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Abstract

In this thesis we apply techniques arising from string theory — gauge-gravity /duality,
or holography — to problems associated with strongly coupled quantum field theories
under extreme conditions such as finite temperature or density.

We first study a strongly coupled field theory at finite temperature. We demon-
strate that its low frequency limit is determined by the horizon geometry of its gravity
dual, i.e. by the “membrane paradigm” fluid of classical black hole mechanics. Thus
generic boundary theory transport coefficients can be expressed in terms of geometric
quantities evaluated at the horizon, providing a simple understanding of results such
as the universality of the shear viscosity in theories with gravity duals. Away from the
low frequency limit we find a nontrivial radial flow from the black hole horizon to the
boundary of the spacetime; we derive equations governing this flow and demonstrate
their use in the simple examples of charge and momentum diffusion.

Next, we turn to the study of strongly coupled theories with a finite density of a
U(1) charge. The near-horizon geometry of the gravity dual of such a state has an
AdS; factor, indicating the existence of a nontrivial emergent conformal symmetry
in the infrared with nontrivial scaling only in the time direction. We review earlier
work indicating that fermionic perturbations of such a state reveal non-Fermi-liquid
behavior, i.e. gapless fermionic excitations that are not those of Fermi liquid theory.
We perform a one-loop calculation in the bulk to compute the contribution from these
Fermi surfaces to the conductivity of the full system. Interestingly, within this class
of non-Fermi liquids we find examples whose single-particle spectral function and
transport behavior both resemble those of strange metals, i.e. the anomalous metallic
state existing in the real-life high T, cuprates above their superconducting transition
temperature. In particular, for these examples the contribution to the conductivity
is inversely proportional to temperature. In our treatment these properties can be
understood as being controlled by the scaling dimension of the fermion operator in
the emergent IR fixed point.

We then turn to models of symmetry breaking in holographic models at finite den-
sity. We observe that the presence of the AdS, factor can result in the condensation
of a neutral scalar operator. This can be used to model an “antiferromagnetic” phase
in which a global SU(2) symmetry is broken down to U(1). We study the collective
modes of the ordered phase and recover the expected spin waves from a gravitational
treatment. We then note that the phase transition can be driven to zero temper-
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ature by tuning various bulk couplings, resulting in a quantum phase transition of
the Berezinskii-Kosterlitz-Thouless type. We study this transition in detail, revealing
novel critical behavior, including locally quantum critical dynamics and the existence
of an infinite tower of excited states related by a discrete subgroup of the original
emergent conformal symmetry.

Throughout this thesis we focus on how the novel viewpoint provided by hologra-
phy can help us gain new insights into the physics of strongly correlated systems.

Thesis Supervisor: Hong Liu
Title: Professor
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Chapter 1

Introduction

1.1 The problem of interactions

Our current most precise understanding of the universe is in terms of quantum field
theory. Traditionally, we organize our understanding of quantum field theory in
terms of particle excitations. Let us consider the simplest example, defined by the
Lagrangian:

L= /d‘* [ (Vo)? + m2¢2 (1.1)

This system contains free particles of mass m, who stream past each other without
interaction. Not much happens in this system, but this is precisely what makes it the
traditional starting point for an understanding of quantum field theory.

Nevertheless, this is currently a bad caricature of reality, and so in an attempt
to capture more interesting physics we add an interaction term that allows these
particles to scatter:

/C] - /d“x%gb“, (1.2)

and now life is made far more interesting by the fact that the theory is no longer
soluble. We are forced to resort to approximation, perturbation expansions in A
and the computation of Feynman diagrams. The resulting structure of perturbative
quantum field theory is wildly successful, and is indeed the framework on which our
current understanding of physical reality is built. Yet even within the simple example
of A¢* theory one can easily be frustrated by the fact that our starting point — free
particles — is necessarily built around the thoroughly unphysical assumption that the
constituent particles do not talk to each other. Consider, for example, heating this
theory up to a finite temperature. We are now considering a plasma of interacting ¢
particles, and general principles (i.e. essentially common sense) tell us that on long
distances the system should be governed by the rules of hydrodynamics: disturbances
should dissipate into the plasma, and one should be able to understand the emergence
of hydrodynamics and compute the quantities characterizing the dissipation, such as
viscosities.

Yet the computation of the viscosity of the A¢* plasma from the Lagrangian (1.2) is
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rather nontrivial, requiring the summation of an infinite tower of Feynman diagrams
that capture the many ways in which thermally excited ¢ particles scatter off of
each other (for example, see [1]). This difficulty is perhaps not entirely unexpected;
a viscosity is something whose very existence requires interactions and is rather ill-
defined in the free-field limit, yet our current formalism for calculation is based around
a starting point in which interactions do not even exist.

1.1.1 A foray into real life

This problem is of course not at all academic. There are many systems in real life
whose dynamics is governed by strong interactions and in which the questions of inter-
est depend critically on the nature of these interactions, thus resisting a conventional
field-theoretical treatment. I mention here only two of the most famous examples.

Consider for example quantum chromodynamics, the theory of quarks and gluons.
The microscopic action describing this theory takes a very simple form

S = /d4$ (-—llng-Fa—FZz:’QZ,(w —m)d}i) 3 (13)

where F is the field strength for an the SU(3) gauge field that represents the gluons
and each 1); represents the field for a light quark that is charged in the fundamental
under this gauge field. Staring at this Lagrangian it is clear that its fundamental
degrees of freedom — massless gluons and almost massless quarks — look nothing like
the heavy particles, protons, neutrons, that make up the universe we see. Famously,
the gauge coupling of this theory runs with energy [2]; even though at high energies
the theory defined by (1.3) is free, at low energies the coupling becomes strong and
the quarks and gluons confine, resulting in a spectrum of massive particles that are
held together by strong interactions.

Textbook theoretical techniques starting about free quarks and gluons — the sum-
mation of Feynman diagrams — are clearly not very useful in understanding confine-
ment; nevertheless tremendous progress has been achieved via direct simulation of
the path integral on a discrete lattice using a computer. One might even argue that
the confined phase represents a gapped state of matter whose low-energy excitations
— the hadrons — are understood, at least qualitatively.

However, there are other phases of QCD. Consider heating up the theory — one
expects that at temperatures higher than the confinement scale, hadrons will disso-
ciate and quarks and gluons will again be the fundamental degrees of freedom. This
is precisely what happens at the Relativistic Heavy Ion Collider, where gold nuclei
are smashed together at energies sufficient to rip apart their hadronic pieces into
the quarks and gluons from whence they came. Due to the high multiplicities and
energies involved, the resulting soup of strongly interacting quarks and gluons may
be thought of as QCD at a finite temperature. Remarkably, this appears to form a
completely new liquid phase of matter — the quark-gluon plasma — whose properties
are tremendously mysterious from a weakly coupled point of view.

We present here only one piece of experimental evidence illustrating this fact. The
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Figure 1-1: Elliptic flow observable vy versus transverse momentum pr observed in
heavy ion collisions, together with theoretical predictions from ideal hydrodynamics.
Taken from [3].

data shown in Figure 1-1 displays the elliptic flow observable v, in heavy ion collisions.
We will not develop the concept of the elliptic flow here, as it will play absolutely
no role in any of our further discussion: what is important, even for us, is that the
different dashed lines on the plot display theoretical calculations performed in the
context of ideal hydrodynamics. Hydrodynamics is meant to be a valid description
on scales much longer than the mean free path of the constituents of the system; the
agreement between these theoretical calculations and the experimental result actually
indicates that the system must have a small mean free path — and thus be very strongly
interacting — indeed.

We can obtain a semi-quantitative measure of precisely how strong these interac-
tions are by examining the value of 1, the dimensionless ratio of the shear viscosity
to entropy density. Consider this ratio first for a weakly coupled theory such as the
A¢* theory mentioned above. Elementary arguments (see e.g. [1] or [4]) show that
in perturbation theory we have T~ ;—2, Le. it diverges as the coupling is taken to
0. For the quark-gluon plasma the precise value obtained depends on details of the
hydrodynamic models used; however we do see from Figure 1-1 that the fit to hydro-
dynamic calculations requires a very small 7, on the order of 101, clearly indicating
that a small A expansion is not a suitable starting point. This miniscule viscosity is
thus a testament both to the remarkable properties of the quark-gluon plasma and
to our lack of a theoretical framework in which to understand it.

Another famous example arises from condensed matter physics. Before turning
to strongly correlated phenomena let us first understand the canonical example of
a well-understood metallic state, the Fermi liguid. This describes weakly interact-
ing fermions filling up a Fermi surface: excitations about the Fermi surface may be

17



represented by the momentum-space Lagrangian
SFL = /dtdd—zkdkliz)(k)(ldt — kj_vp)w(k), (1.4)

where k| is a momentum vector perpendicular to the Fermi surface and k represents
the other components of the momentum. The theory defined by (1.4) is quadratic,
representing non-interacting fermions with a linear dispersion about the Fermi surface.

Now consider adding interactions; remarkably, the effect of Fermi statistics to-
gether with the kinematics of scattering about the Fermi surface greatly constrain the
possible effects of any such (sufficiently well-behaved) interaction, essentially making
it unimportant at low energies. In the language of the renormalization group, the
free fixed point defined by (1.4) has almost no relevant perturbations® [7, 8]. Thus
one expects the free theory to be an excellent model of electronic behavior, and in-
deed this is true for the vast majority of metals, making Fermi liquid theory one of
the foundations on which our understanding of the structure of matter is built. One
can compute any desired physical property in this weakly-coupled framework, but we
mention only one here: the resistivity is quadratic in temperature, ppr, ~ T?.

However, since 1986 there has been a great deal of experimental study of metallic
states that do not fit into the Fermi liquid framework. The most well-known example
is the normal phase of the high-T, superconductors (see e.e. [6]); these are (mostly)
copper-based compounds that are superconducting at low temperatures. However,
when heated above their superconducting transition temperature T; they form a novel
metallic state, the “strange metal.” Essentially every transport property measured
of these strange metals is different from that of a Fermi liquid. We cannot resist
the temptation to display one such experimental measurement in Figure 1-2; as is
obvious, the resistivity of these materials is linear in temperature over a huge range
of temperatures, pPsirange ~ 1, clearly demonstrating incompatibility with the free
Fermi liquid picture.

Thus something must replace (1.4) as the effective theory for the non-Fermi lig-
uid representing the strange metals. What is it? This is unclear, and and despite
considerable progress I believe it is appropriate to say that these systems have so far
resisted a unified theoretical treatment. However, even from our qualitative discus-
sion so far, it seems clear that strong interactions are likely to play an important role,
again because the free theory (1.4) is not a good starting point.

1.1.2 A new approach

It is thus fortunate, if unexpected, that recent developments in string theory have
resulted in the discovery of a completely new approach to strongly correlated physics.
As T will attempt to motivate in the remainder of this introduction, it turns out
that certain gauge theories are actually ezactly equivalent to theories of gravity in

1This is not strictly true; there are interactions that are marginally relevant connecting points
on the Fermi surface and leading to various ordering phenomena, of which BCS superconductivity
is one example.
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Figure 1-2: Resistivity as a function of temperature for various high-temperature
superconductors. Taken from [5].

one higher dimension [9, 10, 11]. Just as a two-dimensional hologram contains the
illusion of a three-dimensional image, these three-dimensional quantum field theories
can contain the illusion of a four-dimensional theory of quantum gravity. This is
both conceptually startling and practically useful: when the field theory is strongly
coupled this illusory gravity theory is weakly coupled and classical, and indeed one
can now use it to calculate field theory observables that would be otherwise utterly
inaccessible. We will see that difficult problems in many-body physics are typically
mapped to beautiful geometric structures on the gravity side, often resulting in new
field-theoretical insights.

However, I should stress at this point that the holographic approach taken in this
thesis simply does not apply directly to either of the two real life systems mentioned
above. There is currently no simple gravity dual to QCD and we are even further
from understanding what a true gravity dual to the cuprates would look like. The
questions we will ask and answer will be in the context of models that lack many of the
complications and interesting physics that the real-life examples provide. However we
will argue that many of the features of the gravity models both provide a caricature
of some of the observed features of the real-life systems. Fascinatingly, we will find
both small viscosities and linear resistivities. Perhaps more importantly, we will find
that this new approach will often offer a new way of organizing our thinking about
strongly correlated systems, something that perturbation theory does not provide.
The approach described here is only a starting point, but I will argue that it is
a useful starting point, and one from which we can see many attractive pathways
winding down.
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1.2 Holography in a nutshell

In this section we will take an idiosyncratic route to motivating the holographic cor-
respondence. In particular, it was mentioned above that certain problems in strongly
coupled quantum field theories can be mapped to problems in classical gravity. More
specifically, holographic duality relates certain gauge theories (whose gauge groups
we will take to be SU(N)) to theories of gravity. When the rank of the gauge group
N is taken large, the corresponding gravity theory is classical. This is actually not
unexpected, as we now (very briefly) review:

1.2.1 Large N is classical

We will forget completely about gravity for a moment and think only about gauge the-
ory with gauge group SU(N), where we consider N large. Consider gauge-invariant
operators made from the gluon fields O;, where we normalize them so that they have
a well-defined large-N limit, i.e. O; ~ N°. By a simple counting of powers of N that
we do not review here (see e.g. [12]), it is easy to show that the connected correlator
of m of these operators satisfies

(010,...0)¢ ~ N7, (1.5)
Now let us use this to compute the variance of one of these operators:

(0—(0))") = (00)c ~ N~ (1.6)

Thus it appears that in the large-N limit, all operators are arbitrarily sharply
peaked about their expectation values. This is the very definition of what it means to
be “classical”; we conclude that regardless of the strength of the Yang-Mills coupling
gy, a new classical limit emerges when N — oco. There is a useful analogy due to
[12]; in the standard classical limit, as i — O we find that the functional integral of
quantum mechanics is concentrated on just one field configuration, the usual classical
solution. All observables are arbitrarily sharply peaked about their values on this
classical solution, and once we find this classical solution by solving the equations of
motion we can build a useful semi-classical approximation (if we so desire). It appears
that as N — oo something similar is happening in gauge theory: there should be some
“cauge field configuration” that dominates some sort of functional integral, but we
do not know what it is, nor do we have an algorithm for finding it.

Historically, this solution is called the “master field” and for many years its iden-
tity was a missing ingredient in our understanding of large-N gauge theory. Let
us speculate briefly about what equations it might satisfy; they should be classical
equations, but they should contain the information of essentially infinitely many de-
grees of freedom per four-dimensional spacetime point, as N = co. How might such
information be organized?
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1.2.2 The degrees of freedom of gravity

Let us now keep these thoughts in mind and turn to what appears to be a completely
different question: in a theory of gravity and matter, how are the degrees of freedom
encoded in space? This question can be answered at several levels. Let us begin at
the most elementary level: if the gravitational coupling Gy is taken to be small, it is
probably sensible to think of a theory of gravity and matter as an ordinary quantum
field theory about a fixed background. Taking the theory to be massless for simplicity,
we find that if we consider a region with volume V and energy E, its entropy scales
like

S~ Va, (1.7)

where a depends on the energy density p = % which does not scale with the volume.
This is a standard and familiar result.

Let us now consider what happens when the gravitational coupling G is turned
on. One of the great results of classical general relativity tells us that something very
interesting now happens if we imagine making V small while holding F constant.
Eventually the linear size characterizing V' will be smaller than the Schwarzschild
radius r,(E) appropriate to the energy E,

 2GNE
A

and our system will collapse into a black hole. This system is very different from the
one we started with, and one of the great results of semi-classical general relativity
tells us that the counting of the entropy should now be done differently. The answer
— the Bekenstein-Hawking entropy — turns out to be independent of the details of the
theory, and is

A

 4AGN R’
where here A is the area of — not the volume within — the event horizon of the resulting
black hole. This is completely contrary to any intuition we have from local quantum
field theory, and we are reluctantly led to conclude that at high energies, the degrees
of freedom are not stored in a simple local way in the spacetime. In fact, one is now
tempted to say that in some deeper sense, a theory of gravity behaves like it has one
less dimension than one might expect.

rs(E)

(1.8)

(1.9)

1.2.3 The punch line

On the one side, in large N four-dimensional gauge theory, we seek equations defining

a “classical limit” that somehow contains infinitely more degrees of freedom than any

standard theory. On the other hand, in classical gravity in five dimensions, we see that

somehow the counting of gravitational degrees of freedom tells us that it is begging

to be described as a conventional (i.e. non-gravitational) theory in four dimensions.
The punch line is clear:
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The classical limit of N — 0o gauge theories is related to classical gravity in one
higher dimension.

This is a preposterous statement, and of course we would not be making it if there
were not a great deal of evidence that it were true. But what happens if N is no
longer strictly infinite? One expects that configurations other than the master field
will contribute on the gauge theory side—the theory is becoming “semi-classical”, in
that fluctuations about the master field will contribute. On the gravitational side,
these fluctuations can be precisely mapped to traditional quantum fluctuations about
a bulk gravitational spacetime. Presumably if we had a way (e.g. string theory) to
sum up these quantum fluctuations, we would reconstruct the finite N gauge theory.
In other words,

Certain finite N gauge theories are exactly equivalent to quantum gravity in one
higher dimension.

This is the statement of the holographic correspondence. There are by now many
explicit examples of the duality arising from string theory. The most well-studied
example is that between maximally supersymmetric Yang-Mills theory with gauge
group SU(N) in four dimensions and quantum gravity (i.e. Type IIB string theory)
on the product of a five-dimensional manifold called Anti-de Sitter space, or AdSs
with a 5-sphere S°. Maldacena was originally led to his celebrated conjecture about
the equality of these two theories via a beautiful set of string-theoretical arguments
[9] that we will not review here, but which lead to a precise mapping between the
parameters of the two theories:

4
'1\% . (?) — 4 (1.10)

Here A is the Yang-Mills t’Hooft coupling A = ¢2,,N, R is the curvature radius of
the bulk spacetime, [, the string length, and g, the string coupling. Notice that when
N is large the string coupling, which controls bulk quantum gravitational effects, is
small; thus, as claimed above, quantum effects in the bulk are 1/N? effects in the
gauge theory. Notice also that when A is large the curvature of the gravitational
description is small; thus we see the remarkable fact that

The classical gravitational description is good precisely when the gauge theory is
strongly coupled.

This is the power of the duality, allowing us to solve strongly coupled quantum
field theories using classical gravity.

1.3 Summary and contents of thesis
We pause now to briefly summarize what we have learned: large N gauge theories
have a novel sort of classical limit that can be seen when the rank of the gauge

group N is taken to be very large. For some of these theories, the classical limit thus
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obtained turns out to be the usual classical limit of Einstein gravity, in one extra
dimension.

In this simplest examples, the theory is defined on Anti de-Sitter space, whose
metric takes the form

dztdz” + dz?

22 ’
We will take the viewpoint that this metric is in many ways the strongly coupled
analog of the free field Lagrangian (1.1) that we started with; classical gravity about
this background provides us a solvable system that is a holographic description of a
strongly-coupled field theory. Just as we add terms such as (1.2) to (1.1) to obtain
interesting physics, we will find various ways to mutilate (1.11) to describe physical
phenomena of interest.

In the remainder of this section we briefly summarize the work that is done in this
thesis. In Chapter 2 we provide a brief introduction to the the technology involved in
performing calculations in holography, with a particular focus on real-time observables
and applications to spinor fields [15]. In Chapter 3 we discuss hydrodynamics in the
context of holography; placing the field theory at a finite temperature is dual to
creating a black hole in the gravitational description. Thus one expects on general
grounds that at long distances all such black holes should display hydrodynamic
behavior, and indeed it has been known for many years that the horizon of a black
hole behaves in many ways like a fluid. This is called the membrane paradigm of
classical black hole mechanics [13], and holography may be thought of as a way to
understand why it is true. We develop in detail the connection between the membrane
paradigm and holography [14], and along the way we build a convenient formalism
for computing real-time linear response on such backgrounds.

In Chapter 4 we turn our attention to charged black holes. A charged black hole
at zero temperature contains an AdS, factor which drives a great deal of interesting
low-energy physics. Previous work [16, 17, 18] has shown that fermionic perturbations
of charged black hole reveal the existence of Fermi seas: these Fermi seas are not the
weakly coupled Fermi liquids that can be found in solid-state physics textbooks, but
rather display anomalous non-Fermi-liquid behavior that is of considerable physical
interest, particularly in the context of the strange metals discussed above. In Chapter
5 we review these developments from the viewpoint of [19] to show how such non-
Fermi liquid behavior arises from the near-horizon AdS, factor of the charged black
hole. At some points in parameter space these non-Fermi liquids display properties
somewhat similar to the electronic excitations of the real-life strange metals.

In Chapter 6 we compute the contribution to the resistivity arising from these
holographic non-Fermi liquids [20]. As these fermions are a small (O(1)) part of a
much larger (O(N?)) system, to see their contribution to the conductivity we must
calculate a 1/N? correction; as described above, this involves calculating a quantum
effect on the gravitational side, and we develop a considerable amount of technology
to extract this effect. At the appropriate point in parameter space we find a resistivity
that is linear in temperature, again one of the signatures of strange metallic behavior.

In Chapter 7 we discuss models of spontaneous symmetry breaking in holography;
we realize ordered phases that break non-Abelian symmetries, with an eye to mod-

ds? = g2 1w (1.11)
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eling magnetism in strongly coupled systems [21]. The phase transition between the
ordered and disordered phase can be driven to zero temperature by tuning couplings
in the gravitational Lagrangian, and the resulting quantum phase transition is of the
Berezinskii-Kosterlitz-Thouless type [22]. We explore the details of this transition
and also demonstrate the existence of the expected Goldstone modes in the ordered
phase of this model. In Chapter 8 we discuss the critical behavior at this quantum
critical point, revealing novel behavior that we attempt to interpret.

A very brief concluding chapter provides some outlook. There are also two ap-
pendices: Appendix A discusses some exactly solvable spinor examples to illustrate
the technology developed earlier, and Appendix B provides a pedagogical discussion
of the Breitenlohner-Freedman bound, which plays an essential role in the quantum
critical points discussed above.
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Chapter 2

Calculations in AdS/CFT: a primer

2.1 Background

In this section we present a very brief review of the aspects of gauge/gravity duality
that will be required for our discussion. Far more detailed expositions on AdS /CFT
are available! The reader who is already familiar with the basic ideas of holography
is encouraged to skip this chapter, and the reader who only wants to compute things
can probably skip to the results (2.9) and (2.10).

As discussed above, holography (or gauge/gravity duality, or AdS/CFT) is the
surprising statement that certain quantum field theories can be exactly equivalent
to theories of quantum gravity that live in one extra dimension. This idea is ob-
viously conceptually startling. However, recently an increasing amount of research
has focused not on its philosophical implications but rather on its practical utility,
which stems from the fact that it is a strong/weak duality: generally when the field
theoretical side is strongly correlated, the gravitational description is weakly cou-
pled and tractable. This suggests that complicated questions in strongly interacting
many-body physics can be mapped to simple problems in classical gravity, i.e. to
geometry.

We now present some details of the duality. In the most well-studied examples of
the correspondence, gravity (and associated matter fields) propagating on a weakly
curved Anti-de Sitter spacetime in d+1 dimensions (AdS4,,) is mapped to a strongly
coupled conformally invariant quantum field theory that lives in d dimensions (CFTj).
The relevant gravitational action now takes the form

1 d(d — 1)

S = 2—n—2-/dd+1:c v—9 <R + T) (2.1)

Here R is the AdS radius, and is large (in appropriate units) when the dual field theory

'Here we summarize a few: the canonical early review is [23]. [24] focuses on supersymmetric
aspects in A’ = 4. The recent lectures [25] focus more on the physical conclusions that one can
draw. [26] and [27] are an excellent introduction to the applications to many-body physics that are
the focus of this thesis. [28] can be viewed as an introduction to heavy-ion physics and AdS/CFT
both.
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is strongly coupled. The simplest solution satisfying the field equations arising from
(2.1) is pure Anti-de Sitter space, which takes the form

ds® = R? (dz2 + n‘wdx"dx">

e (2.2)

Here the z* run over the coordinates of the field theory, and z is the extra “holo-
graphic” coordinate in the gravitational description. As the simplest and most sym-
metric solution on the gravitational side this geometry represents the vacuum of the
dual field theory. Indeed, the vacuum of the CFT should be invariant under the
conformal group in d-dimensions, which is precisely the same as the isometry group
of AdS4,1. We draw special attention to the following isometry:

L A Y o (2.3)

This is the isometry representing scaling; we see that as we scale the energy we must
scale the holographic coordinate z as well. This is indicative of the fact that the
holographic coordinate represents the “energy scale” at which we consider the theory
in some way, with the UV at z — 0 and the IR at z — 0co. Thus the bulk geometrizes
the RG flow of the field theory: we will make this more precise as we go along,.

We would now like to study excitations about this state. Thus consider perturbing
the CFT by a scalar operator O, say by adding to the CFT Lagrangian a source term

dScrr = /dd+1mJ(x)0(m). (2.4)

How do we study this on the gravity side? It turns out that for each (conformally
primary) scalar operator O we have a scalar field ¢ in the bulk with mass m. In the
simplest case the action is

Se=—5 [ #1ov= (V9" + ') (25)

Now we note an important aspect of the spacetime (2.2); at z = 0 the spacetime con-
tains a timelike boundary, on which we must prescribe boundary data to fully specify
the evolution of bulk fields fluctuating on the geometry. By studying the equations of
motion arising from the action above one can show that near the boundary a solution
to the scalar wave equation has the expansion

b(z — 0,2*) ~ A(zx)2z2- + B(z)2>+ (2.6)

where the two eprnents satisfy

Ai:g:ﬁ:uy Vuz\/§+m2R2. (2.7)

As it turns out, A, is precisely the conformal dimension of the dual operator O.
We now state a relation that can be considered one of the fundamental identities of
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AdS/CFT: the partition functions of the two sides of the duality are equal, and the
CFT deformation (2.4) is represented on the gravity side by a boundary condition on
the field ¢(z,z#) at the boundary, i.e: A(z) = J(z). In equations we have

<exp < / dd+1:1:,](:1:)(9(.’13)) >cm = exp (—Sgrav) ro (2.8)

where on the right hand side we have replaced the quantum gravity partition function
by its semi-classical limit: S,,,, should be considered the on-shell action subject to
the boundary condition A(z) = J(z).

Note however that for a scalar field the bulk equations of motion are second order
and thus the single boundary condition A(z) = J(z) is not sufficient to completely
specify the bulk solution. In general we will find an extra condition from the interior
of the spacetime. One always finds that by demanding that the solution be regular
everywhere in the interior in some way it is uniquely specified: this will fix the
coefficient B(z) in terms of A(z). We now state (without derivation) the key results
needed to use (2.8) to perform computations in the field theory:

1. By taking functional derivatives of a (carefully regulated) version of (2.8) one
can show that the expectation value of the operator O(z) is

(O(z)) = 2vy B(z). (2.9)

For example, if one finds a regular solution where A = 0 but B # 0, this implies
that the operator O has spontaneously developed an expectation value, even
in the absence of a source. Note that by studying the transformation of B
under the scaling isometry (2.3) we can confirm the claim that the conformal
dimension of O is A,.

2. Relatedly, various two-point functions (OO) are related to the ratio % In this
work we will primarily be interested in the Lorentzian retarded Green’s function
Gr(w, k); to find this, we should require that the the finite-frequency solution
in the bulk be infalling at a horizon that will generically develop in the interior.
This is the meaning of “regular” for a Lorentzian spacetime. The retarded
correlator is then given by [42]

B(w, k)

GR(w, k‘) = 2VUA(&J k‘)

(2.10)

At a practical level, these two AdS/CFT results (and their generalizations to spinor
fields) are all that we will need to perform computations in the rest of this thesis. We
will justify these later in this chapter: for massless fields these relations are essentially
equivalent to (2.24) and its analytic continuation, and the case of massive fields is
treated in Appendix 2.B to this chapter. Note that while the factors of 2uy in (2.9
and (2.10) can be important [63], we will generally omit them and be somewhat
cavalier about overall prefactors in the rest of the text.
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2.2 Real-time response

We now discuss in more detail the procedure for calculation of real-time response
in AdS/CFT. A simple prescription for calculating retarded two-point functions in
AdS/CFT was first proposed by Son and Starinets some years ago in [42]. This
prescription, which was justified in different ways in the literature (see e.g. [43, 29,
66, 30, 31]), has been instrumental in extracting many important insights into strongly
interacting many-body systems from AdS/CFT.

Here we review work in [14], where it was observed that the prescription of [42]
could be reformulated in terms of boundary values of the canonical momenta of
bulk fields by treating the AdS radial direction as “time”. This reformulation has
both conceptual and practical advantages; it expresses real-time response in terms
of objects with intrinsic physical and geometric meaning. In this chapter we discuss

this prescripstion and show that it follows simply from an analytic continuation of
the original Euclidean formulation of AdS/CFT?2.

We then show that our formalism may be extended to spinors, which involve
interesting subtleties as we are now dealing with a first order system. We work
out an explicit prescription for calculating real-time retarded correlators of fermionic
operators, which is important, e.g., for probing quasi-particle structure associated
with Fermi surfaces from gravity (17, 16].

The plan of the next few sections is as follows. In section 2.2 we state and
derive our reformulation of the real-time prescription for retarded Green’s functions
in AdS/CFT. In section 2.3 we work out in detail the application of this prescription
to spinor fields in an asymptotic AdS spacetime. We conclude in section 2.4 with a
brief summary. In Appendix 2.A to this chapter, we state our conventions for various
Euclidean and retarded Green’s functions, while Appendices 2.B and 2.C contain
some technical details related to the main text. Finally, in Appendix A to this thesis
we further illustrate the prescription using two exactly solvable examples: pure AdS
and BTZ black hole.

We begin by first stating and then deriving our formulation of the real-time pre-
scription for retarded Green’s functions in AdS/CFT. For illustration, we consider
a scalar operator @ which is dual to a massless bulk scalar field ¢. Massive modes
contain extra divergences; while harmless, these complicate the discussion and are
discussed in Appendix 2.B. The generalization to tensors is self-evident, and the gen-
eralization to spinors is discussed in detail in the next section.

To be specific, we will consider a scalar action

1
S = -3 /dd“a: V=g (0¢) +--- (2.11)
on a background spacetime metric of the form

ds? = —gudt® + grrdr? + gud@® = g dr® + gudaztdz” . 2.12
7

2 A similar procedure was used in [66] to justify the prescription of [42]
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The boundary is taken at 7 = 0o, where various components of the metric have the
asymptotic behavior of AdS with unit radius,

96,9, gi TS, T —00. (2.13)

We will assume that the above metric has a horizon of some sort (to be more explicit
below) in the interior.?

We also assume that the theory is translationally invariant in z# directions (i-e,
all metric components depend on r only), and work in momentum space along these
directions, e.g.

B(r,a*) = $(r,k,) e L p = (—w,K) . (2.14)
We will frequently need to analytically continue to Euclidean signature via
t— —1:’7', w — 'in, S — —SE (2.15)

where the Euclidean action Sg is given by

Sg = %fdd+lx\/§(8¢)2+~-- . (2.16)

2.2.1 Prescription

We begin by simply stating the prescription of [14] for computing the retarded cor-
relator Gg(k,) for O. In momentum space this reads:*

Gr(k,) = (JL‘& %)

where II is the canonical momentum conjugate to ¢ with respect to a foliation in the
r-direction. @g(r,k,) is the solution to the equations of motion for ¢ which is in-falling
at the horizon and satisfies the boundary condition lim,_, ®r(r k) — ¢o(k,). The
notation II(r; k,)|s, in equation (2.17) indicates that II should be evaluated on the
solution ¢g. Finally, the subscript @9 = 0 means that in evaluating this ratio one
should only take the part that is independent of @p; in an interacting bulk theory II
and ¢g will typically contain higher powers of ¢y which are not relevant for two-point
functions.

(2.17)

$0=0

3In a spacetime which does not have a horizon (e.g. global AdS), i.e. completely regular in the
interior, ¢ has a discrete spectrum. The corresponding boundary theory retarded function for @ can
then be written as a discrete sum of delta functions and thus does not have an interesting analytic
structure.

“The reason we have (2.17) instead of Gr(k,) = (limr_.c,o 5?—}:;&) is due to subtleties in
$0=0
taking the limit 7 — co. An example is the massive scalar case discussed in Appendix 2.B. Also, we
found in [14] that the fact that all quantities in (2.17) remain meaningful in the bulk at arbitrary
radius is helpful for a physical interpretation of this formula.
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Note that (2.17) can also be equivalently (in fact more generally) written as
<O(ku))¢o = Tl_ifgo H(r; ku)lor (2.18)

where (O(k,)),, denotes the response of the system to external perturbations gener-
ated by adding [ dz ¢o(z)O(z) to the boundary theory action. Equation (2.17) is
the linearized limit of (2.18).°

An alert reader will immediately recognize that (2.18) is the exact Lorentzian
analog of the standard prescription for boundary correlation functions in Euclidean
signature as formulated in {10, 72]. Indeed we will now show that (2.17) and (2.18)
(at the linearized level) can be derived from the original prescription of [10, 72] using
a simple analytic continuation, even though they do not appear to follow directly
from an action principle themselves.

2.2.2 Analytic continuation

First recall that a retarded correlator is analytic in the upper half complex-w plane,
and that the value of Gg(w, k) along the upper imaginary w-axis gives us the Euclidean
correlator G, i.e.b,

Ggp(ws, k) = Grliwg, k)  wg>0. (2.19)

This expression applies both for finite and zero temperature, and both for bosonic
and fermionic operators, with wg only taking discrete values at finite temperature.
Equation (2.19) can now be inverted to obtain Gr(w, k) as

Gr(w,F) = Gp(ws, F) . (2.20)

wp=—i(wtie)

Note that at finite temperature wg only takes discrete values, and so the analytic
continuation can be tricky. We will simply ignore this issue below, assuming that Gp
is sufficiently well-behaved that such an analytic continuation is possible.

We now look at the central prescription of AdS/CFT in Euclidean signature [10,
72] (for both zero and finite temperature)

<exp [ / ' gbg(:v)(f)(:v)] >QFT _ o~ Semneléo (2.21)

5To see this more explicitly, it is helpful to recall the standard result from linear response theory
that if one considers a system in equilibrium at ¢ — —co and then perturbs its action with the term
[ d4z ¢po(x)O(z), the one-point function of O in the presence of the source is given (to first order in
o) by
(O(k,‘))% = GR(ku)‘ﬁO(ku)’

where Gp, is the retarded correlator of O.
8GEg(wg) for wg < 0 is obtained from the advanced function. See Appendix 2.A for our conven-
tions on the definitions of Euclidean and retarded functions.
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where Sgrav[¢ho] is the bulk action for ¢ (which may include necessary boundary terms)
evaluated at the classical Euclidean solution ¢g which is regular in the interior and
satisfies boundary condition lim,_,. ¢g(r; ) — ¢o(z). From (2.21), one finds that
one point function of O in the presence of the source ¢ can be written as

0 Sgrav )
(O())go = — 5 %gzx) = — lim Ig(r, 2)|y5 (2.22)
and its Fourier transform
(0w, B))oy = = lim Mg (r,wp, F)ls, - (2.23)

In (2.22), [Ig is the canonical momentum for ¢ in Euclidean signature and should be
evaluated at the classical solution ¢z. The second equality of (2.22) follows from the
well known fact in classical mechanics that the derivative of an on-shell action with
respect to the boundary value of a field is simply equal to the canonical momentum
conjugate to the field, evaluated at the boundary. Note that in general the limit r —
00 in (2.23) is non-trivial and requires careful renormalization, which was developed
systematically in [32, 33]. Similar cautionary remarks apply to other formulas below
(in both Lorentzian and Euclidean signature).

At linear level in ¢, one then finds that

Gr(ws, k) = - (lim HE(T""E”“)“E)

e d)E (Ta WEg, E)

(2.24)

$0=0

In Buclidean signature, the above procedure is unambiguous as ¢z is unique (at
least for sufficiently small ¢y); there will be only one solution that both satisfies
the boundary conditions at infinity and is regular in the interior. This is not the
case in Lorentzian signature, where in the interior one typically finds two oscillatory
solutions, both of which are regular.

Once Gg(wg, k) is obtained, one can of course obtain G r using (2.20). Here, we
would like to argue that one can in fact obtain an intrinsic prescription for retarded
functions by analytically continuing ¢g(r, wE,IZ) directly in the bulk to Lorentzian
signature”. More explicitly, introducing

¢r(w, k) = ¢p(ws, k) (2.25)

wg=—1i(w+ie)

A similar analytic continuation has been used earlier in [66] to justify the prescription of [42].
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and then from (2.20) and (2.24), we obtain simply®

-

k (r;w, k
Gr(w,k,) = — lim H5(r,ws, F)los ~ Jim 5 Blen (2.26)

rmee ¢E (Ta WE, k:) wrp=—1(w+ie) T—00 ¢R (T, w, ]_{;) ’

which gives (2.17). Similarly, (2.23) becomes (2.18) under the same analytic contin-
uation. To complete the derivation we still need to show that ¢ obtained in (2.25)
satisfies the boundary conditions at the horizon and infinity as stated below (2.17).
Since analytic continuation does not change the boundary conditions at infinity, we
need only show that the function on the right-hand side of (2.25) satisfies the in-
falling condition at the horizon. We do this explicitly by examining the behavior of
&5 near different types of horizons®:

e Non-degenerate horizon: consider a Euclidean black hole background of the
form
1
f(r)
where f(r) has a simple zero at r = 1o, i.e. f(r) ~ %(r—ro) and 7 is periodic in
B. From the wave equation of ¢, one finds the following near-horizon solutions

ds? = f(r)dr® + dr® + a(r)?dz* (2.27)

oo~ (r—10)"E ot ()~ () F . (229)

When the real part of wg > 0 (which is always the case when evaluating a
retarded correlator by (2.20)), ¢g ~ ¢4 and thus we find that

7 _iwp
¢E(WE,IC) ~ (’l‘ - ’I‘()) ar (229)
wg=—t(w-+ie)
which is precisely the behavior of an in-falling wave, since from (2.14) it leads
in coordinate space to a wave of the form e=™*(r — 7o)~ .

e Degenerate horizon: For a degenerate horizon (e.g. of an extremal black hole),
we have a metric of the form (2.27) except that f now has a double pole at
r =19, i.e. f~ c(r—mp)?, where ¢ > 0. The discussion is similar to that above
except that the near-horizon solution can now be shown to take the form

d5(we, k) ~ eTT0, (2.30)

wp=—1i(w+ie)

again corresponding to an in-falling wave.

8Note the relative minus sign between the first and second equality below is due to that in
Euclidean signature Ilg = ,/gg""9,¢ (see (2.16)) and in Lorentzian signature II = —/—99"" 00
(see (2.11)) with an extra minus sign.

9Note that the following discussion applies to any mass, as the mass term is never important at
the horizon with a nonvanishing w.
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® Poincaré horizon: finally let us consider a Poincaré horizon of the form (near
zZ — 00)

1
22

Then the near horizon solutions for ¢ are given by

bs ~ etk k=1ywi+ k2, z— 400 (2.32)

Note that if we take the branch of the square root that is positive, then the
regular solution ¢z ~ ¢_. We now perform the analytic continuation wgp =
—i(w + 4€), under which the branch of the square root with positive real part

becomes - .
- {—i\/w2—k2 w > |K|

Vw2 -k w<—|k|

ds? = — [dr® + di® + d27] (2.31)

(2.33)

where we have assumed a timelike momentum |w| > |k| (as otherwise the prob-
lem is the same as in the Euclidean case). When plugged into ¢_ ~ e k2
Equation (2.33) again describes an in-falling wave for both signs of w.

The key point here is that the +ie in the analytic continuation (2.20) is important; it
guarantees that the solution that was regular at the horizon in Euclidean signature
becomes the solution that is in-falling at the horizon in Lorentzian signature.

Note that while the Euclidean prescription (2.21)—(2.24) for computing correlation
functions follow from an action principle, this is not the case for the Lorentzian pre-
scription (2.17) and (2.18), which cannot be obtained by taking functional derivatives
of the on-shell Lorentzian action. While analytic continuation of a Euclidean solution
yields a Lorentzian solution as in (2.25), analytic continuation of a Euclidean on-shell
action—which necessarily involves an integral over the full spacetime manifold-does
not necessarily yield the correct Lorentzian action. The Lorentzian manifold generi-
cally differs from the Euclidean one in many crucial aspects such as the topology, the
number of boundaries, etc., making the implementation and interpretation of such a
procedure much more subtle. On the other hand, the analytic continuation of the
canonical momentum as in our prescription requires only a local analytic continuation
on the boundary of the manifold and is thus much simpler.

2.2.3 Vector and tensor operators

Before concluding our discussion of bosonic operators, we point out that in this formal-
ism the tensor structure of the real-time response follows naturally without needing
to decompose the system mode by mode into a series of scalar wave equations. Let
us imagine first a bulk vector field Ay with Maxwell action and gauge coupling geg;
this is dual to a conserved current J*, and the expression (2.18) then becomes

(7*) = — lim %\/—_gF"‘ (2.34)

T—00 gef‘f
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where the expression on the right-hand side is the momentum conjugate to A,. Sim-
ilarly, if we consider the field theory stress tensor 7+, we find that

. \/'_')’ >N
(2L — uy a0
(T") = lim T6rCn (K" —y**K3), (2.35)

correctly captures the real-time response of the system to metric perturbations. Here
Y and K, are the induced metric and extrinsic curvature on each constant-r slice,
and the expression on the right-hand side is the Brown-York stress tensor [75, 74], i.e.
precisely the momentum conjugate to a gravitational perturbation h,,. The validity
of these formulas even in real-time was a key element in the results relating AdS/CFT
to the membrane paradigm in [14].

2.3 Retarded correlators for fermionic operators

In this section we generalize the prescription (2.17) and (2.18) to fermionic opera-
tors. We first consider the calculation of Euclidean functions in an asymptotic AdS
geometry, reviewing (and slightly generalizing) the earlier results of [76, 77, 78]. We
then discuss the prescription for real-time retarded correlators. In the next section
we use the prescription to calculate retarded correlation functions for fermonic oper-
ators in field theories dual to the pure AdS and BTZ geometries, where closed-form
expressions can be obtained.

We consider a boundary theory fermionic operator O which is dual to a spinor
field 9 in the bulk'®. We will suppress all spinor indices. Since we are interested in
two point functions of O, it is enough to consider the quadratic part of the action for
%, which can be written as

S=N / 42/ =g i(9TM™ Dpgip — mabap) + Sba (2.36)
where ¢ = ¢ and
Dar =0y + 'zli“’“”MFab : (2.37)

Siq denotes the boundary terms required to ensure that the total action has a well
defined variational principle [78] and is briefly discussed in Appendix 3.E. In (2.36)—
(2.37) M, N --- denote abstract spacetime indices and a,b, - denote abstract tan-
gent space indices. Gamma matrices with a specific index (like T,I'",T"* as opposed
to those with an abstract index I'M) always correspond to those in the tangent frame.
The boundary theory gamma matrices will be denoted by v*. The background metric
is taken to be (2.12) with the associated asymptotics. We will be working in momen-
tum space with the Fourier transform of ¢ denoted by #(r,k,). Finally, the action
is normalized by a factor N; we will ignore this factor in the following, as it simply
contributes an overall factor in front of all boundary theory correlators, but one can

10Note that in this section O is fermionic whereas in Section 2.2 O was bosonic; we apologize for
the abuse of notation.
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show that its sign is fixed by bulk unitarity.!!
The analytic continuation to Euclidean signature is as in (2.15) with also

v —iyT, It — —iI", P — —ig (2.38)

and thus the Euclidean action following from (2.36)
SE = — /dd+11‘\/§ (@ZPMDMtﬁ — m1/3¢) + de . (2.39)

2.3.1 Euclidean correlators

We first review how the Euclidean prescription (2.21)-(2.24) works for a spinor oper-
ator, where we now have

<exp [ / d'z (%O + OxO)} > = g~ SwavborXol, (2.40)
QFT

To find the right hand side of (2.40), we need to construct a %z which is regular in
the interior and satisfies the boundary condition lim, . %5 = Xo. Attempting to
interpret this equality, we realize that the situation here is a bit more subtle than
for a scalar field: % and x, are spinors of different spacetime dimensions, and thus
may have a different number of components. Also, the action for ¥ contains only one
derivative and imposing Dirichlet boundary conditions for such a first order system
requires more care. It turns out that these two issues are intimately related.
To see this, it is convenient to decompose ¢ in terms of eigenvalues of I'", with

Y=ty +9., Ya=Tap Ta=i(1£I7) (2.41)

2
where from (2.39) we find the corresponding Euclidean canonical momentum?? I1.
(in r-slicing) conjugate to 94 to be

1 _ 1
H+ = “‘\/Egrrz'lp_, H_ = \/_agrrz '¢’+ . (2.4.2)

Thus we see that 1. are conjugate to each other. If we supplied Dirichlet boundary
conditions for both of them at infinity, then it would completely fix the solution
everywhere; however this is obviously incorrect, as (generically) this solution would
not be regular in the interior. Instead we should begin by demanding regularity in

1To see this, consider canonically quantizing the action (2.36) by imposing the equal-time anti-
commutation relation {y(z),n(z)} = 6@ (x, z'), where here 7 is the momentum conjugate to ¥
with respect to time. We find that 7 = —iN\/=gy!. If we now require that the anticommutator
{#, %'} be positive—a requirement in a Hilbert space with states of positive norm—then we find that
this fixes the sign of N to be negative. Reinstating this factor of A in front of retarded correlators
found in this paper results in positive spectral densities in the boundary theory, as required by
boundary unitarity.

12For fermions we use only the Euclidean canonical momenta, and have thus omitted the subscript
E
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the interior; this then leaves us with the freedom to impose boundary conditions o
for either ¢, or 9_, i.e. only for half of the components of 4.

When the boundary theory dimension d is even, we can choose the bulk Gamma
matrices
DH=A#,  Tm =A% (2.43)

where y4*! is the analogue of 7 for d = 4. Thus from the d-dimensional point of
view, the two components ). transform like d-dimensional Weyl spinors of opposite
chirality. As the boundary value of one of %4, xo (and so also O) is then a d-
dimensional boundary spinor of definite chirality. Thus for d even a Dirac spinor %
in the bulk is mapped to a chiral spinor O on the boundary.

When d is odd, it is convenient to work with the representation

(1 0 w0 *
F‘(o _1> 1“_(7“ 0), (2.44)

which can be easily seen to satisfy the d + 1 dimensional Clifford algebra. In this
basis we can see that the two components 9, each transform as a d-dimensional
Dirac spinor; thus for d odd o and O are both Dirac spinors. In all dimensions the
number of components of O is always half of that for .

To decide on which of %4 to impose Dirichlet boundary conditions, we must
examine their asymptotic behavior at laige r, which can be worked out by solving
the Dirac equation for ¢ in the region 7 — oo (with metric given by (2.13)). This
computation is performed in more detail in Appendix A.1 and here we discuss only
the asymptotic behavior of ¢, which is given by

(k) = AR BRI = Ol BT D(R)rE, 7 = 00

(2.45)
Plugging this expansion back into the Dirac equation we find the following relations
between the expansion coefficients

p=-2*ominp =2

———— . — ¥ ‘ 2: 73
k2 5—TA v k=7 K=k (246)

Using (2.42), we see that the corresponding canonical momenta behave as
I, =-Critm1_Dpi-m  [I_=Ari*t™ 4 Bri-™1  rooco. (247)

Note that in deriving (2.46) we have used (2.43) or (2.44) for d even or odd.

Notice that as we take m — —m, we simply exchange the role of ¥4, with A « D
and B — C. We can thus restrict our attention to m > 0. Among all terms in (2.45),
the term with coefficient A is dominant. We thus should the impose boundary con-
ditions

A=x0, le rlggo r%“m'z/)+ = Xo - (2.48)

Now taking a derivative with respect to xp on both sides of (2.40), one finds that as
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in (2.22), the response of O is formally given by the conjugate momentum I1,..1* How-
ever, for general m, as in the case of a massive scalar discussed in Appendix 2.B, one
should define the boundary limit carefully. In view of the second equation in (2.48),
we thus find B ) B B

(O),, = — lim 7™ 351, ie (O) =D. (2.49)

r—00

Note that in obtaining the second equation above we have extracted only the finite
terms in the right hand side of the first equation!. This appears reasonable since the
other term in II,, which is proportional to C, is locally related to the source A.
With this boundary condition on %(r — o0) specified, the solution g to the
equations of motion which is regular in the interior is then uniquely determined.
From this we can extract the corresponding D; we will find that D and A are related
by a matrix S,
D(k) = S(k)A(k) (2.50)

then the boundary Euclidean two-point correlator is given by!®
Gr(k,) =S(k)7" - (2.53)

Sometimes it may be easier to solve for B in (2.45), in which case introducing a matrix
T
B=TA (2.54)

we then have from (2.46)
i
Gr(k,) = —p(2m +1D)(v-B)TH . (2.55)
To conclude this subsection, we make some further remarks:

1. Using the standard scaling argument, the identification of the source and re-
sponse in (2.48) and (2.49) implies that the scaling dimension A of O is related
to m by

d

which is consistent with results obtained in [76] for pure AdS.

