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Abstract

For the past decade, the stability of microwave atomic clocks has stood at the standard
quantum limit, set by the projection noise inherent in measurements on ensembles of un-
correlated particles. Here, I demonstrate an atomic clock that surpasses this limit by
operating with atoms in a particular type of entangled state called a “squeezed spin state.”
The generation of non-classical spin correlations in a dilute cloud of atoms is facilitated
by an optical cavity, which allows for strong collective coupling of the atomic ensemble to
a single mode of light. Since the light exiting the cavity is entangled with the atoms, an
appropriate measurement performed on the light field can project the atomic ensemble into
a squeezed spin state. I demonstrate 3.0(8) dB of spin squeezing by this method of quantum
non-demolition measurement. I further introduce a new method, cavity feedback squeez-
ing, which uses the light field circulating in the resonator to mediate an effective interaction
among the atoms. The light-mediated interaction mimics the spin dynamics of the one-axis
twisting Hamiltonian, under which a coherent spin state evolves deterministically into a
squeezed spin state. The states prepared by cavity feedback are intrinsically squeezed by
up to 10(1) dB and detectably squeezed by up to 5.6(6) dB. Applied in an atomic clock,
they produce an Allan variance 4.7(5) dB below the standard quantum limit for averaging
times of up to 50 s.

In a detour from engineering collective spin dynamics, I present direct observations of
collective motional dynamics of atoms under the influence of cavity cooling. I demonstrate
cooperatively enhanced cooling of a single collective motional mode down to a mean occu-
pation number of 2.0 (-0.3/+0.9) phonons. The cooling is quantitatively well described by
a simple, analytic quantum optomechanical model.

Thesis Supervisor: Vladan Vuletić
Title: Lester Wolfe Associate Professor of Physics
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Chapter 1

Introduction

Over the past few decades, atomic clocks—and an array of analogous measurement devices

ranging from magnetometers to accelerometers, all based on ensembles of atoms—have

become extraordinarily well engineered. By 1999, the atomic fountain clock at the Paris

Observatory reached the point where its stability was limited no longer by purely technical

noise sources but rather by the statistical fluctuations inherent in the probabilistic behavior

of uncorrelated events (or particles) [1]. This threshold of precision is known as the stan-

dard quantum limit (SQL). The challenge of 21st-century metrology, then, is to extend the

engineering into the quantum regime—where controlling the quantum correlations among

atoms in principle allows precision far beyond the SQL.

The bulk of this thesis describes the journey to first surpassing the standard quantum

limit on stability in an atomic clock. In the present chapter, I explicate how this limit

arises and introduce an approach to surpassing it called it spin squeezing. Here, the spin

is an abstract representation of the clock’s internal oscillator, which can be thought of as

a spinning top whose gyrations mark the passage of time. The squeezing refers to redis-

tributing the unavoidable quantum uncertainty in the spin’s orientation to our advantage:

at the expense of a greater uncertainty in how far the top is tilted, Heisenberg’s uncertainty

principle allows a reduced uncertainty in the phase of the top’s precession, and thus a more

precise measure of time.

Spin squeezing [2–4] relies on introducing non-classical correlations (entanglement)

among the atoms constituting the clock. I will demonstrate two methods of introducing

these correlations, both taking advantage of an interaction of the atoms with light confined

in an optical cavity. For background, I first present the theory of the atom-light interaction

(Ch. 2), the experimental setup (Ch. 3), and our manner of probing the atoms via the

cavity (Ch. 4). This last facilitates the realization of a long-standing proposal [5] to

induce spin squeezing by measurement [6–8], as I describe in Ch. 5: by detecting the

light that emerges from the cavity, we obtain information about the atomic ensemble as a

whole but not about the state of any individual atom, and as a result the ensemble can

no longer be described in terms of uncorrelated single-atom states. In Ch. 6, I propose [9]

15



and demonstrate [10] an alternative approach to squeezing that obviates the need for a

measurement by letting the light circulating inside the cavity apply coherent feedback to

the ensemble. This method produces the largest spin squeezing to date and enables the

proof-of-principle demonstration of a quantum-enhanced atomic clock, which I present in

Ch. 7.

The apparatus built to meet the technical demands of spin squeezing also lends itself to

other experiments requiring sensitive probing of atomic ensembles. I illustrate this in Ch.

8 with a study in cavity cooling [11]—a method that holds promise for laser-cooling not

only atoms but also molecules or indeed arbitrary polarizable particles, but whose effect on

any more than a single particle is not yet fully understood. I show that in an ensemble, the

many atoms cooperate to speed up cavity cooling of a particular collective motional mode;

we directly observe this mode while cooling it close to the quantum ground state. The

observations are well described by a simple model—based on an analogy with radiation-

pressure cooling of a spring-mounted mirror—that helps to elucidate fundamental limits to

cavity cooling in ensembles.

All of the work described in this thesis was done in close collaboration with Ian Leroux.

While I have endeavored to give a self-contained account of our joint experiments, I occa-

sionally take the liberty of omitting details that are covered in depth in his complementary

dissertation [12].

1.1 Why Spin: Ensembles of Two-Level Atoms

It is no accident that the rapid development of atomic physics since the mid-twentieth

century—fueled by the invention of the maser and the laser—has been accompanied by

equally rapid advances in precision metrology. The arsenal of modern metrology includes a

broad class of instruments whose essential purpose is to determine the difference in energy

∆E between two discrete quantum states of an atom. These two states might, for example,

be the magnetic-field-insensitive “clock states” [13] of the cesium atom; the resonant fre-

quency νCs = ∆E/h of the transition between them defines 1 second ≡ 9, 192, 631, 770/νCs .

They might, alternatively, be two states with different magnetic moments, whose energy

difference provides a sensitive measure of magnetic field. They might even be states of differ-

ent momentum which, taking different trajectories through space, experience a difference in

gravitational potential—allowing interferometric determination of the strength of the grav-

itational field. Thus clocks [1, 14–17], magnetometers [18–22], and gravimeters [23, 24]—as

well as a host of other atom interferometers [25, 26]—can all benefit from perfecting the

same task of measuring the energy difference between two atomic states (Fig. 1-1).

In order to measure an energy—a continuous quantity—using only a discrete, two-level

system, one arranges for the measurement result to be encoded in a probability of finding
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Atomic clock:

Magnetometer:

Gravimeter:

|↑〉

|↓〉

∆E/h ≡ 9 192 631 770 Hz
133Cs
hyper!ne

E

B
∆E ∝B

|↑〉

|↓〉

|↑〉

|↓〉

U

∆U ∝ g

t

Figure 1-1: A variety of precision measurements rely on determining the energy difference
between two discrete quantum states. The two states can always be represented abstractly
as spin states |↑〉 and |↓〉, as illustrated for three examples discussed in the text: an atomic
clock, measuring the ground-state hyperfine splitting in Cs, which defines the second; a mag-
netometer, measuring an energy splitting induced by a magnetic field B; and a gravimeter,
using two states of different momentum to measure the local gravitational acceleration g
via atom interferometry.
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the system in one of its two states.1 One can extract this probability either by repeated

interrogation of a single particle or by interrogating many particles in parallel. A single

aluminum ion under repeated interrogation [27,28] currently constitutes the most accurate

clock in the world. However, it takes this clock [28] half an hour just to reach a level of

uncertainty that can be reached in one minute by an optical-lattice clock using an ensemble

of 103 − 104 strontium or ytterbium atoms [15, 17]. Wherever technically feasible, atomic

precision measurement devices thus employ the parallelism of an ensemble. By using N

uncorrelated atoms, these devices ideally attain a given statistical uncertainty N times

faster than they would with a single atom. In this thesis, I demonstrate experimentally

that we can engineer non-classical correlations among the atoms in an ensemble to obtain

an even greater enhancement of measurement sensitivity with atom number N .

Any ensemble of N atoms with two states of interest—regardless of the details of their

physical manifestation—can be regarded abstractly as a collection of spin-1/2 particles.

Each such particle has two possible projections siz = ±1/2 of its spin si along the z axis,

allowing us to represent the state of the ith atom by siz. For an atom in a superposition

of the two (pseudo)-spin states |↑〉 ≡ |s = 1/2, sz = +1/2〉, |↓〉 ≡ |s = 1/2, sz = −1/2〉,
the spin s has a well-defined azimuthal angle φ (with tanφ = sy/sx) that represents the

quantum mechanical phase of the superposition
√

1/2 + 〈sz〉 |↑〉 +
√

1/2 − 〈sz〉eiφ |↓〉; as a
function of time t, φ = ωt precesses at the transition frequency ω = ∆E/~. The state of the

ensemble is then described (see Fig. 1-2(a)) by a similarly precessing collective spin vector

S =
∑N

i=1 si of length |〈S〉| ≤ S, where the maximum possible length S = N/2—arising if

all spins are aligned—characterizes pure states that are totally symmetric with respect to

particle exchange [29,30]. The collective spin projection Sz = (N↑ −N↓)/2, represents the

difference in populations N↑, N↓ of the two spin states |↑〉 , |↓〉, a readily accessible observable

in typical experiments.

1.2 Ramsey Spectroscopy and the Standard Quantum Limit

To measure the transition frequency ω, one typically employs the method of Ramsey spec-

troscopy, which is illustrated in Fig. 1-2(b). Starting with all atoms in |↓〉, one applies a

(near)-resonant field oscillating at ωd ≈ ω to perform a π/2 rotation that places the en-

semble spin vector in the xy-plane. Fig. 1-2 depicts this collective spin state in a frame

rotating at ωd, so that for ωd = ω the ensemble spin points along a fixed axis (S = Sx̂).

More generally, then, the spin precesses about the ẑ axis at the detuning ω − ωd, and one

wishes to measure the phase φ = (ω − ωd)T acquired in some fixed precession time T . In

order to read out the phase φ = Sy/|S| (with φ ≪ 1) at the end of the precession, one

converts it by a rotation about x̂ into a population difference 2Sz = N↑ −N↓ between the

1Specifically, the energy is encoded in the quantum mechanical phase between the two states, which can
be converted to a probability of projection into one state or the other by the Ramsey sequence described in
Sec. 1.2.
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Figure 1-2: (a) Bloch-sphere representation of an ensemble of N two-level atoms as a spin vector S =
∑N

i=1 si (red) formed by summing
the single-atom spins si (yellow). The azimuthal angle φ represents the phase φ = ωt of the spin precession, where the precession rate is
set by the energy difference ~ω between states |↑〉 and |↓〉. The spin component Sz is directly proportional to the difference in populations
N↑, N↓ of the two spin states. (b) Ramsey sequence for measurement of the clock transition frequency ω, illustrated in a rotating frame
at the drive frequency ωd, as described in text. Each arrow labeled [π2 ]r̂ indicates a π/2 rotation about the axis r̂ . (c) Schematic
illustration of a coherent spin state along x̂ on the Bloch sphere; the red shading represents a tomographic probability distribution [31]
for spin components in the yz plane, with variances ∆S2

y = |〈Sx〉| /2 = ∆S2
z set by the length |〈Sx〉| = S of the ensemble spin vector for

the totally symmetric state. (d) Modified Ramsey sequence incorporating a squeezed spin state. The sequence is initiated by placing the
state into the phase-squeezed orientation, so that the reduced quantum uncertainty ∆φ2 = ∆S2

y/ |〈Sx〉|2 < 1/(2S) will allow the phase
φ = ωT acquired in the precession time T to be determined to better than the standard quantum limit.
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two states. Since the individual atoms are uncorrelated, the spin state populations are bi-

nomially distributed, leading to fluctuations ∆S2
z = N/4 = S/2 in the outcome of an ideal

measurement of Sz. These fluctuations result in an uncertainty

∆(ωT )2SQL = ∆S2
z/|〈S〉|2 = 1/N (1.1)

in the phase acquired during the precession. This, the standard quantum limit (SQL)

on clock precision, is the best phase measurement possible with N uncorrelated atoms

[3, 4]. The ensemble spin state used in the Ramsey sequence to attain this limit, a totally

symmetric product of the single-atom spins, is called a coherent spin state (CSS) [30];

the fluctuations in the outcome of the Ramsey measurement correspond to a quantum

uncertainty in the spin’s orientation, illustrated schematically in Fig. 1-2(c).

The SQL is a quantum limit in the sense that it arises from the quantization of the

collective spin in units of individual atoms and vanishes in the large-N limit of a classical,

continuously variable spin. However, the SQL is not the fundamental limit set by quantum

mechanics; a way of overcoming it is suggested [2–4] by considering a truly fundamental

limit set by the Heisenberg uncertainty relation:

∆S2
y∆S

2
z ≥ |〈[Sy, Sz]〉|2 /4 = |〈Sx〉|2/4 (1.2)

Here, in the special case where ∆S2
y = ∆S2

z , one recovers the SQL on phase sensitivity

∆S2
y/|〈Sx〉|2 ≥ 1/(2 |〈Sx〉|) ≥ 1/(2S), equivalent to Eq. 1.1. In principle, though, the

Heisenberg uncertainty relations allow a reduced uncertainty in one spin component trans-

verse to the mean spin vector (e.g., Sy) at the expense of a greater uncertainty in the

other transverse spin component (Sz). Such redistribution of the spin noise is called spin

squeezing [2]. Fig. 1-2(d) illustrates a squeezed spin state as applied to surpass the SQL in

Ramsey spectroscopy [4].

1.3 Spin Squeezing

I shall use the term “squeezing,” specifically, to refer to reducing the noise-to-signal ratio

∆S2
⊥/|〈S〉|2 in the orientation of a collective spin by introducing non-classical correlations

among the particles; here, S⊥ represents any spin component orthogonal to 〈S〉. For an

ensemble of N = 2S particles, where the best signal-to-noise ratio attainable by an unen-

tangled state is that given by Eq. 1.1, the spin state is then necessarily squeezed if it obeys

the Wineland [3, 4] criterion
∆S2

⊥

|〈S〉|2 <
1

2S
. (1.3)

While various other metrics for squeezing can be found in the literature [2, 32–34], the

Wineland criterion has the virtue of being a black-box test for both entanglement [32, 33]
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and metrological gain, expressed in terms of experimentally measurable quantities, with

no assumption that the spin state is symmetric or remains so throughout the squeezing

process.

In accordance with Eq. 1.3, squeezing is quantified by the parameter ζ ≡
2S∆S2

⊥/|〈S〉|2 < 1 representing the reduction in noise-to-signal ratio (in variance)

below the standard quantum limit. While this might appear to be a simple and unam-

biguous parametrization, there has nevertheless been some variability in its application in

the literature produced by a flurry of recent experiments. The spin variance ∆S2
⊥ may,

for example, include either the full measured noise—including detection noise—or only the

noise inferred to be intrinsic to the quantum state. In Refs. [6] and [10], we account for

imperfect initial coherence of the state subjected to squeezing by evaluating the reduction

in noise-to-signal ratio ζ0 ≡ 2S0∆S
2
⊥/|〈S〉|2 < 1 relative to the best obtainable with a CSS

of spin length S0 < S = N/2. (The condition ζ−1
0 < 1 guarantees both entanglement and

metrological gain under the verifiable assumptions described in Sec. 5.5.) In reviewing

demonstrations of spin squeezing below, I refer to Table 1.1 for a summary of results

organized to facilitate comparison of various experiments on an equal footing.

A squeezed spin state of two ions—entangled via a quantum gate operation [35]—enabled

the first demonstration of quantum-enhanced Ramsey spectroscopy (ζ−1 = 0.7(1) dB) in

a landmark experiment by Meyer et al. in the group of David Wineland [36]. While up

to 14 ions have since been entangled by similar means [44, 45], advances in spin squeezing

have been driven by techniques more readily scalable to large ensembles of (neutral) atoms.

These methods can broadly be placed into two classes: squeezing by collisional interaction

[32,37–39]; and light-induced squeezing [5–10,43,46].

Interparticle interactions, by providing a mechanism for non-classical correlations to

develop among the particles, can induce a coherent spin state to evolve into a squeezed spin

state [2]. Experiments with Bose-Einstein condensates in multi-well potentials have shown

that collisional interactions can reduce the fluctuations in atom number per well [37,47,48];

for two wells represented as pseudospin states |↑〉 and |↓〉, spin squeezing has been verified

in such a system [37]. For spin states corresponding instead to an internal (hyperfine)

degree of freedom, the same collisional mechanism can produce squeezing given a state-

dependent scattering length [32], as demonstrated in recent experiments by the groups of

M. Oberthaler [38] and P. Treutlein [39]. Gross et al. [38] have inferred up to ζ−1 = 8.2(9) dB

of spin squeezing by this approach (see Table 1.1).

In the context of metrology, one may wish to avoid interatomic interactions, as these

perturb the transition frequency to be measured. Thus, there is considerable interest [5,

9, 49, 50] in inducing squeezing with light, which—although it also perturbs the transition

frequency—can controllably be turned off after squeezing before initiating the precision

measurement. An early foray in this vein effected a 1.4(4)% reduction in spin noise by

optical pumping with ellipticity-squeezed light. Using only classical light, the hyperfine
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Method Notes
(Pseudo)-spin
states

Particle Spin Noise Inferred Observed
Ref.number Reduction Squeezing Squeezing

N (dB) (dB) (dB)

Quantum gate [35] 9Be+ hf 2 0.7(1) [36]

Collisional
interaction [32]

Bose-Einstein
condensates

{ Spatial 2× 103 7(1) 3.8(3) [37]
87Rb hf 4× 102 8.2(9) 8.2 1.4 [38]
87Rb clock 1× 103 3.7(4) 2.5(6) [39]

QND
Measurement [5]

free-space,
Faraday rotation

{ 133Cs mF 1× 107 ∼ 5 [40]
171Yb mI 3× 105 1.8(1.5) [41,42]

cavity, dispersive 87Rb clock 3× 104 8.8(8) 3.0(8) 1.5(6) [6]
free-space, dispersive 133Cs clock 1× 105 5.3(6) 3.4(7) 1.1 [7, 43]
cavity, on resonance 87Rb clock 7× 105 4.9(6) 3.4(6) 1.1(4) [8]

Cavity feedback [9] 87Rb clock 3× 104 12(1) 10(1) 8.4(7) 5.6(6) 4.6(6) [10]

Table 1.1: State of the art in spin squeezing; results in bold are presented in this thesis. Experiments to date have demonstrated squeezing
with the pseudo-spin states being clock states (“clock”)—with a frequency difference insensitive to magnetic fields—or other hyperfine
states (“hf”) in ions or alkali atoms; or spatial states of a BEC in a multi-well potential. Also included are two experiments on QND
measurement of a collective hyperfine or nuclear spin (states mF or mI), in which a noise reduction S/(2∆S2

⊥) was inferred but coherence
was not quantified. While many experiments account for imperfect detection of the prepared states in inferring the degree of spin noise
reduction or squeezing, others also (or instead) report the directly observed squeezing including detection noise. Tabulated here are
the inferred spin noise reduction, inferred squeezing, and observed squeezing. In the tabulations of squeezing, upright numbers give the
inverse Wineland parameter ζ−1 ≡ |〈S〉|2/(2S∆S2

⊥) quantifying improvement in signal-to-noise ratio over the standard quantum limit
for the ensemble of N = 2S particles; numbers in italics indicate squeezing ζ−1

0 = |〈S〉|2/(2S0∆S2
⊥) relative to an unentangled reference

state that is not fully coherent, with spin length S0 < N/2.
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spin F = 4 in individual Cs atoms has been squeezed [51, 52] by up to ζ−1 ≈ 4 dB under

the influence of the tensor ac Stark shift; this squeezing is already close to its fundamental

limit ζ−1 . F set by the total hyperfine spin.

A scalable approach to light-induced squeezing—proposed in a seminal paper by

Kuzmich, Bigelow, and Mandel [5]—is to perform a quantum non-demolition (QND)

measurement of a collective spin variable, e.g., Sz. By probing an ensemble optically, one

can imprint information about Sz onto a light field, entangling the spin and field states.

A measurement can then be performed on the light to reduce the conditional uncertainty

in Sz [6–8, 40–42]. If the measurement sufficiently preserves the coherence of the atomic

state, it can produce spin squeezing [6–8], as first demonstrated in the cavity-aided

experiment [6] presented in Ch. 5 and in simultaneous work by the Polzik group (Appel

et al.) in free space [7]. While both of these experiments used dispersive measurements

with a far-detuned probe, a very recent cavity-based experiment has applied a resonant

probing scheme [8]. The squeezing induced by QND measurement—up to ζ−1 = 3.4(7) dB

to date [7]—is conditional, in the sense that a different squeezed state is prepared in each

iteration of the experiment depending on the measurement outcome. This simply means

that one must make use of the measurement information in order to benefit from the

squeezing.

From a fundamental standpoint, a squeezed state is thus equally useful for metrology

whether it is prepared conditionally or deterministically. Practically, however, the degree

of squeezing achievable conditionally will always be limited by one’s ability to perform

a sensitive yet non-destructive measurement. An alternative approach to light-induced

squeezing was suggested by Takeuchi et al. [49]: if, after the atoms imprint their collective

state onto the light, the light is allowed to interact (in an appropriately designed way) with

the atoms again, the resulting feedback can give rise to deterministic squeezing. I show

in Ch. 6—both theoretically [9] and experimentally [10]—that the requisite feedback can

be provided by the light circulating in an optical cavity. This method of cavity feedback

induces up to ζ−1
0 = 10(1) dB of spin squeezing in our system, resulting in states that would

yield a phase sensitivity ζ−1 = 8.4(7) dB beyond the standard quantum limit if we could

detect them perfectly.

In an actual Ramsey measurement, the quantum projection noise will necessarily be

augmented by detection noise, as well as by any classical phase noise encountered in the

measurement. Thus, preparation of a squeezed state is not, by itself, sufficient to per-

form Ramsey spectroscopy beyond the standard quantum limit. Besides the pioneering

two-ion squeezing experiment of Meyer et al. [36] described above, three very recent ex-

periments with atomic ensembles have directly shown quantum-enhanced Ramsey interfer-

ometry. Louchet-Chauvet et al. have attained a 1.1 dB enhancement over the SQL via

measurement squeezing [43]; and Gross et al. a 1.4 dB enhancement via collisional squeez-

ing [38]. In Ch. 7 of this thesis, I demonstrate an atomic clock enhanced by 4.7(5) dB over
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the standard quantum limit via cavity feedback squeezing [53].

Note that squeezed-state Ramsey spectroscopy is not the only approach to performing

a phase measurement beyond the standard quantum limit. Using a maximally entangled

(GHZ) state of three ions, Leibfried et al. have demonstrated a phase measurement 3.2(1) dB

beyond the SQL [44]. At another extreme, in the group of Eugene Polzik, Wasilewski et

al. have entangled two ensembles of ∼ 1012 atoms via conditional two-mode squeezing [54],

thereby constructing a magnetometer that would already achieve impressive performance

at the SQL but surpasses it by 1.5 dB [22]. Given the wide range of applications for atomic

precision measurements—from time-keeping, through sensing and navigation, to precision

tests of fundamental physics—a diversity of approaches to their quantum enhancement is

entirely apropos.

1.4 Why the Optical Cavity

Opposite the collective atomic spin introduced above, the principle actor in this thesis is the

optical cavity. I have alluded to the role of the cavity in manipulating the spin by optical

feedback, but I have yet to introduce its more general role: the essential purpose of the

cavity is simply to increase the optical depth of the atomic sample.

To understand the significance of the optical depth, recall that our light-induced squeez-

ing methods—both measurement and cavity feedback—rely on probing a collective spin

variable Sz. Knowledge of the collective variable Sz beyond the SQL requires either knowl-

edge of the states of individual atoms or anti-correlations among the states of different

atoms. The former corresponds to destruction of the superposition state and a loss of sig-

nal |〈Sx〉|. We are interested instead in the latter—i.e., in probing only a collective variable

without revealing the states of individual atoms. The only way that the atoms can reveal

their states (via the probe light) is by scattering the probe photons. To obtain only collec-

tive information about the atomic states, one needs to ensure that the dominant scattering

process is collective scattering into a single mode—specifically, forward-scattering into the

mode of the probe light. This requires a large resonant optical depth OD ≫ 1 of the ensem-

ble [55,56]. While optical depths up to OD ∼ 102 are realizable in free space, much larger

optical depths OD ∼ 104 can be reached in a cavity due to the enhancement by the finesse.

Correspondingly, fundamental limits to the performance of light-induced squeezing [55,56]

are most favorable in a cavity.
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Chapter 2

Atom-Light Interaction

The interaction of our ensemble of atoms with probe light in the optical resonator is essential

both in providing a mechanism for squeezing and in enabling us to characterize the ensemble

spin state. In this chapter, I begin in Section 2.1 by introducing the key features of this

interaction in a simplified model system. Sections 2.2-2.3 expand the treatment to describe

our real experimental system, and Sec. 2.4 presents an experiment that both verifies of

our calculated atom-resonator coupling and demonstrates the reversibility of decoherence

associated with its inhomogeneity. Finally, Sec. 2.5 derives the cavity cooperativity and

introduces its role in quantifying effects of spontaneous emission into free space.

2.1 Model System

The essential features of the atom-light interaction in our system are captured by a simplified

model in terms of three-level atoms uniformly coupled to an optical cavity. I will discuss

how our real system maps onto this model in Secs. 2.2-2.3 below. For now, let us assume

that each atom has two stable ground states |↑〉 , |↓〉 at energies ±~ω/2; and an excited

state |e〉—with linewidth Γ—at energy ~ω0, where ωo is an optical frequency (see Fig. 2.1).

