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Abstract

Background: Behavioral paradigms applied during human recordings in electro- and magneto- encephalography (EEG and
MEG) typically require 1–2 hours of data collection. Over this time scale, the natural fluctuations in brain state or rapid
learning effects could impact measured signals, but are seldom analyzed.

Methods and Findings: We investigated within-session dynamics of neocortical alpha (7–14 Hz) rhythms and their
allocation with cued-attention using MEG recorded from primary somatosensory neocortex (SI) in humans. We found that
there were significant and systematic changes across a single ,1 hour recording session in several dimensions, including
increased alpha power, increased differentiation in attention-induced alpha allocation, increased distinction in immediate
time-locked post-cue evoked responses in SI to different visual cues, and enhanced power in the immediate cue-locked
alpha band frequency response. Further, comparison of two commonly used baseline methods showed that conclusions on
the evolution of alpha dynamics across a session were dependent on the normalization method used.

Conclusions: These findings are important not only as they relate to studies of oscillations in SI, they also provide a robust
example of the type of dynamic changes in brain measures within a single session that are overlooked in most human brain
imaging/recording studies.
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Introduction

Oscillatory dynamics in neocortex are thought to be important

correlates of neurological states such as arousal [1], attention

[2,3,4,5,6], sensory perception [7,8,9,10], memory processes

[11,12], and readiness to learn [13]. They are also disrupted in

neurological disorders [14,15,16]. The mechanistic underpinnings

of such oscillations [2,17,18,19], and their meaning for perception

[20], are a current topic of intensive debate in systems neuroscience.

Electroencephalography (EEG) and magnetoencephalography

(MEG) provide high temporal resolution and noninvasive means

of measuring oscillatory dynamics in humans. In recent studies, we

have used MEG to investigate two components of the ‘mu’ rhythm

in primary somatosensory neocortex (SI), mu-alpha (7–14 Hz) and

mu-beta (15–29 Hz). We have examined the natural expression

patterns of these oscillations, explored their potential detailed

mechanistic underpinnings [8], and observed systematic alter-

ations in oscillations strength in aging [21]. We have found that

the expression of these oscillations is correlated with perceptual

detection of threshold-level tactile stimuli [2,8]. Further, we

observed attention-induced modulation of the SI mu rhythm

dominated by post-cue allocation of the alpha component [2],

which can be enhanced with perceptual learning associated with

meditation practice [22].

Significant variation in the expression of such oscillatory

neocortical dynamics has been known to exist on the time scale

of hours: Implicit and explicit learning paradigms can shift the

expression pattern of oscillations on this time scale [23,24,25], and

individual subjects cycle through epochs of relative vigilance and

arousal [1,26]. Yet changes in these dynamics over the course of

an hour-long experimental session are rarely explicitly considered

in experimental design and data analysis. These shorter-term

changes are usually treated as noise and dealt with by taking

averages over the entire session (e.g., of event-related signals).

However, such dynamics may impact the inferences made from

studies by introducing a latent session-duration dependent variable

that lowers statistical power, and obscures subtleties that only

emerge at certain epochs within an experiment.
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As an object case in the potential impact of such within-session

dynamics on human studies, here we describe within-session

dynamics in the expression of alpha oscillations in SI during a

cued-attention task. This investigation was motivated by our prior

observation that aspects of neocortical dynamics were most robust

toward the end of the experiment [2,8,27]. In the current analysis,

we found that absolute alpha power and its modulation driven by

selective somatotopic attention cueing, both evolved within a

session. Our results suggested that short-term learning effects that

alter cortical rhythms take place even over a single hour of data

collection in a paradigm that has no explicit learning requirement.

Further, we describe how different approaches to baseline

normalization can impact these observations, particularly at the

time of the cue. These methods and data have bearing on the

analysis and use of MEG as a tool for investigating oscillation

dynamics, as well as any human studies—using fMRI, EEG, MEG

or other modalities—that require averaging across sessions greater

than an hour in length.

Methods

The data reported in this paper were collected for a prior study,

and detailed methods for experimental paradigm and data

acquisition can be found in Jones et al. (2010) and Kerr et al.

