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Abstract 

    Effects of segregation of solute atoms and vacancies on migration of a/4<111> and a/2<100> 

antiphase domain boundaries (APDBs) in stoichiometric Fe3Al at various temperatures are studied 

using a phase-field model [Koizumi et al., Acta Mater. 2008;56:5861] based on the Bragg-Williams 

approximation and kinetic parameters determined from experimental data.  Boundary mobilities 

(M) were measured from the boundary velocity of shrinking circular antiphase domains (APDs).  In 

the case of a/4<111> APDBs, solute atmospheres follow the APDB until the APD vanishes by 

shrinking to zero radius, and therefore the Ms are always smaller than the intrinsic boundary 

mobilities because of the solute-drag effect.  The M of a/4<111> APDBs can be enhanced by up to 

60% by vacancy segregation.  On the other hand, the M of a/2<100> APDBs is enhanced by only a 

few percent.  The a/2<100> APDBs are observed to break away from the solute atmosphere during 

the course of the shrinking.  The M increases by up to 40 % associated with the breakaway, and 

becomes equal to the intrinsic boundary mobilities even though slight depletion and segregation of 

Al-atoms remain ahead and behind the migrating boundary, respectively. 
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1. Introduction 

        Fe3Al alloys have been developed as high-temperature structural materials [1].  The 

mechanical properties of Fe3Al are closely related to the ordered arrangement of Fe atoms and Al 

atoms forming D03- and B2-ordered structures depending on the chemical composition and 

temperature [2].  Antiphase domains (APD) which are microstructural features in ordered phases 

have significant influences on plastic properties by affecting dislocation motion [3-5].  Recently, it 

was reported that pseudo-elasticity is caused in Fe3Al by the interaction between APD boundaries 

(APDBs) and dislocations [6-10].  The magnitude of pseudoelasticity greatly depends on the APD 

size, and therefore the control of APD size and prediction of their stability are increasingly 

important.  The author’s experimental work [11] implied that the effects of inhomogeneity of lattice 

defects such as vacancies, solute atoms and dislocations are important for understanding accurately 

the kinetics of APD formation and growth.  For instance, when an Fe3Al alloy is rapidly quenched 

from a temperature above its order-disorder transition temperature (Tc) and annealed at a 

temperature below Tc, the APD growth is enhanced by the excess vacancies introduced by the 

quenching [11].  The enhancement of APD growth tends to be more significant as the difference 

between the quenching temperature and the annealing temperature increases.  However, when the 

difference between the temperatures is extremely large, the excess vacancies tend to aggregate to 

form dislocation loops.  Such dislocation loops are supposed to become sinks for the remaining 

excess vacancies and make the vacancy concentration inhomogeneous.  APDB migration may be  

affected by such an inhomogeneity of vacancies.   
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     In the companion paper [12], the segregation of solute atoms and vacancies on stationary planar 

APDBs in Fe-Al alloys near the stoichiometry Fe3Al (Fe−22~28at.%Al) was studied using a 

phase-field model based on the Bragg-Williams approximation.  There are two types of APDBs in 

the D03-structure.  One has the phase-shift vector of a/2<100> and the other has that of a/4<111>, 

where a is the lattice parameter.   The former can be formed in only D03-structure whereas the latter 

can be formed in both B2- and D03-structures.  The former and the latter are denoted as D03-APDB 

and B2-APDB respectively in the present study. 

     Fe-atoms and vacancies segregate to D03-APDB in crystals with stoichiometric composition 

(Fe−25at.%Al) and with the Fe-rich composition, whereas both tend to be depleted in Al-rich 

crystals.  On the other hand, both Fe-atoms and vacancies segregate on B2-APDBs in all 

compositions studied.  The vacancy concentration at the center of an APDB can be up to 80 % 

larger than that in matrix.  Although the effects of vacancy segregation on APDB energy and 

thickness are negligibly small, it is anticipated that the migration of APDB can be significantly 

affected by vacancy segregation as well as by solute segregation because the boundary mobility is 

expected to be proportional to the vacancy concentration in materials where atoms diffuse via 

vacancy mechanisms. 

     Solute-drag effects on grain boundary migration have been studied for a long time [13-22].  

Lücke et al. [13] were the first who suggested the solute-drag effect considering an attraction of 

solute atoms to a grain boundary.  Cahn [14] classified the solute-drag into high-velocity 

(high-driving force) and low-velocity (low-driving force) extremes.  Hillert developed a free energy 

dissipation theorem for migrating boundaries [15, 16].  Cha et al. [17] demonstrated their 

phase-field model for grain boundary migration is consistent with both Cahn’s solute-drag theory 

and Hillert’s free energy dissipation theorem.  Later, Hillert proved that the solute-drag theory and 

the energy dissipation theorem are equivalent [18].  Mendelev et al. developed a theory of 
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solute-drag in a regular solution by expanding Cahn’s solute drag theory of an ideal solution [19].  

Kim and Park examined the effects of impurity-drag on shrinking circular boundaries [20].  

Solute-drag at migrating APDBs in Fe3Al was studied by Krzanowski and Allen both theoretically 

and experimentally using their experimental data of APD growth in Fe3Al [21, 22].  They predicted 

theoretically that the transition from low driving-force extreme to high driving-force extreme occurs 

during APD growth and demonstrated their predictions are relatively in good agreement with the 

experimentally observed APD growth.  However, their model neglects the effects of coupling of 

long-range-order (LRO) and composition, and can be improved by taking it into account [21, 22]. 

     The ability to couple order parameters and composition is one of the advantages of the 

phase-field model.  There has been no study in which phase-field method is used for evaluating the 

effect of segregation on the APDB migration, nor has there been any study on the effect of 

inhomogeneous vacancy distribution on boundary migration.  In the present study, the effects of 

solute and vacancy segregation on migration of APDB are studied by simulating shrinking circular 

APDs in a stoichiometric vacancy-containing Fe3Al.  The effects of offstoichiometry on migration 

kinetics will be presented in a future publication.  