Consider an ensemble of N such atoms, uniformly coupled to a cavity mode at frequency

ωc = ωo, such that the detuning of the cavity from the |↑〉 → |e〉 and |↓〉 → |e〉 transitions
has equal magnitude ∆ = ω/2 but opposite sign. (We choose this symmetric arrangement

for simplicity, because we are interested only in effects that distinguish between the two

states.) The Hamiltonian for this system is

Hsys = ~ωcc
†c+~

N
∑

i=1

(ω

2
[|↑〉i 〈↑|i − |↓〉i 〈↓|i] + ωo |e〉i 〈e|i + g [c |e〉i 〈↑|i + c |e〉i 〈↓|i +H.c.]

)

,

(2.1)

where 2g represents the vacuum Rabi frequency.

We shall be interested in the dispersive aspect of the atom-light interaction and not in

populating the atomic excited state. I therefore assume a large detuning ∆ ≫ Γ, κ of the
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Figure 2-1: Energy diagram of model three-level system, as described in the text. The left
panel shows the unshifted levels. The right panel illustrates the shift of the cavity resonance
(blue) by ΩSz and the differential ac Stark shift of the atomic levels (red) by Ωc†c, relative
to the situation in the absence of atom-cavity coupling (dashed).

cavity mode from atomic resonance. Here, for sufficiently low intracavity photon number
〈

c†c
〉

≪ (∆/g)2, we can adiabatically eliminate the excited state [57] to obtain an effective

Hamiltonian

Hsys = ~ωcc
†c+ ~

N
∑

i=1

[(

ω

2
+
g2

∆
c†c

)

(|↑〉i 〈↑|i − |↓〉i 〈↓|i)
]

. (2.2)

This Hamiltonian can be expressed more simply in terms of a collective spin operator S,

with z-component Sz =
∑N

i=1(|↑〉i 〈↑|i−|↓〉i 〈↓|i)/2 proportional to the population difference

between states |↑〉 and |↓〉. In terms of this collective spin, we have

Hsys/~ = ωcc
†c+Ωc†cSz + ωSz, (2.3)

where Ω = 2g2/∆ quantifies the atom-light interaction. The effect of this interaction on

the light is to shift the cavity resonance in proportion to Sz, via the opposite phase shifts

imparted to the light by atoms in states |↑〉 and |↓〉. The effect on the atoms is to shift the

transition frequency between states |↑〉 and |↓〉 in proportion to the number c†c of photons

in the cavity, via the differential ac Stark effect. The action of the atoms on the light can be

used to perform a quantum non-demolition measurement of Sz by detecting the shift of the

cavity resonance (Ch. 5). Alternatively, exploiting both facets of the interaction—namely,

the modification of the light field by the atoms and the backaction of the modified light

field on the atoms—allows for squeezing by cavity feedback (Ch. 6).
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Figure 2-2: Atoms are trapped in a lattice (pink) that is incommensurate with the cavity
mode used for probing (blue). To account for the inhomogeneous coupling of atoms to
the probe light, we describe the atomic ensemble in terms of the appropriately weighted
collective spin S defined in Eq. 2.5.

2.2 Inhomogeneous Coupling

In our experiment, the atoms are confined within the cavity by an optical lattice that is

incommensurate with the standing-wave mode used for probing (Fig. 2-2). The uniform

atom-probe coupling g in Eq. 2.1 is therefore replaced by an atom-dependent value gi.

Correspondingly, the ith atom shifts the cavity mode by ±Ωi ≡ 2g2i /∆ and experiences a

differential light shift Ωi per intracavity photon. In other words, the cavity mode couples to

an asymmetrically weighted ensemble spin vector S with Sz ∝
∑N

i=1 Ωi [|↑〉i 〈↑|i − |↓〉i 〈↓|i],
where I use N to denote the total number of atoms in an ensemble with non-uniform

coupling. We normalize S ≡ Ω−1
∑N

i=1 Ωisi in terms of an effective coupling Ω chosen to

uphold the usual relation between spin length and variance, ∆S2
⊥CSS = S/2, in a coherent

spin state; this requires

Ω =

∑N
i=1 Ω

2
i

∑N
i=1Ωi

(2.4)

and results in an effective total spin

S =
1

2

(

∑N
i=1 Ωi

)2

∑N
i=1 Ω

2
i

. (2.5)

We accordingly define the effective atom number N = 2S. The description of the ensemble

in terms of S is sufficient for quantifying spin squeezing because we require only measure-

ments of spin length and variance and comparison of these quantities to their values in

a coherent spin state. We always measure the spin via the cavity and therefore always

measure the appropriately weighted ensemble spin S.

In terms of S and the effective interaction strength Ω, the Hamiltonian can be written

as

Hsys/~ = ωcc
†c+Ωc†cSz + ωSz (2.6)
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where it should be emphasized that the middle term involves the asymmetrically weighted

spin vector but the last term involves the symmetrically weighted one. The commutator

between the two, [Si, Sj ] = i~ǫijkSk (where ǫijk is the Levi-Civita symbol), shows that the

asymmetrically weighted spin S transforms as an ordinary spin vector under the symmetric

single-particle rotations generated by any Sj. Thus, the final term ~ωSz in the Hamiltonian

of Eq. 2.6 generates the usual precession of S about the z-axis on an asymetrically weighted

Bloch sphere; and similarly, microwaves that couple uniformly to all atoms generate the

desired rotations of S. Note, however, that two asymmetrically weighted spin vectors do

not obey the usual angular momentum commutation relations, i.e., [Si,Sj ] 6= i~ǫijkSk. As

we shall see in Sec. 2.4, the atom-light interaction term ~Ωc†cSz can therefore reduce the

length of the spin vector S in a system with non-uniform coupling, but this effect is largely

reversible by spin echo.

Outside this chapter, I will not distinguish notationally between S and S. In the context

of experiments, S will always refer to the asymmetrically weighted spin vector that couples

to the cavity mode and that we thus measure, and S will denote its length, related to the

effective atom number N by S = N/2. For our ensemble of atoms—effectively uniformly

distributed along the probe mode, since the atomic cloud is much longer than the beat

length between the trap and probe lattices—the effective atom number is related to the

number of real atoms by N/N = 2/3.

2.3 Quantifying the Atom-Resonator Coupling

The atom-light interaction in a cavity can be quantified very accurately, as the vacuum

Rabi frequency 2g—describing the coupling of the vacuum field in the cavity to a given

atomic transition—depends only on the cavity mode volume V and on the known optical

transition frequency ωo and dipole matrix element do. In particular, for the simple case of

a two-level atom situated on the cavity axis at an antinode of the standing-wave mode, one

can conveniently express the coupling g0 = do
√

ωo/(2ǫ0~V ) [58] in terms of the excited-state

linewidth Γ = ω3
od

2
o/(3πǫ0~c

3) as

g20 = 6ΓωFSR/(πk
2w2). (2.7)

Here, k = ωo/c represents the wavenumber of the atomic transition, and I have expressed

the mode volume V = Lπw2/4 in terms of the free spectral range ωFSR = πc/L of the

cavity of length L and the mode waist w. Both ωFSR and w can be precisely and accurately

determined from the cavity transmission spectrum (see Sec. 3.1 and Ref. [59]).

In a real, multi-level atom, Eq. 2.7 is still valid for the coupling g0 on a cycling tran-

sition. Generically, however, one must take into account polarization-dependent couplings

between each of the two pseudo-spin states and various excited states. The atom-cavity

interaction can then be quantified in terms of the differential light shift Ωa between the
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two relevant ground states |↑〉,|↓〉 in an atom at an antinode per intracavity photon, cal-

culated by summing contributions from all relevant excited states. Our experiments use
87Rb atoms, where for states |↑〉 = |F = 2,mF = 0〉 and |↓〉 = |F = 1,mF = 0〉 probed with

linear polarization on the D2 line, the result takes the form

Ωa = fg20

(

1

∆2
− 1

∆1

)

. (2.8)

Here, f = 2/3 is the oscillator strength of the D2 line and each ∆F represents an effective

detuning of the cavity mode from the
∣

∣52S1/2, F
〉

→
∣

∣52P3/2, F
′
〉

transitions, appropri-

ately averaged over excited hyperfine states F ′. For example, with the cavity mode 3.18

GHz blue-detuned from the F = 2 → F ′ = 3 transition one obtains equal and oppo-

site effective detunings ∆F = ±2π × 3.29 GHz. Our cavity parameters (Tab. 3.1) yield

g0 = 2π × 557(6) kHz, resulting in an antinode differential light shift of Ωa = 2π × 126 Hz

per intracavity photon. We choose this configuration for the probing scheme that will be

introduced in Fig. 3.4(b) and used for cavity feedback squeezing.

In terms of Ωa, an atom at an arbitrary position r experiences a differential light shift

Ωah
2(r) due to a single photon in a TEM00 mode, where h(r) = e−(x2+z2)/w2

sin(ky) rep-

resents the mode amplitude. The same quantity Ωah
2(r) also represents the shift in the

cavity mode frequency associated with a change in the atom’s hyperfine state. Thus, for our

extended sample of atoms uniformly distributed over the standing-wave mode, we calculate

the mode shift per unit effective spin as

Ω = Ωa

〈

h4
〉

/
〈

h2
〉

, (2.9)

where
〈

h4
〉

〈h2〉 =
〈sin4 ky〉
〈sin2 ky〉

w2 + 4σ2r
w2 + 8σ2r

(2.10)

in terms of the radial cloud size σr ≪ w. In the limit where the atoms are radially cold

(σr = 0), the axial average yields
〈

h4
〉

/
〈

h2
〉

= 3/4. For our typical radial cloud size

σr = 7(1) µm, small compared to the w = 57 µm mode waist, this value is reduced to
〈

h4
〉

/
〈

h2
〉

= 0.71(1).

2.4 Verifying the Atom-Resonator Coupling

We verify our quantitative understanding of the atom-resonator coupling by directly mea-

suring the differential ac Stark shift Ωa per intracavity photon, with the cavity 3.57 GHz

blue-detuned from the F = 2 → F ′ = 3 transition. The measurement is performed using

a Ramsey sequence in which we apply a pulse of probe light during the precession time.

In particular, we prepare a coherent spin state along x̂, apply a pulse of probe light with

variable intensity, then perform a final π/2 rotation that converts Sx → Sz and measure Sz,
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thereby deducing the phase that was imparted by the probe. The result is plotted in Fig.

2-3 as a function of the number of transmitted probe photons p.

To compare the observed phase evolution with theory, we use Eq. 2.6 to predict that

the jth atom’s phase should evolve—in a frame rotating at ω—according to

dsj+
dt

=
i

~
Ω
[

Sz, s
j
+

]

= iΩjs
j
+c

†c. (2.11)

Replacing the intracavity photon number c†c, in a semiclassical approach, by the c-number

nc (see Sec. 6.1 for a more rigorous treatment), we find that
〈

sj+(t)
〉

= eiΩjnct. The number

of photons transmitted during the time t is related to the intracavity photon number nc

by p = nc(κ/2)t, since photons leave through each mirror at a rate κ/2. The phase shift

of an antinode atom per transmitted photon is thus given by ϕa = Ωanct/p = 2Ωa/κ. For

an ensemble of atoms uniformly distributed along the cavity axis, the x-component of the

ensemble spin after p photons have been transmitted is then

〈Sx〉 ∝
∫ 2π
0 sin2(ky) cos(pϕa sin

2(ky)) dy
∫ 2π
0 sin2(ky) dy

= J0(u) cos(u)− J1(u) sin(u), (2.12)

where the Jn are Bessel functions of the first kind and u = pϕa/2. Figure 2-3 shows a fit

of this form, from which we extract ϕa = 230(20) µrad. A fit to a full numerical model

including the radial cloud size yields ϕmeas
a = 250(20) µrad, in excellent agreement with the

value ϕcalc
a = 2Ωa/κ = 253(8) µrad calculated from Eqs. 2.7-2.8 and our cavity parameters.

The decay in the length of the spin vector in Fig. 2-3 is due to the inhomogeneity of the

atom-probe coupling and can be reversed by a spin echo technique, which is described in

detail in Sec. 4.4. Briefly, instead of applying a single probe pulse, we apply two such pulses

separated by a π microwave rotation. The average phase shift imparted to each atom in the

first probe pulse is reversed during the second probe pulse, but each pulse individually still

carries the information about the atomic state Sz that is required to produce squeezing.

The green solid squares in Fig. 2-3 show the final value of 〈Sx〉 /S after the two probe

pulses. The contrast |〈Sx〉| /S is largely restored, decreasing only slightly due to effects of

atomic motion (see Sec. 4.4).

2.5 Scattering and Cooperativity

A fundamental limitation to any light-induced squeezing scheme is scattering into modes

other than the single probe mode. We have so far neglected such spontaneous scattering,

having eliminated the excited state from our model in Sec. 2.1 to obtain an effective

Hamiltonian describing a frequency shift of the probe mode by atoms in the two ground

states. Physically, this frequency shift arises from forward-scattering by the atoms into the

cavity mode: light in the cavity acquires a phase shift via interference with the forward-
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Figure 2-3: Verification of the atom-photon interaction via a Ramsey measurement (blue
open circles) of the differential ac Stark shift, as described in the text. The blue curve is fit
to the data using the model in Eq. 2.12, yielding ϕa = 230(20) µrad. The decay in contrast
is due to the inhomogeneity of the coupling and can largely be reversed (green solid squares)
by spin echo.
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scattered field. Thus, scattering is indispensable to light-induced squeezing; indeed, we shall

see in Chs. 5 and 6 that the number of photons scattered into the cavity determines the

factor by which the probe light can reduce spin noise. The essential forward-scattering is

necessarily accompanied by detrimental free-space scattering, which can reveal or change the

states of individual atoms, thereby causing decoherence [60,61] and reintroducing spin noise.

Thus, fundamental limits to light-induced squeezing [55,56] depend on the ratio of photons

scattered into the cavity to photons scattered into free space: the cooperativity [62,63].

The cooperativity η of a single atom in a cavity depends only on the geometry of the

cavity mode. A Gaussian mode of wavenumber k and waist w subtends a solid angle

Ωc = 4π × 4/(k2w2) [59]. Multiplying Ωc/(4π) by the cavity enhancement factor 4F/π at

an antinode, where F is the finesse, yields the cavity-to-free-space scattering ratio averaged

over all polarizations. For an atom driven with either of the two polarizations supported

by the cavity, however, the scattering into the cavity is enhanced by an additional factor of

3/2 relative to that into free space, resulting in a maximum cooperativity

η0 =
24F
πk2w2

. (2.13)

The cooperativity can alternatively be expressed in terms of characteristic frequencies g, κ

and Γ. In the weak-coupling limit η < 1, this can readily be seen from Fermi’s golden rule:

the rate at which an excited atom emits into a resonant cavity is 4g2/κ, and comparing this

to the free-space scattering rate Γ results in an expression

η =
4g2

κΓ
(2.14)

of the cooperativity as an interaction-to-decay ratio [63]. By evaluating this expression with

g = g0 as given by equation 2.7, one can verify the equivalence of Eqs. 2.13 and 2.14.

In addition to describing the probability for an excited atom to emit into the cavity, η0

also quantifies the probability of the reverse process, namely that a resonant photon sent

through the cavity excites the atom. This can be seen by taking the atomic cross section

6π/k2, dividing it by the effective area πw2/2 of the cavity mode, and multiplying the

resulting single-pass optical depth by the cavity enhancement factor 4F/π. One obtains

twice the value in equation 2.13, i.e., the cavity-enhanced resonant optical depth of a single

atom at an antinode is given by 2η0. This optical depth can also be understood from a

Fermi’s golden rule argument. The rate dp/dt at which photons leave a two-sided cavity

in the forward direction is related to the intracavity photon number nc by dp/dt = ncκ/2.

Comparing the absorption rate 4ncg
2/Γ to the transmission rate and applying Eq. 2.14

confirms the optical depth 2η on cavity resonance.

In an ensemble, the cooperativity is collectively enhanced, since all atoms (in the same

state) scatter into the cavity in phase to produce a power that scales as N2, whereas

the power scattered into free space scales only as N . Thus, the figure of merit relevant
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to squeezing is the collective cooperativity Nη, or equivalently the resonant optical depth

OD = 2Nη of the ensemble [55, 56]. The latter parametrization enables comparison with

free-space squeezing schemes [7], where achieving the requisite optical depth OD ≫ 1 is a

significant challenge [7, 64].

To more specifically quantify the destructive effect of free-space scattering relative to

the desired effect of the atom-light interaction, it is useful to express the dimensionless

parameter ϕ ≡ 2Ω/κ characterizing the latter in terms of the cooperativity:

ϕ =
ηΓ

2

(

1

∆2
− 1

∆1

)

, (2.15)

where η = fη0
〈

h4
〉

/
〈

h2
〉

for an extended ensemble. Since ϕ represents the cavity mode

shift (in half-linewidths) associated with changing an atom’s state, it is a measure of how

much information about the atomic state is carried by each photon, and it will govern the

rate at which squeezing can occur. For comparison, since 2η represents the resonant optical

depth on a cycling transition, the scattering rate per effective atom in state F is related to

the rate dp/dt of photon transmission by

Γsc = 2η

(

Γ

2∆F

)2 dp

dt
. (2.16)

Returning to the simplifying assumption (or approximation) of equal and opposite detunings

∆2 = −∆1 ≡ ∆, we obtain the relation

ϕ2dp/dt = 2ηΓsc, (2.17)

We apply this relation in Chs. 5 and 6 to calculate fundamental limits to squeezing.
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Chapter 3

Experimental Setup

To set the stage for presenting the experiments forming the main body of this thesis, I

now proceed to describe the apparatus used throughout. We achieve the strong collective

atom-light coupling required for spin squeezing by placing our 87Rb atoms into an optical

resonator. I describe the physical parameters of the resonator in Sec. 3.1. We optically

trap the atoms in a dipole trap in the cavity mode, so that the atoms are transversely well

confined within the mode of the squeezing light. Details of the trapping and cooling of the

atoms are provided in Sec. 3.2. To maximize the atomic coherence time in the trap, we

engineer a cancellation of the vector and scalar light shifts, as explained in Sec. 3.3. Section

3.4 introduces the probe laser and the scheme for locking it to the cavity, while Sec. 3.5

presents the microwave system utilized for coherent rotations of the ensemble spin state. A

diagram of all fields relevant to trapping, cooling, manipulating, and probing the atoms in

the cavity is provided in Fig. 3-1.

3.1 Optical Resonator

The design and construction of our symmetric, near-confocal Fabry-Perot cavity (see Fig.

3-2) are described in detail in the thesis of Igor Teper [65]. The geometrical parameters

of the optical resonator can be determined very precisely from the cavity transmission

spectrum [59], allowing an equally precise determination of the atom-cavity coupling g0

(Eq. 2.7). In particular, the free spectral range ωFSR = πc/L indicates the length L of

the cavity, and the transverse mode spacing indicates the deviation from confocality, from

which we can establish the mirror curvature and the mode waist w. The spectroscopically

determined values are listed in Tab. 3.1.

The cavity linewidth κ can also be measured from the transmission spectrum, given a

probe laser much narrower than κ. Alternatively, the linewidth can be measured by a ring-

down measurement [12], given a photodiode with bandwidth ≫ κ and a sufficiently fast

switch-off of the incident light. Failing these conditions, a transmission spectrum would

overestimate the linewidth, whereas a ring-down measurement would underestimate it.
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Figure 3-1: Experimental setup for atom trapping, cooling, state preparation, and probing,
viewed from above. P and NP indicate polarizing and non-polarizing beamsplitters. (A)PD
indicates (avalanche) photodiode. A partial reflector with > 90% transmission (T > 0.9)
permits detection of the reflected locking light. A dichroic mirror (dichr.) combines the
780 nm probe/lock light (further described in Sec. 3.4) with the 851 nm trap light (Sec.
3.2). The polarization of the trap light is controlled by a variable retarder (λ/x). A pair of
counterpropagating beams in the xy plane (Cool/OP), and a third beam from below, are
used for optical pumping and polarization gradient cooling. For magic-polarization trapping
(Sec. 3.3), a uniform magnetic field B is aligned with the cavity axis. Microwaves (Sec.
3.5) are used to drive the 87Rb clock transition.
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Parameter λ = 780 nm λ = 851 nm

Free spectral range1 ωFSR/(2π) 5632(1) MHz

Transverse mode spacing ωt/(2π) 226.3(3) MHz

Mirror separation L 26.62(1) mm

Mirror curvature radius R 25.04(2) mm

Mode waist wλ 56.9(4)µm 59.5(5)µm

Linewidth κλ/(2π) 1.01(3) MHz 135(2) kHz

Finesse Fλ 5.6(2) × 103 4.2(1) × 104

Antinode cooperativity η0,λ 0.203(7) 1.65(4)

Table 3.1: Resonator parameters. The mode waists are calculated at the position of the
atoms, 2.6(5) mm from cavity center. Outside this table, all resonator values refer to the
probe wavelength λ = 780 nm unless otherwise specified.

However, we are able to meet the conditions for either measurement of the linewidth κ780 at

the 780-nm wavelength of the D2 line by probing the cavity with a sideband (see Sec. 3.4)

modulated at ∼ 14 GHz onto a laser that is narrowed by a high-bandwidth lock to the cavity

(see App. A). Changing the modulation frequency allows us to step the sideband across

the cavity resonance to directly measure the lineshape via the transmitted intensity. Alter-

natively, the sideband can simply be placed on cavity resonance and then rapidly switched

off—by switching the RF modulation—and the decaying cavity transmission detected on a

fast photodiode. We find excellent agreement between the linewidth κt780 = 2π× 1.012(3)

MHz measured in transmission and the value κr780 = 2π× 1.01(3) MHz inferred from the

ringdown lifetime 1/κr780. From a similar ring-down measurement, we have also measured

the cavity linewidth at the 851 nm wavelength of our dipole trap.

The many parameters describing our resonator—at each wavelength λ—can be distilled

into a single figure of merit, the cooperativity derived in Sec. 2.5:

η0,λ ≡ 24Fλ

πk2w2
, (3.1)

where k = 2π/λ. This dimensionless parameter quantifies the interaction of a single atom

with the cavity mode by comparing the mode’s transverse confinement ∝ w2 with the

atomic cross section ∝ 1/k2 and accounting for the cavity enhancement factor—i.e., the

ratio of intracavity to incident intensity—of 4Fλ/π at an antinode. Here, Fλ = ωFSR/κλ is

the cavity finesse at the relevant wavelength. Table 3.1 includes this and all other cavity

parameters, at both 780 nm and 851 nm.

1We can easily measure the free spectral range with a fractional uncertainty < 10−5, but the cavity length
varies by ∼ 2 × 10−4 in our experiments due to heating of the cavity induced by a nearby microchip (see
Fig. 3-2).
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Figure 3-2: Microfabricated chip and optical resonator. The coil highlighted with dotted
red lines forms a quadrupole trap in the cavity mode; the precise position of the trap
minimum is adjusted by bias fields formed by macroscopic coils (not pictured). The green
line indicates the approximate length and position of the atomic cloud, and the green arrow
indicates the perspective of a camera used to record the images in Fig. 3-3.

3.2 Cooling and Trapping

Our experiments begin by loading a three-beam, retro-reflected magneto-optical trap

(MOT) with 87Rb atoms. The source of atoms is a dispenser that uses a non-evaporable

getter as a reducing agent to release atomic 87Rb from a rubidium salt [66]. After loading

the MOT, we optically pump the atoms into the low-field-seeking |F = 2,mF = 2〉 state

using circularly polarized 780-nm light resonant with the F = 2 → F ′ = 3 transition.

The atoms are thus magnetically trapped in a quadrupole field and can be transported by

moving the quadrupole field minimum by adjusting bias fields.

We transport the atoms into the mode of the optical resonator, which is situated 200 µm

below a microfabricated chip [65, 67, 68] that has been described in detail in the thesis of

Yu-ju Lin [67]. We compress the atomic cloud into a quadrupole trap formed by a U-shaped

coil on the chip to facilitate its loading into a standing-wave dipole trap formed by 851-nm

light in the cavity mode. Fig. 3-2 shows the microchip and cavity and indicates the axial

position of the atomic cloud, while Fig. 3-3 presents absorption images of the atomic cloud

before and after loading into the optical dipole trap.
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(a)
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Figure 3-3: Absorption images of atomic cloud, circled in yellow: (a) in quadrupole trap;
(b) after loading into optical dipole trap in cavity mode. The upper edge of each image
corresponds to the microchip surface.
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Optical dipole trap Atomic cloud

Axial frequency 480(40) kHz Length 1 mm

Radial frequency 1.5(2) kHz RMS radius 7(1) µm

Trap Depth 18(6) MHz Radial temperature 1.0(4) MHz

Table 3.2: Typical characteristics of standing-wave dipole trap and atom cloud. The trap
depth can be determined (consistently) either from a spectroscopic measurement of the
axial trap frequency (as in Fig. 8-4); or from the radial trap frequency inferred from the
optimal spin echo timing (see Sec. 4.4), combined with the known mode waist. The radial
temperature measurement is described in Sec. 4.3.

