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ABSTRACT

Access to a dynamometer is a useful tool for any electrical system where the motors must be
selected from various suppliers and fully characterized. Motor suppliers usually provide a
torque, speed, efficiency curve, but it frequently lacks complete motor characterization and
includes motor controller losses in the total system loss. The dynamometer presented in this
thesis is primarily designed for testing of high efficiency motors and motor controllers in the
power and speed range requires for competition in the World Solar Challenge, a transcontinental
race for solar electric vehicles. The testing specifications of a solar electric vehicles are
uncommon among motor testing needs because it requires high torque, low power, high
efficiency, and the only a small operating range. This thesis covers the design and construction
of the dynamometer.

Thesis Supervisor: Daniel D. Frey
Title: Associate Professor of Mechanical Engineering and Engineering Systems
co-Director, Singapore-MIT International Design Center
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1 INTRODUCTION

1.1 SOLAR VEHICLES AND THE MIT SOLAR ELECTRIC VEHICLE TEAM

The dynamometer presented here is primarily designed for the testing of motors used in solar electric

vehicles. Solar vehicles use a photovoltaic array to generate electrical energy for propulsion. They almost

universally utilize a battery pack to smooth power from the array and provide extra power for

acceleration. Currently, solar vehicles are built purely for exhibition and competition purposes due to the

low power production and high cost of solar cells. The MIT Solar Electric Vehicle Team (SEVT) is a

student organization which designs, builds, and races solar vehicles. The MIT SEVT competes in the

World Solar Challenge which is widely recognized as the premier solar car race in the world. The race

runs from Darwin to Adelaide, a 3000 km journey across the Australian Outback (1). The electric motor

is an essential part of a successful vehicle as it transforms electrical energy in mechanical propulsion. The

motor specifications must be precisely matched to expected vehicle performance to maximize efficiency,

minimize motor weight, and provide for the full range of speed and power requirements. Full

characterization and efficiency data is an important part of optimal performance in solar racing.

1.2 MOTIVATION

A dynamometer is a useful tool to any racing team, but time and funding limits of the team have

prevented the construction of dynamometer in the past. Recent gains in the funding of the MIT SEVT

have sparked a greater need for motor data to accurately compare our motor's performance with other

options. The team can also use the data to make more accurate racing strategy decisions and optimize

performance for input voltage, gap adjustment, and bearing preload and selection. Availability of a

dynamotor is also a good first step towards design and construction of a custom motor as the team's next

major undertaking.

Unique motor requirements, intense competition, and high budgets have driven the design of super high

efficiency motors which are specially built for solar racing. The current motor owned by the MIT SEVT

is the NuGen Mobility SCM-150 is a 7.5 kW axial flux brushless motor which is rated at 3.75 kW

continuous, weighs 20 kg, and operates at 93% ± 1% efficiency with controller losses in the range of

racing speeds and power (2)1. The dynamometer presented here will measure both motor and motor

controller losses as the previously published data about the NGM only shows the combined loss (3).

Several other motor options which should have higher efficiency are available, but they are extremely

NuGen Mobilty was previously named New Generation Motors and is referred to as such in the reference as the
name had not changed at time of reference publication.



expensive and significant mechanical work would be required to integrate them into our vehicle. Once
the power savings of an alternative motors is known, but team can determine if the funds would be best
spent on a new motor or other vehicle improvements. The CSIRO motor is widely thought to be the
lightest and most efficient motor available. It has a rated efficiency of 97.5% without controller losses and
weighs just 10.9 kg for the stator and rotors without the motor housing (4). A 2010 paper on the CSIRO
has cast some doubt on the efficiency ratings of the CSIRO and rates the CSIRO without controller at
95.5% (5) for the operating conditions of the MIT SEVT in the 2011 WSC. A dynamometer would allow
the team to determine the true efficiency of the current NuGen Motor it already owns and possibly test
other teams' motors in exchange for data sharing.

