
+ 2n8

d -i (, + U
I I-P, 2U2 2U7

+ P1,Y(Ui+ U2 1) U
(2U2

+di IP, 3+--P 1 UI 2ku2
+ U)

2U7

+ 
U 8

2U7

U 3

2U2
+ -2 [-P2,y

I I

+
2U7)

U3
2U2

+ -U 1)
2U7

+ U8 P2,y (U6 + U)
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+±P2 ,(U 6 +U7) (232 2+ U -U6 -U7 )]

+ - Ui
2U7

+2U7 U1 -U)

+ 2U 6" -i)U

(A.17)

Comparing (3.14) and (3.15) we find that Omid is a linear combination of the terms

of Ymid plus an additional linear term. Because of this, the continuity and differen-

tiability of Ymid (u) imply the continutity and differentiability of Omid (u).

(A. 16q)

(A.16r)

(A.16s)

(A.16t)

Omid (u) = 0 + Bo

d2
I '

+ P1,Y (U1 + U2 1)
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Appendix B

Code Listing for MATLAB

Implementation

B.1 Model Classes

B.1.1 State-Space Model

classdef ssModel < handle

properties (Abstract)

x

u

params

end

properties

t = 0;

end

methods

function newObj = clone(this)

mcThis = metaclass(this);

mpCell = mcThis. Properties;

constructor = str2func (mcThis.Name);

newObj - constructor();

for i - 1: length( mpCell)

newObj. ( mpCell{i }. Name) = this .(mpCell{i}.Name);

end

end

end

end



B.1.2 Hybrid System Model

classdef hybridModel < ssModel

properties (Abstract)

phaseList

stateLabels

sta teSca I es

end

properties

controller =

end

methods (Abstract)

% Needs to configure model for next phase and accumulate history

updateModel(obj ,Tout,Xout,TE,XE, IE)

end

methods

function applyControl (obj

obj . u = obj . controller. controlLaw(obj);

end

function simulatePhase (obj historyObj

if nargin -- 2 && historyObj . checkModel (obj)

haveHistoryObj = true;

else

haveHistoryObj = false;

end

phaseClass = class (obj . params . phase);

% Check that the phase is valid and initialize fcn handles

switch phaseClass

case 'char'

if ~any(cellfun(@(y) strcmp(y,obj.params.phase) ,...

obj. phaseList))

disp (['"' obj . params. phase ...

" is not a recognized phase for this model']);

return

end

dynamicsFun = str2func ([obj . params .phase 'Dynamics']);

eventsFun = str2func ([obj . params . phase 'Events']);

case 'logical'

dynamicsFun = str2func([class(obj) 'dynamics']);

eventsFun = str2func([class(obj) '.eventFun']);

otherwise

disp('Unsupported phase class');

end

% Set control inputs



if ~isempty (obj. controller)

if strcmp(obj. controller .flavor ,'phase')

obj .applycontrol

end

end

% Initialize variables

refine = 10;

%Configure solver

options = odeset('RelTol' le 10, 'AbsTol',le 9

'OutputFcn' ,OodeTimeout, 'Events' ,eventsFun

'Refine', refine);

% Integrate until terminal event

[Tout ,Xout,TE,XE, IE] = ode45(dynamicsFun, [obj .t obj .t+lel],

obj. x , options ,obj u, obj params);

if numel(TE)==0

disp('ERROR: No event found');

disp (obj . x)

TE = Tout(end);

XE = Xout(end,:);

IE = 7;

end

%Configure model for next phase

if haveHistoryObj

obj. updateModel(TE,XE, IE , historyObj );

else

obj. updateModel(TE,XE, IE)

end

end

end

end

B.1.3 Running System Model

classdef runningModel < hybridModel

properties

n-animation-nodes = 1;

status = 'normal';

end

methods

function reset(obj,xO,uO,tO)

obj.status = 'normal';

obj.x = xO;



obj.u = uO;

obj. t = to;

end

function simulateStride (obj , historyObj

% Check status

if strcmp(obj. status , 'failure')

disp('Runner has fallen or flipped over!');

disp('It must be reset before taking a stride.');

return

else

obj.status = 'normal';

end

% Set control inputs if necessary

if ~isempty(obj. controller )
if strcmp(obj. controller .flavor ,'a2a')

obj .applyControl

end

end

if nargin - 2

% Simulate until end of stride

while strcmp(obj. status , 'normal')

obj. simulatePhase ( historyObj);

end

else

% Simulate until end of stride

while strcmp(obj.status ,'normal')

obj. simulatePhase

end

end

% Display result message

if strcmp(obj . status , 'finishedStride')

obj reset Legs ;

obj.status = 'normal';

dispDebug (' stride ' , ' Done with one stride.')

elseif strcmp(obj. status , 'failure')

dispDebug('stride','Stride ended in failure!')

elseif strcmp(obj. status , 'error ')

dispDebug (' stride ', 'Error during stride!')

else

disp ([ '" ' obj . status ' " is not a valid model status! '1)
end

end

function X = getX (obj , xind , ulnd)

% GETX Extracts a combination of states and actions

% X = GETX(OBJ,XIND, UIND) returns a column vector consisting



% of the elements of x specified by XIND followed by the

% elements of u specified by UIND.

% 6/10/10

% MIT Biomimetic Robotics Lab

% A. K. Valenzuela

X = [obj.x(xlnd); obj.u(ulnd)];

end

function setX(obj ,X, xlnd ulnd)

% SETX Updates a combination of states and actions

% SETX(OBJ,X,XIND,UIND) assigns the elements in X to the

% elements of x specified by xlnd and then to the values of u

% specified by ulnd.

% 6/10/10

% MIT Biomimetic Robotics Lab

% A. K. Valenzuela

obj.x(xind) = X(1:length(xlnd));

obj.u(ulnd) = X(length(xlnd)+1:end);

end

end

end

B.1.4 Planar Rigid Body (Spine) Runner

classdef planarRigidBodyRunner < runningModel

properties

x = [0; 0; 0; 0; 0; 0];

u = 1];
params = ];
phaseList = []
stateLabels = {'x' , 'y' , 'theta', 'xdot' 'ydot' 'thetadot'};

stateScales = [1, 1, 180/pi, 1, 1, 180/pi];

connection Matrix = [];

end

methods ( Static)

xDot = dynamics(t,x,u,parans);

prms = defaultParameters;

[value, isterminal , direction] = eventFun(t, x, u, params);

end

methods

function this planarRigidBodyRunner(x-in , u-in , params-in , ..

controller-in , varargin)

optargin = size (varargin ,2);

stdargin = nargin optargin



if stdargin < 4

error('planarRigidBodyRunner:ArgsIn',

['The constructor for the planarRigidBody class '

'requires at least four arguments']);

else

this.x = x-in

this.u = uin;

this . params = planarRigidBodyRunner .defaultParameters

if isstruct (params-in )

params-in-names = fieldnames( params-in);

params-in-ind = isfielId (this params , params.in-names);

for ii = 1: length ( params-in-names)

if params-in-ind (ii)

this . params. ( params-in-names{ i i })

params.in .( params-in-names{ ii });

end

end

end

this. controller = controller-in

end

if optargin > 0 % All inputs after first three should be legs

for ii = 1:optargin

if isa(varargin{ii}, 'leg')

this .params. legs = [this. params. legs; varargin {ii

this. params . angle-leg-attach.pts = ...

[this. params . angle-leg-attach-pts ; ...

this. params . legs(end). attach-pt . angle ];

this . params . dist..leg-attach.pts = ...

[this . params . dist-leg.attach-pts ; ...

this. params . legs (end). attach.pt . distance];

this. params. leg-inputs.partition = ...

[this. params . leg..inputs-partition ; ...

this. params . leg.inputs-partition (end) + .

this . params. legs(end). n.inputs ];

if any(strcmp('foot position', ...

properties(varargin{ii })))

this . connection Matrix = ...

[this . connectionMatrix; ...

[1, this. n-animationnodes + 1; ...

this. n.animation..nodes + 1, . ..

this. n-animation-nodes + 2;

this.n.animation-nodes + 2, ...

this . n-animation-nodes + 1;

this. n..animation.-nodes + 1, 1]];

this . n-animation -nodes = this . n-animation.nodes+2;



else

this . connectionMatrix =

[this . connectionMatrix

[1, this. n-animation.nodes + 1;

this . n.animation-nodes + 1 1]];

this. n.animation.nodes = this. n -animation -nodes+1;

end

else

error( 'planarRigidBodyRunner :OptArgsClass',

['All optional arguments to the

'planarRigidBody constructor must '

'be leg objects');

end

end

end

this. params . phase = false (1, length (this. params . legs ));

end

function addLegs(this ,varargin)

for ii = 1:length(varargin)

if isa(varargin{ii}, 'leg')

this.params.legs = [this.params.legs ; varargin{ii }];

this. params . angle-leg-attach-pts = ...

[this. params . angle-leg-attach-pts ; .

this . params . legs (end). attach-pt .angle ];

this . params . dist.leg-attach-pts = ..

[this .params . d ist-leg-attach pts ; .

this .params . legs (end). attach-pt . distance];

if any(strcmp('foot.position', properties(varargin{ii })))

this. connectionMatrix = .

[this .connectionMatrix;

[1, this. nanimation..nodes + 1; ...

this . n-animation-nodes + 1, ...

this. n-animation-nodes + 2; ...

this . n-animation -nodes + 2, ...

this. nanimation-nodes + 1; ...

this . n..animation.-nodes + 1, 1]];

this . n-animation-nodes = this . n.-animation.-nodes + 2;

else

this . connectionMatrix = ..

[this connectionMatrix; ..

