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Abstract 
Amplitude versus offset (AVO) analysis of seismic reflection data has been a successful tool in describing changes in rock 

properties along a reflector.  This method is extended to azimuthal AVO (AVOA) in order to characterize vertically aligned 
fractures within a reservoir, which can be important fluid migration pathways.  AVOA analysis is performed on synthetic data 
using a least squares inversion method to investigate the effects of varying acquisition geometry, amount of noise, and fracture 
properties.  These tests show that it is possible to detect the fractured layer and determine the fracture strike orientation under 
typical acquisition conditions.  This method is also applied to field data collected during an Ocean Bottom Cable (OBC) survey.  
These data include a broad offset-azimuth range, which is important for the AVOA analysis.  The fracture location and strike 
orientation recovered from the field data analysis are well correlated with borehole information from this area.  Based on an 
understanding of AVOA behavior under synthetic conditions, this technique provides an effective methodology for describing the 
spatial variability of a fractured reservoir using 3D seismic data. 

 

1 Introduction 

1.1 Objectives 

Open fractures can have a significant impact on the flow of fluids within a reservoir, especially if they are 
interconnected over large distances.  Fractures are often oriented in preferential directions determined by regional 
stresses and the geologic structures in which they reside (Walsh and Brace, 1964).  Improved recovery of reservoir 
fluids can be realized by drilling production wells normal to the fracture strike direction, thereby maximizing the 
capture area of the well.  Successful implementation of this technique relies on the ability to describe the location, 
orientation, and fluid content of fractures over a large area with good spatial resolution.  Although fracture 
information can be found directly from various well-logging techniques, this is not an effective way to describe 
spatial changes in fracture properties throughout a large reservoir.  This study is focused on the use of 3D seismic 
reflection data to provide spatially continuous information about aligned vertical fractures. 

Amplitude versus offset (AVO) analysis has proven useful in characterizing changes in material properties 
along a reflector.  In the case of a fractured reservoir the AVO behavior varies with fracture density, aspect ratio, 
and saturating fluid.  The introduction of fractures or changes in their properties throughout a reservoir will be 
visible as an AVO anomaly.  For vertically aligned fractures that are of interest in this study there will also be an 
azimuthal dependence of the AVO response that is related to the fracture strike orientation.  Extension to azimuthal 
AVO (AVOA) is therefore appropriate because it allows for the simultaneous analysis of seismic data collected at 
different azimuths relative to the fractures. 

Surveys that include a wide range of offsets and azimuths have become more common and are ideally suited to 
AVOA studies.  The promise of using AVO as a reconnaissance/analysis tool with regard to fracture properties is 
quite attractive because it is a relatively inexpensive addition to the typical acquisition and processing of seismic 
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data.  In this study, least squares methods are developed to quantify the utility of P-wave AVOA analysis on 
synthetic data.  These results help to guide the analysis of a 3D OBC dataset collected over the fractured Emilio 
Field located in the Adriatic Sea. 

1.2 Background 

The effect of many low aspect ratio fractures aligned at a preferred orientation results in seismic anisotropy.  
When the fracture spacing is much smaller than the seismic wavelengths of interest, the material is often expressed 
as an effective medium.  For vertically oriented fractures the medium is transversely isotropic with a horizontal axis 
of symmetry (HTI), illustrated in Figure 1.  The effective elastic moduli at different orientations with respect to the 
fractures are controlled by different compliances in these directions (Schoenberg, 1995) and result in the observed 
seismic azimuthal anisotropy. 

 
Figure 1:  Cartoon of HTI model with vertically aligned fractures 

The underlying concept behind AVO was developed by Knott and Zoeppritz near the beginning of the 20th 
century.  By imposing conditions of continuous stress and displacement at the interface between two materials, they 
give relationships for the amplitudes of reflected and transmitted P and S waves as a function of incidence angle.  
These relationships are complicated functions of VP, VS, and ρ for the two media, and are put into a useful matrix 
form by Aki and Richards (1980). Simplifications of the general Zoeppritz equations have since been made that are 
applicable to the relatively subtle changes found in Earth materials at angles of incidence commonly used in 
exploration seismology.  Shuey (1985) presents a simplified form for the reflected P-wave amplitudes as a function 
of incidence angle that provides the basis for the AVO model in this study. An extension of the Shuey method that 
describes AVOA for the HTI case was made by Rüger (1997). 