2. In the case of a massive scalar (as discussed in Appendix 2.B), the 7 — oo limit

13See Appendix 3.E for an explicit discussion of the variation of Sgrav-.

14Here we are assuming that divergent terms should be removed by holographic renormalization.
It might be worth checking this more explicitly.

15Note that from (2.40),

©@) = [ d% Gz -7 000 (251)

which in momentum space becomes
(O(k)) = Ge(k) 7" xo(k) (2.52)

The 7" factor is due to that Gg ~ (OO) rather than (©0O).
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in the ratio % is somewhat subtle since subdominant terms in Il and ¢ also
contribute which changes the overall constant. This does not appear to happen
to fermions.

. When 0 < m < %, all terms in v are normalizable. We thus can choose either
A or D as the source and treat the other as the corresponding response. Note
that if we choose D as the source term then

d d—1 d

A=—-— — <A< = 2.

5= M — 5 5 (2.57)
In this range the double trace operator of O is a relevant perturbation. The
partition functions for the two alternative ways to quantize the theory should
be related by a Legendre transform as one is the conjugate momentum of the
other [79].

. For m = Z, the two terms in ¢_ are degenerate. Instead one has

%_ =r"1"3(Clogr + D) (2.58)
The relations between A, C' in (2.46) are now replaced by
C=(>y-k)A. (2.59)

In this case the term proportional to A is not normalizable and should be treated
as the source term.

. For even d, if xo has negative chirality, then we should be imposing boundary
conditions on %_, which in turn implies that the bulk mass term must be neg-
ative. An example illustrating this is shown in Appendix A.2 with the BTZ
black hole.

2.3.2 Prescription for retarded correlators

Now we simply analytically continue ¥ and (2.48)—(2.55) to Lorentzian signature,
precisely as in the bosonic case with (2.25) and (2.20). We obtain the following
prescription for computing retarded correlators for spinor operators:

1. Find a solution %g(r, k,) to the Lorentzian equations of motion which is in-

falling at the horizon.

2. Expand 9g(r, k,) near r — oo as

¢R+ = A’r‘_%+m + B,,.—%—m—l’ 1/)R— — O,,.—%-i—m—l + Dr—%_m’ " — o0
(2.60)
where g1 are spinors of definite I'" eigenvalue as defined in (2.41).
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3. Then Gr(k,) is obtained from the analytic continuation of (2.53) by

2m +1
k2

where v - k = y*k,, k* = k,k* and S and T are defined by the relations

Gr(ky) = iS(ku)y' = (v-K)To (2.61)

D=SA, B=TA. (2.62)

We end this section by noting that causality and unitarity of the boundary CFT
impose two important properties on its real-time correlators. Causality implies that
the retarded correlator must be analytic in the upper half of the complex w plane;
this is easily seen to be true for correlators calculated using the prescription above.
Unitarity implies that the imaginary part of the diagonal elements of the matrix Gg
is proportional to a spectral density and must be positive for all w; as mentioned
above, the overall sign of the correlator is proportional to the normalization of the
Dirac action, and one can show that a sign consistent with bulk unitarity also results
in positive spectral densities in the boundary theory.

2.4 Summary

In this chapter we reviewed the basic formalism for calculations in AdS/CFT. We had
a particular focus on real-time applications; in particular, we showed that an intrinsic
Lorentzian prescription for computing retarded Green functions from gravity can
be obtained by analytic continuation from the corresponding problem in Euclidean
signature. An important message here is that, even in Lorentzian signature, for
any bulk field-whether bosonic or fermionic—the corresponding conjugate momentum
contains the response of the dual operator. The field theory response can thus be
expressed in terms of quantities with clear physical meaning in the bulk; as we shall
see in the next chapter, this will make transparent the origin of phenomena such as
the universality of transport coefficients.

We also explained in detail the issues that arise when attempting to find Lorentzian
correlators of fermionic operators. In Appendix A we work out simple examples to
illustrate the methods. In Chapter 5 we will review work by [16, 19] that uses these
techniques to compute fermionic correlators in gravity backgrounds that are dual to
finite-density states, with important and fascinating results.

2.A Definitions of correlators

We start by assuming that O is a hermitian bosonic operator; in that case our con-
vention for the Euclidean correlator is

Gr(t, %) = (TeO(z)0(0)), (2.63)
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where Ty denotes Euclidean time ordering and at finite temperature the Euclidean
time direction is taken to have period .

Our conventions for the various realtime correlators are as follows, where p denotes
the thermal density matrix:

Gr(t, @) = () tr([0(t,7), 00))) (2.64)
Galt, @) = —i6(~1) ir(p[O(t, ), 0(0))) (2.65)

Note that with this sign convention the imaginary part of Gg is equal to 7 multiplied
by the spectral density, and thus is positive definite. Another common convention
is to use the opposite sign for both Gg and Gy4; in particular, this was used in our
earlier work [14].

For O fermionic and complex we use the following conventions

Gr(t, %) = (TrO(z)0"(0)), (2.66)
Gr(t, ) = i6(t) tr(p{O(t, 7, 0'(0)}) (2.67)
Ga(t, ) = —ib(—t) tr(p{O(t, 7), O"(0)}) (2.68)

2.B Massive fields

For massive scalar fields, the boundary limit is more subtle due to various divergences.
To be specific we consider a scalar action of the form

S = —% / d*Hzy/=g ((0¢)* + m*¢*) (2.69)

with the background metric satisfying the standard asymptotic AdS behavior (2.13)
near the boundary.

Then ¢r has the asymptotic behavior

dr(r k) =~ Alk,) r® ¢+ B(k,)r™®, r—o0 (2.70)
where
d d?
— - = 2 —_
A—2+V, v m+ (2.71)

Note now the field theory source should now be taken to be A, which differs by a
power of 7 from the boundary value of ¢. This implies that

(O(ku»A = rlggo TA_dH(r; ku)lqu’ (2.72)

where as before I = —1/=gg¢™"8,¢ is the canonical momentum to ¢. Plugging in the
near-boundary expansion (2.70), we see that II has the asymptotic behavior

1(r, k)|, ~ —(A — d)A(k,)r™ + AB(k, )4, (2.73)
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and thus the extra power of 7 in (2.72) exactly cancels the power of  in front of the
subleading solution B, so the final answer contains a finite part that is independent of
7. Note nevertheless that some care must be taken in the limit [63], and the retarded
Green function Gg should now be written as

H(r7 kﬂ) l oRr
r—co Pr(7; Ky)

where one is instructed to extract only the finite piece on the right-hand side.

B(k,)
A(ku)

= (2A — d) (2.74)

2.C Boundary terms for spinors

Here we consider various technical issues related to the variation of the Dirac action.
In particular, we explain why the momentum conjugate to ¢, can truly be considered
the response of the operator (O) dual to 1; essentially this argument is due to [78]
and we review it here for clarity. Throughout this section we assume m > 0; a similar
argument holds for m < 0 with an interchange of ...

Consider the bulk Euclidean Dirac action
Soutc = — / 15 /G (FTM Dystp — majp) (2.75)

From this action the momentum I, conjugate to 1, is

I = —V9979_ (2.76)

It appears that the momentum conjugate to 9 is identically zero; however we expect
this momentum to contain information regarding the field theory operator @, which
certainly does not vanish in general. Upon an integration by parts, however, we can
transfer the radial derivative from 9 to v; in that case we find that the momentum
conjugate to ¢, is 0, but the momentum II, conjugate to ¢, is now

I, = —v/=gg7y_ (2.77)

Confusingly, however, it appears that the two expressions above cannot apply simul-
taneously, although our expectation from the field theory side is that neither of them
should vanish. Clearly boundary terms in the action are playing an important role;
we now explain precisely how to fix these boundary terms and what their effects are.

The portion of the action (2.75) containing radial derivatives can be written ex-
plicitly as

Spulk D — / A2\ /g9g ($-0,py — P, 0,0_) (2.78)

From this we can see that if we vary this action around a solution to the equations
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of motion 9 — 1 + §7; the variation works out to be

. Spun = bulk term — d* /g7 (P_ 09y — P4 09_), (2.79)
oM

where the bulk term is proportional to the equations of motion and the boundary
term follows from (2.78). Note that the on-shell action is thus a function of both
and 1_; however, this is not correct. As mentioned in the text, if we impose infalling
boundary conditions we are no longer free to choose ¢_, and this information must
be implemented in our variational principle. This is done by adding to our action the
following boundary term

Sp=— / N R (2.80)
M
We now see that the variation of the full action is
i = (Soutc + o) = = | Aa/GgTW -5y +8044-) (28D
M

Thus the on-shell action no longer depends on %_; also, note that we have'®

_ 5St.ot,a] _ T = 6Stotal T,

where we are now defining the conjugate momenta II to be the on-shell variation
of Siotal. Thus we see that the naive relations (2.76) and (2.77) do indeed hold
simultaneously when we use the correct boundary action. It is easy to see that if we
had started with a different action related to (2.75) by only boundary terms we would
have obtained a different value of Sy but the final answer (2.82) would have been the
same. (It is shown in [78] that a symmetric splitting of the kinetic term in (2.75)
results in the boundary term used in the original work with spinors in AdS/CFT
[76, 77]).

16Note that the first expression refers to a derivative from the right and the second to a derivative
from the left. For our application to the generating function of a QFT we use the same convention.
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Chapter 3

Holographic hydrodynamics and
the membrane paradigm

3.1 Hydrodynamics and horizons

We are now equipped with the formalism we need to perform real-time computations
using holography. In this chapter we will apply this technology to discuss how uni-
versal features of interacting quantum field theories at finite temperature are mapped
via gauge/gravity duality to universal features of black hole horizons. For exam-
ple, any interacting quantum field theory at finite temperature should be described
by hydrodynamics when viewed at sufficiently long length scales. For those with a
gravity dual, the bulk geometry involves a black hole with a non-degenerate horizon,
and the UV/IR connection then suggests that the field theory physics at long scales
should be governed by the near-horizon portion of the dual geometry. In fact, classi-
cal general relativity tells us that there is a precise sense in which any black hole has
a fictitious fluid living on its horizon, in the so-called “membrane paradigm” [13]. It
is thus tempting to identify the membrane paradigm fluid on the horizon with the
low-energy description of the strongly coupled field theory. This connection was first
made by [34] and other related work includes (36, 35, 37]. See also [4] for a general
review of the hydrodynamic limit in AdS/CFT and related references on the subject.
The material in this chapter is largely taken from [14].

In this paper we aim to clarify this connection by comparing the linear response
(to small external perturbations) of the horizon membrane fluid to that of the bound-
ary theory fluid. Since in the hydrodynamic regime one is interested in conserved
quantities (or Goldstone modes), which in turn correspond to massless modes in the
bulk, we will concentrate only on massless bulk modes in this paper. These cover
almost all interesting situations so far discussed in the literature. The only exception
is the bulk viscosity, as it cannot be associated with a massless degree of freedom in
the bulk; this is discussed further in Section 3.7.

We show here that that regardless of the specific model in question, the low-
frequency limit! of linear response of the boundary theory fluid is indeed completely

1Here by low-frequency limit, we mean the lowest order term in the derivative expansions of
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captured by that of the horizon fluid. In particular, this enables us to express a generic
transport coefficient of the boundary theory solely in terms of geometric quantities
evaluated at the event horizon of the black hole. For example, this gives a simple proof
of the universality of the shear viscosity in terms of the universality of the coupling
of a transverse graviton. We also give an explicit expression for the conductivity of
an arbitrary conserved current in the dual theory.

When moving away from the low frequency limit, however, the behavior of the
boundary fluid cannot be fully captured by the horizon fluid even within the derivative
expansion: even at generic frequency and momenta, the horizon response always
corresponds to that of the low frequency limit of the boundary theory. Thus away from
the low frequency limit, the full geometry of the spacetime plays a role. To explore this
we consider a fictitious membrane at each constant-radius hypersurface and introduce
a linear response function for each of them. One can then derive a flow equation for
the radius-dependent response function; at generic momenta this evolves nontrivially
from the horizon to the boundary, where it determines the response of the dual field
theory. As an application of the flow equation we consider hydrodynamic diffusion.
We give a simple derivation of the diffusion constants for charge and momentum
diffusions and illustrate the difference between the diffusion phenomena observed at
the horizon and at the boundary.

The plan of this chapter is as follows. For the rest of this section, we introduce
our conventions and notations for the gravity and field theory sides. In Section 3.2
we give a quick review of the classical black hole membrane paradigm. In Section
3.3 we express linear response in AdS/CFT in a language similar to that of the
membrane paradigm. Section 3.4 applies this language to the evaluation of zero-
frequency transport coefficients in AdS/CFT. Sections 3.5 and 3.6 are devoted to
results at finite frequency, such as the flow equation and hydrodynamic diffusion. We
conclude this chapter with a brief discussion in Section 3.7.

3.1.1 Gravity setup

On the gravity side, we will be examining very general black brane backgrounds,
which we take to have the form

ds? = g, dr? + g, dztdz” = —gudt® + Grrdr? + gijdzidz? . (3.1)

Indices {M,N} run over the full d+1-dimensional bulk, {4,v} over each d-dimensional
constant-r slice, and {3, j} over spatial coordinates. We assume the above metric has
an event horizon at 7 = ry, where g;; has a first order zero and g, has a first order
pole. We assume that all other metric components are finite (i.e. neither zero nor
infinite) at the horizon.

We take the boundary at 7 = oo and assume that the metric asymptotes to a struc-
ture that supports a gauge-gravity duality. We assume that all metric components
and position-dependent couplings depend on r only so that we have translational in-
variance in ¢t and z* directions. We also assume the full rotational symmetry between

frequency and spatial momenta.
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z* directions, i.e.
9ij = G220ij (3.2)
with z one of the spatial direction.

Note that the metric (3.1) does not have to be a spacetime metric, it could also be
(for example) the induced metric on the worldvolume of a D-brane or a fundamental
string in AdS.

We will often work in Fourier space on each constant-r slice. For example for a
scalar field ¢, we write

ddk ik, xH %
6.0 = [ b k), b= () (3.3
For simplicity of notation, we will distinguish ¢(r,z*) from its Fourier transform
¢(r, k,) by its argument only.

3.1.2 Field theory setup

We will be relating these gravity backgrounds to quantum field theories taken at
finite temperature. Consider a field theory containing an operator @ with an external
classical source . At the level of linear response theory the one-point function of @
is linear in ¢o, and when expressed in Fourier space the proportionality constant is
simply the thermal retarded correlator GF of ©

(O, k))grr = —CF(w, K)o(w, F) (3.4)

where w and k denote the frequency and spatial momentum respectively (see e.g. [38]).
The low frequency limit of this correlator is of physical importance, as it defines a
transport coefficient x:

1 bl
x = — lim lim —ImG®(w, k) . (3.5)
w—0k 0 W
Note that this definition essentially means that if we apply a time varying source
¢o(t), then in the low frequency limit the response of the system is?

(O)arr = —x0eo(t) (3.6)

These transport coefficients are typically parameters in an effective low energy de-
scription (such as hydrodynamics or Langevin equations) and once specified they
completely determine the macroscopic behavior of the medium. A well-known exam-
ple is the shear viscosity 7, for which one takes O = Ty, the off-diagonal component
of the stress tensor. For DC conductivity o one takes @ = J,, where J, is a compo-
nent of the electric current. For quark diffusion constants characterizing the motion

2Note that the real part of G is even in w and we set the zero frequency part of G to be zero
since it gives rise to a contact term.
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of a heavy quark moving in a quark-gluon plasma, O is given by the forces acting on
the quark [39).

3.2 Classical black hole membrane paradigm

We begin our discussion with a brief review of the classical black hole membrane
paradigm. Our treatment will not do sufficient justice to this elegant subject and will
mostly follow the formulation of the paradigm put forth in [40]; for more detailed
exposition see [13].

Imagine that we are observers hovering outside the horizon of a black hole. Since
there is no (classical) way for the region inside the black hole to affect us, our effective
action can be written as

Seﬂ' - Sout + Ssurf (3-7)

where S, involves an integration over the portion of spacetime outside the horizon
and S, is a boundary term on the horizon, which can be determined by demanding
that S.g be stationary on a solution to the equations of motion. Physically, Ssur
represents the influence that the black hole horizon has on the external universe. In
practice, it is often more convenient to define Squs on the “stretched horizon”, which
is a timelike surface of fixed r just outside the true horizon (see [41] for extended
discussion). This is also more concrete, since no observer can hover at the genuine

horizon: the stretched horizon acts as a cutoff for the spacetime outside the black
hole.

3.2.1 Membrane conductivity

Let us consider a bulk U(1) gauge field with standard Maxwell action (see Sec. 3.1.1
for our index conventions)

Sout = — dd+1.’1?\/ FICIERY FMNFMN ; (38)
T>T0 4 +1( )

where we have allowed a r-dependent gauge coupling g441. The variation of this bulk
action results in a boundary term at the horizon, which can only be canceled if

S = /2 diz/ = (-\/J—f_;) A, (39)

where j* is the conjugate momentum (with respect to r-foliation) of the field A#

LI ] (3.10)

9d+1

and <, is the induced metric on the stretched horizon X. Equation (3.9) suggests
that an observer hovering near the horizon will find that the horizon is carrying a
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membrane current

= (22 - i OF (3.11)

Note that the “Gauss’s law” that we obtain by treating 7 as “time” becomes conser-
vation of the currents J¥, and j# on any constant-r slice.

Bu ™y = 8,# =0 . (3.12)

While a priori the current J%, (or j*), which is determined by F*", and the electric
field E* = F* are independent variables, they are in fact proportional to each other
at the horizon. This can be seen as follows. Since the horizon is a regular place for
free in-falling observers, the electromagnetic field observed by them must be regular.
This implies that near the horizon, AM can only depend on r and ¢ through their
non-singular combination, the Eddington-Finklestein coordinate v defined by

dv=dt+ | 2dr . (3.13)
Gut

67-14,' = g—rratA,- y, T —Tg (314)
V 9:

and with gauge choice A, = 0, we then have® (with r — rg)

This implies that

Fui= =R, — J’b_——\/ HEE = (3.15)

Ot gd+1 9d+1

Here F is an electric field measured in an orthonormal frame of a physical observer
hovering just outside of the black hole. From (3.15), it is natural to interpret J:, as
the response of the horizon membrane to the electric field £, leading to a membrane

conductivity
1

93+1 (ro)

Note that (unlike those arising from conventional quantum field theories) this con-
ductivity is frequency-independent and depends only on the gauge coupling at the
horizon.

Omb = (3.16)

3This equation can be derived in a number of ways e.g. see [40] for a gauge-invariant derivation.
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3.2.2 Scalar membrane and the shear viscosity of the mem-
brane paradigm fluid

Now consider a massless bulk scalar field with action

1 1
Sout = ——/ d*lz/—g —
‘T2 o)

where g(r) can be considered an effective (r-dependent) scalar coupling. The bound-
ary term on the horizon resulting from variation of this action requires the addition
of a surface action at the horizon

Seurf = / dd:n\/—'y(
N

(V)*, (3.17)

(7o, x)
V=

where II is again the momentum conjugate to ¢ with respect to a foliation in the

r-direction,
v —g
N=—"-+=4¢"0.¢. 3.19
R ¢ (3.19)

Following the discussion of an electromagnetic field, equation (3.18) now implies
that to an external observer the horizon appears to have a “membrane ¢-charge” 11,

given by
H(To)) V9T 0-$(ro)
np=—)|=-—+——-—+> 3.20
° (\/—7 q(ro) (3:20)
Again, for a freely in-falling observer to find a nonsingular ¢, near the horizon, ¢
should have the form ¢(r,t,z;) = ¢(v,z;), where v is the Eddington-Finklestein

coordinate (3.13). This implies 0,¢ = , /%6@ and

) &(ro, ) (3.18)

1
q(ro)

Hmb:“—

VI8P (ro) = ———By(ro) (3.21)
q(ro)

where in the last equality we have passed to an orthonormal basis. As in the electro-
magnetic case we can interpret I, as the response of the horizon membrane induced
by a local bulk field ¢ around the hole, leading to a membrane transport coefficient

Xmb (compare with (3.6))
1
= —— 3.22
Xmo = (o) (322)

We emphasize that in deriving (3.21) we did not take a low frequency or momentum
limit; (3.22) is the full response for generic momenta and frequencies.

We can now apply this discussion to the computation of the shear viscosity of the
horizon membrane by taking ¢ = h¥, the off-diagonal component of the graviton. We
assume that there is no spatial momentum in z—y directions and that the background
matter stress tensor does not mix with h¥. Then the graviton is transverse and its
action is simply that of (3.17) with ¢ = 167Gy where G is the bulk Newton’s
constant. Il,, can now be interpreted as (Tmb);, a component of the membrane
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stress tensor. From (3.21) and (3.22) we thus conclude that [40, 13]

Tlmb 1
o R S (3.23)
where sm, = 1/4Gy is (by definition) the entropy density per unit volume of the
membrane fluid.

We see that the influence of the black hole on its surroundings can be taken
into account by placing fictitious charges and currents on its horizon. Furthermore,
these currents are related to applied fields in a very simple way, fixed completely by
the condition of horizon regularity. This leads to simple expressions for transport
coefficients such as 7, and o, although it is not immediately clear whether these
coeflicients are in any way related to those that we calculate from AdS/CFT.

3.3 Linear response in AdS/CFT: taking the mem-
brane to the boundary

Let us now turn to the corresponding problem in AdS/CFT. The massless bulk field ¢
with action (3.17) is now dual to an operator O in the boundary theory. Recall that
in Euclidean signature, the relation between the dual theory generating functional
and the on-shell supergravity action* is given by

<exp [— / dz %O]> = g Seravld(r—oo)=¢ol (3.24)
QFT

In other words, we must find a classical solution for ¢ that is regular in the bulk and
asymptotes to a given value ¢ at the boundary; derivatives of the on-shell gravity
action with respect to this boundary value ¢ will give us correlators for ©. Equation
(3.24) implies that the one-point function in the presence of source ¢y can be written
5
as
(O(x"))go = lim II(r, z*) (3.25)

where we have used the well known fact in classical mechanics that the derivative of
an on-shell action with respect to the boundary value of a field is simply equal to the
canonical momentum conjugate to the field, evaluated at the boundary.

As explained in the previous chapter, to generalize this to real-timee we evaluate
(3.25) in Lorentzian signature, with the requirement that ¢ satisfy in-falling bound-
ary conditions at the black hole horizon. In particulat, taking a Fourier transform
of (3.25) and comparing with (3.4), we obtain a simple formula for the thermal re-
tarded correlator Gp:

— lim GLN) .
r—oo (7, ky,)

Gr(ky) = (3.26)

4In this paper we will only consider the gravity limit.
SNote that the limit on the right hand should be taken with some care. For example, for a
massless field, one should take the part of IT which goes to O(1) at infinity.
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We believe (3.25) and (3.26) provide a more fundamental prescription, as they
are expressed in terms of quantities of clear geometric and physical meaning®. We
note that with a different choice of boundary conditions at the horizon (3.26) can
also be used to calculate Feynman functions: this essentially follows from analytic
continuation of (3.24) to Lorentzian signature’. It can also be immediately generalized
to fields of higher spin or fields with more general action. For a vector field, O
is replaced by a boundary current J* and II by j# defined in (3.10). For metric
fluctuations O is replaced by the boundary stress tensor 7#” and II by

v A
[ L g— 1 11 4
T e G (K YK ,\) (3.27)

where K),, is the extrinsic curvature of a constant r-surface.

Comparing (3.25) with (3.20), we see that (3.25) expresses the AdS/CFT response
in a language almost identical to that of the membrane paradigm, except that the
“membrane” in question is no longer at the horizon but at the boundary » — co. The
object II which was loosely interpreted as a “membrane response” is now actually
the response of an operator O in the dual theory; in other words, if we move the
membrane from the horizon to the boundary, membrane paradigm quantities become
concrete gauge theory observables. Furthermore, as can be checked explicitly, the
in-falling boundary condition for ¢ at the horizon is precisely the regularity condition
discussed for the membrane paradigm, i.e. ¢ can only depend on r and ¢ through
the Eddington-Finklestein coordinate v (3.13). This is an expression of the physical
statement that a local observer hovering at the horizon only sees things falling in, not
coming out. An example illustrating this is given in Appendix 3.A.

3.4 Low frequency limit

In this section we first show that the field theory transport coefficient defined in (3.5)
can be expressed solely in terms of quantities at the horizon. This immediately gives
a general proof of the universality of shear viscosity. We then turn to a U(1) vector
field in the bulk and calculate the DC conductivity of the corresponding conserved
boundary current.

6For a massive field in AdS, (3.25) and (3.26) become

—a 11(r)

(O(k) = lim rA~4M(r), Gr(ke) = lim rA~" 20

where A is the dimension of the corresponding operator O.
7 An important subtlety here is that the proper Euclidean continuation gives the so-called Hartle-
Hawking vacuum and not the naive Schwarzschild vacuum.
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3.4.1 General formula for transport coefficients

Using (3.26), equation (3.5) can now be written as

II(r. k
x = lim lim RUGL AN

fim lim (3.28)

To compute (3.28) we write the equations of motion for ¢ in a Hamiltonian form as

o = —% g0, (3.29)
8,11 = \({(—;—-)gg"g’“’kpk,,qb. (3.30)

Note that in the low frequency limit (i.e. k, — 0, with w¢ and II fixed), equations
(3.29) and (3.30) become trivial

81 =0+0O(kwd) B (wp) =0+ OwIl) . (3.31)

Thus in the zero momentum limit the evolution in r is completely trivial and (3.28)
can in fact be evaluated at any value of r! We will evaluate it the horizon where the in-
falling boundary condition should be imposed. As we noted as the end of section 3.3,
the in-falling boundary condition for ¢ at the horizon is in fact equivalent to the
condition of horizon regularity in the membrane paradigm, which from (3.19)-(3.21)

gives,
1 [—g] .

(ro, ky) = —— 1/ ——| iwd(ro, k,) . 3.32
( ° P) Q(ro) grrgtt o ¢( 0 #) ( )

We thus find the simple result

1 —g 1 A

= = — 3.33
q(ro) V 9rr9st|,, q(ro)V (3.33)

where A is the area of the horizon and V is the spatial volume of the boundary theory.
Given that entropy density s of the boundary theory is given by s = ﬁ, X can
also be written as

X 4Gy

s gq(ro)
We find that the ratio x/s is given by the ratio of the Newton constant G, which
characterizes the gravitational coupling, to the effective coupling g(ro) for ¢ at the
horizon. This is the result for the boundary fluid, but we see that it is closely related
to the corresponding result for the horizon fluid, simply because the bulk evolution
equations (3.29) and (3.30) are trivial in the low frequency limit. Note that (provided
that some form of gauge-gravity duality exists so that (3.25) and (3.26) make sense)
the precise asymptotic structure of the spacetime does not play an important role in
our analysis.
Though we have used the example of a massless scalar field above, the discussion

(3.34)

51



clearly applies to components of more general tensor fields. Our treatment can be
applied to very general effective actions of the form

1 [ dwd*k g7 (0,:9)? -
= —= —-——d — _— M .
S=-5 | gy 4rv=e [ doo g H R (3.35)

provided that the flow equations (3.31) remain trivial in the zero-momentum limit.
This implies that @ should go to a nonzero constant at zero momentum and P must
be at least quadratic in momenta, so a mass term would not be allowed. For (3.35)
the corresponding transport coefficient is given by

X__ 4Gy
S Q(T’o,k#ZO) ’

It is also straightforward to generalize the discussion to multiple coupled fields.

(3.36)

3.4.2 Universality of shear viscosity

The most obvious application of (3.33)-(3.34) is to the shear viscosity. For Einstein
gravity coupled to matter fields, in the absence of a background off-diagonal compo-
nent of the metric, the effective action for the transverse off-diagonal gravitons h,
which is dual to 7, in the boundary theory, is simply that of a massless scalar with
effective coupling

q(r) = 167Gy . (3.37)
From (3.34) we thus find the celebrated result
n_1

= (3.38)

Note that the universality of (3.38) can now be attributed to the universality of the
effective coupling (3.37) for a graviton A¥.

The proof here is very general, applying to all Einstein gravity duals known so
far, including charged black holes dual to theories with chemical potential, the near-
horizon region of general Dp-branes, and recently discovered geometries dual to non-
relativistic CFTs [44] 8

It is also useful to compare this proof to earlier calculations. By considering
diffusive shear modes on the stretched horizon [34] derived a formula for the diffusion
constant 7/(e + p) in terms of an integral from the horizon to the boundary, where
¢ and p are energy and pressure density. [46] showed that /s is universal among
a certain family of metrics by reducing the integral to a total derivative and then
evaluating it at the horizon. A simpler proof along a similar line was given in [4].

8 An interesting example that violates our assumptions but still satisfies (3.38) is the gravity dual
to non-commutative N’ = 4 plasma studied in [45]. This system has broken rotational invariance
and a boundary stress tensor that is dual not to the bulk graviton but to a linear combination of
graviton and B fields, and thus our analysis does not apply, though it would be interesting to see if
it could be extended.
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The proofs of [46, 4] do not include theories with nonzero chemical potentials which
have been checked separately [50, 47, 48, 49, 51]. Note that there is no conflict with
the integral formula of [34] and our result (3.34) since the diffusion constant 7/ (e + p)
involves a factor €+ p which generically cannot be expressed in terms of quantities at
the horizon. Our proof is closer in spirit to the discussions in [52, 50, 53], which use
the Kubo formula and are related to the universality of the absorption cross section
of a minimally coupled scalar [54]. The treatment given here is more general and
technically simpler. It also highlights the importance of the effective coupling at the
horizon as the source of universality.

It has been conjectured [52] that the value of /s in (3.38) is in fact a lower bound
for all realistic matter. Equation (3.36) hints at how the bound could be violated. We
need to find a theory whose “effective” gravitational coupling for the k3, polarization
at the horizon is stronger than the universal value (3.37) for Einstein gravity. Gauss-
Bonnet gravity as discussed in [55, 56] (see also [57]) is an example of this. There the
effective action for hY has the form of (3.35) with the effective coupling Q(r) at the
horizon satisfying (see 3.10 in [55])°

1 (1—-4XgB)
Q(ro) 167Gy

Thus for Agp > 0 the graviton in this theory is more strongly coupled than that of
Einstein gravity and the value of /s dips below the value (3.38). This also indicates
that for /s to be arbitrarily small, the graviton has to be strongly coupled, which
was indeed observed in the Gauss-Bonnet example [55].

(3.39)

Note that the formula (3.34) for the specific case of shear viscosity in higher
derivative gravity theories has been conjectured recently in [58], where the authors
also discuss the importance of the strength of the coupling for A and its relation to
the violation of the viscosity bound.

3.4.3 Gauge fields and the DC conductivity

As another example of application of (3.34), we now turn to the DC conductivity. The
bulk gauge field A in AdS is now dual to a conserved current J* in the boundary
theory. The action is given by (3.8), and the momentum conjugate to this gauge field
is given by (3.10). From (3.26) and (3.25), the conductivity can be written as

(T (ku))qrr = 5*(r — 00)(k,) = 0 (k) Fyu(r — o0) . (3.40)

9We note that while the formula (3.36) does not immediately apply to more general higher-
derivative gravity theories such as the R* theory studied in [59] due to the presence of terms in
the action that are higher than quadratic in derivatives, it is conceivable that with some effort the
discussion may generalized to include that case as well.
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Equation (3.40) defines AC conductivities which are related to the retarded Green
function of the boundary current J* by
s Gl
Y(k,) = ——LE2 3.41
o (ky) i ( )
The DC conductivity is obtained by the zero momentum limit of the above equations.
Clearly at zero momentum due to rotational symmetry, o;; = 0d;; '°. Below o without
an explicit argument always refers to the DC conductivity.
The in-falling boundary condition at the horizon, which translates into equa-
tion (3.15), gives us the ratio at the horizon :

" 1 —g
J*(ro) = —— q“
93+1 9rr Gt

F}t('ro) . (342)

To

It can be readily checked that in the zero momentum limit the bulk Maxwell equations
give (see e.g. (3.90) and (3.92) of Appendix 3.B)

8,j' =0+ OWFy),  8,Fy =0+ O(wj’) (3.43)

implying that the relation (3.42) actually holds for all 7. Combining (3.40) and (3.42),
we see that the zero-frequency AdS/CFT conductivity is given by

PR S M R

92V 9rrgu

(3.44)

T0

One can also derive the above result by writing down an effective action for A; in
the gauge A, = 0, in which case one finds an effective action of the form (3.17) with
effective scalar coupling given by

1 1

9/em a1
From (3.33), we again find (3.44). While the DC conductivities for various specific
backgrounds have been found in the literature (see e.g. [62, 60, 61]), the general
formula (3.44) appears to be new.

Now let us specialize to d = 3, (2+1)-dimensional field theories, in which case the
metric dependence in (3.44) completely cancels and we find

- — 1
g3(ro)
This formula was previously derived for (2 + 1)-dimensional CFTs (in which g4 is

necessarily constant) [62, 61]. We have now shown that it applies to any theory (con-
formal or not) with a gravity dual. This formula displays a sort of “bulk universality”

(3.46)

10Except in two spatial dimensions when we can also have an antisymmetric component propor-
tional to €.
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in that it appears very general from the gravity point of view but (unlike 7/s) does
not lead to any universality predictions from the field theory perspective, in this case
because the bulk gauge coupling g7 typically does not have a model-independent dual
interpretation. We note however that if we restrict attention to CFTs, then g2 can
be related to the two-point function of the current at zero temperature, which has
the form 5

(Tu(@T(O)crr = — [ — 2225 (3.47)

x2

with k given by k& = 777293 [63]. We thus have the following general expression for the
conductivity of any CFT; with a gravity duall!
B w2k

o= (3.48)

The existence of such a relation is nontrivial. For related discussion see [61, 62].

For completeness, we also note that in d = 3, one can add to the Lagrangian (3.8)
a theta term given by,

1
Z/d4.’B 9(7‘) EMNPQ FMNFPQ y (349)

where we have allowed the § parameter to depend on r. With this addition, the
canonical momentum with respect to a r-foliation for A, becomes

. 1 o(r) .,
gt = _gi(f‘) V—gF™ + —(2—)6" AFx . (3.50)

We immediately see that now ¢*/ has an off-diagonal component (Hall conductivity)
given by
o= -0 =4(r —» x) . (3.51)

This result is exact and (unlike the corresponding result for the diagonal conductivity)
does not depend on conditions of horizon regularity or the low frequency limit. Note
that if 0(r) is a nontrivial function (3.51) differs from the horizon response, which is
(omb)'? = O(ro).

For other dimensions the metric-dependence in (3.44) no longer cancels. Neverthe-
less we find that the dependence on the metric is essentially dictated by dimensional
analysis, and one can still write the conductivity in a form similar to (3.46). We first
rewrite (3.44) as

o=— (¢**) 7 (3.52)
9d+1 r=rg

Now recall that in d-dimensions ¢ has mass dimension d — 3 (so does 1/g2,,) and
(g”(ro))% is the conversion factor between a boundary length scale and the corre-

HIn writing down both (3.46) and k = ;%Z- we have assumed a specific normalization for the

boundary current J*. But Equation (3.48) is normalization independent.
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sponding proper length at the horizon. Now suppose [ is a charactenstlc scale in the
boundary theory (e.g. the inverse temperature), then lnor = (g°) 31 is the correspond-
ing proper length scale at the horizon. We can now write (3.52) as

~ 1 ~ d-3
0= —"77, g = 0'l
9?1+1(7'0) ’

! = lﬁ; (3.53)
.‘7§+1(7’0) gd+1(7'0). )

We have constructed the dimensionless conductivity & by rescaling o by a boundary
length scale I and similarly constructed the dimensionless horizon gauge coupling
Gay1(ro) by rescaling gq41(7o) by the corresponding horizon length scale lhor. Equation
(3.53) now again shows “bulk universality” with a dimensionless conductivity solely
determined by a dimensionless effective coupling constant. The non-universal metric
dependence in (3.52) is hidden in the conversion factor between the length scales of
the boundary and horizon.

As a concrete example, let us look at a CFT with a gravity dual given by AdSa11
with d # 3, in which a black hole (with flat section) has the metric

— f(r)dt® +dz2) + —_f(lj;»? dr? (3.54)

with f(r) =1— (7o /r)%. The Hawking temperature is given by T = f}lgg. Applying
(3.52) we find (as shown earlier in [61]) that

T
ds2:§2-(

o 1 To d-3
oy = s (3) - (3.55)

The corresponding dimensionless conductivity and horizon coupling constant are

3—d 1 _ (4x\3-3 R4-3
dcrry, = Ocrr I° ¢ and T () ENC) respectively. Note that it is nat-

ural to define the dlmensmnless coupling constant at the horizon by normahzmg it
with the AdS curvature scale. The dimension-dependent prefactor (4”) reflects
the dimension-dependence of the conversion from a boundary length scale to that at
the horizon.

To conclude this section, we see that a generic transport coefficient of an opera-
tor @ dual to a massless mode in the bulk can be expressed in terms of geometric
quantities at the horizon. We emphasize that our analysis depends critically on the
existence of a non-degenerate horizon; e.g. for extremal black holes our results do
not apply and the behavior of transport coefficients can be quite different. While
here we have only discussed the shear viscosity and DC conductivity explicitly, there
could be many other applications including e.g., the calculation of the quark diffusion
coefficients k7 and kz, discussed in [39]. The understanding developed here should
also make it easier to search for other transport coefficients that exhibit universality.
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3.5 Flow from the horizon to the boundary

In the previous section we saw that in the low frequency limit the response of the
boundary fluid is precisely captured by that of the horizon fluid in the membrane
paradigm. This happened because the evolution of I and ;¢ (or j* and Fj; for a
vector field) along the radial direction from the horizon to the boundary is trivial,
and thus the AdS/CFT response depends only on the structure of the horizon. Note
nonetheless that the natural definitions of the classical membrane paradigm currents
I, and J, differ from their AdS/CFT counterparts II and j# by factors of V=,
different index placements, etc. The differences are physically relevant; for example
for d # 3, the boundary conductivity contains extra temperature-dependence, which
should be contrasted with the perspective of a local observer at the horizon membrane
who always observes that the conductivity is given by the inverse of the local coupling
constant.

The membrane shear viscosity over entropy density ratio (3.23) does agree exactly
with that of the boundary theory since 7y, and sy, differ from the corresponding
boundary theory quantity by a common factor which cancels in the ratio. This relation
has been noted before [64, 36] and the connection between this and the AdS/CFT
result is now clear. As is discussed in the conclusion to this paper, the connection
between the membrane paradigm bulk viscosity and that of the dual theory is more
subtle.

Away from the low frequency limit, the evolution (3.29)—(3.30) from the horizon
to the boundary becomes nontrivial and depends on the full geometry. Indeed, the
finite frequency/momentum response of an actual strongly coupled quantum field
theory is expected to display complicated structure which simply does not exist in
the frequency-independent classical membrane paradigm and should arise as we move
outwards from the horizon.

To see this more explicitly, we consider a fictitious membrane at each constant
radius along the radial direction and introduce a linear response function for each of

them,
I(r, k,)

wo(r, k,)
Note the above expression is defined for all r and k,. At 7 — oo, ¥(r — o0;k,) =

—GLi‘(fﬂ, which is the finite momentum boundary response function, and at the hori-
zon 1 — 1o, X(r — 103 k,) = X, as a result of (3.32)-(3.33).

X(r;ku) = (3.56)

From (3.29) and (3.30), one can derive a flow equation for x(r; k,) which governs
its evolution from the horizon to the boundary

B.x(r) = iw\/%—t:' {E—i(;—) —B(r) (1 _ f,—z%;” (357)

1 —-g - =
$,(r) = — K=Kk, 3.58
0= 1V 7o (3.58)

where
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The above equation makes manifest that as £ — 0 and w — 0, X is independent of .
Furthermore as » — 7o in order for the solution to be regular the bracketed quantity
in (3.57) must vanish, from which we recover

X(ro, ku) = Zg(ro) = x (3.59)

where in the second equality we have used (3.33). It is important to emphasize that
the full momentum response at the horizon ¥(ro,k,) automatically corresponds to
only to the zero momentum limit of the boundary response, i.e. X(ro,k,) = X(r —
0, k, — 0).

With “initial condition” (3.59) the flow equation (3.57) can then be integrated
from the horizon to infinity to obtain the AdS/CFT response for all w,k. The evo-
lution to infinity represents a gradual incorporation of higher-momentum modes. 1t
would be nice to find a precise connection between the flow equation (3.57) and the
boundary RG flow, possibly in the framework of an exact RG equation [65]. Note
that in general the solution to (3.57) will involve divergences as r — oo; these are
the familiar UV divergences of the field theory and can be removed by the usual
procedure of holographic renormalization.

We now turn to a U(1) vector field. Without loss of generality, we can take
the momentum to be along the z direction. The conductivities introduced in (3.40)
and (3.41) then naturally separate into two groups, the longitudinal conductivity
o (k,) = o%*(k,) along z direction, and the transverse conductivity or(k,) = o™ (k,)
along spatial directions not z, i.e. (z,%,...). As for the scalar case, this motivates us
to introduce longitudinal and transverse r-dependent “conductivities” respectively,

_ i%(r, k _ i*(r, k

, 3.60
th (’f', k“) ( )

orr(r — oo;k,) are the boundary theory responses, and are related to the full
retarded correlator G of J, as in (3.41).

The Maxwell equations for the vector field in the bulk similarly separate into two
groups: a “longitudinal” channel involving fluctuations along (¢, 2) and a “transverse”
channel involving fluctuations along all other spatial directions. Using the Maxwell
equations in the respective channel we can then derive the flow equation for & .
Defining

1 —9g
Sa(r) = —5— 9* 3.61
A( ) 934-1 9rrGut ( )

we show in Appendix 3.B that &, satisfies an equation of the form

_ g [ & k? g
o= [2= [ T (1- £L) -5alr)] (362)

o satisfies the same equation as (3.57), but with X4 replaced by ¥4. Regularity at
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the horizon membrane again provides the initial data at the horizon
1,.(r0, ky) = Za(ro) = o . (3.63)

There is a curious relation between the flow equations for &7 and 7. It can
be readily checked from (3.62) and (3.57) that the quantity % satisfies an equation

which is identical to that of r after the replacement ¥,4(r) — ‘ZII(T) This can be
interpreted as a relation between the conductivities of two different theories, and is
discussed in Appendix 3.C.

3.6 Diffusion at the boundary and at the horizon

In section 3.4 we showed that in the low frequency limit the linear response at the
boundary is fully captured by the response of the horizon. In section 3.5 we showed
that finite frequency/momentum response of the boundary cannot be captured by that
at the horizon since the horizon response always corresponds to the low frequency limit
of the boundary theory. In this section we examine linear response at the next order
in the derivative expansion using the examples of diffusion of charge and momentum
density. The discussion serves to highlight the differences between the diffusion at
the horizon and the boundary. It also provides a straightforward application of the
flow equations derived in the last section, which we use to give a simple derivation of
the diffusion constant.

3.6.1 Charge diffusion

Consider disturbing the thermal equilibrium of the boundary theory by a small
nonuniform perturbation of charge density varying along the z direction. The charge
gradient generates a nonvanishing current 7~ and eventually the charge diffuses away
back into thermal equilibrium. To lowest order in the derivative expansion the diffu-
sion process is governed by the dispersion relation

w=—iDk?  k=k, (3.64)

where D is the diffusion constant. In the linear response regime (3.40)-(3.41), equation
(3.64) appears as a pole in the retarded Green function G%, since there is a nonzero
current JZ? even in the absence of an external field.

To study the diffusion process from gravity we should thus examine the longitu-
dinal channel in the regime w ~ k? and w/T < 1,k/T < 1. Assuming this scaling
and taking &z, ~ O(1), we obtain from (3.62)

ara'L _ Zkz vV 9rr Gt

=2
o7, w z)Agzz

(3.65)
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The solution to this equation with initial condition given by (3.42) is

1 2 Tr =
1 E / d,\/g 99 (3.66)

O'L

where we have used that the DC conductivity o is given by ¢ = X 4(rp). Now recalling
that 0**(k,) = or(k,) = G1(r — 00,k,) and using (3.41), we find that

wlo
ky) = —= .
where the diffusion constant D is given by the integral
. / dr 'g"g“ Py - (3.68)

Equation (3.68) is equivalent to the diffusion constant derived in [34, 36] once we
substitute the explicit expression (3.44) for o.

Note that the diffusion constant D (3.68) cannot be generically written in terms
of horizon quantities. Now using the Einstein relation 2

ED=o¢ (3.69)

where = is the charge susceptibility, we find a general expression for =,

-1
== [ / dr 'g"g“gdﬂ} : (3.70)
o g

In Appendix 3.D we give an alternative derivation of (3.70) for an arbitrary charged
black brane; thus the logic of this section can also be viewed as a proof that any black
brane obeys the Einstein relation.

Having derived the retarded Green function (3.67) in the diffusion regime, let us
now find bulk solutions to the Maxwell equations that are dual to these diffusive
modes in the gauge theory. This in particular will enable us to compare the explicit
diffusion processes on the horizon membrane and at the boundary. For this purpose
we again examine the longitudinal channel Maxwell equations (3.90) and (3.92) in
the limit of small w and k but finite w ~ k2%,

0,77 = O(WwFy), (3.71)

o, — Komtudin ey o, (3.72)

BN

12Note that with the Einstein relation below (3.67) precisely has the form which one expects from
hydrodynamics
r _ WED
2 jw—Dk?
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The above equations can be immediately integrated to give
J*(r) = j*(ro) = const, (3.73)

-1.2 T 2
th('r‘) = th(’l'o) |:1+O'%lz—/ dTI&\‘q/t—t_i;Ll}
To
(3.74)

where we have used the boundary condition j*(rp) = o F,(ro) at the horizon.

Since we are interested in a diffusion process we should be looking for gauge theory
configurations where the applied electric field is zero. Requring Fu(r — 00) =0
enforces a relation between w and k that is exactly the dispersion relation (3.64) with
D given by (3.68). When this relation is satisfied, in the dual picture we see standard
diffusion with no electric field and (J?)qrr decaying with time.

This should be contrasted with the behavior observed at the horizon. As j# is
constant throughout the spacetime, an observer at the horizon membrane will also see
a current evolving with precisely the same behavior as that at the boundary. Indeed,
diffusive behavior on stretched horizons has been noted before [34, 35]. However, the
electric field F; at the horizon is not zero; indeed, we know that at the horizon the
electric field exactly tracks the current via the boundary condition (3.42):

3'(ro) = o Fy(ro) , (3.75)

and thus cannot be zero. Thus a local observer at the horizon has a rather different
interpretation; he sees a nonzero electric field that is decaying with time as it falls into
the horizon, and this electric field directly induces a membrane current via the simple
response (3.75). As emphasized before, (3.75) in fact exists for all w, k; however if w, k
satisfy the diffusion relation (3.64) with (3.68) then the electric field perturbations
will vanish at infinity and the boundary interpretation of this configuration will be
diffusion.

3.6.2 Momentum diffusion

For momentum diffusion one considers in the boundary theory a small nonuniform
perturbation in momentum density §7;, varying along the z direction, where a is any
spatial direction z,y, etc. not equal to 2. The diffusion current is given by 67;, and
the diffusion constant D; can be written in terms of boundary quantities as (for a
recent review see [4])

Dy = —1 (3.76)
€+p

where € and p and energy and momentum density.