[1, this.n-animation-nodes + 1; ...

this . n-animation.-nodes + 1, 1]];

this. n-anirnation-nodes = this. n-animation-nodes + 1;

end



params. phase = [params phase, false];

else

error( 'planarRigidBodyRunner.addLegs:ArgsClass'

'All arguments to the addLegs method must be leg objects');

end

end

end

function rmLegs(this ,indices)

this.params.legs(indices) = [];
this. params. angle-legs-attach-pts (indices) = []
this. params. dist-legs-attach.pts (indices) = []
this.params. phase(indices) = [];
cur-ind = 2;

connectionMatrix..ind = [];
for ii = 1:length(this.params.legs)

if any(strcmp('foot-position',

properties(this.params.legs(ii))))

if any(ii = indices)

connectionMatrix-ind - [connectionMatrix-ind , .

cur-ind : cur-ind +3];

end

cur-ind = cur-ind + 4;

else

if any(ii = indices)

connectionMatrix-ind = [connectionMatrix-ind , .

cur.ind: cur-ind +1];

end

cur-ind = cur-ind + 2;

end

end

this. connectionMatrix(connectionMatrix-ind , :) = [];

function updateModel(this ,TE,XE,IE , historyObj)

[TE, ITE] = sort (TE);

if nargin 5

for ii = 1:length( this. params. legs)

if any(strcmp('footposition', ...

properties(this.params.legs(ii))))

if isempty(this . params.xyT)

this.params.xyT = NaN(2, length(this.params.legs));

end

if this.params. phase( ii)

this.params.xyT(:, ii) =

end



this. params . legs( i i ). foot.position

else

this.params.xyT(:, ii) = NaN;

end

end

end

historyObj . addPhaseData(this .x, this. u [this .t TE(1)]

this. params);

end

this.t = TE(l);

this.x = XE(ITE(1) ,:)

ie = IE(~(TE TE(1)));

%Determine next phase

n-legs = length (this. params . legs);

if all(ie <= nlegs) % Not a fall or end of stride

event = false(l, n-legs);

event(ie) = true;

% Update leg data

this.updateLegs(event);

% Update phase

this . params. phase = xor (this . params . phase event );

this.status = 'normal';

elseif ie - n.legs+1 % End of stride

this.status = 'finishedStride';

dispDebug(' planarRigidBodyRunner , 'Done with one stride')

else % Fall

this.status = 'failure';

d ispDebug( ' planarRigidBodyRunner' .

'Runner hit the ground during aerial phase!')

end

end

function updateLegs(this , event)

indices - 1:length(this.params. legs);

for ii - indices(event)

this params. legs( ii ).update(this.t, this.x,

this .u(this .parans. leginputs-partition (ii )

this. params. leg.in puts-partition (ii +1) 1), .

this. params.phase(ii

end

end

function resetLegs(this)

for ii = 1:length(this.params. legs)



this params. legs( ii). has-hit = false;

this.params. legs(il ).update(this .t);

end

end

function setParam(this , name, value)

if isfield (this.params, name)

this.params.(name) = value;

else

disp([' ' '' name ''' is not a valid parameter name'])

end

end

function value = getParam (this , name)

if isfield (this. params, name)

value this .params.(name);

else

disp (['''' name ''' is not a valid parameter name '])

end

end

function nodes = nodeLocations(this , t, X, u, xyT)

% Node 1: CG

% Node 2 end: Leg attachement points

% Put input arguments into conventional form

t = t '; X = X'; u = u

% Constants

n-t = size (X, 2);

n-legs = length (this. params . legs);

% CG position

cg-node = X(:2 ,:);

% Calculate offsets of leg attachment points from CG
abs-leg-angles = repmat(X(3 ,:) , n-legs , 1) + ...

repmat(this params. angle-leg-attach-pts , 1, n-t);
legs-x.offset =

repmat(this .params. dist-leg-attach-pts ,1, n-t).* ...

cos(abs-leg-angles);

legs.y-offset = .

repmat(this. params . dist-leg-attach pts 1, n-t).* ...

sin (abs-leg-angles );

% Interleave offsets and add to CG position

leg-nodes = repmat(cg-node , n-legs , 1) + ...



reshape([ legs-x-offset legs-y-offset '] n-t 2* nilegs

if ~isempty(xyT)

% Calculate positions of feet

swing-ind = isnan(xyT);

foot-nodes = NaN(2* length (this. params. legs),length(X));

% Position of stance feet given by xyT

foot-nodes(~swing-ind) = xyT(~swing-ind);

% Position of swing feet given by legs

for ii = length(this.params.legs): 1:1

if any(strcmp('footPosition', ...

methods(this.params.legs(ii))))

cur-leg-swing-ind = squeeze( swing-ind (1, ii

cur-foot.node = foot-nodes(2*ii 1:2* ii

if any(curileg-swing-ind )

cur-foot-node(:, cur-leg-swing-ind) =

this. params . legs ( ii ). footPosition( ...

t(cur-leg-swing-ind),

X(:, cur-leg-swing-ind )
u(th is. params. leg-inputs-partition (ii ):

this. params. leg-inputs-partition (ii +1) 1,

curleg.swingind));

end

if ii - length(this. params. legs)

leg-nodes = [leg-nodes(1:2* ii :); curfoot-node

else

leg-nodes = [leg-nodes(1:2* ii

cur-foot-node; leg-nodes (2*( ii +1) 1:end ,

end

end

end

end

% Concatenate node data for output

nodes = [cg.node; leg-nodes];

end

function NGRF = groundRxns(this t, X, u, params-in)

% Constants

n-t = size(X, 1);

n-legs = length(this .params. legs);

leg-forces = zeros(3*n-legs, n-t);

for i i = 1: n-legs



leg-forces(3* ii 2:3* ii , :) = params-in. legs( ii ). forces(t, X,

u( this. params. leg-inputs.partition (ii ):...

this . params . leg-inputs.partition ( ii +1) 1),

params-in . phase( ii ));
end

NGRF.abs = sqrt(leg-forces(1:3:3*n.legs ,:)^2 +

leg-forces (2 :3:3* n-legs ,:).^2);

NGRF.xComp = leg-forces(1:3:3*n-legs ,:);

NGRF.yComp = leg-forces(2:3:3*n-legs ,:);

end

function hip-torques = hipTorques( this , t, X, u, params-in)

% Constants

n-t = length(t);

n-legs = length(this.params. legs);

leg-forces = zeros(3*n-legs , n-t);

hip-torques = zeros(n-legs, n-t);

for ii = 1: n-legs

leg-forces(3*ii 2:3* ii :)

params-in. legs(ii ). forces (t, X ...

u(: this params. leginputs.partition( ii):...

this . params. legiinputs-partition ( ii +1) 1), .

params-in .phase( ii ));

hip-torques(ii :) leg-forces(3*ii

end

end

end

end

function prms =defaultParameters

prms. Ist a r = 1;

prms.mu.s 1;

prms.phase -

prms.legs []

prms . angle-leg..attach _pts - [];

prms.dist-leg-attach-pts =

prms . leg-inputs..partition - 1;

prms.xyT = [];

end

function xDot = dynamics(t x, u ,params)

q = x(1:3);

qDot = x(4:6);

a-legs = params. angle-leg-attach-pts;

d-legs = params.dist-leg-attach-pts;



f-legs = zeros(3,length (params. legs));

for ii = 1: length (params legs)

f-legs (: , ii) = ...

params. legs( ii ). forces(t , x,...

u(pararns. leg-in puts-partition (ii )

params. leg-inputs-partition ( ii +1) 1),

params . phase ( i i

end

% disp( f-legs (2,:));

xDot = [qDot;

sum(f.legs(1:2, :),2) [0; 1];

1/params. Istar *...

sum( d _legs .*.

sum ([ sin (q(3)+ a-legs), cos (q(3)+ a _legs)].*

f-legs (1:2, :)',2)) +

sum( f-legs (3, :),2)];

end

function [values , isterminal , direction] eventFun(t, x, u, params)

nilegs = length (params. legs );

values = zeros(2* nilegs + 2, 1);

isterminal = ones(2*n-legs + 2, 1);

direction = ones(2*n-legs + 2, 1);

% Leg events

for i i = 1: nilegs

[values( ii), isterminal( ii), direction( ii)] =

params.legs(ii ).legEvent(t, x,...

u(params . leg-inputs-partition (ii ) :.

params. leg.inputs-partition (i i ± 1) 1)

params .phase(ii));

end

% End of stride event

if all ( cat(1 params. legs. has-hit) ) && all ( ~params. phase

values(n-legs+1) = x(5);

else

values ( n-legs+1) = 1;

end

% Fall event (CG hits ground)

values( n-legs+2) = x(2);

values( nlegs+3:end) = x(2) + params. dist-leg-attach..pts .* sin(x(3) + .

params.angle-leg-attach-pts );

end



B.1.5 Leg Models

classdef leg < handle-with-clone

properties

attach-pt = struct('distance', 0, 'angle', 0);

tO = Inf;

has-hit = false;

ground =

end

methods (Abstract)

f = forces(this , t, x-body);

[values, isterminal , direction] = legEvent(this, t, x, u, stance);

end

methods

function this = leg(attach-dist , attach-angle , ground-in tOin)

if nargin > 1

this. attach-pt .distance = attach-dist

this. attach-pt angle = attach-angle

end

if nargin > 2

this.ground = ground-in;

else

this.ground = ground-level();

end

if nargin > 3

this.tO = tOin;

end

end

function tOout = getTO(this)

tOout = this.tO;

end

function setTO(this , tO-in)

this . tO = tO-in

end

function err update(this , t , x , u, stance)

err = 0;

if nargin > 2

if ~stance

this . has-hit = true;

this. to = t

end

else



this.tO = Inf;

end

end

end

end

classdef leg-rAct-pAct < leg

properties

lleg-min = 0.5;

Ileg-max = 1;

gamma-max = 60*pi/180;

gamma-min = 60* pi /180;

f-max = 3;

tau-max = 0.5;

foot-position = []
ctrl stance = []
ctrl-swing [];

ninputs = []
end

methods

function this = leg-rActpAct (attach-dist , attach-angle ,

ctrl-stance-in , ctrl-swing-in ,

ground-in , tOin)

if nargin > 5

super-args = {attach-dist , attach-angle , ground-in , tO in };

elseif nargin > 4

super-args = {attach-dist , attach-angle ground-in };

elseif nargin > 2

super.args = {attach-dist , attach-angle };

else

super.args =

end

this = this@leg(super-args {:});

if nargin >= 4

this . ctrl..stance = ctrl-stance-in

this . n.inputs = this . ctrl-stance . n.inputs

this . ctrl-swing = ctrlkswing.in

end

end

function f-hip = forces(this , t, x-body, u, stance, xy.foot)

% Change input to match my array conventions.

if size(t,1) ~= 1 || size(x.body ,1) ~= 6



t t

u u;

x-body x-body

end

fhip = zeros(3, length(t));

if stance

gamma = this. stanceLegAngle(xbody);

if nargin < 6

Ileg = this.stanceLegLength(x-body);

else

lleg = this.stanceLegLength(x-body , xy-foot);

end

[f, tau] = this . ctrlkstance . controlLaw(this , t , u, leg, gamma);

f min(f, this.f-max);

tau = min(max(tau , this .tau-max) , this .tau-max);

f..hip (1,:) tau.*cos(gamma)./I-leg f.*sin(gamma);

f-hip (2,:) = tau.*sin(gamma)./lIleg + f.*cos(gamma);

fhip(3,:) = tau;

end

end

function [value isterminal , direction] = legEvent(this , t , x, u , stance)

if stance % Event value is applied force or leg length

force = this.forces(t , x, u, stance);

value = min(force(2), 1 this .stanceLegLength(x));

else % Event value is foot clearance

%fprintf('Time: %f\t', t)

value = this.ground.clearance(this.footPosition(t, x, u));