There are many examples of techniques used for measuring the response of HTI media using AVO and AVOA 
(Lynn et. al., 1996; Mallick et. al., 1998; Shen et. al, 2002; Hall and Kendall, 2003), as well velocity oriented 
methods such as shear-wave birefringence (Gaiser et. al., 2002; Vetri et. al., 2003).  A recent work by Dong and 
Davidson (2003) addresses the issue of 3D survey geometry and it implications for the adequacy of AVOA analysis.  
While much work is based on theoretical models, there is also a large amount of AVO analysis performed on field 
data, particularly in the exploration industry.   

1.3 Methodology 

A simple two-layer model is studied in order to understand the estimates and assumptions commonly made 
with least squares inversion methods applied to AVO analysis.  The effects of these estimations, as well as geometry 
and noise considerations, are taken into account.  The synthetic model is then extended to an HTI regime and similar 
analysis methods are developed for the azimuthally varying Rüger approximation.  This is accomplished with a 
surface-fitting algorithm for the AVOA analysis that is similar to the approach of Hall and Kendall (2003).  Many 
other azimuthal AVO studies separate the data into a few discrete azimuths and compare the individual AVO results 
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in those directions.  The strength of this investigation lies in the analysis of a full range of azimuths simultaneously, 
better constraining the problem.   

Data acquired during a 3D OBC survey are inverted for azimuthal AVO parameters using the techniques 
developed here.  Inference from the behavior of the synthetic tests helps guide the interpretation of the OBC results 
and direct future improvements.  In addition, results of the AVOA analysis on a synthetic dataset created with a 3D 
finite difference forward modeling code and fractured model is given in Appendix A.   

2 Development 

2.1 AVO Approximation 

It is useful to begin with a description of Shuey’s approximation of the Zoeppritz equations.  For an interface 
between two layers with P-wave velocities VP1 and VP2, densities ρ1 and ρ2, and Poisson’s ratios σ1 and σ2, the angle 
of incidence-dependent reflectivity, RPP(Θ), is given by Castagna (1993) as  
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Equation (1) can be written as a linear equation in three parts, commonly given in terms of AVO coefficients 
A, B, and C. 
 ( )2 2sin tan sinPPR A B C≈ + Θ+ Θ− Θ2  (6) 

The ‘A’ term, equal to RP, describes the normal incidence (Θ = 0) reflectivity, while the sin2 term applies to 
angles of incidence up to about 30 degrees, and the (tan2 – sin2) term dominates for angles mostly above 30 degrees.  
This last term is sometimes disregarded in AVO analysis because angles of incidence are larger than those used in 
most exploration surveys. 

Each term in Equation (6) involves a combination of elastic constants, a fact that limits the ability to classify 
material changes through AVO model parameters alone.  Also, note that RPP represents the actual value of the 
reflection coefficient given in Equation (1).  This is a difficult quantity to obtain with reflection seismic data, and 
actual reflection amplitudes are often used instead because they are proportional to the reflection coefficient.  This 
approximation further degrades the ability to use AVO as a quantification tool with regards to material properties. 

2.2 Extension to AVOA in HTI Media 

Equation (6) describes the reflection amplitude dependence as a function of offset (or angle of incidence) and 
elastic constants for two isotropic media.  For the HTI model (Figure 1), a set of vertically aligned fractures 
embedded in a homogeneous background material is used.  These fractures typically have small aspect rations due to 
the orientation of local stresses.  In the direction of the isotropy axis, these apparently thin fractures have little effect 
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on the elastic properties, and thus reflection amplitudes, compared with the homogeneous case.  For ray-paths along 
the symmetry-axis however, fracture compliance plays a significant role in the behavior of reflection amplitudes.  
This is a manifestation of the rock and fluid compressibility, density, and fracture geometry.  These two directions 
represent the extremes of the azimuthal AVO behavior, and seismic waves typically propagate more slowly in the 
fracture normal (symmetry-axis) direction. 

An analysis of seismic waves propagating over a 180 degree range of azimuths should therefore sample one 
complete ‘cycle’ of the transverse isotropy.  The goal of AVOA analysis is to capture the azimuthal variation of 
reflection amplitudes, which requires data collected at an absolute minimum of three independent azimuths.  In 
practice, wide-azimuth 3D survey methods are required to adequately sample the offset-azimuth space.  Reflection 
amplitudes at a given offset will have an azimuthal dependence that is periodic with respect to the symmetry axis. 