1.3 ACKNOWLEDGMENTS

Thank you to Professor Frey for supervising this project which I brought to him from my work on the
MIT SEVT.

I would like to thank who helped me with the electrical side of this project; Shane Coltan, Alex Hayman,
Kelly Ran, and George Hansel. This project would not have happen without their help. I would like to
give a special thanks to Alex who coaxed the motor controller into working when I was down to the wire.

The MIT SEVT has been the central pillar of my time at MIT and I am glad to have been able to
contribute this project to the team.

I would also like to thank Interface Inc, Omega Engineering, and TDK Lambda who sponsored parts for
this project.

2 TESTING REQUIREMENTS FOR SOLAR VEHICLES

Solar vehicle have an unusual set of motor requirements because they use hub motors to prevent the loss
associated with a transmission, but have much lower power requirements than a traditional vehicle. The
MIT SEVT has extensive data from the previous vehicle and can make predictions about efficiency and
operating range of its vehicles in future races. This information can be used to determine the range the
dynamometer should be able to test. The torque transducer's accuracy is linearly related to its range
because it is based on resistance through a strain gauge (6), so the dynamometer should be carefully sized
to increase the accuracy of measurement. Another approach would be to size the dynamometer to the
maximum motor specifications which would give more complete motor information. While this approach
might be better for general applications and even allow for improved acceleration and regeneration
strategy, the solar vehicle will only accelerate an average of fifteen times during the World Solar
Challenge, so this energy use is inconsequential in comparison with the 60 hours of racing the vehicle
will undergo.



The MIT SEVT's previous vehicle, Eleanor, average a speed of 77.6 kph and 16.1 Nm. Eleanor is a good
starting point in determining the performance of future vehicles, but dynamometer specification must
account for expected average speed and power use with the improvements of new and future vehicles.
Racing speed, power, and torque for Eleanor from the 2009 World Solar Challenge are shown in Figures
1, 2, and 3. Only data where the vehicle maintains the same speed above 60 kph within ten percent of a
five minute average are considered to eliminate anomalies such as acceleration, wind gusts, and traffic.
Data points are calculated by dividing the race into five minute sections and taking the average of each
section as a speed and power data point. Torque was calculated with 0.508 meter diameter wheels from
the speed and power data gathered by the car's telemetry system.
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Assuming a similar amount of variation in speed during the next race, the dynamometer needs to be able
to measure torques and speeds equal to the highest common bracket, 84 kph, modified by the efficiency
improvement of the next vehicles. If strategy improves, there will be less speed variation and down time,
so the maximum power dissipated will be lower. The equation below is used to calculate vehicle power
consumption for a particular speed (7).

1
Pout ~~ ~P CdA.V 3 + Cr.M.V + Pelectric

7m * 17 mc

Where:

p = Denisity of Air
Cd = Coefficient of Drag

A = Frontal Area
v = Vehicle Speed

Crr = Tire Rolling Resistance
m = Mass

71m = Motor Efficiency
7mc = Motor Controller Efficiency

Pelectric = Base Electrical Loss

The race vehicle for the 2011 World Solar Challenge, Chopper del Sol, is complete and the efficiency and
power production gains are known. Table 1 below details the gains made on Chopper Del Sol as a
percentage and numerical change from Eleanor. Weight is reported without driver weight which is 30 kg
by race regulations. Gains for vehicles beyond Chopper del Sol will be more modest, as several large
improvements were implemented on Chopper which cannot be further improved in the future.

Table 1: Design Improvements from Eleanor to Chopper Del Sol

Category Total Reduction Percentage Reduction
Vehicle Mass (m) 45.3 kg 24%
Aerodynamic Drag (CdA) 0.019 m 2  17%
Motor Controller Efficiency (me) 2% (estimate) 50% (estimate)
Array Power 55 Watt (increase) 5 % (increase)

By increasing power production by 5% and modifying the power consumed by the above parameters, the
next vehicle should drive up to 92.7 kph for its highest speed bracket. The torque requirements are the
vehicle will be reduced as speeds increase and power consumption remains relatively flat. With an
increase in maximum speed of 10.4%, the torque will be proportionately decreased to a maximum
sustained torque of 20.2 Nm.