(2011) [2,22]. Here, we review these prior methods and provide

details on current data analysis techniques. We restricted our

analysis to the alpha frequency band as our prior research revealed

that attention had a more significant effect on alpha than beta

frequencies [2,22].

Subjects
Twelve adults, one male and eleven females, between 18–50

years old (mean age = 31.6 years, S.D. = 7 years), participated in

the study. Selection criteria included being neurologically healthy

(excluding any musculoskeletal diseases, arthritis, lupus, multiple

sclerosis, scleroderma, and diagnosed current psychiatric disorder),

right-handed, medication free or on stable doses of SSRI

medication. The experimental protocol was approved by the

Internal Review Boards of the Massachusetts General Hospital

and Harvard Medical School. All subjects gave signed informed

consent agreeing to participate in the study.

Stimuli
Subjects’ left hands and left feet were rested on solid plastic

frames throughout the experiment. A fused multi-layer piezoelec-

tric bender was built into the frame of each stimulator that

delivered the stimuli (single cycle of a 100 Hz sine wave, 10 ms

duration) to the distal pads of the 3rd digit of the left hand or 1st

digit of the left foot, via a delrin contractor affixed to the

piezoelectric (7 mm diameter presented within a 1 cm circular

rigid surround). The devices were not attached to the skin.

Stimulus strength was dynamically manipulated using a Parameter

Estimation Sequential Testing (PEST) convergence procedure as

described in detail in [8,28,29], which was designed to maintain

the stimulation strength at a set detection threshold as discussed

below.

Experimental Procedure
Localization Runs. In the current study, we report only on

activity from the hand area of SI contralateral to the side of hand

stimulation, as in Jones, et al. (2010) [2]. To localize a primary

equivalent current dipole (ECD) in the hand area of contralateral

SI, each experimental session began with a run of 60 trials of

suprathreshold stimuli (100% detection rate) delivered to the 3rd

digit of the left hand (2 minutes of stimulus with an ISI of 3

seconds).

Cued Attention Runs. Figure 1 illustrates the experimental

paradigm. Subjects were instructed to fixate straight ahead on a

cross on a projection screen. A trial began when the cross turned

into a word, directing the subject to attend to the ‘Hand’ (attend-

hand condition), the ‘Foot’ (attend-foot condition), or ‘Either’

location. At a randomized time between 1.1 s to 2.1 s after the

onset of the visual cue (at fixed 100 ms intervals), the piezoelectric

stimulator delivered a tactile stimulus to either the finger or the toe

or neither location. The stimulus presentation was balanced

between finger and toe and the order the stimuli were presented

was randomized with an event related design so that the subject

could not predict the sequence or timing of stimuli. The visual cue

onset was also accompanied by a 60 dB, 2 kHz tone delivered to

both ears to mask audible noise created by the piezoelectric tactile

stimulators. The auditory and visual cues continued for 2.5 s. At

the end of the 2.5 s visual cue (and the auditory tone), which was

at least 400 ms after the stimulation, subjects were instructed to

report detection or non-detection of the stimulus at the cued

location, using a button press with the second and third digits of

the right hand respectively. The trial ended 1 s after the

termination of the visual/auditory cue, at which time the next

cue was presented to start the next trial.

The strength of the stimulation was maintained with a PEST

procedure fixed at a detection threshold stimulus rate of 66%

throughout the cued attention runs for both the finger and toes

stimulation. In addition, 10% supra-threshold (100% detection

rate) stimuli and 20% null-stimuli were randomly interleaved into

each cued-attention run for each stimulus condition.

There were 120 trials per run, 40 of each attention condition,

randomized in presentation order. Subjects were given a short

practice run before the start of recording. Each subject underwent

an average of 7 (S.D. = 1 run) runs with small breaks in between

each run, accumulating an average of 774 (S.D. = 83 trials) total

trials, 269 (S.D. = 35 trials) trials in each condition after artifact

rejection, with the experimental session lasting approximately one

hour (t = 50 minutes, S.D. = 5 minutes).