Our cavity’s high finesse F851 = 42000 at the wavelength of the trap laser allows us

to form a lattice up to ∼ 100 MHz deep with < 20 mW of input power from a diode

laser. However, all of the major experiments in this thesis are performed at the trap depth

U0 = 2π×18(6) MHz. Table 3.2 summarizes the properties of the atomic cloud in the dipole

trap of this depth. We reach a radial temperature of 1.0(4) MHz after 5 ms of polarization

gradient cooling in a “gray molasses” [69]. In particular, operating at zero magnetic field,

we apply two cooling beams counter-propagating in the xy-plane with lin ⊥ lin polarizations

and a third, circularly polarized cooling beam propagating along −ẑ (upward); contributing
to each cooling beam are two lasers, one blue-detuned from the F = 2 → F ′ = 2 transition,

the other blue-detuned from the F = 1 → F ′ = 1 transition. The polarization gradient

cooling requires degenerate Zeeman sublevels and therefore a linear polarization of the dipole

trap. Following the cooling, we switch the trap polarization (using a variable retarder) to

a “magic” elliptical polarization that maximizes the atomic coherence time in the trap (see

Sec. 3.3). We typically allow ∼ 100 ms for this retarder (and a magnetic field applied along

ŷ) to settle before proceeding to preparation of internal atomic states (beginning with the

optical pumping described in App. B).

The cavity-enhanced lattice places high demands on laser frequency stability, since any

frequency noise converted to intensity noise at twice the axial trap frequency ωax ≈ 2π ×
500 kHz can cause parametric heating [70]. The narrowing of the trap laser by a combination

of passive optical feedback and high-bandwidth active feedback is described in App. A. We

have measured a 540(50) ms lifetime in the trap for a 1 MHz trap frequency. (The standing

wave can largely be canceled by modulating the trap laser at ωFSR to add sidebands resonant

with the two adjacent TEM00 modes; this extends the lifetime to 7 s, consistent with

lifetimes previously measured in a magnetic trap [65].)

3.3 Magic-Polarization Trap

To minimize inhomogeneous broadening of the clock transition, the trap light is elliptically

polarized such that the vector light shift cancels, to lowest order, the differential scalar light
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shift of the clock states. Such a cancellation is possible because the vector light shift acts as

an effective magnetic field [71] and can be added to a real magnetic field to yield a quadratic

Zeeman shift which, like the scalar light shift, is linear in the local intensity of trap light. In

particular, in a magnetic field By along the resonator axis, for an atom at potential U < 0

in the dipole trap, the |F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition frequency is shifted

by
δHF(U)

2π
= −ωHF

∆

U

h
+ βQZ

(

By + fbσ+

U

h

)2

, (3.2)

where ωHF = 2π × 6.835 GHz is the ground-state hyperfine splitting; ∆−1 = (2/∆D2 +

1/∆D1)/3 in terms of the detunings ∆D1 and ∆D2 from the D1 and D2 lines; βQZ =

575 Hz/G2 sets the scale of the quadratic Zeeman shift [13]; f is the circular polarization

fraction of the trap light; and the coefficient bσ+
= (∆−1

D1−∆−1
D2)∆×h/3µB = 0.061 G/MHz

gives the effective magnetic field per unit trap depth for σ+-polarized light. For a given

field By, the broadening is minimized by choosing f to place the minimum of the parabola

described by Eq. 3.2 at the mean trapping potential 〈U〉 seen by the atoms. For B2
y >

(ωHF/∆)〈U〉/βQZ, the optimum circular polarization f is inversely proportional to By, so

that the residual broadening scales as 1/B2
y .

The polarization can be optimized experimentally by maximizing the coherence time of a

Ramsey measurement. Fig. 3.3 shows the measured Ramsey coherence time at By = 5.6 G

as a function of circular polarization fraction f . At an optimum circular polarization fraction

f = 0.5(1), in agreement with the value calculated to minimize Eq. 3.2 at our trap depth

−U ≈ 18 MHz, we measure a Ramsey coherence time of 10(2) ms. We have evidence that

this coherence time is no longer limited by the trap.

A systematic study of this technique has since been carried out by Lundblad et al. [72],

and improvements to it have been proposed by Chicireanu et al. [73].

3.4 Probing Scheme

Both measurement squeezing and squeezing by cavity feedback rely on a laser that sensi-

tively probes frequency shifts of a particular cavity mode (“probe mode”) due to the atoms’

state-dependent index of refraction. We stabilize this probe laser relative to another cavity

mode (“lock mode”) that is much farther detuned from atomic resonance and thus negli-

gibly affected by the atoms. We generate sidebands on the probe laser, both for the prob-

ing itself and for Pound-Drever-Hall frequency stabilization relative to the lock mode (see

App. A), using broadband fiber-coupled electro-optic modulators (EOMs) manufactured

by EOSPACE (model PM-0K5-10-PFA-PFA-780-UL). Figure 3.4 illustrates the frequencies

of the probe laser carrier and the lock and probe sidebands relative to the cavity modes

and atomic transition frequencies; shown are two different schemes, one used for squeezing

by QND measurement (a), the second used in the subsequent experiments involving cavity
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Figure 3-4: Ramsey coherence time in 851-nm optical dipole trap, showing a sharp maximum
at the magic polarization fraction f = 0.5(1) for the bias field By = 5.6 G and trap depth
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feedback squeezing (b).

In both schemes, the probe sideband is near-resonant with a TEM00 mode tuned roughly

halfway between the F = 1 → F ′ = 2 and F = 2 → F ′ = 3 transitions of the 87Rb D2

line. In particular, the sideband is detuned by ∆ ≈ κ/2 from this cavity resonance to

maximize the dependence of transmitted intensity on atom-induced shifts of the resonance

frequency. The lock sideband is placed on a TEM01 mode; this allows it to be spatially

filtered from the probe light at the cavity output for detection. In addition, the node

of the TEM01 mode on the cavity axis minimizes the atoms’ exposure to the lock light.

While this helps avert scattering-induced decoherence, we also rely on a large detuning

δlock ≥ 2π × 10 GHz of the lock mode from the F = 2 → F ′ = 3 transition, especially to

minimize inhomogeneous differential light shifts associated with the lock mode curvature

and finite atomic temperature. The resonator length is stabilized via a beat note between

the probe laser carrier and the reference laser [12].

Under certain conditions, measurement squeezing can benefit from a compensation

scheme in which the probe sideband at detuning +δ from the probe mode is accompanied

by a symmetric sideband at detuning −δ from an atom-insensitive TEM00 mode; this is ac-

complished by placing the laser carrier precisely halfway between two TEM00 modes. The

total transmitted intensity from the probe and compensation sidebands is then insensitive

to laser frequency jitter. As this insensitivity comes at the price of doubling the photon shot

noise with compensation light that contributes no information about the atomic state, the

compensation scheme is advantageous only if the probe sideband power is sufficiently high

that frequency-noise-induced fluctuations in its transmission dominate over the photon shot

noise. We applied this compensation sideband technique (Fig. 3.4(a)) in our measurement

squeezing experiments in order to operate with minimal lock sideband power and maintain

fixed performance relative to the photon shot noise limit over a wide range in probe power.

The probe and compensation sidebands were separated by five cavity free spectral ranges

(5ωFSR = 2π × 28.2 GHz) and the lock sideband placed on the TEM01 mode nearest the

laser carrier, at a detuning δlock = −2π × 10.4 GHz from the F = 2 → F ′ = 3 transition.

Subsequent to the measurement squeezing experiments, we adopted the upgraded prob-

ing scheme shown in Fig. 3.4(b). This scheme places the lock sideband at an increased

detuning δlock = 2π× 33.3 GHz from the F = 2 → F ′ = 3 transition. We achieve the requi-

site 36.6-GHz phase modulation by applying to the EOM an RF input at νRF = 18.3 GHz

and using a second-order sideband. We dispense with the compensation sideband (which,

not interacting with the atoms, has no benefit for cavity feedback squeezing; and, in the

relevant parameter regime, has little impact on detection) by moving the probe carrier away

from the halfway point between TEM00 modes.

We control the power in the probe sideband at 2νRF = 36.6 GHz by mixing the RF

source at νRF with an intermediate-frequency (IF) signal at νIF = 90 MHz. The mixer

outputs signals at νRF ± νIF that interfere in the EOM to form sidebands at 2νRF, whose
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power depends on the IF power (easily adjusted) but whose frequency is independent of νIF.

We generate an optical beat note that represents the detuning of the probe sideband from

the reference laser by sending the probe carrier and reference laser (separated by 34.6 GHz)

together through a fiber-coupled electro-optic amplitude modulator driven with a portion

of the same RF signal (at νRF = 18.3 GHz) used to generate the probe sideband.

The lock sideband can be switched off for short times during the experiment to preserve

the phase coherence of the atomic state. The lock carrier is always on, with ∼ 10 µW power

incident on the cavity at a detuning of 51 MHz from cavity resonance in the scheme of Fig.

3.4(b).

At the cavity output, the probe light is sent through a single-mode fiber to an avalanche

photodiode (Hamamatsu model S3884) operating at a gain M = 13. The transmitted

light is detected with an overall quantum efficiency Q = 0.5(1). The photodetection circuit

consists of an op-amp current-to-voltage converter with a 10 MΩ first-stage transimpedance

gain, resulting in a measured noise equivalent power of 12 fW/
√
Hz, consistent with the

calculated Johnson noise. Reaching this noise level requires careful matching of the op-amp

input impedances, including the reactive component.

3.5 Microwave Setup

We use microwaves to address the 87Rb hyperfine transition, at a frequency ωHF = 2π ×
6.83468 GHz [13]. We generate the frequency ωHF by mixing a stable 6.8 GHz phase-

locked oscillator (Wentzel Associates)—referenced to a commercial (SRS) rubidium fre-

quency standard—with an IF signal (at 35 MHz) output by a direct digital synthesizer

(DDS; Analog Devices AD9959) whose frequency and phase are computer-controlled [12].

A voltage-variable attenuator adjusts the IF power. The frequency synthesis, switching,

and amplification culminate in a microwave power of ∼ 0.5 W at ωHF being broadcast

toward the vacuum chamber by a 10 dBi microwave gain horn (HD Communications

Corp.). We orient the horn so that it produces, at the position of the atoms, a magnetic

field oscillating parallel to the static field Bŷ (see Fig. 3-1) to maximize coupling to the

|F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition. We can thereby achieve a Rabi frequency

as high as 12 kHz; however, we typically operate with an 8.3 kHz Rabi frequency chosen to

produce a π/2 rotation in a conveniently round 30 µs.

We observe significant inhomogeneous broadening of the Rabi frequency, attributable

to near-field effects of the microchip. The role of the chip is corroborated by measuring the

coherence of Rabi oscillations as a function of the axial position of the atomic cloud. We

choose the axial position that minimizes the Rabi broadening, ∼ 3 mm from cavity center.
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Figure 3-5: Frequency-domain diagram (not to scale) of probe and locking light relative
to cavity and atomic resonances. Lorentzian profiles indicate TEM00 (solid) and TEM01

(dashed) modes. The TEM00 mode between the atomic resonances is used for probing, while
the TEM01 mode is used for Pound-Drever-Hall stabilization of the probe laser (blue) to the
cavity. A reference laser (red line) 1.13 GHz blue of the F = 2 → F ′ = 3 transition is used
for absolute frequency stabilization. (a) Scheme used for squeezing by QND measurement,
with compensation sideband. (b) Scheme used for cavity feedback squeezing, with larger
lock-probe detuning and without compensation sideband. In the latter scheme only, the
probe (blue) and lock (green) light follow different optical paths, as illustrated in Fig. 3-
1, to improve their respective mode-matching to the TEM00 and TEM01 modes; to avoid
interference effects, the probe and lock are furthermore placed in orthogonal polarization
modes and their carriers are separated by 80 MHz (via an AOM).
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Chapter 4

Cavity-Aided Probing

Whereas many atomic physics experiments rely heavily on imaging, we instead obtain all

our information about the atoms via a single cavity mode,1 taking advantage of the shift

of the cavity resonance by the atoms’ state-dependent index of refraction. The cavity shift

can be deduced from the resonator transmission (Sec. 4.1) and used to determine the total

atom number (4.2), the radial temperature (Sec. 4.3), or the effective atom number in each

hyperfine state. A typical time trace of the cavity transmission during various manipulations

of the atoms is shown in Fig. 4-1.

For squeezing, be it by measurement or by cavity feedback, it is essential that informa-

tion about the ensemble spin state be transferred to the light with the minimum possible

disturbance of the atomic populations and coherences. Thus, much of this chapter will focus

on the design of a minimally destructive probing scheme (Sec. 4.4) and the characterization

of its performance (Sec. 4.5).

4.1 Cavity Transmission

We measure Sz via the resonator mode shift δωc = ΩSz. There are several possible ap-

proaches to determining δωc, using either the intensity or phase of either the transmitted

or reflected light. We use the intensity of light transmitted by a probe laser tuned to the

slope of the cavity resonance. As a function of Sz, the number of photons p transmitted by

the cavity is related to the number of incident photons pin by a Lorentzian function

p(Sz) = pin

[

1 +
(ωL − ωc − ΩSz)

2

(κ/2)2

]−1

, (4.1)

where ωL is the frequency of the probe laser and ωc the frequency of the cavity resonance for

Sz = 0. The sensitivity of the transmission measurement to changes in Sz is maximized—at

1The sole exception is the absorption image shown in Fig. 3-3. Shortly after taking this image, we
blocked the imaging beam with a microwave horn and never needed to use it again.
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Figure 4-1: Typical trace of cavity transmission vs. time, obtained with the single-sideband probing scheme described in Sec. 3.4. Atoms
are optically pumped into F=2 and F=1 to measure atom number. The light is briefly turned off to apply a π pulse, then pulsed back
on to measure the resulting population transfer, which reflects both the optical pumping purity and the fidelity of the simple π pulse.
Next, ten interations of cavity feedback squeezing at low probe intensity (S1. . . S10) and readout at high probe intensity (R1. . . R10) are
performed. Afterwards, the atom number is measured again. Releasing the atoms from the trap and fitting the transmission measured
during the radial expansion allows for determination of the radial temperature. Finally, the probe-cavity detuning δ ≈ κ/2 is verified by
changing it in two steps of −κ/2 and comparing the observed transmission to the known Lorentzian lineshape.
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fixed intracavity power—by placing the probe laser at the detuning δ ≡ ωL − ωc = ±κ/2
that maximizes the logarithmic slope p−1 |dp/dSz|Sz=0.

We always operate at sufficiently large probe-atom detuning that the mode shifts δωc ∼
Ω
√

S/2 due to the CSS projection noise are much smaller than κ/2, so that the resonator

transmission is linear in Sz for our measurements of spin noise. However, we use mode shifts

as large as δωc = ΩS . 1.7κ to measure total atom number and contrast. We therefore

take into account the full Lorentzian lineshape in all measurements of Sz, using the same

procedure for measuring projection noise, contrast, and total atom number.

4.2 Atom Number Measurement

At the beginning and/or end of each experiment cycle, we measure the effective atom

number N . We determine the atom number by pumping all atoms first into F = 2, then

into F = 1, and in each case measuring the resonator transmission. Although the resonator

mode shifts δωc are linear in N , they are on the order of κ for our typical atom numbers,

so that the transmitted power is a non-linear function of δωc which we must invert to

obtain the atom number. To verify our determination of the resonator shift from the non-

linear transmission signal, we additionally measure the average mode shift over several

cycles of the experiment by finding the probe sideband frequencies ω
(F )
L that maximize the

probe transmission when all atoms are pumped into hyperfine state F . By thus directly

measuring the mode frequency shift, we obtain a linear measure of effective atom number

NL = (ω
(2)
L − ω

(1)
L )/Ω. In Figure 4-2 we plot NL against the average atom number N

extracted from the nonlinear transmission signal. The data are taken under the experimental

conditions used for squeezing by measurement (Sec. 5.2), where Ω = 2π × 88(3) Hz. The

fit NL = 0.98(4)N with reduced χ2 = 0.3 indicates that the two measurements are in good

agreement.

4.3 Radial Temperature Measurement

We measure the radial temperature Tr of the atomic ensemble by suddenly turning off the

trap and observing the decaying atom-resonator coupling, manifest as a time-dependent

cavity shift

δωc(t)

δωc(0)
=

(

1 +
4Υt2

mw2

)−1

, (4.2)

where m is the mass of 87Rb, w = 56.9(4) µm is the cavity mode waist at the position of the

atoms, and Υ—which depends on both the temperature and the initial cloud size—can be

expressed, given the trap depth U0, as Υ = U0kBTr/(U0 + kBTr). These equations assume

that kBTr ≪ U0 so that the trap may be approximated as harmonic and the initial phase
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Figure 4-2: Comparison of two methods of determining effective atom number, as described
in the text. The vertical error bars indicate the uncertainty in positioning the probe side-
band on cavity resonance. The horizontal error bars arise because the atom number N is
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space distribution taken to be Gaussian. In this limit,

kBTr =
Υ

1−Υ/U0
≈ Υ. (4.3)

In the sample trace in Fig. 4-1, a fit (green curve) to the cavity transmission vs. expansion

time t—accounting for the Lorentzian lineshape—yields Tr = 0.8(1) MHz. Note that the

same method provides consistent results for the radial temperature even for initial cavity

shifts δωc(0) & κ.

4.4 Probing with Spin Echo

We apply a spin echo technique to minimize inhomogeneous dephasing due to the probe

light. In particular, we always apply probe light in two pulses, in between which we apply

microwaves to rotate all of the atomic pseudo-spins by π. This procedure ensures that the

phase shift incurred by each atom during the first light pulse is, on average, canceled by the

second light pulse. Two effects that can limit the effectiveness of this technique are atomic

motion and imperfect microwave pulses. I discuss measures taken to mitigate these effects

in Secs. 4.4.1-4.4.2 below, before describing in detail the determination of Sz from the two

probe pulses.

4.4.1 Atomic Motion

The spin echo cancellation is degraded if atoms change their coupling to the probe light by

moving between the two pulses. Thus, the entire sequence must be performed in one of the

following ways: (i) fast compared to any atomic motion; (ii) slow enough to average over the

atomic motion; or (iii) timed to match the periodicity of the atomic motion. In our system,

the first option is immediately excluded by the 60 µs required to drive a π pulse. Instead,

we use a probe pulse duration T1 = 50 µs that averages over the 500-kHz axial motion (and

also optimizes technical noise of the measurement); and time the separation between pulses

to match the 330-µs half-period of the radial motion. The pulse separation is optimized

by measuring the contrast of a Ramsey-type measurement in which a spin-echo probing

sequence with variable timing is inserted between the two π/2 pulses. Such a measurement

constitutes our most precise determination of the radial trap frequency; subsequent to this

one-time optimization of the spin-echo timing, we have periodically reoptimized the contrast

after spin echo by varying the trap power, thereby recovering the intended trap frequency

ωr = π/(330 µs).

4.4.2 Pi Pulse Optimization

In order to perform a high-fidelity π rotation for the spin echo, we use a composite pulse

sequence (SCROFULOUS [74–76]) that I shall denote π̃. The SCROFULOUS pulse π̃φ =
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πφ−π/3πφ+π/3πφ−π/3 consists of three simple π pulses with phases indicated by the sub-

scripts. I have chosen the phase convention so that in the limit where the simple π pulses

have perfect fidelity, π̃φ = πφ. In the relevant case of imperfect simple π pulses, the SCRO-

FULOUS pulse compensates for errors in Rabi frequency (or pulse length). Whereas our

simple π pulses produce at best 90% inversion due to inhomogeneity in the Rabi frequency

across the length of the atomic cloud (see Sec. 3.5), the composite π̃ pulses produce 98(1)%

inversion. Note that the resonator locking light is always off during the microwave pulses

and is turned back on 20 µs prior to the start of the second probe pulse.

While the SCROFULOUS pulse compensates for errors in Rabi frequency, it does not

compensate (but rather augments) the effect of microwave detuning. For a Rabi frequency

ΩR, detuning the microwaves from resonance with the clock transition by an amount ∆µ

corresponds to tilting the axis of rotation on the Bloch sphere below the xy-plane by an

angle ∆µ/ΩR for ∆µ ≪ ΩR. For an initial spin S = Sx̂, a simple π rotation about x̂

(φ = 0) thus results in a frequency-dependent final z-projection Sz = −2∆µ/ΩR; the

equivalent SCROFULOUS sequence doubles this dependence to Sz = −4∆µ/ΩR. However,

for a π or π̃ pulse about ŷ (φ = π/2), the value of Sz is to lowest-order unaffected by the

rotation, independent of detuning. Thus, we choose the phase φ = π/2 to avoid converting

fluctuations in the clock transition frequency into noise in the spin orientation. This choice

of phase is particularly important at low photon rates, where the total phase shift per probe

pulse is ≪ π; at high photon rates, a large inhomogeneous phase shift after the first pulse

effectively averages over all possible phases of the π̃ rotation and thus averages out any

associated noise.

4.4.3 State Detection

To measure Sz, we use the information from both light pulses of the spin echo sequence.2 In

particular, our measurementM of Sz can be expressed as the average M = (M++M−)/2 of

two single-pulse measurements M± = ±ω±/Ω, where ω± are the atom-induced shifts of the

cavity mode determined from the probe transmission before and after the π̃ pulse. Here, we

switch the sign convention for Sz = ±(N↑ −N↓)/2 at the π̃ rotation to compensate for the

population exchange between states |↑〉 and |↓〉. Figure 4-3 illustrates two such two-pulse

measurements, as used for squeezing by measurement and subsequent readout of the state

thus prepared.

The spin echo approach has benefits for the measurement itself, not only for preserving

coherence. Firstly, the spin echo measurement is insensitive to any fluctuations or drifts

in laser intensity or laser-cavity detuning that are slow enough to be common to the two

pulses M±. Furthermore, whereas each individual pulse measures the population difference

between the entire F = 1 and F = 2 hyperfine manifolds, the two-pulse measurement M

2Note that this differs from the method of Appel et al. [7], who apply two pulses to preserve coherence
but use the measurement information from only the second pulse.
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Figure 4-3: Measurements M1 and M2 of Sz for spin squeezing and readout. Each mea-
surement is obtained from the probe light transmitted (solid blue line) in two pulses, before
and after applying microwaves (dashed red line) to perform a π̃ rotation. Specifically, each
measurement can be expressed as the average Mi = (Mi+ + Mi−)/2 of two single-pulse
measurements Mi± = ±δωi±/Ω, where δωi± are the atom-induced shifts of the cavity reso-
nance deduced from the transmitted probe light. With each π̃ rotation, we switch the sign
convention for Sz = ±(N↑ − N↓)/2 to compensate for the population exchange between
states |↑〉 and |↓〉.

cancels any contribution from atoms not addressed by the π̃ pulse. Since the microwave Rabi

frequency is small compared to the Zeeman splitting, this ensures that any atoms remaining

outside the mF = 0 clock states (due to imperfect optical pumping) are ignored. The spin

echo sequence thus intrinsically probes precisely the variable Sz of interest. This feature

can be exploited to achieve insensitivity to total atom number [77] in light-induced spin

squeezing at any detuning, i.e., our special detuning yielding a mode shift ω ∝ N↑−N↓ is a

technical convenience but not a requirement for either of the squeezing methods described

in this thesis.

4.5 Measurement Sensitivity

For optimal light-induced squeezing, the probing must be conducted as close as possible

to the photon shot noise limit. For deterministic squeezing by cavity feedback, this means

specifically that the fluctuations in intracavity intensity should be dominated by photon

shot noise. The requirement for conditional squeezing additionally encompasses detecting

the transmitted light with high quantum efficiency and minimal technical noise. Even for

deterministic squeezing, a sensitive spin measurement is essential to detecting the prepared

states and thereby benefiting from the squeezing. Thus, a crucial step in any spin squeezing

endeavor is a detailed evaluation and optimization of the measurement sensitivity.
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To characterize the sensitivity of our spin measurement, we begin by evaluating its

variance in the absence of atoms as a function of the transmitted probe photon number p.

Figure 4-4 shows this atom-free measurement variance for probing either with (green) or

without (black) a compensation sideband. Each is well described by a model

∆M2
QND = b−2p

−2 + b−1p
−1 + b0p

0 (4.4)

allowing for three noise contributions: electronic noise of the detector scaling as ∆M2 ∝ p−2;

photon shot noise and avalanche excess noise scaling as ∆M2 ∝ p−1; and laser frequency

noise that is independent of photon number. We quantify these contributions as follows:� Photon shot noise and avalanche excess noise: To calculate the photocurrent

noise due to the probe and compensation light, we take into account both the shot

noise of the light detected with a quantum efficiency Q = 0.43(4) and the excess noise

factor fAPD = 1.9(4) of the avalanche photodiode operated at a gain of 13 [78]. For

probing with a single sideband, we obtain b−1 = (fAPD/Q)(κ/2)2/Ω2 = 1.4(3) × 108;

the compensation sideband doubles b−1.� Electronic noise: From a fit to the noise measured in the absence of atoms (open

green squares in Fig. 4-4) in which we constrain the coefficient b−1 to the value calcu-

lated above, we obtain an electronic noise contribution b−2 = 1.5(3) × 1013, most of

which is attributable to the Johnson noise of the transimpedance gain resistor in the

photodetection circuit.� Laser frequency jitter: In the presence of the compensation sideband, the data

are well fit by assuming no contribution from laser frequency jitter, b0 = 0. Without

the compensation sideband, based on the laser frequency fluctuations Sω = 6(2) ×
10−10(κ/2)2/Hz (see App. A) in the frequency band of interest (∼ 1 − 10 kHz), we

expect a contribution b0 = BSω/Ω
2 = 100(30), where B = 1/(2T ) = 5 kHz is the

bandwidth of the measurement. A fit to the black circles in Fig. 4-4 agrees, yielding

b0 = 103(7).