 

2. Model 

2.1 Cahn-Hilliard, Allen-Cahn equations and mobilities 

     The description of order parameters and free energy in vacancy-containing Fe3Al was detailed in 

the companion paper [12].  The definition of the free energy is described briefly in the Appendix for 

convenience.   In order to simulate the temporal change of order parameter fields, the formalism of 

the Cahn-Hilliard [23] and Allen-Cahn [24] equations require careful consideration.  When the 

mobilities are functions of vacancy concentration (cv), the Cahn-Hilliard equation for the Al 

concentration (cAl) field is written as

€ 
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 

 
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where t is the time, 

€ 

βAl
dep.(cv ,T) is the cv-dependent phase-field mobility for cAl and F is the free 

energy of the system.  The βAl that is independent of cv  (hereafter denoted as   

€ 

βAl
indep.(T)) is given by 

the Nerst-Einstein equation [25] 

  

€ 

βAl
indep.(T) = ˜ D (T) 1

Vm

∂ 2F(T)
∂cAl

2

 

 
 

 

 
        (2) 

where T is the temperature, R is the gas constant, Vm is the molar volume and 

€ 

˜ D (T) is the 

interdiffusivity at temperature T.  Experimental data for 

€ 

˜ D (T) are available in the literature [26].  

Assuming that the mobility is proportional to cv, the cv-dependent mobility, 

€ 

βAl
dep.(cv ,T), can be 

written as 

€ 

βAl
dep.(cv ,T) =

cv

cv
eq (T)

 

 
 

 

 
 ⋅ ˜ D (T) 1

Vm

∂ 2F(T)
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2

 
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 

 

 
       (3) 

where 

€ 

cv
eq  is the equilibrium vacancy concentration at temperature T and given by 

€ 

cv
eq (T) = exp SF

kB

 

 
 

 

 
 ⋅ exp

−HF

kBT
 

 
 

 

 
        (4) 

where SF is the vacancy formation entropy and HF is the vacancy formation enthalpy.  Experimental 

data of SF and HF are also available in the literature [27, 28]. 

     The Allen-Cahn equation for the case of the cv-dependent ordering mobilities can be written as 

€ 

∂η
∂t

= −α dep. cv ,T( ) ⋅ δF
δη

        (5) 

where 

€ 

α dep. cv ,T( )  is the ordering mobility which is the function of cv and T. 

     Kirkaldy [29] suggested an equation for deriving the ordering mobility for Allen-Cahn equation 

as, 

€ 

α indep.(T) = ˜ D (T) 1− T
Tc

 

 
 

 

 
 

0.5

⋅
1
κ

       (6) 

where Tc is the order-disorder transition temperature for the LRO of interest and κ is the gradient 
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energy coefficient.  However, this equation was derived from only dimensional analysis and the 

physical meaning of this equation is not clear.  This equation implies that the mobility vanishes as 

the temperature approaches Tc.  This conflicts with the experimental observations of APD growth in 

Fe3Al in which the APD growth rate did not decrease even where the temperature approaches Tc  

within 10 K [22].  Alternatively, based on Hillert’s discussion of ordering kinetics [30], the ordering 

mobility can be derived as 

€ 

α indep.(T) =
˜ D (T)

kBTd2 cAl(1− cAl)        (7) 

where kB is Boltzmann’s constant and d is the interplanar distance.  Neither Eq. (6) nor Eq. (7) has 

been justified satisfactorily.  Oki et al. [31] have reported the temporal change of LRO parameters 

during order-order relaxation (i.e. relaxation from lower degree of order to higher degree of order 

within a temperature range where the ordered phase remains stable) by isothermally annealing an 

Fe3Al alloy quenched from a temperature between the annealing temperature and the B2/D03 

transition temperature, Tc
B2/D03.  Their report is the only one in which changes of both B2-LRO (ηB2) 

and D03-LRO (ηD03)* without the influence of APD growth are available.  Park et al. [32] have 

measured order-order relaxation in Fe3Al by an in-situ synchrotron X-ray diffraction experiment.  

However, only one of the two types of LRO was measured at each temperature in their experiment.   

     The values of 

€ 

α indep. for B2-LRO (

€ 

αηB 2

indep.) and D03-LRO (

€ 

αηD 03

indep.) at 656 K were determined by 

fitting the calculated change in the LROs to Oki et al.’s experimental data.  The values of 

€ 

αηB 2

indep.and 

€ 

αηD 03

indep.
 obtained are 1.2×10-12 m2N-1s-1 and 1.2×10-11 m2N-1s-1, respectively.  Oki et al. [31] reported 

the activation energy of 193 kJ/mol for both D03- and B2-ordering.  This value was obtained by 

conducting the same type of measurement of ordering at 636 K and analyzing the temperature 

dependences of the ordering rate.  Since the temperature range of the experiment is narrow, there 

                             
*  Since quite a few parameters are defined, B2-LRO and D03-LRO are represented by ηB2 and ηD03 

for clarity in the present study instead of η1 and η2 which were used in the companion paper.  
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may be a large error when estimating the ordering mobilities at temperatures significantly different 

from those temperatures, although it is probably permissible to extrapolate to relatively close 

temperatures such as 673 K.  Once 

€ 

αηX

indep.(T)  is determined, a cv-dependent mobility (

€ 

αηX

dep.(cv ,T)) is 

given by 

€ 

αηX

dep.(cv ,T) =αηX

indep.(T) cv
cv
eq (T)

 

 
 

 

 
        (8) 

where ηX represents 

€ 

ηB 2 or 

€ 

ηD03
.  Kinetic data for diffusion [26-28] and ordering [31] used in the 

present study are listed in Table 1.  Since various mobilities are employed in the present study, the 

mobilities are classified in Table 2 for clarity.  The meaning of the boundary mobilities, velocities 

and driving forces in the tables will be explained in the next section. 