MEG Data Acquisition. The MEG data were acquired

using a 306-channel whole-head planar dc-SQUID Neuromag

Vectorview system (Helsinki, Finland) and a sampling rate of

601 Hz. Data were filtered from 0.1 to 200 Hz. Four coils

recorded head position for co-registration with structural MR

images. Vertical and horizontal electro-oculogram (EOG) signals

were recorded for eye-movement artifact rejection. Thresholds for

prominent EOG and stimulus artifact rejection were set by

manual inspection. This is slightly different than in Jones et al.

(2010), where the EOG threshold was fixed at 100 mV [2]. This

difference did not significantly change the results. Only trials with

EOG artifacts that were found in the period of interest ([0, 1100]

ms post-cue) were discarded. Most subjects complied with

instruction to blink during the response period, which is not

included in the period of interest, therefore very few trials were

rejected due to EOG artifacts due to blinks.

Source Analysis. The source analysis was automated by Xfit,

a standard commercial software within the bundle of the Elekta

Neuromag Software Suite (product of Elekta Neuromag Oy,

Helsinki, Finland). Xfit was used to estimate an equivalent current

dipole (ECD) source in SI at the time of peak activity calculated as

the maximum response occurring at ,100 ms post-stimulus (mean

peak activity = 66.8 ms, S.D. = 6.4 ms) in the mean signal from

hand localization runs described above (suprathreshold stimuli

with minimum of n = 50 trials for each subject). The goodness of fit

of the forward solution from a single SI localized ECD to the

Within-Session Alpha Dynamics
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recorded data was larger than 70% in all fit data at the time of the

peak response. The location of the SI source was co-registered

with the individual’s anatomical MRIs and it was confirmed that

the source generated by the hand stimulation emerged from the

anterior bank of the post-central gyrus finger representation of

area 3b in SI [30] in all subjects. See for [2,8,27] example

localizations. As in our prior studies [2,8,21,22,27], all of the

analyses presented here used the forward solution from this

localized SI source.

A customized MATLAB script was written to extract broad-

band signal activity from the forward solution of the estimated SI

ECD, as well as signals used for EOG rejection and alignment of

trials across triggers.

Data Analysis
Calculation of Spectral Power. A complex wavelet analysis

was calculated using a complex wavelet algorithm that determined

near instantaneous changes in time-frequency representations

(TFRs). The TFRs were calculated from 1–40 Hz on the SI ECD

time courses by convolving signals with a complex Morlet wavelet

of the form w t, f0ð Þ~ Ae
{t2=2st2 e2ipf0t for each frequency of

interestf0, with st ~m=2pf0, and i the imaginary unit. The

normalization factor was A ~1= st2pð Þ, and the constant m

defined to be 7, thus allowing a compromise between time and

frequency resolution, as seen in [8]. Time-frequency

representations (TFRs) of the power were calculated as the

squared magnitude of the complex wavelet-transformed data

averaged from [2667, 2333] ms around cue for each trial. In all

analyses, alpha power was calculated by averaging across the 7–

14 Hz band from the TFR.

Methods to Quantify Changes in Brain Activity Across the
Experiment

Alpha Power Changes. For each subject, total alpha power

was calculated by first averaging across the time period of [2667,

2333] ms around cue for each trial, and then all trials were

grouped into bins of 50 chronologically. Due to the fact that the

length of experiment varied by subject, trials that did not fit into

bins of 50 were disregarded in the analysis. To facilitate

comparison across subjects, the averages of each bin were

normalized to the first bin for each subject. A regression analysis

was performed between power and bin number across the

experimental session, and the data was fit to a linear, a

quadratic, and an exponential model to examine the evolution

of power over time. In addition, to be consistent with our later

analyses, the entire experimental session was also divided into

three blocks: Early (E), middle (M), and late (L) blocks, each

containing the same number of total trials (mean = 258; S.D. = 28

trials). The average alpha power in each block was calculated, and

each subject’s binned data was normalized to his or her own

‘‘Early’’ block in order to normalize across individuals. Group

averages were calculated, and a regression analysis was performed

on the group-averaged power (12 subjects) across bins.