Rüger’s addition to Shuey’s approximation captures this azimuthal variation in amplitudes.  The AVO gradient 
(‘B’) term is split into a constant, isotropic term, and an azimuthally varying anisotropic term. 
  (7) 2( ) cos ( )iso ani

kB B Bϕ ϕ= + −k symϕ
In this equation, φk represents an arbitrary source to receiver azimuth within the dataset, and φsym represents the 

unknown symmetry-axis orientation.  This is a non-linear equation with several terms coupled together.  The result 
of this non-linearity is that there are two combinations of Biso, Bani, and φsym that describe the behavior of B(φk) 
equally.  These solutions will have values of φsym that are 90 degrees apart.  Biso and Bani will both have the same 
sign for one solution and opposite signs and different values for the other.  These correspond to maximum AVO 
behavior along the fracture symmetry axis and maximum behavior along the isotropy axis, respectively.  Often, a-
priori knowledge about the general fracture orientation or expected AVO behavior can be used to select one of the 
solutions.  An illustration of the non-uniqueness in this problem is given in Figure 2 for a particular set of ‘true’ 
values of Biso, Bani, and φsym in Equation (7).  The RMS error is displayed as a function of these parameters over a 
range of possible values. 

Although there is also an azimuthal variation of the larger incidence angle ‘C’ term, it is not developed here 
due to the focus on near to intermediate angles of incidence.  Equation 5 can then be written for the azimuthally 
varying case as 
 ( )2cos siniso ani

PP k symR A B B ϕ ϕ 2⎡ ⎤≈ + + − Θ⎢ ⎥⎣ ⎦  (8) 

 

True solution
sign(Biso) = sign(Bani)
φ = φsym

Non-unique solution
sign(Biso) = -sign(Bani)
φ = φsym + 90

 
Figure 2: RMS error for the AVOA case as a function of Biso, Bani, and φsym with respect to a particular ‘true’ 
solution.  The non-unique solution appears 90° from the true solution with different values for Biso and Bani. 
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2.3 Application of Least Squares to AVO and AVOA 

2.3.1 Non-azimuthal AVO 

Equation (6), the reflection amplitude behavior for non-azimuthal AVO, is a linear equation in terms of sin2Θ 
and tan2Θ.  An ordinary least squares inversion can be used in this case, where the relationship is put into a simple 
linear form,  
  (9) + =Ex n y

The solution for the over-determined problem that minimizes the data residual norm, 2n  is 
 ( ) 1T T−

=x E E E y  (10) 
For these linear equations, y represents the reflection amplitude data, x  is the estimate of the AVO model 

parameters (A, B, and C), n is the data residual, and the matrix E (shown below) is made up of the terms including 
the independent variable, Θ.   

 

( )
( )
(

( )

2 2 2

2 2 2

2 2 2

2 2 2

1 sin tan sin

1 sin tan sin

1 sin tan sin
. . .
. . .

1 sin tan sin

AVO
)

⎡ ⎤Θ Θ− Θ⎢ ⎥
⎢ ⎥
⎢ ⎥Θ Θ− Θ⎢ ⎥
⎢ ⎥Θ Θ− Θ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Θ Θ− Θ⎢ ⎥⎣ ⎦

E  (11) 

The AVO inversion is performed on a single common mid-point (CMP) gather at a time, where each row 
represents a single trace in the gather and an associated incidence angle Θ. 

2.3.2 Azimuthal AVO 

For the case of azimuthal AVO, this ordinary least squares routine is not appropriate due to the non-linearity of 
Equation (8).  Instead, an iterative, non-linear least squares inversion that uses the Gauss-Newton method is 
employed.  This involves the calculation of the Jacobian matrix, , at each iteration.  M is the 
reflectivity model for R

/ ii i= ∂ ∂A M x
PP given by Equation (8) and xi represents the four AVOA model variables A, Biso, Bani, and 

φsym.  Starting with an initial guess for the four unknown parameters, model updates are made according to Equation 
(12). 
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1
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The data vector, y, is the same reflection amplitude data for each trace in a CMP used in the regular AVO case.  
At each step the solution vector x is updated and the RMS error is calculated between the measurements, y, and the 
current model Mi.  When the error becomes sufficiently small, the solution has converged to xi. 