%fprintf('Clearance: %f\n', value)

end

isterminal 1;

direction - 1;

end

function err = update(this , t, x-body, u, stance)

if nargin > 2

if stance

this. ctrl-swing . setLiftOffState ( ...

this. stanceLegLength(x-body), ...

this .stanceLegAngle(x.body),

x-body (5));

t his . foot-position = []
else

t his . foot-position = this . footPosition (t , x.body ,u



end

err = update@leg(this t, x-body , u, stance);

else

err = update@leg(this t

this. ctrl-swing . setApexState (t);

end

end

function xy.hip = hipPosition (this , x.body)

alpha-plus-theta = x-body (3 ,:)+ this. attach-pt .angle;

xy.hip = x-body(1:2, :) + this . attach-pt . distance *

[cos(alpha-plus-theta );

sin ( alphapl us-theta )]
end

function gamma = stanceLegAngle (this x-body xy-foot

xy-hip = this . hipPosition (x-body );

if nargin < 3

xy-foot = this . foot-position

end

gamma = atan2(xyfoot (1) xy-hip (1,:),

xy-hip (2,:) xy-foot (2));

end

function Ileg = stanceLegLength (this , x-body , xy-foot

if nargin < 3

xy-foot = repmat( this. foot-position , 1, size(x-body, 2));

end

xydiff = this. hipPosition (x-body) xy.foot

I-leg = sqrt( xy-diff (1,:).^2 + xy.diff(2,:).^2 );

end

function xy-foot = footPosition (this , t, x-body, u)

[lleg gamma] = this. ctrlkswing . controlLaw(this t , x-body , u);

Ileg = min(max( lleg this. I-leg-min ), this. .leg-max );

gamma min(max(gamma, this .gammamin+x-body(3)) , this .gammamax+xbody (3));

xy-hip = this . hipPosition(x-body);

xy-foot = xy-hip + ...

[.leg .*sin(gamma); LIleg.*cos (gamma)];

end

end

end

classdef leg-xy-force-poly < leg

properties

coeff-x =



coeff-asym x = []
coeffLy = [];

n-inputs = 5;

end

methods

function this = leg-xy-force-poly (attach-dist , attach-angle

coeff-x-in coeff.asym-x-in , coeff-y-in

ground-in tO in )

if nargin > 6

super-args = {attach-dist attach-angle ground-in tO-in };

elseif nargin > 5

super-args = { attach-dist attach-angle ground-in };

elseif nargin > 2

super-args = {attach-dist attach-angle };

else

super-args = };

coeff-x-in = [];

coeff-asym xin =

coeff-y-in = [];
end

this = this@leg(super-args {:);

this.coeff-x = coeff-x-in;

this. coeff-asym-x = padarray (coeff-asym-x.in

size ( coeff-x-in ) size (coeff-asym-x-in ) .

0, 'pre');

this. coeff.y = coeff-y.in;

end

function f = forces(this , t, x.body, u, stance)

if stance

f = [ this.xForce(t , u)'; this.yForce(t, u)'; zeros(1, length(t))];

else

f = zeros(3, length(t));

end

end

function fy = yForce(this , t, u)

fy = u(3)* polyval(this.coeff-y , u(2)*(t this.tO));

end

function fx = xForce(this , t , u)

fx = u(4)* polyval(this.coeff-x + u(5)* this.coeff-asym-x , u(2)*(t this.t));

end

function [value, isterminal , direction] legEvent(this , t, x, u, stance)



if stance % Event value is y force

value = this.yForce(t , u);

else % Event value is time until contact

value = u(1) t;

end

isterminal 1;

direction = 1;

end

end

end

B.2 Controller Classes

B.2.1 Abstract Controller Class

classdef ctrLabstract < handle

methods ( Abstract)

u = controlLaw(sys)

end

end

B.2.2 OSHP Controller

classdef ctrly2poly-x3poly < ctrl-abstract

properties

obj-list {};

c-list = {;

ceq-list =

obj-handles =

c-handles =

ceq-handles

hess-obj-handles =

hess-c-handles = {};

hess-ceq-handles =

obj-weights = H;
prms-objnlcon hess = struct('t-bounds', [0; 0],

'y-bounds', [0; 0],

'thbounds', [0; 0],

'thDotbounds', [0; 0],

'y-ant-bounds', [0; 0],

'y-pos bounds', [0; 0],

'y-mid-bounds', [0; 0],

'th-antbounds', [0; 0],

'th-posbounds', [0; 0],



'th-mid-bounds', [0; 0],

'th-mid-target', 0);

prmsib-ub = struct('lb' [0, 0, 0.5, 0.2, 1, 0, 0, 0.5, 0.2, 1],

'ub' [2, 2el, 2, 2, 1, 2, 2el, 2, 2, 1],

't-return', [0; 0],

't-swing-prev', []);

prms-goal-state = struct('goalstate', [0; 0; 0; 0],

'maxdelta-xDot', Inf);

u-prev = [];

uO = [0, 1, 1, 1, 0, 0, 1, 1, 1, 0];
max-delta-xDot = 0.25;

%ub = Inf(1, 10);

constant-args = []
filename-root = I';

opts-fmincon = optimset('Algorithm', 'interior-point',

'AlwaysHonorConstraints', 'none',

'GradConstr', 'on',

'GradObj', 'on', ...

'Hessian', 'user-supplied',

'TolFun' , le 5 , ...

'Display', 'off');

obj-handle = []
nlcon-handle [];

hess-handle = []
flavor = 'a2a'

end

methods (Static)

generateMFiles(directory, list, dictionary);

dictionary = build Dictionary ();
end

methods

function this = ctrl-y2poly-x3poly(params.in , obj-list-in

c-list-in , ceq -listin

obj-weights-in)

if nargin < 1

return

else

if nargin < 2 || isempty(obj.list-in)

error('ctrl_21eg-y2poly-x3poly:obj-list',

['You must specify at least one '

'objective function term']);

end

tmp = fieldnames ( params-in);

for ii = 1:length(tmp)



if isfield (this. prms..obj-nlcon-hess , tmp{ ii})

this. prms.obj.nIcon hess . (tmp{ii}) =

params-in .(tmp{ i i

end

if isfield (this. prmsib-ub , trnp{ii })
this. prms..b-ub .(tmp{ ii }) = params-in .(tmp{ ii });

end

if isfield (this. prms.goal-state , tmp{ ii })

this. prms-goal-state .(tmp{ ii }) = params-in . (tmp{ i i });

end

end

this. obj-list = obj-list in ;

if nargin > 2

this. c-list = c-listin ;

if nargin > 3

this. ceq-list = ceq..list..in

end

end

if nargin > 4

if size(obj.weights-in) - size(this. obj-list)

this. obj-weights = obj-weights-in

else

error('ctrl-y2poly-x3poly:objweights',

sprintf(['The number of obj. function '

'terms (%d) does not match the number '

'of weights (%d).'), ...

length(this .objIlist), ...

length (obj-weights_in)) )
end

else

this . obj-weights = ones( size(this . obj-list

end

end

% Get path to containing folder

container-path = regexprep (which( ' ctrl.y2poly-x3poly'),

'@ctrl-y2poly-x3poly.ctrl-y2poly-x3poly\.m$', '');

% Check for objective and constraint functions that need to be

% generated.

dictionary = this. buildDictionary

to-generate-list = ;

n-obj-list = length(this. obj-list);

for ii = 1:length(this . obj-list)



if ~exist ([container-path dictionary (this.obj-list{ii})],

'file')

to-generate-list = [to-generate-list , this. obj.-list ( ii)];

end

end

if ~isempty(this. c-list )
n.c-list = length( this. c.Iist );

for ii = 1:length(this.c Iist)

if ~exist([container-path dictionary(this.c-list{ii })],

'file')

to -generate..list = [to-generate..list , this. c._list( ii

end

end

end

if ~isempty(this . ceq-list)

nceqlist = length (this . ceq-list);

for ii = 1:length(this. ceq-list)

if ~exist ([container-path dictionary(this . ceq.listf{ii })] ..

'file')

to-generate-list .

[to-generate-list , this. ceq-list (ii

end

end

end

% Generate functions if necessary

if ~isempty(to-generate-list)

this . generateM Files(container-path , to-generate-list ,dictionary)

end

% Populate handle arrays

this .obj-handles = cell(n-obj.list , 1);

for ii = 1: n-obj-list

this. obj-handles{ii} = str2func(dictionary(this. obj-list{ii }));

this.hess-obj-handles{ii} = ...

str2func (['hess_.' dictionary(this . obj.Iist{ ii })]);
end

if ~isempty(this . cIist)

this. c..handles = cell ( n _c..list , 1);

for ii = 1:length(this . c-list )

this . c.handles{ii } = str2func(dictionary( this . c-list{ ii }));

this. hess-c-handles{ ii} = ...
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str2func (['hess_ ' dictionary(this. c-list {ii})]);

end

end

if ~isempty( this. ceq.. ist)

this.ceq-handles = cell(n-ceq-list , 1);

for ii = 1:length(this . ceq-list)

this. ceq-handles{ ii} = ...

str2func (dictionary(this. ceq-list{ii}));

this.hess-ceq-handles{ii} = ...

str2func (['hess.' dictionary (this. ceq 1ist { ii

end

end

end

function u = controlLaw(this , sys)

% Set boundary conditions

if isempty(this . prms-goal.state . goal.state)

error('ctrl_21eg-y2poly:controlLaw' ...

'You must set the goal state before running the controller');

end

if isempty(this.u-prev)

this. u prev = sys.u;

end

if isempty(this . constantargs)

switch length (sys . params. legs)

case 2

angles = sys .params. angle-leg-attach-pts

distances = sys.params. dist-leg-attach-pts

case 4

angles = sys . params. angle-leg-attach-pts ([1, 3]);

distances = sys.params. dist-leg-attach-pts ([1, 3]);

otherwise

error('ctrl-y2poly x3poly:n-legs', .

[num2str( length ( sys . params . legs)) .

' is not a valid number of legs for this '...

'controller' ]);

end

this. constant-args = [sys . params. Istar ; ..

angles ; d ista nces ; sys . params . mu-s

end

% Set Hessian function for optimizaton

if isempty ( th is . opts-fmincon . HessFcn)

this . opts-fmincon . HessFcn = Ohess.fun
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end

% Set arguments for optimization functions

bc = [sys.x([2,3 ,4,6]) , this .strideGoalState(sys );]
args = [reshape(bc, 8, 1); this.strideArgs(); this.constant..args];

% Set bounds for optimization variables

[lb , ub] = this .strideLBUB(sys);

% Run optimization

[u, fval , exitflag] = fmincon(@obj-fun , this. uprev ,...

[, [] , [] , [], Ib , ub, .. .