Correlation Between Alpha Power and Vigilance. In

assessing the correlation between a subject’s vigilance and

overall alpha power, the experiment was subdivided into 100-

trial bins with possible overlapping between the last and second to

last bin. A regression analysis was performed between total alpha

power and total blink counts in each bin across the experiment, for

each subject. Total alpha power in each bin was calculated as the

average across the time window [2667, 2333] ms around the cue

for each trial. Blink counts were defined as the number of blinks

counted in the same block of time, which in this case, includes the

response periods.

Attention-Induced Modulation of the Time Evolution of

Spectral Power. To calculate the time evolution of spectral

power, percent changes from baseline (see below for definition of

baseline) alpha power were calculated from 2350 to 1100 ms

post-cue for both of the attention cues attend-hand and attend-foot

(mean = 269 trials; S.D. = 35 in each condition) and were

averaged across bins consisting of the first 100 trials (F100), mid

100 trials (M100), and last 100 trials (L100) regardless of

overlapping. In each trial bin, paired t-tests were used to

calculate statistically significant differences between attend-hand

vs. attend-foot conditions across subjects at every time point.

Although multiple t-tests have inherent Type I errors, our data

show consecutive points of significance, reducing the probability

that the results represent false positives, as in our prior studies

[2,8].

Baseline Normalization. Two types of baseline methods

were compared in our study: (1) the ‘‘all-trial baseline’’, in which a

common baseline is set across the two cueing conditions by

Figure 1. Experimental Design for Cued Detection Runs. Reproduced with permission from Jones et al 2010 [2].
doi:10.1371/journal.pone.0024941.g001
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averaging all trials from both conditions in order to preserve the

natural starting relationship between the conditions, and (2) the

‘‘condition-specific baseline’’, for which we set a baseline for each

cueing condition independently in order to focus on isolating cue-

induced changes in each condition. In both methods, the time

window used to calculate the baseline was [2350, 0] ms in the pre-

cue period.

Broadband A Signal of Visual Cue Evoked Responses in SI

and Cue-Locked Frequency Response. Broadband signal of

cue-evoked responses in SI were averaged across 100 trials for

each condition in the same three bins (F100, M100, L100) as in the

attention-induced modulation of the time evolution of spectral

power. For each subject, each trial was baseline normalized by

subtracting the mean over [250, 0] ms in the pre-cue period.

Averages across attend-hand and attend-foot conditions were

calculated for each bin and averaged across subjects.

Corresponding cue-locked TFR frequency responses were

calculated from the averaged cue-evoked response signals for

each subject, using a wavelet transform as described above. These

TFRs were normalized to a ‘‘condition specific’’ baseline of

[2650, 0] ms pre-cue, and then averaged across subjects. Paired t-

tests were used to detect statistically significant differences between

the two cued-attention conditions.

Results

Preliminary analysis suggested that neocortical dynamics were

more consistent across subjects at the end of an experimental

session [2,27]. Therefore, we have typically restricted our analyses

of MEG data to the final 100 trials within a given session

[2,8,21,27]. Here, we present detailed analysis that confirms and

expands upon our initial observation of these within-session

dynamics.

Within-Session Changes in Expression of Total Alpha
Power

To assess the changes in alpha power across an experimental

session, we first investigated changes in total alpha power

throughout the entire session for each subject during the cued-

attention task. For each trial, we calculated the average power in

time period of [2667, 2333] ms around cue across all conditions

and binned the data by averaging every 50 trials. In 11 out of 12

subjects (p = 0.003, sign test) we observed an increased power from

the beginning to the end of the experiment. To quantify the

evolution of alpha power over time, the group average of the

normalized alpha bins were fit to a linear, a quadratic, and an

exponential model. The nonlinear models produced fits similar to

that of a linear model. (Figure 2A: Linear regression analysis (black

line) R2 = 0.81, p = 0.03, one-sided t-test).

To be consistent with our other examinations of changes in

alpha dynamics across the experiment, we also divided the entire

experimental session into three blocks of equal numbers of trials:

early (E), middle (M), and late (L) (mean = 258 per block; S.D.

= 28), and calculated grand average alpha power in each block.

We again found that the mean alpha power increased linearly

across the experimental session (Figure 2B: Linear regression

analysis (orange dash) R2 = 0.99, p = 0.03, one-sided t-test).