3 DYNAMOMETER DESIGN OVERVIEW

A dynamometer is a tool for measuring power output of a motor or engine from the torque and speed of

rotation. To measure the efficiency, the electrical power delivered to the motor must be measured,

although this is slightly complicated by the three phase power output of the motor controller. In

previously published data, the motor controller and motor efficiencies have been lumped because

measurement of DC power is much simpler than three phase power.

3.1 DESIGN REQUIREMENTS

The dynamometer must be designed to meet the motor and motor specifications of the MIT SEVT for

current and future vehicles shown in Table 2 below. The DC voltage requirement is dictated by the

maximum voltage range of the motor controller, a Tritium WaveSculptor22, which can sustain up to

160V (8). The three phase voltage, the operating voltage of the motor controller, is 96 volts for the NGM

motor, but could be brought up to 160 V for the CSIRO. The current ratings are based off the lowest

voltage the system will be run at and the maximum power while accounting for current sharing between

phases. The DC bus of the MIT SEVT Electrical system is 108 V while the NGM motor runs at 96 V.

Table 2: Testing Specifications

Torque 20.2 Nm
Speed 970 RPM
Power 1600 W
DC Current 14.81 A
DC Voltage 160 V
Three Phase Current 175A max, 100 A

testing
Three Phase Voltage 160V

Other major factors in the design decisions were sourcing of parts, making the dynamometer easy to use,

and easy to modify for different motors. Sourcing parts was a major part of the design as the parts for

power measurement can usually be easily purchased, although precision parts are expensive. The MIT

SEVT is supported by corporate sponsors, so the parts which could not be built in-house were sourced

based on companies who had suitable parts and were willing to donate them.



3.2 SYSTEM OVERVIEW

The power flow of the system starts with DC power supply from wall power. The DC power is converted
to three phase by the motor controller. The test motor converts the three phase power into mechanical
power which is converted back to electrical power and dissipated in the resistance of the motor's internal
windings. The motor controller output can be controlled by a USB interface with a laptop to set a torque
speed curve. The load motor is a series wound motor which requires an external current supply to create a
magnetic field, allowing the motor constant to be changed on the fly. The current supply is controlled by
the CPU. The electrical and mechanical power is measured by a custom designed electrical power
monitoring system and an off the shelf torque transducer, respectively. Both of these systems output an
analog signal that is converted to digital and transmitted to a laptop by a data acquisition module. This
set-up will allow the dynamometer to eventually be run by closed loop control so that torque speed curves
can be produced without reconstructing the data. The modules of the dynamometer are shown in Figure 4.

Leeds shorted, power
dissipated in internal
resistance

Testing Motor Torque Transducer Load Motor

3 Phase Voltage
and Current

Speed and Torque
Motor Voltage

Analog to USB Motor Current Field Current

Data Acquisition Controller supply

DC Voltage [1K
and Current

Electrical Power
Voltage Mechanical Power

Power Supply VolteHeat Transfer

Current an Data and control

Figure 4: Dynamometer Schematic



4 MECHANICAL

The mechanical system was designed to be cheap and easy to manufacture while providing adjustability
and precision shaft alignment. The components are pictured below in Figure 5.

Platform
Realignment

Feature Hub Motor
Stand

Figure 5: Mechanical Overview

4.1 TORQUE TRANSDUCER

An in-line torque transducer was selected to allow direct measurement of torque on the output shaft of the

motor. This type of measurement eliminates frictional losses from other components in the system and
even allows the load motor to be geared without losing measurement accuracy. The torque transducer
selected was a 20 Nm T8 ECO Rotary Torque Transducer which was donated by Interface Inc.
Specifications of the T8 are listed in Table 3 (6).