The gravity modes corresponding to these components are Ay, h,, which decouple
from the other components in the gauge ho = 0. The corresponding bulk canonical
momenta are T** given by (3.27), now with s = (2,t). As pointed out in [34], the
quickest route to the bulk equations of motion in this channel is via a Kaluza-Klein
reduction in the a direction. In this case the relevant modes k. (u = (t,2)) can be
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considered components of a gauge field A, with a metric-dependent gauge coupling.
The precise mapping is

1 gaa(7)

he= A, TE =4, -
H w a=J g3.1(r) 167Gn

(3.77)

whose derivation we review in Appendix 3.E. We can now immediately take over all
of the results of the previous section: e.g. the corresponding “DC conductivity” is
given by the entropy density ;= and the retarded correlator of T7 with itself is given

by the analog of (3.67)
2

az,az i W
Gr™ = Amiw — D k? (3.78)
with the diffusion constant D, given by
D,=—1_ —4Gys dr’ IrrJtt (3.79)

€+p V' =99z

This equation is again equivalent to that in [34]. From (3.79) and (3.38) we now
derive a general formula for € + p,

1 gr'rgtt
= 167G dr' 3.80
e+ p TN / v gz:z: ( )

Note that the analog of the “electric field” is a gauge-invariant ** combination £, of
metric coeflicients

€. = 0:(hy) — 0u(R) - (3.81)

We will not repeat here the analysis of last subsection. Everything can be carried
over with a change of notation as described above. We do emphasize again that the
diffusion process at the boundary is different from that on the horizon. An observer at
the horizon will see that the horizon metric is deformed; this deformation is directly
inducing a fluid flow on the membrane via the response T7 (ro) = =&

Finally, note that diffusive behavior is not specific to the examples considered.
Given a general pair (II,9;¢), the essential ingredient in this analysis is the existence
of a scaling limit for w, k where the response II is constant in 7 but the source
8,4 is not (see (3.73), (3.74)). This can be translated into a constraint on general
effective actions such as (3.35): we would like a limit where P(r;k,)/w — 0 but
Q(r;w, k)w — O(1). This allows us to construct a bulk solution where the source
¢(r — 0o) vanishes but II(r — oo) does not.

13The gauge transforms in this section are diffeomorphisms of the (r, ¢, 2) sector; the effect of these
on the hj, perturbations is that of the U (1) of the effective gauge field A4,.
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3.7 Conclusion and discussion

We have shown that there is a precise sense in which the long-wavelength limit of
a boundary theory at finite temperature is determined by the horizon geometry of
its gravity dual. We derived expressions for various transport coefficients in terms
of components of the metric evaluated at the horizon; this sheds light on the origin
of the universality of the shear viscosity and resulted in a general formula for the
conductivity (3.44). At finite frequency/momentum, however, propagating the infor-
mation from the horizon to the boundary requires solving a nontrivial flow equation
which describes how the full AdS geometry encodes the higher momentum degrees of
freedom of the boundary theory. The examples of charge and momentum diffusion
provide illustrations of this flow in a very simple context.

Note that the relation between the membrane paradigm bulk viscosity (which is
negative) and the bulk viscosity of a conformal fluid (which is exactly zero) is more
subtle. Here the relevant degree of freedom h{ does not satisfy a simple equation like
h%. Instead, it enters in a nontrivial way into the Hamiltonian constraint of general
relativity in the bulk and thus (in the absence of a background scalar profile) is not
actually a propagating degree of freedom, leading to a vanishing bulk viscosity for
conformal theories. If one turns on a nontrivial massive scalar background (corre-
sponding to a deviation from conformality) then fluctuations of this field can mix
with the graviton A, bringing it to life and allowing a nonzero bulk viscosity!4. Thus
a systematic study of bulk viscosity will involve fluctuations of massive fields. This
will dramatically change the structure of flow equations such as (3.57); in particu-
lar, the flow will no longer be trivial even in the low frequency limit and it is likely
that the membrane response will not adequately capture the low-frequency AdS/CFT
response. Such issues significantly complicate the analysis, although recently a uni-
versal result for the bulk viscosity was obtained in [70]. The methods used there are
somewhat different from those used here, and it would be interesting to understand
the precise connection.

We close this chapter by noting that the classical membrane paradigm fluid can be
seen to play a conceptually satisfying role in the holographic description of a strongly
coupled field theory at finite temperature. We hope that it may be a practically useful
role as well, both for identifying what quantities are expected to display universal
behavior and as a technical tool for simplifying future hydrodynamic computations
in gauge-gravity duality.

3.A In-falling boundary conditions and horizon reg-
ularity

Here we demonstrate using the example of a scalar field that the in-falling boundary

condition used in standard AdS/CFT calculations is equivalent to the condition of
horizon regularity used in the membrane paradigm. At the horizon r — ry, the metric

MFor explicit calculations see [66, 67, 68, 69).
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may be written
CT

gst = co(r — 10), Grr = (3.82)

rT—To

One finds that near the horizon the equation for ¢ is given by

\/g(r — 10)0: (\/? (r — r0)6,¢> +wip=0 (3.83)

¢ ox e~ =), dz = [ 2= dr (3.84)
Gt
The in-falling boundary condition implies that we should take the positive sign in the
exponent. In that case it is clear that the solution can be written only in terms of
the Eddington-Finkelstein coordinate v defined in (3.13):

¢ ox e, dv=dt + /%%dr (3.85)

The fact that ¢ depends only on the nonsingular coordinate v at the horizon is
precisely the condition of horizon regularity used in the membrane paradigm. Note
if we integrate the definition of v in a small neighborhood of the horizon and use the

which gives

formula for the inverse Hawking temperature 3 = 4w, /z—g we obtain

v=_t+ 21% ln(r — ro) = ¢ o (r — 7o)~ v et (3.86)

which is recognizable as the standard form of the in-falling boundary condition.

3.B Bulk Maxwell equations and flow equations
for conductivities

Here we assemble the relevant components of the bulk Maxwell equations, given by
the variation of the action

1
S =— / dHtiz /=g FynFMN 3.87
g4go2l+1(7') MN ( )

As before j* is the momentum conjugate to A, with respect to a foliation by constant-
r slices (3.10):

i (389)

9d+1

Rather than working with the gauge potentials Aps, we will write all equations in
terms of gauge-invariant objects such as F},, and j#; this involves the manipulation of
a larger number of equations but makes the physical interpretation more transparent.
We will also assume that the background configuration of the gauge field is trivial;
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in principle fluctuations around a nontrivial gauge field background can couple to
the metric or other fields and require a more detailed analysis. Note that in (3.87)
g3,1(r) can be given by the background value of a nontrivial scalar field, as symmetry
arguments guarantee that fluctuations of such a scalar will decouple from the Maxwell
perturbations.

If we take the momentum to be along the z direction, these equations naturally
separate into two groups; a “longitudinal” channel involving fluctuations along (¢, z)
and a “transverse” channel involving fluctuations along all spatial directions not z,
ie. (z,y,..). Defining G = \/—g/g3,, for notational convenience, we find that the
longitudinal channel is governed by two dynamical equations:

- rjt - thtgzzazet =0 (389)
~0.5* + Gg" g6, Fy = 0 (3.90)

as well as the conservation of j# and the Bianchi identity:

Oijt + 0,5 =0 (3.91)

_g,-rgzz 6tjz - grrgtt 6zjt + 81~th - O (392)

G G

We would like to derive a flow equation for &7 (r; k) = j/F,;. We begin by taking a
single derivative:

_ arjz jz
61'0L - th F;gt 6ert (393)

We now use attack the right-hand side, using (3.91) to eliminate j in favor of jZ,
(3.92) to eliminate 0, F}; in favor of j*, and (3.89) to eliminate 8,5% in favor of Fl;.
The final differential equation for &, is

Bl (- 55) s o

where as in the text (3.61) we have defined Y 4(r) = ;,—1 g
d ™

Similarly, the transverse channel is governed by a dynamical equation and two
constraints from the Bianchi identity.

—0,3% — thtgyyatﬂy + Gg*g*0.F,y =0 (3.95)
OrFy — gr—rgﬂatjy =0 (3.96)
0.Fiy + 8F,, =0 (3.97)

To find the flow equation for G = j¥/F,; we follow a procedure directly analogous
to that above, using (3.97) to eliminate F,, in favor of F, (3.95) to eliminate 8,5
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in favor of F;, and (3.96) to eliminate 0, Fy; in favor of j¥. The resulting equation is

=2 2 . zz
S o W I _KFg*
0,61 = iw » [EA(T) Xa(r) (1 g )] . (3.98)

3.C A curious relation and electric-magnetic du-
ality

Examination of (3.94) and (3.98) shows that the quantity ;.}; satisfies an equation
which is identical to that of & after the replacement ¥4(r) — E_AI(T) Following
analogous discussion to that around (3.52) and (3.53), one can also interpret ¥i4(r)
as an “effective dimensionless coupling constant” at each r-hypersurface. In other

words, if we have two bulk theories 1,2 whose dimensionless couplings ¥, are related
by

1
TL(r) = =— 3.99
then the respective conductivities of these two theories are related by
or(k,) = —21— o1 (k,) = —21— (3.100)
o7 (k) oz (ky)

This is a peculiar relation which we now explain, starting with the special case when
d = 3 and g7 is constant. Here ¥4 = 1/g} is independent of position and the
inversion $4(r) — 1/X4(r) only involves an inversion of the coupling constant g;.
At the quadratic level in the supergravity action this coupling can be scaled out and
does not affect the dynamics, and so (3.100) actually relates o to or in the same
theory: g2or = 1/(g20r). This symmetry of the equations of motion is actually a
consequence of electric-magnetic duality in four bulk dimensional electromagnetism.
Switching E and B is equivalent to interchanging longitudinal electric fields E, for
transverse currents j° and vice-versa. This relates the two sides of the relations in
(3.100); this connection has been emphasized previously in [62].

To understand why a similar relation might hold in higher dimension, we should
note that the bulk dynamics can always be reduced to an effective four-dimensional
system by dimensional reduction along all dimensions not equal to r,¢,z,z. The
kinetic term for the gauge field is then

S = / ddx-21—\/—hgu“’§—3FabF“", (3.101)
9341(7)

where a, b are in the four dimensional space parametrized by r,t,x,z and hg is the
metric on this space. The equations of motion from this action are identical to those
of four-dimensional electromagnetism with position-dependent gauge coupling

1 1 -3
= zz 2 = Ya 3.102)
Z0) Bl (
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On the other hand this theory is dual by standard four-dimensional electric-magnetic
duality to a theory with inverted gauge coupling g2(r). Thus if two (d+1) dimensional
bulk theories satisfy (3.99), then the effective four-dimensional dynamics of these two
theories are related by electric-magnetic duality. This relation manifests itself in
(3.100). For d = 3 and constant g2, such an expression is thought to be related to
a non-Abelian generalization of particle-vortex duality in the boundary theory [62];
it would be interesting to find a similar boundary interpretation for the d # 3 case
(3.100).

3.D The Einstein relation for arbitrary charged
black branes

In the text we computed independent expressions for o and D, the conductivity and
diffusion constant for an arbitrary conserved current in any field theory with a gravity
dual. To complete our discussion we now compute the charge susceptibility = for an
arbitrary charged black brane.

The charge density of the dual theory is p = j%(r — 00) and the chemical potential
is p = Ai(r — 00). To evaluate the susceptibility we require p to linear order in i,
p(T, p) = Z(T)p. We consider a static bulk field configuration depending only on r.
Examining (3.89) and (3.90), we obtain

o5 = 0 (3.103)
8.4, = g’—’Ggﬁjt (3.104)
with the immediate solution
ji(r) = p=const (3.105)
A(r) = Aro)+p / dr’——-g’g“ (3.106)
To

Horizon regularity requires A(ro) = 0, giving us p = A;(r — 00) = p=~! with

o 2 -1
— grrgttgd+1
E= dr’—} 3.107)
[ 0 V=g (
Comparing with (3.68) and (3.44), we see that the Einstein relation
o =2D (3.108)

is indeed satisfied for any black brane.
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3.E Dimensional reduction for gravitational shear
mode

As emphasized in [34], the relevant equations for gravitational shear mode fluctuations
can be mapped onto an electromagnetism problem. Consider a metric perturbation
of the form

9 (7) = ga () + Gaa(r)R5(7, 2, 2) (3.109)

where a is a spatial direction that is not equal to z. Compare this to the standard
form of the metric used in a Kaluza-Klein reduction along the a direction:

ds? = gundzMdz" = gopdz®ds” + gaa(dz® + Apdz®)? (3.110)

where the indices @, 8 omit the a direction and Ag is an effective (d — 1) dimensional
gauge field. This is exactly the form of the perturbation (3.109), provided we set
Ap = h}. However since nothing depends on the a direction, we can integrate out
a from the Einstein-Hilbert action constructed from (3.110). Standard dimensional
reduction formulae (see e.g. [71]) give us the kinetic term for A

S =—

da® [ d*'2\/=ggaaFupF**? 111
where F is the field strength tensor of A, which in terms of metric perturbations is
Fog = 0,h% — Oshg. Here the determinant /—g is that of the full d-dimensional
metric. This action is of exactly the standard Maxwell form (3.87) with an effective
coupling for the gauge field
1 1
931 "~ 167GN

9zz (3.112)

as claimed in the text.
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Chapter 4

The finite-density state in
AdS/CFT

4.1 Some inspiration

In the previous chapters we first built the formalism and then studied the dynamics of
the finite-temperature state in AdS/CFT. In this chapter we will change our focus to
the finite-density state: we now seek to understand the dynamics of a finite density of
strongly correlated excitations charged under a global symmetry. Before plunging into
holography it is good to remind ourselves why there is actually a need to understand
the dynamics of strongly-interacting systems at finite density by thinking about the
dynamics of a weakly-interacting system at finite density — i.e. an ordinary metal.

For over fifty years our understanding of the low-temperature properties of metals
has been based on Landau’s theory of Fermi liquids. In Fermi liquid theory, the
ground state of an interacting fermionic system is characterized by a Fermi surface
in momentum space, and the low energy excitations are weakly interacting fermionic
quasiparticles near the Fermi surface. This picture of well-defined quasiparticles close
to the Fermi surface provides a powerful tool for obtaining low temperature properties
of the system and has been very successful in explaining most metallic states observed
in nature, from liquid ®He to heavy fermion behavior in rare earth compounds.

Since the mid-eighties, however, there has been an accumulation of metallic ma-
terials whose thermodynamic and transport properties differ significantly from those
predicted by Fermi liquid theory [92, 93]. A prime example of these so-called non-
Fermi liquids is the strange metal phase of the high T, cuprates, a funnel-shaped region
in the phase diagram emanating from the optimal doping at T = 0, the understanding
of which is believed to be essential for deciphering the mechanism for high T, supercon-
ductivity. The anomalous behavior of the strange metal—perhaps most prominently
the simple and robust linear temperature dependence of the resistivity—has resisted
a satisfactory theoretical explanation for more than 20 years. While photoemission
experiments in the strange metal phase do reveal a sharp Fermi surface in momentum
space, various anomalous behavior including the “marginal Fermi liquid” [110] form
of the spectral function and the linear-T resistivity imply that quasiparticle descrip-
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tion breaks down for the low-energy excitations near the Fermi surface [110, 111].
Other non-Fermi liquids include heavy fermion systems near a quantum phase tran-
sition [85], where similar anomalous behavior to the strange metal has also been
observed.

The strange metal behavior of high T¢ cuprates and heavy fermion systems thus
challenges us to formulate a low energy theory of an interacting fermionic system with
a sharp surface but without quasiparticles. We will now demonstrate that essentially
the simplest possible finite-density state that can be modeled in holography supports
fermionic excitations that satisfy precisely these properties.

Note that while the underlying UV theories in which our models are embedded
most likely have no relation with the UV description of the electronic system underly-
ing the strange metal behavior of cuprates or a heavy fermion system, it is tantalizing
that they share striking similarities in terms of infrared phenomena associated with a
Fermi surface without quasiparticles. This points to a certain “universality” under-
lying the low energy behavior of these systems. The emergence of an infrared fixed
point and the associated scaling phenomena, which dictate the electron scattering
rates and transport, could provide important hints in formulating a low energy theory
describing interacting fermionic systems with a sharp surface but no quasiparticles.

4.2 The Reissner-Nordstrom black brane

Recall that our primary interest is to study systems at a finite density (and temper-
ature). More specifically, we would like to study field theory states carrying a charge
under a U(1) current that we will call J¥(z); this current is dual to a bulk gauge field
Ap(z,z), and so the global U(1) symmetry in the field theory is represented by a
U(1) gauge symmetry in the gravitational description.

To create a nonzero charge density p we should turn on a finite chemical potential
p for the current; this corresponds to perturbing the CFT by the operator

0Syy = y./d4x Jt. (4.1)

Note that both conformal and Lorentz symmetries are broken by the introduction of
the chemical potential, u # 0; thus we now expect our field theory to have a nontrivial
RG flow, and we expect it to be somehow different in the time and spatial directions.
We turn now to the study of this state from gravity. Analogously to the scalar
case discussed above, the boundary value of the gauge field A, is equal to the value
of the field theory source for J#: thus the perturbation (4.1) means that we should
study a classical gravity solution where the gauge field A;(2) at the boundary takes
some nonzero value A;(z — 0) = p. The relevant action is now (2.1) but with the
addition of the Maxwell term for the gauge field,
S—i/d‘*x\ﬁ“ R+i+R—2F FMN} (4.2)
=52 g 2 g%‘ MN . .
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gr is a bulk gauge coupling; the factors of R in its definition combine with the
dimensional Newton’s constant x* out front to make it dimensionless.

The solution that satisfies the relevant boundary condition is that of a charged
Reissner-Nordstrom black hole! {89, 90]. Any field theory state at finite temperature
is dual to a black hole in the bulk, and the charge carried by the black hole is directly
related to the charge density of the field theory state. The ratio of the temperature T
to the chemical potential p is a dimensionless ratio characterizing the black hole; as
we are mostly interested in zero-temperature physics we will focus on the case when
% = 0, in which case the metric and background gauge field are given by

R? R? d2?
2 _ 2 =2
ds® = ?(—fdt +dz°) + gT (4.3)
with
Av=p(l— mz), f=1+3ut—4p3° po=—F (4.4)

V3gr

Compare this to (2.2): the nontrivial function f(z) indicates that the physics is
changing with scale. The horizon of the black hole is at the radial coordinate z, = i
where f(2.) = 0. Note that the chemical potential p is the only scale of the system
and provides the basic energy unit. For convenience we introduce the appropriately
rescaled p,, which will be used often below as it avoids having the factor v/3gz flying
around.

Note now that for small z <« 2, we have f ~ 1, and the metric resembles that of
pure AdS (2.2) with no chemical potential; this is telling us that physics at energy
scales much larger than the chemical potential u is simply that of the conformal
vacuum, as expected. However at z ~ 2, the geometry is very different: f has a
double zero at the horizon z = z, = ”—1*, with

(2, — 2)?

Zy

f(z) ~6 +o, 2oz (4-5)

As a result the horizon is actually an infinite proper distance away. In fact, the
near-horizon geometry factorizes into AdS, x R2:

2
ds? = %(—dtz’ +d¢?) + pR%E A= j%{dt. (4.6)

Here we have defined a new radial coordinate ¢ and R, is the curvature radius of

AdS,,

22

__ & _ R
<=6(Z*—Z)’ R2—\/(—5 (4'7)

The metric (4.6) applies to the region =% « 1 which translates into u¢ > 1.

Zx

Note that if we are at a nonzero temperature, the function f(2) will then develop a

1Here we say “black hole” even though the horizon is planar with topology R?; it would perhaps
be more accurate to say “black brane.”
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first-order zero at some 2r, and for large temperatures this asymptotic AdS; structure
will be lost. If we are interested in asymptotically small temperatures there is an
alternative scaling limit in which we take T — 0, % = const; this results in the AdS,
identified above being replaced by an AdS, black hole [19].

As discussed in [19] the near-horizon AdS, region plays a crucial role in deter-
mining the low energy behavior of the boundary theory. At a heuristic level, as we
increase ¢, because of the warp factor 1/¢2 before dt?, the local proper time dr = Rodt
is increasingly redshifted compared to the boundary time ¢. As a result, local bulk
processes, say with a duration §7, happening at increasingly larger values of ¢ cor-
responds to increasingly longer time 6t = -}%—57' processes in the boundary theory.
Similarly a process with local proper energy 6 F translates into lower and lower ener-
gies dw ~ @Cﬂz in the boundary theory as ¢ is increased. Note that there are no such
dilatations in spatial directions and spatial momenta.

We now note that the metric (4.6) has a scaling isometry
t— X, ¢ — X, T—Z (4.8)

under which only the time coordinate scales (compare this to the relevant scaling
symmetry for Lorentz-invariant AdSs (2.3) in which the spatial and time coordinates
scale in the same way.) In fact the AdS, region is invariant under a full SL(2,R)
isometry group.

These features have led [19] to argue that at low energies the system is described
by a (0++1)-dimensional CFT (from now on called the IR CFT) which is dual to AdS;x
R2. The IR CFT is (0 + 1) dimensional as the nontrivial scaling behavior happens
only in the time direction, with the R? directions essentially becoming spectators.
It is crucial to note that this conformal invariance has nothing to do with the CFT3
in the ultraviolet, whose conformal invariance was completely broken by the chemical
potential. This new IR CFT is emergent, and appears to have to do with the collective
motion of the large number of charged excitations sustaining the background charge
density.

We stress that while we do not have an explicit Lagrangian description of this
IR CFT, using our dual gravity description we can compute most observables. For
example, consider the UV operator © discussed above. It is dual to a bulk field ¢
with mass m related to its UV conformal dimension by (2.7), and we now also allow
it to have a charge g. We now expect its Fourier transform Ok(t) to match onto
some operator ®x(t) in the IR CFT. Just as above, we can compute the conformal
dimension & of ®x(t) by studying classical solutions of ¢ in the AdS; geometry; we
find the IR analog of (2.7) :

51: =+ U (49)

2Gjmilar to the S° in AdSs x S° for N' = 4 SYM theory.
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with

k? .
Vk:\/mQRg q*+4+6 27 k:|k|, Q*:"q\/g—l%' (410)

Equation (4.10) has some interesting features. Firstly, the IR dimension depends
on the momentum momentum k: as a result operators with larger k become less
important in the IR. Note, however, this increase with momentum only becomes
significant as k ~ p. For k¥ < p, we can approximately treat §, as momentum
independent. Secondly v, decreases with g, i.e. an operator with larger ¢ will have
more significant IR fluctuations (given the same vacuum dimension A). From the
bulk point of view, this comes about from the coupling to the background electric
field strength.

4.3 Low energy behavior of retarded Green func-
tions

Let us now turn to the main observable that we will study; the retarded Green’s
function for an operator O,

Gr(t,2) = i0(t) tr (p[O(t, Z), O(0)]+) , (4.11)

where p is the density matrix characterizing the ensemble and the notation [, ] refers
to a commutator for scalars and an anticommutator for spinors. The retarded Green’s
function carries all of the real-time information about the response of the system:
in particular, its imaginary part is proportional to the spectral density A(w,k) =
—Im Gr(w, k). For real-life systems the spectral density of the electron operator can
actually directly be measured in ARPES experiments, making the retarded Green’s
function a very important observable.

We now explicitly compute the low-energy retarded Green’s function Gg(w, k)
for a scalar operator considered above. Basically our task is to understand how the
expansion coefficients A, B in (2.10) behave at low frequencies; we expect the IR CFT
identified above to play an important role in determining this low-energy behavior.
Before embarking on this calculation we first simply state the final result. The reader
who is impatient may take this result and move on to the next section:

(203 bi(w, k) +b_(w, k)Gr(w)p; 2 .
T ap (W, k) + ac(w, k) Gi(w) e

The various objects appearing in this formula deserve explanation. Gk(w) is the
Green’s function in the IR CFT for the IR operator @;; it provides “universal” data
that depends only on the IR CFT. Due to the emergent conformal invariance at zero
temperatures it behaves as w?* with v defined in (4.10). a4 and by are quantities
that arise from the solving the equations of motion in the full UV region; the key
fact here is that they are analytic in w and have a smooth w — 0 limit. They can be
thought of as encoding the non-universal physics of the flow down from the UV to

Gr(w, k) = (4.12)
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the IR CFT.

We now present the derivation of this formula. We follow closely the discussion
of [19] to which we refer readers for more details. The equation of motion (in mo-
mentum space) for ¢ in the charged black hole geometry (4.3) can be written as

2
2*0, (%(qu) + 22 (g-uif?—{lt—)— - kz) d—miR%)=0. (4.13)
Recall from (2.6) that near the AdSs boundary ¢(z) has the standard asymptotic
behavior ¢(z — 0) ~ Az3~2+ 4 Bz”+ and that the correlator we seek to compute
can be written as

Grlw.F) =2 (4.19)

provided that ¢ is an in-falling wave at the horizon.

We are interested in the behavior of G in the low frequency limit (w < p).
However, we cannot directly perform a perturbative expansion in w in (4.13) since the
w-dependent term becomes singular and dominates at the horizon where f (2.) — 0O,
no matter how small w is. This is not just a technicality; physically this reflects
the abundance of critical modes coming from the IR CFT and is of tremendous
importance.

To deal with it, it is useful to isolate the near-horizon AdS,xR? region (4.6) (which
will be referred to as the IR region) from the rest of the black hole spacetime (which
will be referred to as the UV region). In the IR AdS, region the w dependence will be
treated non-perturbatively. The crossover between the two regions happens near the
boundary of AdS; with % < ¢ < 1, where p¢ ~ -2 remains big so that we are still

Zx—Z

in the near-horizon region, but the w-dependent term zf“’?z ~ w?(¢? in (4.13) becomes
small. In the UV region we can treat the small w limit using a standard perturbative
expansion with the lowest order equation given by setting w = 0 in (4.13).

So we start with a solution in the AdS, x R? region and evolve it outwards,
matching it to a solution in the UV region to determine the coefficients A and B.
The scalar wave equation on the AdS, x R? region (4.6) is

2
R3mi g
—6g¢,‘c‘ + _Cé—kd)'; =lw-+ Z: (}5,':‘, (415)
where mi = Fﬁ% +m? and ¢, = % As we are computing a retarded correlator

we are looking for an in-falling solution at the black hole horizon. Expanding (4.15)
near the black hole horizon, we find two solutions

(¢ — 00) ~ ¥ (4.16)

of which the positive root is the infalling solution. We now take this infalling solution
and evolve it to the boundary of the AdS; region. The solutions to (4.15) now have
the expansion near the AdS, boundary

$p(C — 0) ~ alFH  BCI™ (4.17)
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where vy is defined in (4.10). Compare this to (2.6); it implies that the conformal
dimension of the IR operator ® is 8x = % + v, as claimed in (4.9). However now
recall that the ratio g is for an infalling solution by definition equal to the IR CFT
Green’s function for ®;(t) in the IR CFT, by the IR analog of (4.14). Thus up to an
overall constant we can write the above solution as

$(C) = C3 + Gi(w) (™. (4.18)

G2(w) can be found explicitly by directly solving (4.15) and is recorded below in
(4.27). Even without calculation we can see from conformal invariance that it must
behave as G (w) ~ w?.

We now need to continue evolution all the way to the asymptotically AdS, region
to extract the coefficients A and B. We thus need to match the IR solution (4.18)
to a solution in the UV region. Now that we are out of the dangerous IR region, to

leading order we can set w = 0 in (4.13) in the UV region. The resulting equation has

two independent solutions nf ) which can be specified by their behavior near 2 — z,

as 14 1t
n:(I?)(z) — (M) : — <£) : , 22, (419)

Zy Zx

with the corresponding asymptotic behavior as z — 0 as

D@~ (2) 0w (Z) (420

* *

a&?) (k) and bg:))(k) thus defined are (dimensionless) functions of k& which can be com-
puted numerically.

In the overlapping region both (4.18) and (4.19) apply, which determines the full
UV solution to be

8(2) =1 (2) + Gr(w)2* 10 (2) - (421)
Equation (4.21) can be generalized to higher orders in w?® (for details see [19])
$(2) = 1+(2) + Gr(w) 21— (2) (4.23)
where .
e =18 +wn) +0(w?) (4.24)

are the two linearly independent perturbative solutions to the full UV region equation.
Near z = 0, 4 have the expansion of the form (4.20) with various coefficients ai’), bgg)

3Note that for a neutral scalar with ¢ = 0, equation (4.13) only depends on w? and the expansion
parameter in (4.24) and (4.25) should be w?, i.e.

ar (k,w) = aQ (k) + w?aP (k) + O(w?) (4.22)
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replaced by a4, by which have an analytic w-expansion such as
ay(k,w) = a8 (k) + wald (k) +--- . (4.25)

Note that since both the boundary conditions specifying 7. (4.19) and the equa-
tion (4.13) are real, ay,by are real. From (4.23) and the expansion of 74 near z =0
we thus find the boundary theory Green’s function to be

 ni by (k) + b (w0, K)Ge()us
G k‘ — 2A-3 Y+ ]
Rl R) = o B T o @, ke ™

(4.26)

This is the result claimed above. The remaining task is to compute Go(w); if we
explicitly solve the relevant wave equations in the pure AdS, region we see that for a
scalar it is given by [19]

_ T(—2w) F(% + v —iq.)

Gr(w) = I'(2wk) F(% — U — iq*)(_2iw)2yk ' (4.27)

This can be written as Ga(w) = c(k)w®* where c¢(k) has an imaginary part.
We conclude this discussion with some remarks:

1. The preceding discussion was all at zero temperature. At a small finite temper-
ature we must replace the asymptotic AdS, geometry (4.6) with an AdS, black
hole. The AdS, Green’s function takes the form G,(w) = T f (%) where f is
a scaling function that can be determined explicitly. The explicit formula for a
charged scalar at finite temperature is [19, 91]

D20 T} + vk — i) T (§ +vi = ig2y + i)

(T) 2v,
w) = (A4xT)** - - - .
2 ()= O 10 T = k= a0) T (3 — vh — iy + 742)

(4.28)

In addition, there will also be analytic finite-T corrections to a4,by, which can
be treated perturbatively in 7.

2. We also only considered a scalar. A precisely analogous calculation can be done
for a Dirac spinor field in the bulk. Some of the details are different (and will be
discussed in the section on fermions below) but at the end of the day the formula
(4.26) still applies to each of the eigenvalues of the Green’s function, which is
now a matrix in spinor space. However a key point is that the corresponding
IR CFT correlators are different for fermions and bosons, which we will discuss
below.

4.4 Some physics: bosons v.s. fermions

Much of the rest of this thesis will be spent on the study of (4.26). It is now helpful to
take a step back and ask precisely what sort of physics we are searching for. We seek
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to understand the low-energy physics of these systems; to that end, let’s sit at some
generic value of k and study the spectral properties of (4.26) at a small frequency.
The full imaginary part of the correlator comes from the AdS, part, and so we find

b —ab
Im G r(w, k) ~ ;LEA—?’“*—GJ-—*Im Go(w) + . ~ Im[e(k)] w?* +...  (4.29)

It is interesting that we always find some nonzero spectral weight, at any k; this is
a consequence of the AdS; IR CFT, which contributes gapless degrees of freedom at
any momentum. This is quite different from the situation in more “ordinary” gapless
systems, like a free massless boson or a Lorentz-invariant CFT, in which case one
finds gapless degrees of freedom only about the specific point in momentum space
k = 0. Note also the emergent scale invariance in w.

To find more physics, however, we must search for more interesting structure in
(4.26); we will find it in two special cases:

1. The coefficient a (k) might vanish. This might happen at some special k = kp,
or we might find some other way to tune it. This will lead to a pole in the
retarded Green’s function at zero frequency (note that Go(w — 0) = 0). If we
move slightly away from k = kr the pole will move off of the origin and into
the complex w plane.

2. The conformal dimension 1 4 v of the IR CFT operator might go imaginary.
Recall that for a scalar the conformal dimension this dimension is given by

2

1 k 7 agr
2 P2 *+ + — k: k, e 4.30
\/mRQ E+iras b= a=LL @)

and so for a sufficiently small mass or a sufficiently large charge we will find
an imaginary v,. This is related to the violation of a Breitenlohner-Freedman
bound [125] in the AdS; region. A complex conformal dimension seems peculiar,
and it can be shown after some algebra (performed in some detail in Chapter
8) that this too leads to (an infinite number of) poles in the complex w plane.

However, the interpretation of these two cases is very different depending on whether
we are studying fermions or bosons. It is not difficult to show that if we are studying
fermions, then the poles described above are always in the lower half w-plane. The
excitations represented by these poles are then decaying exponentially in time, and
this means that they represent actual finite-lifetime excitations in the theory. Indeed
we will interpret the first case described above, where there are singularities in a
surface in k-space, as evidence for the existence of a Fermi surface, just as the case
for a free Fermi liquid. We shall see that the existence of the AdS,; region will
introduce new effects, making it a non-Fermi liquid.

On the other hand, if we are studying bosons, then in the first case above the
pole can move through to the upper half w-plane as we vary k, and in the second
case (imaginary ) the infinite number of poles will always be in the upper-half
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w-plane. Poles in the upper-half plane of a retarded Green’s function have a very
different interpretation; they indicate a mode growing exponentially in time and thus
an instability of the vacuum. In other words, the bulk scalar is trying to condense.
When it is just on the verge of condensing it is a phase transition, and if we can
arrange for this to happen at zero temperature (as we shall in Chapters 7 and 8) it
is a quantum phase transition.

The demonstration that poles are in the upper-half plane for bosons and the lower-
half plane for fermions is not difficult and is performed in [19]. While we do not repeat
the computation here, we do stress that this follows from very general principles of
the spectral properties of Green’s functions for bosons and fermions. Although in
the bulk we are dealing with classical equations of scalars and spinors and have not
imposed any statistics, the self-consistency of AdS/CFT implies that the classical
equations for bulk scalars and spinors should encode the quantum statistics of the
boundary theory and we see that this is indeed the case.

Thus we see that the same formula (4.26) contains within it the both the physics of
non-Fermi liquids and quantum phase transitions — two of the finite-density problems
addressed in the introduction. The remainder of this thesis will study them each in
turn.
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Chapter 5

Holographic non-Fermi Liquids

5.1 Some philosophy: where is the Fermi surface?

In the previous section, we described a finite-density state with a rather simple holo-
graphic description (4.3). We know that it is a finite-density state by construction; we
engineered it in the bulk to have a nontrivial gauge field configuration, which resulted
in a nonzero value for the boundary theory charge density. However one may now
ask some very natural questions about the field-theory interpretation of this state:

1. What sort of excitations are carrying the charge density? Are they bosons or
fermions?

2. If they are fermions, does our system have a Fermi surface? How do we see it?

The answers to these questions are surprisingly tricky. Recall that we did not start
with a precise string theory construction above; we simply postulated the existence of
a U(1) current in the dual field theory and assumed the very natural form for a bulk
action (4.2). It is not at all clear from this bulk description what sorts of fundamental
field theory excitations carry the charge. In known string theoretical constructions
that could result in a four-dimensional action such as (4.2), we believe that at weak
coupling there are both bosons and fermions charged under the relevant current. It is
rather hard to say which of them will end up carrying the charge at strong coupling
— this seems like a very complicated dynamical question — and thus it is hard to say
whether or not we ezpect the system should have a Fermi surface.

On the other hand, it is precisely such dynamical questions that gravity should
solve for us. So rather than worrying too much about what we expect we will take a
very pragmatic approach: we will perform “photoemission” experiments on our black
hole. This means that we will simply take a fermionic operator ¥ in the field theory
and calculate its retarded response function Gg(w, k) using the techniques detailed
above. If the system has a Fermi surface, we should see its signature in non-analytic
behavior in Gr(w, k) at a shell in momentum space k = kp. Without further ado, let
us finally search for this potential Fermi surface.

79



5.2 Setup

Our fermionic operator ¥(z) is dual to a bulk spinor field ¢(z,z). We will assume a
standard Dirac action in the bulk,

S = [ d'ay=g @I Duy - i), ()

where the covariant derivative Dy, contains couplings to both the background gauge
field and the spin connection,

Dy = 0m + zll-wabMFab —iqAM. (52)
As expected, here g is the charge of ¥ under the U(1) current J*. The asymptotic
structure of solutions to (5.1) is different from the scalar case discussed above, essen-
tially because it is a first order system with more components. Note that the bulk
spinor % has four components; however it is dual to a boundary theory operator ¥
which has only two components, as expected for a three-dimensional field theory. We
discuss how this comes about in Chapter 2.3, but the upshot is that the UV dimension
A, of VU is related to the bulk mass by

A+:%+mR, (5.3)

and the boundary theory Green’s function can be diagonalized to take the form

%@@:(Gﬁw)%&@>, (5.4)

where the momentum k has been taken to be along one of the spatial directions
and both G,—12 are the ratio of appropriately defined boundary theory expansion

coefficients Aa, Ba, as in (2.10)

B

Gy = —. 5.5

= (55)
The master formula (4.26) applies to both of the eigenvalues G2, which will have
different values for the prefactor in the AdS; Green’s function and the UV expansion
coefficients ax,bs. A useful relation (shown in [19]) is Gi(w, k) = G2(w, —k); this
means that from now on with no loss of generality we can simply restrict to G;; when
we refer to G in the rest of this section this is what we mean.

Now by studying the behavior of the Dirac equation in the AdS, reason, we can
find the dimension d;, of the spinor operator in the IR CFT to be

k2
6p2

1
51: ==+ 14 Ve = \/mQR% —_ qZ + (56)

2

Note this is slightly different from the corresponding result for the charged scalar
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(4.10). Similarly, the AdSs Green’s function is also slightly different,

P(—2v) T(1+ v — 1q.) (m + %‘?) Ry —1g — v

Go(w) = .
2(w) T(2v) (1 — vk —iq.) (m+_';_R) Ry — ig, + vk

(—iw)?* = c(k)w™ .

(5.7)
The prefactor differs from the scalar case, and indeed its precise structure s important
for guaranteeing that the poles in the fermionic retarded correlator are always in the
lower half plane. Together with the master formula (4.26) which we reproduce here
for convenience:

n - b (w) k) + b—(wa k)gk(w) :2Vk
G , k — zA 3 Y+ ’
R ) = k) ¥ a (o, B Ge ()

we now have all the ingredients we need to search for Fermi surfaces.

(5.8)

5.3 a, =0: Fermi surfaces

Recall that all of the UV coefficients a4, by in (5.8) are analytic in w and k, i.e. we
can consider expanding them as follows:

ay(w, k) = aQk) + o (B)w + P (k)w? + ... (5.9)
Imagine now that af) vanishes at some value of £k = kp: we find agf)(kp) = 0.
Before proceeding let us understand what this means; recall that a, is the leading
UV expansion coefficient of the infrared AdS, solution (4.19) that is regular in the
deep interior of the spacetime. If ay(w = 0,k) = 0 for some k, then this means that
at this value of k the bulk Dirac equation has a zero-energy solution whose radial
profile vanishes both in the deep interior (because we are looking at the + solution
in (4.19)) and at the AdS, boundary (because the expansion coefficient a = 0). This
is a normalizable fermion state that is bound to the black hole, and one might call
it charged fermionic hair. One can verify numerically that several such bound-states
exist.

To understand the signature of such bound states in the response function, let us
now study the zero frequency behavior of Gp(w, k) near k ~ kp; we find simply

b (kr)

Gr(w = 0,k) ~ —E-—F2—
6ka$)(kp)k1

ky =k — kp (5.10)

At k = kr we have a pole in the Green’s function; this is a zero-frequency singularity
at a shell in k-space, and so is precisely the signature of a Fermi surface! Let us now
turn on a small frequency w near k ~ kr. Keeping the first few terms in the relevant
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expansion of (5.8), we find

Gr(w, k) ~ b (kr) (5.11)
R\W, ~ oo - .
0kaly (ke +wol? (k) +a® (ke)Go(w)pis ™
This expression can be written as
h
Gr(w, k) = (5.12)

kl—gl‘;w—i)(w) '

P (0) b(o) k .
where we have defined vp = ——k?f“r, h1 = gki@(;(i-)—); these can be found numerically
a, o)’ (kF

and are positive. This expression looks very much like the propagator for finite-
frequency response near a Fermi surface. vp looks just like a Fermi velocity and is
determined from UV data.

However we see a new ingredient when we look at ¥(w), which plays the role of a
self-energy and is given by

S(w) = — o  Gw) _ he(k) (fi)MF (5.13)
oxa (k) pu** o '

Thus this self-energy is (up to a prefactor) equal to the AdS; Green’s function. Note
that the width of the quasiparticle is simply given by the imaginary part of the Green’s
function, I' = Im ¥. But recall now that for a standard Fermi liquid we always have
I'rr = ImYpr(w) ~ w?, following from basic kinematics of interactions about the
Fermi surface. Here, however, we have

I =ImE ~ ™ . (5.14)

Thus the width of the excitation now has a nontrivial scaling with w; v, is a non-
trivial number, determined from dynamics. In other words, (5.12) is the response
function corresponding to a non-Fermi liquid; a system with a Fermi surface but
whose excitations appear to not be Landau quasiparticles.

The dispersion of the pole representing this excitation is the solution to the equa-
tion

kL — L = S(w) =0 wilk) = wa(k) — iT(k) (5.15)
VF

in the complex plane, which we have split into real and imaginary parts w, and I'.
The physics turns out to be rather different depending on the value of v4,, and we
now study the different values in turn. For simplicity of notation in the rest of this
section we will drop the subscript kg: v = v, in this section only.

531 v>1

If v > 3, then the analytic linear-in-w term in (5.12) dominates over the self-energy,
which goes like w?. Thus the dispersion is essentially controlled by the balancing
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between the first two terms in (5.15); note however that the sole contribution to the
imaginary part of the pole comes from the complex self-energy. We find the following
expression for the motion of the pole as &k, is varied:

’UFk?J_ ) 2v

*

wc(kJ_) = UFkJ_ - ’Uphc(k'p) ( (516)

Thus we see that this is a linear dispersing quasiparticle w, = wvgk,, with width
I' ~ w? that is always much smaller than the energy w,: as we approach the pole
%(’2) ~ k™' — 0 as ki — 0. Furthermore the residue at the pole is always finite
and given by

Z = —hyvp . (5.17)

This is then a stable quasiparticle. It is not qualitatively different from the excitations
of a Fermi liquid, except that its width satisfies I' ~ w?®” rather than I'p; ~ w?.
Finally, note that in this range the IR CFT operator corresponding to the fermion
has dimension § = -12; + v > 1 and so the operator is #rrelevant in the AdS, sense.

532 v<3

If v < 3, the situation is different. Now in (5.12) the non-analytic contribution
from ¥(w) always dominates over the analytic linear-in-w correction, which we may

completely neglect. The solution to (5.15) now takes the form

A=) ’ (518)

As c(kr) is complex this pole has both a real and imaginary part; however now they
are both coming from the same place, i.le. the AdS; Green’s function. As a result

the dispersion is now nonlinear, w, ~ k3. Importantly, the width I' is now always
comparable to the frequency w,, e.g. for k; > 0 we have

-E;% = —tan (___arg(;(jlcp))) = const (5.19)

A similar expression exists with a different angle for k; < 0. Thus as we vary k.
through 0, the pole moves along a straight line towards the origin, eventually bouncing
off and retreating at another angle (but always in the lower-half plane). The residue
at the pole is

h 1
Z = _;’Vki o k¥ (5.20)

and so actually vanishes as we approach the Fermi surface k;, = 0. The fact that
the width of the quasiparticle is always the same order as its energy and that the
residue vanishes at the pole indicate that this is not a stable quasiparticle; thus we
see that we have a concrete example of a system with a sharp Fermi surface, but with
no quasiparticles! Note that in this regime the IR CFT operator corresponding to
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the fermion has dimension § = % + v < 1, and so is relevant in the AdS, sense.

5.3.3 v =3: Marginal Fermi Liquid

We turn now to the threshold case between the two studied above. Here we see
that the two terms (analytic and AdS,) are both naively proportional to w and are
thus becoming degenerate. As is often the case When there is such a degeneracy, a
logarlthmlc term in w is generated. Basically both a ) and G2(w) have simple poles
at v = 3; the two divergences cancel and leave behlnd a finite wlogw term with a
real coefﬁcient,

ha

Gr(w, k) =
R(w; k) ki taZlog e to

(5.21)

Here ¢; is real and c; is complex; for more details on the derivation of this formula
see Section VI A of [19].

Remarkably, this is of precisely the form postulated in [110] for the response func-
tion of the “Marginal Fermi Liquid”, a phenomenological model that well describes
many properties of the optimally doped cuprates. Here this response function emerges
from a first-principles holographic calculation (albeit only at the specially tuned value
V= %) Note that here the quasiparticle width is suppressed compared to its energy,
but only logarithmically I' ~ ( . Similarly, the quasiparticle residue scales like
Z ~ 1/log(k,) and so also vamshes loganthmlcally This logarithmic suppression was
the original motivation for the word “Marginal” in the name given in [110]; here we
point out that at this point in parameter space the IR CFT operator has dimension
0=3 + v =1, and so the word “Marginal” refers also to the IR CFT operator and
is entn‘ely appropnate The potential physical applications of this v = 1 5 point make
it very interesting, although from our gravitational treatment so far we do not really
have any way to single it out.

However, we are left now with a tantalizing question: we have found a system
whose single-particle electronic density of states matches with that of the optimally
doped cuprates. Is its resistivity also linear in T? To answer this, we will have to
compute the contribution of these holographic non-Fermi liquids to the conductivity,
a calculation which is the topic of the next chapter.

5.4 v imaginary

Throughout this discussion we have concentrated on the parameter regime where v
(and so the conformal dimension of the IR CFT operator) is real. However we see
from the formula for v,

k2
vy = \/ m2R? — g2 + 6 (5.22)

that if the charge of the scalar is sufficiently large and k? sufficiently small, v can
become imaginary. Basically we see that the background electric field acts through
the spinor charge as an effective “negative mass”, making it possible to violate the
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Breitenlohner-Freedman bound in the AdS,; region and resulting in an imaginary
conformal dimension. This possibility was alluded to in Section 4.4 above, where it
was explained that this leads to an infinite number of poles in the Green’s function.
This result and its meaning is discussed in substantially more detail in Chapter 7 on
holographic quantum phase transitions below, but we mention again that for fermions
all of these poles are in the lower-half w-plane, and so represent quasinormal modes.
In the scalar case these poles would have been in the upper-half w-plane, representing
a dynamical instability. For fermions the interpretation of these poles is somewhat
more subtle, but we explain below how they do represent the existence of a different
ground state at very low energies. First, however, we study the behavior of the
Green’s function in this region at low frequencies.

5.4.1 Oscillatory behavior

Let us define the imaginary conformal dimension to be

: k?
U = —iAk e = \/qf —m?R? — 6 (5.23)
We now find from (4.26) the leading small frequency behavior
—2i)
b +80(k) (2)
Gr(w,k) = p2t~° (5.24)

20,
an) + a(_o)c(k) (ﬁ) *

Note now that though the equations obeyed by the 7. are real, the boundary condi-
tions on 74 have now become complex, and so ay,by can also be complex. In fact,
since we have 7, = (n_-)* at the horizon, we now also have

ay = (a-)* by = (b-)". (5.25)

0
In particular, at w = 0 we now have Im Gr(w = 0,k) = Im %%'5); # 0, and thus we have
gapless excitations even at precisely zero frequency. At ﬁﬁite frequency the result
(5.24) is oscillatory; it is periodic in logw with a period given by 7, = o, Le. it is
invariant under a discrete scale transformation

w— e"rw, n€Z (5.26)

These features take on rather more significance in the scalar case studied in detail in
Chapter 7. Here we simply note that careful study of (5.24) reveals an infinite number
of exponentially separated poles in the lower half-plane; as (5.26) shows, there is an
accumulation point at w = 0.
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5.4.2 Backreaction and a new ground state

Here we study the implications of the existence of this region in more detail. An useful
way to understand this is to study the effective potential for semiclassical charged
particles moving in AdS, with a background electric field. This represents the same
physics as the mRy; — oo limit of the wave equation calculations described above.
It is not difficult to show that for g, > mR; — when the effective AdS, dimension
becomes imaginary — a well! appears in this effective potential, which becomes deeper
as ¢ — o0o. For g the same sign as that of the black hole, this well represents physical
particles that have been repelled from the black hole, and one expects that these states
should actually be filled. Here we can understand the difference between bosons and
fermions: for bosons we have an enormous number of quanta filling the lowest state
of the well. This represents the scalar field developing a coherent background value
and classically condensing. This phenomena is discussed in detail in Chapter 7.