In the ideal case where the measurement does not change the atomic state, ∆M2
QND

would represent the imprecision of our measurement of Sz. In reality, however, the mea-

surement can change Sz via Raman scattering or infidelity of the microwave pulses used for

the spin echo. While ∆M2
QND dictates how precisely we can determine the average value

of Sz over the course of the measurement, our ability to characterize a quantum state rests

on our ability to determine Sz at a specific point in time. We quantify the imprecision of

our spin measurement by performing two successive measurements M1, M2, in the presence

of atoms initiated in a CSS with 〈Sz〉 = 0, and evaluating [∆M2]Sz ≡ Var(M1 −M2)/2 to

assess how well the two measurements agree. Provided that the measurements are identical

and their noise is uncorrelated, this spin measurement variance reflects the imprecision of
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Figure 4-4: Atom-free measurement variance ∆M2
QND: comparison of observed noise,

either with (green) or without (black) compensation sideband, with the model of Eq. 4.4.
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our determination of Sz in the state at the end of the first measurement (and, equivalently,

the beginning of the second).

Figure 4-5 shows the spin measurement variance [∆M2]Sz = Var(M1 − M2)/2, as a

function of the number of photons p0 used in each measurement, for measurements either

without atoms (open green squares) or with 2S = 3.3(2)× 104 atoms (solid blue diamonds)

prepared in a CSS along x̂. All data in Fig. 4-5 were obtained with a compensation

sideband; similar data without the compensation sideband are presented in the thesis of

Ian Leroux [12]. The variance observed without atoms follow the same curve (green) used

to model the single-pulse variance ∆M2
QND in Fig. 4-4, confirming that the noise of the

two measurements is uncorrelated. The variance observed with atoms is consistent with a

model [∆M2]Sz = b−2p
−2 + b−1p

−1 + b0p
0 + b1p

1, where the coefficients b−2 and b−1 are

as given above; the coefficient b0 is modified to include atom-related technical noise that is

independent of photon number, including the effects of imperfect microwave rotations in the

spin echo procedure; and the final term describes noise due to photon (Raman) scattering,

[∆M2]Sz ∝ p. The known atom-dependent noise contributions are quantified as follows:� Microwave infidelity: The π̃ pulse used in the spin echo produces 98(1)% inversion.

We model the imperfect π̃ pulse as a perfect one combined with an incoherent process

that flips on average µ = 2(1)% of the spins, yielding b0,µ = µS/2. We treat the errors

as incoherent because the atomic phase is inhomogeneously broadened by (φ0/2)p =

1.3×10−4p radians when the microwaves are applied. At the optimum photon number

p = 3 × 105 for squeezing by measurement, the Ramsey contrast remaining after a

single probe pulse is only 10(3)% (see Fig. 2-3).� Raman scattering: In our system, the probability of a Raman scattering event

is PRam = 5.6 × 10−8 per probe photon transmitted through the resonator. This

value, calculated including the full excited-state and ground-state hyperfine structures,

includes probabilities PRam = P∆F + P∆mF
+ P∆F∆mF

corresponding to three types

of scattering events: those which change F but not mF , those which change mF

but not F , and those which change both F and mF , respectively. To first order in

these probabilities, the total contribution of Raman scattering to the measurement

variance (see App. C and Ref. [79]) is b1 = (4/3P∆F + 1/2P∆mF
+ 1/3P∆F∆mF

)N =

4.7 × 10−8S/2 per probe photon.

Figure 4-5 shows a fit of the above model (solid blue curve) to the observed measurement

variance in atom number units, 4[∆M2]Sz , at N = 3.3(2)×104 and variable photon number

p (solid blue diamonds). We fix the noise contributions enumerated above and leave free

a term b0,tech to account for any additional technical noise that is independent of probe

photon number. With this single free parameter b0,tech = 350(100) = 0.04(1)S/2, the

data show good agreement with our noise model. We no longer observe the extra noise

b0,tech in the upgraded probing scheme adopted subsequent to our measurement squeezing

experiments [12].
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Figure 4-5: Comparison of observed variances with noise model. Shown as a function of
probe photon number p are the measurement variance in atom number units, [∆M2]Sz =
Var(M1 −M2)/2, with (solid blue diamonds) and without (open green squares) atoms; and
the variance Var(M1) with atoms (open red circles), which includes the CSS projection
noise. Curves correspond to the noise model described in the text.
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In addition, we plot the variance Var(M1) of a single measurement performed on the

CSS (open red circles in Fig. 4-5), which includes the CSS projection noise. These data are

consistent with a model Var(M1) = b−2/p
2+b−1/p+b0,tech/prep+(1−µ−[2P∆F/3+P∆mF

/2+

2P∆F∆mF
/3]p)S/2 (see App. C and Ref. [79]), where we fit the term b0,tech/prep = 0.14(7)S/2

to allow for technical noise in the state preparation but constrain all other parameters to

the values given above.
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Chapter 5

Squeezing by Quantum

Nondemolition Measurement

Quantum mechanics tells us that, whenever a person measures some property
of an electron (or of any other object in the microworld), his measurement in-
evitably will disturb the electron in a somewhat unpredictable way. The more
accurate the measurement, the bigger and more unpredictable the disturbance.
The disturbance is not due to the person’s incompetence; rather, it is an intrin-
sic and inevitable feature of the laws of quantum mechanics.
—V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum Nondemolition
Measurements” [80]

Only a select class of measurements is capable even in principle of surpassing the stan-

dard quantum limit (SQL). Every measurement has a backaction that serves to enforce

the Heisenberg bound on uncertainty products ∆Â∆B̂ ≥ |〈[Â, B̂]〉|/2 of non-commuting

observables Â and B̂, so that a very precise measurement of Â—on the scale of the SQL—

necessarily perturbs some other variable(s) B̂. Care must therefore be taken to ensure that

“what happens to B̂ stays in B̂” without affecting the subsequent evolution of Â, in order

for the measurement result to remain valid. In particular, producing conditional squeezing

requires a measurement after which the system remains in a state corresponding to the

measurement outcome: a quantum non-demolition (QND) measurement [80,81].

Our Hamiltonian (recalling Eq. 2.3)

Hsys = ~ωcc
†c+ ~Ωc†cSz + ~ωSz (5.1)

has two important features that allow for a QND measurement of Sz. First, the interaction

term ∝ c†cSz provides a mechanism for transferring information about Sz to the probe light.

Second, all terms in Hsys commute with Sz, so that neither the measurement itself nor the

subsequent free evolution changes Sz. As discussed in Ch. 2, however, this Hamiltonian is

idealized in that it does not include the effects of spontaneous emission from the excited state
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used for probing. In actual fact, Sz-changing Raman scattering events place a fundamental

limit on how far the measurement precision can exceed the SQL. In Sec. 5.1, I shall show

that this fundamental limit is set by the optical depth of the atomic sample, so that the large

optical depth achievable in an optical cavity enables measurements far below the standard

quantum limit.

Sections 5.2-5.5 describe our experimental demonstration of conditional squeezing, which

relies not only on performing a QND measurement of Sz with sensitivity below the SQL but

also on preserving the coherence of the spin state. We achieve 3.0(8) dB of spin squeezing

by QND measurement.

5.1 Theory

In squeezing by measurement, the reduction in spin fluctuations is conditional. The un-

conditional fluctuations in Sz after a QND measurement—which, by definition, does not

alter Sz—are the same as they were in the initial uncorrelated state. Yet conditioned on

the measurement outcome M , the expectation value 〈Sz〉M is altered and the uncertainty

[∆S2
z ]M is reduced. I shall specifically use M to denote an estimate of Sz based on its

effect on the probe (perhaps indirectly, e.g., via a detected photocurrent) without recourse

to any prior knowledge of Sz. The conditional expectation value 〈Sz〉M , on the other hand,

represents the best prediction of Sz based not only on the probing but also on any prior

knowledge of Sz given the initial state (e.g., a CSS with 〈Sz〉 = 0). This prediction is a

weighted average 〈Sz〉M = wM+(1−w) 〈Sz〉 of the measurement outcome and the uncondi-

tional mean 〈Sz〉, where w = Cov(M,Sz)/Var(M) is the weight that minimizes the variance

[∆S2
z ]M = Var(wM + (1 − w) 〈Sz〉 − Sz) of the difference between the prediction and the

actual value of Sz.
1 Using this optimal weighting, one obtains the conditional variance

[∆S2
z ]M =

Var(M)Var(Sz)− Cov(M,Sz)
2

Var(M)
. (5.2)

Note that Eq. 5.2 is quite general; in particular, Sz and M could be replaced by any two

linearly related commuting observables. By considering the equivalent of Eq. 5.2 with Sz

and M interchanged, we obtain a useful relation

[∆S2
z ]M =

Var(Sz)

Var(M)
[∆M2]Sz (5.3)

between the conditional variance [∆S2
z ]M of Sz and the fluctuations [∆M2]Sz in the mea-

surement outcome at fixed Sz—i.e., the measurement imprecision.

To interpretM as a spin measurement and [∆M2]Sz as its imprecision in spin units, one

must assume not only that M scales linearly in Sz but also that the scale-factor is unity,

1I use the notation Var(·) and Cov(·, ·) to denote expressly unconditional variances and covariances.
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i.e., 〈M〉Sz
= Sz. This condition can always be satisfied by an appropriate definition of M

in terms of the detected observable. The resulting relation Var(M) = Var(Sz) + [∆M2]Sz

allows us to express the conditional variance of Sz in a more intuitive form using Eq. 5.3:

[∆S2
z ]M =

Var(Sz)[∆M
2]Sz

Var(Sz) + [∆M2]Sz

. (5.4)

In the limit [∆M2]Sz ≫ Var(Sz) of a weak measurement, the uncertainty in Sz is still set

by the unconditional spin variance Var(Sz) of the input state; whereas in the opposite limit

[∆M2]Sz ≪ Var(Sz), the conditional variance [∆S2
z ]M is simply set by the measurement

imprecision [∆M2]Sz .

Let us apply these relations to determine the conditional noise reduction attainable by an

optimal QND measurement of Sz via the cavity transmission. For detection at the photon

shot noise limit, with perfect quantum efficiency, the measurement imprecision [∆M2]Sz

depends only on the number of transmitted photons p and on the relation between the

cavity transmission and Sz. Provided that the atom-induced cavity shifts δωc = ΩSz are

small compared to the cavity linewidth (Ω
√

S/2 ≪ κ), we have |dp/dSz | = ϕp0, where

ϕ = 2Ω/κ and p0 is the mean transmitted photon number at the optimum probe-cavity

detuning δ = κ/2. Assuming the input field to be in a coherent state,2 [∆p2]Sz = p0. The

measurement imprecision is then given by

[∆M2]psnSz
=

[∆p2]Sz

|dp/dSz|2
=

1

p0ϕ2
. (5.5)

Assuming the measurement to be performed on a coherent spin state in the xy plane, so

that Var(Sz) = ∆S2
zCSS = S/2, we obtain via Eq. 5.4 a normalized conditional spin noise

σ2 ≡ [∆S2
z ]M1

∆S2
zCSS

=
2

2 +Q
, (5.6)

where Q ≡ Sp0ϕ
2.

The parameter Q governing the degree of spin noise reduction is directly proportional

to the number of photons scattered into the cavity during the measurement. This can be

seen from the relations in Sec. 2.5, which yield Q = NηΓscT , where Γsc is the single-atom

scattering rate into free space and T the total time for which the probe light is applied.

Significantly, the relationship between Q and Γsc is independent of the probe-atom detuning

∆, so that detrimental effects of scattering cannot be ignored at any detuning. How far one

can reduce the spin noise before being thwarted by scattering depends only on the collective

cooperativity Nη (resonant optical depth 2Nη).

In particular, the main limitation on squeezing is imposed by Raman scattering [55,56,

2For a given (constant) Sz, the output field is then also in a coherent state because the cavity response
is linear.
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64]. By changing the atomic state over the course of the measurement, Raman scattering

reduces the correlation between the measurement outcome and the actual value of Szf of

Sz at the end of the measurement, which characterizes the final state. As I show in App.

C, the difference between Szf and the average value Sz over the course of the measurement

fluctuates as
Var(Szf − Sz)

∆S2
zCSS

≈ 4

3
ρΓscT =

4ρQ

3Nη
, (5.7)

where Sz represents the average value of Sz during the measurement and ρ represents the

fraction of all scattering events that change the atomic state. (In an idealized three-level

scheme, ρ = 1/2.) In the limit Q ≫ 1 of interest for squeezing, the normalized spin noise

conditioned on the measurement is then

σ2scatt ≈
2

Q
+

4ρQ

3Nη
≥ 4

√

2ρ

3Nη
, (5.8)

where the minimum noise is reached at an optimum measurement strengthQ =
√

3Nη/(2ρ).

In our experiment, where a fraction ρ = 1/3 of all scattering events are Raman scattering

events, at a typical collective cooperativity Nη = 3000 Eq. 5.8 predicts 15 dB of spin

squeezing.

5.2 Experimental Setup

The essential features of our experimental setup have been described in Ch. 3. The probe

light is placed at a detuning ∆ = 3.57(1) GHz from the F = 2 → F ′ = 3 transition and

is accompanied by a compensation sideband (see Sec. 3.4), placed on the opposite slope of

a cavity mode 25 GHz from F = 2 → F ′ = 3 transition, to reduce the sensitivity of the

total cavity transmission to laser frequency noise. The differential shift δωc − δω′
c of the

probe and compensation modes is directly proportional to Sz and independent of total atom

number. Accounting for the full excited-state hyperfine structure and the inhomogeneous

coupling to the probe mode, including the effect of a radial cloud size σr = 8(1) µm ≪ w,

we calculate (δωc − δω′
c)/(2π) = Sz × 89(3) Hz.

In a typical experiment (Fig. 5-1), after initializing the ensemble spin state by optical

pumping (see App. B) into |↓〉 = |F = 1,mF = 0〉 (A) and applying a π/2 microwave pulse

to rotate the CSS into an equal superposition of |↓〉 and |↑〉 = |F = 2,mF = 0〉 (B), we

perform two measurements M1 and M2 to induce and verify conditional spin squeezing.

Each measurement uses the spin-echo technique described in Sec. 4.4 to minimize probe-

induced dephasing. We quantify spin noise ∆S2
z by extracting variances from 100 repetitions

of such a sequence.
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Figure 5-1: Timing of probe pulses (solid line) and microwave pulses (dashed line) in prepa-
ration and readout of a squeezed state. Also shown are semiclassical probability distri-
butions on the Bloch sphere depicting the coherent spin states (A-B) and conditionally
squeezed state C described in the text.

5.3 Conditional Spin Noise

Essential to quantifying spin squeezing is an accurate calibration of the coherent spin state

projection noise. We determine the CSS projection noise level ∆S2
zCSS = S/2 directly

from the measured effective atom number N = 2S, as our detailed understanding of the

atom-cavity coupling (see Secs. 2.3-2.4) gives us a reliable measure of N (see Sec. 4.2).

We verify our understanding of the CSS projection noise either by evaluating the variance

Var(M1) of the set of single measurements M1; or by inserting between two measurements

M̃1 and M̃2 a second CSS preparation, consisting of optical pumping into state |↓〉 and a π/2

pulse, and evaluating Var(M̃1−M̃2)/2. Fig. 5-2 shows the dependence of the corresponding

quantities v1 = Var(M1) (open triangles) or v2 = Var(M̃1 − M̃2)/2 (open circles) on S.

For an ideal CSS preparation, one expects the linear scaling v1,2 = a0 + S/2 indicated

by the dashed red line, where a0 is an offset associated with the measurement uncertainty.

However, technical noise—e.g., due to microwave power fluctuations or any sensitivity of the

measurement to fluctuations in total atom number—can add to v1,2 a contribution which

generically scales quadratically in atom number. The data are well fit by a quadratic model

v1,2 = a0 + a1S + a2S
2 (solid curve), where we constrain the linear slope a1 = 1/2 and find

a small technical noise contribution a2S
2 < ∆S2

zCSS with a2 = 9(3) × 10−6. Slow drifts

in microwave power of 0.4% over the set of measurements could account for the technical

noise of v1, which vanishes if the data are analyzed by comparing only adjacent cycles of
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Figure 5-2: Spin noise measurements (see text): v1 = Var(M1) for a single CSS preparation
(open triangles), v2 = Var(M̃1−M̃2)/2 for two independently prepared CSSs (open circles),
and [∆M2]Sz = Var(M1−M2)/2 for two measurements after a single CSS preparation (solid
diamonds), all in units of atom number. Vertical error bars are statistical; horizontal error
bars indicate standard deviation of measured atom numbers. The dashed line indicates the
projection noise ∆S2

zCSS = S/2 calculated from the measured atom number 2S. The solid
line is the quadratic fit with a2 = 9× 10−6, as described in the text.

the experiment.3 Our ability to prepare an initial unentangled state close to a CSS—with

Sz variance ∆S2
zprep ∼ 1.3S/2 for our largest atom number—is not a prerequisite for spin

squeezing but does provide independent confirmation of the CSS reference level for spin noise

measurements. We emphasize that, in quantifying spin squeezing below, we normalize to

the actual CSS noise ∆S2
zCSS = S/2 as obtained from our cavity parameters (dashed line),

not to the 30% larger slope of the unconstrained quadratic fit to v1,2.

To prepare a state with (conditionally) reduced ∆S2
z (Fig. 5-1C), we simply measure

Sz for a CSS on the x-axis with a transmitted photon number p ≈ 5 × 105 sufficient to

resolve Sz beyond the CSS variance. Each such measurement M1 yields a value of Sz

3This alternative analysis, in which we compare each measurement M1 with the value Mprec
1 in the

preceding experiment cycle, yields a fit Var(M1 −Mprec
1 )/2 = 660(100) + 0.95(23)S/2 + 1(9) × 10−6S2, i.e.

a result consistent with no contribution from the quadratic term. The variance v2 = Var(M̃2 − M̃1)/2 in
Fig. 5-2 (open circles) is immune to slow drifts in microwave power. However, long after completing these
experiments, we discovered that the state preparation preceding the measurement M̃2 was compromised by
an effect of leakage light during that preparation, which may account for the small technical noise observed
in v2.
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that is random but known, as verified by a readout measurement M2. Provided that Sz

is not altered appreciably by M1 (or in between the two measurements), and provided

the measurements M1,M2 are identical and uncorrelated, [∆M2]Sz ≡ Var(M1 − M2)/2

represents the uncertainty of any single such measurement. We plot [∆M2]Sz vs. S in

Fig. 5-2 (solid blue diamonds), finding it a factor of 2 above the photocurrent noise level,

with very weak dependence on atom number, and well below the CSS level. The variance

[∆M2]Sz is consistent with the noise model described and experimentally verified in Sec. 4.5,

which establishes that the two identical measurements are indeed to a good approximation

non-demolishing and uncorrelated at p ≈ 5×105. (At this photon number, spin flips induced

by free-space scattering contribute at most 3.1(3)% of CSS projection noise to [∆M2]Sz ;

while negligible compared to the CSS level, this contribution can explain part of the small

remaining variance of M1 −M2.)

In terms of the single-measurement uncertainty [∆M2]Sz , the conditional variance of the

state after measurementM1 is given by Eq. 5.4 as [∆S2
z ]M1

= ∆S2
zprep[∆M

2]Sz/(∆S
2
z prep+

[∆M2]Sz). Here ∆S2
zprep ≡ Var(M1)− [∆M2]Sz represents the variance of the state prepa-

ration process—close to, but above, the CSS value. Information gained in the measurement

M1 reduces the conditional variance from ∆S2
zprep to a level that approaches the measure-

ment imprecision [∆M2]Sz in the limit [∆M2]Sz ≪ ∆S2
zprep. At N0 = 3.3(2) × 104 and

p = 6 × 105, we observe a normalized spin noise σ2 ≡ [∆S2
z ]M1

/∆S2
zCSS = −9.1(8) dB

(plotted in Fig. 5-4 below). A slight correction for the effect of photon scattering (see App.

C.2) yields σ2 = −8.8(8) dB.

The reduction of [∆S2
z ]M1

below the CSS value ∆S2
zCSS is accompanied by an increase

in ∆S2
y that is ∼ 20 dB larger than required by the Heisenberg relation ∆S2

y [∆S
2
z ]M1

≥
[~ |〈Sx〉| /2]2. As the fluctuations ∆S2

y are well described by the cavity feedback model

presented in Ch. 6, I will quantify and discuss them in that context.

5.4 Coherence

To verify spin squeezing, we need to measure not only noise but also the signal size |〈Sx〉|,
observable as the interference contrast C = |〈Sx〉| /S of Rabi oscillations driven subsequent

to the squeezing measurement M1. We measure C at an atom number N = 4.0(1) × 103

by applying a microwave rotation about ŷ, of variable duration, between the measurements

M1 and M2 (during which time both the probe light and the resonator locking light are

off). Figure 5− 3 shows the Rabi oscillations as detected by the readout measurement M2

of Sz, for various probe photon numbers p applied during M1. The contrast as a function

of photon number p is summarized in Fig. 5-4 below.

We observe a contrast loss that is linear in probe photon number p, as well as a process

that imparts shot-to-shot phase fluctuations (via imbalances in the intracavity probe power

between the two spin echo pulses) and yields a reduction in |〈Sx〉| that is quadratic in p.
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to probe photon numbers between p = 105 and p = 9× 105.
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We therefore fit to the data in Fig. 5-4 the expression C = C0 exp(−αp− βp2/2), obtaining

α = 7(1) × 10−7, β = 9(4)× 10−13, and C0 = 0.69(1).

The contrast measurement is performed at a relatively low atom number for two reasons.

First, at large atom number, atom projection noise augments the imbalances in intracavity

probe power between the spin echo pulses and thus augments the resulting phase fluctu-

ations; this effect can in principle be compensated using the result of the squeezing mea-

surement. (Alternatively, one can take advantage of this effect to perform cavity feedback

squeezing: see Ch. 6.) Second, at lower atom number, the entire Rabi oscillation curve is in

the linear regime of the Lorentzian resonator transmission profile. A method of measuring

contrast at large atom number in spite of the non-linear transmission signal, which we have

applied in more recent experiments, is described in the thesis of Ian Leroux [12].

5.5 Conditional Squeezing

Figure 5-4 shows both the contrast C (gray squares) and the normalized spin noise σ2 =

[∆S2
z ]M1

/∆S2
zCSS (blue diamonds) as a function of photon number p used in the state-
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preparation measurement M1. Also shown are a fit to σ2 (dotted blue curve), based on the

noise model in Sec. 4.5, and the fit to the contrast described in Sec. 5.4 above (dotted gray

curve). The combination of these two datasets allows us to quantify the angular sensitivity of

the state prepared byM1 with p probe photons as ∆θ
2(p) = [∆S2

z ]M1
/ |〈Sx〉|2 = σ2/(2SC2).

The red triangles show the ratio ζ0 ≡ ∆θ2(p)/∆θ20, where ∆θ20 = 1/(2S0) represents the

projection-noise-limited sensitivity of a CSS with the spin length S0 = SC(0) obtained when

no probe light is applied. The angular sensitivity initially improves with photon number—

as indicated by a decrease in ζ0—until reaching an optimum ζ−1
0 = 3.0(8) dB improvement

in signal-to-noise ratio, conditioned on a measurement with p = 3× 105 probe photons.

If the unentangled reference state at p = 0 is maximally coherent (S0 = S), then the

condition ζ0 < 1 is precisely the Wineland criterion for spin squeezing introduced in Sec.

1.3. Otherwise, ζ0 < 1 still demonstrates a gain for metrology, but the attribution of this

gain to spin squeezing—i.e., to non-classical spin correlations—requires some knowledge

of how the measurement can or cannot change the atomic state. Provided M1 does not

increase the classical spin correlations in the xy plane, then it cannot reduce ζ0 ∝ ∆θ2(p)

without introducing entanglement (e.g., non-classical correlations along ẑ). This can be

seen from the relation

∆θ2 ≡ ∆S2
z

〈Sx〉2 + 〈Sy〉2
= 1−

∑

i 6=j

(

〈

six
〉

〈

sjx
〉

+
〈

siy
〉

〈

sjy
〉)

〈Sx〉2 + 〈Sy〉2
, (5.9)

for an unentangled ensemble where the individual particles have spin s = 1/2. For simplicity,

I have assumed uniform coupling S =
∑

i si in writing the spin correlation term cxy =
∑

i 6=j(
〈

six
〉

〈

sjx
〉

+
〈

siy
〉

〈

sjy
〉

)/(〈Sx〉2 + 〈Sy〉2), but the expression readily generalizes to the

case of inhomogeneous coupling. Generally, of course, the probe light tends to reduce cxy

(i.e., to cause dephasing), not to increase it. More particularly, in order to produce the

net reduction in contrast C that we observe with increasing p, any measurement-induced

increase in cxy (rephasing) would have to conspire with coherent rotations about x̂ or ŷ to

reduce C by rotating spins out of the xy plane (in some way that depends on p). The only

mechanism for coherent rotation is the π̃ pulse we apply for spin echo during M1, and its

98(1)% fidelity (see Secs. 4.4) ensures that it has no appreciable effect on the spins’ polar

angles. Therefore, our contrast data establish that cxy, like C, decreases monotonically

with photon number p, so that only entanglement can account for the reduction in ζ0 by

our measurement M1. This confirms that we have demonstrated ζ−1
0 = 3.0(8) dB of spin

squeezing by QND measurement.