@nlcon-fun , this . opts.fmincon );

% Handle optimization failure

if exitflag <= 0 && exitflag -= 3

error('ctrl_21eg-y2poly:controlLaw',

['Optimization failed with exitflag ' num2str(exitflag) ...

'. Terminating simulation.']);

end

this.u-prev = U;

u([l, 6]) = u([l, 6]) + sys.t;

function [obj , grad-obj] = obj-fun (u)

obj = 0;

grad_obj = zeros(size(u));

for ii = 1: length (this . objhandles

[obj-ii , grad..obj ii ] this. obj.handles{ ii }(u, args);

obj = obj + this . obj-weights(ii )* obj-ii;

grad-obj = grad-obj + this. obj.weights (ii )*grad -obj.ii

end

end

function [c , ceq grad-c , grad ceq] = nicon-fun (u)

if isempty(this.c-handles)

c = [] ;

grad-c =

else

c-cell = cell (size(this .c.handles));

grad _c-cell = c-cell ';

for ii = 1:length(this.c-handles)

[c-cell{ii}, grad-c-cell{ii}] = .

this. c-handles{ ii }(u, args);

end

c = cell2mat( c.celI );
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gradc = cell2mat( grad -c-cell );

end

if isempty( this. ceq.handles)

ceq = 1];
grad-ceq = [;

else

ceq-cell = ceI(size(this.ceq-handles));

gradceq.cell = ceq-cell '

for ii = 1:length(this.ceq-handles)

[ceq-cell{ii}, grad._ceq.cell{ii}] =

this.ceq-handles{ii}(u, args);

end

ceq - cell2mat ( ceq.cell );

grad.ceq = cell2mat ( gradceq.cell );

end

end

function hessian = hess-fun (u lambda)

hessian = zeros(length(u));

for ii 1:length(this.hess-obj-handles)

hessian = hessian + ...

this. obj-weights( ii)*

this.hess-obj-handles{ii}(u, args);

end

if ~isempty(this . hess-c-handles)

kk = 1;

for ii = 1: length(this. hess-c-handles)

hess-ii = this. hess-c-handles{ ii }(u, args);

for ij - 1: size ( hess-ii 3)

hessian = hessian + ..

lambda. ineqnonlin (kk)* hess-ii (: jj

kk = kk + 1;

end

end

end

if ~isempty(this.hess-ceq-handles)

kk = 1;

for ii = 1: length(this. hess-ceq.handles)

hess-ii this.hess-ceq.handles{ii}(u,args);

for jj = 1: size( hess.ii 3)

hessian = hessian + . .

lambda. eqnonlin (kk)* hess.ii (: jj

kk = kk + 1,

end

end
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end

end

end

function goal-state-out = strideGoalState (this , sys)

goal-state-out = this. prms-goalstate . goalstate;

goal-state-out(3) = ...

min( sys .x(4)+ this . prms-goal-state . max-delta-xDot ,

goal-state-out (3));

%fprintf( 'Target velocity: %f\n ', goal-state-out (3));

end

function [ lb-out , ub.out] = strideLBUB (this , sys)

if isempty ( this . prmsib-ub . t-swing-prev)

this . prms.Ib-ub . t-swing-prev = [0; 0];

elseif sys.t ~= 0

ind1 = 1:5:length(sys.u);

ind2 = ind1 + 1;

this. prmslb-ub.t..swing-prev = sys.t ...

(sys.u(ind1) + sys.u(ind2).^ 1);

end

Ib-out = this.prmsib-ub.Ib;

ub..out = this.prmsilb-ub.ub;

Ib-out ([1,6]) = max(Ib-out ([1, 6]),

(this. prmsIb-ub . t-return ...

this. prms..bub. tswingprev ) ');
end

function args.out = strideArgs (this)

% Note: this depends on all of the fields in prms-obj-nlcon-hess

% being column vectors

args-out = celf2mat ( struct2cell (this. prms-obj-nlcon-hess ));

end

function setGoalState (this , goal-state-in)

this. goal.state = goal-state-in;

end

end

end

function dictionary = buildDictionary()

dictionary = containers.Map(...

{ 'fric.cones_2_legs', 'fric-cones_4_legs',

'time.dir_2_legs', 'timedir_4_legs', ...

'bounds-tf_2_legs', 'bounds.tf_4_legs', ..
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'bounds-yf-2-legs', 'bounds-yf-4-legs', ...

'bounds-thf-2-legs', lboundsthf-4-legs',

lbounds-thf--torque-approx--2-legs', ...

lbounds-thf--torque-approx--4-legs',

'bounds-thDotf-2-legs', 'bounds-thDotf-4-legs',

lbounds-thDotf--torque-approx--2-legs', ...

lbounds-thDotf--torque-approx--4-legs',

'bounds-y-td-2-legs', 'bounds-y-td-4-legs',

'bounds-y-lo-2-legs', 'bounds-y-lo-4-legs',

'bounds-y-mid-2-legs', 'bounds-y-mid-4-legs',

'bounds-th-td-2_legs', 'boundsth-td-4-legs',

'bounds-th-lo-2-legs', 'bounds-th-lo-4-legs',

'bounds-th-mid-2-legs', 'bounds-thmid-4-legs',

'positive-y-mid-2-legs', 'positive-y-mid-2-legs',

'positive-xDot-mid-2-legs', 'positive-xDot-mid-2-legs',

ix-stance-dist-2-legs', Ix-stance-dist-4-legs',

'zero-th-mid-2-legs', 'zero-th-mid-2-legs', ...

'target-th-mid-2-legs', 'target-th-mid-2-legs',

'min-tf-2-legs', 'min-tf-4-legs', ...

'min-y-error-2-legs', 'min-y-error-4-legs',

'min-th-error-2_legs', 'min-th-error_4-legs',

Imin-th-error--torque-approx--2-legs', ...

Imin-th-error--torque-approx-4_legs',

)min-thDot-error-2-legs', 'min-thDot-error-4-legs',

Imin-thDot-error-_torque-approx--2-legs', ...

Imin-thDot-error--torque-approx-4-legs',

'max-xDot-2-legs', 'max-xDot-4-legs', ...

)min-xDot-error-2-legs', 'min-xDot-error-4-legs',

'min-stance-time_2-legs', 'min-stance-time-4-legs',

'min-approx-torque-2-legs', 'min-approx-torque-4-legs',

'min-impulse-x-2_legs', 'min-impulse-x-4-legs', ...

)min-impulse-y-2-legs', 'min-impulse-y-4-legs'll ...

lineqFricCones-2Legs', lineqFricCones_4Legs',

lineqTimeDir-2Legs', lineqTimeDir_4Legs', ...

lineqBoundsTf-2Legs', lineqBoundsTf_4Legs',

lineqBoundsYf-2Legs', lineqBoundsYf-4Legs',

lineqBoundsThf-2Legs', lineqBoundsThf_4Legs',

lineqBoundsThf--torqueApprox--2Legs', ...

lineqBoundsThf--torqueApprox--4Legs',

lineqBoundsThDotf-2Legs', lineqBoundsThDotf-4Legs',

lineqBoundsThDotf--torqueApprox--2Legs', ...

lineqBoundsThDotf--torqueApprox--4Legs',

lineqBoundsYTD-2Legs', lineqBoundsYTD_4Legs',

lineqBoundsYLO-2Legs', lineqBoundsYLO-4Legs',

lineqBoundsYMid-2Legs', lineqBoundsYLO_4Legs',
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ineqBoundsThTD_2Legs' 'ineqBoundsThTD_4Legs'

ineqBoundsThLO_2Legs' 'ineqBoundsThLO_4Legs'

'ineqBoundsThMid_2Legs', 'ineqBoundsThMid_4Legs',

'ineqPositiveYMid_2Legs', 'ineqPositiveYMid_2Legs',

'ineqPositiveXDotMid_2Legs', 'ineqPositiveXDotMid_2Legs',

'ineqXStanceDist_2Legs ', 'ineqXStanceDist_4Legs'

'eqZeroThMid_2Legs', 'eqZeroThMid_2Legs', ...

'eqTargetThMid_2Legs', 'eqTargetThMid_2Legs'

'objMinTf_2legs', 'objMinTf_4legs', ...

'objMinYError_2legs' 'objMinYError_4legs'

'objMinThError_2legs' 'objMinThError_4legs'

'objMinThError__torqueApprox__21egs', ...

'objMinThError__torqueApprox__41egs',

'objMinThDotError_2legs', 'objMinThDotError_4legs',

'objMinThDotError__torqueApprox__21egs', ...

'objMinThDotError__torqueApprox__41egs',

'objMaxXDot_2legs', 'objMaxXDot_4legs', ...

'objMinXDotError_2legs', 'objMinXDotError_4legs',

'objMinStanceTime_2Legs', 'objMinStanceTime_4Legs',

'objMinApproxTorque_2Legs', 'objMinApproxTorque_4Legs',

'objMinImpulseX_2Legs', 'objMinImpulseX_4Legs'

'objMinImpulseY_2Legs', 'objMinImpulseY_4Legs'});

end

function [obj-handle , nicon-handle , hess-handle] = generateMFiles directory

list .

% Check for saved basic symbolic variables

if exist ([directory 'sym-base.mat'], 'file')

symbase = load([directory 'sym.base.mat']);

else

% Create basic symbolic variables

syms t Ista r mu-s a-ant a-pos d-ant d-pos

syms ul u2 u3 u4 u5 u6 u7 u8 u9 ulO ...