For fermions the interpretation is slightly more subtle. Pauli exclusion now pre-
vents a classical condensation, and the situation was first discussed in [109]. As
g — oo the well is deep enough that it can be treated via a local WKB approxima-
tion, in which we consider free fermions propagating on locally flat space. We now
find that the background gauge potential creates a local Fermi surface at each point in
the bulk. It was shown that the backreaction of the filled fermion states dramatically
changes the geometry. Rather than having an infrared AdS, x R? sourced by the
charge on the black hole, that charge is now carried by the fermions themselves, and
the geometry becomes Lifshitz with a finite 2.2 The dynamic exponent z behaves as

2
z~ (yrq)“% (5.27)

where & is the bulk gravitational coupling as in (2.1), g the charge of the fermions, and
gr the bulk gauge coupling. Note that as z has an inverse power of Newton’s constant
it scales as N2 and so is very large; essentially this means that at finite energies the
physics is very close to that of the AdSs, but at energies that are exponentially small
E ~ exp (—aN?) with @ ~ O(1) we will cross over to a regime that is controlled
by the finite fermion density and has Lifshitz scaling. The black hole is gone; now
we have a hovering density of fermions carrying a finite charge density. Note that it
is only visible at exponentially small temperatures (T ~ exp (—aN?)) and so at the
moderately small temperatures imagined above all of the physics described above is
unchanged.

This is dual to a genuinely different state of matter and has been studied in more
detail in [120, 121, 122, 123]; see also [124]. In these works the couplings involved
are assumed to have a different N? scaling to those used in these lectures, and so
the Lifshitz physics discussed above can be pushed to O(1) energies. The resulting
setup has been dubbed by [120] an “electron star”. Note that in all of these systems

If we study only AdS, it is not strictly a well as the UV end of it actually admits traveling
waves (hence the oscillatory character of (5.24)), but if we consider UV completing this region with
an AdS, it becomes a bona-fide well that can support localized states.

2Recall AdS; may formally be considered a limit of z — oo Lifshitz.
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the finite entropy density of the AdS, x R? is resolved by the Lifshitz geometry, and
many of the mysterious properties of AdS, are replaced by the better-understood
properties of weakly-interacting fermions at finite density (albeit moving in an extra
holographic direction). For example, we can see magnetic oscillations at tree level in
the bulk [121]. The finite temperature physics has been studied in [122, 123], revealing
a phase transition back to an ordinary black hole at high temperatures. The interplay
between these systems and the AdS;-dominated non-Fermi liquids described in these
lectures deserves to be better understood.
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Chapter 6

Transport by holographic
non-Fermi liquids

6.1 Introduction

In the previous chapter we reviewed work that showed that non-Fermi liquid behav-
ior emerges naturally in the simplest finite-density state that can be described in
AdS/CFT. The low energy behavior of these non-Fermi liquids was shown to be gov-
erned by a nontrivial infrared fixed point which exhibits nonanalytic scaling behavior
only in the time direction. In particular, the nature of low energy excitations around
the Fermi surface is found to be governed by the scaling dimension v of the fermionic
operator in the IR fixed point. For v > % one finds a Fermi surface with well-defined
quasiparticles while the scaling of the self-energy is in general different from that of
the Fermi liquid. For v < % one instead finds a Fermi surface without quasiparticles.
1

For v = 5 one recovers the “marginal Fermi liquid” (MFL) which has been used to

describe the strange metal phase of cuprates.

In this chapter we generalize the discussion of fermionic spectral function to charge
transport. We compute the contribution to low temperature optical and DC conduc-
tivities from such a non-Fermi liquid. We find that the optical and DC conductivities
have a scaling form which is again characterized by the scaling dimension v of the
fermionic operators in the IR. The behavior of optical conductivity gives an indepen-
dent confirmation of the absence of quaiparticles near the Fermi surface. In particular
we find for v = %, which corresponds to MFL, the linear-T resistivity is again recov-
ered.

The non-Fermi liquids disccussed above were found by calculating the fermionic
response functions in the finite density state by solving Dirac equation in the black
hole geometry (6.4). The Fermi surface has a size of order O(N?) and various argu-
ment in [16, 19] indicate that the fermionic charge density associated with a Fermi
surface should also be of order O(N?). In contrast, the charge density carried by the
black hole is given by the classical geometry, giving rise to a boundary theory density
of order py ~ O(Gx') ~ O(N?). Thus in the large N limit, we will be studying a
small part of a large system, with the background O(N?) charge density essentially
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providing a bath for the much smaller O(N?) fermionic system we are interested in.
The optical conductivity of the system can be obtained from the Kubo formula

O'(LU) = i('fm(w)‘}x(_w»retarded (61)
where J, is the current density for the global U(1) in z direction at zero spatial
momentum. The right hand side of (6.1) can be computed on the gravity side from
the propagator of the gauge field A, with endpoints on the boundary, as in Fig. 6-1. In
a 1/N? expansion, the leading contribution—of O(N?)—comes from the background
black hole geometry. This reflects the presence of the charged bath, and not the
fermionic system in which we are interested. As discussed earlier, these fermions
have a density of O(N?), and will give a contribution to o of order O(N°). Thus
to isolate their contribution we must perform a one-loop calculation on the gravity
side as indicated in Fig. 6-1. Higher loop diagrams can be ignored since they are
suppressed by higher powers in 1/N?. This one-loop calculation is similar in spirit to
the one-loop calculations of the free energy in [94, 95, 96] where it was shown that
the Fermi surface does exhibit quantum oscillations in a magnetic field.

T

ON?)

+ + + + + + + +

Figure 6-1: Conductivity from gravity. The horizontal line denotes the boundary
spacetime, which has d = 2 4+ 1 dimensions, and the vertical axis denotes the radial
direction r of the black hole, which is the direction extra to the boundary spacetime.
The boundary lies at 7 = 0co. The current-current correlator in (6.23) can be obtained
from the propagator of the gauge field A, with endpoints on the boundary. Wavy lines
correspond to gauge field propagators and the dark line denotes the bulk propagator
for the ¢ field. The left diagram is the tree-level propagator for A,, while the right
diagram includes the contribution from a loop of ¥ quanta. The contribution from
the Fermi surface associated with boundary fermionic operator @ can be extracted
from the diagram on the right.

The one-loop contribution to (6.23) from gravity contains many contributions
and we are only interested in the part coming from the Fermi surface, which can be
unambiguously extracted. This is possible because conductivity from independent
channels is additive, and, as we will see, the contribution of the Fermi surface is non-
analytic in temperature T as T' — 0. We emphasize that the behavior of interest to us
is not the conductivity that one could measure most easily if one had an experimental
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instantiation of this system and could hook up a battery to it. It is swamped by the
contribution from the O(N?) charge density, which however depends analytically on
temperature. In the large-V limit which is well-described by classical gravity, these
contributions appear at different orders in N and can be clearly distinguished. In
cases where there are multiple Fermi surfaces, we will show that the ‘primary’ Fermi
surface (this term was used in [19] to denote the one with the largest k) makes the
dominant contribution to the conductivity.

We are now left with a vexing problem — calculations of one-loop Lorentzian
processes in a black hole geometry are notoriously subtle. Should one integrate the
interaction vertices over the full black hole geometry or only the region outside the
black hole? How do we treat the horizon? How do we treat diagrams such as those
indicated in Figure 6-2 in which a loop is cut in half by the horizon?

AdS,

Figure 6-2: The imaginary part of the current-current correlator (6.23) receives its
dominant contribution from diagrams in which the fermion loop goes into the horizon.
This also gives us an intuitive picture: the dissipation of current is controlled by the
decay of the particles running in the loop, which in the bulk occurs by falling into
the black hole.

One standard strategy is to compute the corresponding correlation function in
Euclidean signature, where these issues do not arise and then obtain the Lorentzian
expression using analytic continuation (for ; > 0)

GP(Q) = GY (i = Q + 4e) (6.2)

where GE.;Z)(Q) denotes the Lorentzian current correlation function on the right hand
side of (6.23). This, however, requires precise knowledge of the Euclidean correlation
function, which is not possible, given the complexity of the problem. We will adopt
a hybrid approach. We first write down an integral expression for the two-point cur-
rent correlation function Gg)(iﬂg) in Euclidean signature. We then perform analytic
continuation (6.2) to Lorentzian signature inside the integral. This gives an intrinsic
Lorentzian expression for the conductivity. The procedure can be considered as the
generalization of the procedure discussed in [15] for tree-level amplitudes to one-loop.
After analytic continuation, the kind of diagrams indicated in figure 6-2 are included
unambiguously. In fact they are the dominant contribution to the dissipative part of
the current-current correlation function, which gives us the resistivity.

Typical one-loop processess in quantum gravity also contain UV divergences. As
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in [94, 153], we are computing a UV-safe quantity, and short-distance issues will not
be relevant. In a QFT in flat spacetime, there is no UV divergence associated with
temperature-dependent quantities: the temperature is an IR cutoff, UV divergences
are independent of such an IR regulator. The temperature-dependence of high-energy
effects is suppressed by e P, so unless the density of such states grows faster than
e™PP 95 must kill them. Further, we are interested in contributions to the conduc-
tivity which are non-analytic in temperature 7" at 7' — 0. It will be clear from the
structure of our calculation that such quantities will not depend on UV physics; thor-
oughly unsurprisingly, we will find that the UV completion of quantum gravity is not
important in determining the low-temperature dependence of the resistivity of our
strange metal phase.

6.1.1 Finite density state for CFTy

In the remainder of this introduction we briefly review the physics of the finite density
state, essentially generalizing the discussion of Chapter 4 to arbitrary dimension. To
put the state at finite density we turn on a chemical potential p for the U(1) global
symmetry. On the gravity side, such a finite density system is described by a charged
black hole in d + 1-dimensional anti-de Sitter spacetime (AdSy;;) [90]. The conserved
current J, of the boundary global U(1) is mapped to a bulk U(1) gauge field Ay;.
The black hole is charged under this gauge field, resulting in a nonzero classical
background for the electrostatic potential A;(r). For definiteness we take the charge
of the black hole to be positive. The action for a vector field A, coupled to AdSy 4
gravity can be written

2

which is asymptotically AdS with a nonzero chemical potential A, P . The
background is given by [89, 90]

R?dr?

ds? = gundzMdzy = R —5 (= fdt? +dz?) + T (6.4)
with \ 0o
Q M _To
f=1+ 22 g Ay =p ~az) (6.5)
1o is the horizon radius determined by the largest positive root of the redshift factor
Q2
f(TO) = 07 - M= TO + d B (66)
To
and
gr 2(d-2)
=7 =4/ ——". 6.7
s cgR2rd™? . d—1 (6.7)



It is useful to parametrize the charge of the black hole by a length scale r,, defined
by

d
Q= ) rd=1 . (6.8)

In terms of r,, the density, chemical potential and temperature of the boundary theory
are

= h )L oo
d—2
_ _._d(j:;) = (:_O) ea, (6.10)
T — Z% (1 = %) (6.11)
where we have introduced or

(6.12)

€= ——.
4= /2d{d—1)
In the extremal limit T — 0, the geometry near the horizon at r = 7y is AdSs X
R4-1:

,_ RS 2 2 2 2
ds® = el (—dr® +d¢®) + 5% (6.13)
with e
mzf. (6.14)
The AdS; coordinates are related to the UV coordinates by
_ _
¢ = )\r g T=M (6.15)

where A — 0 is the scaling variable, which will drop out of all physical quantities.
The curvature radius of AdS, given by

1

We refer the reader to [19] for further details.

6.2 O(N?) conductivity

In this section we consider the leading-in-N? contribution to the conductivity!. Our
motivation is twofold. Firstly, this represents a ‘background’ from which we need
to extract the Fermi surface contribution; we will show that this contribution to the
conductivity is analytic in T, unlike the Fermi surface contribution. Secondly, the

1This was also considered recently in [151, 112].
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bulk propagators which determine this answer are building-blocks of the one-loop
calculation required for the Fermi surface contribution.

6.2.1 Resistivity in clean systems

In a translation-invariant and boost-invariant system at finite charge density (without
disorder or any other mechanism by which the charge-carriers can give away their
momentum), the DC resistivity is zero. An applied electric field will accelerate the
charges. This statement is well-known but we feel that some clarification will be
useful. It can be understood as follows. Start with a uniform charge density at rest
and in equilibrium, in a frame where

jt=p#£0, TH=€¢#0, T"=P, =0, *=T"=0 ; (6.17)

e is the energy density and P is the pressure. Boost? by a velocity u* to a frame where

it =ulp, 7w =u(c+P). (6.18)
This gives
L - (6.19)
e+P

which is effectively a constitutive relation. In a non-relativistic system, the enthalpy
€ + P reduces to the mass of the particles. Combining this with conservation of
momentum (Newton’s law)

oyt = pE" (6.20)
and Fourier transforming gives
=5 " J’f 5 F () (6.21)
and hence .
Rea(R) = eﬁf 6(8) (6.22)

plus, in general, dissipative contributions. Note that in systems where the relation
J = e—flgﬁ is an operator equation, momentum conservation implies that there are no
dissipative contributions, and the conductivity is exactly given by (6.22).

Our treatment is somewhat heuristic, but a more careful hydrodynamic analysis
that also takes into account the leading frequency dependence was performed in [116],
where it was explicitly shown that the presence of impurities broadens this delta func-
tion into a Drude peak. We will find a similar delta function in the O(N?) contribution
to the conductivity below. We stress that this delta function follows entirely from
kinematics and is not of interest to us, as it represents a ballistic contribution to the
conductivity that is not related to the non-Fermi-liquid O(N*) contribution, which

2We perform a small boost u?* < ¢, so we can use the Galilean transformation, even if the system
is relativistic.
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can be cleanly isolated from this term by its temperature dependence. It does not

contain a delta function in €2, as the Fermi surface current can dissipate by interacting
with the O(N?) bath.

6.2.2 Retarded vector boundary to bulk propagator

To calculate the conductivity using the Kubo formula

7() = (D it (6:23)

we need to consider small fluctuations of the gauge field d4, = a, which is dual to
Jy with a nonzero frequency 2 and k£ = 0. In the background of a charged black
hole, such fluctuations of a, mix with the vector fluctuations hy, of the metric, as we
discuss in detail in Appendix 6.B. After eliminating h;, from the equations for a,, we
find that (see Appendix 6.B for details)

. (V=99 9*0:a,) — V=gg** (mZs + g"w?) a, = 0 (6.24)

where a, acquires an r-dependent mass given by

m2R2 = 2 (%)M'2 . (6.25)

The small frequency and small temperature (w/T fixed) limit of the solution to this
equation can be obtained by the matching technique of [19]; the calculation parallels
closely that of [19]. The idea is to divide the geometry into two regions in each of
which the equation can be solved approximately; at small frequency, these regions
overlap and the approximate solutions can be matched. The outer (UV) region is
defined by » — 7, > wR2/e for some arbitrary matching point ¢; in this region we
can solve the equation in an ordinary Taylor expansion in w (and, if desired, also in
temperature 7). The inner (IR) region is simply described by the near-horizon limit
where the geometry is AdS, x R2.

To compute the IR region quantities, we can study the gauge field propagating
in the near-horizon metric, (6.13). The r-dependent effective mass term in (6.25)
goes to a constant value m%R2 = 2 in the near horizon limit r — r,. The zeroth
order IR region differential equation is the same as that of a scalar field in AdS, with
this mass. The answer simplifies because the gauge field is not charged (¢ = 0) and
has zero spatial momentum (k = 0). The QFT mode j¥ to which the transverse
gauge field couples thus flows to a scalar operator in the IR CFT whose retarded two
point function we will denote G,. The effective mass determines the IR CFT scaling
dimension for a,(k = 0) in the AdS, region (see (56) of [19]) to be A;p = 1 + v with

1 ,(R\** 3
o=ty rriem (B) 28 620

Tx
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that is, the solutions behave near the UV end of the AdS; region like a,(¢) ~ ¢ b
where ( is the AdS, coordinate introduced in (6.15). The integrality of the IR CFT
dimension of the current operator should have a physical explanation. The value
Arg(j,) = 2 seems to be a very general result: it is not changed by including higher
derivative couplings in the bulk [112], and it is also found in examples with near-
horizon Lifshitz behavior [150]. It would be nice to understand what are the necessary
conditions for this conclusion.

The retarded solution in the IR region behaves near the boundary of AdS, (the
matching region) as

ay ‘= (3 4 GRCI (6.27)

The scalar IR CFT retarded Green s function Gr(w) (that is, the retarded two-point
function of the operator dual to a scalar field propagating in AdS;) was computed in
Appendix D of [19] for arbitrary scaling dimension v and charge g. The associated
wave equation is exactly solvable. At temperature T, the result takes the form

(- 2V)F(1+V—;—”T+iqed)l‘(1 + v — igeq)

) = OO AT~ = o + i) D (3 — v = g

(6.28)

To find the IR CFT Green’s function appropriate to the vector field, we examine the
g =0,k =0,v — 3/2 limit of this expression (6.28), and we find a finite answer:

G,(@) = 5 (@ + (2eT)?) . (6:29)

We can then construct the bulk-to-boundary (retarded) propagator with boundary

condition a,(r) — 1 at the AdSy;; boundary. First we define zeroth-order outer-

region functions 77?(,:2 to be solutions of (6.24) which behave in the matching region

like
—%:I:
(0) T—Ty T —Tx
Nyt (T) = ( ) . (6.30)
y 2
Then we can define two linearly-independent solutions in the outer region as series in
T and w

[SI[%)

Nyx(r;w, T) = Zw" )(7' (6.31)

The quantities 17 ) also depend analytically on temperature T'; for economy of nota-
tion, we leave implicit the expansion in T'. In terms of their behavior at the boundary,

we define .
n e aly + bRt (6.32)

Matching to the behavior in the IR region (6.27), the desired bulk-to-boundary prop-
agator is then

Nyt (1) + Gymy—(7)
e (6.33)

Note that 7,4,a,4 are real and analytic in T,Q. The leading order solution for the

ay(r) =
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T = 0 RN black hole was determined analytically in [L51]; in particular

oo (@)

(d—2)R2 7
Useful relations arise from the constancy in r of the Wronskian
W[al, ag] = ai \/Egyyg"araz - ag\/ﬁgyyg"&al (635)

where a; 5 are solutions to (6.24). In particular, equating W[fr)ﬁ,nﬁ] at boundary

and horizon gives

(b(o)a(o) —a© b(o)) T ré-3p? . (6.36)

y—"y+ y—"y+ “d—2*

Note that this equation assumes the normalization of the gauge field specified in
(6.30).

6.2.3 Tree-level conductivity

In this subsection we use the matching techniques of [19] to study the low-frequency
and low-temperature conductivity at tree level in the RN black hole.

The O (N?) conductivity may be found from the expression

2 2 —gg¥¥q"" o,
o(9) = lim 22 V=999 00,
r—o0 g% K? iQa,

(6.37)

using the solution (6.33). Note that the mixing of the gauge field with the metric
fluctuations complicates the derivation of this formula; for a clear discussion, see
section 2.7 of [26]. The result is

2R3-¢ b, +G,b,_
Q)=(2-d y vy
7= ) 9FK? i (ays + Gyay-)

(6.38)

Of course this expression is only useful in the small 2, T limit, which we take now:

2R? ( by, Gy (by—ayy — ay-byy)
o) = (- (e ettt ) ey
The contribution from the IR CFT Green’s function scales as T2, Q2 for small tem-
peratures and frequencies. In the imaginary part of o, this contribution is therefore
swamped by the analytic-in-T', 2 corrections to the UV-region quantities a;f,byi at
small T'; however it makes the leading contribution to the real part at 2 # 0. We can
use the analytic form of the leading-order solution 17523 in equation (6.34) to obtain

3—d, d—2 _ o0\2
2R 2(d—2) ré SRR} (92 + (27rT)2) +...

o)) =

9LK2iQ) gaK?
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A e (ﬁym (ﬁ> a (2 + (2nT)2) +... (6.40)

€+ PiQ d(d—1) eq T
The first term in (6.39) produces the requisite delta function at 2 = 0 in the real part
of the conductivity. For the specific case of the RN black hole, the coefficient of the
resulting delta function in o(£2) agrees with the hydrodynamic answer ;j% (g.v. also
formula (156) of [26]). In the second term, we used the Wronskian relation (6.36);
the constant K = % can be interpreted in field theory terms: it is defined via the

vacuum current-current correlator as

—jw®2, d odd
(jx(wa k)jm(—wa k))p:O,T:O =K (641)

w??lnw, deven

where w = Vw? — k2. Due to the inverse factor of &2 it essentially goes like a positive
power of N2, i.e. we may say that K ~ NZ.

Thus the key point here is that the O(N?) part of the dissipative DC conductivity
comes from the second term in (6.40)

o(T) ~ N?T? (6.42)

It is interesting to note that the delta function in the conductivity is a direct result
of the fact that the fluctuations of the bulk field a, are massive, as is clear from the
perturbation equation (6.24). This is not a breakdown of gauge-invariance; rather the
gauge field acquired a mass through its mixing with the graviton. In the absence of
such a mass term the radial equation of motion is trivial in the hydrodynamic limit
(as was shown in Chapter 3) and there is no such delta function.

We also note that for a clean system such as this, there is no nontrivial heat con-
ductivity or thermoelectric coefficient at k = 0, independent of the charge conduction.
This is because momentum conservation is exact, and just as in the discussion of sec-
tion 6.2.1, there can therefore be no dissipative part of these transport coefficients.

6.3 Outline of computation of O(1) conductivity

As explained in the introduction, in order to obtain the contribution of a Fermi
surface to the conductivity, we need to extend the tree-level gravity calculation of
the previous section to the one-loop level with the corresponding bulk spinor field
running in the loop. This one-loop calculation is rather complicated and is spelled
out in detail in the next section. In this section we outline the main ingredients of
the computation without going into details.
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6.3.1 Cartoon description of the gravity calculation

In this subsection we will describe a toy version of the one-loop conductivity. We
will assume that the boundary theory retarded Green’s function of the dual operator
has a Fermi-surface-like pole at w = 0 and k = kp of the kind described in Chapter
5. We will brutally neglect some “complications” (where the word here includes such
niceties as spinor indices, matrix structures, gauge-graviton mixing, and a host of
other important details) that turn out to be inessential in understanding the structure
of the calculation.

Figure 6-3:  The bulk Feynman diagram by which the spinor contributes to the
conductivity.

The important bulk Feynman diagram (‘Witten diagram’) is depicted in Figure
6.3.1. Note that it is structurally very similar to the particle-hole bubble which con-
tributes to the Fermi liquid conductivity (see e.g. [152]): an external current source
creates a fermion-antifermion pair, which then recombine. The DC conductivity is
proportional to the imaginary part of the diagram when evaluated on real frequen-
cies: we will show that in computing this imaginary part, the intermediate states are
on-shell. The calculation differs from the standard Fermi liquid calculation in two
important ways, which in some sense cancel each other out. The first, obvious differ-
ence is that the gravity amplitude involves integrals over the extra radial dimension
of the bulk geometry. It turns out, however, that these integrals can be packaged
into factors in the amplitude (called A below) that play the role of a corrected vertex.
The second main difference is that actual vertex correction diagrams in the bulk are
suppressed by further powers of N2 and are therefore negligible, at least in the limit
in which we work.

We now proceed to perform the computation. While it is more convenient to
perform the tree-level calculation of the last section in the Lorentzian signature,
for the one-loop calculation it is far simpler to work in Euclidean signature, where
one avoids thorny conceptual issues regarding the choice of vacuum and whether
interaction vertices should be integrated through the horizon or not. Our strategy
is to first write down an integral expression for the Euclidean two-point function
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function® Gg(i€) and then analytically continue to Lorentzian signature inside the
integral (for {; > 0)
GR(Q) = GE(ZQl = Q + iE) (643)

The imaginary part of the Lorentzian gGreen’s function will then give us the conduc-
tivity via the Kubo formula (6.23).

We now turn to the evaluation of the diagram in Figure 6.3.1, which works out to
have the structure

'k
G(i) = —CTZ/ Gy dradra >

Wn

Dg(ry,79; i + iwn, k) K a(11;30) DE(ra, 71398, K) K A(72; 38, )(6.44)

The ingredients here deserve further explanation. Dg(ry, r2;4€, k) is the spinor prop-
agator in Euclidean space. Ka(r;i();) is the boundary-to-bulk propagator for the
gauge field; it takes a gauge field source localized at the boundary and propagates
it inward, computing its strength at a bulk radius r. ¢ is an overall constant. The
vertices have a great deal of matrix structure that we have suppressed, and the actual
derivation of this expression from the fundamental formulas of AdS/CFT requires
a little bit of manipulation that is discussed below, but its structure should appear
plausible. The radial integrals dr should be understood as including the relevant
metric factors to make the expression covariant.

We would now like to perform the Euclidean frequency sum. This is conveniently
done using the spectral representation of the Euclidean green’s function for the spinor,

dQ p(ri,re; Q, E)
(27)  dw, —Q

DE(rla T2; iwm) ]2) = / (645)
where p(ry,re; (Q, E) is the bulk-to-bulk spectral density. This object plays a very
important role in our calculation. The derivation of this object for the spinor is
discussed in detail in Appendix 6.A, but it is possible to understand its structure
from the far simpler expression for a scalar field, to which we now turn.

6.3.2 Interlude: Bulk-to-bulk spectral density for a scalar
field

Purely for illustrative purposes, we now discuss the bulk-to-bulk spectral density
for a scalar field. This plays no role in our final calculation, but is instructive for
understanding the structure of the bulk-to-bulk spectral density.

Note first that the bulk-to-bulk retarded propagator for the scalar is defined as

3We put the i in the argument of all Euclidean correlation functions to eventually make the
analytic continuation to Lorentzian signature more natural.
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follows. It satisfies the differential equation

1
V=9

with boundary conditions such that it is normalizable at the boundary and ingoing at
the horizon. This uniquely fixes the answer to be the following well-known expression:

V2Gr(w,k;r, ') =

5(r—1') (6.46)

Gr(w, kr,7') = % (6.47)

where 75 (7<) are the greater (lesser) of r, 7. W{¢1, 2| denotes the Wronskian and is
defined as

W1, bl = V=99 ($10- b2 — $20,¢1) (6.48)

Here we have defined solutions of the homogenous differential equation ¢, ¢, and for
future reference ¢y by the following boundary conditions

&y(r) ~1r2 ¢+ 0r 2, () ~ Ot 1A (6.49)

and ¢, is purely infalling at the horizon. ¢, was studied carefully in [19]. Note that
¢in can be expressed in terms of ¢yp as follows:

qbin(r) = ¢3(7’) -+ GBqﬁb(r) (650)

where G is the boundary theory (retarded) Green’s function (recall this is the ratio of
two UV expansion coefficients). We have chosen an overall normalization for the so-
lution arbitrarily since it drops out from (6.47). One can check by explicit calculation
that this propagator does indeed satisfy the defining equation (6.46).

Now the spectral density is typically defined as
p(r,r’;w, k) = Im Gr(r,r'; w, k) (6.51)

To evaluate the imaginary part of (6.47), we note that that ¢y, are real, since they
satisfy real boundary conditions and the equation of motion is real. Thus the full
imaginary part comes from the Gg(w, k), and we find

ol 50, ) = Mvg@@(w, B (6.52)

where pp = Im Gp(w, k) is the boundary theory spectral density. The Wronskian Wy,
is independent of 7 and is determined by the boundary behavior of ¢, to be a pure
constant.

This formula can be somewhat surprising and we now pause to discuss it. The
bulk-to-bulk spectral density factorizes in the radial direction; thus in some sense
the density of states is largely determined by the analytic structure of the boundary

theory spectral density pp(w, k) We will see that this means that despite the presence
of the extra radial direction in the bulk, the essential form of one-loop calculations
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in this framework will be determined by the boundary theory excitation spectrum,
with all radial integrals simply determining the structure of interaction vertices that
appear very similar to those in field theory.

The formula corresponding to (6.52) for the spinor is recorded in (6.145). It is
rather similar but takes into account the matrix structure of the propagator; this will
not be relevant for our current purposes and so we simply schematically write for the
spinor . _

p(r,rsw, k) = (r)pp(w, k)Y (r) (6.53)

where %(r) is a normalizable spinor wavefunction. We now return to the evaluation
of the expression (6.44).

6.3.3 Performing radial integrals

We now use standard manipulations from finite-temperature field theory to rewrite
the Matsubara sum in (6.44) in terms of an integral over Lorentzian spectral densities.
These techniques are reviewed in Appendix 6.G; in particular, using (6.225) we find

dwy dwy dk f(wr) = f(ws)
- / o 2x @, T,

p(r1,r2; w, E)KA(’I‘l; i) p(ra, 7153, E)KA(TQ; i€y), (6.55)

G(ih)

(6.54)

where f(w) is the Fermi distribution f(w) = ﬁ. Now we seek to evaluate the
imaginary part of this diagram when evaluated on real frequencies; setting i€2; = 2+ie
and taking the imaginary part, we find a contribution from the delta function

m(w L ,):wm-w—m. (6.56)

—wz——Q—ze

If the other factors have imaginary parts they may contribute as well; we show later
that their contribution is not important. We thus find the Lorentzian expression

d—1
Im G(Q) = C’]l'/‘dw1 d k d7‘1d’f’2( (wl) - f(wl — Q)) X (657)
P("'l, T2; Wy, k)KA (Tl; Q)p(r% Ti;wWy — Q, E)KA (T2; Q) (658)

Note that the propagators K(r1; 2) have now become Lorentzian objects that prop-
agate infalling waves.

We now realize the true power of the spectral decomposition; the bulk-to-bulk
propagator factorizes into a product of spinor wavefunctions, allowing us to do each
radial integral independently. In this way all of the radial integrals can be repackaged
into an effective vertex

Awr,wn, Q) = f drp(r; wn) K a(r Qap (r; wn), (6.59)
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and we are left with the formula

dun d*'k

mG(Q) = —r [ 4 () = £ — ) x
,(JB(LU‘I, k)A(wl,wl — Q, Q)pB(uJ1 = Q, k;)A(wl — Q, Wi, Q) (660)

This formula involves only integrals over the boundary theory spectral densities; the
radial integral over spinor and gauge field wavefunctions simply provides an exact
derivation of the effective vertex A that determines how strongly these fluctuations
couple to the external field theory current, as shown in Figure 6.3.3. A precise deriva-
tion of the effective vertex requires a complete solution to the bulk wave equations;
however we will show later that it is smooth as its various arguments go to 0, which
is all we shall require.

g =

P

Figure 6-4: Final formula for conductivity; radial integrals only determine the effec-
tive vertex A, with exact propagator for boundary theory fermion running in loop.

6.3.4 DC conductivity

We would now like to extract a formula for the DC conductivity opc. Taking the
€2 — 0 limit and using the Kubo formula (6.23) we find

o L CTFSd,g @Cif_
be= (2m)d-1 | 27 dw

k¥ 2dkA%pp(w, k)? (6.61)

This is precisely the usual formula for the conductivity from a Fermi liquid, except
that our effective vertex is derived from a precise bulk calculation and — more impor-
tantly — the boundary theory spectral density is not that of a Fermi liquid. Rather,
as described in Chapter 5, it takes the non-Fermi liquid form

hllmE 1
= E = —
PE= k. —Re (@) + Im (D)2 ol T 1eGke (W)
2u E
ImS ~ T?g (T) . (6.62)

We now track the leading temperature dependence of the conductivity as T' — 0. [t
is thus convenient to examine the behavior of the boundary spectral density pp(w, k)
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in the following scaling limit

T — 0, w — 0, r = — = finite . (6.63)

NI E

This will be useful because the integral over frequency can be written as an integral
over x. In the T' — 0 limit, to leading order in the T" expansion we now have

lim pp = - ok, —ReX)+--- . (6.64)

Plugging this into the expression (6.61) for opg, the k-integral can now be done
explicitly and we find that

cSa—2 kd-z/d_‘"ﬁ hi A2 (6.65)

ope = (27)d-1"F 27 dw Im ¥

To complete the story we need to determine the T-scaling of the effective vertex;
this is done later in this text and it is shown that as T,w — 0, A approaches a
constant value. Thus we can now scale out all T-dependence in (6.65) by expressing
the frequency integral in terms of the dimensionless frequency z. We have then

df 1

d—2—2v U= A2
ki ( dx d:rg(a:)A) (6.66)

cSq—2
(2m)d-1

0'D0(T — O) =

where g(z) was defined in (6.62) and the quantity in brackets is a pure number. Note
that % is the derivative of the Fermi distribution and so is exponentially suppressed at
large z, meaning that the integral is guaranteed to converge. The only T-dependence
then comes from Im () ~ 7%, and thus we conclude that

opc(T) = aT ™ (6.67)

with a a prefactor that can be calculated numerically. This is the central result of
this chapter; the rest of this chapter is essentially devoted to the careful and technical
calculations needed to justify various claims made in this section.

It is worth stating precisely what is different about the calculation we will now
perform:

1. The careful treatment of spinor fields and associated indices will require some
care.

2. The gauge field fluctuations on this background actually mix with the gravi-
ton fluctuations; thus the propagator K, described above actually contains a
graviton component. This is dual to the field-theoretical fact that pulling on a
large charge density with an electric field causes energy as well as charge fluctu-
ations. Thus the effective vertex A is rather more involved than the schematic
form above.
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6.4 Detailed computation: resistivity from a spinor
field

We now perform the calculation performed above in detail, paying attention to all
subtleties.

6.4.1 A general formula

We consider a free spinor field in the above spacetime with an action
Sy / d /=g i(PTM Dyt — mabyp) = / d/=g L (6.68)

where ¢ = 9Tt and

1
D = O + ZwabMF“b —iqApm (6.69)
The abstract spacetime indices are M, N --- and the abstract tangent space indices
are a,b,---. The index with an underline denotes that in tangent space. Thus I'* to

denote gamma matrices in the tangent frame and I'M those in curved coordinates.
Note that

™ =r1oe,M . (6.70)
The background metric is given by

ds® = —gudt® + g, dr® + gidz? (6.71)

We are interested in computing the one-loop correction to the retarded two-point
function of the boundary vector current due to a bulk spinor field. In the presence
of a background gauge field profile, the fluctuations of the bulk gauge field mix with
those of the metric. Consider small perturbations in a; = §4; and h! = dg/. In
Appendix 6.C we find that the corrections to the Dirac action are given at cubic
order by

8Sslaj, bl 9] = —i) f d* /gy (—h{rtaj + -;-g,-j B,hI T — ’iqaﬂ") ¥
J

(6.72)
There are also quartic corrections (involving terms quadratic in bosonic fluctuations)
which are given in Appendix 6.C. These terms give only subleading corrections, as
we discuss in Appendix 6.E.

Now we go to Euclidean signature via
t=—it w = twg A = 1A, 1S = —Sg (6.73)

It’s helpful to keep in mind that ¢ and %' don’t change under the continuation, and
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we do not change I't. The Euclidean spinor action can then be written as
Sp=1i / Az, /59 (FMD](\‘}) - m) b+ 885+ - (6.74)

where 453 can be written in momentum space as

d*-1k
_ 2
683 = —T ;%: / T / dry/=g
X (73 1wy + 58, k) B(r; i, £) (r; i, k) . (6.75)

-

Here the kernel B(r;i(;, k) contains all dependence on the gauge and metric fluctu-
ations, which we have also Fourier expanded:

-

B(’I’; ’in, k‘) = (6.76)
—i'3 " (—ikshd(ry i@ + 220.hi r; i) T — igay (r;iQ)TY) .
J

Note that since we are only interested in calculating the conductivity at zero spatial
momentum, we have taken a; and k] to have zero spatial momentum.

We now evaluate the one-loop determinant by integrating out the fermion field.
We seek the quadratic dependence on the gauge and gravition fields; the relevant
term in the effective action is given by the Feynman diagram in Figure 6.3.1 and is

1k

r[a,-,h{]z_%w;; / — / dry/g(r)dray/9(r)

X tr (DE(rl,'rg; W + in,l_a")B(rg; , E)
Dg(ra, 113 iwm, k) B(r1; —S, 13)) (6.77)

where the tr denotes the trace in spinor indices and DE(rl,rg;iwm,E) denotes the
bulk spinor propagator in the Euclidean signature. As always we suppress bulk spinor
indicies. The bulk spinor propagator is discussed in some detail in Appendix 6.A. The
single most important property that we use is its spectral decomposition

-,

Ep(rl’ To; W, k)

6.78
o0 iw, —w (6.78)

DE(rlarQ; iwm) ,;’:) = /

where p(r1,72;w, l_c') is the bulk spectral function. As is shown in show in (6.145)
of Appendix 6.A, the bulk spectral function can be written in terms of that of the
boundary theory as

p(r,7; w, k) = b, (r) pF (w, K) P, (') (6.79)

where the boundary spectral function pp is Hermitian and %) is the normalizable
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Lorentzian wave function for the free Dirac equation in the black hole geometry?.
pB(w, k) is the boundary theory spectral density of the holographic non-Fermi liquid,
and was discussed in detail in Chapter 5 of this thesis. Note that in (6.79) bulk spinor
indices are suppressed and «,y can be interpreted as the boundary spinor indices. In
Appendix 6.A we give a detailed discussion of the relation between these indices.

Now introduce various momentum space Euclidean boundary to bulk propagators
for the gauge field and graviton.

aj(r_; ZQI) - KA(T'; in)Aj (191),
hg (7’; ’LQI) == Kh(r; ZQI)A](ZQI) (6.80)

where A;(i€;) is the source for the boundary conserved current in Euclidean signature.
These are objects which propagate a gauge field source at the boundary to a gauge
field or a metric fluctuation in the interior, and so should perhaps be called K4 and
K3; we drop the second ‘A’ label since we will never insert metric sources in this
paper.

K a(r; i) and Kj(r;4%) go to zero (for any nonzero ;) at the horizon and they
do not depend on the index j due to rotational symmetry. K, and K4 are not
independent; in Appendix 6.B we show that

N
8Ky = — YT

2

(6.81)

2d—2
where C is a constant satisfying CR3 (%) = 2.

Now using the definition of the propagators (6.80) we can write the kernel B(r; i€y, E)

in (6.76) in terms of a new object Q’(r;,i(Y, E) that has the source explicitly ex-
tracted: . ' .
B(r; iy, k) = Q*(r; i, k) A;(2h) (6.82)

where @7 thus satisfies

Q¥ (r; iy, k) = —i (—z'ijh(r; )Tt + %&Kh(r; Q)™ — igK a(r m,)rj) :
(6.83)
Plugging (6.82) into (6.77), we can now express the entire expression in terms
of the boundary gauge field source A;(i€%;). Taking two functional derivatives of

this expression with respect to A;, we find that the the boundary Euclidean current
correlator can now be written as

. d—1
Gg(lﬂl) - _TZ/(_(;;T)d_I—CI /dTl\/g(Tl)de\/g(Tg)

X tr (DE(TI,T’Q; z'wm + iQI, E)Qi(rz; ’I:QI, E)DE(TQ,TI; Wy E)Qj('l‘l; —ZQI,(EB)D

4 For a precise definition of the normalizable Lorentzian wave function, see again Appendix 6.A.
In this section, to avoid clutter, we will use the boldface font to denote the normalizable solution.
The non-normalizable solution will not appear.
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Note that all objects in here are entirely well-defined and self-contained; we now need
only evaluate this expression.

To begin this process we first plug (6.78) into (6.84) and then perform the sum
over wy, using standard techniques that are reviewed in Appendix 6.G.1. We find
that equation (6.84) can be further written as

BI) = _/(;jr;dlflfﬁjrl d;’r? /drlx/g(rl)dﬁ\/g(?‘z) UCARPIC)

wy — ZQI — Wy
X tr (p(rla/r% w1, E)Qi(’l‘g; in’ E)p(’l"z, 15 We, E)Qj(rl; _in EX)5785)

where p(ry, re; w1, E) is the bulk-to-bulk spinor spectral density. We have a convenient
representation for it in (6.79); plugging this into (6.85) we find that

Gi(iy) = - / ¢k / duwy dwp f(wr) = f(w2)

(2r)e-1 2 27 wy — i — wo .
XpaBﬁ(wh k) A,Ey(wl, wa, 18Y, k) p%é(w% k) Aga(w% Wi, _inv k0686)

with
Af;,y(wl,wz,iﬂl,l_é) = /d?\/ﬁ'{b—ﬂ(r;wl, k) Q*(r; i; k) P, (75 wa, k) . (6.87)

Let us now pause for a moment to examine this expression. In the last series of manip-
ulations we replaced the interior frequency sum with an integral over real Lorentzian
frequencies; however by doing this we exploited the fact that the spectral density
factorizes in r. This allowed us to absorb all radial integrals into A, which should
be thought of as an effective vertex for the virtual spinor fluctuations. Now only the
boundary theory spectral density pp appears explicitly in the expression. This form
for the expression is perhaps not surprising from a field-theoretical point of view;
however it is interesting that we have an ezact expression for the vertex, found by
evaluating radial integrals over normalizable wave functions.

We now obtain the retarded Green function for the currents by starting with
Gg (i) for @ > 0 and analytically continuing Gg(i€;) to Lorentzian signature via

Gr(Q) = Gg(iC = Q + ic) (6.88)

We will suppress the i€ in equations below for notational simplicity but it is crucial
to keep it in mind. For simplicity of notations we will denote the Lorentzian analytic
continuation of various quantities only by their argument, e.g.

Ka(r;i0) |iq=0 — Ka(r; Q) (6.89)

We also make the analogous replacements also for K3, @* and A,g. Note that K 4(r; Q)
and Kj(r; 2) have now become retarded functions which are in-falling at the horizon
and satisfy

Ky(r, Q) = Ka(r,—Q),  Kj(r,) = Ka(r, Q) . (6.90)
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It then can be readily checked that
Ql(r; Q, k) = THQi(r; —Q, k)Tt (6.91)
which further leads to
b (w1, wa, R, k) = Al g(wa, w1, —Q, k) (6.92)

Also note that in (6.86) both A*(w;,ws, 18, E) analytically continue to A*(ws, ws, 2, E)

We thus find that the retarded Green function for the currents can be written as

Gi(Q) = d*k / dwydwy  flwr) = f(w2)

B (2r)d-1 ) 27 27 w1 —Q —wy —ic
chll?ﬂ(wh E) A;}y (wl’ w2, Q) pZ;J(WQ, I;’:) Aga (wQ) w1, Q) (693)
where
AL (w1, w2, D, k) = / dry/g (7 w1, k) QX (r; Q, k) . (15 wa, k) (6.94)
and

Qi(r; Q, k) = —i (—z’ijh(r; O + %a,K,,(r; QT — iqK 4(r; Q)rf) . (6.95)

Note that (6.93) is now expressed in terms of intrinsic boundary quantities; A can be
interpreted as an effective vertex. The complex, frequency-dependent conductivity is
e

Q)= 22, 6.96
o(@) = A (6.96)
We now manipulate the expression for the effective vertex using a trick elaborated
on in detail in Appendix 6.D. It is shown there that provided that @’ is sandwiched
between two on-shell spinors as it is in (6.94), one can replace it with

@i, B) — i (- 2ok O + Lo KD — K a ) (697

This manipulation replaced the K}, with its radial derivative 9, K}; the fact that
this is possible implies that the expression is not sensitive to the constant mode
in the radial profile of the graviton. This is actually a consequence of the Ward
identity corresponding to momentum conservation in the boundary theory, and the
manipulation performed above is explained in detail in Section 6.D. In any case, one
can now use the relation between gauge and graviton propagators (6.81) to eliminate
9. K}, in favor of K 4, leaving us with

Q(r; 0, F) = —iKa(r; Q)g;;! (—z’qri T (%Jg; L w)) (6.98)
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This is the form of @’ that will be used in the remainder of this calculation.

6.4.2 Angular integration

We will now use the spherical symmetry of the underlying system to perform the
angular integration in (6.93). For this purpose we choose a reference direction, say,

with k, = k = |k| and all other spatial components of k vanishing. We will denote
this direction symbolically as § = 0 below. Then from the transformation properties
of spinors it is easy to see that

pa(k) = U(6)ps(k,6 = 0)U'(6),

)
Ai(k) = Ry;(0)UB)A;(k,0 =0)U(9) (6.99)

where R;;(6) is the orthogonal matrix which rotate a vector k to # = 0 and U is the
unitary matrix which does the same rotation on a spinor (i.e. in ¢, space). The
angular integral in (6.93) is reduced to

# /dd—29 B,ik(O)le(e) - C(Sij&cl (6'100)

where C is a normalization constant and d?~20 denotes the measure for angular inte-
gration. The conductivity can now be written as

a9(Q) = §90(Q) (6.101)

with

— %Awdkkd—2/dwlw2 f(wl)_f(w2)

21 27wy — ) — wq — i€
X Z pgﬂ(wb k) Aiﬂ—y(wl’w% 2, k) p}f(w% k') A:Sa (w27 w, £2, k) (6'102)

where pp(w, k) and A% (w2, w1, 9, k) in (6.102) and in all expressions below should be
understood as the corresponding quantities evaluated at 8 = 0 as in (6.99).

Equatlon (6.102) can now be further simplified in a basis in which pp is diagonal,
ie. p2¥ = pzseP, leading to

. C * d—2 dwl dw? f(wl) (w2) o Y
J(Q) - iQ o dkk o 2 wy — 0 — Wy — ie B(wla k) Ma’y(wl, W2, Q7 k) pB(w27 k)
(6.103)
where (there is no summation over a,~ below)
Ma‘Y(wl’w% Q, k) = Z A:.W(u)l,OJg, Q, k)Aia(w% wr, 2, k) (6104)

The above expression is very general, but we can simplify it slightly by using some
explicit properties of the expression for pg. We seek singular low-temperature behav-
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ior in the conductivity, which will essentially arise from low-frequency singularities in
pB. At the holographic Fermi surfaces described in Chapter 5, at discrete momenta
k = kp, only one of the eigenvalues of pp, say pk, develops singular behavior. We see
that we can extract the leading singularities in the 7' — 0 limit by simply taking the
term in (6.103) proportional to (p})2. Thus (6.103) simplifies to

o) =G [ [ )= e

iQ Jo 2 2m wy — Q — wp — e

p};(wla k) Mll(wl’ Wa, ‘Q7 k) p}B(w% k)

(6.105)
and we will only need to calculate Mi;. It is now convenient to finally write down an
explicit basis of gamma matrices.

6.4.3 M11 ind=3

For definiteness, let us now focus on d = 3 and choose the following basis of gamma

matrices

- - 0 : il 0

F—_( 0 ——03)’ == 0 ot )?

" —0? 0 0 o2

1"_:< ‘ 02>, 1“2:(02 A ) . (6.106)
and write

\1:1:<%1), \1:2:(£2) (6.107)

where @, 5 are two-component spinors. We then find that A* (evaluated at # = 0) only
has diagonal components while A¥ only has off-diagonal components. From (6.104),
we then find that

M1 = Afj (w1, wa, 2, k)AT (w2, w1, 2, k) (6.108)
where
A:fl(wla wa, Q) k) = /d’l‘v Grr KA (Q)QT(wh k) <_Q103 + %0’2 + Q301) (I)(w% k)
(6.109)
with
= qg;7 —Cy, Tk 1 1
Q1= a9;;" Q2= 9i5 VGtt Qs = ggjj . (6.110)

This is a complete and self-contained expression that can be evaluated numerically
if the wave-functions ®, 2 are known. We thus conclude that the dominant contribu-
tion to the conductivity from the Fermi surface is given by (6.105) with M given
by (6.108) and (6.109).
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6.4.4 Spinor DC conductivity

In this section we finally extract the DC conductivity from the expressions above.
The DC conductivity can now be obtained by taking the real part in (6.103), and the

2 — 0 limit,
o [ dw Of(w)
_ L d
o - G5 [(ae [ 2200
% (w, k) Re Moy (w, k) ph(w, k) + S. (6.111)
where
M(w, k) = Sl)irr}) Mw+ Q,w,Q,k) . (6.112)

S corresponds to the part which contains ImM,g(w, k) and arises from taking the
imaginary part of the gauge propagator. It is shown in Appendix 6.E that it is
subleading in the low temperature limit compared with the term written explicitly
in (6.111), so we will neglect it from now on. '

Let us now look at the Q2 — 0 limit of (6.112), for which the & term in (6.98) has
to be treated with some care. Naively, it appears divergent; however, note that

1— - O — - -
Sl)irra ﬁ‘llﬂ(r; w+ QT (r;w, k) = 0,%s(r;w, k) T2, (15w, k) (6.113)

is finite because Wg(r;w, I;:’)I‘ﬁ‘ll.,(r;w, E) = 0. We can now write down the final
explicit expression for A* which goes into (6.112) via (6.104)

Ay (w, k) = lim Ap (w +Q,0,92)

= i / dr g—h"-KA(r;Qz 0) Up(r; w, k) (in’i+ %h—%lﬂi) U (r;w, k)

_iCk; / dry /9798 gm0 = 0) BT (w0, H)TZ W, (rs 0, B)  (6.114)

In particular, in the limit (6.114) the A* vertex is proportional to the identity in
spinor space,

A% (w,k) = SgyMs. (6.115)

where the overall amplitude is given by

Ag = /dr Ziad T Ka(r; Q= 0)®s(r;w, k) (zqa + Ch ) ®5(r;w, k)
. Grr
+ZCk/d7‘ hdfit KA( Q = 0)6 @ﬂ(?’ w k)O' QB(T w k,') (6116)
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Similarly, the AY vertex can be explicitly calculated to be

T = . C =1
A, = '/d'r % Ka(r;Q=0)®,(r;w, k) <2q02 + gh_dT) Dy (r;w, k) . (6.117)
where & = &'jg!