We can further verify the squeezing using the black-box Wineland criterion (Eq. 1.3).

Comparing the sensitivity ∆θ2(p) with the best sensitivity ∆θ2 = 1/N achievable with N

uncorrelated atoms results in a Wineland parameter ζ = N∆θ2(p), and at p = 3 × 105

we achieve ζ = 0.7(1), corresponding to ζ−1 = 1.5 dB of spin squeezing by this strictest

measure. The 1.5 dB difference between ζ0 and ζ in our system is primarily due to the
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resonator locking light, an effect that we have since reduced (see Secs. 3.4 and 6.2-6.3) by

detuning the locking light further from atomic resonance.

5.6 Outlook

Comparing the normalized spin noise σ2 in Fig. 5-4 (blue diamonds) with the ideal per-

formance σ2 ≈ 2/Q predicted by Eq. 5.6 shows that there is still substantial room for

improvement in the noise reduction we attain at fixed measurement strength Q. One direc-

tion for improvement is to remove the compensation sideband (to avoid its extra shot noise)

and probe closer to atomic resonance to increase the ratio of atom-induced cavity shifts to

laser frequency noise. In addition, replacing the side-of-slope transmission measurement

with a phase measurement on resonance would yield both practical and fundamental im-

provements. Practically, such a phase measurement can eliminate the need for avalanche

gain in the photodetection (and the accompanying excess noise), as it is performed by

mixing the weak probe light with a strong carrier. Fundamentally, the photon-shot-noise-

limited scaling improves on cavity resonance to σ2 = 1/(1 + Q)—where Q = NηΓscT as

before—since the full cavity enhancement factor is only attained on cavity resonance. In

addition, by eliminating cavity-feedback-induced phase fluctuations (see Ch. 6), a measure-

ment performed on cavity resonance can more easily achieve an uncertainty area ∆Sy∆Sz

close to the Heisenberg bound.

Even with our current measurement performance, a simple avenue for improvement is to

increase the atom number, which has so far been limited by purely technical considerations

(specifically, fear of exhausting a long-serving getter source of 87Rb). In a cavity-based

setup similar to ours, Chen et al. have recently demonstrated spin squeezing with 7 × 105

atoms [8]. Using a comparable number of atoms in our system, at fixed resolution of our

QND measurement, we could hope to realize the compounded benefits of greater absolute

angular sensitivity at the standard quantum limit and an ∼ 8 dB enhancement of that

sensitivity by conditional spin squeezing.
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Chapter 6

Cavity Feedback Squeezing

Although realistic physical schemes are yet to be found, these nonlinear Hamil-
tonians will provide some clues in the search for squeezed atomic states.
—M. Kitagawa and M. Ueda, “Squeezed spin states”

In their seminal proposal of spin squeezing, Kitagawa and Ueda [2] pointed out that

a coherent spin state can evolve into a squeezed state under the action of a Hamiltonian

that is nonlinear in the spin operators. Whereas the linear, non-interacting Hamiltonian

H = ~ωSz simply generates a precession about the z axis at the rate ω, the “one-axis

twisting” Hamiltonian H ∝ S2
z causes a precession about the z axis at a rate proportional

to Sz. This twisting distorts an initial coherent spin state (CSS) oriented along x̂ into a

state that is squeezed along an oblique axis, as illustrated in Fig. 6-1. One demonstrated

approach to realizing one-axis twisting dynamics in an atomic ensemble [37–39] is by state-

dependent collisional interactions in a Bose-Einstein condensate [32]. Here, I show that

similar dynamics can be achieved without direct interatomic interactions by harnessing the

collective interaction of an ensemble with a driven cavity mode.

Already in our usual probing scheme (Fig. 2.1), with a laser tuned to the slope of a

cavity resonance whose frequency is shifted in opposite ways by atoms in |↑〉 and |↓〉, the
intracavity intensity depends linearly on Sz. Since the intracavity light produces an AC

Stark shift of the transition frequency ω, the precession rate on the Bloch sphere likewise

depends linearly on Sz, as in the one-axis twisting described above. If the intracavity light

is in a Fock state [12], the dynamics are precisely those of the S2
z Hamiltonian. In the most

straightforward experimental implementation, however, the intracavity field is in a coherent

state, and so the spin evolution is modified by the photon shot noise of the intracavity light.

The resulting modified one-axis twisting dynamics nevertheless allow substantial squeezing,

as I demonstrate both theoretically (Sec. 6.1) and experimentally (Sec. 6.2) below.
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Figure 6-1: Cavity feedback squeezing: a probe laser (blue) is tuned (as in Fig. 2.1)
to produce a differential light shift between two atomic states, described by a Hamiltonian
H ∝ c†cSz. With the laser tuned to the slope of the cavity resonance, so that the intracavity
photon number c†c depends linearly on Sz, this results in a spin evolution similar to that of
the one-axis twisting Hamiltonian H ∝ S2

z . Shown are calculated Wigner quasiprobability
distributions for a spin S = 30 prepared initially in a coherent spin state (left) and evolving
either by the true one-axis twisting Hamiltonian (center) or by cavity feedback (right).
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6.1 Theory

Let us derive the theory of cavity feedback squeezing in the idealized three-level system first

introduced in Sec. 2.1. There, we arrived at a Hamiltonian

Hsys = ~ωcc
†c+ ~Ωc†cSz + ~ωSz, (6.1)

for the dynamics of the ensemble spin vector S interacting with the cavity mode containing

c†c photons. The second term produces the shift ΩSz of the cavity resonance that allows

squeezing by QND measurement. Yet the same interaction also produces a shift Ωc†c of the

atomic transition frequency (between ground states |↓〉 and |↑〉) in proportion to intracavity

photon number c†c. In combination, the two facets of this interaction—i.e., the action of

the atoms on the light via their state-dependent refractive index and the back-action of

the light on the atoms via the ac Stark shift—provide the mechanism for cavity feedback

squeezing.

The cavity feedback dynamics can conveniently be analyzed in the Heisenberg picture

by evaluating the time-evolution of moments of the spin operators. Causality requires that
[

c(†)(t),S(t)
]

= 0 [82,83], i.e., spin operators commute with field operators at equal times.

It follows that Sz is a constant of the motion, while the evolution of an arbitrary spin

operator A is given by

dA

dt
=

i

~
[Hsys, A] = i

(

ω +Ωc†c
)

[Sz, A] . (6.2)

The cavity annihilation operator c evolves not only according to Hsys but also according

to its coupling to a bath of modes outside the cavity. The latter can be described by the

standard input-output formalism of quantum optics [82, 83], resulting in an equation of

motion

ċ =
(

−κ
2
− iωc − iΩSz

)

c+
√
κcin, (6.3)

where the annihilation operator cin can represent either a single input mode of a one-sided

cavity or, in the case relevant to our experiments, a superposition cin = (cin1 + cin2)/
√
2 of

the annihilation operators cin1, cin2 for the input fields from two sides of a symmetric cavity

(Fig. 6-1). Since Sz is constant, the only atomic effect on the evolution of c is the static

shift ΩSz of the cavity resonance frequency. For a monochromatic input field in a coherent

state |β〉 at frequency ωL, satisfying cin(t) |β〉 = e−iωLtβ |β〉, the action of the annihilation

operator c on the field state thus takes the simple form:

c |β〉 = √
κχ(Sz)e

−iωtβ |β〉 , (6.4)

where χ(Sz) = [κ/2 − i(ωL − ωc − ΩSz)]
−1 represents the Sz-dependent response function

of the cavity. The state |β〉 in practice will consist of a coherent state incident from one
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side of the cavity, i.e., cin1(t) |β〉 =
√
2e−iωLtβ |β〉 and cin2(t) |β〉 = 0. The assumption

of a monochromatic field is germane because we wish to resolve the cavity line. Specifi-

cally, we will choose the laser-cavity detuning ωL − ωc = κ/2 to maximize the dependence

|χ|−2 d |χ|2 /dSz of the cavity response on Sz. To allow the monochromaticity condition to

be satisfied, we will always consider interaction times t ≫ κ−1 and assume the light to be

turned on adiabatically.

The Sz-dependent cavity response entangles the light with the atoms, so that the spin

dynamics alone are non-unitary. Nevertheless, we can obtain equations of motion for the

spin subsystem by performing a partial trace over the field state:

d〈A〉β
dt

≡ d〈β|A |β〉
dt

=
i

~
〈β| [Hsys, A] |β〉 . (6.5)

We are interested in the evolution of an atomic system prepared initially in a CSS |ψ0〉
along the x axis, satisfying Sx(0) |ψ0〉 = S |ψ0〉. Since we wish to obtain a shearing of the

CSS uncertainty region and not a more complex distortion, we require that the projection-

noise-induced fluctuations in the cavity shift are sufficiently small as to be converted linearly

into fluctuations in intracavity intensity, i.e., Ω
√

S/2 ≪ κ. The resulting atomic phase is

described by the spin raising operator S+, whose moments Sq
+ (for whole numbers q) evolve

according to Eq. 6.5 as
d
〈

Sq
+

〉

β

dt
= iqΩ 〈β| c†Sq

+c |β〉 , (6.6)

where I have positioned the field operators (which commute with S+) so that we can apply

Eq. 6.4 to obtain
d
〈

Sq
+

〉

β

dt
= ifq(Sz)〈Sq

+〉β , (6.7)

where

fq(Sz) = ω + q
Ω

κ
|β|2 (1 + q(i− 1)Ω/κ+ 2(Ω/κ)Sz) , (6.8)

to lowest order in (Ω/κ)Sz and for q .
√
S.

The phase evolution is most easily visualized in a rotating frame S̃+ ≡ S+(t)e
−iRe[f1(0)]t,

where the rotation rate Re[f1(0)] is set by the atomic transition frequency at the light

level corresponding to Sz = 0. It is now useful to recall the dimensionless parameter

Q = Spϕ2 defined in Sec. 5.1, proportional to the spin S, average photon number p = |β|2t/2
transmitted for Sz = 0 in the time t, and square of the differential atomic phase shift per

transmitted photon ϕ = 2Ω/κ≪ 1. In terms of Q and the initial spin operators S+(0) and

Sz, Eqs. 6.7–6.8 yield

〈S̃+〉β = e−Q/(2S)eiQSz/SS+(0), (6.9)

〈S̃2
+〉β = e−(2+i)Q/Se2iQSz/SS2

+(0). (6.10)

74



Equation 6.9 shows that the phase on the Bloch sphere evolves at an Sz-dependent rate

QSz/S: we indeed obtain the desired twisting about the z-axis. The twisting is accompanied

by a decay, evidencing the decoherence associated with discarding the light once it exits the

cavity.

Using Eqs. 6.9–6.10, together with generating functions derived in Ref. [30], we can eval-

uate various other spin expectation values of interest. In particular, ∆S2
z is unchanged, but

the Sz-dependent spin precession introduces correlations between Sy and Sz that describe

the shearing of the initial CSS uncertainty region:

〈S̃ySz + SzS̃y〉 = (2S2 − S)e−Q/(2S) sin

(

Q

2S

)

GS(Q/2), (6.11)

where GS(u) ≡ cos2S−1(u/S) is approximately a Gaussian GS(u) ≈ e−u2/S in the large-S

limit. At the same time, the variance of Sy grows as

∆S̃2
y =

S2

2
+
S

4
−

(

S2

2
− S

4

)

e−2Q/SGS(Q), (6.12)

which can be approximated—in the limit of a large ensemble (S ≫ 1) and small phase

|QSz/S| ∼ Q/
√
S ≪ 1—as

∆S̃2
y ≈ S

2

(

1 + 2Q+Q2
)

. (6.13)

Here, the first term represents the variance ∆S2
zCSS = S/2 of the initial CSS, while the

last represents the variance increase Q2∆S2
zCSS due to the feedback-induced twisting. The

middle term describes a variance increase QS ∝ p due to photon shot noise of the intracavity

light. This broadening can in principle be eliminated by replacing the coherent-state input

field with a Fock state (see Sec. 6.4). Already for the coherent-state field, though, the one-

axis twisting dominates over the dissipative effect of photon shot noise due to its stronger

scaling with Q.

We verify that the resulting spin state is squeezed by calculating the spin variance along

the z axis after rotation about the x axis by an angle −α:

∆S2
α =

1

2

(

V+ −
√

V 2
− +W 2 cos [2(α − α0)]

)

, (6.14)

where V± = ∆S̃2
y ±∆S2

z , W = 〈S̃ySz + SzS̃y〉, and tan 2α0 = W/V− are specified by Eqs.

6.11–6.12.

For moderate squeezing 1 ≪ Q2 ≪ S, the minimum and maximum variances, normal-

ized to the CSS variance, are σ2α0
≈ 2/Q and σ2α0+π/2 ≈ Q2, where σ2α ≡ ∆S2

α/(S/2). While

the antisqueezing increases as Q2 due to cavity feedback (Eq. 6.13), the minimum vari-

ance decreases only as Q−1 because of the fluctuations in spin precession angle resulting

from photon shot noise in the intracavity light. The phase fluctuations imparted by the
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photon shot noise constitute the back-action of an Sz-measurement that could in principle

be performed (as is done for conditional squeezing) by detecting the light leaking out of

the cavity. Ignoring the information in the outgoing light results in a growing uncertainty

product σα0
σα0+π/2 ≈

√
2Q.

For a given atom number 2S, the squeezing improves with photon number p until the

shearing in the yz-plane is impeded by the curvature of the Bloch sphere [2, 49]. Expand-

ing the minimum spin variance ∆S2
α0

to lowest order in the characteristic phase variance

Q2/(2S), we find σ2α0
≈ 2/Q + Q4/(24S2). The curvature of the Bloch sphere thus lim-

its the minimum uncertainty to σ2curv = (5/2)12−1/5S−2/5, reached at a shearing strength

Qcurv = 121/5S2/5. This is the same scaling with S as derived for an analogous feedback

squeezing scheme in free space (Takeuchi et al. [49]).

The squeezing also faces the usual competition with Raman scattering. The random spin

flips occurring at a rate Γsc/2 reduce the correlation between the time average Sz during the

squeezing, which determines the evolution of Sy, and the final value Sz(t) when the rotation

about the x-axis is performed. To account for the scattering, we replace Sz by Sz in Eqs.

6.9 and 6.10 and evaluate the modified variance ∆S̃2
y and covariance 〈S̃ySz(t) + Sz(t)S̃y〉

in the large-S limit using 2 〈Sz(t1)Sz(t2)〉 /S = e−Γsc|t1−t2| (see App. C). We apply Eq.

6.14 as before to calculate the minimum normalized variance σ2α0,η. To lowest order in the

number Γsct of scattered photons, and ignoring curvature effects for the moment,

σ2α0,η ≈
(

2

Q
+

Q

3Sη

)

. (6.15)

This is precisely the same behavior derived for squeezing by QND measurement (Eq. 5.8),

reaching an optimum value σ2α0,η =
√

8
3Sη at Qscatt =

√
6Sη.

Fig. 6-2 shows the minimum variance σ2α0,η as a function of shearing strength Q for

various values of the single-atom cooperativity η, calculated from the full expressions of

Eqs. 6.11–6.12 modified as described above to account for Raman scattering. Whether the

noise reduction is limited first by scattering or by the curvature of the Bloch sphere depends

strongly on η: the curvature limit is reached first for Sη5 & 1. Thus, already in a moderately

coupled cavity (η & 1), free-space scattering will generally not be the dominant limitation

on the feedback squeezing, and indeed Fig. 6-2 shows that for a total spin S = 104 there

is little to be gained by increasing η into the strong-coupling regime. Conversely, feedback

squeezing schemes in free space [49], where η ≪ 1, will generally be limited by scattering

rather than reaching the curvature limit.

6.2 Experimental Demonstration

To implement the proposed cavity feedback scheme, we tune the cavity mode 3.18 GHz

to the blue of the F = 2 → F ′ = 3 transition, where it incurs opposite shifts ±Ω/2 =
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Figure 6-2: Minimum normalized variance σ2α0,η as a function of shearing strength Q for
S = 104 and various single-atom cooperativities η = 0.001, 0.01, 0.1, 1 (solid lines). The
dashed line shows the limit σ2curv due to the curvature of the Bloch sphere when free-
space scattering is ignored. The dotted line shows the variance neglecting both free-space
scattering and curvature, scaling as 2/Q for Q≫ 1.

77



Microwaves

Probe light

Squeezing

Readout

500 µs

time

π~ π~
π
2

α

Sz

Sy
Sx

A B C D

Figure 6-3: Experiment sequence for cavity feedback squeezing and characterization of the
prepared state, as described in the text.

89(2) Hz/atom due to atoms in states |↑〉 = |F = 2,mF = 0〉 and |↓〉 = |F = 1,mF = 0〉. As
usual, we place the probe laser at a half-linewidth detuning δ = κ/2 from cavity resonance,

and whenever we apply probe light—both for squeezing and for state readout—we do so

with our standard two-pulse spin echo procedure (Sec. 4.4). While the spin echo undoes

the precession due to the average light level, it does not cancel the Sz-dependent precession

of interest (i.e., the shearing of the spin state) because the π̃ pulse changes the sign of Sz.

The squeezed-state preparation and readout sequence is illustrated in Fig. 6-3. It

begins, as usual, with optical pumping into |↓〉 (A) and preparation of a CSS along x̂ (B).

It further comprises two applications of probe light, the first at low intensity for coherence-

preserving squeezing, the second at high intensity for optimal state detection. A variable-

duration microwave rotation about 〈S〉 ∝ x̂ between squeezing and detection (C-D) allows

for readout of an arbitrary spin component in the yz-plane.1

To speed up the acquisition of data, we perform the sequence in Fig. 6-3 ten (10) times

with the same atoms after each cycle of MOT loading and polarization gradient cooling.

Over the course of the ten repetitions, the radial temperature increases by only ∼ 10%.

We demonstrate cavity feedback squeezing at fixed atom number 2S ≈ 3.2 × 104 for

various shearing parameters Q = Spϕ2 by varying the photon number 2×103 < p < 5×105.

To characterize the geometry of the prepared state, we rotate it by a variable angle α about

the mean spin vector 〈S〉 before performing the readout of Sz. The dependence of normalized

1Because a rotation is required to observe the squeezed quadrature, cavity feedback squeezing places
technical demands on phase stability that do not arise in measurement squeezing; but because the required
rotation is small, the demands are less strict than those for applying the squeezing in a clock, which I discuss
in detail in Ch. 7.
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spin noise σ2 = 2∆S2
z/S on α is shown in Fig. 6-4(a) for several representative shearing

parameters Q, and each data set is fit with a sinusoidal curve. Qualitatively, the curves can

be understood as follows: with increasing shearing, the angle of the major axis moves toward

the xy-plane, corresponding to a decreasing angle α0 at which the minimum variance occurs.

At the same time, the minimum variance σ2min decreases, while the maximum variance σ2max

grows. Since the data are plotted logarithmically, an area-preserving evolution would result

in curves symmetric about σ2 = 1. The observed asymmetry about σ2 = 1 is primarily

due to the phase broadening introduced by the photon shot noise of the intracavity light,

which results in an increase in the uncertainty product σ2minσ
2
max with increasing Q. In

addition, the minimum spin noise intrinsic to the prepared state is substantially augmented

by technical noise of the readout, independently measured to correspond to a normalized

spin variance σ2ro = 0.13(1).

Quantitatively as well as qualitatively, the data agree with the theoretical predictions

from Sec. 6.1, as Fig. 6-4(b) illustrates. The black dotted curves in Fig. 6-4(b) represent

the model of Sec. 6.1, showing the ideal Q-dependence of the minimum and maximum spin

variances σ2min/max and of the inclination angle α0. These follow the approximate scalings

σ2min ≈ 2/(2 + Q), σ2max ≈ 1 + 2Q + Q2, α0 ≈ 1/(2 + Q) until encountering the curvature

of the Bloch sphere at Qcurv ≈ 80. Extending the idealized model [12] to incorporate

independently calibrated technical imperfections in our system results in the solid curves;

these account for a reduction in the radius 〈|S|〉 of the Bloch sphere with increasing p and

for fluctuations in the intracavity photon number nc = c†c exceeding the photon shot noise

by a factor γ ≡ ∆n2c/nc ≈ 1 + Q/74 due to frequency noise of the laser. With no free

parameters, this model provides a good description of the spin variances (blue diamonds

and squares) and the angle α0 (green triangles) characterizing the uncertainty ellipse. In

particular, the agreement of σ2min−σ2ro with the adapted model demonstrates that the noise

reduction by cavity feedback—in contrast to that conditioned on a measurement as in Ch.

5—can be as close to ideal as the intracavity intensity is close to photon-shot-noise-limited.

Of course, the ability to benefit from that noise reduction—and hence the metrologically

relevant squeezing—is additionally limited by the readout noise σ2ro.

We quantify the cavity feedback squeezing by the parameter ζ0 defined in Sec. 5.5.

Figure 6-5 shows, as a function of photon number p or shearing parameter Q, the squeezing

ζ0 = C(0)σ2(p)/[C(p)]2 deduced from the full measured normalized spin noise σ2 and the

contrast C. (Note that the initial contrast C(0) is improved over that in Secs. 5.4-5.5 because

the resonator locking light is now further detuned.) At an optimum p = 4.1×104 (Q = 19),

we achieve a ζ−1
0 = 5.6(6) dB enhancement in angular sensitivity, compared to that of a

CSS with spin length SC(0), including not only the intrinsic noise of the state prepared by

cavity feedback squeezing but also the detection noise. At Q = 19 we obtain a Wineland

parameter ζ = ζ0/C(0) = −4.6(6) dB, indicating that despite the contrast reduction due to

the resonator locking light, we can expect to observe a 4.6(6) dB improvement in signal-to-
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Figure 6-4: Geometry of the squeezed states prepared by cavity feedback, as determined by rotating each state by a variable angle α
about the mean spin 〈S〉 between squeezing and readout of Sz. The normalized spin variance σ2(α) = 2∆S2

z/S thus measured is shown
in the left graph for shearing parameters Q = 0 (black), 1.2 (red), 7.7 (green) and 31 (blue); the ellipses in the inset are polar plots of
σ(α) as given by the sinusoidal fits to the data. The maximum spin variance σ2max, minimum spin variance σ2min −σ2ro with readout noise
subtracted, and angle α0 of the minor axis from ẑ are summarized in the right graph and compared to both the idealized theory in Sec.
6.1 (black dotted curves) and a model accounting for contrast reduction and technical light noise (solid curves). The purple crosses show
the maximum spin variance conditioned on the information in the detected squeezing light, as discussed in Sec. 6.4.
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noise ratio over the Standard Quantum Limit for N = 2S particles. We verify this directly

in Ch. 7 by applying the state in an atomic clock.

A substantial portion of the observed spin noise σ2min is due to the imprecision σ2ro =

0.13(1) of the readout measurement, indicated by the shaded blue region in Fig. 6-5. If we

were able to detect it perfectly, the state prepared at an optimum Q = 76 would enable an

ζ−1 = C2/(σ2min−σ2ro) = 8.4(7) dB improvement over the SQL, thanks to ζ−1
0 = 1/[ζC(0)] =

10(1) dB of cavity feedback squeezing.

6.3 Multi-Partite Entanglement

The entanglement implied by ζ < 1 can be further quantified by posing the following

question [84]: if we express the ensemble spin state as a product of fully inseparable states,

what is the largest number n of (effective) atoms that we are guaranteed to find in such a

fully inseparable state? We can prove n-particle entanglement by evaluating theoretically

the minimum achievable normalized spin noise σ2n as a function of contrast C in a spin-

(n−1)/2 system and demonstrating that our squeezed states violate this bound. Figure 6-6

shows calculated bounds on σ2n(C) for various partition sizes n− 1, reproducing the results

of Sørensen and Mølmer [84]. The states prepared by cavity feedback squeezing (green

diamonds, showing σ2min − σ2ro) are characterized for 19 ≤ Q ≤ 76 by at least 11-effective-

atom entanglement, where each effective atom consists of on average 1.5 unentangled real

atoms.

For comparison, Fig. 6-6 also shows the squeezed states prepared by QND measurement

(purple triangles), where only bipartite entanglement is verifiable on the basis of the values

σ2 and C from Sec. 5.5. That deeper entanglement can be proved for the feedback-squeezed

states is partly due to an overall improvement in contrast achieved by detuning the resonator

locking light further from atomic resonance subsequent to the measurement squeezing exper-

iments. In addition, however, cavity feedback allows a given noise reduction to be reached

at lower photon number—and thus with greater preservation of contrast C(p)/C(0)—than

does a measurement suffering from finite quantum efficiency and photodetection noise.