ull u12 u13 u14 u15 u16 u17 u18 u19 u20 real

syms yO thO xDot0 yDotO thDot0

c = zeros(28,1);

c([l 4,7,10]) = 6;

c([2 5 8 11]) = 6;

c([3,6,9,12]) - 0;

c([13,17,21,25]) = 12;

c([14,18,22,26]) = 18;

c([15,19,23,27]) = 6;

c([16,20,24,28]) = 0;

ply-nom = poly2sym (c(1:3) , t );

p2y.nom = poly2sym(c(4:6),t);
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p4y-nom = poly2sym (c (7:9) , t );

p8y-nom = poly2sym (c (10:12) , t);

plx-nom = poly2sym(c(13:16),t);

plx-asym = plx-nom + 6*u5*t^2 6*u5*t;

p2x-nom = poly2sym(c(17:20),t);

p2x-asym = p2x-nom + 6*u1O*t^2 6*ulO*t;

p4x-nom = poly2sym (c(21:24) , t );

p4x-asym = p4x-nom + 6*u15*t^2 6*u15*t;

p8x-nom = poly2sym (c (25:28) , t ) ;

p8x-asym = p8x-nom + 6*u2O*t^2 6*u20*t

ply = u3*compose(ply-nom, u2*(t ul), t, t);

pix = u4*compose(plx-asym , u2*(t ul) t, t);

u8*compose(p2y-nom,

u9*compose ( p2x-asym

ul3*compose(p4y-nom

u14*compose (p4x-asym

ul8*compose(p8y-nom,

ul9*compose(p8x-asym

plx*( heaviside(t ul)

ply*( heaviside (t ul)

p2x*( heaviside (t u6)

p2y*( heaviside (t u6)

p4x*( heaviside (t ull

u7*(t u6), t, t);

u7*(t u6), t, t);

ul2*(t ull), t, t);

ul2*(t ull), t, t);

u17*(t u16), t, t);

ul7*(t u16), t, t);

heaviside(t (ul +

heaviside (t (ul +

heaviside (t ( u6 +

heaviside (t ( u6 +

) heaviside (t ( ull

f4y p4y*( heaviside (t ull) heaviside (t (

f8x p8x*( heaviside (t u16) heaviside (t (

f8y p8y*( heaviside (t u16) heaviside (t (

py = u3*compose(ply-nom , u2*(t ul), t t);

px = u4*compose(plx-asym , u2*(t ul), t t

% Calculate components of yDotf

yDotO = 0;
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yDot-fly = int(ply,

yDotf-fly = int (ply

yDot-f2y = int(p2y,

yDotf-f2y = int(p2y

yDot-f4y int(p4y,

yDotf-f4y int(p4y

yDot-f8y = int(p8y,

yDotf-f8y int(p8y

yDot-g = t ;

% Calculate

xDotf-flx =

xDotf-f2x =

xDotf-f4x =

xDotf-f8x =

xDotf

int (pix,

int (p2x,

int(p4x,

int(p8x,

ul, t);

ul, ul + 1/u2);

u6, t);

u6, u6 + 1/u7);

ull, t);

ull, ull + l/u12);

u16, t);

u16, u16 + l/u17);

t, ul, ul +

t, u6, u6 +

t, ull, ul1

t, u16, u16

1/u2);

1/u7);

+ 1/u12);

+ 1/ul7);

xDotf = xDotO + xDotf-flx + xDotf-f2x + xDotf-f4x + xDotf-f8x;

% Find tf

tf = solve (yDot-g + yDotf-fly + yDotf-f2y + yDotf-f4y + yDotf-f8y , t);

% Calculate yf

yf.fly = int (yDot-fly , t , ul, ul +

yf-f2y = int(yDot-f2y , t, u6, u6 +

yf-f4y = int (yDot-f4y , t, ull, ull

yf-f8y int (yDot-f8y , t u16, u16

yf-yDotO = yDotO*tf;

yf-g = tf^2/2;

yf = yO + yf-fly + yf-f2y + yf-f4y

1/u2) + yDotf-fly*(tf

1/u7) + yDotf-f2y*(tf

+ 1/ul2) + yDotf-f4y*(

+ 1/u17) + yDotf-f8y*(

(ul + 1/u2));

(u6 + 1/u7));

(ull + 1/ul2));

(u16 + 1/u17));

+ yf-f8y + yf-g + yf-yDotO ;

struct('plx', pix

ply, 'p2y', p2y,

flx , 'f2x', f2x,

, 'p2x

'p 4 y'

'f4x'

', p2x, 'p4x', p4x

p4y, 'p 8 y', p8y,

f4x, 'f8x', f8x,

'p8x', p8x, 'px', px,

'py', py,

'fly', fly , 'f2y' , f2y , 'f4y', f4y , 'f8y', f8y ,

'tf', tf, 'yf', yf, 'xDotf'

save([directory 'sym.base.mat']

'ply', 'p2y', 'p4y', 'p8y',

'fix', 'f2x', 'f4x', 'f8x',

'fly', 'f2y', 'f4y', 'f8y',

'tf', 'yf', 'xDotf');

xDotf);

'pix', 'p2x', 'p4x',

'py
'p8x', 'px', ...

% Create symbolic variables for the functions specified by 'list

n-list = length( list );

% Create args variables

args-list = {'yO', 'thO', 'xDotO', 'thDot0', 'yf-d', 'thfd',
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'xDotf_d','thDotf-d', 't-lb', 't-ub', 'yjl b', 'y-ub',

'th-lb', 'th-ub', 'thDotlb', 'thDot-ub', ...

'y-ant-lb', 'yant-ub', 'y.pos-lb', 'y-pos-ub',

'y-mid-lb', 'y-mid-ub', 'th-ant-lb', 'thantub',

'th-pos_lb', 'th-pos-ub', 'thmidlb', 'th-mid-ub',

'thmidtarget', 'Istar' 'aant', 'a-pos', 'd_ant',

'd-pos', 'mu_s'};

args = sym('args', [length(args.list), 1]);

for ii = 1:length(args-list)

eval([ 'syms args' num2str(ii) ';' ]);

eval ([ args-list{ii} ' = args' num2str( ii) ';']);

end

syms t ul u2 u3 u4 u5 u6 u7 u8 u9 ulO ...

ull u12 u13 u14 u15 u16 u17 u18 u19 u20 real

for ii = 1: nlist

tmp - regexp( list{ii},

(.*? (?: _|_ ?=[ 4]) (.* )?( :__ (?= 24]))(\d)_?(?: legs|1$)

'tokens', 'once');

if isempty(tmp)

error('generateMFiles:n-legs',

[list{ii} ' does not specify a valid number of legs.']);

end

name = tmp{l};

desc = tmp{2};

n-legs = str2num(tmp{3});

switch name

case 'fric-cones'

if nilegs 2

n-fun = 8;

else

n-fun 16;

end

fun = sym('fun' , [n-fun , 1]);

fun(l) = u4*(l+u5)/u3 mus;

fun(2) = u4*(l u5)/u3 mu-s;

fun (3) = u9*(l+ulO)/u8 mu-s;

fun(4) = u9*(l ulO)/u8 mu-s;

fun (5) = u4*(l+u5)/u3 mu-s;

fun(6) = u4*(l u5)/u3 mu-s;

fun (7) = u9*(l+ulO)/u8 mu_s;

fun(8) = u9*(l ulO)/u8 mu-s;

if nilegs - 4

fun(9) - u14*(l+u15)/ul3 mu-s;
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fun(10) = ul4*(1 u15)/ul3 mu-s;

fun (11) = ul9*(1+u20)/u18 mu-s;

fun(12) = u19*(1 u20)/ul8 mu-s;

fun (13) = ul4*(1+ul5)/ul3 mu-s;

fun (14) = ul4*(1 u15)/u13 mu.s;

fun (15) = ul9*(1+u20)/ul8 mu_s ;

fun(16) = u19*(1 u20)/u18 mu-s;

end

case 'time-dir'

if n.legs 2

n.fun = 2;

else

n-fun 4;

end

tf = adjustForLegNumber(sym-base tf n-legs);

fun sym('fun' , [n-fun, 1]);

fun(1) = ul + 1/u2 tf;

fun(2) = u6 + 1/u7 tf;

if nlegs 4

fun(3) = ul1 + 1/u12 tf;

fun(4) = u16 + 1/u17 tf;

end

case 'bounds-yf'

n-fun = 2;

yf adjustForLegNumber(sym-base.yf n.legs);

fun = sym('fun', [n-fun , 1]);

fun(1) = yf y-ub;

fun (2) = yIb yf;

case {'boundsthf', 'bounds-thDotf'}

nfun = 2;

yDotO = 0;

tf = adjustForLegNumber(sym-base.tf n-legs);

yf = adjustForLegNumber(sym-base. yf, n-legs);

xDotf = adjustForLegNumber(sym-base .xDotf, n-legs);

pix = sym.base.plx;

ply = sym-base.ply;
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p2x = sym.base.p2x;

p2y = sym-base.p2y;

if n-legs = 4

p4x = sym_

p4 y = sym_

p8x = sym_

p8y = sym_

base.p4x;

base. p4y;

base.p8x;

base.p8y;

end

% Here we assume a constant moment arm for each leg

% Note: cosine takes care of the sign of the moment

r-ant = d-ant*cos(a-ant+thO);

r-pos = d-pos*cos(a-pos+thO);

Calculate thDotf

n-legs = 2

thDot-fl = int(r.-ant*ply/Istar,

thDotf-fl int(r-ant*ply/Istar

thDot-f2 int(r-pos*p2y/Istar,

thDotf-f2 = int(r-pos*p2y/Istar

ul, t);

ul, ul + 1/u2);

u6, t);

u6, u6 + 1/u7);

thDotf = thDot0 + thDotf-fl + thDotf-f2;

elseif n-legs = 4

thDot-fl = int(r-ant*ply/Istar,

thDotf-fl int(r-ant*ply/Istar

thDot-f2 = int(r-ant*p2y/Istar,

thDotf-f2 = int(r-ant*p2y/Istar

thDot.f4 = int(r-pos*p4y/Istar,

thDotf-f4 = int(r-pos*p4y/Istar

thDot-f8 = int(r-pos*p8y/Istar,

thDotf-f8 = int(r-pos*p8y/Istar

t, ul, t);

t, ul, ul + 1/u2);

t, u6, t);

t, u6, u6 + 1/u7);

t, ull, t);

t, ull, ull + 1/u12);

t, u16, t);

t, u16, u16 + 1/u17);

thDotf = thDotO + thDotf-fl + thDotf-f2 +

thDotf-f4 + thDotf-f8

end

if strcmp (name, 'boundsthf')

% Calculate thf

thf-thDotO = thDotO*tf;

thf-fl = int(thDotfl , t, ul, ul + 1/u2) +

thDotf-fl*(tf (ul + 1/u2));

thf-f2 = int(thDot-f2 , t, u6, u6 + 1/u7) +

thDotf-f2*(tf (u6 + 1/u7));
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if nilegs 4

thf-f4 int (thDot-f4

thDotf-f4*(tf

thf-f8 = int(thDot-f8 ,

thDotf-f8 *( tf

thf = thO + thf-thDotO

thf-f4 + thf-f8

t, ull, ull + 1/u12) +

(ull + 1/ul2));

t, u16, u16 + 1/u17) +

(u16 + 1/u17));

+ thf-fl + thf-f2 +

else

thf = thO + thf-thDotO + thf-fl + thf-f2

end

fun = sym('fun', [n-fun , 1]);

fun(1) = thf (thf-d + th-ub);

fun(2) = (thf-d + thIb) thf;

else % Bounds on thDotf

fun = sym('fun', [n-fun 1]);

fun(1) = thDotf (thDotf-d + thDot-ub);

fun(2) = (thDotf-d + thDotIb) thDotf;

end

case 'x.stance-dist'

if nilegs 2

n-fun = 2;

else

error( 'generateMFiles :x-stancedist' , 'Not implemented');

end

xDotf = adjustForLegNumber(sym-base xDotf , n-legs);

yf = adjustForLegNumber(sym.base .yf n.legs);

fun = sym('fun' , [n.fun , 1]);

y-nom = ((ymid_lb+y-midub)/2);

fun(l) = (xDotf/(2*u2))^2 + y-nom^2

fun(2) - (xDotf/(2*u7))^2 + y.nom^2

case 'bounds-y-mid'

if n-legs = 2

n.fun = 2;

else

error('generateMFiles :bounds-y-mid', 'Not implemented');

n-fun = 8;

end
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Py- int(sym-base.py, t);

PPy = int(Py, t);

t.mid = adjustForLegNumber(sym-base. tf , nilegs )/2;

y-mid = heaviside-sum ({yO t.mid ^2/2 ...

subs(PPy, {t}, {t-mid }),

subs(PPy, {ul, u2, u3, t}, ...