As this was a somewhat lengthy calculation, let us briefly recap: after a great deal
of calculation, we derived an explicit formula for the one-loop DC conductivity,

C\‘ o o]
opc = *5/0 dkk“/g;—" aj{;ff)pg(w, k) Re My1(w, k) ph(w, k) (6.118)

"To complete the story we should examine how A scales with 7" in the 7 — 0 limit.
Naively if we examine the structure of the objects making up A (and thus M) in
(6.94), we see that we have a radial integral over a normalizable wavefunction, which
one would expect to be finite and have a smooth (nonzero) limit as 7 — 0. Indeed a
more detailed analysis (carried out in Appendix 6.F) reveals that this is indeed the
case, and we can view M ~ T° The remainder of the analysis is precisely that done
earlier in Section 6.3.4, and results in

opc(T) = aT™% (6.119)

with a a prefactor that can be calculated numerically in terms of expressions given
earlier in this paper. As mentioned earlier, this is the central result of this chapter.

6.5 Discussion and conclusions

Quantum
Critical

o
>

Figure 6-5: Field-theoretical interpretation of our results; the quantum critical sector
in this example is provided by the AdS, region [19, 107].

Despite the complexity of the intermediate steps, the result that we find for the
DC conductivity is very simple. One can package all radial integrals into effective
vertices in a way that makes it manifest that the actual conductivity is completely
determined by the lifetime of the one-particle excitations, as is clear from the formula,
(6.65). We should stress that from a field-theoretical point of view this result is not
obvious, as the single-particle lifetime measures the time needed for the particle to
decay, whereas the conductivity is sensitive to the way in which it decays.

For example, if the Fermi quasiparticles are coupled to a gapless boson (as is the
case in many field-theoretical constructions of non-Fermi-liquids; see e.g. [92, 114,
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115, 113, 117, 118, 119, 148, 149] and references therein), small-momentum scattering
is strongly preferred because of the large phase space available to the gapless boson
at small momenta. However, this small-momentum scattering does not degrade the
current and so contributes differently to the conductivity than it does to the single-
particle lifetime, meaning that the resistivity grows with temperature with a higher
power than the single-particle scattering rate [149].

In our calculation, this does not happen. To understand why, note that in our
gravity treatment the role played by the gapless boson in the above example is instead
filled by the AdS, region. From a field theoretical point of view, in our model one
could imagine coupling a normal Fermi liquid to a quantum critical sector providing
these gapless modes, as in Figure 6-5 [19, 107]. This AdS, region provides a set of
gapless modes to which the fermion can decay. In our bulk treatment this process
has a nice geometric interpretation in terms of the fermion falling into the black
hole, as in Figure 6-2. However, these modes are critical for any momentum (recall
(4.29)), somewhat similar to that postulated for the bosonic fluctuation spectrum
in the MFL description of the cuprates. Thus the phase space for scattering does
not care about the momentum transfer, and the conductivity is determined by the
one-particle lifetime.

In particular, this means that the result for the conductivity at the Marginal Fermi
Liquid point v = % — when the single-particle spectral function takes the MFL form
— is consistent with a linear resistivity, just as is observed in the strange metals. The
correlation between the single-particle spectral function and the collective behavior
and transport properties is a strong and robust prediction of our framework. While it
is fascinating that this set of results is self-consistent, we do stress that the marginal
v = % point is not special from our gravity treatment, and more work needs to be
done to understand if there is a way to single it out in holography.

Finally, we note that it has been an open problem how to construct a framework
for non-Fermi liquids. The gauge/gravity framework we are using provides a well-
defined way to address physical questions in such a system. Although the underlying
UV theories in which our models are embedded most likely have no relation with
the UV description of the electronic system underlying the strange metal behavior
of cuprates or a heavy fermion system, they do share striking similarities in terms of
IR phenomena associated with a Fermi surface without quasiparticles. In particular,
the emergence of an IR fixed point and the associated scaling phenomena, which
dictate the electron scattering rates and transport, could in the most optimistic case
provide a framework in which to explain the phenomenological success of the MFL
description.

6.A Spinor bulk-to-bulk propagator

In this appendix we derive the spinor bulk-to-bulk propagator. For simplicity of
exposition we focus on the case when the dimension d of the boundary theory is odd;
the correspondence between bulk and boundary spinors is different when d is even,
and though a parallel treatment can be done we shall not perform it here. We denote
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by N the dimension of the bulk spinor representation; in the case that d is odd we have
N = 2% Our treatment will essentially apply to any asymptotically AdS spacetime
with planar slicing and a horizon in the interior; the criterion of asymptotically AdS
is important only in the precise choice of UV boundary conditions and can be easily
modified if necessary.

We begin with the bulk spinor action in real-time:

S = / d*zdty/=gip (TY Dpr — m) ¢ (6.120)
where 1 = ¢'T't. From here we can derive the usual Dirac equation,
(T™ Dpr — m)ep =0, (6.121)

where the derivative D is understood to include both the spin connection and cou-
plings to background gauge fields. We would like to derive the retarded bulk-to-bulk
propagator, which satisfies the equation

(TM Dy — m)Gr(r, s w, k) = o(r—1'), (6.122)

i
v—4g
where we work in Fourier space in all directions but . We begin by understanding
some properties of the bulk tree-level solutions to the Dirac equation.

6.A.1 Bulk solutions

Infalling solutions to the spinor equation have been discussed in some detail in Chapter
2.3 of this thesis. A key point is that if 7o denotes the radial coordinate of the horizon
the infalling solutions satisfy

f;’('r —1rg) ~ (r— ro)‘%z, (6.123)

with 3 the inverse Hawking temperature of the horizon. A slightly different boundary
condition is used if we have a degenerate zero-temperature horizon. Now it is a fact
that only half of the solutions to the Dirac equation are infalling; thus we have A—/
infalling solutions which we denote by ¢, A € {1.. N ¥-}. Clearly one can find outgomg

solutions 93¢ by changing the sign in the exponent in (6.123).

We now discuss solutions at the AdS boundary. As discussed in a slightly less
covariant manner in Chapter 2.3, for large r (i.e. with the AdS boundary at » — o0)
we have purely normalizable ¥ and purely non-normalizable %) solutions defined
respectively by

Polr > 00) ~ (FrmRod2 (6.124)
Da(r —00) ~ (HrmBEodz (6.125)
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The ¢(F are eigenspinors of I,
1FIHE =0, (6.126)
and we choose to normalize them so that
FGG =10 (6.127)

This leads to the following completeness relation,

> oEE= %(1 FI7) . (6.128)

[+

Once again, o runs from 1 to %[ (as the two different eigenspaces of I'T span the full
spinor space.) It should be interpreted as the boundary theory spinor index.

Now we note that he combination of the ), and the ), form a complete basis of
solutions, so we can expand any solution — and in particular the infalling solutions —
in terms of them,

4 = A%Da + By, (6.129)

Here A and B are both %[ X %-f matrices that connect the infalling and boundary

solutions. Note that the boundary theory spinor retarded Green’s function Gg can
now be written in a covariant way as

% = {BG(A™H5 (P . (6.130)

with «* the boundary theory gamma matrix. This is the covariant generalization of
(2.61) and will be useful in what follows. One can find the advanced boundary theory
correlator by using outgoing solutions and their corresponding outgoing expansion
coefficient matrices B, A in (6.130).

We now establish some relations amongst these solutions that we will call Wron-
skians. Note first that by using the Dirac equation (6.121) we can show that for any
two radial solutions %;(r), %2(r) evaluated at the same frequency and momentum,
the Wronskian W t)1,12] defined as

W1, %2l = V=997 1 (w, k)T ™p2(w, k) (6.131)

is a radial invariant, i.e. 3, W = 0.

We now compute some Wronskians that we will need later. First, we compute the
Wronskian between a normalizable and non-normalizable solution; as this is a radial
invariant we can do this at infinity using (6.125) and (6.125). Note that all powers of
r cancel and we find

W 5] = (DTG = (DTG = —(1)as (6.132)

In the last equality we have made a choice on how to relate the ¢, which up till now
never appeared in the same equation. This choice will simplify some equations later
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and coincides with the natural choice using the concrete basis (2.44). Similarly, we
find

WW’Q’ fyﬁ] = (’)'t)aﬂ (6133)
Finally, let us compute the Wronskian between two normalizable solutions,
Wi, thgl = —r>F(()ITE; = 0. (6.134)

To understand the last equality imagine inserting a factor of (1 — I'") /2 before the
(g; this is a projector and has no effect on the (5, but if we anticommute it to the
left it will be annihilated by the ({); thus we conclude that this Wronskian between
two normalizable solutions is 0. Similar arguments show that W[, s] = 0.

6.A.2 Constructing the propagator

We are now ready to construct the bulk-to-bulk retarded propagator, which satisfies
the equation _

i
V-9
together with the boundary conditions that as either argument » or ¥ — 7y the
propagator should behave like an infalling wave (6.123), and similarly as r or ¥ — o0
the propagator should be normalizable as in (6.125). Note that the operator defined
above acts only on the left index of the propagator (which is a matrix in spinor space)
and on the argument 7; if we can demonstrate that the propagator indeed satisfies
this equation then it will also satisfy the corresponding equation with the differential
operator acting from the right and as a function of 7/, by the equality of left and right
inverses. Thus we will only explicitly show that the operator satisfies the equation in
T.

(T™ Dy — m)Gr(r,7';w, k) = d(r—1'), (6.135)

With the benefit of hindsight, we now simply write down the answer for the bulk-
to-bulk retarded propagator

Dal)PT() 1<
i ()T > O

We now set out to prove that this propagator has all of the properties required of it,
very few of which are manifest in this form. We begin by staying away from the delta
function at » = 7’ and studying the case r > 7/, where we have

Gr(r,7;w,k) = Po(r)Gy (W, K)s(r") + {

Glr,r'sw,k) = $,(r) (GF (@, WB5) +i(1)Da(r))  r>7  (6.137)
We see that this satisfies the defining equation (6.135) in 7, as well as the boundary

condition that the solution be normalizable as r — 0o, as the dependence on r is
simply that of the normalizable solution %,,.
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We turn now to 7 </, where we have
Crlr, 50, k) = ($a()GF (0, B) + Dal)(0)?) o) 7 <’ (6.139)

Now using the definition of the Gp in (6.130) and the representation of the infalling
wave (6.129) we see that this can be written as

Gr(r,7';w, k) = i (r)(A™) () Pap(r') (6.139)

Again, this satisfies both the defining equation (6.135) and the infalling boundary
condition for » < 7/, as the dependence on r is now simply that of the infalling
solution.

We must now verify that the discontinuity across » = r’ is correct to result in
the delta function seen in (6.135). To see this we integrate (6.135) across r = r’ to
conclude that the required property is

V=99 T=(Gr(r + €,7) — Gr(r,r +€)) =1 (6.140)

Putting the form of (6.136) into this equation we see that we need

V=99 T (%o (r) (V) Dp(r) — Da(r) (1) hs(r) =1, (6.141)

where the right hand side is an identity matrix in spinor space. This is thus an N’ x N
matrix equation.

To show that it is satisfied we will take several Wronskians. Consider contracting
both sides from the left with 9,(r). The right-hand side becomes just 9,. The
left-hand side then becomes a sum of two Wronskians; the Wronskian of ) with itself
vanishes, and we find then for left-hand side

Wo, %ol (7)Dp = ~(1)0a (1) D = Do, (6.142)

where in the first equality we have used (6.132) and in the second we have used the
d-dimensional Clifford algebra, (y¥)? = —1. This is then consistent with (6.141).
Note that we can vary o over any of its '%[ values and there is a suppressed implicit
bulk spinor index on both sides; thus we have actually established J—V;—- relations.

To establish the remaining %, consider acting with the left with % to find

~Wt,, Dl (V)25 = (6.143)

by arguments identical to those above. This is an independent set of g equations;
we conclude that the discontinuity is indeed correct for all N2 components and the
form of the propagator proposed in (6.136) is indeed correct.

Finally, we would like to compute the bulk-to-bulk spectral density, which is the
object actually used in our calculation. This is straightforwardly found; it is defined
to be

p(r,7sw, k) = —i(Gr(r,r’;w, k) — Ga(r,7;w, k)) . (6.144)
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The difference between the retarded and advanced propagator lies in the choice of
boundary conditions at the horizon. In our expression the definitions of 4 and %)
are at the asymptotic UV boundary and know nothing of boundary conditions at
the horizon; thus only the first term in (6.136) knows whether we are computing an
advanced or a retarded correlator, and we find

p(r, 7w, k) = o (r)p3f (w, k)pg(r') (6.145)

where p3%(w, k) = —i(ng) (w, k) — Ggl) (w, k)P is the boundary theory spectral den-
sity. ThlS is the expression used in (6.79).

6.B Mixing between graviton and vector field

In this section we construct the tree-level equations of motion for the coupled vector-
graviton fluctuations about the charged black brane background. The action can be
written in the usual form,

R v
=53 / dz /=g {’R 2A — ,,,,Ff* (6.146)
with background metric given by
ds® = gudt® + g,,.dr® + gi;dx? (6.147)

and a nonzero background profile Ag(r). It is convenient to work with the radial
background electric field E,. = 0, A, which satisfies the equation of motion

0. (E-v/—g9%g™) = (6.148)

We will denote
Q= E,\/—gg™g"™ = const . (6.149)

Now consider small fluctuations
Ay — Aodmo+am,  gun — gun +hun . (6.150)

We seek to determine the equations of motion for these fluctuations; we first use our

gauge freedom to set
hrvt =0a,=0. (6.151)

At quadratic level in fluctuations the Maxwell action can now be written as

SEM — _Ol/dd+l l:_E (\/—gtt T \/_gtr tr) E + = \/_fMNfMN
+E.(9"9"vV=9) for — Q (hifir + hi fui)] (6.152)
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with
2R?

2 )
91:'52

The canonical momentum for a, is then given by

C] = fMN = 0MCLN - 6NaM (6153)

i __ 1 (SS _ rr it i
T = 6’;5@01 =—v—99"g" fri — Qh; (6.154)

7.(. — /— grrgrrfOT_l_( /'_'grr rr)(l) (6155)

The equation for a, is essentially the Gauss law constraint in the bulk and leads to
the conservation of this canonical momentum,

O, =0 (6.156)
Finally, the dynamical equations for a; are

—O,m* + /=g, f* =0 (6.157)

We turn now to the gravitational fluctuations. At this point it is helpful to
specialize to the zero momentum limit, i.e. all fluctuations depend only on ¢ and 7.
Now all spatial directions are the same, and so we pick one direction (calling it ) and
focus only on hY, with o = (¢,r), and where the indices are raised by the background
metric. We will then find a set of coupled equations for a, and hj(and a, and h?,
which will be set to zero in the end). The relevant equations then become

¥ = —/"gg" g"a!, — QhY (6.158)
O,m¥ + /—gg®gtw?a, =0 (6.159)
Cl rr tt K]

-0—29% = V995,97 9" 0 (6.160)

Taking a derivative of the first equation with respect to r one can derive an equation
for a, alone

rr Q rr
8 (V=99 g”ay)+( (1) jﬁ;‘ — V=99"g w)ayzo (6.161)
yy

Note now that using

git = —f7'2a Grr = =57 i =T (6-162)



we find that (6.161) becomes

Ww2rd=5
8, (r*'fd,) - (Cr‘d‘l - ) ay =0 (6.163)
In the last expression we introduced the constant C = %QQ and we set R = 1. We

note that the combination CR2 (%) =2.

Equation (6.160) implies a corresponding relation between the bulk-to-boundary
propagators K,, K}, of the metric and gauge field, which is important for our calcu-
lation:

CKa =/—994,9"9"0: K . (6.164)

6.C Couplings of a spinor to graviton and vector
field

In this section we determine the couplings of a spinor to graviton and gauge field
fluctuations; these are necessary to construct the bulk vertex. We consider a free
spinor field with the action

S=— / d /= gi(dTMDysp — madop) = / /gL (6.165)

where 9 = ¢!Tt and .
Dy = Op + Z%,,MP“” —iqAy (6.166)

The abstract spacetime indices are M, N --- and the abstract tangent space indices
are a,b,---. The index with an underline denotes that in tangent space. Thus I'* to
denote gamma matrices in the tangent frame and I'™ those in curved coordinates.
Note that

M — ree M (6.167)
Note that the nonzero spin connections for (6.71) are given by (h = g;;)
, 1 . .
Wy = —fot, wy = fiel, et=gidt, €= hidr’ (6.168)
with Lo Y
= _&i Tr = —— rr
Jo= 29“\/9 ) fi= 2k g (6.169)
We now consider a perturbed metric of the form
ds? = —Gudt® + h(dy + bdt)? + g,.dr® + hdx? (6.170)
with
b=hY,  Gu=gu+ hb (6.171)
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The new spin connections are given by

wiy = fae” (6.172)
wy = —foet + fae? (6.173)
e = f1el + faet (6.174)
wir = fre* (6.175)
with
1/ h - 1§,
=3 P ¥, fo= 5% g (6.176)
and . .
et =gidt, el=hi(dy+bdt), e~=gh e=hidr (6.177)
Also note that . )
Tt =G, °T%,  [¥=—§, bl + h 3T (6.178)

We thus find the corrections to the Dirac action is given by (with a = a,): at
cubic order

5Ly = —ith <_g;% heTE, + :11- folm — ih—%qayra) b . (6.179)

In (6.179) we have restored the indices on b = h{, a,, because they make the covariant
nature of the expression manifest.

At quartic order there are both b?4% and baw)? terms. For completeness we list
them, although they are not required for our calculation. The couplings of the bulk
spinor which are quadratic in the bosonic bulk modes (altogether, quartic in fluctua-
tions) are

Lo= \/—“p [ (I‘ Dy — m)(o) _ Lp_ (ib_Dt — zqa) + %I‘E (fo) (2)} ('

VIz  \294
(6.180)

where . 2
i) ==vgo.[—]) . 6.181
(f°>(2) gVI (gtt) (6.181)

6.D Ward Identities in the bulk and boundary

6.D.1 Generalities

Here we review how the Ward identities of the boundary field theory are inherited
from the corresponding local gauge symmetries in the bulk. In this section only we
will work in Euclidean signature for simplicity of notation, and we consider a very
general field theory with a stress tensor T#* and real operator O. These are dual in
the bulk to the metric gapsny and a real scalar field ¢, and we denote with a subscript
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0 the boundary values of these fields (e.g. ¢(r — 00) = ¢b). The central relation of
gauge-gravity duality applied to this system reads

<exp { / i (%T:g{)‘y + ¢00)] > — 7o o), (6.182)

where the left hand side is the field theory generating functional and Z denotes the
partition function of the bulk gravity theory as a functional of the boundary values of
the bulk fields. For concreteness we take the background metric to be diagonal and
depend only on r.

Consider now the variation of the metric and other bulk fields under an infinites-
imal diffeomorphism &s

Segun = Van + Vnéu et = M0 (6.183)

We restrict attention to diffeomorphisms along the field theory directions with &, = 0.
We find

7
5Eg;w = 6P£V + 611{;1 5591';1 = 3r§p - &&fp (6.184)
pp
It is standard to work in the gauge g,, = 0. This choice does not completely fix the
gauge. It only fixes the radial profile of the gauge transformation to be £,(r,z) =
9uu(r)Cu(x), with {,(x) an unrestricted function of the field theory coordinates. It
is important to note that these unfixed gauge transformations do not vanish at the
boundary: instead they shift the boundary value of the bulk scalar field and the “one
up, one down” metric fluctuations in a simple way, with no extra factors of g,,:

65951/ = nup(apg/ + auCp) 5§¢0 = n“pCpap(bO, (6185)

where in this and the following expressions we raise and lower indices using the flat
field theory metric n*.

Now the bulk gravity partition function Z[gf,, #] should be invariant under this
transformation. This gives us the following relation

on 92, 82
“og0,(z)  3¢(=)

Let us now understand the implications of this on the field theory generating func-
tional in (6.182) by computing an example correlation function

8,4(z) = 0. (6.186)

82z

O EIOW) = O g 6000 |, oo

(6.187)

The right hand side of this expression can be easily found by taking a functional
derivative of (6.186) with respect to ¢o(y). Using the fact that §Z/d¢o = (O) when
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all sources are set to 0 we find
(0.T; (2)0(y)) = —0,(0(2))6¥ (z — ), (6.188)

which is precisely the Ward identity associated with momentum conservation, arising
as expected from bulk diffeomorphism invariance. The lesson here is that every
unfixed bulk gauge transformation will result in a constraint on boundary theory
correlation functions.

6.D.2 Momentum conservation at one loop

Let us now understand the implications for this in our calculation. We are computing
correlation functions of the spatial components of the boundary theory current j
at zero spatial momentum k = 0 and nonzero frequency w. In a background with
nonzero charge density, we expect fluctuations of j* to mix with those of the stress
tensor T%; however at zero spatial momentum correlation functions of T% are very
constrained.

To understand this consider the (Lorentzian signature) Fourier transform of (6.188).
Taking the frequency to be (2, we find

UTHQ)O(-2)) =0, (6.189)

where we have used the fact that we are at zero spatial momentum and our background
has translational invariance, causing the right-hand side of (6.188) to vanish. Thus
ifk=0 any correlator of T* must vanish if Q # 0 and so must be proportional to
0(€2). This is nothing but the statement that momentum cannot relax. This confirms
the statement made in Section 6.2.1 about the nonexistence of dissipative thermal
conductivity in translation-invariant systems.

In our bulk one-loop calculation this will be enforced by invariance of the partition
function under the following unfixed gauge transformation, constructed to leave g,;
unchanged precisely as in the example above:

Ohit(r,t) = gu(r)3:Gi(t) —  Sha(r; Q) = —iQgu(T)G:(Q) - (6.190)

Note that in Fourier space this corresponds to a constant (in 7) shift in the variable
hi(r; Q). In our formalism the bulk wavefunctions of the graviton and gauge field are
determined as in (6.80)

a;(r; Q) = Ka(mDA,(Q),  hi(r; Q) = Kalr; Q) 4;(Q) (6.191)

where K4 and K}, are bulk-to-boundary propagators and A;(Q2) is the source for
the boundary conserved current (and thus corresponds to the boundary value of
a;). We see that the gauge transform (6.190) can be taken to be a constant shift
Kip(r; Q) — Kip(r; Q) + f(2); thus for the boundary theory Ward identity to be
satisfied it is critical that such a shift leaves everything invariant. Note that such a
shift essentially corresponds in quantum field theory to the emission of a “lightlike”
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graviton f(€2), with polarization along its “momentum” (which here is purely in the
time direction, as f(£2) does not depend on r). We expect the emission of such a
graviton to be constrained by the bulk Ward identity associated with diffeomorphism
invariance, which will thus guarantee the boundary Ward identity.

We now proceed to show explicitly how this happens in our formalism. The
graviton wavefunction enters our expression in the on-shell effective vertex A:

A, (Q,w,k) = / dr\/g-Tp(r; w + Q, K)Q(r; Q, KY W, (r; w, k) (6.192)

where @ from (6.83) is a function of the gauge field and graviton bulk to boundary
propagators

Qj('r'; Q, ,I;) = —1 (—iijh(T; Q)Ft (6193)
+98ﬂa,.K,,(r; O™ — igK a(r; Q)I‘") ,

Only the first term in the expression does not seem invariant, and we will focus our

attention on this term. To proceed we will need the on-shell equations of motion for
v

(\/—grrfﬁa, +iy/giK, T — m) U=0 . (6.194)
Consider now the matrix structure of the problematic coupling in A,

(w+2—w)

p(r;w + Qo (r;w) = Tg(r;w + QT ———

v, (r;w), (6.195)
where we have inserted a factor of 1 in a somewhat convoluted way in terms of w and
(2. The reason for this becomes clear when we use the Dirac equation (6.194) to act
with I'*(w + £2) on the spinor W,( + w) on the left and with Iw on ¥ (w) on the
right. Most terms cancel, leaving

Up(r;w + Q' (rw) = %W&P (Ip—ﬁ(r; w+ Q=T (r;w)) . (6.196)

We now use this identity in (6.192) and integrate by parts. We can drop both bound-
ary terms: the term at infinity vanishes since the ¥ are normalizable, and the term
at the horizon vanishes because the graviton wavefunction Af must vanish there. We
find for the relevant term,

Ap,(Q,w, k) = /dr Ws(rw+ Q)%B,Kh('r;w)rlll’ﬁ,(r; w)+ ... (6.197)

It is clear from this expression that the spinor couples only to the radial derivative of
the graviton, and a constant shift in K}, has no effect. In this expression, invariance
under (6.190) and thus the boundary Ward identity are manifest. It is convenient to
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encode this information by rewriting Q as

Q
+g—§x-(9,Kh(T; Q)I"tj — iqK 4(r; Q)Fj) ,

Qi (r; Q, k) = —i (-ﬁa,Kh(r; QI" (6.198)

where it is important to note that this expression is equivalent to the original (6.194)
only when it is sandwiched between two on-shell spinors as in our expression for A.

6.E Other contributions to the conductivity at one
loop

The majority of this paper has focused on the the 1/N contribution to the imaginary
part of a photon self-energy from cutting across a spinor loop. However, at this order
in 1/N this is not the only contribution to the the propagator. Quartic couplings
involving the graviton (schematically, terms like h%)7) and hAw in the Lagrangian)
give rise to seagull diagrams that we have not evaluated. Even in the spinor bubble
that we have focused on, there are extra contributions to the imaginary part of the
photon self-energy from cutting not across the spinor loop but across the photon
propagator itself, which already contains an imaginary part since it is essentially a
retarded propagator on a black hole background.

In this section we justify our neglect of these diagrams by showing that their contri-
butions to the DC conductivity are analytic in temperature. One can see heuristically
how this comes about by noticing that the interesting frequency dependence of these
diagrams comes not from the spinors that we are interested in, but from the tree-level
gauge field and graviton propagators, which are analytic in temperature.

6.E.1 Seagull diagrams

All seagull diagrams are analytic in temperature. This is because they contain only
one spinor propagator, and we need two spinor propagators to create a non-analyticity.
To see this, we first write the schematic form of a seagull diagram S with external
Euclidean frequency €2;:

. dd_lk
:Sn](Ql) = TZ/ W_—l'd’f'l g(Tl) tr (6199)
(-Pj(rl; —iny ]_C’)DE(rb'rl; iwm? E)Pi(rl; ina E)) .

Here P* contains the information of the graviton or gauge field propagators and vertex
and is deliberately left vague. It is shown in equation (6.229) in Appendix 6.G that
the Matsubara sum can be rewritten in terms of an integral over the bulk spectral
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density

TZDE Tl,TQ,’me,k) /—t nh( )p(rl,rz;Q, E) (6.200)

uum

Now as before we recall that the bulk spectral density has a simple relation to the
boundary spectral density pp in terms of bulk normalizable wave functions %,(r):
plw;r, ") =, (7) p3 B, (7). Near the Fermi surface, the eigenvalues of the boundary
spectral density matrix take the form (6.62). As we take T — 0, the spectral density
reduces to a delta function with support on the quasiparticle dispersion:

%ir% pB(w, k) =76 (kL —ReX). (6.201)

Putting this relation and (6.229) into (6.200), we see that the seagull diagram appears
completely analytic in T'.

This should be contrasted with the behavior of the square of the spectral density.
This quantity appears if we have more than one internal spinor line, and in the same
limit behaves as

lim pp(w, k)* =

ReX) (6.202)

Note the overall factor of 1/Im3Y outside this delta function; this behaves as T-%
and is the ultimate origin of the observed non-analyticity in the conductivity. It is
clear from (6.201) that no such non-analyticity exists if we have only a single factor
of pp. Each factor of pp comes from a bulk spinor propagator; thus if we have only
one internal spinor line (as is the case for the seagull) the diagram will necessarily be
analytic in T.

6.E.2 Other contributions from the spinor loop

The spinor bubble (Figure 6.3.1) is the diagram on which we have focused most of
our attention. We recall the expression for its contribution to the boundary correlator
(6.93),

di-k / dwi dws  f(wr) — f(w2) (6.203)

id .
GﬂR(Q) N / (27T)d_1 2 27 Wy — Q- Wwo — i€
Xp%ﬂ(wla E) Aﬂ"f(whw?) Q) PES(WQ, ,;':) Aéa(w2’ Wi, '—Q)

The DC conductivity is 1/€ times the imaginary part of this expression evaluated
at © = 0. The body of this paper focuses on computing the contribution from the
imaginary part of the spinor loop. There is however another contribution even at
generic values of k # kp. This arises from the fact that the vertex A contains a
factor of the bulk-to-boundary gauge field propagator at real frequency Q, which has
an imaginary part proportional to i} (coming essentially from incoming boundary
conditions at the horizon). This can multiply the real part of the spinor loop at
Q = 0 to give a finite contribution to the DC conductivity. In this section we show
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that this contribution is analytic in T'.

We want to calculate the real part of the spinor loop; thus we should simply set
¢ — 0 and compute the integrals. As before we will simply ignore the matrix structure
of the p%ﬁ . Let us now perform the k integral first, i.e. we extract out the following
part of the expression:

dd—l k o .
I(wi,we) = WPB(WI, k)pp(wa, k)
- Im ¥(w)
k)= .
Pe(w: k) = Ren () £ Tm D)2 (6:204)
We can perform this integral by contours in the complex k; plane to find
dQ 1
I(wy,ws) = * _ Im (6.205)

"] @OF T () - @)

Note that when evaluating the #maginary part of this bubble (as in the main text)
we find a delta function which forces us to sit on-shell, i.e. w3 = ws and this integral
I ~ 1/Im%(w) ~ T~?. Now, on the other hand, we will not sit on this point but
instead integrate through it, softening the singularity. The dangerous part of the
integral thus comes from w; ~ we; to extract this we define A = wy — w; and use
Re¥(w) = ;i—w +T?g (£) to find for our starting expression

y 2Im ¥ (w») df A
] ~ —_
5 (0) / e e (6.206)

where we are interested in the A — 0 singularity and so have expanded everything
in powers of A, neglecting higher order terms in both A and T and ignoring overall
factors from A. Note that even at 2 = 0, we do not find any divergence; the integral
through A = 0 gives an expression that is T°. We conclude that the real part of the
spinor loop—and thus the contribution from cutting across the gauge field propagator—
is analytic in 7T'.

6.E.3 Oscillatory region contribution

We return to the expression (6.105) for the conductivity as an integral over k. In the
previous sections we have studied the temperature-dependence of the region of k near
a Fermi surface at kp. Here we ask whether the “oscillatory region” (values of k such
that particle production occurs in the AdS, region of the geometry) make significant
contributions to the conductivity. We will find that their contribution is finite at
T = 0, and hence subleading compared to the T=2” behavior of a Fermi surface. We
will not worry about numerical factors here.

For simplicity, we study the real part of the conductivity, and neglect the contri-
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butions discussed in the previous parts of this Appendix:

_ 1 / (dF) / = (f(Q+w) ~ [(®)) (6.207)
X p(w+ k) p(w, E)A(w,w + QA(w + Q,w) .

At zero temperature, the difference of Fermi factors in (6.207) has support only in
w € [—w,0]. At small 2 (and in particular in the DC limit), we may therefore use the
small-frequency approximation of [19]. In this approximation, the fermion spectral
density in the oscillatory region may be written

e?|c|lw™ + 1
Recall that cw® is the IR CFT Green’s function (the IR CFT dimension is imaginary)
at T =0. e®? are scattering phases constructed from the UV data. This expression
is valid in the oscillatory regime k < ko = 1/¢%% — m2R3 (see eqn (68) of [19]).
The important point now is that as a function of w, the object (6.208) is bounded.
In fact, it can be bounded uniformly in k (i.e. we can find a constant A such that
A > pocc(w, k) for all k < ko). Numerical evidence for this statement is figure 7 of
[16].

The same is true of the factors A(w,Q + w) in (6.207). This is because in the
oscillatory regime, the solutions ¢ (appearing in A) in the matching region are unit-
amplitude waves.

So )
Tosc(2) = 51’ (6.209)

IT= /_ (; dw ( / dkppAA) . (6.210)

7 is the integral of a product of bounded functions over an interval of width 2, and
hence

where

I <CO (6.211)

for some constant C. Hence the conductivity at small frequency and zero temperature

Oosc(2) < C (6.212)

is finite.

6.F Temperature scaling of effective vertex

In this section we study the temperature dependence of the effective vertex (6.94).
For this purpose it is convenient to separate the radial integral into the UV and IR
region,

A=Apv+Am . (6.213)

129



To find the T-scaling of A we note the following ingredients:

1. Using the notation of [19], we can write @ as

(k) = %(a-m = a47-) (6.214)

where W is independent of 7. Note that for k; = Re¥ — 0, a; oc Re Y. Then
it is easy to check that both terms in (6.116) scale as O(T°), implying

Ayy ~O(T% . (6.215)

2. The inner region wave functions are conveniently expressed in terms of the
rescaled coordinate

T 2
¢= 15 (6.216)
T — Ty
thus
g xT?, drocT, g o<T7? (6.217)

and in the T — 0 limit
Ka(r) > TKa((), ®(kL=ReX)xT",
0,®(ky =Re%) o TV ! . (6.218)

From the above scalings we thus conclude that in the inner region both terms
in (6.116) scale with T respectively as

A ~T>4 | (6.219)

From (6.215) and (6.219) we conclude that Ayy dominates, and therefore

A? O(TO) = opc x T2 . (6.220)

6.G Some useful formulas

Here we compile some standard and useful identities that are used in the main text.

6.G.1 How to do Matsubara sums

Consider the Euclidean correlation function

dw pi(w)
B _ - T
D (wa) = / i T 0 (6.221)
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and the frequency sum
S(Q) = T Df(wm+U)D5 (wm)

- 7Y / donder _ pr() _polws) (6.222)

27 21 (wm + ) — wi twn, — wo

where w,, = 27'7'" with m a half integer (an integer) for fermions (bosons), while
O = %! with I an integer. Note the identity
1 1 f (w1) — f(ws)

TZ (W + Q) — wy twy, — w2 wl — i — wy (6.223)

with ]
FW) =2y (6.224)
where the upper (lower) sign is for fermion (boson). We then find that
. dw, dw; f(w1) — f(wa)
st =+ [ GAZR I =T b ) o) (6.225)

We now apply this kind of technique for the spinor bulk-to-bulk propagator. We
recall that the spinor Euclidean propagator admits the spectral decomposition

dQ p(ri,m9; 2, E)

DE(r17r2; iwrm E) = (27{') i —Q 9

(6.226)

A standard trick is to rewrite the sum over fermionic Matsubara frequencies as a

contour integral
Bw
dw= .
T E — 5 / tanh ( (6.227)

Wwm

where we take the contour C to encircle all the poles. A convenient deformation of
the contour is to make it into two lines, one running left to right just above the real
axis and the other running right to left just below. In the fermionic case this encircles
all the poles. Using (6.226) we can now compute various sums, e.g.

T Z DE(TI, T2; ":wm) E) =

twm

! / duom tanh( )p(rl,rz,ﬂ B)

i

LJ tie—Q w—ie— Q} (6.228)

131



The bracketed factor reduces to a delta function, and we find eventually

TZDE(rl,rz,zwm,k') /——t nh (ﬁQ> p(r1, 75 €2, k) (6.229)

twm

6.G.2 Useful integrals

Throughout our calculation we often need to integrate over a spectral density near a
Fermi surface, integrals that often take the form

I(a) = / dz (m)n (6.230)

where a is a small parameter usually related to the temperature. We generally only
care about the small-a dependence, which is conveniently extracted by using the fact

that
/_oo dx( 2 )n: 1=n e\ 2) (n—l) (6.231)

2 2
00 ¢ +a

and noticing that for any = # 0, the integrand vamshes at a = 0, we see that as we
take a — 0, all of these functions become delta functions.

a

lim (m2+a2)n_ = (( ) )5(:1:) (6.232)

a—0

The values of n that are relevant to us are

2
m (=2 = m (- _x
i <m) = 79(z) zlzllno (:1:2 + a2) N 2a6(m) (6:233)

This is a rather nice way of saying that in the low-temperature (a — 0) limit, only
things on the Fermi surface matter.
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Chapter 7

A holographic model of symmetry
breaking

7.1 Introduction

In the previous chapters of this thesis we studied a finite-density state via holography.
Importantly, this finite-density state broke no (global) symmetries; indeed the only
global symmetry in our model was the U(1) current under which the finite density
was charged, and throughout our discussion we assumed that this U(1) was unbroken
even at arbitrarily low temperatures.

However upon some thought this situation may seem somewhat unnatural. The
microscopic field-theoretical physics of our system is not well-understood, but due to
the supersymmetry of the most well-understood models one expects that there should
exist some bosonic excitations that are charged under every global U(1) current. If we
now turn on a chemical potential then one expects that these charged bosons would
condense and break the symmetry. Experience with strongly correlated finite-density
systems would in fact lead us to expect a wealth of low-temperature ordered phases,
corresponding to the various symmetries that may be broken.

What would this look like in a holographic setup? On the field theory side we have
the condensation of a scalar operator charged under some symmetry. On the gravity
side, we would then expect a bulk scalar field that is charged under some gauge sym-
metry to condense, developing a nontrivial radial profile. This would Higgs the gauge
symmetry in the bulk, corresponding to the breaking of the global symmetry in the
boundary theory. We expect this to happen at sufficiently low temperatures, meaning
that as we lower the temperature of our previously studied black hole horizons they
should be unstable towards developing normalizable scalar field configurations.

In the context of black hole physics, this would seem to be precisely the sort of
phenomena that is ruled out by no-hair theorems, which state that black holes cannot
grow the sort of scalar hair that we have just described. Importantly, however, these
no-hair theorems do not apply to asymptotically AdS spacetimes, as first realized
by [99] and subsequently developed in detail by [100, 101]. Indeed, the Reissner-
Nordstrom black hole studied above is unstable towards developing charged scalar

133



hair, resulting in a new kind of hairy black hole called a holographic superconductor, in
which a U(1) symmetry is broken by strong dynamics that results in the condensation
of a charged operator; for a review see [102, 103].

In fact, our treatment in Chapter 4 already allows us to see the signature of this
scalar instability. Recall that at precisely zero temperature the near-horizon region
of the Reissner-Nordstrom black hole can be described by an AdS,; x R? region.
The conformal dimension of a scalar operator in the infrared conformal symmetry
described by the AdS, region was calculated in (4.9) and can be written as

1 [aa—g ¢ 1
5—§+\/d(d—1) T2E-1 1 (7.1)

where d is the dimension of the dual field theory, g the charge of the scalar operator,
A its dimension under the UV conformal symmetry (which has been broken by the
finite density), and in this chapter we have set the bulk gauge coupling gr — 1. This
determines the onset of an instability: if § becomes complex, the system is unstable!.
Due to the term proportional to —¢? in (7.1), even an operator which is irrelevant in
the UV can be unstable in the IR if g is sufficiently large.

Particularly interesting is the fact that the instability can be made to vanish at
zero temperature by adjusting the various couplings appearing in (7.1) to tune § from
being imaginary to being real. This is then a qualitative change in the nature of the
ground state at zero temperature and so is a quantum phase transition. Turning aside
from holography for a moment, we see that quantum phase transitions naturally occur
in strongly correlated many-body systems, which often contain competing interactions
and the concomitant competing orders. When the transition is continuous, or first
order with weak discontinuities, it gives rise to fluctuations that are both quantum
and collective [82, 83, 84]. Such quantum criticality serves as a mechanism for some of
the most interesting phenomena in condensed matter physics, especially in itinerant
electronic systems [85, 87]. Among these are the breakdown of Fermi liquid theory
and the emergence of unconventional superconductivity.

Quantum criticality is traditionally formulated within the Landau paradigm of
phase transitions. The critical theory expresses the fluctuations of the order parame-
ter, a coarse-grained classical variable manifesting the breaking of a global symmetry,
in d+ 2z dimensions [82]; here d is the spatial dimension, and 2 the dynamic exponent.
More recent developments [86, 88], however, have pointed to new types of quantum
critical points. New modes, which are inherently quantum and are beyond order-
parameter fluctuations, emerge as part of the quantum critical excitations. Quantum
criticality is hence considerably richer and more delicate than its thermal classical
counterpart. In turn, new methods are needed to search for, study, and characterize
strongly coupled quantum critical systems, and it is for this reason that we turn to

1In the bulk, a complex § is a violation of the AdS; BF bound and corresponds to an infinitely
oscillating bulk field near the horizon and hence an instability, as pointed out in [108]. It is also
possible to have an instability even if the conformal dimension is real, as found by dialing double-
trace deformations in [105]; while the finite-temperature physics is similar in both cases, the zero-
temperature quantum phase transition is wildly different from that discussed here.
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holography.

In this and the next chapter we will study phenomena associated this transition
in detail. In this chapter our focus will be on the condensation of a scalar that is
neutral under the U(1) representing electric charge but is charged in the adjoint of an
extra global SU(2) symmetry. This is the same symmetry-breaking pattern as that
of antiferromagnetic order, which we now review.

7.1.1 Gravity formulation of a magnetic system

In the low energy limit of an electronic system, spin-orbit couplings become sup-
pressed and spin rotations are decoupled from spacetime rotations. Thus spin rota-
tions remain a symmetry even though the rotational symmetries may be broken by
a lattice or other effects. The low energy theory is then characterized by an SU(2)
global symmetry which describes the spin rotation and a U(1) symmetry describing
the charge. This SU(2) symmetry is of course only approximate and will be broken at
high energies. However, if one is only interested in universality classes describing only
low energy behavior (which does not involve spin-orbit couplings), this high energy
breaking will be irrelevant and one might as well replace it by a UV completion in
which the dynamics have an SU(2) symmetry that is exact at all energies.

Using the standard AdS/CFT dictionary, the conserved currents Jpa=1,23for
SU(2) spin symmetry and J* for U(1) charge should be dual to bulk gauge fields
making up a SU(2)spin X U(1)charge gauge group in the bulk. For simplicity, in our
bulk description we will consider a theory in which this SU(2) x U(1) symmetry is
exact to all energies. Modeling spin-orbit couplings and understanding how to take
into account the relation with spacetime symmetries are interesting questions which
will be left for future study (see also recent discussion in [107]).

We will be interested in studying the gravity dual of an “antiferromagnetic” phase
in a continuum limit. In such a limit the background value of the spin density is zero,
but there exists a staggered spin order parameter ®*,a = 1,2,3 which transforms as
a triplet under spin rotations. Its background value spontaneously breaks SU(2) to
the U(1) subgroup corresponding to rotations about a single axis. This leads us to
introduce a real scalar field ¢* transforming as a triplet under SU(2)spin (and neutral
under U(1)charge) @s the corresponding bulk field. A phase with vanishing SU(2)
gauge fields but with a normalizable ¢* # 0 in one direction can then be interpreted
as an antiferromagnetic (AFM) phase, or a spin density wave (SDW) phase in an
itinerant-electron context. A “ferromagnet” would have nonzero SU(2) gauge fields,
corresponding to a nonzero background spin density in the field theory; we also study
this by applying a source analogous to an external magnetic field.

Note that the spirit of this discussion is parallel to that of holographic supercon-
ductors in that the gravity description captures the macroscopic dynamics of the order
parameter and the symmetry breaking pattern, but does not explain its microscopic
origin.
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7.1.2 Quantum phase transitions in holographic models of
symmetry breaking

To describe the AFM order and its transition, we proceed in a way analogous to
the superconducting case. The magnetic case considered here involves a neutral
order parameter. Indeed, with the exception of superconductivity, most ordering
phenomena in condensed matter systems involve a neutral order parameter; other
examples include charge density wave order and Pomeranchuck instability. We are
therefore led to consider holographic phase transitions involving condensation of a
neutral scalar field in a finite density system. Here we again consider a charged black
hole which is dual to a boundary conformal theory at a finite chemical potential p
for a U(1) charge.

Setting ¢ = 0 in (7.1) one finds that § becomes complex if

d++vd
2

max (#,d - Ac) <A<A, = (7.2)

where d?? corresponds to the unitarity bound on a scalar operator in d spacetime

dimensions. On the gravity side this regime is where a scalar field ¢ satisfies the
Breitenlohner-Freedman (BF) bound [125] of AdS441 but violates the BF bound of the
near horizon AdS; region, as was recognized first in [101]. An elementary discussion
of the physics of the BF bound is provided in Appendix B.

In this chapter we construct the phase diagram for the condensation of such a
neutral scalar field in the T — A (equivalently, the T — m?, see Eq. (18)) plane.
For all A in the range (7.2) there exists a critical temperature T, below which the
neutral scalar field condenses. The phase transition is second order with mean field
exponents. For the standard quantization? in AdS4,;, we find that T, decreases with
an increasing A and approaches zero at A..

Thus if we allow ourselves to vary A through A., we find a quantum phase transi-
tion, as was previously noticed in [101, 108] in the charged case. Within the context of
a specific boundary field theory varying the UV conformal dimension A seems some-
what artificial: however the physics here is actually controlled by the effective mass
of the scalar in the near horizon AdS, region, and we later discuss several concrete
ways to achieve this. Interestingly, the quantum phase transition at A, is not de-
scribed by mean field exponents, but is instead of the Berezinskii-Kosterlitz-Thouless
(BKT) type [22] with an exponentially generated scale. More explicitly, for A ~ A,
at T = 0, there exists an IR scale

c dd—1
A]R ~ LEXD (—ﬁ) s C =T -2(A—_—; (73)

below which new physics appears (or in other words, the condensate becomes signif-
icant). From the point of view of the near horizon geometry AdS,, this behavior can

2The story for alternative quantization is more involved, see discussion in sec. 7.2 for details.

136



be understood from the discussion in [104, 126] which argues that for a scalar field
in AdS with a mass square below the BF bound, such an exponential scale should
generally be generated.> An explicit holographic model realizing this phenomenon
was also recently constructed in [127, 128]

(0+1)CFTg (0+1)CFT,4 2
A< A,

- IR ¢
AdSy (Rs)  AdS, (Ry)

Figure 7-1: A cartoon picture for the flow of the system induced by the condensation
of a neutral scalar field. The CFT, refers to the (0 + 1)-dimensional IR CFT of
the uncondensed system, described geometrically by an AdS, factor with radius Rs.
When the dimension A of the operator is close to the quantum critical value A,, the
system stays near this IR CFT for an exponentially long scale, before flowing to the
new fixed point, (0 4+ 1) CFTp, described by an AdS, factor with a different radius
Rs.

Below the IR scale A;g we show that the system in fact flows to a new IR fixed
point which is controlled by a (0 + 1)-dimensional CFT, dual to an AdS, with a
different cosmological constant determined by the condensed vacuum of the neutral
scalar field. In Fig. 7-1 we give a cartoon picture of this flow.

The nature of the ordered phase can also be characterized in terms of its collective
modes. The condensate breaks the global SU(2) — U(1): we show that the gapless
spin waves expected from such a breaking arise naturally in the gravity description,
and that they obey the proper dispersion relations.