Note that in certain contexts, e.g. in the field of quantum information, the term “en-

tangled” is restricted to describing states that are inseparable with respect to separately

addressable particles or subsystems. Since our atoms are distributed across ∼ 2000 wells

of a one-dimensional lattice, small groups of atoms could be independently addressed by

a laser incident from the side of the cavity. Thus, non-classical spin correlations between

spatially separated groups of atoms could be directly verified in future experiments.
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6.4 Outlook

We have shown that we are able to realize an effective one-axis twisting evolution that gives

rise to spin squeezing, notwithstanding a net growth in uncertainty area. In the long term,

however, it would be quite attractive to realize the true one-axis twisting Hamiltonian H ∝
S2
z . Beyond improving the scaling of fundamental limits to squeezing performance [12,50],

the unitary S2
z evolution would enable full quantum control over the space of symmetric

ensemble spin states [51]. Achieving this evolution by cavity feedback requires either a

Fock-state input field or—perhaps more realistically—quantum erasure of the information

that leaves the cavity [12,50].

To understand how such a quantum erasure scheme might work, consider first the the-

oretically simpler case of sending a Fock-state field into a one-sided cavity. That the latter

gives rise to a unitary spin evolution can be understood quite intuitively. For a one-sided

cavity, the intensity of the output light is independent of detuning, since all incident light—

whether or not it enters the cavity—exits in a single mode; thus, information about the

resonance frequency is carried only in the phase of the output light. Since a Fock state can

carry no phase information, it cannot reveal the cavity resonance frequency or the shift of

that frequency by the atoms. Since it allows no measurement of the atomic state, it need

not impart any back-action broadening—and indeed it does not, because it is free of photon

shot noise.

By extension, if the input field is instead in a coherent state, one can erase the informa-

tion in the phase of the light by counting the exiting photons with high quantum efficiency,2

and based on the count one can reverse the photon-shot-noise-induced fluctuations in the

atomic phase. Already in our present system, detection of the squeezing light substantially

reduces the phase broadening in Fig. 6-4 (purple crosses), but at large Q the uncertainty

product remains an order of magnitude above the Heisenberg product. In light of the chal-

lenges of more perfect detection, one might alternatively arrange for the light to interact

with the atoms twice in such a way that the atomic information encoded in the field during

the first pass is erased during the second [50].

Such quantum erasure would allow cavity feedback to prepare non-Gaussian states, since

interference fringes can arise when the spin quasiprobability distribution twists all the way

around the Bloch sphere. To investigate the potential for producing non-Gaussian states,

I apply a powerful result derived in the thesis of Ian Leroux: that a Fock state |pin〉 of pin
photons incident on a one-sided cavity, at a half-linewidth detuning from cavity resonance

as above, produces a unitary transformation U(pin) = exp[iH(Sz)pin] of the spin subsystem,

where

H(Sz) = ϕSz + ϕ2S2
z/2 +O(ϕ3) (6.16)

2Note that for a two-sided cavity, the two output modes must first be appropriately recombined on a
beam-splitter.
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in terms of ϕ = 2Ω/κ. Based on this result, we can further calculate the (non-unitary)

transformation of the atomic density matrix elements ρm,m′—where m,m′ represent eigen-

values of Sz—produced by an arbitrary field state |Φ〉 by expanding the field state in the

Fock-state basis:

ρm,m′ −→ F ∗
Φ[H(m)]FΦ[H(m′)]ρm,m′ , (6.17)

where FΦ(u) ≡
∑

pin
|〈Φ|pin〉|2 exp(ipinu) is the characteristic function of the photon number

distribution. I apply Eq. 6.17 to plot Wigner functions of the spin state [85–87] produced

by the cavity feedback dynamics arising from input fields with various photon number

statistics interacting with atoms initially in a CSS along x̂. Figure 6-7 shows results for

a system of 2S = 20 atoms in a one-sided cavity driven by a field in a Fock state (top),

a coherent state (bottom), or a Gaussian state squeezed by 10 dB (middle); the squeezed

field state simulates a quantum erasure scheme with 90% fidelity. The (mean) incident

photon number pin is chosen to produce a phase difference pinH(m)− pinH(m+∆m) = π

either across the width of the CSS uncertainty region ∆m =
√

S/2 (left column) or between

adjacent Dicke levels ∆m = 1 (right column). The latter ideally produces a Schrödinger cat

state (top right), i.e., an eigenstate of the parity of Sy; however, producing such a state in

practice would require not only quantum erasure but also ultra-strong coupling η & S. The

states in the left column, on the other hand, might be attained with “only” strong coupling

(η > 1). Intriguingly, the Wigner function takes on negative values (blue)—a signature of

non-classicality not attainable by squeezing alone—even in the state produced by a coherent

input field.
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Chapter 7

A Squeezed Atomic Clock

The romance of the precise is not the elision
Of the tired romance of imprecision.
It is the ever-never-changing same,
An appearance of Again, the diva-dame.
—Wallace Stevens, “Adult Epigram.”

The stability of an atomic clock is characterized by the Allan deviation σ(τ), which

describes the fractional uncertainty in the clock transition frequency ω after measuring it

repeatedly over a total time τ and averaging the results of these independent measurements.

At the standard quantum limit, a single measurement of duration (e.g., Ramsey precession

time) T using N atoms has (recalling Eq. 1.1) a fractional frequency uncertainty ∆ω/ω =

1/(
√
NωT ). A clock operating at the SQL [1] with a cycle time Tcyc thus achieves an Allan

deviation

σSQL(τ) =
1√
NωT

√

Tcyc
τ

(7.1)

by averaging the results of the τ/Tcyc measurements performed in the total time τ . In this

chapter, I will present the first demonstration of an Allan deviation beyond the standard

quantum limit.

Our approach to performing Ramsey spectroscopy beyond the SQL [43,53] is illustrated

in Fig. 7-1, where the red arrows indicate microwave-induced rotations on the Bloch sphere.

The top panel shows an ordinary Ramsey sequence using a coherent spin state (CSS),

whereas the center panel shows a modified Ramsey sequence incorporating a squeezed state

prepared by cavity feedback (Ch. 6). The standard Ramsey sequence takes as its input a

CSS oriented along −ẑ (i.e., an ensemble optically pumped into |↓〉). A π/2 pulse rotates

this CSS into the xy plane, giving it a well-defined phase relative to the microwave oscillator

and thereby starting the clock. The objective of the squeezed Ramsey sequence is to begin

the precession with an even better defined phase. This requires prefatory steps of preparing

(similarly) a CSS in the xy plane and applying probe light (dashed blue arrow) to shear it
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Figure 7-1: Comparison of a conventional Ramsey sequence performed with a coherent spin
state (CSS; top panel) with a modified Ramsey sequence incorporating a squeezed spin state
(central panel). Bold red arrows indicate microwave rotations. The spin squeezing (dashed
blue arrow) is prefaced by preparation of a CSS along x̂ equivalent to the initialization step
of an ordinary Ramsey sequence; however, the modified Ramsey sequence only measures
the phase acquired subsequent to a near-π/2 rotation that places the squeezed state into
the phase-squeezed orientation. Conversely, sensitivity of the squeezed quadrature to phase
fluctuations is minimized by placing the state into the number-squeezed orientation (bottom
panel).
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Figure 7-2: A small portion of a Ramsey fringe obtained with either a CSS (black) or a
squeezed state (green). The abscissa νd−νHF represents the detuning of the microwave oscil-
lator from the free-space |F = 1,mF = 0〉 → |F = 2,mF = 0〉 transition. In this particular
data set, the squeezed state outperforms the unentangled state by 3.2 dB in signal-to-noise
ratio.

into a state that is at a small angle α0 ≪ 1 from a number-squeezed orientation, as described

in Ch. 6. Rotating this squeezed state by π/2 − α0 into the phase-squeezed orientation

starts the clock. With or without squeezing, the Ramsey sequence concludes with a π/2

pulse to convert the acquired phase into a population difference 2Sz, which we read out

by our standard cavity transmission measurement. A small portion of a Ramsey fringe

thus obtained, showing the dependence of the final spin projection on the microwave drive

frequency after a T = 200 µs precession, is plotted in Fig. 7-2 for the case of either a coherent

(black) or squeezed (green) input state of spin S = 1.6 × 104. In this particular example,

the signal-to-noise ratio of the squeezed clock is 3.2(2) dB higher than that achieved with

the CSS.

7.1 Technical Aspects

Even reaching the standard quantum limit in a clock [1]—let alone surpassing it—places

stringent technical demands. In particular, in order to operate a stable clock, it is critical

to minimize all sources of classical phase noise. Note, for comparison, that such phase

noise has no effect on the squeezed quadrature (Sz) of the state prepared by measurement

squeezing; and its effect on a state prepared by cavity feedback squeezing is suppressed by

the small angle α≪ 1 of this state from the number-squeezed orientation. Yet as soon as a

squeezed state is rotated into the phase-squeezed orientation to initiate a Ramsey sequence

(see Fig. 7-1), it starts performing its function as an exquisitely sensitive detector of any

fluctuations ∆ωtech in the frequency of the clock transition or fluctuations ∆φtech in the

phase of the reference oscillator. These fluctuations must be kept very small (∆ωtechT ≪
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1/
√
N,∆φtech ≪ 1/

√
N) in order for a Ramsey measurement with precession time T to be

limited by the intrinsic quantum noise of even a CSS, let alone a squeezed state.

The microwave oscillator’s phase fluctuations are specified as a value L(f) in dBc/Hz

representing the noise level relative to the carrier at an offset frequency f from the carrier.

For these classical phase fluctuations, averaged over a microwave pulse of duration Tµ,

to be smaller than the coherent-state phase variance of N atoms requires L < LCSS ≡
10 log[Tµ × Hz/(4N)]. In our experiments, with a π/2 pulse duration of 30 µs and atom

number up to N ≈ 4× 104, we therefore require a phase noise L(f) ≪ LCSS ≈ −91 dBc/Hz

at frequencies f & T−1 in order to approach the SQL in a Ramsey sequence with precession

time T , and correspondingly lower phase noise for a squeezed clock. The microwave synthesis

chain described in Sec. 3.5 satisfies this requirement, the 6.8 GHz oscillator’s phase noise

being specified at L(f) < −130 dBc/Hz at f = 10 kHz.

Although we operate with the very same atomic transition (|F = 1,mF = 0〉 →
|F = 2,mF = 0〉) used in 87Rb fountain clocks, its function as a “clock transition” is

severely degraded by our use of an optical dipole trap. Since there exists no magic

wavelength for the 87Rb hyperfine transition—i.e., no trapping wavelength where the

two clock states experience equal light shifts—we instead employ the magic polarization

trick introduced in Sec. 3.3 to minimize trap-induced fluctuations and broadening of the

clock transition frequency ω. This trick requires a combination of elliptically/circularly

polarized trap light and a magnetic bias field B, and therefore comes at the expense

of introducing a magnetic-field sensitivity dω/dB = 2βQZB, where βQZ = 575 Hz/G2

quantifies the quadratic Zeeman shift [13]. The requisite magnetic bias field (and hence

dω/dB) is minimized by choosing full circular polarization for the trap, which moreover

likely minimizes any effects of polarization noise. The net result, in our trap of depth

U0 = 2π × 18(6) MHz with a bias field B = 2.4 G, is a sensitivity U0dω/dU0 ≈ 2 Hz/%

to percent fluctuations in trap depth, combined with a 3 Hz/mG sensitivity to magnetic

field fluctuations. Our apparatus contains no magnetic shielding, but we do take care to

synchronize the experiment to the 60 Hz AC power line.

The classical frequency noise described above limits the Ramsey precession time for

which we can observe quantum-limited performance of even an unentangled clock. Never-

theless, as we shall see in Fig. 7-2 below, the classical noise is sufficiently low that there is

an experimentally accessible regime where we can observe a benefit from squeezing.

7.2 Squeezing Lifetime

To what extent squeezing can benefit practical metrological applications has been a subject

of numerous theoretical studies [20,88,89], as entangled states are notorious for their fragility

in the face of environmental perturbations. If an entanglement-induced enhancement in

phase resolution comes at the cost of a restriction on precession time to avoid decoherence,
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it will not necessarily allow a more precise frequency determination in a fixed time. Thus,

metrology—and particularly clocks—can profit from entangled states that are relatively

robust to environmental perturbations [88].

We investigate the robustness of a squeezed state by directly comparing its performance

to that of a coherent spin state in Ramsey spectroscopy with variable precession time T .

We quantify the performance in each case by the Wineland parameter ζ = 2S∆S2
z/C2 at

the end of the sequence, performed with 2S = 3 × 104 atoms. The interference contrast

C = |〈Sx〉| /S is measured by varying the phase of the final π/2 pulse in the Ramsey sequence

and fitting the resulting interference fringe. Fig. 7-3 shows ζ vs T as measured using either

a coherent spin state (black solid circles) or a squeezed state (red solid diamonds). Each

dataset is well described by a model of the form

ζ(T )

2S
= ∆φ2Q +∆φ2Cl (7.2)

that describes a state-dependent initial phase variance ∆φ2Q due to quantum fluctuations

(and detection noise) which, with increasing precession time, is overwhelmed by a classical

phase variance ∆φ2Cl = ∆(ωT )2 due to fluctuations ∆ω2 = (2π × 1.3 Hz)2 of the clock

transition frequency. The latter are attributable to sub-mG magnetic field fluctuations (see

Sec. 7.1).

While the classical phase perturbations are detectable (∆φ2Cl & ∆φ2Q) sooner with a

phase-squeezed state than with a CSS, there is no evidence that these perturbations degrade

the metrological usefulness of the state. Rather, Eq. 7.2 suggests that the quantum and

classical phase fluctuations are independent and uncorrelated. In this case, if the classical

perturbation ∆φCl were precisely what we were trying to measure, I claim that the squeezed

state would allow us to measure it to better than the standard quantum limit by the factor

ζ(0) = 2S∆φ2Q < 1, even for precession times T where the classical phase variance results

in a final Wineland parameter ζ(T ) > 1. However, in order to directly test this claim, we

would require an independent measure of ∆φCl.

Even without independently measuring the classical perturbations ∆φCl, we can demon-

strate that their effect on the squeezed state is largely reversible. We do so by adding a π̃

pulse (composite π pulse, as defined in Sec. 4.4.2) halfway through the Ramsey sequence to

cancel the effect of any frequency deviation ∆ω that is fixed over the duration T . This spin

echo procedure (green triangles in Fig. 7-3) extends the time for which the state remains

demonstrably squeezed (ζ(T ) < 1) from ∼ 500µs to ∼ 2 ms by removing up to 96% of the

classical phase variance. The reversibility of the classical phase noise assures us that the

squeezed state, while sensitive at detecting phase perturbations, is not destroyed by them.

The detectable squeezing persists even longer if, rather than performing a Ramsey se-

quence, one directly rotates the state prepared by cavity feedback into the number-squeezed

orientation, as illustrated in the bottom panel of Fig. 7-1. The open blue diamonds in Fig.
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7-3 show the squeezing parameter ζ as a function of delay time T before reading out Sz. The

eventual degradation in squeezing over a time T ∗
2 ∼ 5 ms is fully accounted for by a reduction

in interference contrast C (solid blue diamonds in inset) due to inhomogeneous broadening,1

as illustrated by consistent fits to C(T ) (dotted red curve in inset) and ζ(T ) ∝ [C(T )]−2

(dotted blue curve).

To the extent that we are able to assess, then, the squeezed state is sufficiently robust

as to always either equal or outperform the unentangled state in Ramsey spectroscopy.

Moreover, it is only because our measurement ceases to be quantum-limited at long preces-

sion times T—because of classical noise in our laboratory that is indistinguishable from the

signal of interest—that the Wineland parameter ζ asymptotically approaches that of the

CSS in the limit of long precession time. Given a measurement that is quantum-limited at

a precession time T < T ∗
2 set by some external constraint—or by a desired measurement

bandwidth—squeezing can be expected to enhance the measurement performance (see Sec.

7.4).

7.3 Allan Deviation

We characterize the short-term stability of our squeezed clock, operating with N = 3.5×104

effective atoms, by measuring its Allan deviation. In order that the squeezing not be

obscured by the classical noise in our system, we set a short Ramsey precession time of

T = 200 µs. Given N,T and our Tcyc = 9 s experiment cycle, the best stability that we

could possibly achieve with the atoms in an uncorrelated state is (by Eq. 7.1) σSQL(τ) =

1.9×10−9 Hz−1/2τ−1/2, where τ represents the total averaging time. This standard quantum

limit on the Allan deviation is indicated by the solid black line in Fig. 7-4. The Allan

deviation we actually measure with an ordinary Ramsey sequence using a CSS (open black

circles in Fig. 7-4) is somewhat worse than the SQL. Nevertheless, with the modified

Ramsey sequence incorporating a squeezed state, we achieve a fractional frequency stability

σ(τ) = 1.1 × 10−9 Hz−1/2τ−1/2 for averaging times τ up to 50 s, representing a 4.7(5) dB

improvement over the standard quantum limit.

7.4 Outlook

Our demonstration of an Allan deviation beyond the standard quantum limit is so far a

proof of principle. The fractional frequency stability of σ(τ) = 1.1 × 10−9 Hz−1/2τ−1/2 is

nothing to brag about in absolute terms [14], but it could be improved by several orders

of magnitude merely by extending the Ramsey precession time beyond its current 200 µs.

Atomic phase coherence times of 1 s or more are readily achievable in trapped-atom systems

1The dominant limitation on the coherence time is most likely an inhomogeneous light shift from the lock
laser carrier; see Sec. 3.4.
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amenable to spin squeezing, including both microwave clocks with magnetically trapped
87Rb atoms [90,91] and optical-transition clocks in magic-wavelength lattices [15–17,92].

Optical-transition clocks, where the interrogation time T is typically limited by the

phase coherence time of the interrogating laser rather than that of the atoms [15, 17],

present precisely the scenario where spin squeezing is most apt to be profitable [89] for

measurements of time. At fixed T , as these clocks approach the standard quantum limit [15],

their stability can in principle be improved either by spin squeezing or by increasing atom

number. However, the latter solution may be precluded by the density shift—already a

dominant systematic effect [16,92]. Thus, spin squeezing will be a compelling approach to

continuing to advance the performance of these state-of-the-art clocks [93].

In a broader context, squeezed Ramsey spectroscopy can benefit high-bandwidth sensing

applications, including accelerometry and magnetometry, simply by delivering a quantum

speed-up in the time to reach a fixed measurement precision. Our method might even be

extended to perform sensitive measurements with high spatial resolution by squeezing and

interrogating multiple sub-ensembles in a single cavity.
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Chapter 8

Collective cavity cooling

The dispersive coupling of atoms to a cavity can be used to manipulate not only the atoms’

internal (spin) but also their external (motional) degrees of freedom. Whereas the former

can dynamically produce spin squeezing (Ch. 6), the latter can give rise to cavity cooling

[11,62,94–101] or other optomechanical effects [102–107]. In our spin squeezing experiments,

we worked at sufficiently low photon scattering rates that the mechanical effects of the light

were negligible. Now, we remove the spin-dependent interaction—by keeping all atoms in a

single internal state—and increase the photon scattering rate to investigate cavity cooling.

Cavity cooling [11, 62, 94–96] is unique among laser cooling techniques in that it is ap-

plicable, in principle, to arbitrary scatterers of light. The spectrum of the scattering, which

governs the rate of change of the scatterer’s energy, is controlled by the cavity resonance [11]

rather than by an atomic one. Cavity cooling thus offers enticing prospective applications,

from preparation of ultracold molecular gases [108,109] to continuous cooling of qubit reg-

isters [110]. In experiments to date [97–101], cavity cooling of one atom [97–99] or ion [100]

is well described by a semiclassical model [11, 62]. Less well understood is the case of an

ensemble, where the coupling of many particles to a single cavity mode yields nontrivial

collective dynamics [101–107], such as enhanced cooling of the center-of-mass motion [102].

Ensemble cavity cooling (Fig. 8-1) thus differs markedly from conventional laser cool-

ing, where emission into a plethora of free-space field modes allows for simultaneous and

independent cooling of all atoms, or equivalently, all motional degrees of freedom of the

ensemble. In cavity cooling, a single collective motional mode X can be defined that is

maximally coupled to the cavity [106], while all other orthogonal ensemble modes are de-

coupled from the cavity due to destructive interference in the light scattering from different

atoms. The coupling of X to the cavity is cooperatively enhanced by constructive interfer-

ence in proportion to atom number [102, 108], allowing mode X to be cooled faster—and

to lower temperatures—than a single atom. For sympathetic cooling of single-particle de-

grees of freedom, mixing between X and other ensemble modes might be introduced by an

anharmonic or inhomogeneous trapping potential, or by collisions.

The collective cooling itself is most readily studied in the limit of weak mixing. Here,
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Figure 8-1: Ensemble cavity cooling. A probe laser (red) is placed at red detuning from
cavity resonance to enhance anti-Stokes scattering into the cavity (blue), which cools a single
collective mode X (solid green oval) at a cooperatively enhanced rate γc. Single-particle
modes can only be cooled by mixing (at rate γm) with X . This differs from ordinary laser
cooling (inset), where free-space emission causes the atoms to be cooled independently.

cavity cooling is equivalent to the single-mode optomechanical cooling [111–113] of macro-

scopic mechanical oscillators [114–119]. The analogy with optomechanics [105, 106] has

recently enabled quantitative studies of backaction-induced heating [106] and optomechan-

ical frequency shifts [107] in an ensemble-cavity system. Yet the implications for cavity

cooling have not been experimentally investigated, and the quantitative understanding of

ensemble cooling [95,108] has remained incomplete.

In this chapter, I present direct observations of the relevant collective mode X of our

trapped atomic ensemble during cavity cooling. By studying the rate of cooling as a function

of photon scattering rate and atom number, I demonstrate that the cooling relies on the

cooperative emission of light by the ensemble. The cooling is well described by adapting an

optomechanical model [112] to our system, where the mechanical oscillator X has a 500 kHz

frequency, very small mass M = (10−23 − 10−21) kg, and comparatively low quality factor

Q = 19. I verify the agreement with optomechanical theory for a wide range of collective-

mode occupation numbers up to 〈n〉 ∼ 103, and I demonstrate cooling down to a mean

phonon number 〈n〉min = 2.0+0.9
−0.3, close to the theoretical limit for our parameters.

8.1 Theory

The optomechanical interaction in our system arises from a position-dependence of the

dispersive coupling of atoms to the standing-wave cavity mode. Consider an idealized

Hamiltonian Hsys describing an ensemble of N atoms that are harmonically trapped, with

identical trap frequencies ωt, at various positions ξi along the cavity axis. For dispersive

coupling of the atoms to a cavity mode (the probe mode) of frequency ωc with annihilation

operator ĉ and wavenumber k, assuming a large probe-atom detuning ∆ relative to the
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excited-state linewidth Γ, we have

Hsys =
N
∑

i=1

[

1

2
mω2

t (x̂i − ξi)
2 +

p̂2i
2m

+ ~Ω0 sin
2(kx̂i)ĉ

†ĉ

]

+ ~ωcĉ
†ĉ. (8.1)

Here, Ω0 = g20/∆—with vacuum Rabi frequency 2g0—represents the dispersive shift of the

cavity resonance due to a single atom at an antinode, or equivalently, the ac Stark shift

experienced by such an atom per intracavity photon. In the Lamb-Dicke regime, where the

deviation x̃i ≡ x̂i−ξi of each atom from the local trap minimum at ξi satisfies
〈

(kx̃i)
2
〉

≪ 1,

the optomechanical interaction term can be expressed in terms of a single collective position

variable

X̂ ≡ N−1
N
∑

i=1

sin(2kξi)x̃i. (8.2)

The momentum conjugate to X̂ is expressed in terms of the single-atom momenta p̂i as P =

N ∑N
i=1 sin(2kξi)p̂i/

∑N
i=1 sin

2(2kξi), such that X̂ and P̂ obey the canonical commutation

relation [X̂, P̂ ] = i~. To describe the full motion of the N -atom ensemble, one can construct

an orthogonal basis comprising X̂ , P̂ , and additional coordinate pairs representing 3N − 1

other modes of ensemble motion with energy H⊥; in this basis, the system Hamiltonian

takes the form

Hsys =
1

2
Mω2

t X̂
2 +

P̂ 2

2M
+ ~

(

ωc + δωc + GX̂
)

ĉ†ĉ+H⊥, (8.3)

where M = mN 2/
∑N

i=1 sin
2(2kξi) represents the effective mass of the collective harmonic

oscillator mode X described by X̂ and P̂ , in terms of the single-atom mass m. While

δωc = Ω0
∑N

i=1 sin
2(kξi) represents the overall shift of the cavity resonance due to the

atoms, the term

Hom = ~GX̂c†c, (8.4)

represents the canonical optomechanical interaction [111–113] describing a cavity frequency

shift GX̂ proportional to X̂, or equivalently, an intensity-dependent force on the collective

mode with strength ~G = N~Ω0k per photon.

For a probe laser detuned from the cavity line of width κ, small shifts |GX̂ | < κ yield

proportional changes in intracavity and transmitted power. The X̂-dependent transmission

can be used to monitor mode X , while the X̂-dependent changes in intracavity intensity—

delayed by the cavity response—induce cooling or heating: the delay converts the position-

dependent into a velocity-dependent force that damps or amplifies the collective motion

depending on the sign of the laser-cavity detuning [11, 62]. (Note that the cavity cooling

dynamics induced by Hom ∝ X̂c†c differ from the cavity feedback squeezing induced by

H ∝ Szc
†c only because of the oscillatory motion of X̂, which makes the cavity delay

become relevant.)
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In the frequency domain, cavity cooling can be understood as arising from unequal

scattering rates on the Stokes and anti-Stokes sidebands due to the cavity resonance [62].