{u6, u7, u8, t-mid}),

( subs(PPy, {t}, {t-mid})

+ subs(PPy, {ul, t}, {O, 1/u2})

+ subs(Py, {ul, t}, {O, 1/u2}) ...

*(t-mid ul 1/u2)), ...

( subs(PPy, {ul, u2, u3, t}, ...

{u6, u7, u8, t-mid}) ...

+ subs(PPy, {ul, u2, u3, t},

{O, u7, u8, 1/u7}) ...

+ subs(Py, {ul, u2, u3, t}, ...

{Q, u7, u8, 1/u7})

*(t-mid u6 1/u7))},

{1 ,t.mid ul, t...m id u6, ..

t-mid ul 1/u2, t.mid u6 1/ u7});

fun = heaviside-sum empty(0 , 1);

fun (1,:) = y-mid + y-midIb;

fun (2,:) = y.mid y-mid-ub;

case 'bounds-th-mid'

if n-legs - 2

n-fun = 2;

else

error('generateMFiles:zero-th-mid' , 'Not implemented');

nfun = 8;

end

% Here we assume a constant moment arm for each leg

% Note: cosine takes care of the sign of the moment

r-ant = d-ant*cos(a-ant);

r-pos = d-pos*cos(a-pos);

Py = int(sym-base.py, t);

PPy = int(Py, t);

t-mid = adjustForLegNumber( sym-base . tf , n.legs)/2;

th-mid heaviside-sum ({thO + thDotO*t.mid ,...

( rant/ Ista r )*subs (PPy, {t}, {t-mid }) .
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(r-pos/Istar)*subs(PPy, {ul, u2, u3, t}, ...

{u6, u7, u8, t-mid}), ...

(rant/Istar)*( subs(PPy, {t}, {t-mid}) ...

+ subs(PPy, {ul, t}, {0, 1/u2}) ...

+ subs(Py, {ul, t}, {0, 1/u2}) ...

*(t-mid ul 1/u2)), ...

(r-pos/Istar)*( subs(PPy, {ul, u2, u3, t},

{u6, u7, u8, t-mid}) ...

+ subs(PPy, {ul, u2, u3, t}, {O, u7, u8, 1/u7}) ...

+ subs(Py, {ul, u2, u3, t}, {0, u7, u8, 1/u7}) ...

*(t-mid u6 1/u7))}, ...

{1,t-mid ul, t-mid u6, t-mid ul 1/u2, t-mid u6 1/u7});

fun = heaviside-sum.empty(O, 1);

fun (1,:) = th.mid + thmidlb;

fun (2 ,:) = th-mid th-mid-ub

case 'min-xDot-error'

n.fun = 1;

xDotf = adjustForLegNumber(sym-base .xDotf, n-legs);

fun = (xDotf-d xDotf )^2;

case 'min-y-error'

n-fun = 1;

yf adjustForLegNumber(symbase .yf, n-legs );

fun = (yf yfd)2;

case {'min-th-error' 'min-thDoterror'}

n-fun = 1;

yDotO = 0;

tf = adjustForLegNumber( symbase .tf n-legs);

yf = adjust ForLegN umber( symbase . yf , n-legs );

xDotf = adjustForLegNumber(sym-base. xDotf, n-legs);

pix = sym-base.plx;

ply = sym-base ply;

p2x = sym-base.p2x;

p2y = symbase.p2y;

if n-legs - 4

p4x = sym-base.p4x;

p4y = sym-base.p4y;
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p8x = symbase.p8x;

p8y = sym-base . p8y;

end

% Here we assume a constant moment arm for each leg

% Note: cosine takes care of the sign of the moment

r-ant = d-ant*cos(a-ant);

r.pos = d-pos*cos(a-pos);

% Calculate thDotf

if nilegs = 2

thDotfl = int(r-ant*ply/istar , t, ul, t);

thDotf-fl = int(r-ant*ply/Istar , t, ul, ul + 1/u2);

thDot-f2 int (r-pos*p2y/Istar , t, u6, t);

thDotf-f2 = int(r-pos*p2y/Istar , t, u6, u6 + 1/u7);

thDotf = thDotO + thDotf-fl + thDotf-f2;

elseif nilegs = 4

thDot-fl = int(r-ant*ply/Istar

thDotf-fl = int(r-ant*ply/Istar

thDot-f2 = int(r-ant*p2y/Istar,

thDotf-f2 = int(r-ant*p2y/Istar

thDot-f4 = int(r-pos*p4y/Istar

thDotf-f4 = int(r-pos*p4y/Istar

thDot-f8 = int(r-pos*p8y/Istar

thDotf-f8 = int(r-pos*p8y/Istar

ul, t);

ul, ul + 1/u2);

u6, t);

u6, u6 + 1/u7);

u11, t);

ull, ull + 1/u12);

u16, t);

u16, u16 + 1/u17);

thDotf = thDotO + thDotf-fl + thDotf-f2 + ...

thDotf-f4 + thDotf-f8

end

if strcmp(name, 'min-th-error')

% Calculate thf

thf-thDoto = thDotO*tf;

thf-fl = int (thDot.fl , t , ul, ul

thDotf-fl*( tf (ul

thf-f2 = int (thDot-f2 , t , u6, u6

thDotf-f2*( tf (u6

1/u2) +

1/u2));

1/u7) +

1/u7));

if n-legs 4

thf-f4 = int(thDot-f4 , t, ull, ull + 1/u12) +

thDotf-f4*(tf (ull + 1/u12));
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thf-f8 = int (thDot-f8 , t, u16, u16 + 1/u17) +

thDotf-f8*(tf (u16 + 1/u17));

thf = thO + thf-thDotO +

thf-f4 + thf-f8;

thf-fl + thf-f2 + ..

else

thf = thO + thf-thDoto + thf-fl + thf-f2

end

fun(1) = (thf thf-d )^2;

else % thDotf

fun(1) = (thDotf thDotf-d)^2;

end

case 'min-approx-torque'

n-fun = 1;

xDotf = adjustForLegNumber ( sym-base .xDotf, n-legs);

pix = sym _base .plx;

ply = sym-base. ply;

p2x = sym-base.p2x;

p2y = sym-base.p2y;

if nilegs - 4

p4x = sym-base.p4x;

p4y = sym-base.p4y;

p8x = sym-base.p8x;

p8y = sym.base.p8y;

end

% Here we assume a constant moment arm for each leg

% Note: cosine takes care of the sign of the moment

r-ant = dant*cos(aant);

r-pos = d-pos*cos(a-pos);

% Calculate approximate shoulder torques

xlrel = (xDotO + xDotf)/2*(t ul 1/(2*u2));

x2_rel = (xDotO + xDotf)/2*(t u6 1/(2*u7));

y-rel = (y-midIb + y-mid-ub)/2;

taul = plx*y-rel + ply*xl-rel;

tau2 = p2x*y-rel + p2y*x2_rel;

fun = int(taul^2, t , ul, ul + 1/u2) +

int(tau2^2,t , u6, u6 + 1/u7);
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otherwise

error('generateMFiles:badTag',

[name ' is not a. valid tag']);

end

n-u = 5*nn-legs;

u = sym('u' ,[nu, 1]);

if isa(fun ,'sym')

grad = sym( 'grad' [n-u, n-fun ]);

hessian = reshape (sym('hess ' , [n-u n-fun*n-u]) [nu n-u n-fun ]);

else

clear grad hessian

end

% Calculate gradients and Hessians

for jj =1: n-fun

fun(jj) = eval(fun(jj));

grad (: jj) = simplify (jacobian (fun (jj), reshape(u, nu 1)). ');

hessian ( jj) - simplify (jacobian (grad (: , jj ) , ...

reshape(u, nu, 1)).');

end

matlabFunction(fun, grad, 'file', [directory dictionary(list {ii })],
'vars', {u, args});

matlabFunction (hessian , 'file' , ...

[directory 'hess_' dictionary(list{ii })], 'vars', {u, args});

end

end

function sym-out = adjustForLegNumber (sym-in , nilegs)

switch n-legs

case 2

syms t Istar mu-s a-ant a-pos d-ant d-pos

syms yO thO xDot0 yDotO thDotO

syms ul u2 u3 u4 u5 ;

u6 = 0; u7 = 1; u8 = 0; u9 = 0; ulO = 0;

u16 = 0; u17 = 1; u18 = 0; u19 = 0; u20 = 0;

ull = sym('u6'); u12 sym('u7'); u13 = sym('u8'); u14 - sym('u9'); u15 = sym('u10');

sym-out = eval(sym-in);

case 4

sym-out = sym-in

otherwise

error('adjustForLegNumber',

[num2str(n-legs) ' is not a valid number of legs']);

end

end
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B.2.3 Leg Controllers

classdef ctrl leg..swing < ctrl a bstract

properties

tO-prev = Inf;

t-apex = 0;

t-apex.prev = 0;

Lapex = 0.3;

gamma-apex = 70*pi/180;

1_lo = 0;

gammailo = 0;

yDotIo = 0;

Lmax = 1;

gamma-max = 70*pi/180;

end

methods

function [lieg , gamma-leg] = controlLaw(this sys t x-body u)

if all(t > this.t-apex)

this.tOprev = sys.tO;

this.t-apex-prev = this.t-apex;

end

pre-ind = (t < this.tO prev);

post-ind = (t > this.tOprev);

% Assign values for pre stance points

if any(pre-ind)

xDot = xbody(4,pre-ind);

del-t 1./u(2, pre-ind );

xy.hip sys. hipPosition (x-body(: ,pre-ind));

y-foot-rel = ( xy-hip (2 :).* ...

(1 (u(1,pre-ind) t(pre-ind))./

(u(1, pre-ind ) this.t-apex-prev )).^2);

x-foot-rel = xDot.* del-t ./2;

Ileg(pre-ind) = ...

this . I-apex*(u(1 pre-ind) t( pre-ind ))./ .

(u(1, pre-ind) this. tapex-prev) +

sqrt(x-foot-rel .2 + y-foot-rel .^2).* ...