 

2.2 Simulation 

     APDBs with the shape of a quarter circle were formed in a 2D simulation box of 128 pixel × 128 

pixel which corresponds to 15 nm × 15 nm.  The initial radius of the APDB was set to be 11.2 nm.  

This initial radius was determined from the size of the simulation box and the width of the 

equilibrated planar APDB. It is the maximum radius of APD which can be introduced in the box 

without interference between the APDB and the edge of the simulation box at all the temperatures 

examined.  The initial order parameter profiles across the APDB were assumed to be same as those 

across the equilibrated planar APDBs which were calculated in the previous study [12].  A 

zero-flux boundary condition was applied to the edges of the simulation box.  This boundary 

condition enables us to simulate the shrinking of a circular APD by calculating only a quarter circle 

utilizing the symmetrical property of circles.  In order to see the effect of vacancy segregation, 

simulations with the assumption of cv-independent mobilities were also performed. 

    According to a study of vacancy concentration relaxation in a rapidly quenched Fe-25at%Al 

alloy, the enthalpy for vacancy migration is only 43 kJ mol-1 (0.45 eV), and therefore the diffusivity 
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of vacancies (DV) is expected to be extremely large compared with those of Fe- and Al-atoms.  For 

instance, the DV estimated from the vacancy migration enthalpy is larger than interdiffusivity by 

factors of 2×105 and 1×103 at 673 K and 873 K, respectively.  For numerically calculating the 

evolution of vacancy and solute fields by calculus of finite differences, the time step must be set 

small enough to keep the calculation stable.  The time step required is inversely proportional to the 

diffusivity of the fastest diffuser, and therefore the computation time for a system with vacancies 

become unrealistically  compared with that for a vacancy-free system.  In order to avoid this 

difficulty, the cV was relaxed so that the diffusion potential for vacancies becomes uniform 

throughout the simulation box, keeping the total amount of vacancies constant at each time step.  cAl 

was evolved using the calculus of finite differences.  This methodology is applicable to the system 

investigated in this study where the size of simulation box is as small as 30 nm and there is no 

long-range vacancy concentration gradient.  

 

3. Results 

     Fig. 1 shows the evolution of LRO (a, b, c, d), cv (e, f, g, h) and cAl (i, j, k, l) around the 

shrinking B2-APD at 673 K by way of example.  The APD shrank with time and finally vanished 

before 1000 ks.  The aluminum depletion and the vacancy segregation followed the APDB until the 

APD vanished.  No significant change was observed in the magnitude and the width of the 

aluminum and vacancy atmospheres.  Fig. 2 shows snap-shots of the shrinking D03-APD at 673 K.  

The APDB is broad (Fig 2a) and the Al-depletion and the vacancy-segregation at 1×103 s were 

moderate (Fig. 2e and 2i) compared to the case of B2-APD (Fig. 1).  The Al-depletion atmosphere 

and vacancy-segregation atmosphere become broader as the APD shrinks (Fig. 2b, 2f, 2j) and 

finally the APD was separated from the broadened solute depletion atmospheres. 

    Fig. 3 shows the changes in the APD radii (r) as a function of annealing time at 673 K.  Four 
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cases of B2-APD with cv-dependent mobilities, B2-APD with constant mobilities, D03-APD with 

cv-dependent mobilities and with cv-independent mobilities are all indicated together.  The radius 

change before 60 ks is enlarged in Fig.3b.  The shrinking rates of D03-APDs are larger than those of 

B2-APDs by more than one order of magnitude.  It appears the r decreases with time following a 

parabolic-law [25].  The radius change of B2-APD in the case of cv-dependent phase-field 

mobilities is approximately 60 % faster than in the case of cv-independent mobilities.  The effect of 

vacancy segregation on D03-APDB migration is much less significant than that on the B2-APDB 

migration.  This difference can be attributed to the less significant vacancy segregation on the 

D03-APDB than on the B2-APDB (Fig. 1 and Fig. 2). 

     Fig. 4 shows the relationship between the boundary velocity (V) and the curvature (1/r).  The 

ranges of the V in Fig. 4a and Fig. 4b are set suitable for seeing the variations of B2-APD and 

D03-APD, respectively.  The small fluctuations arise from numerical error.  Overall, the V appears 

to be proportional to the 1/r in all the cases.  However, the slope for D03-APD changes at the point 

indicated by an arrow, and a gradual increase in the slope is seen for the case of B2-APD (Fig.4b).  

From the slope of the lines connecting the origin of the graph to each point on the curves, the 

boundary mobilities (M) were evaluated by 

 M = V / (1/r).        (9) 

Hereafter, Ms estimated from the simulation results are denoted as simulated boundary mobility 

(Msim), and the Msims for the case of cv-dependent and cv-independent phase-field mobilities are 

denoted as 

€ 

MX
dep.  and 

€ 

MX
indep.

 (X represents B2 or D03) as listed in Table 2.   

     Figs. 5a and 5b show the Ms at 673 K and 773 K respectively as a function of r.  After an initial 

equilibration period, the Ms of B2-APDB (

€ 

MB 2
dep.  and 

€ 

MB 2
indep. ) are almost constant until the r 

becomes as small as 4 nm regardless of the cv-dependence of the phase-field mobilities at both 

temperatures.  Ms increase gradually as r becomes approximately 4 nm, and at smaller radii the 
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increases accelerate.   The rapid increase in the M observed when r < 1 nm is due to the influence of 

the edge of the simulation box which corresponds to the interference between APDBs on opposite 

sides of the circular APD.  At 673 K (Fig.5a), the Ms of D03-APDB (

€ 

MD03
dep.

 and 

€ 

MD03
indep.) increased 

shortly after the APD started shrinking (indicated by an open arrowhead) regardless of the 

cv-dependence of phase-field mobilities.  The 

€ 

MD03
dep.

 and 

€ 

MD03
indep.

 become relatively constant when 

the APD radii fall below approximately 8 nm.  This is consistent with the curvature at the point 

indicated by the arrow in Fig. 4a, and it corresponds to approximately to the time 30 ks in Fig. 2.  