Table 3: T8 ECO Specifications

Torque Measurement 0 to 20 Nm
Safe Overload Torque 36 Nm
Maximum Speed 8000 RPM
Accuracy ± 0.05 Nm
Repeatability ± 0.01 Nm
Output ±5V
Shaft 18 mm

The 20 Nm transducer is slightly smaller than the desired specification of 20.2 Nm, but the next largest
torque range is 50 Nm. The Interface Inc. torque transducers use strain gauges to measure shaft twist
which makes the measurement accuracy scale linearly with maximum measurement. The slightly
decreased useful range of the 20Nm T8 was preferable to 2.5 times increase in accuracy. The ± 5 V
output of the T8 is relayed to a computer with a 5 kHz USB converter supplied by Interface Inc (6).

4.2 PLATFORM AND SHAFT CONVERTERS

The platform bed and shaft converters were both designed and machined in-house. The platform was
designed to house the physical size and expected torque output of the load motors to be tested. The main
design goal of the platform was to make is simple to build and keep the base platforms parallel for shaft
alignment. The platform was welded from mild steel square tubing to keep costs down. Once all welding
process was finished, the motor mounting bases were faced without re-clamping to the mill bed to keep
the bases planar. An x-y zero point was also set by machining two flats in the test motor base to allow the
platform to be realigned on a mill for further machining if new mounting holes must be added. Facing of
the bases and the xy zero point are pictured in Figures 6 and 7 respectively.

Figure 6: Facing Platform Base Figure 7: X and Y Zero

The testing motor is a hub motor, so a coupling was built to change the wheel attachment unto a shaft for
connection to the torque transducer. The motor coupling was achieved via a bolted motor mount with a



concentric hole and press fit shaft. The coupling is made of 4130 steel which was chosen because of the

material selection on 18 mm shafts. This coupling was machined in-house and is shown in Figure 7 at

right. The MIT SEVT's suspension attachment for a previous vehicle was adapted to be the stationary

mount for the load motor. It was machined from billet 6061 T6 aluminum. The stand and adapter are

below in figures 8 and 9. Mechanical drawings of parts made for the dynamometer are in the Appendix.

Figure 8: Motor Stand Figure 9: Hub Motor Adapter

4.3 SHAFT ALIGNMENT

The shafts of the torque transducer, load motor, and test motor must be carefully aligned to prevent

damage to the torque transducer. Some misalignment will inevitable exist, so two single disk couplers are

also added in line to absorb this misalignment. This configuration is recommended by Interface Inc (6).

The couplings used are Candy Controls LK3-Single (Clamp type) couplings. Vertical alignment was and

angular alignment were achieved by facing the plates in a single machining operation. The vertical offset

can therefore be precisely measured by using the mill z coordinates and a spacer of the correct height was

added. Horizontal alignment was achieved by connecting the shafts and then tightening down the load

motor. The torque transducer was replaced with a solid shaft during this procedure to prevent excessive

loads from damaging it.



5 ELECTRICAL

The electrical system consists of a high power DC power supply, power measurement circuitry, a high
accuracy ADC with USB input, and a current supply for the load motor. The DC power supply is a
GenesysTM 3.3kW donated by TDK-Lambda. It can deliver up to 150 V and 22 A. This is slightly below
the optimum of 160V, but the next largest voltage was a 300 V supply which can only provide 11 A. If
the complete 160 V range is required in the future, a battery pack can be used as the DC supply.