(1 (u(1, pre-ind) t(pre-ind ))./ ...

(u(1, pre-ind ) this . t-apex-prev )).^2;

gamma-leg( pre.ind ) = atan2( x.footrel y-footrel );

end

% Assign values for post stance points

if any(post-ind)

yDot = x-body(5, post-ind)
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Ileg(post-ind) = 0;

gamma-leg( post-ind) 0;

end

end

function setApexState(this, t-apex-in

this.t-apex = t.apex-in;

end

function setLiftOffState (this , Ilo-in , gamma.lo-in yDot-lo-in

this. I-lo = |_lo.in ;

this .gamma-lo - gammalo-in

this. yDot.lo yDot-lo-in

end

end

end

classdef ctrlleg-fx-fy-to-f-tau < ctrLabstract

properties

coeffx =

coeff.asym-x = [];
coeff-y = [];

n-inputs = 5;

end

methods

function this = ctrl-leg-fx-fy-to f..tau(coeff-x-in

coeff-y-in)

this.coeff-x = coeff-x-in;

this . coeff-asym-x = padarray (coeff-asym-xin
size ( coeff-x..in

0, 'pre');

this.coeff-y = coeff-y-in;

end

func tion [f , tau] = controlLaw (this , sys , t , u-in , I

fy u-in (3)* polyval (this. coeff-y , u-in (2)*(t

fx = u in (4)* polyval (this. coeff-x + ...

u-in (5)* this. coeff-asym-x,

f (fx.* sin (gamma) fy.* cos (gamma) );

tau = Ileg .*( fx .* cos(gamma) + fy .* sin (gamma));

coeff-asym-x-in ...

size( coeff-asym-x.in),

_leg , gamma)

sys . to ) );

u-in (2)*( t sys . to));

end

end

end
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B.3 Model History Classes

B.3.1 Generic Model History

classdef modelHistory < handle

properties

model =

deltaT = 0.001;

phaseData = struct('xO',{},'u',{},'tspan',{},'params' ,{});

last-phase-animated = 0;

last-time-index = 0;

tData =[;

xData = [];
uData =[];

xyTData = [];
animationData = struct ( 'R' ,{} , 'C' ,{} ,...

'Menu0ptions',{},'MenuData',{});

end

methods

function TF = checkModel(this , modelObj)

if isempty( this .model)

this .model = modelObj;

TF = true;

elseif this model - modelObj

TF = true;

else

TF = false;

disp (['This modelHistory is already associated with a

'different model (modelHistory.m)']);

end

end

function addPhaseData (this , x0, u, tspan , params , varargin

if mod(length ( varargin ) ,2)

error('modelHistory:addPhaseData',

'Additional phase data must be given as name, value pairs');

end

currentPhaseData = struct('xO', xO, 'u', u, 'tspan', tspan, 'params', params);

for ii = 1: length(varargin )/2

currentPhaseData .( varargin{2* ii 1}) = varargin {2* ii

end

if length ( fieldnames (this .phaseData))-=length (fieldnames (currentPhaseData))

if isempty( this . phaseData)

this. phaseData = currentPhaseData

else

error('modelHistory:addPhaseData', ..
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'Cannot change number of fields in phaseData struct!');

end

else

this. phaseData = [this . phaseData currentPhaseData

end

end

function animate(this , draw)

if nargin < 2

draw = true;

end

if isempty ( th is. animationData)

this. generateAnimationData

elseif abs(this.animationData.MenuData(lend) ...

this . phaseData (end). tspan (2)) > this . deltaT

this . generateAnimationData ([ this . animationData . MenuData(l end) ...

this .tData(end)])

end

if draw

animationGUI (this. animationData .R ...

this . animationData C, zeros (1) ,...

this . animationData. MenuOptions , ...

th is . animation Data . MenuData

end

end

function generateAnimationData (this , tspan)

if isempty(this .tData)

this . generateTimeHistories

elseif abs(this .tData(end) this. phaseData(end). tspan (2)) > this. deltaT

this . generateTimeHistories ([ this. tData (end) ...

this.phaseData(end).tspan (2)]);

end

startind = this . last-time-index + 1;

if isempty( this . animationData

this. animationData (1).R = .

this. model. nodeLocations( this. tData( startind :end ) ,.

this .xData(startind :end,:) ,.

this.uData(startind :end ,:),...

this.xyTData(:,:, startind :end));

else

this . animationData (1).R = [this . animationData .R(: 1: end), .

this . model. nodeLocations( this . tData(startind :end)

this .xData(startind :end,:) ,.

this.uData(startind :end ,:),...
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this.xyTData(:,:, startind :end))];

end

this . animationData . R = this . animationData .R(: ,1: length ( this. tData ))
this. animationData (1).C = this. model. connectionMatrix;

this . animationData . MenuOptions = [{ 't' }, this. model. stateLabels ];
this . animationData . MenuData = [this .tData ' this .xData ']

this. Iast-time-index = length(this. tData);

end

function generateTimeH istories (this , tspan

this . deltaT = 0.001;

if isempty( this . phaseData)

error( 'modelHistory: noPhaseData 'Cannot animate without data');

else

params = this . model . params;

if nargin - 2

this.tData(end) =

this.xData(end,:) = [];
this.uData(end,:) = [];
this.NGRFData.abs(:,end) [];
this.NGRFData.xComp(:,end)

th is . NGRFData.yComp(: ,end) =

if isfield (params , 'xyT ')

this.xyTData(: :,end) = [];
end

startind = this . Iast.phase..animated + 1;

else

startlnd = 1;

end

for i = startind :length(this. phaseData)

time = this.phaseData(i ).tspan (1):...

this . deltaT :...

this. phaseData(i ).tspan (2);

if numel(time) > 2

params = this . phaseData ( i ). params;

dynamicsFun = str2func ([class( this. model) '.dynamics']);

options = odeset('RelTol',le 6, 'AbsTol',le 5 ,

'OutputFcn' ,@odeTimeout);

[Tout , Xout] = ode45 ( dynamicsFun , time ,...

this. phaseData( i ).x ,...

options , th is . phaseData ( i ).u, params);

n = length(Tout) 1;

this .tData = [this .tData;Tout(1:n)];

this.xData = [this.xData;Xout(1:n,:)];

this . uData = [this . uData; repmat(this . phaseData( i ).u' n ,1)];

this.NGRFData = ...
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[this .NGRFData, ...

this . model. groundRxns(Tout(1:n) , Xout(1:n,:),

this.phaseData(i).u, params)];

if isfield (params , 'xyT')

this.xyTData = ...

cat(3, this .xyTData ,repmat(params .xyT ,[1 1 n]));

end

end

end

this. last-phase-animated = length (this. phaseData

if exist('time','var') && numel(time) > 2

this. tData = [this. tData ;Tout(end )]

this.xData = [this.xData;Xout(end,:)];

this .uData = [this .uData; this .phaseData(end).u'];

this.NGRFData = ...

[ this .NGRFData,

this .model. groundRxns (Tout (end), Xout (end ,:),

this.phaseData(i).u, params)];

if isfield (params , 'xyT')

this .xyTData = cat (3, this .xyTData, params.xyT);

end

end

this.NGRFData = struct('abs', cat(2, this.NGRFData.abs),...

'xComp' cat (2, this .NGRFData.xComp)

'yComp', cat(2, this.NGRFData.yComp));

end

end

end

end

B.3.2 Model History for Planar Rigid Body Runner Models

classdef pRBR-modelHistory < modelHistory

properties

NGRFData = struct('abs' ,[] 'xComp' ,[] 'yComp' []);

torqueData = [];

end

methods

function addPhaseData (this x , u, tspan params, varargin)

for ii = 1: length (params . legs)

params . legs ( i i ) params. legs ( i i ).clone;

end

add PhaseData@modelHistory ( this , x , u, tspan , params , varargin {:})

end

function generateAnimation Data (this , tspan
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if nargin = 2

generateAnimationData@modelHistory(this tspan );

else

generateAnimationData@modelHistory( this);

end

this. animationData . MenuOptions(1) {'tau' };

this . animationData . MenuOptions =

[this . animationData. MenuOptions ...

{'NGRF1'

'NGRF2'

'NGRF1_x'

'NGRF2_x'

NGRF1_y'

NGRF2y'

'Torquel',

'Torque2'}];

this .animationData . MenuData

[ this . animationData . MenuData;.

t h i s .NGRFData. abs; th is . NGRFData. xComp; t h is . NGRFData. yComp; ...

this. torqueData

end

function generateTimeH istories ( this , tspan

if nargin = 2

generateTimeHistories@modelHistory (this ,tspan);

else

generateTimeHistories@modelHistory (this);

end

n-t = length(this.tData);

this.torqueData = zeros(2, n-t);

for ii = 1: length ( this . phaseData) % Split this up to avoid running out of memory

[, ind.start] = min(abs( this. tData this.phaseData( ii ).tspan (1)));

ind-end] = min(abs(this .tData this. phaseData( ii ). tspan (2)));

this. torqueData(:, ind._start :ind.end) = ...

this.model. hipTorques(this.tData( indstart ind-end ),

this .xData( ind._start ind-end :)

this .uData( ind-start :ind-end :)

this . phaseData (i). params

end

end

end

end

B.4 Testing Script

function out = acceleration -test ( n..strides , leg-type , record)
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prms. [star = 0.3;

prms.mu.s = 0.8;

prms.a-ant 0;

prms.a.pos = pi;

prms.d-ant = 0.6;

prms.d-pos 0.9;

prms.t-bounds = [0; 2];

prms.y-bounds = [0.75; 0.81];

prms. th-bounds = 3.5*pi/180*([ 1; 1]);

prms.thDot-bounds = 6*pi/180*[1; 1];

prms.y-mid-bounds = [0.25; 0.35];

prms.th-mid-bounds = 3*pi/180*[ 1; 1];

prms.max-delta-xDot = Inf;

prms.t-return = 1.4*[1; 1];

prms.t-swing-prev = prms.t-return;

obj-terms = {...

'minxDot_error_2_legs' ...

'min-y-error_2_legs' ...

'min-th-error_2_legs' ...

'min.thDot.error_2_legs' ...

'min-approx-torque_2.legs'

obj-weights = [1eO, leO, 2e0, lel, 3e 2];

ineq-terms = {...

'time-dir_2_legs',

'fric-cones_2_legs' ...

'bounds-yf_2_legs', ...

'bounds-y-mid_2_legs',

'boundsthf_2_legs', ...

'bounds.thDotf_2_legs', .

'bounds-th-mid_2_legs',

'x.stance dist_2_legs', .

eq-terms = {..

%'zero-th-mid_2_legs ,

uO = [0 , 1 , 1 , 1, 0, 0, 1 , 1 , 1, 0]'

bc = [0.8, 0.8; ...