The main focus of this current chapter is on the condensation of a neutral scalar;
however it is clear that one can immediately apply the above discussion to conden-
sation of charged scalar operators which give rise to the well-studied holographic

3At the BF bound an IR and UV fixed point, which corresponds to standard and alternative
quantization respectively, collide and move to the complex plane, in analogue with the BKT transi-
tion. Note that in our case the standard and alternative quantization described here refer to those

in AdS,.
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superconductors. Equation (7.1) implies that dialing A one finds a quantum critical
point at A, given by the larger root of (for standard quantization)

Ac(Ac - d) q2

1
dd-1) 2d-nta=% (74)

Again for A close to A, the system will linger around the IR fixed point of the
uncondensed phase for an exponentially large scale (7.3) before settling into new
fixed points. In this case the gravity description of the IR fixed points have been
worked out before for d = 3 in [129, 130, 131, 132] (see also [135]). The stucture
of the phase diagram will in general depend on the detailed form of the action, and
non-minimal couplings such as those typically found in stringy embeddings (e.g. see
[131, 132, 133, 134]) will change the results. It was found in [129] that for minimally
coupled scalar actions and potentials similar to ours and for ¢ small the system flows
to a Lifshitz fixed point with a dynamic exponent z ~ qiz, while for larger values of ¢
the system flows to another AdS, with a different cosmological constant. Combined
with the discussion above for the condensation of a neutral scalar field we thus find a
unifying picture for the quantum phase transitions for both charged and neutral order
parameters as presented in Fig. 7-2. Note that AdS; can be considered as describing
a d-dimensional theory with a dynamic exponent z = oo, while AdS, a theory with
z =1

A

Z=0oC
"©+1)CFT, .. omorr, 97°
z>1 :
" Lifshitz .‘~ (0+1) CETA q small
L
=
“@+1) CFT (0+1)CFT, 9large

A

Figure 7-2: Tuning the UV dimension of the order parameter we find quantum phase
transitions between a (0+1) dimensional IR CFT corresponding to AdS, in the un-
broken phase and various types of symmetry-breaking phases. The type of symmetry-
broken phase depends on the charge ¢ of the order parameter.

Note that in our above discussion we have imagined the existence of an “experi-
mental knob” which can be used to adjust the UV scaling dimension A of an operator.
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It is important to note that we do this purely for convenience, and the nature of our
discussion is completely insensitive to the precise realization of such a knob. The most
useful knob will likely depend on the UV geometry into which this AdS, is embedded.
For example, if one is studying a holographic superconductor an external magnetic
field will also allow one to tune the IR scaling dimension. A similar UV realization is
provided in a D3/D5 brane construction in [127], where a precisely analogous transi-
tion is studied. For convenience in the remainder of this paper we will simply imagine
that we are free to tune the bulk mass and thus directly the UV dimension of the
scalar. In Sec. 7.4.1 we give a simple model illustrating how this may be achieved.

A rough plan of the chapter is as follows. In the next section we describe a holo-
graphic phase transition corresponding to the condensation of a neutral scalar order
parameter in a finite density system in a probe approximation. In section 7.3 we
discuss some qualitative features of the effects of backreaction and the zero temper-
ature limit of our solution. In section 7.4 we discuss the quantum phase transition
that we find by tuning the UV conformal dimension. In section 7.5 we embed the
scalar solution discussed in sec. 7.2 into an SU(2) system describing the spin rota-
tional symmetry. We proceed to study the spin waves from spontaneous breaking of
the spin symmetry in the antiferromagnetic phase. In a probe limit we are able to
isolate the spin wave excitations directly in the bulk and find their dispersion rela-
tions. We do not construct a spontaneous ferromagnet; however in section 7.6 we do
show that if one considers aligning the “spins” with an external magnetic field then
techniques similar to those in section 7.5 can be used to find a spin wave which has a
quadratic dispersion relation, in line with field theoretical expectations. We conclude
in section 2.4 with a discussion of further directions.

7.2 Condensation of a neutral order parameter at
a finite density

In this section we provide a gravity dual description of the condensation of a neutral
scalar field in a charged AdS black hole geometry which describes the onset of a real
order parameter in the boundary theory at a finite density. We begin our analysis by
studying the transition at a finite temperature. While our discussion applies to any
spacetime dimension, for definiteness we will consider a (24 1)-dimensional boundary
theory.

7.2.1 Setup

To put the system at a finite density we turn on a chemical potential p for the
U(1)charge in the boundary. This is described on the gravity side by a charged black
hole with a nonzero electric field for the corresponding U(1) gauge field Bp. The
action for Bps coupled to AdS gravity can be written as

/ d'z/—g [R + i — R’GynGMN (7.5)
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with Gyn = Oy By — OnvBy and R is the curvature radius of AdS. The equations of
motion following from (7.5) are solved by the geometry of a charged black hole [89, 90],

ds? 1 dr?
% = grndaMda = r2(—fdt? + di?) + ﬁ'?‘ (7.6)
with 3 143 1
n_ 143
f=l4+—5——— Bt=u<1—;) (7.7)

where we have rescaled the coordinates so that the horizon is at » = 1 and all
coordinates are dimensionless (see Appendix 7.A.1 for more details). The chemical
potential and temperature are given by

p=Vanh,  T=2(1-n). (79)
4

7 is a parameter between 0 and 1, where n = 1 corresponds to the extremal black

hole with T = 0 and 7 = 0 corresponds to a finite temperature system with zero

chemical potential (and charge density).* In the zero temperature limit, the near

horizon geometry reduces to AdS, x R? with the curvature radius of the AdS, region

related to that of the UV AdS, by

Ry = —\% . (7.9)

As discussed in [101, 19], a neutral scalar field x can develop an instability if
the mass square of the scalar violates the near-horizon AdS; Breitenlohner-Freedman
(BF) bound, while still satisfying the AdS4 BF bound, i.e. ®

9 L., 3
—4<mR <-3- (7.11)

where the lower limit is the BF bound in AdSy4, the upper limit is the BF bound for
the near horizon AdS, region, and we have used (7.9) to convert from AdS, to AdS,
radii.

Once this condition is met, the scalar will want to condense near the horizon
but will be stable at infinity. The condensed solution will involve a nontrivial radial
profile for the scalar; we will see that at low temperatures the scalar will probe the
extreme values of its potential and nonlinearities in the potential will be important.
We choose to study a nonlinear Mexican hat potential with the Lagrangian for x

“Note that since we are considering a conformal theory, only the dimensionless ratio 4 is physi-
cally relevant, and it is clear that as 7 is varied from 0 to 1, & takes all values from 0 to co.
SFor general d boundary theory dimensions, equation (7.10) becomes

_dd-1)

dz 2 2
—T<mR< 1

(7.10)
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given by

1 1
L= gy |-5O0° - V(0 (12)
with -
m

Here m? is the effective mass near the point x = 0, and should be chosen to satisfy
the condition (7.11) (in particular, it is negative). M is a coupling constant and we
have chosen the constant in (7.12) so that at x = 0, there is no net contribution to the
cosmological constant. The precise form of the potential in (7.13) is not important
for our discussion below, provided that it does have a minimum and satisfies the
condition (7.11)°.

At zero temperature, we expect the scalar to condense until the value at the
horizon reaches some point near the bottom of the Mexican hat, at which point the
“effective AdSs mass” will again satisfy the AdS; BF bound and condensation will
halt. At finite temperature, we expect a phase transition at some temperature 7,
below which x condenses. Note that at the classical level the coefficient of the x*
term is arbitrary, as it can be absorbed into A in (7.12) via a rescaling of .

7.2.2 Phase diagram

We now seek the endpoint of the instability, i.e a nontrivial scalar profile for xy. We
first consider the finite temperature case and take )\ to be parametrically large so that
we can ignore the backreaction of x to the background geometry. We will discuss the
backreaction in section 7.3 and there we argue that this approximation is good even
at zero temperature.

The equation of motion for x(r) is given by
1
—0r (r*fd.x) — x(x* + m*R?) = 0. (7.14)

We are interested in a solution which is regular at the horizon and normalizable at
the boundary, which can be found numerically.

We first consider the asymptotic behavior for x near the horizon and the boundary.
We require the solution to be regular at the horizon, i.e. to have the expansion

X(r)=xn+xa(r—1)+:-,  ral (7.15)

At finite temperature the factor f in (7.14) has a first order zero at the horizon, i.e.
f(r) = 4xT(r — 1) + ---. Demanding that (7.14) be nonsingular then leads to a

5The condensed phase ¢ = 0 solutions without the stabilizing x* term in the potential were
studied in [101, 130]; at nonzero temperature these are similar to ours, but in the low temperature
limit the structure described in Section 7.3 — which depends critically on the existence of a minimum
to the potential — is not shared by those examples.

141



condition linking the near-horizon value of x to its derivative:

1
L 2 2p2
X = L0 + MR (716)
A choice of xj, fixes also x}, and thus completely specifies the solution.
Near the boundary » — oo, the linearized equation of (7.14) gives the standard
asymptotic behavior

x(r) = A2+ Br 2, r - (7.17)

A=g+\/m2R2+g : (7.18)

In the standard quantization A has the interpretation of the source’” while B gives
the response (®)4 of the order parameter & dual to x in the presence of source A.
Note that the mass range (7.11) lies within the range —3 < m?R? < —2 for which
an alternative quantization exists, in which the roles of A and B are exchanged [79).
The conformal dimension of & (i.e. the “dimension” of fluctuations about the point
x = 0) is given by A (standard quantization) and 3 — A (alternative quantization)
respectively.

with A given by

0.101 —_ A

005+

om_%_m—-m—‘bf 10 121314 Xh
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-010t -0.10

(a) A and B as a function of the hori- (b) B as a function of A: different
zon value of the scalar field xp. points on the curve correspond to dif-

ferent values of xp.

Figure 7-3: The constants A and B determine the behavior of the scalar profile
asymptotically. This is a representative plot where we scan the case m?R? = —2.1
and T = 0.00024 (with T'//T, = 0.22) by varying x». There is symmetry breaking
if A= 0 B # 0 in the normal quantization or if A # 0 B = 0 in the alternative
quantization.

The condensed phase for standard quantization is characterized by a normalizable
nontrivial solution with A = 0, and then B gives the expectation value of the order
parameter ®. For the alternative quantization we look instead for a solution with
B = 0, and A then gives the expectation value. The task before us now is to pick

"For example, in section 7.5 we interpret x as corresponding to the staggered magnetization, in
which case A can be interpreted as the staggered magnetic field.
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a value for x5, and then numerically integrate the radial evolution equation to the
boundary. As expected for a sufficiently low temperature, we find a nontrivial scalar
hair solution, which means that there will exist a Xn for which A or B vanishes, as
shown in Figure 7-3.

For the standard quantization we find a continuous phase transition for all values
of m? falling into the range (7.11); there is a nontrivial profile for x for T" smaller than
some temperature 7, and none for T' greater. In particular, as we increase m?, the
critical temperature 7T, decreases to zero as the upper bound in (7.11) is approached.
Precisely at the critical value m2R? = —%, we find a quantum phase transition: the
physics in the vicinity of this point is discussed in Sec. 7.4. The phase diagram for

standard quantization is plotted in Fig. 7-4.

Z

0.1

1073
107}

107°

10—]1 3

Figure 7-4: Phase diagram for the standard quantization. Note logarithmic scale
for T. C denotes the condensed phase and U the uncondensed phase. T, — 0 as
m? — m2, leading to a quantum critical point.

For the alternative quantization, the phase structure in the vicinity of the quantum
critical point at m?® = m? is the same as in the standard quantization. However the
global structure of the phase diagram is somewhat different; in particular the specific
value of the mass m?R? = —% plays an important role. This value of the mass
corresponds to the UV scaling dimension for which the first nonlinear (i.e. arising from
the ¢* term in the potential) correction to the near-boundary asymptotics becomes
degenerate with the term proportional to B. For m2R? < —f—g the phase structure is
as described above, but for m*R? > —21 one finds a new condensed phase in the high
temperature regime. In particular, the critical temperature T, appears to increase
with m?.  These solutions appear to be closely related to the thermodynamically
unstable scalar hair solutions constructed in [136, 137], which studied uncharged
black holes and thus correspond to the high-temperature limit of our construction.
As these new phases appear to involve UV physics and are not related to the low
temperature quantum-critical behavior that is the focus of this work, we defer an
in-depth study of these phases and the critical value m2R2 = —% to later work.
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7.2.3 Critical exponents

A continuous phase transition can be characterized by various critical exponents: in
the normal quantization with A the source and B ~ (®) the expectation value we
have the following behavior close to T:

1. The expectation value (®) o (T, — T)? with mean field value 8 = 1.

2. The specific heat: C o |T, — T|~* with mean field value o = 0.
3. Zero field susceptibility: 3—5%)] 4=0 X |T'— T|™" with mean field value v = 1.

4. Precisely at T = T, (®) ~ As with mean field value § = 3

There are also other exponents associated with correlation functions at finite spatial
or time separation which we will leave for future study. For our phase transition we
find that all of the above exponents are precisely those of mean field theory. See
Fig. 7-5 for numerical fits of exponent § and 4.

B
0030
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0.020
0015
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00051
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0.7 0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006

Figure 7-5: Top: Plot for exponent 3, defined as B ~ (T,—T)?. 3 = 0.49+0.03 from
numerical fit, compared with Bpean field = % Bottom: Plot for exponent ¢, defined as

B~ As at T.. 6 = 3.03 4 0.05 from numerical fit, compared with dmean field = 3-

The existence of mean field exponents in this classical gravity analysis is not
surprising® and can be translated into the statement that A and B are analytic
functions of the horizon field x,. This follows from the fact that x is regular at the
horizon and the black hole geometry is smooth; we will find a rather different situation
at T'= 0 in the next section.

We now sketch the relevant arguments for finite-7". As argued above, for small x4
we can expand A as

A ay(T)xn+ a2(T)xs + - - (7.19)

and similarly for B. Note that both A and B must both be odd functions of x, due
to the x — —x symmetry. At T,, a new zero of A should be generated at x;, = 0 and
move to a finite value of x; as T is further lowered.? Thus near T, we should have

8Mean field exponents also appear in the phase transition associated with a charged scalar field
in the holographic superconductor story [101, 139].
9In fact given x — —x symmetry, a pair of zeros are generated and move to opposite directions.
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a1(T) = a(T —T;) and as(T) = b+- - - with a and b having the same sign for T > T..
For T < T, then A has a zero for y, taking a value x4 given by

_ [ a(T) 1,
XA = 1/—m x (T, — T)} — 0. (7.20)

Using x4 as the initial value at the horizon gives the solution for the condensed phase.
Assuming that B is still linear in xp, near x; = 0, we thus find that

B(x4) o« xa o (T. — T)* (7.21)
which gives us the critical exponent 3 = % Turning now to the susceptibility, we find

B\ _ 4B dx
dA A=0 B dXh dA

leading to y = 1. Furthermore, precisely at T'=T,, A ~ ax3 and B stays linear near
Xn» = 0. Thus we find that at T =T,

~(T =T, (7.22)
A=0

B(xh) o x» o< A3 (7.23)

which gives the critical exponent § = 3. One can also compute the free energy using
holographic renormalization and indeed find mean field exponent F o« —(T,. — T)?
for T < T.. In particular, the analytic expansion (7.19) for A and B in terms of xj
guarantees that F' has the Landau-Ginsburg form.

Note that the gravity analysis can be extended to all spacetime dimensions with
the same mean field scalings. Presumably this has to do with the fact we are working
in the large N limit, which suppresses fluctuations. This is also consistent with picture
obtained in [19] in which the scalar instability essentially follows from a RPA type
analysis. We expect that a 1/N computation involving quantum corrections in the
bulk will reveal corrections to these mean-field exponents.

7.3 Backreaction and the zero temperature limit

In the usual studies of holographic superconductors, the scalar is charged under a U(1)
and so the usual probe approximation involves treating the scalar and U(1) gauge
field as negligible perturbations to the background metric. In these models lowering
the temperature essentially means increasing the ratio /T’; thus at sufficiently low
temperatures the gauge field (and thus also the condensed scalar) will necessarily
backreact strongly on the geometry, causing a breakdown of the probe approximation.
The zero temperature limit of the backreacted geometries have been constructed
[129, 130, 131, 132] and typically depend on the details of the couplings and charge
of the scalar. One recurring theme is that at zero temperature the charges that was
previously carried by the black hole is now completely sucked out of the hole and into
its scalar hair. Once the black hole horizon is relieved of the burden of carrying a
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large charge, it is usually replaced by a degenerate horizon with vanishing entropy.

In our model the situation is different. We always include the backreaction of the
gauge field on the metric, as we start from the beginning with the charged black hole
solution; it is consistent to solve for a scalar profile on this fixed background only
because the scalar is uncharged and so its contribution to the backreaction can be
cleanly suppressed by taking A large.

In this section we will discuss the backreacted solution in the IR at zero tem-
perature and argue that even if backreaction is included its effects are rather benign
and do not change any qualitative conclusions. This is essentially because all of the
charge must stay in the black hole itself, greatly constraining its near-horizon form.

First, we note that Gauss’s law states that

0, (\/——ggrrgttarAt) =0 — G V grrgttaTAt = const . (724)

Thus if the electric field is nonsingular at the horizon, g, must be finite there: this is
simply saying that the R? at the horizon cannot degenerate as it has a nonzero electric
field flux through it. We then expect that the near-horizon geometry factorizes into
the form M, x R2, where M, is some 2d manifold involving (¢,7). Now consider the
trace of the Einstein equation arising from the variation of (7.5) plus (7.12); the U(1)
field strength does not contribute to this equation as it is classically scale invariant,
and we find: 19 )

R+ 25 =53 (V)2 +4V(X)], (7.25)
where R is the Ricci scalar of the geometry and comes purely from the M, factor.
Now let us further assume that in the near-horizon region x asymptotes to some
constant value x5 (we will show this to be consistent shortly). We then find that M,
has constant negative curvature, and thus must be AdS,'° with radius R, satisfying

L v (7.26)

RZ R} A
where R, is the curvature radius of the original AdS, near horizon geometry of the
extremal charged black hole. Note that since V(x5) < 0, R; < Rp. Thus we see that
the backreacted IR geometry is very similar to the unperturbed geometry, except
that its AdS, factor has a radius that is corrected by the presence of the near-horizon
scalar potential.

Let us now study the scalar equation of motion (7.14) near the backreacted AdS,
horizon:
dv

Lo (rtfaq) = r24Y
rzér(r fo.x)=R ax (7.27)

where f is the warp factor for the backreacted geometry and at zero temperature has
a double zero at the horizon rp; expanding near the horizon we see that regularity at

10More precisely, it could also be an AdS, black hole; the true zero temperature solution corre-
sponds however to pure AdS,.
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the horizon requires
dV
dX (X(Ir TO)) 0. (7'28)

Thus we see that at the horizon x will sit at the bottom of its potential. To understand
how this AdS; region matches onto the asymptotic geometry, we expand x = x»+0(r)
where x3 is the bottom of the potential V(x). Now working in the AdS, region and
linearizing (7.27) near x; we find that § obeys the standard AdS; wave equation:

8, ((r — 10)%6,6) — R3V"(x4)3 = 0, (7.29)
whose solutions are . .
d=a(r—re) 2" + B(r —r)" 27 (7.30)
with
V= \/% + Rgv"(x,,), (7.31)

Now we would like x to approach ¥, as we approach the horizon; this means that we
should not take the 3 solution above, as it invariably blows up as » — 7y. Note that
for the o solution to also not blow up, we need —% + v > 0 and thus V"(x3) > 0. To
stabilize the AdS, region we must truly be sitting at a minimum of the potential at
the horizon. In this case the solution

X(r) = Xa + a(r —ro)"F (7.32)

can be interpreted as an irrelevant deformation of the new AdS, IR CFT that we are
flowing to'!. The value of the coefficient a is not fixed at this linearized level and
must be determined by matching to the UV solution.

We have not solved for the fully backreacted geometry but have used this method
to find a normalizable scalar solution on the T" = 0 charged black hole geometry using
the above exponents. Our results match smoothly onto the 7" — 0 limit of the profiles
calculated using the finite temperature matching procedure discussed in Section 7.2.
When A is large we do not expect the inclusion of the backreaction to qualitatively
change any of these results given the change of the cosmological constant is small.

It is instructive to compare this to the situation for charged holographic super-
conductors [129]. In this case for large charge it is found that the IR geometry flows
to an AdSy, while for sufficiently small charge it flows to a Lifshitz geometry, with

exponent z satisfying .
2 —
T~ (7.33)

at very small g (see Eq.(81) in [129]). We see that our AdS, solution corresponds to
z = oo at g = 0; increasing the charge we have a Lifshitz solution with finite z, and
finally increasing further we find 2 = 1 for AdS;,.

1Gimilar considerations are used in [129] to determine when an emergent AdS, can exist.
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7.4 A quantum phase transition from classical grav-
ity

We recall from the discussion in sec. 7.2.2 that when m2R? = —-—g-, the critical temper-
ature approaches zero: thus we should obtain a “quantum phase transition” at zero
temperature as m? is varied from above m2 to below. In this section we consider the
behavior near the quantum critical point from the condensed side. Our treatment in
this chapter while demonstrate the basic physics, and more precise calculations near
the critical point are performed in Chapter 8.

The accessibility of this quantum critical point depends on having the ability to
tune the IR dimension of the field x in some way. The simplest possible way is by
directly tuning the mass, and before proceeding we pause briefly to explain how this

may be possible in a simple bulk realization. A similar mechanism is discussed for
uncharged black holes in AdS in [98].

7.4.1 Tuning across the quantum critical point

Imagine that the scalar x contains a coupling to another scalar field %,

50> [ =g Py (7.3

where F (1) is some function whose detailed form will not be important for us. Now
consider turning on a constant source h for ¢ at the boundary, i.e. we require the
boundary value of 7 to approach h. In the boundary theory language this corresponds
to adding a term

/ &z hO(z) (7.35)

to the action with O the boundary operator dual to ¢. The source induces a nontrivial
bulk solution for %, which in turn contributes to the action of x as a mass term,
shifting the effective m2. However the new effective mass will typically be radially
dependent; we require it to be nonzero at the AdS, horizon. If we write the IR
dimension (7.1) of ¢ as

1
6¢ = —2' + Vi (736)

then the asymptotics of % in the near horizon AdS, region are
W~ (r—mo) T (7.37)

For 7 to be regular at the horizon we need to choose the + sign in the exponent. So
if vy, = % then 1 approaches a constant at the horizon, and turning on a source h for
% will change the effective IR mass of the field x. From (7.1), v is % if 9 is dual to
an operator with UV dimension A = d, i.e. it is massless in the bulk. Thus whenever
the UV CFT has such an operator with a nontrivial OPE with the order parameter
operator @, we expect to be able to tune the system through the quantum critical
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point by varying h in (7.35), i.e. there exists a critical value h. of h at which we expect
a quantum phase transition. It would be interesting to understand this mechanism
further. Also note that for type II theories in an asymptotic AdS geometry, a natural
candidate for % is the dilaton.

7.4.2 BKT scaling behavior and Efimov states

For m? < m2, the BF bound of the near horizon region AdS, region is violated. It
has been argued in [126] that for a general AdS gravity dual with mass slightly below
the BF bound conformality is lost and an IR scale Ay is generated exponentially as

Arp ~ pexp (_ \/ng;_ mQR%> . (7.38)

where p represents some UV scale that in our case is the chemical potential. This
exponential behavior is characteristic of the Berezinskii-Kosterlitz-Thouless (BKT)
phase transition. One expects that this IR scale controls the physics near the quantum
phase transition. In particular, the critical temperature T, and the value of the
condensate (@) should be related to this scale. Here we present a reformulation of
the arguments of [126] that demonstrates the behavior of T, and (®) explicitly.

We parameterize the AdS, region of the uncondensed geometry as

dsj  —di? +d2?

i = (7.39)
The linearized equation for the scalar about the point x = 0 is then
2 2 _ 2\ _ 1/4
"Ex + R2(m zgnc) / X = W2Xa (7.40)

where we have assumed time dependence e~**. This is essentially a Schrodinger
equation with “energy” w?: the existence of a negative energy bound state indicates
a mode growing exponentially in time and hence an instability, and it is a well-known
fact that if z can take values from 0 to oo then such negative-energy bound states
exist when m? < m2, leading to the BF bound.

In our problem, however, z does not take values on the whole half-line. At some
small UV value zyy we should match onto the asymptotic UV geometry. We will now
show that if we also choose an appropriate infrared cutoff zrr then even when m?
is below the BF bound (7.40) will have no bound states. To understand this, let us
assume for simplicity that y satisfies Dirichlet boundary conditions x(zrppv) = 02
and consider the zero energy w = 0 solutions to (7.40). We find that the solution is

12Note that more general boundary conditions simply result in slight changes in the value of g
and 2yv
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oscillatory (see also discussion in [104])

x(z) = /zsin [Rm/mg —m2log —| , (7.41)

v
and importantly, the zero energy solution satisfies the boundary condition only when

ZIR ™

zyv Rgy/m2 —m?2

Essentially we must fit a single half-period of the oscillatory wave function inside.
This wave function has no nodes; thus if 2;p satisfies this condition, then the lowest
energy state has zero energy and there is no instability. Decreasing the distance
between z;g and zyy will only increase the energy of the ground state. On the other
hand, if we increase this distance-if 2y is too high-then the ground state will have
negative energy, indicating an instability.

Now in our problem z;g can be provided by a small finite temperature, which ends
the geometry with a horizon at some large value z,. We thus find that if 2, > 215 as
defined above, there will be an instability that can be resolved only by condensation
of the scalar. The critical temperature T, is thus given by

log (7.42)

1 T
T.~— ~ pexp | ————— 7.43
Zp Hexp [ RQ\/mg—mz] ( )

where p ~ exp|zyv] is some UV scale. We have been able to confirm this numerically,
including the prefactor in the exponent (see Fig. 7-6).

T, exp (\/6 w/\/mBQF —m'~’>
[ ]
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Figure 7-6: The exponential dependence of T as a function of \/m2 — m?R;. Here we
have compensated for the expected theoretical behavior of T, and plotted the resulting
function versus m?; we see that as m? — m? the values approach a constant, verifying
our prediction.

What if T < T.? Now the IR cutoff cannot be provided by the horizon, and must
instead be provided by nonlinearities associated with the scalar potential, which will
become important near z;p. We then expect that the condensate (@) should itself
exhibit similar exponential scaling as (7.43), as was found explicitly in a similar
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context in [127]. We present here a simple way to understand this result. Note that
for m? only slightly below m?2 the IR theory is basically the original conformal IR
CFT for an exponential hierarchy of scales. In this IR CFT, x is unstable and has
dimension given by

1. 1
§= 5 +z\/m2R§ — m?R: ~ 3 (7.44)

Since x has dimension %, it should transform under a scaling transformation as
x(Az) = Azx(2) (7.45)

We expect that (@) should be simply related to the value of x(z) at the UV matching
value zyy, as essentially only linear UV evolution will be required to relate them, and
thus

(@) ~ x(2vv) (7.46)

Similarly, the value of ¢ in the deep IR will be determined by nonlinearities, which
we expect to result in

We thus find from (7.45) that
z
x(21r) = | = x(2vv) (7.48)
UV

which results upon evolution through the UV region to the AdS; boundary in

_UvV
(®) ~ | —— ~ Argexp
2IR

QRQ\/mZ — m?

Note that the exponent for (®) is half that obtained for T.. In the intermediate
conformal regime x scales as a dimension 1/2 operator and the temperature scales as
dimension 1: this is the origin of the factor of two difference in the exponents above.
Eventually in the far IR nonlinearities become important and a scale is generated,
but the theory is not gapped; provided that the scalar potential has a minimum, as
described in Section 7.3 it instead flows to a different AdS, fixed point, and the IR
scale manifests itself only as an irrelevant perturbation (7.32) along which we flow to
this new fixed point.

- t ] . (7.49)

It is possible to perform a more explicit calculation of (7.49), following the tech-
niques used in [127] where similar scaling is obtained in an AdS, that arises from a
D3/D5 brane construction. From such a treatment it is clear that there should exist
an infinite tower of “Efimov states” that correspond to allowing oscillatory solutions
such as (7.41) to move through more periods before matching to the IR solution.

2R2+/m2-m?
find the first two of these states numerically (see fig. 7-7); as explained in [127] the
relevant wavefunctions have more nodes with increasing n and so the n = 1 state is

These have (®) ~ [——L——} with n a positive integer . We have been able to
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energetically favored.

22 20 -18  -16 -14 M

Figure 7-7: Efimov states: for comparison we plot expected results from the analytic
arguments described in the text. Agreement can be seen at this level but numerical
difficulties prevent us from probing this region more carefully.

To conclude this subsection we note that turning on any finite temperature the
phase transition becomes that of the mean field, since the physics depended in a
smooth way on the horizon value of the scalar x;. At zero temperature since the
horizon is degenerate we expect the boundary values of x to depend on the initial
value « at the horizon in equation (7.32). It would be interesting to understand this
better.

7.4.3 Quantum critical points for holographic superconduc-
tors

Finally, note that the scaling behavior (7.43) and (7.49) also applies to the condensate
of a charged scalar, which results in the well-studied holographic superconductor.
In such a case the coupling to the background electric field is important; also one
now has the possibility of supplying an external magnetic field H for U(1)eparge™
The effect of the electric field on the conformal dimension is shown in (7.1), and
the generalization of this formula to include the effect of the magnetic field is (see
Appendix 7.A for a derivation),

1 m2R? v1i+1202 -1 1
e 2 -
d= 5+ \/ et (6]bg| — ¢?) o5 +7 (7.50)

13Similar exponential dependence of the critical temperature in such a case has been observed by
Faulkner and Roberts.

14 Note that this magnetic field is an external field strength for U(1)charge and has absolutely
nothing to do with the “magnetic” field associated with the antiferromagnetic ordering discussed
later in this paper, which would correspond to a chemical potential for the SU(2) gauge field Al
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m® R?

Figure 7-8: Contour plot of the critical magnetic field in the m?, ¢ plane. The color
indicates the value of H., with more purple indicating a higher field. In region A the
IR dimension even with H = 0 is real and there is no condensate. In regions B and
C there exists a finite magnetic field H, above which the condensate is destroyed.
However H, diverges as we move to the left and is infinite on the boundary between
regions C' and D. In region D even an infinitely strong magnetic field will not stop the
condensation. This is understandable: everywhere to the the left of the line m? = =42
the scalar has a sufficiently negative mass that it would have condensed even if it
was uncharged and so it is perhaps not unexpected that a magnetic field cannot halt
this condensation. In region C' again the scalar would have condensed even if it was
uncharged, but here the charge is high enough that a sufficiently strong magnetic field
can stop the condensation.

where b = ;Hr is dimensionless ratio between the boundary magnetic field H and

chemical potent1a115. Again the quantum phase transition will happen when 0 be-
comes complex. It is clear from here that there is a different critical mass m? than in
the neutral case; alternatively, one can now imagine tuning the magnetic ﬁeld through
a critical value H,, which is again found by setting the expression inside the square
root of (7.50) to zero. For H > H, there will be no condensate, and for H slightly
less than H,. one will find similar non-analytic behavior as above as a function of the
deviation of H from H.. The explicit expression for H, is rather complicated and is
given in (7.160).

We plot the critical values H. in the ¢ — m? plane in Fig. 7-8. Note in particular

that the expression in (7.50) containing b saturates at a finite value % as b — oo.

54 is the dimensional version of the dimensionless chemical potential p we were using earlier,
see Appendix 7.A.1 for further explanation.
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Thus if 3
m?R? 4+ v/3lq| < -5 (7.51)

no matter how large the magnetic field is, a condensate cannot be prevented. This
is region D in Fig. 7-8. This is understandable: everywhere in this region the scalar
mass is below the neutral AdS, BF bound m?R? = —% and so it would have condensed
even if it was uncharged. As the electric field is in some sense not responsible for
the instability, it may make sense that a magnetic field cannot halt it. It will be
interesting to find field theoretical models with this feature.

7.5 Antiferromagnetism and spin waves

We have understood in detail the mechanism by which a neutral scalar field can
condense in a finite-density geometry. We would now like to employ this new un-
derstanding to holographically model symmetry breaking with such a neutral order
parameter. One immediate example is antiferromagnetic order: as explained in the
introduction, in the low-energy limit of interest to us spin rotations may be thought
of as a global SU(2) symmetry. Antiferromagnetic ordering then corresponds to a
spontaneous breaking SU(2) — U(1), where the unbroken direction corresponds to
rotations about a single axis. In such a system the background value of the spin
density remains zero, but there is a neutral order parameter ®* that corresponds to
the staggered magnetism.

In this section we construct the bulk dual of the operator ®*: we embed the
neutral scalar field x discussed in sec. 7.2-7.4 into part of an SU(2) triplet scalar field
¢® charged under the SU(2) bulk gauge field corresponding to the global spin SU(2)
symmetry of a boundary theory. The phase transition discussed earlier then becomes
a transition to an antiferromagnetic (AFM) phase.

Note that while we use the word “antiferromagnetic” there is no sense in which the
microscopic degrees of freedom of our system consist of spins that are anti-aligned on
a bipartite lattice. We use the term to describe only the symmetry breaking pattern
described above, realized in a manner that manifestly requires a finite density for
symmetry breaking. We do feel that if indeed gravity duals could be constructed
top-down for such systems they would likely contain ingredients similar to those in
our description.

7.5.1 Embedding of x
More explicitly, we can consider the following action
S = Sgrav + Smatter (752)

with
6

1
Sgrav = '2—’; /d4ZB\/ —q (R + 7_{—2> (753)
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where R is the curvature radius of AdSs. The relevant part of the bulk Lagrangian
for matter fields is then given by

2x? | MNa MN
ﬁﬁmatter - —EFMNF - GMNG
1/1 o
= (.2.( D¢y — V(¢ )) (7.54)
with
Fin = Ou Ay — On A%y + AL A,
Gun = Oy BN — ONBuy, (7.55)
and
Dpyg® = Opy® + e“bcA'}V‘,qbc . (7.56)

We will take the potential V' to have the double well form of (7.12)
1 g = 1, =
V(g) =5 G+ 5B (7.57)

We again put the system at a finite density by turning on a chemical potential
for the U(1)charge, With a background metric given by (7.6). We note that in this
background all SU(2) gauge fields are inactive. This highlights an important dif-
ference between this setup and the usual U(1) holographic superconductor; in the
Abelian case there is a background chemical potential p for the U(1) charge; this
does not break the U(1) but does interact via the bulk equations of motion with the
charged scalar order parameter, causing it to condense for a suitable choice of mass
and charge. This is distinctly different from the SU(2) case studied here; specifying
a chemical potential for the SU(2) would involve picking a direction p® in the SU(2)
space, corresponding to an ezplicit breaking of the symmetry. This is analogous to
applying an external magnetic field. We study this explicit breaking in sec. 7.6 and
for now focus on the spontaneous breaking of SU(2).

When m? falls in the range (7.11), the background (7.6) becomes unstable towards
condensation of the scalar ¢*, which will then spontaneously break the SU(2) to a
U(1) subgroup. More explicitly, consider the following ansatz

b2 = (o,o, %) , @ =0 (7.58)

which can be readily checked by examining the equations of motion as being self-
consistent, if we ignore the backreaction to the background geometry. We note in
particular that one can consistently set the SU(2) gauge field to 0. This is because of
the non-Abelian nature of the interactions of the gauge field and scalar, e.g. f*¢, A,
etc. which clearly vanish if all objects point only in one direction in the SU(2) space.

Plugging (7.58) into the equations of motion following from (7.54) we precisely
find (7.14) and our previous discussion of the phase transition in sec. 7.2-7.4 can be
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taken over completely. Note that if we consider a finite A and turn on backreaction,
the profile for the U(1) gauge field in (7.6) and the background metric will be modified,
but one can still set the SU(2) gauge field to zero.

7.5.2 Spin waves

To characterize the ordered phase, we study in this section perturbations around
the symmetry breaking solution (7.58) with a nonzero order parameter ¢* but zero
background gauge field A%;. We show that the system has two linearly dispersing
gapless modes, corresponding in the field theory to the two Goldstone modes arising
from the spontaneous breaking of the global SU(2) symmetry, and that their velocity
is given by the expression expected from the standard field theory for a quantum
antiferromagnet. From the bulk point of view, low-frequency rotations of the order
parameter in the broken symmetry directions will source bulk gauge field fluctuations,
which we will find to be normalizable at the AdS boundary if they obey a specific
dispersion!®.

Our analysis for the remainder of this section will not depend at all on the details
of the metric or scalar profile (except that it is normalizable). We will work in a
general boundary spacetime with a bulk black brane metric given by

ds? = gyndzMdz = gudt® + g, dr® + gy, dT” (7.59)

We work at finite temperature with gy (g,-) having a first order zero (pole) at the
horizon r» = ry.

Let us begin by understanding why from the gravity point of view there should
exist a gapless mode. Consider a global SU(2) gauge rotation of the background
order parameter ¢3(r), at w =0 and k= 0.

83 (r) = eTapo(r) (7.60)

where 7¢,4 = 1,2 is a generator along one of the broken directions so that §¢* is
nonzero and € is a constant. This small perturbation will obviously be a solution to
the bulk gravity equations of motion; it is in fact a normalizable solution at the AdS
boundary, precisely because ¢§ is normalizable. This appears somewhat trivial-—but
note that this is exactly a gapless mode, as it is a normalizable solution that exists in
the limit w — 0. Now consider a local SU (2) gauge rotation with the gauge parameter
¢ having a small frequency and momentum in the z-direction, i.e. €(t,z) oc e=**+i=,
The perturbation to the scalar takes the same form (7.60), but now we have extra
perturbations to the gauge fields

SA} = —ijwe  0AL = ike . (7.61)

These are not normalizable at infinity, and thus this pure gauge transform is no longer

16Methods similar to those used here may be used to obtain analytic control over the hydrody-
namics of the U(1) holographic superconductor [146].
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a normalizable solution. Thus at any nonzero w and k to find a normalizable mode we
must move off of the pure gauge solution and actually solve the dynamical equations
of motion. The existence of the the global solution (7.60) guarantees that we as we
take w,k — 0 we will find a gapless solution, but the dynamical bulk equations of
motion will show that it will be normalizable only when a certain dispersion relation
w(k) is satisfied.

Pions in the bulk

The previous discussion has convinced us that the existence of the gapless mode is
intimately related to our ability to perform global rotations on the order parameter,
i.e. to bulk Goldstone modes. Let us thus parametrize fluctuations of ¢ in terms of
bulk Goldstone fields (or “pions”) #*(r,t,z) as follows:

$(r, 3) = exp(ir’(r,t, 2)")o(r) (7.62)

where ¢o(r) is the background solution and as before 7 are the broken symmetry
generators. We now work out the bulk quadratic action of the 7* to be!”

R2
S(m) = / \/ ggMN (Ot — Ay (O — Al hij (7.63)
Here h;; can be viewed as a metric on the Goldstone boson space, given by
2
hij(r) —¢0(7'){T.“T] }¢0( ) R2 zy (764)

Thus the two Goldstone modes decouple. Below we will focus on one of them and
drop the index ¢ for notational simplicity.
The equation of motion for 7 is then

m (X°vV=99"" (Oym — AN)) =0 (7.65)

It is clear that in the limit w,k — 0, a constant pion profile w(r) = m and vanishing
gauge field A = O provide a solution to the equations of motion. This is the gauge
transform discussed earlier.

Let us now briefly detour to discuss the asymptotic behavior of the pion field.
Carrying out the standard analysis and using the fact that the background solution
is normalizable'®: x(r) ~ r~2 for large 7, we find that as r — oo.

m(r) ~ B+ Ar~?2  r s (7.66)

To understand this it is useful to remember that fluctuations in the original field
d¢(r) are related to 7 as é¢p(r) = w(r)'T'do(r) ~ w(r)r—2. Comparing this to the

17 In writing this expression we have assumed that the background gauge field is zero; thus we
have neglected intrinsically non-Abelian terms of the form f2*m, A, which all arise at higher order.
18We restrict ourselves to the ordinary quantization for this section.
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asymptotic behavior of the scalar (7.17) we see that the constant piece B of 7 at
infinity is actually normalizable, while the piece A is not normalizable and should be
viewed as the source for the pion field.'®

Yang-Mills equations

Fluctuations of 7 will excite the non-Abelian gauge field A%,(r, ¢, z), whose linearized
equations are

1
gVMFMN + x%¢"F(8pm — Ap) =0. (7.67)

Again we have suppressed the index ¢ which labels the broken generators, since at the
linearized level different directions decouple. We have absorbed various factors into
a rescaled gauge coupling

1 R

G 9
which controls the strength of the effects of the scalar sector on the gauge field. We
could of course always choose a unitary gauge to get rid of the Goldstone boson 7—
but to make the connection to boundary Goldstone modes more obvious we will not
do this and instead choose the gauge A, = 0. It is convenient as in [14] to work with
the momenta J* conjugate to the bulk gauge field A4, defined as®

(7.68)

1 1

J’u = =5 —gF“r - —7\/—_99"9""@14:/ . (769)
ga ga

The value of the bulk field J# at the AdS boundary r — oo is equal to the expectation

value of the field theory current (J#)qrr.

The N = r component of the Maxwell equations (7.67) can now be written

O J* = —/=9g" " x*(r)0,m . (7.70)

If the symmetry is unbroken then x = 0 and this is nothing but the conservation
of current. Let us now consider evaluating this expression at the AdS boundary.
Comparing (7.70) to the asymptotic behavior of = in (7.66) we see that the entire
right-hand side of this expression is proportional (with no extra factors of r) to the
coefficient A in the near-boundary expansion of =, i.e. to the source for the Goldstone
boson field. This is simply the usual field theory Ward identity, which says that in
the absence of a Goldstone source the field theory current is conserved.

The other nontrivial equations from (7.67) are those in ¢t and z directions with

19t is amusing to note that computing the momentum conjugate to 7 precisely extracts out the
source in this case, in exactly the same way that it extracts out the vev in the more familiar case of
a standard massless scalar.

20For convenience of discussion here we have chosen a different normalization for the currents
below.
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nonzero A,(r,t,x) and Ai(r,t,x) only, given by

—0,Jt + g_iQVzF‘”t + \/—ggttxz(c‘?tvr —A)=0 (7.71)
A
1
—0,J% + §—2VtFt” ++/=99"x} (O, — A) =0 . (7.72)
A

Equations (7.65) and (7.70)—(7.72) are the full set of equations for this system.

Boundary Goldstone modes and their spin wave velocity

We will now solve the above equations in the hydrodynamic limit to show explicitly
the existence of a Goldstone mode, i.e. a normalizable solution to (7.65) and (7.70)—
(7.72) that is infalling (or regular) at the horizon and exists in the limit of small w or
k. We work in Fourier space

= 7z_(1,,)e—-iwt+1’k::¢: At,x — At1z(r)e—i<ut+ikz: (773)

Recall that at precisely 0 frequency and momentum we already know a solution to
these equations: a constant pion profile n(r) = mp and A = 0. We now expand
around this solution in powers of w and k. To lowest order we simply solve the forced
equations for A given by (7.71) and (7.72) with the forcing term provided by the
zeroth-order solution for 7, meaning that

Ai(r) ~ O(wmo), Az (r) ~ O(mok). (7.74)

The first correction to w(r) enters through (7.65) and involves one extra field theory
derivative, and thus we see that

7(r) = mo + m1(r) 71 () ~ O(mew?, mok?) (7.75)

The solution we want for A is both infalling at the black hole horizon and normalizable
at the boundary; such a solution is nontrivial because of the forcing term?! and is
given by:

Ay = —iwmg (1 — ay(r)), Az =tkmo (1l — ax(r)) (7.76)
where a; and a, are defined to be infalling at the horizon and satisfy the homogenous
part (and zero frequency) part of (7.71) and (7.72):

( V- grrgttarat /[ gtt 2a =0 (777)
— o \/—gg”g’“”@raz —V=99"x%a; = (7.78)
A

210f course as the force o vanishes the only solution that is infalling and normalizable becomes
the trivial one A = 0.
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To ensure that A; and A, in (7.76) are normalizable we also require that

ai(o0) = 1, ag(o00) =1. (7.79)

The corresponding equations for the pion profile are
T = WmCHr) + k*moC*(r), (7.80)

where the dynamical equations for C* and C® can be written from (7.65) as expressions
for the radial independence of two objects o and o®:

1
80" =0, o = —/=gx*¢"8,C" + 7V —g99"" 9"*0,a, (7.81)
A
8.t =0, o = /—gx°9"0,C* - gig\/ —99"9%0,a; (7.82)
A

The precise form of these equations turns out to not be important: the crucial fact is
that C%* are essentially driven by a;., and so we can find solutions to them that are
also infalling and normalizable-where normalizable in this case means that the term
x20,C=* vanishes at infinity (as explained in the discussion around (7.66)).

So far it appears that we have found a solution that is both infalling and normal-
izable, for all small frequency and momenta. This should not be possible, and indeed
we have yet to impose the constraint (7.70). We find then the relation

=0kt = %z (7.83)
Qy
This is consistent only because of the radial independence of a, and «;, which away
from the boundary involves fluctuations of the pion field. Thus we have shown that
there exists a normalizable infalling mode provided that w, k obey a linear relation.
This is our main result.

It is convenient to evaluate (7.81) and (7.82) at r = oo, where the terms depending
on C** do not contribute, which leads to

1
ay = 7 lim v/—gg"" ¢°*0,a,, (7.84)
4 T
1
= A lim v/=gg™"¢%0,a; . (7.85)
A r—0o0

Note that this is equivalent to the statement that at the boundary the right-hand
side of (7.70) vanishes—in the absence of a Goldstone boson source the current is
conserved. Recall that a;,a, obey the zero frequency and unitary gauge infalling
wave equations. It was shown in [14] that on such a field configuration at infinity
the ratio of the current J,: ~ d,a,, to the field a;; (which are unity in this case
from (7.79)) itself is simply the field theory Green’s function for the current. We thus
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conclude that

@z = AR*Gp(w = 0,k = 0), (7.86)
Qp = —'>\R2Gtt(w = 0, k= O) (7.87)

where
G#V(w7 k) = (jll(w7 k)]V(—w’ k))retarded (7'88)

are momentum space retarded Green function of the spin current j, along a symmetry
broken direction. We thus find that the spin velocity v, can be written as

vs = ( Can(w =0,k = 0)))1/2 . (7.89)

—Gﬁ(w = O,k =0

This is the expected expression for an antiferromagnet. In particular, recognizing
that [142, 143, 141]

ps = Gax(w=0,k=0), x1L=—Gu(w=0k=0) (7.90)

where p; is the spin stiffness and y, transverse magnetic susceptibility, we recover

the standard expression
Ps
vs = - . 7-91
VL (7.91)

Note that equation (7.76) has a simple boundary theory interpretation: j, o< d,mo,
as expected for the superfluid part of the current density. In our probe analysis, there
is no normal component. Also note that our analysis above gives a nice correspon-
dence between the Higgs mechanism in the bulk and the dynamics of Goldstone modes
in the boundary theory.

7.5.3 Evaluation of spin wave velocity

We now evaluate G, and Gy to find the spin velocity. It is convenient to derive
a flow equation for them as in [14]. We start with a,; examining the near-horizon
behavior of equation (7.77) we see that for the solution to be nonsingular we need

Oraz _ G5X°

o, ixT (7.92)
where T is the temperature. Introducing
1 AT :tz:ara':c

Go(r) = X399 (7.93)

g A a:z:

from (7.78) we find G, satisfies the flow equation

=2 g2 r

8,G:(r) = V=gg™x* — —4 () (7.94)

V—99"" g**
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This equation should be integrated from the horizon (where from (7.92) we have
G.(rn) = 0) to the AdS boundary, where it is equal to the Green’s function Gl =
O,k = 0):

Similarly to above, for a; we introduce

H(r) = -2 (7.95
r)= ;
¢ _ggrrgttar a

This is convenient, as at the horizon a; = 0. The corresponding flow equation for H,

1S
=3

= ‘\/% — Hi(r)vV—99"x* (7.96)

and it should be integrated from the horizon, where the relevant boundary condition
is H¢(rn) = 0, to infinity. In terms of (7.93) and (7.95) the spin wave velocity (7.89)
can be written as

O, Hy(r)

Vs = (—Ga(00)He(00))? . (7.97)

Evaluation of this requires knowledge of the scalar profile and can only be done
numerically; some representative plots are shown in fig. 7-9.
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Figure 7-9: Spin wave velocity as a function of T'/T, for various values of the rescaled
gauge coupling ga: g4 is varied from 1 (lowest curve) in unit increments to 4 (highest
curve).

It is interesting to see what happens near the phase transition, where we have some
analytic control; here we have x? ~ (T — T.) from earlier results; now examining the
flow equations we see that H;(co) remains finite in this limit, and is in fact given (up
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to corrections analytic in (T — T,)) by

c_ g _1
w V—997g%  E
where = is the spin susceptibility in the unbroken phase. The second equality in (7.98)
follows from the U(1) analysis in Appendix D of [14]. On the other hand for G, we

find from (7.94) that near the transition G, ~ (T — T.). Thus the nonlinear term in
the evolution can be neglected, leading to

—H, = — (7.98)

G, (00) = / dr V=gg"x? . (7.99)
o
We find then near T,
1 o0
1;3 — E/ dr ,/—gg’”“X2 x(T-T) . (7.100)
Z Jr

Note that above T, ps = Gz (w = 0,k = 0) becomes identically zero. It would
be interesting to extend this analysis to understand what happens to the spin wave
velocity at zero temperature near the quantum critical transition.