 Another way to solve the non-linear problem is to linearize Equation (8) so that it can be solved in one step 
using the ordinary least squares method of Equation (10).  Using trigonometric identities for , 
Equation (8) becomes 

( )2cos k symϕ ϕ−
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2 2 2
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and can be written as a linear equation in four unknowns 

  (14) 2 2
1 2 3 4sin cos 2 sin sin 2 sinPP k kR C C C Cϕ ϕ≈ + Θ+ Θ+ Θ

This is similar to the approach used by Xu and Li (2001), where 
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As with the nonlinear method, the solution is non-unique with two possible solutions corresponding to values 
for φsym that are 90 degrees apart.  Although this is not as robust as the non-linear routine mentioned above, it is 
easier to employ for some of the basic synthetic examples in this study and yields identical results. 

3 Synthetic Analysis 

3.1 Ordinary (non-azimuthal) AVO 

3.1.1 Description of the Model and Data 

In order to understand the behavior of the least squares analysis, a simple model for the interface between two 
layers with different elastic parameters is used to create AVO coefficients based on Equation (6).  This example uses 
the parameters summarized in Table 1 and the synthetic AVO coefficients are calculated directly from Equations (2)
-(4). 

 Layer 1 Layer 2 
    VP 3000 m/s 4000 m/s 
    VS 1732 m/s 2309 m/s 
    Ρ 2300 kg/m3 2600 kg/m3

    σ 0.25 0.25 
AVO-A                0.202 
AVO-B               -0.316 
AVO-C                0.143 

Table 1:  Elastic parameters for two-layer model 

From these coefficients synthetic reflectivity data (RPP) is calculated over a range of incidence angles 
commonly found in reflection seismology.  The synthetic data is then contaminated with noise or partially removed 
over certain offset ranges and the ability of the inversion to recover the original coefficients is studied.  The modeled 
behavior for the offset dependent reflectivity is shown in Figure 2, where the angles are based on fixed source-to-
receiver offsets and a depth to the interface of 800m. 
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Figure 3:  Modeled AVO for a simple two-layer interface using Equation (6) and the parameters in Table 1. 

In this figure, the effect of modeling only the A and B terms is clear; there is little deviation below 20°, around 
10% at 30°, and then they diverge significantly at larger angles.  The three-term reflectivity curve will be treated as 
the ‘true’ value for the discussion of the following inversion results.  The effects of changing source-to-receiver 
geometry are studied using both 2- and 3-term AVO models, as well as their behavior in the presence of noise.  For 
this experiment, random noise with a Gaussian distribution and standard deviation of 0.02 is added to the ‘true’ 
reflectivity data.  This standard deviation corresponds to about 13% of the mean value of the original model. 

3.1.2 Synthetic AVO Tests 

The first case shown in Figure 4 uses data sampled from the ‘true’ reflectivity curve on one degree intervals 
from 0° to 45°.  Using the high angle of incidence data, it is clear that a 2-term AVO model is incapable of 
recovering the correct values, even for the noise-free case.  The fact that the 2-term model is inappropriate can also 
be seen in the residual, which shows structure.  In the presence of noise the AVO gradient term has an error of 31% 
for the 2-term model compared with only 8% for the 3-term model. 

Typically, the source-to-receiver offsets and target depths in a seismic survey do not result in angles of 
incidence that extend to 45°.  This experiment is therefore repeated using only data from 0° to 30°, and the results 
are shown in Figure 5.  With noise-free data, the 2-term AVO model is more accurate than before, but is still unable 
to recover the true solution.  When some noise is added to the reflectivity measurements, however, the 2-term and 3-
term solutions become much less accurate.  Repeating this experiment many times with different noise realizations, 
one finds that the estimate of the 3-term model is unbiased about the correct solution, but has a relatively large 
variance around the mean.  The 2-term model estimate does not have the correct mean, but has much smaller 
variance. 

Finally, for a more representative approximation of real acquisition geometries, information about the near 
offsets is also removed so that the data lies between 10° and 30°.  An example of the least squares solution for a 
single noise realization is shown in Figure 6.  Repeating this experiment many times, one again finds that 2- and 3-
term AVO solution estimates involve sacrifices between resolution and the accuracy. 
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Figure 4:  AVO inversion results for the two-layer model using data from 0° to 45°. 
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Figure 5:  AVO inversion results for the two-layer model using data from 0° to 30°. 
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Figure 6:  AVO inversion results for the two-layer model using data from 10° to 30°. 
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3.1.3 Discussion of Results 

Based on the results of these tests over many noise realizations it is apparent that the 2-term AVO model is 
more appropriate in the presence of noise for the incidence angles of interest in this study.  Insensitivity of the far 
offset ‘C’ term results in a 3-term solution for ‘B’ that is less precise than the 2-term solution.  Although the far 
offset term contains useful information, it is commonly disregarded in AVO analysis because of the limited offsets 
in typical exploration surveys.   