5.1 VOLTAGE MEASUREMENT

The electrical power is measured both before and after the motor controller to give motor and motor
controller efficiency measurements. Measurement is relatively simply for the DC case because the power
will be constant and referenced to ground, meaning that sample rates can be low and power can be
measured with a voltage divider and current with a precision shunt. The shunt can be place on the ground
side of the power supply, meaning that the voltage across the resistor is measured with respect to ground.
Measuring the three phase power is more complicated because the current measurement must float with
the sinusoidal power. Furthermore, the sampling rate must be high enough to trace the sinusoid of each
line or be synchronous to get instantaneous power across all three lines. High and accurate sample rates
are achieved with the High Performance Multi-Function I/O USB Data Acquisition Module by Omega
Engineering. The model selected is the OMB-DAQ-2416 with 16 differential or 32 single inputs at 24 bit
resolution and 1 kHz (9).

HV + HV-
Voltage measurement is performed with a p -AA/A

simple voltage divider as diagramed at right in
Figure 10 and its governing equation is shown RI Shunt
below. 75kOhm

R2

R2 6.81 kOhm
measure = V R 2

Figure 10: Voltage Divider

Resistor values were selected based on the highest expected voltage for the current system and the range
of the ADC. The OMB-DAQ-2416 has 9 input ranges which can be set from ±0.078125V to ± 20V. The
error as a percentage of measurement is least for the highest range. Resistors which would utilize the
second highest range, ± 1 OV, were chosen to eliminate the possibility of over loading the DAC if the full
range of the DC supply were used while increasing the error only minimally. In the initial testing cases,
the voltage requirements will be 108 V and 96V. This required that the resistor ratio would need to be



10:1. The resistors selected have 0.02% value accuracy to avoid the need for calibration between resistor

sets. This limits the selection of resistor values. The closest possible ratio was 75:6.8 1. The larger resistor
is 75 kM to limit current flow through the divider to 1.3 mA. The voltages of the three phase lines are

referenced to ground and their relative voltages are calculated after data collection for simplicity of
wiring.

5.2 CURRENT MEASUREMENT

The current is measured across a low resistance precision

shunt to produce a small voltage drop which corresponds V = I -R

linearly with current by the equation at right. Current

measurement is simple for DC power
because the shunt can be place in line with

the ground wire. This references the voltage Comn
to ground, and allows it to be fed directly to

the DAC. The three phase measurement is Gain

much more difficult because each line's Diffe
voltage is varying with time. The voltage
across the resistor must be measured with Diffe

respect to the line voltage and converted to Diffe
a ground referenced voltage by an isolation
amplifier. The isolation amplifier must have high
accuracy, withstand 160V common mode voltage,
and have a high common mode transient slew
rate. Several ICs are produced for this purpose as
it is common in motor control. The selected chip
is the Avago Technologies HPCL-7800A
Isolation Amplifier. Important specifications are
presented in Table 4 (10). The gain variation is
higher than desired and is therefore calibrated for
each line. The amplifier outputs a differential
voltage referenced to ground which is read by the
DAQ. The HPCL-7800A requires a floating 5V
supply which was supplied by a Texas
Instruments DCR021205. The complete
schematic for current measurement is shown
below in Figure 11 with the physical wiring in
Figure 12.

Table 4: Isolation Amplifier

Shunt

Figure 11: Current Sense Design

mon-Mode Rejection 15kV/ps

8.00 ± 0.08

rential Input Operation ± 200 mV

rential Input Suggested Operation ± 100 mV

rential Input Limit -2.0 V to 5.5 V

DAC



The shunt resistance determines the accuracy of
measurement, with larger shunts consuming more power,
but increasing accuracy. Shunt power consumption is
limited to by temperature increase in the shunt which
causes non-linear voltage variation and destruction of the
shunt for very high currents. The shunts selected were
chosen to utilize the full range of the isolation amplifiers
while not over-volting the amplifier on motor start-up.
The highest current the DC shunt will need to measure is
14.81 A for the maximum case. This will lead to a
differential input of 148 mV. The circuit must also be able
to withstand current spikes from motor start-up. This
design can withstand up to 550A. Selecting the three
phase shunts in more difficult. The EVC402-XXX, the
motor controller being tested with the NGM, is rated to
175 A (11). Motor current is proportional to torque which
is highest during heavy regenerative braking, a motor
capability not tested by the dynamometer. A shunt with
0.001 0 was selected based off motor current data from