7.6 External “magnetic fields” and forced ferro-
magnetic magnons

We have constructed a gravity description of the spontaneous breaking of an SU(2)
symmetry—analogous to the Neel phase in a spin system—and displayed the associated
spin waves. In this section we turn briefly to a ferromagnet. A ferromagnet can
be understood as a system undergoing spontaneous symmetry breaking in which the
broken vacuum is charged under the unbroken generator. The spin waves in this case
possess a quadratic dispersion w ~ k2.

This setup is not straightforward to realize in holography—the spontaneous gener-
ation of a nonzero spin density means that essentially one now wants the unbroken
non-Abelian gauge field itself to condense, without supplying any external chemical
potentials. We leave this for future work.

In this section we consider something simpler-imagine applying an external mag-
netic field H to a sample containing spins, forcing them to align along the direction
of the field. In our setup this corresponds to picking a direction in the SU(2) space
— we will pick the 3 direction — and supplying a chemical potential  ~ H for the
gauge field in that direction (in this section only g refers to the chemical potential
for the non-Abelian gauge field; we will set the U(1) chemical potential to O here, as
it does not play an essential role). It is interesting to note that this model has been
studied before: it is precisely the “normal phase” of the holographic p-wave super-
conductor studied by [140], but our interpretation is different: in particular in those
models a U(1) subgroup of the SU(2) is usually taken to be electric charge, which
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is quite different from our approach. We will show that small fluctuations around
such a configuration exhibit spin waves whose dispersion is not gapless, but whose
dependence on momentum is indeed quadratic.

7.6.1 Gravity setup

We consider a generic spacetime metric (7.59) and a nontrivial non-Abelian gauge
field profile

A(r)=pa(r) ear—>0)=1 ar) =0, (7.101)

with all other matter fields turned off. In particular the scalar ¢* is uncondensed
and will play no role. We will also set the gauge coupling g4 to 1 as when the scalar
is inactive ga plays no role in the classical dynamics that follows. The profile a(r)
solves the equation

1

0, (V=99 ¢"0,a(r)) =0 7.102
= J¥=_/"g9"¢"8,A} = const (7.103)

where as above J* is the canonical momentum conjugate to A2 and gives the expec-
tation value of the spin density 7% in the boundary theory as (j%) = J3(r = o0).
For simplicity, we will ignore the backreaction to the background metric, requiring
that both u and J are small when expressed in units of the temperature. Note that
p and J3 are related by the spin susceptibility =

(G = u=, (7.104)

with = given by (7.98).

We will now slightly perturb this solution. We do not expect to find a gapless
mode, as we have an “external magnetic field”; however at k = 0 we do expect to
find a normalizable mode with w = p. To see the existence of this mode consider
performing a gauge transform on the background (7.101) with infinitesimal gauge

parameter A°:
§A%, = N AL, + O A® (7.105)

It is convenient to work with the linear combinations
At =AY+ A% (7.106)

as these are charge eigenstates under the rotations in the 3 direction for which we
have supplied a chemical potential. If we assume a time dependence of the form e~**
for A* we find the resulting A} can be written as

Af = A(A3 — w)e™™* (7.107)

where A is an overall (complex) constant. This perturbation is generically not nor-
malizable at the AdS boundary; however if we demand that A} vanish at r — oo
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then this fixes the frequency and we find
w=u, Af(t,r) = Ap(a(r) — 1)e ™ = AAy(r)e (7.108)

Thus there is a normalizable mode at w = p with the specified radial profile A;(r) =
p(a(r)—1)?2. We will now turn on a small & to see how this mode evolves; as expected
for a system with a background spin density, we will find that the frequency has a
quadratic dependence on k.

7.6.2 Dispersion relation for the ferromagnetic magnon
To do this, we will need the full bulk Yang-Mills equations:

1
—— 0y (V—=gF*™MN) 4 ot gb peMN _ ) | 7.109

The presence of the background gauge potential A2 can be conveniently taken into
account by defining a gauge-covariant partial time derivative d; that acts in the
basis as

dAf, = (8, +iAY) AL, . (7.110)

We give all fields a spacetime dependence e™#e=®%+#=  Here O = w — p will
parametrize deviation from the w = p solution found above. The relevant equa-
tions of motion are those in (7.109) for N = (r,t,z). We will work again with the
bulk canonical momenta, defined as before:

JH = —=gF*" = —\/—gg"g7 0. A}, (7.111)
JY* = —\/[—gF*'"™® = —\/—gg"®g"" 0, A} . (7.112)

We first examine the N = r component of (7.109), which can be written as
deJ*E+ 0,0 = i3 AS. (7.113)

This equation is a bulk constraint that reduces on the boundary to the non-Abelian
conservation of current. The remaining dynamical equations are

1
—\/__—ga,ﬁt + 0, F* =0 (7.114)
—1_-—6,J+’” +dF* =0 (7.115)

V-9

Only one of the components of the field strength tensor is affected by the gauge field
background:

F = 0,4 — dyAY = ikA} — (ip(a — 1) — iQ)AF . (7.116)

22The existence of such a mode was observed before in [140] in the context of conductivity of a
p-wave superconductor.
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We now want to perturb around the w = p solution found above. We thus turn on a
small k-dependence in (7.108) and consider a perturbation of the form

Af = e e MRT (A0(r) + Aa(r;w, k) + - - -) (7.117)

where Aw(r) ~ (a(r) — 1) is the previously found profile in (7.108). Recall that
Q = w — p parametrizes departure from p and will be the small parameter in the
expansions that follow. A nonzero A} will also excite an A} which we take to have

the form S

Al = AF(r; Q, k)e e ke (7.118)
The other components of the gauge fields can be consistently set to zero except for
Aj,, which are related to A, by complex conjugation.

To obtain the magnon dispersion relation we will expand the above equations to
lowest order in the  and k expansion and look for solutions that are both infalling
(or regular) at the horizon and normalizable at the AdS boundary. These equations
will have the same structure as in the antiferromagnetic case above; we will find

second-order radial equations for A} and the correction A;; that are forced by the
known solution Ag.

More explicitly, plugging (7.117) and (7.118) into (7.114)—(7.115), and expanding
them in powers of 2 and k, we find that

AF(r) ~O(k),  Aw~O(K? (7.119)

We thus introduce the following

Af(r)=k (1 — ff(-(%) , An(r) = k2au(r), (7.120)

Here by construction A} is normalizable, and from (7.115) we find that a,(r) satisfies
the homogenous equation

1
—“—81- - g""f‘gmmarax - 2 o — 1 Zgtt zzaz - O‘ 7'121
W (V=g ) — 1¥(a—1)"g"g (7.121)

There is a forced radial equation for the correction to Ay profile au (), but we will not
need to solve it explicitly to find the dispersion, analogous to the antiferromagnetic
case where the correction to the pion profile was not explicitly needed.

L
Ve

It is of course critical to note that an infalling and normalizable solution to this
equation can always be found.

8 (V=997 g"0:an) = ple — 1)g"g"%a, . (7.122)

We now impose the constraint arising from the conservation of current (7.113).
Again it is simplest to evaluate it at the AdS boundary first; here the right-hand side
of (7.113) vanishes (as by construction we are looking at a normalizable solution with
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A (c0) = 0). We find the dispersion relation

1 .. /—997"g"0ra;\ ,,
Q:w-—‘u: (ﬁt-'rli»n; az(OO) k

This is the desired dispersion relation.

(7.123)

Let us briefly understand the physical origin of the differences from the linear
and gapless dispersion found in the antiferromagnetic case. The dispersion is not
linear because the background value of J® is finite in the w — 0 limit, unlike in
the antiferromagnetic case where it is proportional to w: this means that we are
now balancing a term of order w against one of order k2, rather than a term of
order w?. The mode is not gapless because at infinity the gauge-covariant derivative
dy = 8, +1A? — —iw + ip, resulting in a shift in w. These considerations lead us to
expect that if one were able to create a situation with a nonzero J3 in the absence of
a background chemical potential — i.e. a true spontaneous ferromagnet — one would
find precisely the gapless quadratic dispersion of the standard ferromagnetic magnon.

Note that we can interpret the expression (7.123) in terms of field theory quan-
tities. Again using expressions from [14], we can rewrite the ratio of 8,a, to a, in
terms of a field theory correlator to find

Q= (GR(“’ — J’f k= 0)) k2, (7.124)
3
with
GRw,k) = (jH (w, k)i7 (~w, k) .. 4y (7.125)

i.e. GE is the field theory retarded correlator for j} evaluated at the nonzero fre-
quency w = pu. The prefactor of the quadratic dispersion is consistent with the
expected result for a ferromagnet [144].

We now evaluate the constraint (7.113) at arbitrary r. Now the right-hand side
no longer vanishes, and we find

Q=w—pu=k? (7.126)

where

B /_ggrrga;xcf)raz (,,.)

az(00)

= —% <#(a —1)v/=g9" 9" 0:au(r) ) +aa(r). (7.127)

It can readily checked from (7.121) and (7.122) that ~ is independent of r, and
evaluated at 7 — oo we find that v reduces to the expression in (7.123). Again,
even though we did not need to explicitly solve for a;1(r) to find the dispersion, its
fluctuations are essential to make sure that the constraint from non-Abelian current
conversation is upheld at all points in the bulk.
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7.6.3 Evaluation of dispersion

We now turn to the evaluation of the dispersion . This bears a large formal simi-
larity to the evaluation of conductivities studied in [14]. We consider the following
“transport coefficient” defined at all values of r:

_ V997" 0:az(r) (7.128)
ipas(r)

o(rp) =

The motivation behind this name will soon be made clear. Q) is simply related to the
boundary value of this object:
o tolr = oo ) (7.129)

=
-

where we have used (7.104). From (7.121), we find that o obeys a simple radial
evolution equation,

2
. gr (O 2
Oro =1 ——Y(a—-1)*), 7.130
p —gﬁ(z ( )) (7.130)

with

— -9 TT

%(r) = — (r) (7.131)

and at the horizon the value of o is fixed by the infalling boundary condition to be
o(rh; ) = 3(ry) (this is explained in detail in [14]).

Before considering general p, let us consider the limit 4 — 0, in which case
0,0 = 0, o becomes constant in r, and is in fact equal to the normal (Abelian)
DC conductivity opc of a U(1) current on this background. Thus we find for the
“magnon” dispersion (7.123)

w = —ik2Z2C (7.132)

—
—

This relation is not surprising; when taking p to O we are removing all non-Abelian
effects and returning to the zero density system, and (7.132) simply describes the
diffusion in the longitudinal channel of a U(1) current. The diffusion constant is seen
to be 222, as is required by the Einstein relation.

For generic p we must evaluate this expression numerically. In this section alone
for simplicity we work with the normal AdS-Schwarzschild metric in coordinates with
7 set to 0. We do not require the RN metric here; even in the absence of a net
U(1) charge, one can imagine polarizing thermally excited “spins” with an external
magnetic field. We do not expect inclusion of a U(1) charge to qualitatively change
the results. We work in units where both opc and = have been set to 1. The results
of the numerical evaluation are shown in Figures 7-10 and 7-11 as a function of p/T.

Perhaps the most obvious feature of these diagrams is the v has a large imaginary
part, corresponding to a strong dissipation. This is due to the fact that we are
evaluating our bulk equations as a perturbation about a nonzero frequency w = u;
these waves are infalling at the black horizon and result in a large dissipation. We

168



Imy

Nl®

(a) Rewy (b) Imy

S LR e L
r
S
-]
l

Figure 7-10: The real and imaginary parts of v are shown as a function of p/T. Note
as . — 0, v — —i as required by the Einstein relation.
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Figure 7-11: Movement, of ¥ 1n the complex plane as w/T is varied from 0 to 40.

expect that if we were able to construct a true spontaneous ferromagnet with y = 0
then our bulk equations would be evaluated at w = 0 and 7 would then be both real
and gapless.

As mentioned earlier, this model is the normal phase of the holographic p-wave
superconductor of [140]. According to their discussion, at sufficiently large & (roughly
% ~ 15.9 in our units) this system becomes unstable towards a condensate of the
vector fields AL?. It would be interesting to understand further such a condensate —
in our language, a persistent spin current — from the magnetic point of view taken in

this paper.

7.7 Conclusion

In this chapter we studied holographic phase transitions associated with condensation
of a neutral order parameter, both at finite temperature and at the associated quan-
tum critical point. We also considered the embedding of the neutral order parameter
into the staggered magnetization for an antiferromagnetic phase. We show that at
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the macroscopic level one recovers the expected features of the antiferromagnetic
phases including existence of two gapless spin waves and their dispersion relations.?
A similar discussion in a forced ferromagnetic phase reveals spin waves with quadratic
dispersion relations which again agrees with field theoretical expectations.

One might be surprised at some aspects of this transition; in particular, note that
we have an ordered phase in a (2 + 1)-dimensional field-theory at finite temperature.
This appears to be in conflict with the Coleman-Mermin-Wagner theorem [145], which
states that fluctuations of the Goldstone mode should destroy ordered phases in (2+1)
dimensions at finite temperature. It seems clear that this is an artifact of the large- N
approximation, which has the effect of freezing fluctuations. The resolution of this
problem is discussed (in the context of a broken U(1) symmetry) in [146], where
the bulk mode that corresponds to the Goldstone mode of the boundary theory is
constructed. This mode is precisely analogous to the spin waves constructed in this
chapter. It is shown there that the quantum fluctuations of this bulk mode do indeed
restore the symmetry over distances that are exponentially large in 1/N2.

Now while we studied the ordered phase in detail we did not yet discuss extensively
the nature of the quantum critical point. In the vicinity of the critical point one
expects to find extra gapless modes. As the quantum critical point is of a somewhat
novel nature one also expects the gapless modes to be somewhat special, and it is to
a discussion of this critical behavior that we turn in the next chapter.

7.A Effect of magnetic field on IR conformal di-
mension

In this appendix we outline the derivation of (7.50) demonstrating the effect of a
background magnetic field on the IR conformal dimension of a charged scalar field.

7.A.1 Dyonic black hole

We will need to consider the effect of the magnetic field on the geometry. Turning
on such an external boundary magnetic field for the U(1) current dual to the bulk
gauge By in (7.5), the corresponding bulk geometry becomes that of a dyonic black
hole with both electric and magnetic charges,

2 R2 d 2
ds? = gynde™dzN = %(—fdt2 + d7?) + —ﬁ% (7.133)
with O iP M
+
R (7.134)
_ 7o - P _ Q
By = pp (1 7) , Bp= Y kB = Rerg’ (7.135)

23 As discussed earlier these features only depend on symmetry breaking pattern and not details
of the microscopic theory.
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7o is the horizon radius determined by the largest positive root of the redshift factor
f(ro)=0, — =rg+-—-". (7.136)

The geometry (7.133) describes the boundary theory at a finite density with the
charge density p, energy density €, entropy density s, respectively given by

Q M 27 To 2
g 2—, = e - —= (—) . .
P Kk*R2gp ‘“Ter *T 2 \R (7.137)
The external magnetic field H and temperature T are
P 3ro Q2 + P?
H=— = ]—=-1}. 1
RY’ T An R? ( 3rg (7.138)
pp in (7.135) corresponds to the chemical potential of the boundary system.
It is convenient to work with dimensionless quantities by introducing
Q=prs, P=nhr (7.139)
and rescaling coordinates as
R2
r—rry, (t,%) — —T-—(t,:i") (7.140)
0
after which equation (7.133) becomes
ds® o oy . 1dr?
with 3 1+3 1
_ n n _ _
f—].‘*";z— 73 Bt—[lz(l—;), Bx—'—hy (7.142)
and
3n=p>+h2. (7.143)
Setting h = 0 above one recovers the metric (7.6) used in the main text.
We will be interested in the system at zero temperature, for which
Q*+P>=3rt or p2+hn*=3 (7.144)
and the near horizon region becomes AdS; x R? with curvature radius
R
Ry=—. (7.145)

V6

Note that in the zero temperature limit, due to conformal invariance of the underlying
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vacuum theory the physically relevant quantity is the dimensionless ratio

H_h (7.146)

b
py P

Using the second relation in (7.144) we can then express bulk quantities like A (and

thus g) in terms of b,
V1I+1202 -1

h= .
% (7.147)
7.A.2 Scalar operator dimension in the IR
Now consider a scalar field in AdS, of charge ¢ and mass m, with an action
S=— / d*zy/—g [(Du®)* D¢+ m?¢* 4], (7.148)
where the gauge-covariant derivative satisfies
Dy = (Om —iqBum)d - (7.149)
Note that the action (7.148) depends on g only through
ke=pq, hy=hg (7.150)

which are the effective chemical potential and effective magnetic field for a field of
charge q.

This problem is now similar to a Landau-level analysis from elementary quantum
mechanics. After separation of variables using

¢ = e WY ()X (1) , (7.151)
we find that the equations of motion can be written as

- _r-l_g‘ar(\/—gg"arX )+ (—g"u? +m* + g"N) X =0
—OBY + (12— N) Y =0

(7.152)

with .
v(y) =k +hy, ulr)=, L (w + 1 (1 - —)) . (7.153)

—9tt r

One then finds that

2 k
) = F m©,  e= il (v+5) (1159

q

with H, the usual Hermite polynomials. X (r) is a radial profile that satisfies the
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scalar wave equation with zero magnetic field h = 0, except that the momentum k&
on each constant-r slice has been discretized into Landau levels:

k* — 2|h| (n-l—%) , n=0,1,--- (7.155)

A similar discussion can be applied to the AdS; region, where one finds that each
Landau level has an effective mass given by

1\ 1
m2 =m? +2|h,| (n—l—§> 7 - (7.156)

The rest then follows exactly from the analysis in [19], and the IR dimension for ¢ is
given by

1
8B = >+ B (7.157)
with
(B) _ 2p2 _ @ .1_
v \/mnR2 =t (7.158)

Let us examine a bit more closely the n = 0 mode, which is the most likely to
condense,

22 VITIZE—1 1
P = \/ m t (7.159)

- — a2 =

where we used (7.147) to express h and g in terms of the dimensionless boundary
quantity b (7.146). Also note that m?R? = A(A — 3). This is the result (7.50) in the
main text. The critical magnetic field b, can be found by setting the quantity inside
the square root to 0, and is

D[1+ & /@—2m2FE| - 2¢"

(7.160)

where
D= (3+ 2m’R?) (7.161)

is a quantity that goes to 0 when the scalar mass is precisely at the neutral AdS, BF
bound.

It is interesting that the expression in (7.159) containing b saturates at a value
la]

;27?); asb—»oo Thus lf
3
m’R? + v3|q| < =) (7.162)

no matter how large the magnetic field is, a condensate cannot be prevented. This is
rather surprising and is discussed further in the main text.
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Chapter 8

A bifurcating quantum critical
point

8.1 Introduction

In the previous chapter we studied a very simple model, a neutral scalar field propa-
gating on the finite density Reissner-Nordstrom black brane background. The action
of the scalar was taken to be

so=3 [#sv3 (—%(V«»)? - V<¢)) , 8.1)

where V(¢) is a double-well potential, with fluctuations about ¢ = 0 having a negative
mass-squared m? < 0. These fluctuations have a dimension in the IR AdS; region
given by the standard formula

Ok ==+ g Vp = 4|u+

1
5 u_mR2+4. (8.2)

6u2’

Here we have defined a parameter u. It was shown that if u < 0 then the £ = 0 mode
of the scalar develops an imaginary conformal dimension, indicating an instability
towards condensation. In the previous chapter we discussed the condensed phase in
some detail, focusing in particular on the case when the scalar was charged in the
adjoint of a global SU(2) symmetry. If w > 0 then the Reissner-Nordstrom black hole
is stable, even at zero temperature! and thus u = 0 defines a quantum critical point.

In this section we study the critical behavior near the quantum critical point.
We will discover novel behavior, including a susceptibility that does not diverge at
the critical point, but instead bifurcates, attempting to go imaginary as we approach
u = 0. It is this novel behavior that prompts us to call this a “bifurcating” quantum
critical point. .

We compute the susceptibility x(w, k) using the matching techniques discussed in

1Here by “stable”, we mean with respect to condensation of this particular scalar field; certainly
it can have other instabilities that we are not considering here.
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Chapter 4; for convenience, we reproduce the key expression for the zero-temperature
retarded correlator here,

L2 by (k,w) + b_(k, w) Gy (w) s **
at(k,w) + a_(k,w)Gy(w)ps =2

X(w, k) = Gr(w, k) = (83)

where v, is defined above and vy is its UV counterpart in the asymptotic AdS, region,
i.e. if A is the UV conformal dimension of the operator in standard quantization we

have
3 9
A= 5 + vy vy = 1 + m2R2 (8.4)

We shall require the analytic properties of the functions a4 (w, k) and by (w, k), which
are reviewed in Appendix 8.A. The explicit expression for the AdSs Green’s function
for a neutral scalar is also reproduced below:

( 2Vk) F(; + Vg — iQ*)
P2v) T(3— v —igu)

Gr(w) = (—2iw)®* . (8.5)

8.2 Zero temperature: from uncondensed side

We begin by approaching the quantum phase transition at zero temperature from the
uncondensed side. To study the behavior near the critical point u = 0 we study the
implications of taking vx — 0 in (8.3), i.e. both k?/u? and u are small.

8.2.1 Static properties

We first study the critical behavior of the static susceptibility by setting w — 0 in
(8.3) and taking u — O from the uncondensed side u > 0. From equation (8.77) we
find that for small v,

xw%=2”ﬁ1%ﬂ+0(mﬁ) (8.6)

where a, 8, &, 3 are numerical constants. Setting k£ = 0 we find the zero momentum
susceptibility is given by 5
Bt VuB
X =
As already mentioned earlier, at the critical point the static susceptibility remains
finite, given by
2vuﬂ .

X|u—0s = Xo = Uy

(8.7)

(8.8)

which is in sharp contrast with the critical behav1or from the Landau paradigm where
one expects that the uniform susceptibility always diverges approaching a critical
point. Due to the square root appearing in (8.7), x has a branch point at « = 0 and
bifurcates into the complex plane for u < 0. Of course, when u < 0, eq. (8.7) can no
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longer be used, but the fact that it becomes complex can be considered an indication
of instability. Furthermore, taking a derivative with respect to u we find that

af—Ba 1 1 1
811 — vy M - — _ 2vy -
X Ly 202 \/,E e 41/Ua2 \/ﬂ — 00,

u— 0 (8.9)

where we have used (8.81) in the second equality. Thus even though x(u) is finite at
u = 0, it develops a cusp there, as shown in Fig. 8-1. It will turn out convenient to
introduce a quantity

(8.10)

and then (8.9) becomes

(8.11)

Similarly, taking derivative over k2 in (8.6) and then setting k = 0, we find that

Bex(F)],_, = — 6/52(:/6’ u—0. (8.12)

Note that this divergence is related to the fact for any u > 0, X(E) is analytic in k2,
but not at u = 0, where 14, k.

x(w)
1o} | A
0.5 \

-002 000 002 004 006 008 0.10 u

Figure 8-1: A plot of x(u) as a function of u. We also include the behavior on
the u < 0 side to be worked out in Sec. 8.3. Note that while there is a cusp in x
approaching the critical point from the uncondensed side (u > 0), there is no cusp
approaching the critical point from the condensed side (u < 0). From both sides the
susceptibility is finite at the critical point, but it tends to a different value on each
side.

The above non-analytic behavior at k = 0 should have important consequences

when we Fourier transform x(k) to coordinate space. Indeed, by Fourier transform-
ing x(k) to coordinate space we find (for details see discussion around (8.107) in
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Appendix 8.C) asymptotically at large z,

G(z) = / (;ijrl;x(l_c')eik’ ~ %ﬂ exp (——E) , (8.13)

where the correlation length £ is given by

1 :

Thus as u — 0 the correlation length £ diverges as w7, which is the same as in a
free theory.

Note however that there is additional suppression by factors of v/« in the numer-
ator of this expression; this suggests that the actual power law falloff at the critical
point is not the one found from setting v — 0 above, but is rather faster. Indeed
performing the integral at precisely u = 0 we find from (8.112),

1

2A-1
G(CI?)LFO Hy (u*x)3

(8.15)

with a different exponent ~ z73.

8.2.2 Dynamical properties

We now turn to the critical behavior of the susceptibility (8.3) at a nonzero w near
the critical point on the uncondensed side u > 0. We must now take extreme care

2y
the v — 0 limit, as the factor (%) " in the AdS, Green function (8.5) behaves

differently depending on the order in which we take the 1y — 0 and w — O limits.
For example, the Taylor expansion of such a term in small v involves terms of the
form v log(w/p.). In the small w limit, the resulting large logarithms will appear to
invalidate the small v, expansion.

To proceed, we note first that the expression (8.3) together with the explicit
expression for the AdS2 Green’s function (8.5) can be written

b,0w) (52) 7 4o (52)"

X(w7 I_C’) - I‘I'EVU . -V R Vi (8'16)
a:T(v) (;—;) +a_T(—w) (;;;:)
Now from the discussion at the beginning of Appendix 8.A, we can write
ax = a(xuy; k% w),  be = b(Luy; k2, w) (8.17)

where a(v; k?,w) and b(v; k?,w) are some functions analytic in all its variables. Us-
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ing (8.17), we can now further rewrite (8.16) as

W B = v Jo) = fo(—vk)
x(w, k) = p o) = o) (8.18)
where?
Fo(v) = b (v) (;;“’) (8.19)

and similarly for f,(v). The point of this rewriting is to illustrate that if f, () have
nonsingular Taylor expansions in v — which is the case for any finite w — then if we
expand numerator and denominator in v all the terms that are odd in v will cancel,
and thus x(w, k) contains only even powers of v, i.e. x(w, E) = x(w, u, k?) and for any
nonzero w, x(w, l;) is analytic at uw = 0 and k2 = 0. There is no non-analyticity of the
sort that can be found in (8.6). In particular the expression for x(w, E) approaching
u = 0 for the condensed side can be simply obtained by analytically continuing (8.18)
to u < 0. This should be expected since for a given w, as we take u — 0_, it should
always be the case that w is much larger than the scale where the physics of condensate
sets in, which should go to zero with u. Thus the physics of the condensate is not
visible at a given nonzero w. We will see in next section that the same thing happens
at finite temperature.

Now expanding the gamma functions and a4, by in (8.16) to leading order in v,
but keeping the full dependence on w, we find that

. sinh (Vk log (%))
x(w, k) = xo —5 (8-20)
sinh (z/k log ("“’))

Wa

where the energy scales w, ; are given by

s -
We = 2/t EXP ((—1- - 'yE> ,  Wh= 2, exp (g— - ny) , (8.21)

where g is the Euler-Mascheroni constant, and X is the uniform susceptibility at
the critical point given earlier in (8.8). Considering vx — 0 in (8.20) with a fixed w,

we then find
log (“-‘)i-b) —i5

log (w%) — 15
where the corrections are analytic in both u and k2. Note that both the above

expression and (8.20) have a pole at w = iw, in the upper half w-plane. But this
should not concern us as our expressions are only valid for w <« p, ~ w,. Further

x(w, k) = X0 + O(u, k%) (8.22)

2 Note that I'(v — 0) ~ % — v+ O(v), necessitating the extra factor of v in the definition of
fap(v) to obtain a nonsingular Taylor expansion.
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taking the w — 0 limit in (8.22) then gives

@h = xo(lte—m——t—2 Ly
X\ %)= Xo 2vyaflogw  dvgaf (logw)?

2+ X x
Xot logw + (log w)?

tee (8.23)

where we have kept the leading nontrivial w-dependence in both real and imaginary
parts and used (8.10).

Equations (8.22) and (8.23) give the leading order expression at nonzero u (for
both signs, as x(w, k) is analytic at w = 0 at a nonzero w) and k? as far as v log —

remains small. They break down when w becomes exponentially small in %,

1

W ~ Aco, Aco ~ ;1,*6_7‘: . (8.24)

In the regime of (8.24), the susceptibility (8.20) crosses over to

. 2uy,
- —iw
x(w — 0,k) = xo0 — 2k X+ — 4k X+ (2# ) +--- (8.25)

which is the low energy behavior (4.29) for the uncondensed phase and is also consis-
tent with (8.6). As always, there are perturbative corrections in w that we have not
included.

8.3 Zero temperature: from the condensed side

When u < 0, the IR scaling dimension of Oy becomes complex for sufficiently small
kasuvy =,/ u+ 3’-‘% = —i)\ is now pure imaginary.® For a given nonzero w and |u]

sufficiently small, as discussed after (8.18) the corresponding expression for x(k,w)
can be obtained from (8.20) by simply taking u to be negative, after which we find

sin og (=«
o sin(log(32))
X k) = Xosin ()\k log (-m)) e (820

Waq

While (8.20) is valid to arbitrarily small w, equation (8.26) has poles in the upper half
frequency plane (for k = 0) at*

nw )
Wy = W, €Xp (— \/__) =iA,,, n=12--- (8.27)
—u

3Note that the choice of the branch of the square root does not matter as (8.20) is a function of

2
Vi.

4Note that (8.26) also have poles for non-positive integer n. But at these values w is either of
order or much larger than the chemical potential p to which our analysis do not apply.

180



with

A, ~ pexp (— \;‘f_u) . (8.28)

In particular, we expect (8.26) to break down for w ~ Ay, the largest among (8.28),
and at which scale the physics of condensate should set in. This is indeed consistent
with an earlier analysis of classical gravity solutions in [21, 127] where it was found
that O develops an expectation value of order

. (%)% | 529)

The exponent 1 in (8.29) is the scaling dimension of O in the eCFT; for u = 0, while
A is its scaling dimension in the vacuum. It was also found in [21, 127] there are an
infinite number of excited condensed states with a dynamically generated scale given

by A, and (O) ~ Af%z , respectively. Thus the pole series in (8.27) in fact signals a
geometric series of condensed states. This tower of condensed states with geomet-
rically spaced expectation values is reminiscent of Efimov states [154]. The largest
expectation value is for the first state n = 1, which is in fact the energetically favored
vacuum. We now perform a detailed calculation to determine the full nonlinear re-
sponse curve near the critical point. The reader who is only interested in the final
result may skip to (8.43).

8.3.1 Construction of nonlinear bulk solution

As discussed in [21, 127], for the lowest n = 1 state there is a new exponentially

generated scale
Arr ~ pexp (— \/7:—u) (8.30)

and when the AdS; radial coordinate ¢ satisfies A;p¢ > 1 (i.e. deep in the AdS,
region), ¢ becomes of order O(1). Thus at zero temperature, no matter how close
one is to the critical point and even though the vacuum expectation value of the
condensed operator is very small near the critical point, the nonlinear dynamics of ¢
and the backreaction to the bulk geometry will be needed deep in the AdS, region.
Nevertheless, we will find that a great deal of information can be obtained even
without detailed analysis of the nonlinear equations and backreaction. For illustration
purpose, as in [21] we will consider an action for ¢ of the form

£o= |-5007- V@) (831

where g is a coupling constant. The precise form of the potential V(¢) is not important
for our discussion below except that V(0) = 0, V”(0) = m? and it has a minimum at
some ¢p # 0. To be close to u = O critical point on the condensed side, we will thus
take m? to be slightly below the critical value and so u = (m? — m2)R% < 0.
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We will now proceed to compute the response of the system to a static, uniform
external source. Thus we consider equation of motion following from (8.31) with ¢
depending on radial coordinate only. The analysis is a slight generalization of that
in [126, 127, 21]. To describe the behavior of the bulk solution describing a condensed
phase, we separate the spacetime into three regions:

1. IR region I: ¢ > A;é. Here the nonlinear effect of the scalar potential is impor-
tant and the value of ¢ is of O(1). We note that the boundary condition at the
horizon is given by

¢(¢ — 00) = ¢o (8.32)

where ¢ is the minimum of the potential V(¢). Thus as { — oo, the spacetime

metric approaches //121132 x R? where AdS; has a different curvature radius from
the near-horizon AdS, region of the condensed phase,

L_1 Vi, (8.33)

R R g

2. IR region II: AdS, region with ¢ < A7 (but still 4 > 1 so that the AdS,
scaling is appropriate). In this region the value of ¢ is small, and we can treat
it linearly and neglect its backreaction on the geometry. Here ¢ has a well-

defined but complex conformal dimension in eCFT; dual to the original AdS,
(with k= 0) :

5 = % VT, —u<l (8.34)

and general solution to linearized equation can be written as a(® + b¢°-.

3. UV region: the rest of the black hole spacetime. Again in this region linear
analysis suffices.

Note that the IR region II is not guaranteed to exist a priors, but will be justified
by the results, i.e. (8.30) (right now Arg should be considered just as a parameter we
introduce to distinguish IR region I and II).

We will solve the nonlinear equation following from (8.31) starting in IR region I
and moving towards the boundary of the spacetime. Note that the horizon boundary
condition (8.32) fixes one of the integration constants in the second-order equation
for . As we move outwards, the scalar becomes smaller and smaller until around
¢ ~ A7A, where we can neglect its backreaction on the geometry and treat it linearly.
Note that the solution to the nonlinear equation in IR region I should be insensitive
to the precise value of m? (which is the mass square near ¢ = 0) and thus when
lu| < 1, we could set u to 0 in solving it. This implies that, near A7, it should be a
good approximation to solve the linearized equation (around ¢ = 0) with v =0, and
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a general solution can be written as®

<

: + O(V=u) (8.35)

() = log

Cu

where v ~ O(1) and ¢, ~ Ajp are integration constants.

In the limit of no backreaction (e.g. ¢ — oo in (8.33)), it can be readily checked
that the full nonlinear problem in AdS; region has an AdS, scaling symmetry un-
der which both the IR boundary condition (8.32) and the equations of motion are
invariant. Recall that the horizon boundary condition (8.32) fixed only one of the
two integration constants, leaving a one-parameter family of acceptable solutions. We
conclude that in this case because of the scaling symmetry this family is parametrized
by (., and the number v must be fixed by (8.32) to be an O(1) constant (as there
are no small parameters in the nonlinear analysis). If we allow backreaction then
these statements are no longer strictly true, in that as we traverse the remaining
one-parameter family of solutions we will likely move through a nontrivial trajectory
in the (v, () space. This should be kept in mind; however in the remainder of the
analysis for simplicity we will assume that backreaction is small and so we can assume
that - is fixed by (8.32) and the remaining solutions are parametrized by (.

Now from (8.34) the most general solution to the linearized equation in IR region
IT can be written as

$(Q) = d \/CZ cos [\/——'17 log (i + dz] (8.36)

where we have chosen (, as a reference point and d;,d; are numerical integration
constants. For ¢ ~ (., expanding (8.36) in y/—u and comparing with (8.35) we
conclude that d; ~ \/l_—u and dy = 5 + O(—u) and (8.36) can be written as

60 = £ sn (VEutog L) (8:37)

=

It is important to emphasize that the /—ulog é— term may not be small, as { may
vary over exponentially large distance in 1/{/—u.

Finally we now consider matching (8 37) to the solution in the UV region near
pu¢ ~ O(1) with identification ¢ = Bfﬁ’ This is exactly the same as the linear

matching problems discussed in Chapter 4 and so we will be brief. In terms of the
basis of solutions introduced in (4.20) we can write ¢ as

Z*l —iv/—ulog && i—uoSi
#) = 7=\ e (e7#vontin) — e/TrIee sy 0)) (8.38)

5Note at u = 0, the two exponents in (8.34) become degenerate and the independent solutions to
the linear equation become ¢ % and ¢ 3 log ¢ respectively.
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Using the expansion (4.20) and the following definitions and properties of a.,bx:
ay = |ay|e?, by = |by |, a_ =a}, b_ =b% (8.39)

we then conclude that the coefficients A and B are given by

_ 3-A_ " “x — gf__
A = =z \/_|a+| ~ sin (\/ ulog . Ha),

B = —z:A\/l_]bJrI —sin (J—_ulogg*-—é?b> . (8.40)

Recall that (, parametrizes movement through the solution space; as we vary (,,
we see that we trace out a spiral in the (A, B) plane, the implications of which are
discussed below. See fig. 8-2. Note that no matter how small we consider A or B to
be, the curve continues to spiral and nonlinear dynamics remains important-this is
because the scalar in the deep interior is always of O(1).

For the case of the double-well potential:

2, 222_m4R2
(62 + memty? - T

there is a ¢ — —¢ symmetry which results in the symmetry A, B — —A, —B of
fig. 8-2. For this potential in the limit of no backreaction we find y = 0.6.

V(o) =

y R2 (8:41)

8.3.2 Efimov spiral

We now briefly discuss the physics of the structure constructed above; if we now take
v/—u — 0 in the solution constructed above, we find

ar]=a, |bal=8, 0.=—v=us, 062—\/_—1% (8.42)

giving us the nonlinear response curves

. 3-A G —u—
A = 2z \/_ sm <\/ log + ua)

B = 78 L \/C:sm (x/—_ulog C*—I-\/—_U’B) (8.43)

where A and B denote the source and expectation value for O respectively, where
7 is a O(1) constant that is determined by nonlinear dynamics. ¢! is a dynamical
energy scale which parametrizes movement through the solution space; as we vary
¢+, we trace out a spiral in the (A, B) plane. See fig. 8-2. Since we are considering a
system with a Z; symmetry O — —Q, in fig. 8-2 there is also a mirror spiral obtained
from (8.43) by taking (A, B) — —(A, B).

The tower of “Efimov” states is obtained by setting the source A = 0, which leads
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Figure 8-2: The Efimov spiral indicated above. The normalizable solutions in the
standard quantlzatlon are given by the mtersectlons of the spiral with respect to the
B-axis, with Bi the ground states and Bi the first excited states, etc. Similarly
those for alternative quantization are given by intersections with the A-axis. The red
line indicates the linear susceptibility on the uncondensed side. For ease of represen-
tation a nonlinear mapping has been performed along the the major and minor axes
of the spiral; while the zeros of A and B are preserved by this mapping the location
of divergences and zeros of % are not (hence the quotation marks in the location of
“P4” and “Pg”, which are only for illustrative purposes).

to

nm

G=10(n = 248 7“_55 n=12--- (8‘44)

which when plugged into the expression for B in (8.43) gives

(O) x |B| = ALUeZT_u*"% ~ 12 exp (8.45)

™
(_”2\/_%)
where we have used (8.81). These are the values at which the spiral intersects with the

vertical axis, with that for the n = 1 state corresponding to the outermost intersection.
Note that ¢, ~ A, and equation (8.45) is consistent with the discussion below (8.29).

As v/—u — 0, from (8.43), A and B are becoming in phase, and the spiral is being
squeezed into a straight line, with limiting slope

B ]
= _ sl (8.46)

A Jogsn o
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This slope agrees with the value found from linear response approaching the criti-
cal point from the other side (8.8). This is however not the relevant slope for the
susceptibility, which should be given by

dB

XL =7 (8.47)

A=0

which in the usual models of spontaneous symmetry breaking, corresponds to the
longitudinal susceptibility. From (8.43) we find

i = ufvvg (1 + %;‘ﬁ) +O(w) = xo + X« + Ou) (8.48)

where we have used (8.81) and (8.10). Essentially, even though the spiral is squished
into a straight line as we approach the transition, each intersection of the spiral with
the A = 0 axis has a different slope than the limiting slope of the entire spiral. Note
that this result is independent of m and in particular applies to n = 1, the ground
state. Since xo is the value at u = 0 from the uncondensed side, we thus find a jump in
the value of the uniform susceptibility in crossing u = 0. The difference has precisely
the same coefficient as the divergent terms in (8.9), and also appears elsewhere such
as (8.23).

Figure 8-3: A zoomed in version of Figure 8-2, where there has been no nonlinear
mapping and so the location of P, is faithfully reproduced. As described in the text,
at P4 the system becomes locally unstable and relaxes to P,. Appearances to the
contrary, the spiral continues to wind around infinitely many times as it approaches
the origin, a fact that is difficult to see without the nonlinear mapping.
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We now elaborate a bit more on the interpretation of various parts of the spirals
in Fig. 8-2. Let us start with the ground state® Bf ), and first follow the spiral to
the right, i.e. we apply an external source A in the same direction as the condensate.
This will increase B according to (8.47) and (8.48). Note that near the critical point
Bil) is exponentially small; thus as we increase A further, we will eventually reach a

regime where the forced response is much larger than the condensate B > B_(: ) but
is still much smaller than 1, B < 1. One thus expects that here the system should
not care about the (exponentially small) condensate and the response should simply
be given by that of the uncondensed state, i.e. the linear response line given by xo.
Thus the spiral will approach a straight line parallel to the red straight line in the
figure.

Now consider applying A in the opposite direction to the condensate. As the Z,

symmetry was spontaneously broken, we now expect that BY should be the global

minimum and Bsrl) should be only locally stable. Nevertheless, we can choose to stay
in the “super-cooled” state given by Bf) and stay on the response curve given by
following the spiral at B_(|_l ) to the left, where now the source acts to reduce B. The
response curve in the region between Bil) and P4 is nonlinear as the effect of the
condensate is important. At P, the susceptibility % — 4-00. At P4 the state that
we are on becomes genuinely (i.e. even locally) unstable and if we continue to increase
|Al, then the system will relax to the point P}, as shown in Figure 8-3. on the other
branch of the spiral starting from BY . Note that

B(P,
—M ~ 0(1) (8.49)
BW
+
where by O(1) we mean that the ratio is independent of the small parameter /—u.
To complete the story let us now consider starting from the first excited state
Bf) and again apply the external source along the direction of the condensate, which
now corresponds to following the spiral to the left. Near B_(,_2), the response is again

controlled by (8.48), but again when 1> |B| > |B£L2) |, the system will forget that it

is in a condensed state and the response will again be controlled by xo. The response

curve will once again be parallel to the linear response line until we reach the region

near Ppg, where the response has now become exponentially large compared with the
2 . .. D).

value at B}”, i.e. it is now comparable to the value of |B}’|:

|B(PB)| B(Ps) z
+ +

Near Pp the nonlinear effects due to the condensate again become important. In the
region between P4 and Pg the susceptibility has the wrong sign and thus the system
becomes locally thermodynamically unstable. It seems likely that if the source A
is increased in an attempt to probe this region the system will instead move to a

SEquivalently we can also start with its Z, image B(_1 ).
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corresponding point P4 on the other branch of the spiral. Also note that even though
Bf) is an excited state and so not a global minimum of the free energy, it does appear
to be locally thermodynamically stable.

The discussion above also gives a physical explanation as to why as u — 0_ the
whole spiral is squished into a straight line with slope given by (8.8): the vast majority
of the spiral (e.g. the exponentially large region between Bf) and Pg) must become
parallel to such a straight line.

The existence of a tower of “Efimov” states with geometrically spaced expecta-
tion values may be considered a consequence of spontaneous breaking of the discrete
scaling symmetry of the system. With an imaginary scaling exponent, (8.26) exhibits
a discrete scaling symmetry with (for k =0)

W e W (8.51)

which is, however, broken by the condensate.” The tower of “Efimov” states may
then be considered the “Goldstone orbit” for this broken discrete symmetry.

We would also like to point out that d,xr and Oz2xr do not diverge at the crit-
ical point, unlike the case from the uncondensed side. Hence we do not get a cusp
approaching the critical point from the condensed side. This is due to the fact that
the small u corrections to (8.48) are all analytic, which can be checked by explicit
calculation to the next nontrivial order.

8.3.3 Free energy across the quantum phase transition

The fact the order parameter (8.45) is continuous (to an infinite number of derivatives)
across the transition implies that the free energy is also continuous (to an infinite
number of derivatives). We outline the arguments here. The free energy is simply
the (appropriately renormalized) Euclidean action of the scalar field configuration.
We can divide the radial integral into two parts, the UV part and the IR AdS,
part. It is clear that the contribution from the UV portion of the geometry will scale

like $2 ~ (O) ~ exp [_77{_—1‘]’ since the scalar is small there and so a quadratic
approximation to the action is sufficient.

To make a crude estimate of the IR contribution, where ¢ ~ O(1) and so nonlin-
earities in the scalar potential are important, let us ignore backreaction and imagine
that in the IR the scalar is simply a domain wall: for ¢ > A7# it sits at the bottom
of its potential ¢(¢) = ¢ and that for ¢ < A7a it is simply 0. Then we find for the
Euclidean action® an expression of the form

AR
Sp~ V) [ dCVG~ Arn (8.52)

0

"Note that for the » = 1 state, since the physics of the condensate sets in already at Aj, the
range of validity for (8.26) is not wide enough for the discrete scaling symmetry to be manifest.

8 As we are at zero temperature the Euclidean time is not a compact direction, and so all expres-
sions for the Euclidean action contain a factor extensive in time that we are not explicitly writing
out.

188



s

which again scales as Sg ~ Ajgp ~ exp [——ﬁ] Note what has happened: even

though the scalar is of O(1) in the deep IR and so contributes to the potential in a
large way, the infinite redshift deep in the AdS, horizon suppresses this contribution
to the free energy, making it comparable to the UV part. A more careful calculation
also reveals that the free energy is indeed negative compared to the uncondensed
state. We thus conclude that

F~—exp [— \/717] (8.53)

and that the free energy is also continuous across the transition to an infinite number
of derivatives, reminiscent of a transition of the Berezinskii-Kosterlitz-Thouless type.

8.4 Thermal aspects

We now look at the critical behavior near the bifurcating critical point at a finite
temperature. Our starting point is the expression for the finite-temperature suscep-
tibility, which we reproduce below for convenience:

- (T) —2y
BT = BT £ (0 TG

, 8.54
ay(k,w, T) + a_(k,w, T)G" (w)pz 2 (8.54)

The finite temperature behavior mirrors the finite frequency behavior of last subsec-
tion. We simply repeat the analysis leading to (8.20), starting with (8.54) rather than
(8.3); somewhat predictably, at w = 0 but finite T we find

L sinh (I/k log (Tl))
X (k) = xo sinh (v log (Tgb)) ’ (8.55)
where T, differ from w,p by factors,

4,
iy

4p,

T, =Fes, T =Fres . (8.56)
Similarly to (8.26), the expression for u < 0 is obtained by analytically continu-

ing (8.55) to obtain

— sin (Aklog (%))
XD (k) = XOSin (/\klog (Tl)) . (8.57)

And again both (8.55) and (8.57) are analytic at © = 0 and reduce to the same

function there
() = BT )
XD (k) = Xoi—7 + O(u, k%) . (8.58)

Ta
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Similar to (8.22), the pole in (8.58) and (8.55) at T = T, should not concern us as
this expression is supposed to be valid only for T' < p, ~ T,. For nonzero w, (8.55)
generalizes to

XD (w, k) = xo (8.59)

sinh (I/k [10g ( ) +9 (53— .27rT):|)
smh (Vk [log (2”T) + (3 — g ])

It is easy to check using the identities ¢(3) = —yg — log4 and #(z — 00) — logz
that this expression has the correct limiting behavior to interpolate between (8.55)
and (8.20).

For w > 0, at a scale of
1
T~ AC() ~ p*e_ﬁ (8.60)

eq. (8.55) crosses over to an expression almost identical to (8.25) with w replaced
by T. For u < 0, at such small temperature scales equation (8.57) has poles at (for
k=0)

nw 4p, nmw a
T,.=T, - = - -, AN 61
exp( \/—_u) - exp( \/—_u+a) n € (8.61)

Comparing to (8.28) and (8.44), we see that T,, ~ A, ~ 1/(,. The first of these
temperatures should be interpreted as the critical temperature

4,u* T a
T. = — .
- &P ( — + a) (8.62)

below which the scalar operator condenses. Including frequency dependence, one can
check that ¥ (w, k) has a pole at

%z_%@-n) (8.63)
For T > T,, this pole is in the lower half-plane, and it moves through to the upper
half-plane if T is decreased through T,,. Thus we see the interpretation of each of
these T,,; as the temperature is decreased through each of them, one more pole moves
through to the upper half-plane. There exist an infinite number of such temperatures
with an accumulation point at T = 0; and indeed at strictly zero temperature there
is an infinite number of poles in the upper half-plane, as seen earlier in (8.26). Of
course in practice once the first pole moves through to the upper half-plane at T, = T3,
the uncondensed phase is unstable and we should study the system in its condensed
phase.