Another useful way to compare the effects of these geometries is through the use of the resolution matrix.  
Data resolution matrices are shown in Figure 7 for each of the previous geometry examples and for the 2- and 3-
term AVO models.  The 2-term model is less resolved than the 3-term model for a given geometry, but is also less 
sensitive to errors in the measured amplitudes at the near and far offsets.  This behavior supports the argument that 
the 2-term model is more useful for the offset ranges considered here, especially in the presence of noise. 

 

 
Figure 7:  Resolution matrices for the least squares method using 2- and 3- term AVO models and three different 

cases of source-receiver geometry.  N.B. Color scales are all the same and each row adds to 1. 
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3.2 Azimuthal AVO 

3.2.1 Description of the Model and Data 

A similar synthetic analysis can be preformed using azimuthal AVO, where Equation (8) is used to create the 
‘true’ RPP reflectivity model on a dense offset-azimuth grid.  Synthetic data is created from this model by decimating 
the offset-azimuth space to represent more realistic survey geometries and random noise is added.  These data are 
then used with Equation (12), or Equation (10) for the linearized formulation, to determine the azimuthal model 
parameters A, Biso, Bani, and φsym.   

Two synthetic models are investigated using evenly distributed datasets with slightly different geometries (an 
example of which is shown in Figure 8) and a third model simulates the actual 3D survey geometry associated with 
the OBC data discussed at the end of this study.  This analysis will be a good calibration tool for the results obtained 
when working with the actual field data.  In each case, Gaussian noise with standard deviation of 0.05 is added to 
the ‘true’ RPP measurements.  This standard deviation corresponds to about 33% of the mean value of the noise-free 
data. 
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Figure 8:  Azimuth-offset geometry used for synthetic AVOA analysis 

For consistency with the non-azimuthal AVO analysis the same elastic model parameters are used with slight 
modifications for the azimuthal case.  The AVO-A term is unchanged because it does not vary with azimuth.  The 
AVO-B term is split into two parts, where 80% of the value used in the previous section is assigned to Biso, and 20% 
to Bani.  An arbitrary fracture symmetry-axis orientation of 35° is used.  The ‘true’ model parameters for the 
azimuthal analysis are summarized in Table 2. 
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A 0.202 
Biso -0.2528 
Bani -0.0632 
Φsym 35° 

Table 2:  AVOA model parameters for two-layer azimuthal AVO model 

The ‘true’ reflectivity behavior based on Equation (8) is shown in Figure 9 for a few selected azimuths.  In this 
figure, the azimuthal behavior of the AVO gradient term is apparent.  At azimuths closest to the fracture symmetry 
axis (35°) the greatest curvature is seen (blue and green curves) due to the contribution of the Bani term.  The least 
squares inversion aims to capture this behavior in order to uniquely and accurately determine the four model 
parameters. 
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Figure 9:  Synthetic AVOA model curves for several azimuths based on the parameters in Table 2. 

3.2.2 Synthetic AVOA Tests 

The first test of the four-term least squares inversion method is really a validation, as the input data comes 
from an even distribution of offsets and azimuths.  The synthetic reflection amplitudes are sampled at one-degree 
spacing between 0° and 45° in incidence angle, and at every four degrees between 0° and 180° in azimuth.  This 
dataset is inverted for the four AVOA model parameters using Equation (10) and the subsequent relationships 
between coupled linear terms in Equation (15).  The inversion is repeated with 2000 realizations of the random 
noise, and the average results are summarized in Table 3.  Note that the noise-free example has perfectly resolved 
the model, which should be expected because it is using a linearized form of the same model that created the data.  
The inversion of the noisy data has been distorted somewhat, but the AVOA parameters are resolved within reason. 

Next, only the data with angles of incidence between 10° and 30°, and azimuths separated by 16° (Figure 7), 
are used in the same inversion process to simulate a more realistic survey geometry.  Again, the average results 
summarized in Table 3.  There is clearly a significant loss of accuracy in the inverted model when the offset-azimuth 
space is this parse. 
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Finally, the same method is used with an offset-azimuth distribution that comes from data collected during an 
OBC survey.  This distribution is shown in Figure 10 and, though it is dense, it is not as uniformly sampled as the 
synthetic cases.  As can be seen in Figure 3, this survey geometry has performed somewhere in-between the 
previous two synthetic models. 