The effects of cv-dependence of phase-field mobilities are not negligible.  The 

€ 

MB 2
dep.

 is larger than 

the 

€ 

MB 2
indep.

 by approximately 60% and 30% at 673 K and 773 K respectively, whereas the 

€ 

MD03
dep.  is 

larger than 

€ 

MD03
indep.

 by only approximately 8% at most.  This difference is consistent with the larger 

vacancy segregation on B2-APDBs than on D03-APDBs, that is, the cv’s at the center of planar 

B2-APDB and D03-APDB are larger than those at the matrix by respectively 70% and 10% at 673K, 

and 50% and 5% at 773 K [12]. 

     The changes of Ms are considered to be associated with the reduction in the solute segregation.  

For clarifying further the relation between the boundary mobilities, the variations of the cAl profiles 

were examined.  Figs. 6a, 6b and 6c show the profiles of ηB2, cAl and  cv across migrating B2-APDB 

at 673 K respectively.  The boundary is migrating from right to left.  The ηB2-profile near the APDB 

does not exhibit significant change except for the slight increase in its absolute value inside of APD 

(left side of APDB) seen when r decreases below about 2 nm (Fig.6a).  The cAl-profile which was 

symmetric about to the center of the APDB in the initial condition becomes asymmetric and the 

interior region of the APD becomes Al-rich as the APD shrinks (Fig. 6b). The cv-profile also 

becomes asymmetric as the APD shrinks (Fig. 6c).  The vacancy segregation and the Al-atom 

depletion near the center of the B2-APDB do not exhibit significant change until r has shrunk to 

about 2 nm.  The cAl behind the APDB decreases (i.e., Fe-concentration increases) and cV increases 
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slightly with decreasing r.  This does not happen in the migration of a planar grain boundary 

considered by Cahn [14].  But a similar decrease in the solute atom concentration behind a circular 

grain boundary has been observed in a 2D simulation by Kim et al. [20].  This likely arises from the 

difference in the geometries for 1D simulation and 2D simulation.  In 2D simulation, total boundary 

area decreases with decreasing r so that Fe-atoms and vacancies are shed from the moving circular 

boundary.     

     Fig. 7 compares the profiles of ηD03, cAl and cv around the D03-APDB with various r’s at 673 K.  

Both changes of cAl- (Fig.7b) and cv-profiles (Fig.7c) across D03-APDBs are quite different from 

those across B2-APDBs (Figs. 6b-c).  The Al-atoms tend to segregate in front of the migrating 

APDB and be depleted behind the boundary (Fig.7b).  As the APD radius decreases, the 

Al-depletion decreases and the Al-segregation increases.  Still later, the depletion and segregation 

of Al atoms abates.  A very broad and shallow atmosphere of Al-depletion remains near the initial 

position of the D03-APDB whereas no Al-depletion remained in the case of B2-APDBs (Fig.6b).  

Although the depletion and segregation of Al-atoms at the APDB becomes moderate after the 

APDB has broken away from the Al depletion atmosphere, they do not disappear completely.  In 

accordance with the steep increase in the of M seen to the left of the open arrowhead in Fig. 5a, the 

D03-APDB broke away from the initial Al-depletion atmosphere immediately after the APD starts 

shrinking, and accompanied by Al-segregation and Al-depletion ahead and behind of the shrinking 

APDB respectively.  The accompanying segregation and depletion become weak as the APD 

shrinks and disappears.  The vacancy segregation also becomes weak accompanying the breakaway 

(Fig.7c).  A shallow vacancy segregation atmosphere is left behind the APDB and approximately 

40% of segregated vacancies follow the D03-APDB (Fig.7c) whereas the vacancy segregation at 

B2-APDB does not change much (Fig.6c).  The change after the breakaway is quite small in 

contrast with that of Al-depletion.  In Figs 6 and 7, the cv- and cAl-profiles have been shown only 
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for the case of cv-dependent phase-field mobilities.  The changes of the cAl- and cv-profiles for the 

case of cv-independent phase-field mobilities (not shown) are almost same as those for the 

cv-dependent case.  It seems that the background cAl decreases (i.e. Fe-concentration increases) 

behind the moving D03-APDB as the r decreases (Fig. 7).  Although the decrease in APDB area is 

considered to be partly responsible for this, main reason for this is the breakaway of the APDB 

from the initial segregation atmosphere and the broadening of the segregation atmosphere in this 

case. 

 

4. Discussion 

     The simulation results indicated that the migration of APDBs in Fe3Al are significantly affected 

by the segregation of solute atoms and vacancies.  The underlying mechanism of the dependence of 

APDB migration on the segregation should be discussed in terms of the influences of the 

segregation both on the order parameter mobilities and the driving forces. In the previous study, we 

found that the effects of vacancy segregation on APDB energy are negligibly small in both cases of 

B2-APDB and D03-APDB.  For instance, the difference of APDB energies for the cases with and 

without vacancy segregation is less than 1 mJ/m2 (smaller than the range of numerical error) even 

for B2-APDB at 673 K.  The difference would become smaller for D03-APDB and at higher 

temperatures.  Therefore, the discussion focuses on the effect vacancy segregation on boundary 

mobilities and on the solute drag effects.  

     The intrinsic boundary mobility, 

€ 

Mh
intrinsic  (h represents ηB2 or ηD03 in the present study), which is 

the M without any effect of solute segregation and depletion, can be theoretically derived by 

Allen-Cahn theory [24] as, 

 

€ 

Mh
intrinsic  = 2κhαh        (10) 

where κh is the gradient energy coefficient and αh is the phase-field mobility for order parameter h.  
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If there is no segregation and the profile of order parameter across the APDB does not deviate from 

that of a stationary planar APDB, the M evaluated by Eq. (9) from the V−1/r relation should be 

equal to the 

€ 

Mh
intrinsic . 