The full optomechanical Hamiltonian (see Eq. D.1), with the interaction term Hom (Eq.

8.4), predicts a cooling power [112]

Pc = NΓscη0Erζ
(

〈n〉 |L+|2 − (〈n〉+ 1) |L−|2
)

, (8.5)

for a mean occupation number 〈n〉 of mode X ; here Γsc =
〈

a†a
〉

Γg20/∆
2 is the photon

scattering rate of a single atom at a probe antinode into free space, η0 = 4g20/(κΓ) is

the cavity-to-free-space scattering ratio (single-atom cooperativity) introduced in Sec. 2.5,

Er = ~
2k2/(2m) is the single-atom recoil energy, ζ = N−1

∑

i sin
2(2kξi), and L± = [1 ∓

2i(δ±ωt)/κ]
−1 represents the cavity response at the frequency of the (anti)-Stokes sideband

in terms of the probe-cavity detuning δ. In our experiments, where the atomic cloud is

long (≈ 1 mm) compared to the 5-µm beat length between trap and probe light, ζ =

1/2. For ωt & κ/2, the cooling rate is maximized by placing the anti-Stokes sideband on

resonance (δ = −ωt). Eq. 8.5 shows that the collective rate constant γc = dPc/d(〈n〉~ωt)

is proportional to N due to cooperative scattering: the larger the ensemble, the faster X is

cooled.

8.2 Cooling Rate

We study the cooling in the cavity described in Sec. 3.1, with linewidth κ = 2π×1.01(3) MHz

at the wavelength 2π/k = 780 nm of the 87Rb D2 line and cooperativity η0 = 0.203(7). We

trap 102-104 atoms of 87Rb in the state
∣

∣52S1/2, F = 2,mF = 2
〉

in our standard 851-nm

lattice in the cavity mode (Sec. 3.2), with trap frequency ωt/(2π) = 480(40) kHz and typical

trap depth U0/h = 18(3) MHz. The 780-nm probe laser drives the cavity on a TEM00

mode with σ+ polarization at a detuning ∆/(2π) ≥ 70 MHz from the
∣

∣52S1/2, F = 2
〉

→
∣

∣52P3/2, F
′ = 3

〉

transition with linewidth Γ = 2π × 6.1 MHz. The probe laser is locked to

a 36-GHz-detuned TEM01 cavity mode that does not affect the atoms, in a scheme similar

to that illustrated in Fig. 3.4(b).

As usual, we measure atom number via the cavity shift δωc = NCΩ0, where C =

N−1
∑N

i=1 sin
2(kξi) if all atoms are situated on the cavity axis. Allowing for the small but

non-zero radial cloud size σr = 7(1) µm ≪ w, N represents an equivalent number of on-axis

atoms. Since the cloud is long (≈ 1 mm) compared to the 5-µm beat length between trap

and probe, C = 1/2 in the absence of probe light. Displacement of the atoms by the probe

light reduces C by at most 12% in the experiments described below, and we account for

this effect.

To perform cavity cooling/heating of the collective mode X , we detune the laser by

δ = ∓κ/2 ≈ ∓ωt from cavity resonance, simultaneously probing the position X̂ via the

transmitted light. We first verify cavity heating by turning the probe light on at blue
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Figure 8-2: Mean occupation number 〈n〉 of mode X vs. time during cavity cooling at
Γsc = 1.1×105 s−1 (gray squares), 2.3×105 s−1 (green circles), 3.4×105 s−1 (gold triangles),
and 6.4 × 105 s−1 (red diamonds). Each dataset is obtained by averaging variances from
10 traces. Inset: single trace of cavity transmission during cavity heating (t < 0, blue
background) followed by cavity cooling (t > 0, red background).
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detuning δ = +κ/2. A collective oscillation triggered by the sudden turn-on of the light

is indeed rapidly amplified by cavity heating (inset to Fig. 8-2). After typically 10 µs of

heating, we switch to cavity cooling at δ = −κ/2 and variable probe power. The mean

occupation number 〈n〉 is obtained from the observed time trace via the fractional variance

σ2 ≡ R2/R
2 − 1 of the transmitted photon rate R in a sliding 2-µs window. The linear

approximation X ∝ R − R gives the relation σ2 − σ2bg = 8(GX0/κ)
2 |L+ − L−|2 〈n〉, where

X0 =
√

~ζ/(2Nmωt) and σ2bg is a constant technical-noise offset (see App. D). Fig. 8-2

shows 〈n〉 vs. time at four different probe intensities, with fixed atom numberN = 2800(400)

and detuning ∆/(2π) = 140 MHz from atomic resonance. The cooling is well approximated

by an exponential decay with rate constant γexp that depends on the probe power. We

can also obtain γexp by fitting an exponentially decaying sinusoid to the average of the 10

transmission traces; the two methods agree.

To compare γexp to the predicted cooling rate constant γc, we measure the dependence

of γexp on the photon scattering rate Γsc = Rη0Γ
2/(2∆2) per atom into free space for

various probe-atom detunings ∆ and atom numbers N . As Fig. 8-3(a) shows, the data

are consistent with a linear model γexp = f(N )η0Γsc + γm. The offset γm = 1.6(6) × 105/s

indicates a quality factor Q = ωt/γm ≈ 19 for mode X , largely attributable to mixing with

other motional modes in the anharmonic trapping potential.

To verify the cooperative nature of the cavity cooling of mode X , we plot in Fig. 8-

3(b) the fitted slopes f(N ) as displayed in 8-3(a) vs. atom number N . Accounting for

the slight reduction of the cooperativity η = η0/(1 + α) due to atomic absorption, with

α = δωc × Γ/(κ∆) < 0.2, the measured dependence dγexp/d(ηΓsc) = 3.4(5)× 10−3N agrees

well with the prediction for cavity cooling γc/(ηΓsc) = 3.0(2) × 10−3N . This confirms that

the cooling speed for the collective mode X increases linearly with ensemble size and is

proportional to the total power scattered by the ensemble into the cavity mode.

8.3 Equilibrium Temperature

To determine the equilibrium temperature of X under cooling, we require—given our de-

tection noise—a longer observation time than shown in Fig. 8-2. We therefore observe the

cooling or (for comparison) heating in spectra obtained from 150 time traces of the cavity

transmission, each 440-µs long, with a mean photon transmission rate R = 1.2(2)×109 s−1.

Fig. 8-4 shows normalized one-sided spectral densities SI/I
2
of photocurrent I ∝ R with

(a) N = 230(50) and (b) N = 450(90) atoms at a detuning ∆/(2π) = 70 MHz from atomic

resonance. Each spectrum displays a peak at ωt with an area approximately proportional

to both atom number N and mean occupation number 〈n〉. The disparity in area between

cooling and heating increases with N due to the cooperative nature of the processes.

We fit the spectra in Fig. 8-4 with a quantum mechanical model (black curves) adapted

from the treatment of Marquardt et al. [112] as described in App. D. The model SI/I
2
=
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Figure 8-4: Spectra of fractional transmission fluctuations SI/I
2
taken with (a)N = 230(50)

atoms and (b) N = 450(90) atoms at detuning δ = −κ/2 (red lines) or δ = +κ/2 (blue lines)
from cavity resonance. Black curves are fits to data; subtraction of the background level Sbg
(gray curves) yields the collective mode occupation 〈n〉± at δ = ±κ/2: (a) 〈n〉+ = 4.4±0.7,
〈n〉− = 2.3+0.7

−0.3; (b) 〈n〉+ = 7± 1, 〈n〉− = 2.0+0.9
−0.3.

Smech + Sbg contains the signal of interest Smech ≈ (2G/κ)2 |L+ − L−|2 SX arising from

atomic motion with spectral density SX ; and a background Sbg (gray curves) that is dom-

inated by electronic noise of the photodetector but also accounts for photon shot noise,

slightly smaller fluctuations from laser phase noise, and frequency-dependent correlations

between the light noise and the atomic motion. These last are responsible for the dips

in Sbg below the white noise [119]. With the photon rate R and optomechanical cou-

pling G constrained to their independently measured and calculated values, the cooling

spectra are well fit by taking the collective mode to be coupled to a white Markovian

bath with 〈nbath〉 = 3.1(4) motional quanta per mode; the corresponding coupling rate

γ′m = 2.6(1.1) × 105 s−1 is consistent with the mixing rate γm from Fig. 8-3. Fits to the

heating spectra, which are complicated by sympathetic heating of other modes, indicate a

higher mixing rate of 4.8(5) × 105 /s.

The bath occupation is consistent with a measured upper bound on the axial temper-

ature of 150(50) µK, corresponding to 〈nbath〉 = 6(2) (see App. D). The white spectrum

of nbath is a simplistic ansatz, but the resulting fit helps to establish the background Sbg

and thus the motional spectrum SX . By subtracting Sbg from the measured spectrum, we

obtain a minimum mean occupation number of X of 〈n〉min = 2.0+0.9
−0.3 with N = 450(90)

atoms. Note that failing to account for the dip in Sbg would lead to an underestimate of
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〈n〉min.

Let us now consider limits to cooling the collective mode. For γc ≫ γm, the cooling power

Pc ∝ Nη0 competes only with the N -independent recoil heating Prec ≈ ErΓsc of the single

mode X , yielding a fundamental limit 〈n〉 ≥ n0+D(1+n0)/(Nη0), where n0 ≡ (κ/4ωt)
2 and

D is a prefactor of order unity [62]. Thus, for large collective cooperativity Nη0 ≫ 1 (easy

to achieve), the resolved-sideband regime n0 < 1 in principle allows ground-state cooling

[62,112,113] of the collective mode. Cooling of X will then be limited by the thermal heat

load from other modes mixing at rate γm with X , yielding a limit 〈n〉 & 〈nbath〉 γm/(γm+γc).

While this limit improves with increasing cooling rate γc, for the values (ωt, κ,Q = ωt/γ
′
m) in

Fig. 8-4 amplification of low-frequency noise on approaching the regime of static bistability

γc & ω2
t /κ [112] sets a bound 〈n〉 ≥ 1.5, even though n0 = 0.3.

A low occupation 〈n〉 of the collective mode X is disadvantageous for cooling the indi-

vidual atoms, since the absolute cooling power is proportional to 〈n〉 (see Eq. 8.5). Cooling
of all degrees of freedom is thus facilitated by strong mixing γm ≫ γc that keeps mode X
in thermal equilibrium with the other 3N − 1 modes. The cooling power per atom Pc/N
then approaches that of an isolated atom. Thus, in contrast to a hypothesis put forward in

Ref. [108], single-particle cooling cannot be improved by cooperative scattering. In particu-

lar, even in an ensemble, recoil heating sets a limit for the temperature of individual atoms

〈ni〉 & n0 + 1/η0 that depends on the single-atom cooperativity η0: ground-state cooling

requires η0 > 1 [62].

8.4 Outlook

In our system, sympathetic cooling of all modes is hampered by the weak single-atom co-

operativity η0 < 1 and by weak mixing of X with modes that correspond to the motion of

atoms at trap locations ξi with sin(2kξi) ≈ 0 (see Eq. 8.2). Even so, we are able to coun-

teract the total axial recoil heating of the ensemble by 40(10)% by applying cavity cooling

to mode X (see App. D.2). Future experiments with η0 & 1 and better trapping geometry

should achieve sympathetic cooling of all motional degrees of freedom. In particular, cooling

of the single-atom modes might ultimately be optimized in the low-Q Doppler regime.

Conversely, deeper in the resolved-sideband regime, ground-state cooling of the collective

mode could enable the preparation of non-classical collective states [114] at finite thermo-

dynamic temperature. By analogy with the conditional spin squeezing presented in Ch. 5,

squeezed mechanical states could be prepared by replacing the QND measurement of spin

with a stroboscopic measurement of the displacement of the collective mode [120,121]. Al-

ternatively, it may even be possible to perform quantum state transfer of the spin squeezing

to the mechanical degree of freedom [122].
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Appendix A

Laser-Cavity Frequency

Stabilization

A key enabling technology for all of the experiments in this thesis is the locking of lasers

to the optical resonator. Two principal factors can limit the performance of such locks:

the gain achievable given the bandwidth of the feedback, and the signal-to-noise ratio given

the allowable intracavity laser power. Section A.1 describes our general approach to laser

locking with ∼ 2 MHz bandwidth, which we apply to both the probe and trap lasers. For

the case of the probe laser, the lock performance in the frequency range of interest is then

limited only by the signal-to-noise ratio achievable given the permissible intracavity lock

light power; Sec. A.2 discusses the optimization of the probe laser lock given this constraint.

For the trap laser, where the lock bandwidth limits the gain achievable at the frequency

∼ 500 kHz relevant to parametric heating, we benefit from narrowing the passive linewidth

of the laser by optical feedback; this is described in Sec. A.3.

A.1 High-Bandwidth Locking

The most obvious reason for desiring a large lock bandwidth B is to suppress noise at

high frequencies (up to B). For example, for our standing-wave dipole trap with axial

trap frequency fax ≈ 500 kHz, a lock bandwidth B > fax is needed to suppress noise that

would otherwise lead to parametric heating of the atoms (see Ch. 3). Equally important,

though, the larger the bandwidth the greater a gain is achievable at low frequencies. Our

spin squeezing experiments are sensitive primarily to noise at frequencies below 10 kHz,

but a much larger lock bandwidth B ∼ 2 MHz allows us to suppress this noise by orders

of magnitude, narrowing the laser from a passive linewidth ∼ 100 kHz to an effective

linewidth < 1 kHz in the frequency range of interest. This section describes our method of

high-bandwidth locking.
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A.1.1 Experimental Setup

The techniques I describe below were applied to two different lasers. The 780-nm probe laser

is a grating-stabilized diode laser with, in the absence of the lock, a linewidth of about 100

kHz. The 851-nm trap uses a distributed feedback (DFB) laser diode (Eagleyard Photonics)

and is discussed in more detail in Sec. A.3. The cavity linewidth is κ780 = 2π×1.01(3) MHz

at 780 nm and κ851 = 2π × 135(2) kHz at 851 nm.

A.1.2 Pound-Drever-Hall Technique

We lock our lasers to the cavity using the Pound-Drever-Hall technique [123]. An excellent

didactic review of this method has been written by Black [124]. The basic idea is to phase

modulate the laser at a frequency ΩPDH ≫ κ and detect the light reflected from the cavity

on a photodiode, looking for a signal at the modulation frequency ΩPDH. The directly

reflected light produces no such signal (having only phase- and not amplitude modulation).

However, if the carrier (or a sideband) is on or near resonance, the light that enters and

leaks back out of the cavity will have acquired a phase shift. The interference of this light

with the sidebands (or the carrier) produces a beat note on the photodiode at ΩPDH, and

by demodulating the beat note one measures the phase of the light leaking out of the

cavity, which depends upon its detuning from cavity resonance. For an appropriate choice

of demodulation phase, one obtains the dispersive error signal shown in the inset to Fig.

A-1 (green).

The Pound-Drever-Hall technique has several attractive features. For one, it is insensi-

tive to fluctuations or drifts in laser power. It is also immune to low-frequency electronic

noise, being sensitive only to a band of frequencies centered around ΩPDH. In most cases,

ΩPDH can be chosen fairly arbitrarily but should be large compared to the desired lock

bandwidth, as well as the cavity linewidth, without exceeding the bandwidth of the photo-

diode.

A.1.3 Dual-Path Feedback

Typical laser locks in our lab have a bandwidth . 100 kHz, limited by the finite gain-

bandwidth products and parasitic capacitances of a series of op-amps in the feedback cir-

cuitry. To achieve a larger bandwidth, we follow the approach of Cacciapuoti et al. [125],

applying direct feedback to the laser diode using only passive components to tune the gain

and phase. To protect the laser diode, the direct feedback is AC-coupled, so that it must be

combined with an ordinary slow feedback path that locks the laser at DC via the modulation

input of a current controller. The complete dual-path feedback loop is shown schematically

in Fig. A-1. (Note that the current controller also applies feed-forward to a piezo to adjust

the length of the laser’s external cavity, so in total the error signal is fed into three paths.

However, the piezo response is rolled off at a frequency < 100 Hz, and I will ignore it from
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Figure A-1: Dual-path Pound-Drever-Hall lock.

here on.)

The design of the slow path is relatively uncritical; we use a standard PI controller,

whose idealized transfer function is illustrated schematically by the thin-line Bode plot in

Fig. A-2. For the fast path, there are several design constraints to ensure stability at

its crossing with the slow path and to compensate for phase lags in the response of the

laser diode and cavity. Fig. A-2 shows a schematic of the passive circuit that controls the

response of the fast path; and a Bode plot (bold lines) of its transfer function.

At the crossover frequency where the fast and slow paths have equal gain, instability

would arise if they had opposite phase. At DC, the slow path must be an integrator and

the fast path a differentiator (due to the protective AC coupling), i.e. the two paths are

in precisely the 180◦ phase relationship that must be avoided at the crossover. To allow

for a stable crossover, the gain of the fast path is rolled back to proportional at a corner

frequency of ≈ 800 Hz.

The fast path also needs to compensate for phase lags in the response of the laser and the

cavity. Modulation of the laser current affects the wavelength by two different mechanisms:

for slow modulation, the dominant effect is thermal, whereas at modulation frequencies

& 1 MHz the thermal effect becomes negligible and one is left with a weaker wavelength

tuning via the current-dependent carrier density in the semiconductor [126]. Compounding

the frequency-dependent response of the laser diode is the frequency-dependent response

of the cavity, which constitutes a low-pass filter that rolls off at a frequency κ/(2π) set by

the cavity linewidth. We partially compensate for the roll-off of laser and cavity response
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by differential gain in the fast-path controller starting at an empirically optimized corner

frequency of 2 MHz, set by 1/(2πR2C2) in Fig. A-2.

The optimized transfer function measured for the 780 nm probe laser, including both

the slow and fast paths, is shown in Fig. A-3. While Fig. A-3 shows a unity-gain bandwidth

B = 1 MHz, we have found that the low-frequency noise is optimized by a somewhat higher

overall gain—corresponding to B ≤ 3 MHz—at the expense of servo bumps at B which are

suppressed by being in the wings of the Lorentzian cavity line and are anyway far beyond

the bandwidth of our measurement.

It is important to note that at bandwidths above 1 MHz, lock performance can easily be

limited simply by the time it takes for the signal to travel from the laser to the cavity and

back. A signal traveling through optical fibers and BNC cables at a typical speed ∼ (2/3)c

accrues a phase lag of ∼ 2◦/MHz/m. With several meters of path length, this effect becomes

noticeable around 1 MHz and will generally prohibit a bandwidth & 10 MHz. Not only

should path length be minimized, but components such as electronic filters introducing a

group delay (often used in Pound-Drever Hall locking to suppress an unwanted signal at

2ΩPDH) should be avoided in the fast path.

A.2 Probe Frequency Noise

The spectrum of frequency fluctuations of the probe laser, either free-running (green

squares) or locked to the cavity (blue circles) is shown in Fig. A-4. The noise is measured

by sending a portion of the probe light to a monitor cavity with a 4 MHz linewidth, tuning

the probe laser (either directly, or by tuning the cavity to which it is locked) to the slope of

the monitor cavity’s transmission profile, and detecting the transmission fluctuations on a

fast photodiode connected to a spectrum analyzer. As expected from the transfer function

in Fig. A-3, the frequency fluctuations are appreciably suppressed out to a bandwidth of 1

MHz.

The degree of noise suppression we attain is limited not only by the gain of the lock

but, more importantly, by the amount of locking light to which we are willing to expose the

atoms. For a fixed tolerable intracavity power, the optimal signal-to-noise ratio is attained

by locking the cavity to one of the Pound-Drever-Hall sidebands and, in the limit of a

strong carrier, depends only on the power Plock in this sideband. Figure A-4(b) shows the

dependence on lock sideband power of the probe laser’s frequency noise, as quantified by

the fractional variance in transmission of the probe sideband at its usual half-linewidth

detuning from cavity resonance (blue circles); the scheme of locking and probing is similar

to that illustrated in Fig. 3.4(b). The variance follows a photon-shot-noise scaling with

the inverse of the lock power (dotted line). We typically operate with a lock power of 40

nW, corresponding to a fractional transmission variance of 6 × 10−10/Hz in the band of

frequencies ∼ 1− 10 kHz to which our squeezing measurements are most sensitive.
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A.3 Passive Optical Feedback

For the trap laser, we supplement the active Pound-Drever-Hall frequency stabilization with

passive optical feedback. The optical feedback is provided by a partial reflector mounted

∼ 20 cm from the laser diode, as shown in Fig. A-5. The pickoff is wedged to prevent

interference, and we use only the < 1% reflection from the anti-reflection-coated face, as we

find that stronger feedback prevents single-mode operation.

Figure A-6 shows the fractional variance of the trap laser transmission—or, equivalently,

of the trap depth—before and after applying the optical feedback. The factor of ∼ 20

Laser

diode Partial

re�ector

Figure A-5: Simple setup for narrowing a DFB laser by optical feedback, as described in
the text.
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Figure A-6: Fractional intensity fluctuations of the cavity-enhanced 851-nm lattice before
(red) and after (blue) optical narrowing. Green line indicates the noise floor of the mea-
surement.

reduction in intensity variance theoretically provides the same reduction factor in the energy

e-folding time associated with parametric heating in the trap [70]. We indeed observe a

lengthening in the lifetime of atoms in the trap, from 70(10) ms to 540(50) ms at a trap

depth of 90 MHz. The lifetime has since been further improved by reducing both the trap

frequency and the initial atomic temperature.
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Appendix B

Optical Pumping

We optically pump the atoms into |F,mF 〉 = |1, 0〉 using σ+/σ−-polarized light on the

F = 1 → F ′ = 0 transition while repumping on F = 2 → F ′ = 2. This pumping procedure

achieves only about 88% purity, with 12% of the atoms remaining in |1,±1〉. We are able

to ignore these spectator atoms entirely because their effect is canceled by our spin-echo

probing scheme (Sec. 4.4).

Nevertheless, one can take additional steps to improve the state purity. Subsequent to

the initial pumping into |1, 0〉, one can apply a π̃ pulse on the |1, 0〉 → |2, 0〉 transition,

empty all F = 1 states using resonant light on the F = 1 → F ′ = 1 transition, use a second

π̃ pulse to return atoms from |2, 0〉 to |1, 0〉, and expel all atoms remaining in F = 2 from

the trap using resonant light on the F = 2 → F ′ = 3 transition. After this procedure,

more than 99% of the remaining atoms are in the state |1, 0〉. We used this procedure in

early experiments, including the squeezed-state preparation by QND measurement. Since

the procedure results in loss of atoms, however, we forgo it when performing multiple trials

with the same loaded atoms.
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Appendix C

Scattering

C.1 Effect on Attainable Squeezing

At finite optical depth, the performance of light induced squeezing is necessarily limited by

photon scattering out of the probe mode [55, 56]. Scattering can counteract the squeezing

both by reducing the atomic coherence and by adding noise. The more fundamental effect

is the decoherence, to which all scattering events—both Rayleigh (elastic) and Raman

(inelastic)—contribute [61]. However, unless one probes only on cycling transitions [64],

the dominant limitation is noise added by Raman scattering.

Raman scattering, by flipping the atomic pseudo-spins over the course of the squeezing

process, reduces the correlation between the atomic-state information that was transferred

to the light and the actual atomic state at the end of the squeezing. To analyze its effect,

let us evaluate the correlation Cov(Sz(t), Sz(t
′)) between Sz at two arbitrary times t′ ≥ t

in terms of the Raman scattering rate Γflip. I will assume that 〈Sz〉 = 0 in the initial state

and remains so due to symmetric Raman scattering rates between the two spin states; then

Cov(Sz(t), Sz(t
′)) = 〈Sz(t)Sz(t′)〉. In the limit of a short time-step τ , we can assume that

any spin is flipped at most once; so that the number of spins N−, N+ that are flipped from

up to down or vice versa during the time τ can be written in terms of the total numbers

N↑, N↓ of atoms in states |↑〉 , |↓〉 as

N− = ΓflipτN↑ + δ↑, N+ = ΓflipτN↓ + δ↓, (C.1)

where δ↑/↓ are uncorrelated random variables with
〈

δ↑/↓
〉

= 0 and
〈

δ2↑/↓

〉

= ΓflipτN↑/↓, since

the scattering is a Poisson process. With these relations, and the usual definitions Sz =

(N↑ −N↓)/2 and S = (N↑ +N↓)/2, we evaluate 〈Sz(t)Sz(t′ + τ)〉 and 〈Sz(t+ τ)Sz(t+ τ)〉
to find that

d 〈Sz(t)Sz(t′)〉
dt′

= −2Γ
〈

Sz(t)Sz(t
′)
〉

(C.2)
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and
d
〈

S2
z (t)

〉

dt
= −4Γ

(

〈

S2
z (t)

〉

− S

2

)

(C.3)

Thus, the Raman scattering results in a decaying correlation

〈

Sz(t)Sz(t
′)
〉

=
〈

S2
z (t)

〉

e−2Γflip|t
′−t|, (C.4)

where for a CSS the variance
〈

S2
z (t)

〉

is constant at
〈

S2
z

〉

= S/2. (For an arbitrary initial

state
〈

S2
z (t)

〉

exponentially approaches the CSS variance, with a rate constant 4Γflip.)