Parameter True 
value 

Without 
noise 

All 
offsets/azimuths 

Sparse 
offsets/azimuths 

OBC 
geometry 

A 0.202 0.202 0.2019 0.2022 0.205 
Biso -0.2528 -0.2528 -0.2517 -0.2378 -0.2609 
Bani -0.0632 -0.0632 -0.0645 -0.0962 -0.0621 
φsym 35° 35° 34.8° 57.1° 40.1° 

Table 3:  Average results of azimuthal AVO inversions using noisy synthetic data for different geometries and 2000 
noise realizations 

3.2.3 Discussion of Results 

The four-term azimuthal AVO inversion method has the fundamental ability to resolve azimuthally varying 
features in seismic data.  The combination of survey geometry and noise content are two of the major controlling 
factors in the success of this approach and can clearly lead to spurious results.   A more rigorous statistical analysis 
of various geometries and levels of noise would be a very useful tool with regards to the adequacy of AVOA 
analysis for a specific dataset, data preparation, and interpretation of inversion solutions.  For example, an optimal 
scheme of offset-azimuth selection and trace stacking to suppress noise can be chosen for a specific dataset based on 
these statistical conclusions.     
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4 Field Data Analysis 

4.1 Site Description 

The surface-fitting approach for azimuthal AVO analysis developed in this study is applied to 3D OBC P-wave 
data collected over the fractured Emilio Field.  The Emilio Field is situated about 25 km offshore the east cost of 
Italy in the central Adriatic Sea (Figure 10).  This area is characterized by a NNW trending anticline formed by near 
E-W compression.  The reservoir target is located at a depth of 2850m (~2 seconds travel time) in fractured 
limestone.  Fractures at the reservoir level are thought to be mostly near-vertical and aligned with the direction of 
maximum compressive stress, which is slightly north of east. 

 
Figure 10:  Location of the Emilio Field and interpreted 2D seismic section (from Gaiser et. al., 2002). 

Analysis of several seismic surveys over this area has attempted to characterize the anisotropic behavior in the 
Emilio Field due to fractures (Gaiser et. al., 2002; Vetri et. al., 2003).  These investigations focus on shear wave 
birefringence and velocity analysis as anisotropy indicators, though AVO is also discussed.  Results show a mostly 
isotropic overburden that becomes anisotropic near the reservoir level.  This is corroborated with borehole and 
production well information including cores and televiewer logs.   

4.2 Data Overview 

As already discussed, one of the fundamental requirements for the application of AVOA analysis is an 
acquisition geometry that covers a wide range of offsets and azimuths.  This OBC survey contains data over a full 
range of azimuths, with offsets ranging from a few hundred meters to over 4000 meters.  The offset-azimuth 
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distribution for an 8-by-8 block of CMPs is shown in Figure 11.  This pattern is a result of the acquisition method, 
which consists of orthogonal source and receiver lines collected over several interleaving swathes.   

 

 
Figure 11:  Offset-azimuth distribution for all traces that fall within an 8 x 8 super-CMP bin 

One of the major problems commonly found with analyzing field data is noise.  Because AVO analysis is 
performed on pre-stack data it is often difficult to obtain a good signal-to-noise ratio.   Therefore, the pre-processing 
steps meant to enhance the signal must also be careful not to distort the natural AVO behavior.  For this reason it is 
common to analyze more than one CMP at a time, and to stack traces with common offset-azimuth values.  
Although this will have the effect of blurring true amplitudes across the offset-azimuth space, it is a necessary step 
in overcoming the noise problem.  Before performing the azimuthal AVO analysis on this super-CMP gather, 
several are taken to enhance the signal while regularizing the data space used in the analysis. 

4.3 AVOA Analysis of Field Data 

There is an obvious clustering of the traces in the block of CMPs shown in Figure 11, which is denser near 
zero and 180 degrees.  The traces are first smoothly discretized in this offset-azimuth space so that the solution is not 
biased towards azimuths with more data points and to reduce the overall volume of data.  The criteria for 
discretizing the traces are such that only one trace is accepted in any offset-azimuth bin with dimensions of 1m by 
30°.  The resulting dataset is shown in Figure 12 and the CMP gather corresponding to this set of traces is shown in 
Figure 13. 
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Figure 12:  Regularized offset-azimuth distribution for traces in 1m by 30° bins. 