     Fig. 8 compares the Ms evaluated from the simulation results (Msim) with theoretically estimated 

€ 

Mh
intrinsic  values in the temperature range from 673 K to 873 K.  Experimental values of Ms 

measured by in-situ TEM observation [33] are also shown.  The Msims of B2-APDB for the cases of 

cv-dependent and cv-independent ordering mobilities are denoted as 

€ 

MB 2
dep.

 and 

€ 

MB 2
indep., respectively, 

and those of D03-APDB are denoted as 

€ 

MD03
dep.

 and

€ 

MD03
indep., respectively.  For discussing the Msims for 

B2-APDB and D03-APDB regardless of the cv-dependence, 

€ 

MB 2
dep.

 and 

€ 

MB 2
indep.

 are represented 

by

€ 

MB 2
sim , while 

€ 

MD03
dep.

 and 

€ 

MD03
indep. are represented by 

€ 

MD03
sim (Table 2).  When the influence of vacancy 

segregation is negligible, 

€ 

MB 2
dep.

 and 

€ 

MD03
dep.

 become close to 

€ 

MB 2
indep. and 

€ 

MD03
indep.

 respectively.   

€ 

MB 2
dep.  

is larger than 

€ 

MB 2
indep. by a factor of approximately up to 1.6 because of the enhancement of ordering 

mobility by the vacancy segregation, but both of them are smaller than 

€ 

MηB 2

intrinsic  in the whole 

temperature range investigated.  The difference between the 

€ 

MB 2
sim

 and the

€ 

MηB 2

intrinsic
  is anticipated to 

result from solute-drag.  The pink solid circle (gray solid circle in a grayscale copy) at 673 K 

indicates the 

€ 

MB 2
sim for the case where cAl and cv are fixed at bulk equilibrium values and only η 1, η 

2p and η2n are allowed to vary so that the segregation of solute atoms and the resultant solute-drag 

are prevented.  The good agreement between the 

€ 

MB 2
dep.  and the

€ 

MηB 2

intrinsic  for the case of fixed cAl and 

cv supports the validity of the estimation of intrinsic boundary mobilities by the Allen-Cahn theory 

using Eq. (10).  The differences between the 

€ 

MηB 2

intrinsic  and the 

€ 

MB 2
sim  decrease with increasing 

temperature approaching the A2/B2 transition temperature (Tc
A2/B2) of 1033 K.  This is likely 

because the solute segregation decreases with increasing temperature as shown in the companion 

paper [12]. 

     In the cases of D03-APDBs, steady-state migration with constant Ms was not obtained at 
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temperatures except for 673 K because the APDs vanished before the breakaway was completed as 

shown in Fig.5b for example.  Therefore, the 

€ 

MD03
indep.s and the 

€ 

MD03
dep. s for the case of r = 5 nm are 

plotted as a representative mobility value in Fig. 8.  The r of 5 nm was chosen simply because it is 

an intermediate value in the simulation.  No significant difference is observed between

€ 

MD03
indep.

 and 

€ 

MD03
dep. .  This is because of the rather weak vacancy segregation at D03-APDBs.  The 

€ 

MD03
indep.and 

€ 

MD03
dep.  are smaller than the 

€ 

MηD 03

intrinsic  in the temperature range investigated except at 673 K where the 

breakaway of APDB from the solute segregation atmosphere occurred before the r became 5 nm.  

Both 

€ 

MD03
indep.and 

€ 

MD03
dep.  are very close to the 

€ 

MηD 03

intrinsic  at 673 K.  The M calculated for the case of βAl 

= βv = 0 is also close to the 

€ 

MηD 03

intrinsic
 at 673K.  This strongly implies that the difference between the 

€ 

MD03
sim.  and the 

€ 

MηD 03

intrinsic  before the breakaway at 673 K (Fig.5a) is due to the solute-drag, and no 

significant drag-force is exerted on the D03-APDB after breakaway.  Also, the differences between 

€ 

MD03
sim.  and the 

€ 

MηD 03

intrinsic

 observed at temperatures above 673 K are considered to arise because the 

breakaway is not completed.   Although the clear breakaway and subsequent plateau was observed 

only for the D03-APDB at 673 K in the present study, further examples of breakaway have been 

observed in other cases with nonstoichiometric compositions (not shown in this paper).  A clearer 

transition from a constant low-M regime to a constant high-M regime is observed for D03-APDB in 

Fe-28at%Al at 673 K, for instance.  The M after the breakaway in that case is also very close to the 

Mintrinsic, and supports further the idea of an intrinsic boundary mobility of Allen-Cahn theory [24].  

Those results will appear in a future paper on the composition dependence of segregation-affected 

migration of APDBs.   

     The Ms measured by in-situ TEM are larger than those given by the simulation by a factor of 

10−40 for D03-APDB and 60−100 for B2-APDB as indicated in Fig. 8.  The reason for the 

difference between the experimental data and the calculation results are unclear.  Possible reasons 

for the difference are, (i) boundary migrations were accelerated by the vacancies introduced by 
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electron irradiation [34] during the in-situ TEM observation of shrinking APDBs for experimental 

measurement of the Ms, (ii) the boundary migrations were accelerated by electron irradiation 

induced diffusion [35] and/or (iii) the extrapolation of the temperature dependence of ordering 

mobilities experimentally measured at 638 K and 653 K to the higher temperatures where the in-situ 

observation was carried out is beyond the limit of reasonable approximation.  The exact reason will 

probably be elucidated by comparing 3D simulation and APD growth in a bulk Fe3Al which is not 

affected by the electron irradiation. 

     Intending to quantify the effect of solute drag on the migration of B2-APDB, calculations were 

performed using Cahn's theory of solute drag [14]. In the calculation, a linear velocity/driving-force 

relation was used.  Although the relation is known to be inadequate to describe intrinsic migration 

of APDBs [24] for temperatures near Tc, it is valid at temperatures far below Tc such as 673 K.   