The noise added by the scattering relative to the ideal QND squeezing is given by the

fluctuations Var(Szf −Sz) =
〈

Szf
2
〉

−2
〈

SzfSz
〉

+
〈

Sz
2
〉

in the difference between the value

Szf of Sz at the end of a squeezing time T and the average value Sz =
∫ T
0 Sz(t)dt during

that time. Applying Eq. C.4 and assuming an initial CSS, to lowest order in r ≡ ΓflipT we

obtain
2

S

〈

SzfSz
〉

≈ 1− r, (C.5a)

2

S

〈

Sz
2
〉

≈ 1− 2r

3
, (C.5b)

and thus Raman scattering increases the normalized spin noise by

2

S
Var(Szf − Sz) ≈

4r

3
. (C.6)

C.2 Considerations in Quantifying Squeezing

Besides limiting the attainable squeezing, scattering can potentially lead to systematic errors

in quantifying spin noise and squeezing. A measurement M with 〈M〉Sz
= Sz is related to

the final spin projection Szf , according to Eq. C.5a, by 〈M〉Szf
≈ (1 − r)Szf for r ≪ 1.

This is because a spin that is flipped partway through the measurement contributes less to

the measurement outcome, which is averaged over some time T , than it does to Sz at any

fixed time. Thus, to avoid underestimating spin noise, the measurement outcome should

be rescaled by a factor of 1 + r—or, equivalently, measured variances should be rescaled

by 1 + 2r (still assuming r ≪ 1). I take this small correction into account1 in reporting

the normalized spin noise σ2 = −8.8(8) dB in Sec. 5.3. Since the same factor affects

measurements of noise and of signal (i.e., interference contrast C) alike, it has no effect in

quantifying the squeezing parameter ζ = σ2/C2.

1In the context of our experiments, I generalize the spin-flip probability r to a value [79] that accounts
for various Raman scattering processes in our multi-level system—some of which remove atoms from the
clock states entirely—as well as for microwave infidelity during the spin echo, as described in Sec. 4.5.
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Appendix D

Quantifying Axial Motion

This appendix supplements the analysis of cooperative cavity cooling in Ch. 8. In Secs.

D.1.1-D.1.4, I calculate the spectrum of intensity fluctuations at the output of the cavity, and

I relate this spectrum to the motional spectrum of the collective mode X . I closely follow the

approach of Marquardt et al. [112] for calculating the displacement spectrum of a mechanical

oscillator coupled to a cavity, and I additionally include lowest-order effects of laser phase

noise [127]. After accounting in Sec. D.1.5 for technical effects in our photodetection of the

cavity transmission, I derive in Sec. D.1.6 the relation of measured photocurrent fluctuations

to the occupation 〈n〉 of the collective mode. Finally, in Sec. D.2 I describe measurements

of the thermodynamic temperature associated with all N modes of the ensemble’s axial

motion.

D.1 Collective Motion and Transmission Fluctuations

In the optomechanical Hamiltonian derived in Ch. 8 (Eq. 8.3), the collective mode was

entirely decoupled from all other ensemble modes due to our approximation of perfectly

harmonic and homogeneous trapping. We allow for corrections to this simplified model

by introducing a term Hγm representing coupling of the collective mode to a bath, which,

in addition to including effects of mixing with other axial modes, might include effects of

radial motion or light-induced effects beyond the optomechanical interaction included in

Hsys. Further accounting for a coupling Hκ of the intracavity field to input field modes

with energy Hdrive, the full optomechanical Hamiltonian takes the form

Htot = ~

[

ωc + δωc + GX0(â
† + â)

] (

ĉ†ĉ−
〈

ĉ†ĉ
〉)

+ ~ωtâ
†â+Hdrive +Hκ +Hγm , (D.1)

where we have subtracted an offset associated with the average intracavity light level and

absorbed the associated force on the atoms into a redefinition of the trap centers ξi. In

terms of the zero-point length X0 ≡
√

~/(2Mωt), the annihilation operator â for mode X
has the usual definition such that X̂ = X0(â

† + â) and P̂ = iMωtX0(â
† − â).
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D.1.1 Equations of Motion

Equation D.1 is the standard optomechanical Hamiltonian [112, 113] describing a cavity

mode, with operator ĉ, whose frequency is shifted in proportion to the position X0(â
† + â)

of a mechanical oscillator of frequency ωt. The last three terms in Eq. D.1 can be written

out explicitly using the standard input-output formalism of quantum optics [82,128]. One

thereby derives equations of motion for ĉ and â in terms of the optical input operators

ĉinj , corresponding to the fields driving the cavity from its two ends labeled by j ∈ 1, 2,

and a mechanical input operator âin corresponding to the thermal bath. We shall describe

the evolution of the field operators in a rotating frame at the drive frequency ωL, writing

the intracavity field operator ĉ = (c + d̂)e−iωLt in terms of a c-number c and a noise

operator d̂ that accounts for small deviations from the classical value, and similarly letting

ĉinj = (cinj + d̂inj)e
−iωLt. The classical field values are then in a steady-state relation

0 = (iδ − κ

2
)c−

√

κ

2
(cin1 + cin2) , (D.2)

while the deviations obey the linearized equations of motion [112]

˙̂
d = (iδ − κ

2
)d̂+ iC

(

â+ â†
)

−
√

κ

2

(

d̂in1 + d̂in2

)

, (D.3)

˙̂a = (−iωt −
γm
2
)â−√

γmâin + i
(

C∗d̂+ Cd̂†
)

, (D.4)

where δ ≡ ωL − (ωc + δωc) represents the detuning of the drive field from cavity resonance

for X = 0; and C ≡ −GX0c.

Defining the cavity response function χκ(ω) = 1/[κ/2 − i(ω + δ)] and the mechanical

response function χm(ω) = 1/[γm/2 − i(ω − ωt)], and rewriting the equations of motion in

the Fourier domain, we have:

d̃/χκ(ω) = iC[ã(ω) + ã†(−ω)]−
√

κ

2
[d̃in1(ω) + d̃in2(ω)], (D.5)

ã/χm(ω) = i[C∗d̃(ω) + Cd̃†(−ω)]−√
γmãin(ω). (D.6)

Here, Õ(ω) ≡
∫ T/2
−T/2 e

iωtÔ(t) dt/
√
T denotes the windowed Fourier transform [128] of an

operator Ô, and in calculating spectra
〈

Õ(ω)Õ(−ω)
〉

(for Hermitian Ô) we shall always

implicitly take the limit T → ∞ of a long window.

We can solve Eqs. D.5-D.6 to obtain the dependence of X̃(ω)/X0 = ã(ω) + ã†(−ω) on
the optical input fluctuations d̂in = (d̂in1 + d̂in2)/

√
2 and the mechanical bath operator âin:

D(ω)
[

ã(ω) + ã†(−ω)
]

=−√
γm[χ−1∗

m (−ω)ãin(ω) + χ−1
m (ω)ã†in(−ω)]

− 2
√
κωt

[

C∗χκ(ω)d̃in(ω) + Cχ∗
κ(−ω)d̃†in(−ω)

]

, (D.7)
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where

D(ω) = χ−1
m (ω)χ−1∗

m (−ω)− 2i |C|2 ωtΠ(ω) (D.8)

and

Π(ω) = χκ(ω)− χ∗
κ(−ω). (D.9)

D.1.2 Input Field

We shall allow one end of the cavity to be driven by a laser at frequency ωL that may have

some phase noise. To account for this, we let d̂in1 = d̂in0 + iξcin1, where d̂in0 represents

quantum fluctuations, while ξ(t) ≪ 1 is a real-valued stochastic variable representing the

phase noise. At the other end of the cavity, we will admit only vacuum fluctuations (setting

cin2 = 0).

The quantum fluctuations (j = 0, 2) satisfy

〈

d̃†inj(ω)d̃inj(ω
′)
〉

= 0,
〈

d̃inj(ω)d̃
†
inj(ω

′)
〉

= δT (ω − ω′), (D.10)

where in the relevant limit T → ∞, δT (0) = 1 and δT (u) → 0 for u 6= 0. Phase noise

modifies the corresponding relations for d̂in1,

〈

d̃†in1(ω)d̃in1(ω
′)
〉

=
〈

ξ̃(−ω)ξ̃(ω′)
〉

|cin1|2 ,
〈

d̃in1(ω)d̃
†
in1(ω

′)
〉

= δT (ω − ω′) +
〈

ξ̃(ω)ξ̃(−ω′)
〉

|cin1|2 , (D.11)

and adds correlations

〈

d̃in1(ω)d̃in1(−ω′)
〉

= −
〈

ξ̃(ω)ξ̃(−ω′)
〉

c2in1. (D.12)

We will parameterize the laser noise by an effective linewidth γL(ω) given by the two-sided

spectral density of frequency fluctuations, γL(ω) ≡ ω2
〈

ξ̃(ω)ξ̃(−ω)
〉

. (For a laser with

Lorentzian lineshape, γL is independent of frequency and represents the full width [129].)

D.1.3 Transmission Spectrum

We now proceed to calculate the two-sided spectrum S
(2)
R (ω) of cavity transmission fluc-

tuations and relate this to the spectrum of the mechanical oscillator’s motion. The rate

R at which photons are transmitted from the cavity is given in terms of the output field

operator ĉout = ĉin2 +
√

κ
2 ĉ as R = ĉ†outĉout. The fluctuations of this rate about its mean

value R = c2out are given by ĉ†outĉout − c2out ≈ (c∗outd̂out + cd̂†out), where d̂out = ĉout − cout and

we are working to lowest order in d̂out/cout. We assume, without loss of generality, that c

is real. Defining ǫ(ω) ≡ d̃out(ω) + d̃†out(−ω), we then have S
(2)
R (ω)/R = 〈ǫ(ω)ǫ(−ω)〉. Using
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Eq. D.5 to evaluate d̃out = d̃in2 +
√

κ/2d̃, we find ǫ(ω) = ǫopt(ω) + ǫmech(ω), where

ǫopt(ω) =− (κ/2)
[

χκ(ω)d̃in1(ω) + χ∗
κ(−ω)d̃†in1(−ω)

]

+ [1− (κ/2)χκ(ω)] d̃in2(ω) + [1− (κ/2)χ∗
κ(−ω)] d̂†in2(−ω) (D.13)

and

ǫmech(ω) = iC
√

κ/2Π(ω)
[

ã(ω) + ã†(−ω)
]

. (D.14)

Here, ǫopt contains the intensity fluctuations due to photon shot noise or technical noise of

the drive light, whereas ǫmech describes fluctuations in transmission due to atom-induced

shifts of the cavity resonance.

Using Eqs. D.13 and D.14, we can express the fractional fluctuations in transmitted

intensity as the sum of three terms describing, respectively, the intrinsic optical fluctuations;

the motion-induced fluctuations; and the correlations between the first two:

S
(2)
R (ω)/R

2
= S

(2)
opt(ω) + S

(2)
mech(ω) + S

(2)
fb (ω). (D.15)

Here,

S
(2)
opt(ω) = 〈ǫopt(ω)ǫopt(−ω)〉 /R = 1/R + γL(ω) |Π(ω)|2 (D.16)

represents the optical fluctuations that would be present even in the absence of optome-

chanical coupling, namely photon shot noise and laser phase noise (converted into intensity

noise by the cavity). S
(2)
mech(ω) is directly related to the spectrum S

(2)
X (ω) =

〈

X̃(ω)X̃(−ω)
〉

of the mechanical motion (evaluated below in Eq. D.19) by

S
(2)
mech(ω) = 〈ǫmech(ω)ǫmech(−ω)〉 /R = G2 |Π(ω)|2 S(2)

X (ω). (D.17)

Finally, the correlations between the mechanical motion and the optical noise are described

by

S
(2)
fb (ω) = 〈ǫopt(ω)ǫmech(−ω) + ǫmech(ω)ǫopt(−ω)〉 /R

= −4(GX0)
2ωtIm

[

Π(ω)

D(ω)

(

χ∗
κ(ω) + 2γL(ω) |Π(ω)|2R/κ

)

]

. (D.18)

D.1.4 Displacement Spectrum

We evaluate the two-sided spectrum of the mechanical oscillator’s displacement S
(2)
X (ω) =

〈

X̃(ω)X̃(−ω)
〉

using Eq. D.7. Applying the simplest possible model for the bath, namely
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quantum white noise [130] with
〈

ã†in(ω)ãin(ω)
〉

≡ 〈nbath〉, we obtain

S
(2)
X (ω)

|D(ω)|2
X2

0

= γm

[

(〈nbath〉+ 1)
∣

∣χ−1
m (−ω)

∣

∣

2
+ 〈nbath〉

∣

∣χ−1
m (ω)

∣

∣

2
]

+ 4κ |ωtCχκ(ω)|2 + 8[γL(ω)R/κ] |ωtCΠ(ω)|2 . (D.19)

The first pair of terms (in square brackets) describes motion arising from the oscillator’s

coupling to the bath. The middle term describes motion induced by photon shot noise of

the probe light, while the last term describes motion induced by laser frequency noise.

Note that in the absence of optomechanical coupling (C = 0), the oscillator spectrum

S
(2)
X (ω) reduces to a pair of Lorentzians centered about ±ωt

S
(2)
X (ω)

X2
0

∣

∣

∣

∣

∣

C=0

= γm

[

(〈nbath〉+ 1) |χm(ω)|2 + 〈nbath〉 |χm(−ω)|2
]

, (D.20)

whose area is set by the bath temperature

∫ ∞

−∞

dω

2π

S
(2)
X (ω)

X2
0

= 2 〈nbath〉+ 1. (D.21)

D.1.5 Comparison with Measured Spectra

The spectra we measure are one-sided spectra, which we shall denote generically in terms

of the two-sided spectra S(2)(ω) by S(ω) ≡ S(2)(ω) + S(2)(−ω). The actual noise measured

at the photodetector, normalized to the average photocurrent I , is SI(ω)/I
2
= SR(ω)/R

2
+

Σdet. Here, Σdet accounts for imperfect quantum efficiency Q = 0.5(1), an excess noise

factor F = 4.5(5) of the avalanche photodiode, and dark (primarily Johnson) noise, and is

given by

Σdet =
F −Q

Q

2

R
+

SJ

(QR)2
, (D.22)

where SJ = 1.5(3) × 109 /(s2 Hz) expresses the measured dark noise in units of equivalent

photon rate. The spectra in Fig. 8-4 are taken with a photon rate R = 1.2 × 109/s at the

output of the cavity, which yields Σdet = 1.6(1) × 10−8/Hz.

We can now write the measured spectrum as SI(ω)/I
2
= Smech(ω) + Sbg(ω), where

Sbg(ω) = Sopt(ω) + Sfb(ω) + Σdet. (D.23)

From transmission noise Sopt(ω) measured at large photon rate in the absence of atoms,

we have determined the effective laser linewidth to be γL(ωt) = 2π× 0.8(2) kHz at the trap

frequency ωt ≈ 2π × 500 kHz (well within our 3 MHz lock bandwidth). At the photon rate

R = 1.2×109/s used in the spectra of Fig. 8-4, the associated phase-noise-induced intensity

123



fluctuations are a factor of 1.7(5) below the photon shot noise level; correspondingly, they

induce motion (included in our analysis) that is smaller than the zero-point fluctuations

X0.

In fitting the measured spectra, we constrain F , Q, γL and R; we leave the dominant

background noise contribution SJ free and obtain values consistent with the independently

measured dark noise.

D.1.6 Determination of Collective Temperature

Subtracting the background level Sbg(ω) from the measured spectrum SI(ω)/I
2
allows us

to determine SX(ω) from Eq. D.19 and integrate it to find the occupation of the collective

mode:

〈n〉+ 1/2 =
1

2

∫ ∞

0

dω

2π
SX(ω)/X2

0 . (D.24)

To determine 〈n〉 in Fig. 8-2, we use not the spectrum itself but the fractional variance

σ2I ≡ (I − I)2/I
2
of the measured photocurrent I ∝ R in a bandwidth B ≫ ωt, which is

related to the spectrum SI(ω)/I
2
by

σ2I =

∫ B

0

dω

2π
SI(ω)/I

2 ≈
∫ ∞

0

dω

2π
Smech(ω) +

∫ B

0

dω

2π
Sbg(ω). (D.25)

We make in Eq. D.17 for Smech(ω) the approximation Π(ω) ≈ Π(ωt) = (2/κ)(L+ − L−),

which yields

Smech(ω) ≈ (2G/κ)2 |L+ − L−|2 SX(ω). (D.26)

Integrating Eq. D.26 allows us to obtain
∫

dω
2πSX(ω) from σ2I using Eq. D.25. The back-

ground noise term
∫ B
0

dω
2πSbg(ω) on the right-hand side of Eq. D.25 is independent of the

occupation of the collective mode and is well approximated for the data in Fig. 8-2 by

the variance σ2I,eq measured in the long-time limit. In particular, we can find the change

〈n〉−〈n〉eq in collective mode occupation between two different measurements σ2I , σ
2
I,eq of the

fractional transmission variance at fixed background noise by combining Eqs. D.24-D.26:

σ2I − σ2I,eq = 8(GX0/κ)
2 |L+ −L−|2

(

〈n〉 − 〈n〉eq
)

. (D.27)

The equilibrium occupation 〈n〉eq . 3 of the collective mode X is small compared to the

values 〈n〉 plotted in Fig. 8-2, where mode X is initially excited. Therefore neglecting

〈n〉eq ≪ 〈n〉, and reexpressing Eq. D.27 in terms of transmission rate variances σ2 ≡
(R−R)2/R

2
= σ2I −BΣdet and σ

2
bg ≡ σ2I,eq −BΣdet, we obtain

σ2 − σ2bg = 8(GX0/κ)
2 |L+ −L−|2 〈n〉 . (D.28)
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D.2 Thermodynamic Temperature

The thermodynamic axial temperature, given by the mean single-atom vibrational occupa-

tion number 〈ni〉, is of interest both for comparison with the bath temperature inferred from

the fits in Fig. 8-4 and for quantifying the suppression of recoil heating due to cavity cool-

ing. We estimate 〈ni〉, in an ensemble of N = 1000(100) atoms, by ramping off the trap over

20 µs ≫ 1/ωt while increasing the lattice depth of the probe to Up ≈ 90~ωt. In the probe

lattice, blue-detuned by ∆/(2π) = +280 MHz from atomic resonance, axially cold atoms

localize at positions x′i near the nodes. Before the cloud has time to expand radially, we

determine the atom-probe coupling C ′ =
〈

sin2(kx′i)
〉

via the cavity shift, normalized by the

shift measured beforehand in the 851-nm lattice at C = 1/2. From C ′ ≈ (〈n′i〉+1/2)
√

Er/Up

we determine the mean vibrational level 〈n′i〉 in the final probe lattice, which represents only

an upper bound on 〈ni〉 < 〈n′i〉 if the transfer into this lattice is not entirely adiabatic.

Measurements of 〈n′i(t)〉 after applying probe light on cavity resonance (δ = 0) for vari-

able time t ≤ 100 ms, scattering Γsc = 1.7(3)× 104 photons/s, show an initial temperature

〈n′i(0)〉 = 6(2) and the expected recoil heating d 〈n′i〉 /dt = (7/10)ΓscEr/(~ωt). Figure D-1

displays these measurements (black triangles) and compares them with the results of cavity

cooling (red circles) at δ = −κ/2 under otherwise the same conditions—in particular, at

the same transmitted power, implying the same scattering rate. A linear fit to the cavity

cooling data (red solid line) has a slope d 〈n′i〉 /d(Γsct) that is 40(10)% lower than that of

the recoil heating (black dotted line).
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Figure D-1: Thermodynamic axial temperature 〈n′i〉 vs number of photons scattered per
atom Γsct, either with cavity cooling at δ = −κ/2 (red) or without cavity cooling (δ = 0;
black). Error bars are statistical and do not include a systematic uncertainty in 〈n′i〉 of ±2.
Black dotted line shows theoretically predicted slope d 〈n′i〉 /d(Γsct) = (7/10)Er/(~ωt) =
5.5(5) × 10−3 for recoil heating. Red solid line is a fit to the cavity-cooling data, with
reduced slope d 〈n′i〉 /d(Γsct) = 3.5(4) × 10−3.
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[11] Vladan Vuletić and Steven Chu. Laser cooling of atoms, ions, or molecules by coherent
scattering. Phys. Rev. Lett., 84:3787–3790, 2000.

[12] Ian D. Leroux. Squeezing Collective Atomic Spins with an Optical Resonator. PhD
thesis, Massachusetts Institute of Technology, 2011.

[13] Jacques Vanier and Claude Audoin. The Quantum Physics of Atomic Frequency
Standards. Hilger, Philadelphia, 1989.

127



[14] S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert,
C. Vian, F. Pereira dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf,
A. Clairon, A. Luiten, M. Tobar, and C. Salomon. Cold atom clocks and applications.
Journal of Physics B: Atomic, Molecular and Optical Physics, 38:S449, 2005.

[15] Hidetoshi Katori. Optical lattice clocks and quantum metrology. Nature Photonics,
5, 2011.

[16] A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G.
de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, Jun Ye, T. M. Fortier,
J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke,
K. M. Beck, and C. W. Oates. Sr Lattice Clock at 1 x 10-16 Fractional Uncertainty
by Remote Optical Evaluation with a Ca Clock. Science, 319:1805–1808, 2008.

[17] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma,
and C. W. Oates. Making optical atomic clocks more stable with 10-16-level laser
stabilization. Nature Photonics, 5:158–161, 2011.

[18] V. Shah, G. Vasilakis, and M. V. Romalis. High bandwidth atomic magnetometery
with continuous quantum nondemolition measurements. Phys. Rev. Lett., 104:013601,
2010.

[19] M. Koschorreck, M. Napolitano, B. Dubost, and M. W. Mitchell. Sub-projection-noise
sensitivity in broadband atomic magnetometry. Phys. Rev. Lett., 104:093602, 2010.

[20] M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O.
Sushkov, and V. V. Yashchuk. Can a quantum nondemolition measurement improve
the sensitivity of an atomic magnetometer? Phys. Rev. Lett., 93:173002, 2004.

[21] Dmitry Budker and Michael Romalis. Optical magnetometry. Nature Physics, 3:227–
234, 2007.

[22] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik.
Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett.,
104:133601, 2010.

[23] Achim Peters, Keng Yeow Chung, and Steven Chu. Measurement of gravitational
acceleration by dropping atoms. Nature, 400:849–852, 1999.

[24] Holger Muller, Achim Peters, and Steven Chu. A precision measurement of the grav-
itational redshift by the interference of matter waves. Nature, 463:926–929, 2010.

[25] Alexander D. Cronin, Jörg Schmiedmayer, and David E. Pritchard. Optics and inter-
ferometry with atoms and molecules. Rev. Mod. Phys., 81:1051–1129, 2009.

[26] D. S. Durfee, Y. K. Shaham, and M. A. Kasevich. Long-term stability of an area-
reversible atom-interferometer sagnac gyroscope. Phys. Rev. Lett., 97:240801, 2006.

[27] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H.
Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann,
N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist. Frequency ratio of
Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science,
319:1808–1812, 2008.

128



[28] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband.
Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett.,
104:070802, 2010.

[29] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99, 1954.

[30] F. T. Arecchi, Eric Courtens, Robert Gilmore, and Harry Thomas. Atomic coherent
states in quantum optics. Phys. Rev. A, 6:2211–2237, 1972.

[31] M. O. Terra Cunha, V. I. Man’ko, and M. O. Scully. Quasiprobability and probability
distributions for spin-1/2 states. Foundations of Physics Letters, 14:103–117, 2001.

[32] A. Sørensen, L. M. Duan, J. I. Cirac, and P. Zoller. Many-particle entanglement with
bose-einstein condensates. Nature, 409:63–66, 2001.
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clocks. In J. Reichel and V. Vuletić, editors, Atom chips, pages 265–282. Wiley-VCH,
Weinheim, Germany, 2011.

[92] Matthew D. Swallows, Michael Bishof, Yige Lin, Sebastian Blatt, Michael J. Martin,
Ana Maria Rey, and Jun Ye. Suppression of collisional shifts in a strongly interacting
lattice clock. Science, 331:1043–1046, 2011.

[93] Jun Ye, H. J. Kimble, and Hidetoshi Katori. Quantum state engineering and precision
metrology using state-insensitive light traps. Science, 320:1734–1738, 2008.

[94] Peter Horak, Gerald Hechenblaikner, Klaus M. Gheri, Herwig Stecher, and Helmut
Ritsch. Cavity-induced atom cooling in the strong coupling regime. Phys. Rev. Lett.,
79:4974–4977, 1997.

[95] Peter Domokos and Helmut Ritsch. Mechanical effects of light in optical resonators.
J. Opt. Soc. Am. B, 20:1098–1130, 2003.

[96] K. Murr. Large velocity capture range and low temperatures with cavities. Phys.
Rev. Lett., 96:253001, 2006.

[97] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe. Cavity
cooling of a single atom. Nature, 428:50–52, 2004.

[98] Stefan Nußmann, Karim Murr, Markus Hijlkema, Bernhard Weber, Axel Kuhn, and
Gerhard Rempe. Vacuum-stimulated cooling of single atoms in three dimensions.
Nature Physics, 1:122–125, 2005.

[99] Tobias Kampschulte, Wolfgang Alt, Stefan Brakhane, Martin Eckstein, René
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