Offset (m)
Figure 13:  CMP display of the traces to be used in AVOA analysis 
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The traces in the super-CMP are then sorted into the common azimuth gathers shown in Figure 14.  The 
azimuth bins are each 30 degrees wide, and are annotated with the orientation of the center of each bin.  At this 
point, common offset stacking is applied within the azimuth gathers to enhance the signal.  This involves stacking 
all of the traces within 100m offset groups for each azimuth gather.  Besides helping to improve the signal-to-noise 
ratio, common offset stacking has the benefit of regularizing the offsets that are input into the inversion.  Azimuth 
sorting is not a necessary step because the data are inverted simultaneously, but it is sometimes useful to view the 
data in this domain as a quality control. 

 
Figure 14:  CMP traces sorted into 30 degree azimuth gathers and stacked on common offsets. 

These azimuth gathers now contain all of the information used as input for the AVOA analysis.  Using local 
velocity information, the time axis can be converted into approximate depths.  Given the angle of incidence and 
source-to-receiver azimuths, the least squares method of Equation (12) is applied at incremental time steps.  A 50Hz 
low pass filter is used to reduce the noise and windows are used to carefully select amplitude data from a reflection. 
The inversion produces a set of values for the four AVOA model parameters at any given time.  A log-type display 
of the four parameters versus time is given in Figure 15. 
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Figure 15: Azimuthal AVO parameter estimates at multiple depths for the OBC super-CMP dataset for the nonlinear 

inversion.

4.4 Discussion of the Field Data Inversion 

Although this solution represents only a small subset of the OBC survey, there are some promising features.  
The relatively isotropic overburden indicated by small values of Bani at early times is consistent with previous 
studies of this area.  Increased amplitudes of Bani near 1.4 seconds indicate increasing anisotropy and are well 
correlated with the folded structure and expected fracture zone.  The most outstanding feature is the alignment of the 
symmetry-axis orientation near 180 degrees between 1.6 and 2.6 seconds.  Because this time also correlates with 
increased amplitudes of Bani, it is indicative of a consistent anisotropic feature within the data.   These trends over 
long time windows suggest that the inversion is capable of resolving information within the data related to fracture 
orientation.  The field data results have similar features as the synthetic nonlinear test in Appendix A, which also 
lends support to this analysis.  

An investigation of individual horizons over the survey area is useful in characterizing relative spatial changes 
in fracture properties and can also help the interpretation of overburden effects.  A preliminary result of this analysis 
for the Gessoso-Solifera horizon at a few selected locations in the survey is shown in Figure 16.  There is a good 
correlation between the direction of the AVOA isotropy axis solution (blue arrows) and fast shear wave direction 
(red arrows showing 20° range of uncertainty) determined by Gaiser et. al.  The magnitudes of the arrows represent 
the relative anisotropy at each location, but do not correlate as well as the direction.  Future work will focus on 
analyzing this and other horizons with good spatial resolution over the entire survey area. 
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AVO isotropy 
direction 
Fast S-wave direction 
(Gaiser et. al.) 

Figure 16:  Comparison of the AVOA isotropy axis direction (blue) found in this study with fast S-wave direction 
(red) reported by Gaiser et.al.  for the Gessoso horizon at four locations.  Magnitude of the arrows represents the 

amount of anisotropy for each method at each location.  Two fast S-wave arrows are used to show the 20° 
uncertainty of the direction. 

5 Conclusions 

This study provides a robust methodology for determining fracture information using azimuthal AVO analysis.  
The synthetic and field data analysis presented here supports the use of AVOA for fracture characterization, though 
this tool should be considered on two levels.  First is the ability to detect and spatially map oriented fractured zones 
and describe basic features such as strike angle the extent of anisotropy.  This level of detection has been 
successfully demonstrated in this study, though larger portions of the dataset need to be analyzed and mapped. 

Understanding the behavior of this technique with different models, acquisition geometry, noise content, and 
pre-processing procedures is an important step.  This investigation also shows that the use of an AVO model with 
near and mid-offset terms is sufficient for typical exploration geometries, especially in the presence of noise.  A 
nonlinear inversion method for describing anisotropic behavior using the azimuthal AVO model derived by Rüger 
(1998) is supported by the analysis of several synthetic models in this study.  Analyzing a full range of azimuths 
with this routine is more robust than the individual analysis of a few selected azimuths. 