First, extrinsic boundary mobilities (

€ 

M extrinsic ) were defined as coefficients which relate the 

boundary velocity (V) and APD radius r for the case where the drag-force is neglected.  Fig. 9 

compares the 

€ 

MηB2

intrinsic , 

€ 

MηB2

extrinsic and 

€ 

MB 2
sim  at 673 K for both cases of cv-dependent (Fig. 9a) and 

cv-independent (Fig. 9b) phase-field mobilities.  The 

€ 

MηB2

intrinsics were calculated by using Eq. (10), 

while the 

€ 

MηB2

extrinsics were evaluated as follows.      

     For taking into account the drag-force, it is convenient to define another boundary mobility m 

which relates the boundary velocity and driving pressure (P) applied to the migrating boundary by 

V = mP           (11) 

Hereafter, the simbol m is used to represent pressure driven intrinsic boundary mobility to 

distinguish it from the intrinsic boundary mobility Mintrinsic.  In the case of shrinking 2D circular 

APD, P is given by  

P = σAPDB/r −Pdrag       (12) 

where σAPDB is the interface energy of the APDB and Pdrag is the drag force.    
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Substituting Eq. (12) into Eq. (11),  

 V = m(σAPDB/r −Pdrag).       (13) 

When there is no drag force (i.e. Pdrag=0), V can be determined by Mintrinsic and curvature as [24]   

 V = Mintrinsic/r,        (14) 

and Eq. (13) becomes 

V = m(σAPDB/r)        (15) 

Comparing Eq. (14) and Eq. (15) gives 

Mintrinsic  = mσAPDB.       (16)   

Here we define a new parameter named extrinsic boundary mobility Mextrinsic which relates the 

curvature 1/r and V without regard to the drag force as 

 V = Mextrinsic /r.        (17) 

Note that Eq. (17) can be used only when Pdrag is non-zero while Eq. (14) holds only when Pdrag is 

zero.  Comparing Eq. (13) and Eq. (17) gives 

 Mextrinsic = mr(σAPDB/r −Pdrag).      (18) 

By using Eq. (16), Eq. (18) can be rewritten  

Mextrinsic = Mintrinsicr(σAPDB/r −Pdrag) /σAPDB = Mintrinsic(1 −rPdrag/σAPDB)  (19) 

Substituting Eq. (10) into Eq. (18) 

Mextrinsic = 2κα r/ σAPDB (σAPDB/r −Pdrag) = 2κα (1 −rPdrag/σAPDB)  (20) 

     Eq. (20) allows us to evaluate the Mextrinsic by using the σAPDB and Pdrag which can be calculated as 

follows. The σAPDB was calculated by using the following equations.  

 

€ 

σAPDB = Δf +κη1
dη1
dr

2

+κη 2 p
dη2p
dr

2

+κη 2n
dη2n
dr

2 

 
 
 

 

 
 
 0

+∞

∫ dr    (22) 

where Δf is the energy increase due to the deviations in the order parameters from their equilibrium 

values and given by: 
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€ 

Δf = ΔF(c ,η1,η2p,η2n )

       − ΔF (c0,η10,η2p0,η2n0)+(c − c0) ⋅ ∂F
∂c

c= c0
η1 =η10
η 2p =η 2p0
η 2n =η 2n0

+ (η1 −η10) ⋅ ∂F
∂η1

c= c0
η1 =η10
η 2p =η 2p0
η 2n =η 2n0

 

 

 
 
 
 

             + (η2p −η2p0) ⋅ ∂F
∂η2p

c= c0
η1 =η10
η 2p =η 2p0
η 2n =η 2n0

+ (η2n −η2n 0) ⋅ ∂F
∂η2n

c= c0
η1 =η10
η 2p =η 2p0
η 2n =η 2n0

 

 

 
 
 
 

 (23)  

Pdrag was evaluated from the profile of diffusion potential of Al-atoms, 

€ 

δF /δcAl by 

€ 

P drag = − cAl(r) − cAl
eq( ) ddr

δF
δcAl

 

 
 

 

 
 

 

 
 

 

 
 dr

0

+∞

∫      (24) 

where 

€ 

cAl
eq  is the Al concentration of the alloy [14].  Note that Eqs. (23) and (24) result in a 

dependence of σAPDB and Pdrag, and hence Mextrinsic,  on radius r. 

     Mextrinsics of B2-APDB (

€ 

MηB2

extrinsic) calculated by using Eq. (21) are shown in Fig. 9a and Fig. 9b 

for the cases of cv-dependent and cv-independent cases, respectively.  The 

€ 

MηB2

intrinsic  estimated by the 

Allen-Cahn’s theory, 2κα, and the 

€ 

MB 2
sim  are also indicated for comparison.  The 

€ 

MB 2
sim s are much 

smaller than the 

€ 

MηB2

intrinsics and closer to the 

€ 

MηB2

extrinsics in both of cv-dependent and cv-independent 

cases.  However, the 

€ 

MB 2
sim s are significantly larger than the 

€ 

MηB2

extrinsics especially in the case of 

cv-dependent phase-field mobility.  The most probable reason is the inappropriate application of 

Cahn’s solute-drag theory [14] to APDB migration.  In the Cahn’s theory, steady-state migration of 

a planar grain boundary is considered.  On the other hand, in our study, migration of APDBs 

associated with shrinking circular APDs are considered, and therefore the APDB migration is not in 

a steady state.  As indicated in Fig. 6a, the Al concentrations inside and outside of the APD become 

higher and lower, respectively, as the APDs shrink.  In such a situation, the Pdrag evaluated by Eq. 