the

Figure 12: Current Sense
Prototype Board

Figure 13: Shunt



6 LOAD MOTOR

The load motor needs to be able to apply a variable torque for constant speeds to simulate the loads the
test motor will see during the race. This can be achieved by several methods such as connecting a DC
motor in series with a power resistor bank and pulse width modulating between a larger and small
resistance. A second method is to use a separately excited, or sepex, motor where the field coils are
powered by an external voltage source. This allows the motor constant to be varied by changing the field
strength, giving control over the torque speed curve of the motor. A D&D ES-101A-33 sepex motor was
available, so this method of torque control is used. The field can be controlled by a power supply.

The dynamometer is designed for testing high torque, low speed motors, so the primary concern of the
load motor is to create high enough torque in the speed range required. Figure 14 below shows the back
EMF constant of the motor as a function of field voltage. Since current is linear with voltage and the back
EMF constant to field voltage curve levels out at about 12 V, it is desirable to select a load resistor such
that 12 V is maximum field voltage required, giving 0.13 V/rad*s, or 0.13 Nm/A, as the maximum motor
constant. The internal resistance of the motor is 0.030 which can be increased by adding a resistor in
series or used by itself as the load by shorting the motor leads. The equations below are used to calculate
the required resistive load required for a given speed and torque. Using the highest torque and lowest
testing speed required, the internal resistance of the motor is a sufficient load.

R Kt_ 21_0. Back EMF Constant vs. Field Voltage1 - -- - -Kt- -2

Where:

014 - ... ....

R = Internal Motor Resistance

w = Rotational Velocity 0
0 .6

Kt = Motor Constant

T = Torque 0.04

00 3 6 9 12 15 18 21 24 27 30 33 36

The load motor is set up to only supply a resistive load, Fiekvoka [V]
but could by driven to test regenerative braking of the Figure 14: Motor Constant of Load Motor
test motor.

Graph from experimental data by Shane Colton



6 TESTING

The torque transducer had not arrived as of the writing of this thesis, so no motor torque data could be
taken. The voltage and current sense systems have been tested and are functional.

Figure 15: Current and Voltage Board Testing

To use the current measure system, the isolation amplifiers must be tested to determine the true gain. This
is achieved by applying a current across the shunt and shorting the low load of the shunt with the board.
Once this is done, the shunt voltage can be directly measured with the DAC. Voltage of the shunt and the
isolation amplifier are shown as well as the error measured after calibration is done as a function of
measured current for the 0.010 shunt.
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Figure 17: Current Sense Error vs. Current
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The current and voltage sense circuitry were then added to the motor DC and phase lines to test the entire
system. The test set-up is pictured below.

Torque
Transduce

Load otorPlaceholder

Test Motor 
Power

Measurement
Board

Data Aquisition

12 V Supply
for Board

MtrController

Power Supply

Figure 18: Testing Set-Up

While calculating the required sampling rate of the system, the number of poles in the motor was not
accounted for. The NGM has 16 poles and the data acquisition module is limfited by total number of
samples per second, such that the system is only capable of sampling at a high enough rate while
measuring one phase. The result of this test is shown below in Figure 19. The motor was run at 580 rpm.
Red points are data points collected at 551 Hz and the sinusoidal curve was produced using the Matlab
Curve Fitting Gui. The RMS current of this phase, 55.4 A, agreed with the RMS current provided by the
motor controller for this test.



1.7 1.75 1.8

Figure 19: Current Measurement and Fitting

The dynamometer is shown to be functional and at least as accurate as the current sense in the EV402. It

will need further work to determine the best solution to the lack of sampling frequency and to install the

torque transducer when it arrives. The sampling rate issue could be solvable by assuming perfectly even

power delivery by each phase or getting a faster data acquisition module.
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