A second, more sophisticated level involves the use of AVOA information to describe the physical properties 
of the fractures and saturating fluid.  Because of the non-uniqueness of this problem this distinction requires the 
incorporation of additional information.  Constraints on fracture properties based on expected values of fracture 
density, aperture, or fluid can be used if they are known.  Another option is to combine the P-wave AVOA methods 
discussed here with converted wave AVOA, shear wave birefringence, or other azimuthal velocity measurements, as 
suggested by Lynn and Cox (2003).  This clearly adds significant complexity to the analysis methodology, but 
results in a more quantitative measure of fracture properties.  Forward modeling, as discussed briefly in Appendix 
A, can also provide useful insights into the expected AVO behavior. 

This approach was developed specifically towards describing HTI features, which may not be appropriate in all 
cases.  A fractured reservoir may contain mostly vertical fractures, as is the case for the Emilio Field, but a certain 
amount of sub-vertical fractures will also be present.  The addition of non-vertical fractures will result in azimuthal 
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anisotropy that does not fit the model of Equation (8), likely resulting in an increased data misfit.  If a significant 
number of fractures are sub-vertical this method is inappropriate. 

A second limiting factor is the overburden effect on the AVO behavior.  Because of transmission through the 
overburden, a reflector at depth will also record the AVO imprint of shallower layers.  For this reason, interpretation 
of AVOA results at depth should be considered carefully.  Changes in the AVOA behavior with depth are 
representative of changes in material properties, but must be considered in the context of the overburden.  Layer 
stripping methods have been used to remove these effects, though this is beyond the scope of this investigation. 

The methods developed here are useful as a tool for the detection of fracture presence and orientation, as well 
as yielding information about the relative anisotropy.  In particular, mapping the AVOA behavior laterally over 
individual horizons is useful because anomalous regions are highlighted and overburden effects can be accounted for 
more easily.  The inclusion of forward modeling or other knowledge of fracture parameters can significantly 
enhance the interpretation of these results without adding significant processing complications.  
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Appendix A. Nonlinear AVOA analysis of 3D finite difference data using 
a fractured model 

A nine-layer 3D model (Figure 17a) with alternating fast and slow formations given in Table 4 is constructed 
for the finite difference forward modeling.  The middle three layers have vertical fractures oriented normal to the x-
axis embedded in the background material.  The fracture density (# cracks/m3 * r3) and aspect ratio (c/a) are 0.1 and 
0.01, respectively.   

 

 VP (m/s) VS (m/s) ρ 
(g/cm3) 

fast formation 4000 2352.9 2.5 
slow formation 3000 1764.7 2.4 

Table 4:  Material properties for the synthetic model 

The wide azimuth-offset distribution for this dataset is displayed in Figure 17b, and is qualitatively similar to 
that used for the Emilio Field analysis.  CMP data created from the finite difference results with this model are 
shown in Figure 17c after NMO, spherical divergence correction, and mute. 

For each reflection in Figure 17a the data are inverted for the four AVOA parameters using the non-linear 
inversion routine discussed above.  Results of the inversion are shown in Figure 17d-e.  Figure 17d shows model 
predictions for the azimuthal reflection amplitudes (left) and azimuthal variation in the AVO gradient (right) for a 
reflection exhibiting anisotropic behavior due to the fractures.  Figure 17e displays all four AVOA parameters at 
each reflector.  General trends expected from the alternating lithology and fractured layers can be seen, though 
distortion due to the overburden is evident in the deeper layers. 
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(a) 

  

(b) 

   

(d) 

 

(c) 

 

(e) 

 

Figure 17: Synthetic model and AVOA results. (a) Nine-layer synthetic model with properties given in Table 4.  (b)  
Azimuth-offset distribution for the synthetic model.  (c)  Finite difference results for synthetic model after NMO, 
spherical divergence correction, and mute.  (d)  Example of inverted AVOA behavior for an interface that exhibits 
anisotropy.  Left side shows amplitude behavior as a function of offset and azimuth, right side shows the azimuthal 

variation of the AVO gradient, correctly oriented near zero degrees.  (e)  AVOA inversion results for all eight 
reflections showing the effect of the alternating layers and fractures, though overburden effects are present. 
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