(14) in which the 

€ 

cAl
eq  is assumed to be constant, cannot be estimated correctly.  In addtion, in the 

case of cv-dependent phase-field mobilities, the increase in the moblities due to the vacancy 

segregation makes the difference larger.  Actually, the difference between the 

€ 

MB 2
sim  and the 

€ 

MηB2

extrinsic 
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is larger in the cv-dependent case (Fig.9a) than in the cv-independent case (Fig.9b).  Further study 

for evaluating the drag-force for boundary migrations at unsteady states is in progress. 

 

 

5. Conclusion 

     Effects of segregation of solute atoms and vacancies on migration of a/4<111> APDB 

(B2-APDB) and a/2<100> APDB (D03-APDB) in Fe3Al were studied using the phase-field model 

for vacancy containing system which was developed in the previous study.   Important findings of 

the present study are: 

1.   Solute atmospheres follow shrinking a/4<111> APDBs until the APD vanishes by shrinking to 

zero radius.  The boundary mobilities are smaller than the intrinsic boundary mobilities because 

of the solute-drag effect. 

2.  The boundary mobilities of a/4<111> APDBs can be enhanced by a factor of up to 60 % by 

vacancy segregation in the temperatures above 673 K whereas those of a/2<100> APDBs are 

enhanced by only a few percent. 

3.  a/2<100> APDBs break away from solute atmospheres during the course of the shrinking in 

contrast with a/4<111> APDB.  The a/2<100> APDB boundary mobilities increase by a factor 

of up to 40 % accompanying the breakaway and become equal to the intrinsic boundary 

mobilities even though some depletion and segregation of solute Al-atoms remained ahead and 

behind the migrating APDB, respectively.   

4.  The boundary mobility of a/2<100> APDB after breakaway from the solute atmosphere is in 

good agreement with the intrinsic boundary mobility evaluated from the Allen-Cahn theory.   
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Appendix 

Description of free energy of vacancy containing Fe3Al by Bragg-Williams approximation 

  Site occupations in the D03 ordered structure are defined using the 4-sublattices as follows, 

 

€ 

η1 =
pAl
α + pAl

β

2
−
pAl
γ + pAl

δ

2
 

 
 

 

 
 2      (A1) 

 

€ 

η2 =

pAl
α − pAl

β

2
 ≡η2p  (η1 > 0)  

pAl
γ − pAl

δ

2
 ≡η2n   (η1 < 0)  

 

 
  

 
 
 

      (A2) 

where 

€ 

pAl
i  (i = α, β, γ, δ) are the occupation probabilities of Al atoms on each sublattice.  We define 

the D03-LRO for positive and negative B2-LRO as η2p and η2n, respectively.  The average site 

fraction of Al atoms in the whole crystal (

€ 

x Al ) is given by 

 

€ 

x Al =
1
4

pAl
α + pAl

δ + pAl
γ + pAl

β( ).      (A3) 

By solving Eqs. (A1) – (A3) simultaneously, the Al occupation probabilities on each site can be 

expressed as follows: 
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€ 

pAl
α = xAl +η1 +η2p

pAl
β = xAl +η1 −η2p
pAl
γ = xAl −η1 +η2n
pAl
δ = xAl −η1 −η2n

       (A4) 

The free energy of the system in the Bragg-Williams approximation [33] is given by: 

 

  

€ 

ΔF =
N
2

V (0)xAl(1− xAl) + V (
 
k 1)η1

2 +
1
2

V (
 
k 2)η2p

2 +
1
2

V (
 
k 2)η2n

2 
 
 

 
 
 

        + kBT  { pAl
α ln pAl

α + (1− pAl
α )ln(1− pAl

α ) + pAl
β ln pAl

β + (1− pAl
β )ln(1− pAl

β )

                 + pAl
γ ln pAl

γ + (1− pAl
γ )ln(1− pAl

γ ) + pAl
δ ln pAl

δ + (1− pAl
δ )ln(1− pAl

δ ) }

 (A5) 

where N is the number of atoms in the system and   

€ 

V (
 
k s)  are the Fourier transforms of real-space 

pair-interaction energies,   

€ 

v( r ) , expressed as: 

 

  

€ 

V (
 
k s) = v( r )

 
r 
∑ exp(−i

 
k s ⋅
 
r )      (A6) 

where   

€ 

 
k s is a reciprocal lattice vector and   

€ 

v( r )  is defined by: 

   

€ 

v( r ) = εFeFe
r + εAlAl

r − 2εFeAl
r        (A7) 

where 

€ 

εFeFe
r , 

€ 

εAlAl
r  and 

€ 

εFeAl
r  are energies of Fe-Fe, Al-Al and Fe-Al bonds of distance r, respectively.  

The values of   

€ 

V (
 
k s) used were those determined from order-disorder transition temperatures of 

stoichiometric Fe3Al in the experimental phase diagram [33]*. 

When vacancies are regarded as the third component, the site-fraction of Al atoms 

€ 

x Al  is given by   

 

€ 

xAl = cAl(1− cV)        (A8) 

where cAl is the Al atom fraction of the alloy and cV is the number fraction of vacancies.  

  We assume that vacancies occupy only Fe-sites which have first nearest neighbor Al atoms in the 

                             
* The   

€ 

V (
 
k s) values were assumed independent of composition to simplify interpretation of trends 

in the results. 
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perfect D03-ordered structure, consistent with the preferential occupation of vacancies revealed by 

Mössbauer spectroscopy [36].  Then, the probabilities of finding vacancies on α, β, γ and δ sites are 

defined as follows: 

when -0.25

€ 

≤η1

€ 

≤ 0.25 

 

 

€ 

pv
α = cV 1−

η1
0.25

 

 
 

 

 
        (A9) 

 

€ 

pv
β = cV 1−

η1
0.25

 

 
 

 

 
        (A10) 

 

€ 

pv
γ = cV 1+

η1
0.25

 

 
 

 

 
         (A11) 

 

€ 

pv
δ = cV 1+

η1
0.25

 

 
 

 

 
        (A12) 

Where cAl is larger than 0.25, η1 can be larger than 0.25 or smaller than 0.25 and then Eqs. (A9) 