One can further study the critical behavior near the finite temperature critical
point T,. Here one finds mean field behavior and we will only give results. See
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Appendix 8.B for details. For example the uniform static susceptibility has the form

T,
@ ) peprr T =T
X\ o o T 7 - (8.64)
ZoyoaBT.-T — L.

The result that x(7, ) has a prefactor twice as big as x(7,") is a general result of
Landau theory.

Similarly, the correlation length near T, is given by

L 6ui(—u)?
P (T -T)) . 8.65
o= T o1 (5.65)
Note that the prefactor of T — T, diverges exponentially as © — 0, and should be
contrasted with the behavior (8.14) at the quantum critical point. Finally we note

that at the critical point 7' = T,, we find a diffusion pole in x7)(w, E) given by

R 48 9
32 (—u)?

(8.66)

Wy

which is of the standard form for this class of dynamic critical phenomena (due to
the absence of conservation laws for the order parameter, this is Model A in the
classification of [138]; see also [139] for further discussion in the holographic context).
Note that the diffusion constant goes to zero exponentially as the quantum critical
point is approached.

In Fig. 8-4 we summarize the finite temperature phase diagram.

8.5 Summary: the nature of a bifurcating critical
point

In this chapter we studied the physics close to a “bifurcating” quantum critical point,
i.e. the quantum critical point obtained by tuning the AdS; mass of the bulk scalar
field through its Breitenlohner-Freedman bound. The results obtained were quite
novel, and in this conclusion we attempt to interpret them.

Much of the physics can be understood from the expression for the dynamic sus-
ceptibility at zero temperature (8.20),

- sinh (uk log (_w—t"))
x(w, k) = Xxo : + . (8.67)
sinh (Vk log (;—w))
where v, = /u + % and u = 0 is the location of the quantum critical point. Note
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Figure 8-4: Finite temperature phase diagram with the quantum critical region for
bifurcating criticality as a function of u. Agg denotes a crossover scale, but note that
it is unknown up to an overall power, as in (8.68). The quantum critical region is
bowl-shaped, unlike the usual funnel-like shape.

that this expression actually defines a crossover scale as in (8.24)

Aco ~ s exp (—ﬁ) , (8.68)

Vi

where the expression is actually not sensitive to the precise # appearing in the ex-
ponent. If we study frequencies w such that w > Aco, then it is safe to expand the
arguments of the hyperbolic to obtain the universal and scale-free form (8.22) for the
dynamic susceptibility, '

ﬂ%@zm§ﬂ§L1§+mmH) (8.69)
log (U‘J"—G) —itg

This expression should be viewed as the susceptibility defined by the quantum critical
theory. It applies in a bowl-shaped quantum critical region in Figure 8-4. There is
a finite temperature generalization of this formula found by taking v, — 0 in (8.59),
which can now be applied all the way down to zero frequency provided that the
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temperature T > Aco,

log (22 )+ (4 — i5%7)
log (22 ) +v (3 —iz%)

Note that we find interesting non-analytic behavior only in w, and not in k; this
behavior is called “local quantum criticality” in the condensed matter literature and
is thought to lie behind a theoretical description of the phase transitions of various
heavy fermion compounds (e.g. [85, 86] and references therein). In our description this
arises from the fact that the AdS, that is at the heart of the non-analytic behavior has
nontrivial scaling isometries only in time and not in the field theory spatial directions.

If we are outside the quantum-critical region, the susceptibility takes rather a
different form, which is essentially the w — 0 limit of (8.67),

X(T) (wa E) = Xo

(8.70)

l—l—l/kg

1+ng

x(k) = xo (8.71)

This should be viewed as the static susceptibility. The u — 0 limit of this expres-
sion demonstrates rather different behavior, corresponding to approaching the critical
point from outside the bowl in Figure 8-4.

Interestingly, the susceptibility does not diverge approaching the critical point.
However, even if the susceptibility has no gapless poles in k it does contain branch
cut singularities in the k plane that approach the origin as u — 0. Upon Fourier
transformation to coordinate space, these singularities lead to a correlation length
that diverges at the critical point,

1
3 NN (8.72)
This appears to be a standard mean-field divergence, but the overall coordinate-space
expression is suppressed by extra powers of z relative to the mean-field expression, as
shown in (8.13). Similarly, precisely at the critical point, we find yet extra suppression,
leading to a power law-falloff G(z) ~ z73.

Finally, if we set k — 0 we see that the susceptibility develops a branch cut
singularity at u = 0, as Vg0 = 1/u; it is trying to bifurcate into the complex plane
as we cross 4 = 0. Indeed, for u < 0 from the bulk point of view we have violated
the AdSs BF bound; from the IR CFT point of view, the two conformal fixed points
corresponding to alternative and standard quantization have merged and annihilated.
Conformality is lost [126], the scalar condenses, and a new scale should be generated,

ArR = ft eXp (- \/i_u) (8.73)

This is the analog of the crossover scale on the uncondensed side, but on this side
of the quantum critical point this scale determines precise observables (such as the
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critical temperature and the scalar vev) and so we can determine the precise prefactor
in the exponent. We note that the existence of this scale was already evident from the
original expression (8.67); if we take u < 0 in that expression the hyperbolic sine is
replaced by a normal sine and we see a geometric series of poles in the upper-half-plane
at

Wr = Wq €XP (—%) , (8.74)
the n = 1 case of which is the scale described above. These are at exponentially
small energies and so are not visible in the quantum critical expression (8.69). At the
O(1) temperatures assumed in (8.70) we are above T, and so the poles are all in the
lower-half plane.

The existence of these poles in the upper-half plane indicates that the ¢ = O state
is unstable and the true vacuum has a condensed scalar. A study of the full nonlinear
response curve indicates a remarkable spiral structure, shown in Figure 8-2, that is
a manifestation of the fact that even though continuous conformality has been lost
a discrete subgroup of the scale transformations survives. We thus find an infinite
tower of excited “Efimov” states with geometrically spaced expectation values

(O>n ~ #A ('A‘LIL_R) i , N=2,3,- . (875)

A thorough examination of the nonlinear response spiral, as performed in Section
8.3.2 above helps illustrate how the thermodynamics manages to develop the non-
trivial vacuua described above while still not having a divergent susceptibility at the
quantum critical point.

It is fascinating to note that nowhere on the uncondensed side do we see a coher-
ent and gapless quasiparticle pole, which usually appears close to a quantum phase
transition and indicates the presence of soft order parameter fluctuations. The fact
that the susceptibility (8.71) does not diverge at the critical point is clearly another
manifestation of the lack of this coherent quasiparticle pole. The bifurcating transi-
tion that we study appears not to be driven by such a pole. This does not mean that
there are no gapless modes close to the critical point — rather there is a great deal
of incoherent spectral density at low frequencies arising from the IR CFT associated
with the AdS, region. It is the collective fluctuations of this incoherent spectral den-
sity that drives the transition — as we cross through to the unstable side it appears
that these soft modes coalesce to form the sharp instabilities seen in (8.74).

There are by now several holographic models [127, 128] that realize such a quan-
tum phase transition (called “holographic BKT”) from the top down, using explicit
constructions that essentially allow one to tune some control knob (e.g. a magnetic
field) in a field theory to tune the mass of an effective order parameter field through
a Breitenlohner-Freedman bound. It thus appears that this behavior genuinely exists
and is accessible in various concrete models. While our discussion was entirely holo-
graphic, it actually seems likely that such behavior should be generic to any phase
transition where the critical theory is not itself a CFT with one relevant direction (as
is usually the case in the Landau-Ginzburg-Wilson paradigm of phase transitions),
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but rather the merger of two different CFTs (as is the case in our construction [126]).
It would be very interesting to understand the physics described in this section in
purely field theoretical terms, and we leave this for later work.

8.A Analytic properties of ay, by

Here we discuss the properties of ay(w,k), bi(w, k) appearing in (8.3), which as
discussed in Chapter 4 are obtained by solving the scalar wave equation (4.13) per-
turbatively in w in the UV region. Their k-dependence comes from two sources, from
dependence on v via the boundary condition (4.19) and from k? dependence in the
equation (4.13) itself. Since the geometry is smooth throughout the UV region we
expect the dependence on both v, and k2 to be analytic. In fact we can think of
by and ay as functions of v; i.e. there exists a function b(v, k?,w), analytic in all
its arguments, such that by = b(+w, k?,w). This is clear from the boundary condi-
tion (4.19) (and its generalization for higher orders in w) and from the fact that there
is no other dependence on v, from the equation of motion itself.

Let us now look at the behavior of af),bff) in the limit of v — 0 in some detail.
Note that this limit should be considered as a double limit ¥ — 0 and « — 0. First,
we note that in the limit vx — 0, the basis of functions introduced in (4.19) can be
expanded as

19 = 70(2) + 79 (2) + O(2) (8.76)
which leads to
by = B ub+ (k’ +dw)+---,  af —atund+ ok +du)-- . (8.77)

In the above equations the linear order terms directly come from the linear order term
in (8.76), while the quadratic order terms also receive contributions from equation of
motion itself (not just the boundary conditions) and cannot be expressed in terms
of 12 alone. The important point is that the quadratic order terms are independent
of the signs before v, and thus are the same for ay and by repsectively. Similarly

approaching v = 0 from the imaginary v, = —i)\; side, we have for small )z,
O =pFinB+---, dP=aFina+t-- . (8.78)

Again the quadratic order terms should be the same for ay and b..

Note also that v itself becomes non-analytic in k* at u =0 (see (4.17)) and as a
result through formula such as (8.77) a4, by will also develop non-analytic behavior
in k% at u = 0. This fact is important for understanding the critical behavior around
the critical point u = 0 discussed in the main text.

We conclude this section by noting that coefficients ay,by are not independent.

For example evaluating the Wronskian of (4.13) (for w = 0)° for 77:(,? ) and demanding

9The Wronskian of equation (4.13) is given by
Wign, 62 = Z5(610.92 — 20,01) (8.79)
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that it be equal at infinity and at the horizon, we find the elegant relation:

a (YO (k) = DR (k) = - (8.80)

A similar analysis on 7, 7] results in

1
aff — fa = 570 (8.81)
Interestingly, this particular combination of coefficients appears many times through-
out this paper. :
We conclude this section by specifying the explicit values for these constants for
a neutral scalar moving on the pure Reissner-Nordstrom background; in this model
by requiring 4o = 0 we fix the value of the mass to be m?R? = —3, and thus we
can (numerically) compute the coefficients once and for all to be:

a = 0.528 & = 0.965 (8.82)
B =0.251 B = —0.640 . (8.83)

One can check that to within numerical error these values satisfy (8.81) with vy = 3[
In this Appendix we give the gravity analysis of the critical behavior near the
bifurcating quantum critical point approaching from the condensed side, i.e. u < 0.

8.B Finite-temperature line near bifurcating crit-
ical point

The bifurcating quantum phase transition is the endpoint of a line of finite-temperature
phase transitions. In this section we present some calculations near this line. As ar-
gued earlier this is a rather standard mean-field second-order transition, so we do not
present much detail. One novel feature is that close to the quantum critical point
then we are at exponentially small temperatures and so we have a great deal of ana-
lytic control over the calculations, allowing us to verify explicitly many of the features
expected of such a transition.

8.B.1 Dynamic critical phenomena near finite-7' transition

We first turn on a finite w and k% and study the critical behavior close to the finite-
temperature critical line. The leading w behavior comes from the dependence of the
IR Green’s function in (8.54) on w/T. At finite w this IR Green’s function is no longer
a pure phase, and to lowest order we find

wT)"w'“ T(iM) T (% —13M) (
L I(—iXe) T (% + ’i/\k)

Ge(w; T) = ( 1— 22 (O + O\ ))) (8.84)

2T

which is independent of z.
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Recall that u = g — g. measures the distance from the critical point. The leading k>
dependence comes from expanding A, in powers of k? close to the critical point:

k?2
6u2\/—u

Note that a sufficiently large k will take us out of the imaginary v phase and invalidate
this expansion; while this could presumably be dealt with, it would complicate the
analysis, and thus throughout we will simply assume that k? is parametrically small:
k* < (g. — g)- In this regime the UV contributions to the k% dependence can be
ignored, as they will be higher order in (g, — g).

We now insert these expansions into (8.54). The denominator of the Green’s
function then takes the form

Gr(w,k;T)™! ~sin (log (71:-) ()\0 + ii-)lkz)> — igé\-f—r(ﬁe‘i’\" log(7;) (8.86)

M= V—u-— + O(k*) (8.85)

We now further expand the temperature in the vicinity of the n-th “Efimov temper-
ature” T,,, defined in (8.61). We now find

MWT-T)  nr ., .wrh
+ —1—
T 6uN o™

(—1)"Gr(w,k;T)™" ~ (8.87)

Let us now study this expression, first setting k& — 0; we find then that the Green’s
function has a pole at .
We = —%(T —Tn) (8.88)
For T > T, this pole is in the lower half-plane, and it moves through to the upper
half-plane if T is decreased through T,,. Thus we see the interpretation of each of
these Efimov temperatures; as the temperature is decreased through each Efimov
temperature, one more pole moves through to the upper half-plane. There exist an
infinite number of Efimov temperatures with an accumulation point at T = 0; and
indeed at strictly zero temperature there is an infinite number of poles in the upper
half-plane, as can be seen in (8.27).
Of course in practice once the first pole moves through to the upper half-plane,
the uncondensed phase is unstable and we should study the system in its condensed
phase; thus we see that the true critical temperature is precisely at the first Efimov -

temperature, T, = T} = T, exp (— \/'7:—7) .
We can also set w — 0 and study the static correlation length; we see that near

each Efimov temperature (including the critical temperature) we have a standard
finite correlation length ¢ with a mean-field scaling in (T — T.):

(?= 9‘%(T ~T,) (8.89)

This correlation length exhibits an intriguing scaling in —u.
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Finally, we can keep both w and k? nonzero and sit at the critical point 7' = Tc(");
we then find a diffusion mode

n 2

Wy = —i——
3pd(—u)2

(8.90)

which is of the standard form for this class of dynamic critical phenomena (due to
the absence of conservation laws for the order parameter, this is Model A in the
classification of [138]; see also [139] for further discussion in the holographic context).

8.B.2 Susceptibility across the critical point

We now compute the linear susceptibility near the critical point as we approach from
the uncondensed side, i.e. T > T,. We already have all of the ingredients; from (8.57)
we have

sin og | =
~sin(log ()
X(T) — XO Sin (AO log (%)) (8.91)

Now expanding near T' = T, = T, exp (——) we find

w
Ao

Ta
() sy Tclog(Tb) _ X T
"T-T. ~ 20aBT-T.

X (8.92)

where as usual we have used (8.81).

We will now perform the analogous calculation from the condensed side. This
will require some understanding of the nonlinear solution close to the critical point.
We will use analyticity properties of nonlinear classical field configurations on black
hole backgrounds; these are precisely analogous to the analyticity arguments in the
Landau theory of phase transitions. Similar arguments led us in [21] to conclude that

for finite temperature phase transitions we find mean field critical exponents.
First we express A, B as functions of the horizon value of the scalar field, ¢,. We

have B
— = by (T + b3(T)ps + . ... (8.93)
and the corresponding expression for A:
A
F‘?’- =ay (T)¢h + (13(/11)(15?z +... (894)

For small values of the scalar linear response must apply, and thus the a, and b
appearing above are the same as those used throughout this paper in calculating
linear response functions. Now from the calculation above we know that close to the
critical temperature we have a(T) ~ a(T — T.); matching to (8.92) above we see

198



that
by (Te) T

a QVUOz2

(8.95)

Now we see that for T' < T, we have a nontrivial zero in A (and thus a normalizable

bulk solution) at

W(T —T,)\?

¢h = < ( )> = d)norm (896)
as

The definition of the nonlinear susceptibility x is the derivative of the vacuum ex-
pectation value (i.e. B) with the source as we approach the normalizable solution on
the condensed side, i.e.

dB dB
_ ,2vy _ L 2uy
XL = My ™ 77 il ey . (8.97)
dA |, o dA g
Evaluating the derivatives this works out to be
dB d T,
xp = v 45 40 - X (8.98)
doy, dA Sh=bmorm dvgalT1, —T

Compare this to the linear susceptibility x calculated in (8.92); we see that the leading
divergence in x has a a prefactor that is half that of x. This fact is a general result
of Landau theory and follows from the symmetry and analyticity arguments that
allowed us to write down (8.93) and (8.94).

8.C Fourier transforms

Here we perform various Fourier transforms that are discussed earlier in the chapter.

8.C.1 Generalities

In several sections in the main text we use some contour manipulations to extract
the long-distance behavior of various Fourier transforms. Here we perform those inte-
grals!®. The basic idea in most of these is the following; we have various expressions
in momentum space that depend analytically on the IR conformal dimension vj:

k? 1 1
v = \/mQRg + 6.2 + 1= NP \/ k& + k2, (8.99)

where for convenience we define k = 62 (3 + m*R2) = 6u2 u. We will often need to
evaluate integrals of the form

I(z) = /dk F(v)et® (8.100)

10We would like to thank Daniel Park for exceedingly helpful assistance in this endeavour.
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We will assume that the analytic structure of F' is such that the only singularities in
the complex k-plane are at the beginning of the branch cuts in v, that is at k = +ik,.
If that is so, then we can take the two branch cuts to go upwards and downwards in
the complex k-plane and then (for positive z) by deforming the contour upwards we
can rewrite the above integrand as

I(z) = zf: dx [F (_zm) _F (+z\/rkg)] o r (8.101)

Figure 8-5: Contour manipulations used in derivation of (8.101).

Now in the limit of large = we expect the integral to be dominated by the lower
limit of the integrand k ~ k¢; thus we can expand the sub-exponential part of the
integrand in powers of (k — ky) and perform the integrals directly; thus it is clear that
the leading z behavior will be of the form

eﬁkgx

I(z) ~ e

(8.102)

where the power appearing in # depends on the exact form of the integrand. The
key point here is the the location of the branch cut sets a scale which determines the
correlation length in the integral. We now perform the specific integrals in question.

8.C.2 Correlators near criticality

We first perform integrals near criticality, which correspond to tuning kg in (8.99) to
be very small 0. The specific integral in question is

1

el = / dhydk,
C+ \/k2+ k2 + k3
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where we have put the spatial separation in the x direction. We assume that ky < C
(which is sensible near criticality) and attempt to extract an asymptotic formula at
large . Then the only relevant analytic structure is the branch cuts described above
and the integral can be done by the techniques described above. We do the k, integral

first, where the integrand has a branch cut at k, = i, /K2 + kZ = iko instead of +iky.
Performing the contour manipulations described above,

I(x)—/dk /ooidm ! !
— -l — — ~
ko C+iyr2—k§ C—iy/k2—kg

Now since we only care about the large x behavior, we can expand the sub-exponential
part of the integrand in a power series about k& ~ kg. We then find

I(x—»oo)rv/dky/k dh:2v2k0\/n—kgexp (—ka) = /dk v 2k, eFor
0

(8.104)

Y 0243/2
(8.105)
It is now staightforward to do the k, integral:
2m(k2 + k‘2)
I(z) ~ / e~ VkTkez — 9 2“”:“ (8.106)
C2z3 \/ — k2 C21%
where we have made the substitution v = ,/k2 + k3 and the overall 2 comes from

the fact that both positive and negative k, contribute. Again, as £ — oo the main
contribution to the integral comes from the neighborhood of v ~ ky, and we can
expand the subexponential part of the integrand there. We find

02:172 ko VU— 021172

An interesting feature of these integrals is that there is an overall extra suppression
by factors of kp in the numerator. This does not happen if we are performing an
integral with the usual kind of pole, e.g. ﬁg; this appears to be due to the fact that
the singularity at k ~ +ikp is of a weaker sort. It suggests however that the k; — 0
limit of the above integrals is somewhat nontrivial and is not captured by the above
expressions (since they simply vanish in that limit). We now directly compute the
integral (8.103) at ko = 0; this requires different techniques.

I(z) ~

(8.107)

8.C.3 Integrals at criticality: ky = 0.

We now perform an integral directly at criticality. We would like to evaluate

L(z / &k ek 8.108
(z) = C+Ikl (8.108)
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This time we first perform the angular integral to find

I.(z) =27 /0 ” = i FJo(k) =7 /0 ” CLM (Hé”(kx) + Hé”(kx)) (8.109)

Here Jy and Hy are the Bessel and Hankel functions. Now the integral is along the
real (positive) k-axis; however, since H® is well-behaved in the upper-half plane and
H® is well-behaved in the lower, we can we can split the integral into two halves.
We rotate one contour up and the other down, finding

L(z)=r /0 " idr ( Ci':m B (irw) + == HE (- m)) (8.110)

which after some more manipulation gives

I(z) = / dr——3 Ko(kz) (8.111)

where we have used the definition of the modified Bessel function Hél) (ikz) = —2Ko(kz)
and the fact that it is real (and hence the Hankel function is imaginary) for real xz.
Finally, if we expand the sub-Bessel part of the integrand in powers of x we can get
an expansion in powers of 1/x; the leading term works out to be,

2w
I(z — 00) ~ =5 / dv v’ Ko(u) = 75— - (8.112)

We have verified this behavior by numerical computation of the original integral and
found perfect agreement. Note that the exponent of the power-law falloff in x is larger
than that in the finite ko integral (8.107), as anticipated by the extra suppression of
ko in the numerator.
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Chapter 9

Conclusion

Far back, in the Introduction, we began our discussion by writing down the starting
point for a conventional understanding of quantum field theory, the free field:

L= / diz [ (Vo)? + m2¢2 (9.1)

Deformations of this theory define the structure of perturbative quantum field theory,
the basis for our current microscopic understanding of physical reality. However, we
quickly realized that this Lagrangian — or others like it — is not necessarily a suitable
starting point for tackling all problems. There exist real-life systems in which strong
interactions play an essential role, and in the Introduction we touched on two in
particular. These case studies were the quark-gluon plasma and the strange metal
phase of the high T, cuprates.

We then turned away from these problems. Real-life systems are rather compli-
cated. We do not have a gravity dual for SU(3) QCD. The cuprates are even more
complicated; there are doubtlessly many different aspects of condensed matter physics
contributing to the full phase diagram, and we are very far from understanding what
a true gravity dual for even the strange metal phase alone would look like. A direct
assault on these problems is not a sensible task for a holographer.

We thus spent the next eight chapters studying a different set of strongly correlated
problems — those which do admit a treatment using the techniques of gauge-gravity
duality. This forced us into the study of theories that are conformal in the ultraviolet,
and whose microscopic descriptions involve a great deal of supersymmetry. We chose
to ignore these facts, studied systems at finite temperature and density, and focused
on low-energy physics, where the spectacular symmetries of the conformal vacuum
appear to play no role.

We studied diffusion on black hole horizons, and demonstrated that this was pre-
cisely equivalent to diffusion in a strongly coupled gauge theory plasma that was not
dissimilar to the quark-gluon plasma. We studied a finite-density state via hologra-
phy, and argued that within its phase diagram there existed a point that was not
dissimilar to the strange metal phase of the cuprates, possessing a Fermi surface but
no quasiparticles, and a resistivity that is linear in temperature. We found new types
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of quantum phase transitions, driven by locally critical quantum fluctuations.

Along the way, we began to build an intuition for a new way to think about
quantum field theory. Many familiar ideas — the renormalization group, symmetry
breaking — took on fascinating new shape, manifesting themselves via elegant geo-
metric pictures. The separation of energy scales became a physical separation in an
extra holographic dimension. Charge diffusion happened when gauge excitations fell
into black hole horizons. The buffeting of Fermi quasi-particles by a quantum critical
sector became the physical stretching of its wavefunction down an AdS, throat. We
framed our understanding of these field theories in a language that had nothing to
do with the microscopic ingredients of Lagrangians like (9.1).

Of course, we did not solve either of the two systems mentioned in the Introduc-
tion. However, within our black holes and curved spacetimes we saw caricatures of
their behavior, and we learned a new way to think about them. One would like to
take our descriptions to a level more accurate than caricature; this will not be easy
and in many ways it is not immediately clear how to do this. Nevertheless there
exist many concrete directions for further research: these have been spelled out in
the various individual chapters, and we do not repeat them here.

The study of physical applications of holography is in its infancy. Even at this
stage, however, it seems undeniable that there is now a new base camp for the assault
on strongly correlated systems. It looks nothing like (9.1); rather it is based on
geometry and it looks like:

dztdz? + dz2?

2 _ p2lw
ds* =R "

(9-2)

From this new starting point we may finally have the opportunity to liberate our
understanding of quantum field theory from the constraints of perturbation theory.
It remains to be seen what we discover along the way.

204



Appendix A

Solvable spinor examples

In Chapter 2.2 a formalism was developed for holographically computing real-time re-
sponse functions of fermionic operators. In this Appendix we illustrate this formalism
by explicitly solving two concrete examples.

The first is spinors moving on a pure AdS;;; bulk background. The computa-
tion we will perform will result in the two-point function of a fermionic operator in
the vacuum of a CFTy; this is exactly solvable because of the conformal symmetry
associated with the vacuum.

The second example is spinors moving on a BTZ black hole [155, 156] in three
bulk dimensions; this will allow us to calculate fermionic correlators in a thermal state
in a CFT,. This is also exactly solvable, which is perhaps more surprising. From a
field theoretical point of view this is possible because the finite-temperature state in a
CFT; is a conformal transformation of the vacuum (see e.g. Chapter 4 of [83]). This
is dual to the fact that the BTZ black hole is locally precisely the same as the the
AdS; vacuum, as it must be since in three dimensions the Riemann tensor is locally
determined by the Ricci tensor; it is only the global structure that is different, as the
BTZ black hole may be viewed as a quotient of global AdS; [156]. From a practical
point of view it is thus not at all surprising that all wave equations on BTZ are just
as solvable as those on AdSs.

A.1 Pure AdS

The Euclidean vacuum two-point function for a spinor operator O in a CFT, which
is dual a fermonic field ¢ in a pure AdS, was obtained in closed form before in [76]
(see also [77, 78]). The corresponding retarded function can then obtained from it by
analytic continuation using (2.20). Here we calculate the retarded function directly
using the prescription developed earlier as a check of our formalism.

For pure AdS, the metric is given by

ds® = r(—dt® + d7?) + ar’ (A.1)
= 3 .
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with associated nonzero spin connection components given by
Wi = —rdt, wy =rdxt . (A.2)
The Dirac equation in momentum space is then given by
rI" 0 + ;I‘ -k + gI"d; —my =0 (A.3)

Using (2.41), equation (A.3) now becomes coupled equations for %,

by = =AM, Yo = D Alm)y, (A.4)
where we have used (2.43) or (2.44) for d even or odd and
d
A(m)=r (7‘8, tg - m) (A.5)
from which we obtain
kg = A(-m)A(m)y, . (A.6)

Note that (A.6) is now a group of decoupled scalar equations, which implies that the
T matrix defined in (2.62) will be proportional to the identity matrix. Equation (A.6)
can be solved exactly using Bessel functions, and the solution satisfying the in-falling
boundary condition at the horizon is

4 :-a
'r_dzile+% |k|:—w2 a4 k2>0
—d+1 .(1 2—|k|2 >
Yar = { R HY, I P (A7)
5 H? | AR ay w<—|k|
m+5 T

where a, is an arbitrary constant spinor. The story for the spacelike case k% > 0 is
exactly the same as that of Euclidean correlator and the retarded correlator is real.
For the timelike case w > |k|, we find the corresponding A, B coefficients as defined
in (2.60) as

1 g\ ~m+3) e~ (m+d)mi 7\ (mt3) / -
A = ———7] 1| = 3 B=———| = ’ k= 2 - k 2
L(3 —m) (2) o L(m+3) (2) " s

(A.8)

o ar(_m - %) k 2 —(m+L)mi
']b = 6[3 I‘(m——{-%) (5 e 2 (Ag)
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Using (2.61), we then find that

Gr(k) =

26—(m+%)vrip(_m+l) kY 2mtl .
e (3) R wsE o
2

For the other possible timelike case w < —]EI we simply change the phase factor
e—(m+3)mi ¢ o(m+3)mi_

A.2 BTZ Black Hole

We now consider fermionic correlators in a BTZ black hole background [155, 156].
Previous work [80] found that the quasinormal modes of a BTZ black hole precisely
coincide with the poles in the retarded propagator of the appropriate operator of the
dual theory (whose form is essentially fixed by conformal invariance). Here we will
closely follow [80, 81] to solve the wave equation but slightly extend these results by
finding the full correlator from the gravity side.

A BTZ black hole with a mass M and angular momentum J describes a boundary
2d CFT in a sector with

Lo=g(M+J), ILo= S ). (A.11)

The system has a finite entropy and non-vanishing left and right temperatures. Here
we are interested in probing this sector using fermionic operators with spin s = -;—

Such an operator Oy is characterized by conformal weights (hr, hgr) with

hy + hg = A, hy — hg = ﬂ:% (A12)
where the + sign denotes its chirality. As described in the previous section each
O (or O_) is described by a Dirac spinor 7 in the bulk, with different chiralities
corresponding to different boundary conditions and opposite bulk mass. We will now
find the retarded correlators of Oy by solving the Dirac equation for ¢ in the BTZ
geometry.

The metric of a BTZ black hole can be written as

(r?=r2)r?=-r2) , r2dr? 9 ryT_
r2 @+ (r2—r2)(r2 —r2) tr (d¢ 2

ds® = —

dt)2 (A.13)

where ¢ is an angular coordinate of period 2r. The mass, angular momentum, and
left and right moving temperature of the system are given by

2 2
it _ TyT- Ty =T S
M=-tm=,  J=—m, Ti=— Tp=—— (A.14)

where G is the 3d Newton constant. To solve the Dirac equation in (A.16), it is
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convenient to switch to a new coordinate system (p, T, X)

r? = r2 cosh? p—r? sinh? p, T+X = (ry+r-)(t+¢), T—X = (ry—r_)(t—9)
(A.15)
in which the metric is
ds? = — sinh? pdT? + cosh? pd X2 + dp* (A.16)
and the spin connections are given by
wr, = —coshpdT  wx,=sinhpdX . (A.17)

We will work in Fourier space on each constant-p slice; a plane wave can be
decomposed in either the (X, T') or (@, t) coordinate system:

,ll) — 6_ikTT+ikXX'l/)(p, k'p) — e—iwt+ik¢¢(p, kp) (A18)

where using (A.15) and (A.14) we can see that the momenta in the original coordinate
system (w, k) are related to (kr,kx) by

w+k w—k
ol —ky = :
27‘(’TR, kT X 27TTL

kr + kx = (A.19)

The Dirac equation can then be written as

1 [coshp sinhp A kxI'X kT
p _ J— —_ =
{F (6” + 2 (sinhp + cosh p)) e (coshp sinh p m| ¥ =0 (A.20)

We choose a gamma matrix representation where I'* = o3 TT = ig?,I'X = ¢! and
write %7 = (¢4,7%_). Now following [81] and letting

_ [coshp *sinhp B 9
Py = \/ cosh p sinh 7 (x1 £ Xx2), z=tanh”p , (A.21)

then in terms of x; 2 and z, the Dirac equation becomes

2(1 — 2)v/20,x1 — ¢ (% + kxﬁ) X1 = (m - % +i(kr + kx)) X2

Ak 1 .
2(1 — 2)V/28,x2 + ¢ (—\/E—z' + kx\/z) X2 = (m —5~ i(kr + kx)) X1 - (A.22)
Note that the horizon is at z = 0 and the boundary at z = 1. It is now possible to
eliminate one of the fields x12 to obtain a second-order equation in the other field.
The solutions to that equation are given in terms of hypergeometric functions. We
are interested in evaluating the retarded correlator, and so we pick the solutions that
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are infalling at the horizon. These take the form?

x2(2) = 2%(1 — z)ﬂF(a,b; c; 2)

xi(z) = (a—-c) z%’L"‘(l—z)ﬂF(a,b—l— L;c+1;2) (A.23)
where the parameters are
. ikT . 1 m

and

1 1 3 1 1 ] 1 .
a = 5 (m + 5) —§(kT—kX), b= 5’ (m — 5) —E(kT+kX), cC= E—lkT . (A25)

From (A.21), we know that at the AdS boundary ¢ has the following asymptotic
behavior

by ~A(l—2)7"F + Bl -2)"%  ¢_~C(1-2)"% + D(1—2)i*%, (A.26)

Our earlier analysis tells us that if m > 0 we can identify A = x, as the source and
D = (O_) as the response, and so the retarded correlator in this frame is given by

~ D

Ggr= i~ (A.27)
We now explicitly expand the solutions (A.23) near the boundary to extract the
coefficients D, A. The relevant ratio works out to be

Cnlhe k) = _ir (3 —m) T (3(1 = 2i(kr — kx) +2m)) T (3(3 — 2i(kr + kx) + 2m))
RART B T (3 +m) T (21— 2i(kr + kx) — 2m)) T (3(3 — 2i(kr — kx) — 2m))
(A.28)
Using the relations (A.19) this can be rewritten in terms of momenta in the (¢, )
coordinate system as

o T(E-m T (h i) T (ke i)
Gr= —zF (l n m) — — — — (A.29)
2 F(hL_z47rTL)P(hR—241rTR)
where we have introduced
m 1 m 3
hLZE-l-Z, hRZE-i-Z (A.30)

n order to display consistency of these solutions with the equations of motion (A.22), it can be
helpful to use the hypergeometric identity —aF(a+ 1,0+ 1,c+1,2) + 12 F(a,b, ¢,2) + &2 F(a, b+
l,e+1,2) =0[73].
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and 5 !

. m = m

hL-——-Q——Fz, hr = —7+Z . (A.31)
Note that (A.29) has a nice factorized form for left and right sectors. The correlator
has a pole whenever either of the two gamma functions in the numerator has an

argument that is a negative integer; thus we find the following two sequences of poles

w=—k —4niTgr (n + hg) w =k —4miTy (n + hr) neEZy (A.32)

As demonstrated in [80], these two sequences of poles are precisely those appearing in
the finite-temperature retarded correlator of an operator in a 2D CFT with conformal
weights (hz, hg). Since hy — hg = —3, this is consistent with our expectation that ¢
corresponds to O_.

If m < 0, we then find that %_ is the source and % is the response. Thus we are
looking the correlation function of O,. One can immediately find the correlator from
the results above, as the roles of D and A are reversed; we find that this results in
a different pole structure consistent with the correlator of an operator of conformal
dimensions (7L Lk r), indeed corresponding to a boundary spinor of positive chirality.?

Finally we note one last point which is important if one wishes to determine the
overall normalization of the correlator. Note that the above expression was computed
in the (X, T') coordinate system; however we see from (A.15) that the relation between
this and the (¢,¢) coordinate system involves scaling the left-moving coordinate by
(ry —r_) and the right-moving coordinate by (ry + r_), i.e. by the left and right
temperatures respectively. Thus the correlator in the (¢, ¢) frame is®

Gr(w, k) = (2xT)? 1 (2xTR) 2 1Gr(kr, kx) - (A.33)

This rescaling is important for the extremal limit 77, — 0. In this limit, using the
Stirling formula in (A.29), we find that Gg blows up

1_ D (hp—d2tE) /0 3\ 2ke-1
Gr— —’iF (f ™) (-R 41TTR) ( zin k)> ) (A.34)
PE+m) T (he-igh) \ 47Tz

but Gg does have a finite limit

—i(w — Ic)>2’“‘1 r(3-mr (hR — i:";’;) . (A35)

Gr(w, k) = —i(27TR)* ! ( 5

2Note that in attempting to compare our assignment of conformal dimensions directly with [80],
one should keep in mind two issues: m in this paper is —m in [80], and our choice of gamma matrices
means that a 3d spinor ¥ with positive eigenvalue of I'” has opposite 2d helicity here than it does
in [80]; thus our assignment of hjy, and hp is switched relative to them.

3_1’s in the exponents of the expression below are due to the fact that this is an expression in
momentum space.
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This expression can be verified by direct calculation using the bulk spacetime for the
extremal BTZ black hole with T, = 0. Note that (A.35) again has a nice factorized
form with the left-moving sector given by the vacuum expression.
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Appendix B

The Breitenlohner-Freedman
Bound

In this Appendix we provide an elementary treatment of the celebrated Breitenlohner-
Freedman bound [125], which tells us precisely when a bulk massive scalar field in
AdS441 goes tachyonic. While the existence and derivation of this bound is a very
well-known subject, we feel a careful and pedagogical discussion using only elementary
techniques is still of some value.

We will work in units where Lyys = 1 and the metric is given by

dz? — dit* +di® napdzidz?

2 _
ds® = = o (B.1)
where A, B run over all d + 1 directions.
B.1 Wave equation in Schrodinger form
The bulk scalar action is
1 d+1 2 2 42 1 d+1,, ,1-d [ . AB m?
S =5 [ d*ay=g (V) + m*¢?) = —5 [ d**1w 2174 (180,056 + 2
(B.2)
The equation of motion can be easily obtained from here to be
1 (1 — d) / 2 m®
I — (kB2 )= .
¢+z¢><+z2¢o (B3)

where I_’have assumed a field dtl}eory spacetime depedence €%, so k? is the momentum
—w? + k%. By writing ¢ = 277 9 we find

_1/)//_!_ []'6'2_*_% (m2_ 1—4d2>] :w2¢ (B.4)
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This is a perfectly normal looking Schrodinger equation, with potential V(z) given
by the quantity in square brackets and “energy” given by w?. Note that a negative-
“energy” solution corresponds to imaginary w, which means that the solution is grow-
ing exponentially in time; this is the instability we are looking for. For the remainder
of our discussion we will set k& = 0.

Now this differential equation will always have solutions for all values of w, both
real and imaginary, but not all of them will be “normalizable”. A normalizable
solution to the AdS wave equation is one that has finite energy, in a sense that we
will now make precise; in particular, normalizable in the bulk AdS wave equation sense
will be closely related to normalizability in the usual QM sense (i.e. [ dz|9(z)]* < 00).

B.2 Normalizable solutions to the AdS wave equa-
tion

We begin by first noting that if any spacetime has an isometry generated by a Killing
vector &#, the current j¥ = T*¢, (where T, is the stress tensor) is covariantly
conserved: V,j” = 0, as can be easily checked using the Killing equation and the
conservation of T},,. Thus given a region R of d + 1 dimensional space

0= / dHz/ =gV, ¥ = | dacVhnte'T,, (B.5)
R oR

where OR is the boundary of R and h is the determinant of the induced metric on this
boundary. Let us now specialize to AdS4.; and let the Killing vector be £ = §;. Let
us also take R to be a giant chunk of AdS, extending across all space z € [0, 00) but
bounded in the past and the future by two spacelike slices at ¢; and ¢y, i.e. ¢t € [t;,tf].
In that case OR has three components; the two spacelike slices at £ = ¢;,tf, and the
timelike slice at the AdS conformal boundary at z = 0 (I will assume that all fields
decay away exponentially at z — 00; the boundary term at 2 = 0 will turn out to be
important). This integral then becomes

/ dz 2179,
0

The second term is the flux of energy-momentum out the AdS boundary; if this is
zero then this equation implies that the first integral has the same value at ¢y and
at t; and should be interpreted as the statement of energy conservation. Now let us
explicitly work out what the relevant components of T}, are in our case. For a scalar
field with action (B.2) the stress-energy tensor is

t=t f t

f
1-d
— dt 22 7%,
t=t; t;

=0 (B.6)

z=0

T = Vo8V, — 50 [#79,8V 0 — 167] (B.7)
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I would now like to write this in terms of 7). This is mostly very easy except for the
term in (8,¢)?, which we manipulate with an integration by parts as follows

/ ” dz2"40,0)° = ¢2'740.¢ L / ~ dz $8,(2*790,9) (B.8)
0 z=0 4]

B _a [ 1 - d?

= —¢2'7%0,¢ » /0 dz 1 [szer i 14 (B.9)

Similarly, we will manipulate the second term in (B.6) with a similar integration by
parts (except on t)

t=ty

t=t; z=0

ty
— / dt 2179T,,
t;
(B.10)

Putting the pieces together to assemble (B.6), we see that the boundary terms from
each of the two parts cancel and we obtain the following equation

t
—-3 [ [t #0006 - s0.0.9) + #4900
z=0 t;

/0 ” dz% (BB + v (—02 + V(2)) 0]

t=tf 1 t_f
-5 [ dt z' %0000 — ¢9t(92¢)] =0
z2=0

t=t; 2 t;
(B.11)
where V(2) is the potential from the Schrodinger equation (B.4)

V(z) = % (m2 - 1—_4;'12) (B.12)

Now let us take a step back and think about what we require of a solution to the wave
equation. It seems reasonable to require that the energy (defined by the first integral
above) is finite, and also that it is conserved. We have seen that energy conservation
requires that the second term vanish above vanish. Introducing a Fourier expansion
in w, ¢(t) = [ dwp(w)e™?, we see that this implies that

/ do' dw v dte“ ) [wh(w)8,p(w') — W P(W)Bp(w)2* ], _, =0  (B.13)

t;

Note that the fact that this must hold for all ¢;, ¢ essentially means it must hold for
all w, «'. To put this into a form that will turn out to be more useful, we swap w and
«' in the second term to obtain

/ 4 dew w2 [B(w) () — H(w)Pap()],_ = O (B.14)

Finally, we write ¢ in terms of ¢ and notice that the reality of ¢(t) implies that
d(w) = ¢(—w)* to write this equation as

P(w)* 0 (W) — P(W)0,(P(w)*) =0 at 2=0 (B.15)
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This equation embodies the statement that “nothing important is leaving through
the AdS boundary,” and will turn out have rather important consequences in the
effective quantum mechanics problem that we will solve next.

Let us return now to the criterion of “finiteness of the energy”. This simply
requires that the first bracketed term in (B.11) is finite. Evaluating it at arbitrary ¢,
we see that the energy is simply

E(t) = —;—/dw’dwdz [—ww’¢(w)¢(w') + P (w) (—83 + V(z)) ¢(w’)] eitlwte’) (B.16)

We have so far nowhere used the fact that we are evaluating this energy functional
on-shell, that is, on a solution to the equations of motion (B.4). Using this fact,
noticing that it is exactly the Schrodinger operator that appears in the second term
above, and switching w — —w, we end up with the following expression for the energy

E(t) = % / dw'dwdz [+ww + w?] P(w)*h(w)e ') (B.17)

This is promising. Now let us think very hard; the Schrodinger operator in (B.4)
is probably Hermitian. Thus its eigenfunctions with different eigenvalues are or-
thogonal. These eigenfunctions are nothing but the ¢(w), and so we should have
[ dzyp(w)*ih(w') = §(w — w'). Thus we find

E@t) = / dodz? ()2 (B.18)

And so finiteness of the energy requires that the wavefunctions ¢ (w) have finite norm
in the usual quantum mechanical sense.

However, it now appears that there is some discrepancy; we saw earlier that the
energy would be conserved only if the boundary condition (B.15) was met, yet we also
just found an explicit formula for the energy that is time-independent. Clearly the two
conditions must be related. More precisely, we assumed that the Schrodinger operator
appearing in (B.4) is Hermitian—is this necessarily true? Consider the operator acting
on two eigenfunctions with real eigenvalues

(-2 +V(@)] (W) =) [ +V(R)] (W) =)  (B.19)

Now multiply the first equation by #*(w’), the second by %(w), subtract the second
from the first, and integrate them both over z. We obtain

_ /Ooo dz [¢*(w’)6§1/)(w) - w(w)azw*(w')] = (w2 — w’z) /0‘00 dz * (W)Y (w) (B.20)

If w # &/, the eigenfunctions have different eigenvalues and the expression on the
right-hand side is nonzero and proportional to the inner product of the eigenfunctions.
If this operator is Hermitian, these eigenfunctions must be orthogonal, which means
that the left-hand side of this expression better vanish. However, if we integrate by
parts on this left-hand side, we see that it is not zero but in fact equal to a boundary
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term

— (W) 0 (W) = (W)W ))] | = (F —w?) / dz (W )Pp(w) (B21)
z=0 0

Thus the Schrodinger operator is not Hermitian unless this particular boundary term

is zero. This boundary term is precisely the one that we found earlier in (B.15), and is

proportional to the energy flux out the boundary of AdS. We summarize our findings

below:

1. If the Schrodinger operator corresponding to the AdS wave equation is Hermi-
tian on a particular set of eigenfunctions, then those eigenfunctions correspond
to classical field configurations with a bulk AdS energy (i.e. the charge under
the bulk time translational Killing vector) that is conserved. The condition for

Hermiticity is precisely equivalent to the condition that no energy leak out the
AdS boundary.

2. Furthermore, if a particular eigenfunction is normalizable in the normal QM
sense (i.e. [dz|i(z)? < 00), then it corresponds to a classical field configura-
tion that has finite bulk AdS energy.

We now finally have a well-posed quantum mechanics problem; find normalizable
negative-energy eigenstates of the Schrodinger operator (B.4) that satisfy the bound-
ary condition (B.15).

B.3 An effective quantum mechanics problem

The Schrodinger problem we are solving is
e!
(-62+ ) w=—8% (B.22)
2 _ 1=d®

where a = (m 7 ) We now want to examine the behavior of the solutions as a

function of a; in particular, we are seeking negative-energy solutions, which with the

convention used in (B.22) corresponds to real 5. We should note that this particular

potential has a venerable history; in our own treatment we will largely follow [157).
In any case, the solutions to (B.22) are writable in terms of Bessel functions:

P(2) = vz [C1,(iBz) + CoY,(ifz)] (B.23)
were v = %\/1 + 4a. Already we see that something peculiar will happen at the
particular value of & = —1/4. To find the spectrum, we would like to impose vari-

ous conditions on the wavefunction—first, let us examine the large 2 behavior. The
asymptotic behavior of the Bessel functions with imaginary argument is

J,(iBz) ~ ‘/-z_—lg;cosh(ﬁz) Y, (iB2) ~ —i4/ % sinh(fz) (B.24)
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where I have neglected some factors of 7/4, etc. in the argument of the exponentials.
It is clear that we need the linear combination appearing in ¢ to decay exponentially
at large z, which means that ¢ takes the form

$(2) = CV/Z [ (iB2) + Y, (iB2)] (B.25)

Now we examine this at small z, where it becomes

8= i [y (7))~ () | (B.26)

Now we finally need to worry about the true nature of v = %\/1 +4a. fa>—-1/4,
then «y is real. Is this wave function then normalizable as we approach z — 07
Actually, yes, it is; the relevant terms in |¢(2)|? go like 21727, 2, and 2!~27 respectively;
these are actually all integrable at z — 0 for sufficiently small ~, even if it is real.
It appears that even if & > —3 we can obtain normalizable negative energy bound
states; furthermore we can get them for any value of 3, i.e. a continuous spectrum of
negative energy states.

To obtain a more realistic spectrum, we must recall our other boundary condi-
tion (B.15); evaluating this on two solutions (B.26) with different energies 3;, G2 we

obtainthe condition B\ B\"
(%) (&) = (B0

This condition is never satisfied, regardless of the values of 3;, 3, real. Thus we
conclude that for real v (i.e. & > —1/4) we can never have a negative-energy bound
state that satisfies the Hermiticity condition.

Finally, we move on to the case of interest, where & < —1/4 and thus <y is imag-
inary; we write it as 7y = ig, where g is a real number. Our large z analysis goes
through untouched, and thus (B.25) is still the correct form for the wavefunction. On
the other hand, in the small-z analysis, z is now raised to an imaginary power and so
is oscillatory 2*9 ~ expliglog(z)]. We find that at small z ¢(2) is proportional to

¥(2) ~ /zcos [g log (329) + 6] (B.28)

0 is a g-dependent phase. This oscillates around 0 and so is probably normalizable
at the boundary. Now we finally find that imposing the boundary condition (B.15)
results in

g <cos [glog ( g ) + 5] sin [g log ( 52) D—1 — 2 = —gsin[g(log B1—log B2)] = 0

(B.29)
This boundary condition can be solved, and the answer is that the (negative) energies
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B1, B2 must be related by

P = exp (n—;-) P2, MEZ (B.30)

Thus we have a discrete spectrum. Note that 8 = 0 is an accumulation point of the
spectrum. And indeed, given some way to fix one of the energies in the spectrum, we
can fix the entire set. However, we will not pursue this any further, and simply write
down the punchline:

Ifa < —1/4, we have normalizable negative-energy states on which the Schrodinger
operator is Hermitian.

Now recall that a “negative-energy” state is actually an instability of the classical

AdS wave equation, and a = (m2 - l—zd—z) Thus the criterion for the existence of a

finite-(and conserved)-energy instability is simply

d2

where we have restored the factors of L445. This is the Breitenlohner-Freedman
bound.
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