0*pi/180, 0*pi/180; ...

0 , 2; ...

0*pi/180, 0*pi/180];

%bc = [0.8, 0.8; ...

%O*pi/l 8O, 2* pi/180; ...
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%0, 2; ...

%O*pi/18O, 8*pi/180];

switch leg-type

case 'leg-rAct-pAct'

grnd = ground-level (0);

legl = leg-rAct-pAct(prms.d-ant , prms.a-ant ,

ctrl-leg-fx-fy-to-f-tau ([ 12 18 6 0],

[6 6 0], [6 6 0]),

ctrl-leg-swing (), grnd );

leg2 = leg-rAct-pAct (prms. d-pos , prms. a-pos

ctrl leg-fx-fy-to-f-tau ([ 12 18 6 0],

[6 6 0], [ 6 6 0]),

ctrl-leg.swing (), grnd );

legl .I leg.min = 0.25;

leg1. lleg-max = 1;

leg .gamma-min = 70* pi /180;

legl.gamma-max = 70*pi/180;

leg2.l leg-min = 0.25;

leg2.Iileg-max = 1;

leg2 .gamma.min = 70* pi /180;

leg2.gamma-max = 70*pi/180;

case 'leg-xy-force-poly'

legl = leg-xy-force-poly (prms.d ant

[6 6 0],

leg2 = leg-xy-force-poly (prms.d-pos,

[6 6 0],

otherwise

error('steady-state-test:legtype',

sprintf('%s is not a valid leg

prms.a-ant

6 6 0]);

prms.a-pos,

6 6 0]);

[12 18 6 0],

[12 18 6 0],

type', leg-type));

end

prms.goal-state = bc(:,2);

ctrl_2011_07_15 = ctrl-y2poly.x3poly (prms , obj-terms , ineq-terms , .

eq-terms , obj-weights);

ct rl_2011_07.15 .opts-fmincon .TolFun = le 2;

ctr12011-07_15. opts-fmincon. Maxiter - 2e3;

pRBR_2011-07-15 = ...

planarRigidBodyRunner([0; bc(1,1); bc(2,1); bc(3,1); 0; bc(4,1)], uO

prms, ctrL.201107 15 , legl , leg2);

t-array = zeros(size (pRBR_2011_07-15 .t 1)

x-array = zeros(size (pRBR-2011_07_15 x,l)

u-array = zeros(size (pRBR_2011.0715 .u,1),

t-array (:,l) = pRBR_2011_07_15.t;

x-array (:,) = pRBR_2011.0715. x;

n.strides + 1);

n-strides + 1);

n.strides + 1);
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u _a rr a y (: , 1) = pRBR_2011.07.15 .u;

if record

phist = pRBR-modelHistory;

end

k1 = 1;

k2 = le 2

k3 = 5e0 ;

k4 = 5e 2;

apply-controller = false;

for ii = 2: n-strides+1;

if apply-controller

ctrl-2011_07 15 .prms-obj-nlcon..hess .th-bounds =

max(le 3 , min( ctrL201 1-07_15 . prms-obj-nlcon-hess . th-bounds (2) ...

k3*abs(pRBR_201l_07.15.x(3) bc(2 ,2))*[ 1; 1]));

ctrl_2011_07_15 . prms-obj.nlcon-hess .thDot.bounds = ...

max(le 3 , min(ctrl2011.07-15 . prms.obj-nlcon.hess .thDot-bounds ,...

k3*abs(pRBR_2011_07_15.x(6) bc(4 ,2))*[ 1; 1]));

ctrl_2011-07_15. prms.goal-state. goal-state ([1,2 4]) = ...

ctrl_2011.07_15. prms-goal-state . goal-state ([1 2 ,4]) ...

kl*(pRBR_2011.07.15.x([2, 3 ,6]) bc([1, 2 ,4] ,2));

ctrl.2011_07.15 opts.fmincon TolFun = . ..

max(le 6 ,min(ctr-l2011.07-15. opts.fmincon .ToIFun,

k2*norm(pRBR_201l_07.15.x([2 3 ,6]) bc([1 2 4] ,2), Inf)));

end

fprintf(['Stride Xd\tTolFun = Xe\tth = %f\tthDot =f\t' ...

'th-bounds = Xe\t thDot-bounds = Xe\n'],

ii 1 , ctrl_2011_07.15 . opts.fmincon TolFun ,

x-array(3,ii 1)*180/pi, x-array(6,ii 1)*180/pi,

max(ctrL2011_07_15. prms-obj-nlcon-hess.th-bounds),

max(ctrl_2011_07.15. prms-objnlcon-hess .thDot.bounds));

%fprintf('Stride %d\n', ii);

if record

pRBR_2011.07_15. simulateStride ( phist );

phist.animate(false);

else

pRBR_2011_07_15. simulateStride

end

t-array (: ii) - pRBR_2011_07-15.t;

x-array (: ii) = pRBR_2011_0715. x;

u-array (: ii) = pRBR.2011.07_15.u;

if ~apply-controller && norm(x-array ([2 3,6], ii)

x-array([2 3 ,6], ii 1), Inf) < k4

apply-controller = true;

disp('Controller start...');

end
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end

if record

out = struct('n-strides ', nstrides 'leg-type' I, leg-type 'bc' , bc,

'prms', prms, 't-array' t-array , 'x-array' x-array

'u-array', u-array , 'phist', phist);

else

out = struct('n-strides' , n.strides , 'leg-type' leg.type 'bc' , bc,

'prms' , prms, 't-array' , t-array ,'xarray' x-array

'u-array', u-array);

end

end

B.5 Helper Functions

function stop = odeTimeout(t ,X, flag ,u, params)

persistent tStart timeout

stop = 0;

if isempty(flag)

tElapsed = toc(tStart);

if tElapsed > timeout

stop = 1;

disp('Solver timed out!')

end

elseif strcmp(flag , 'init')

tStart = tic ;

timeout = 10;

end

end

function Y heaviside(X)

%HEAVISIDE Step function.

% HEAVISIDE(X) is 0 for X <= 0, 1 for X > 0.

% HEAVISIDE(X) is not a function in the strict sense.

% See also DIRAC.

% Copyright 19932008 The MathWorks, Inc.

% $Revision: 1.1.6.1 $ $Date: 2009/03/09 20:41:30 $

Y = zeros(size (X));

Y(X > 0) = 1;

classdef heaviside-sum < hand lewith-clone

properties

coeffs =

args = {};
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n-terms = 0;

end % properties

methods

function this = heaviside-sum(coeffs-in , args-in)

if nargin = 0

return;

elseif nargin = 2

if numel(coeffs-in) numel(args-in)

error('heavisidesum:numel', sprintf(['The number of

'Heaviside -step coefficients , Xd, does not match

'the number of Heaviside-step arguments, %d.']

numel( coeffs-in ), numel( args-in )));
else

this . n-terms numel( coeffs-in

end

if ~isa(coeffs-in, 'cell')

coeffs-in = num2cell(coeffs-in );

end

for ii = 1:numel(coeffs-in)

if ~isa (coeffs-in{ii }, 'sym')

coeffs-in{ii} = sym(coeffs-in{ii });

end

end

this . coeffs = reshape( coeffs-in , ] 1);

if ~isa (args-in , 'cell')

args-in = num2cell(args-in);

end

for ii = 1:numel(args-in)

if ~isa(args-in{ii}, 'sym')

args-in{ ii } = sym(args in{ ii });

end

end

this.args = reshape(args.in 1);

end

end % heaviside.sum constructor

function R = diff(this , varargin)

% DIFF Differentiate , assuming continuity at all step locations

R = heaviside.sum( diff (this . coeffs , varargin {:}), this . args);

end

function R = jacobian (this , varargin)

% JACOBIAN Compute transpose of gradient
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R = heaviside..sum ( celIfun (@jacobian , this. coeffs , . . .

repmat(varargin , this. nterms 1),

UniformOutput ' , false ), this . args);

function out = transpose(this)

out = clone(this);

for i i = 1: out . n-terms

out.coeffs{ii} = out.coeffs{ii}';

end

end

function out = eval(this)

out = clone(this );

for ii = 1: out . n-terms

out. coeffs{ ii } = evalin ( 'caller' , char(out. coeffs{ ii }));

out. args{ii} evalin ('caller', char(out. args{ii }));

end

end

function S = sym(this)

% SYM Convert to a single symbolic expression with Heaviside steps

S = sym( zeros ( padarray ( size ( this (1). coeffs {1}) ,
[0 ndims( this) ndims(this (1). coeffs {1})] .

1, 'post' ).*size ( th is )));
for ii = 1:numel(this)

for jj = 1: this(ii). n terms

switch ndims(S)

case 2

if size(S, 2) - 1 || numel(this) - 1

S( ii) = S (ii) ...

+ this( ii ). coeffs{jj }*heaviside (this( ii ).args{jj});

else

S (: , ii) S (: , ii)

+ this( ii ).coeffs{jj }*heaviside (this( ii ).args{jj });
end

case 3

S (: ,: ii) S (: ,: ii) .

+ th is( ii ). coeffs{jj } heaviside ( this( ii). args{jj });

otherwise

error('heaviside.sum:sym', .

'Arrays with ndims > 3 not supported');

end

end

end

end
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function g = matlabFunction (this , varargin

% process inputs

N = getSyms(varargin);

funs = {this , varargin {1:N}};

funs = cellfun (@(f)sym(f) funs , 'Uniformoutput' false);

args = varargin (N+1:end);

g = matlabFunction (funs{:}, args {:});

% find the index separating the functions from the option/value pairs

% return the last index of the functions , or 0 if none

function N = getSyms(args)

chars cellfun (@ischar , args) cellfun (Oisstruct args

N = find(chars 1 ,'first'

if isempty(N)

N - length(args);

else

N N 1;

end

end

end

function y = plus (this , that)

if isa(that, 'heaviside-sum')

coeffs = this.coeffs;

args = this.args;

for ii = 1:that.n-terms

ind = 0;

for jj = 1:this. n-terms

if that. args{ ii} - this .args{jj}

ind = jj;

break;

end

end

if ind

coeffs{ind} = coeffs{ind} + that.coeffs{ii };

else

coeffs = [coeffs; that. coeffs( ii

args = [args ; that.args( ii )];

end

end

y = heaviside-sum (coeffs , args);

else

tmp = heaviside-sum(sym(that), 1);
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y = this + tmp;

end

end

function y minus(this , that)

y = this + ( that);

end

function y = mtimes(this , a)

y = clone(this );

for ii = 1:y. n-terms

y.coeffs{ii} = a*y.coeffs{ii};

end

end

function y = uminus(this)

y = this.mtimes( 1);

end

end % methods

end % classdef
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