–(A12) cannot be used for defining the vacancy occupation probabilities, 

€ 

pv
i  (i=α, β, δ, γ).  For 

those cases, 

€ 

pv
i s are defined as follows 

When η1 > 0.25  

 

€ 

pv
α = pv

β = 0  and 

€ 

pv
γ = pv

δ = 2cV       (A13) 

When η1<- 0.25 

 

€ 

pv
α = pv

β = 2cV  and 

€ 

pv
γ = pv

δ = 0       (A14) 

Probabilities of finding an Fe atom on an i-site (i = α, β, γ and δ) are given by: 

 

€ 

pFe
i =1− pAl

i − pv
i         (A15) 

Then, configurational entropy of the assembly of atoms and vacancies is given by: 
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€ 

S = −
kB
4

pk
i ln pk

i( )
k=Al,Fe,v
∑

 

 
 

 
 

 

 
 

 
 i=α ,β ,γ ,δ

∑       (A16) 

  Assuming that vacancy formation enthalpy (Hf) is independent of degree of order, the enthalpy is 

given by 

 H = HNV +cv Hf        (A17) 

where HNV is the enthalpy of a vacancy-free crystal and HF is the vacancy formation enthalpy. 
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 Figure captions 

 

Fig. 1 Snap shots of LRO field (a-d), Al concentration field (e-h) and vacancy concentration field 

(i-l) around B2-type a/4<111> APD shrinking at 673 K.  The time from the beginning of the 

simulation are 0 s (a, e, i), 500 ks (b, f, j), 750 ks (c, g, k) and 1000 ks (d, h, l).   

 

Fig. 2 Snap shots of LRO field (a-d), Al concentration field (e-h) and vacancy concentration field 

(i-l) around D03-type a/2<100> APD shrinking at 673 K.  The time from the beginning of the 

simulation are 0 ks (a, e, i), 30 ks (b, f, j),  50 ks (c, g, k) and 70 ks (d, h, l).   

 

Fig. 3 Radii of shrinking circular APDs as a function of annealing time at 673 K; (a) time range 

up to 1.7×106 s, (b) time range up to 6×104 s. 

 

Fig. 4 Boundary velocities of circular shrinking APDBs as a function APDB curvature (1/r); (a) 

boundary velocity range up to 7×10-4 nm/s; (b) boundary velocity range up to 5×10-5 nm/s.  

 

Fig. 5 Boundary mobilities of circular APDBs shrinking at (a) 673 K and (b) 773 K as a function 

of APD radius (r).  Insets are the magnifications of the curves for B2-APDBs. 

 

Fig. 6 Profiles of (a) B2-LRO, (b) Al concentration and (c) vacancy concentration across circular 

a/4<111>APDBs shrinking at 673 K with diameters of 11.2 nm, 10 nm, 5 nm and 2 nm.   

 

Fig. 7 Profiles of (a) D03-LRO, (b) Al concentration and (c) vacancy concentration across circular 

a/2<100>APDBs shrinking at 673 K with diameters of 11.2 nm, 10 nm, 5 nm and 2 nm.   
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Fig. 8   Boundary mobilities of shrinking APDs as a function of temperature.  The boundary 

mobilities evaluated from the simulation results are compared with intrinsic boundary mobilities 

and those evaluated from in-situ TEM of observation [32].  

 

Fig. 9 Comparison of simulated boundary moblities, intrinsic boundary mobilities and extrinsic 

boundary mobilities of B2-APDB at 673 K for the cases of (a) cv-dependent and (b) cv-independent  

phase field mobilities. 

 

 



 
Table 1 Diffusivity and ordering mobility data used in the calculations. 

 

 

€ 

˜ D (T) = ˜ D 0 exp −Qint /RT( )  

 
 

Table 2 Classification of phase-field mobilities and boundary mobilities 

Mobility Regardless of LRO LRO Regardless of 
cv-dependence cv-dependent cv-independent 

B2 

€ 

αηB 2
 

€ 

αηB 2

dep.  

€ 

αηB 2

indep. 
ordering mobility 

€ 

α  D03 

€ 

αηD 03
 

€ 

αηD 03

dep.  

€ 

αηD 03

indep. 

Al atom mobility 

 

€ 

βAl
 

− − 

€ 

βAl
dep.   

€ 

βAl
indep.  

Phase field 
mobility 

vacancy mobility 

 

€ 

βv
 

− − − 

B2 

€ 

MηB 2

intrinsic  − intrinsic boundary 
mobility Mintrinsic D03 

€ 

MηD 03

intrinsic  − 
B2 

€ 

MηB 2

extrinsic − − extrinsic boundary 
mobility Mextrinsic D03 

€ 

MηD 03

extrinsic − − 
B2 

€ 

MB 2
sim  

€ 

MB 2
dep.  

€ 

MB 2
indep. 

Boundary 
mobility 

M 
simulated boundary 

mobility Msim D03 

€ 

MD03
sim

 

€ 

MD03
dep.

 

€ 

MD03
indep.

 
B2 

€ 

mηB 2
 − − 

Pressure driven 
boundary 
mobility 

m 
D03 

€ 

mηD 03
 − − 

 
 

Parameter Value Al concentration Reference 

€ 

˜ D 0  1.2×10-1 m2/s 25.5 at% Salamon [26] 

€ 

Qint  279 kJ mol-1 25.5 at% Salamon [26] 
SF 5kB 23.7 at% Schaefer et al. [27] 
HF 89 kJ mol-1 23.7 at% Wolff et al. [28] 

€ 

αηB 2
 3.12×103 m3J-1s-1 24.9 at% Oki et al. [29] 

€ 

QηB 2
 193 kJ mol-1 24.9 at% Oki et al. [29] 

€ 

αηD 03
 3.12×104 m3J-1s-1 24.9 at% Oki et al. [29] 

€ 

QηD 03
 193 kJ mol-1 24.9 at% Oki et al. [29] 
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