A common view of alpha oscillations is that they are an index of

arousal, therefore increased alpha power within a session could

reflect increased drowsiness [31]. To check whether the observed

increase in SI alpha power was linked to decreased vigilance, we

performed a correlation analysis between blink count and alpha

power [32], using eye blink as an indicator for drowsiness, as

described in the Methods. We found no correlation between alpha

power increase and blink rate across a session for 11 of 12 subjects

(p.0.05; data not shown).

Within-Session Changes in the Differential Allocation of
Alpha Power Following Directed Attention Cueing

Next, we studied within-session changes in cue-induced alpha

modulation as observed in Jones et al. (2010) [2]. In our prior

study, we found that SI alpha power was significantly higher in the

somatotopic representation of the hand when attention was cued

to the body position of the foot than when attention was cued to

the hand. This differentiation in post-cue alpha modulation began

,600 ms post-cue, during the anticipatory period prior to a tactile

stimulus. In that study, we reported on only the last 100 trials for

each subject, following the observation made on a related prior

study regarding data stability [27].

Here, we performed the same analysis as in Jones et al. (2010)

[2] on data that were divided into three time blocks, with each

block containing 100 trials (first (F100), middle (M100), and last

(L100) trials). Our L100 results (Figure 3A bottom panel)

replicated the results in Jones et al. (2010), albeit with an updated

artifact region method (see Methods). The lower number of trials

included in each block in this analysis compared to the total power

analysis (mean 258 trials) reflects the decrease in overall N due to

division of trials into attend-hand and attend-foot conditions — a

division that was not necessary when examining overall alpha

power in Figure 2.

When separated into three time blocks, we found that the

differential alpha allocation with attention that we observed in the

L100 trials was not consistent in all three stages of the experiment.

Although the ability to modulate SI alpha was present in all three

time blocks, there was a systematic evolution in the timing of

significant differences between attention conditions (Figure 3A).

This evolution occurred in time periods around the cue, including

pre-cue, and in later .500 ms post-cue activity.

In the later .500 ms post-cue activity, the attention-induced

differential alpha allocation occurred earlier and over a longer

time window as the experiment progressed. In F100, the

significance occurred very briefly between [840, 890] ms post-

cue. In M100, the significance occurred earlier at [650, 1030] ms

and was more consistently in time, although still had brief

interruptions. By L100, the separation was sustained the entire

time from approximately 750 ms to the end at 1100 ms, and an

even earlier point of differentiation was visible although not

reaching statistical significance. The growing trend in duration

and magnitude of the differentiation in alpha allocation to cued

attention is highlighted by the gray shaded region in Figure 3A.

In the time period at and before the cue, the differential alpha

allocation with attention flipped sign from the beginning to the end

of the experiment, such that in the F100 the attend-hand condition

was higher than attend-foot condition, and by the L100 the attend-

foot condition was higher than attend-hand. In the F100

statistically significant differences occurred between approximately

[2320, 2180] ms pre-cue and briefly at [25, 80] ms around cue.

In M100, while the attend-hand condition was still greater, the

difference became less apparent with no significant difference in

pre-cue period and an even briefer period of significance around

the cue from approximately [220, 20] ms. By L100 trials the

difference flipped sign and was again significant in the pre-cue

period where the attend-foot condition was greater than the

attend-hand condition from approximately [2200, 2110] ms.

We note that since the experimental design randomized trial

presentation order and timing, the significant differences in the

pre-cue baseline period and immediately surrounding the cue did

not reflect the subjects’ ability to predict the upcoming trial.

Within-Session Alpha Dynamics
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Rather, these differences can be explained by difference in alpha

power time locked to the cue that smeared into the baseline period

because of limitations in the temporal resolution of the wavelet

methods used. For example, since we used a 7 cycle wavelet, to

estimate 10 Hz alpha power at any point in time, a 700 ms time

window of data is necessary. Therefore, at the cue, the estimation

of alpha was smeared up to 350 ms pre- and post-cue,

encompassing the length of our baseline period and the difference

Figure 2. Within-Session Increase in Total Alpha Power. A) Within-Session Increase in Binned Total Alpha Power. The group average of binned
alpha power is fitted to a linear (black), quadratic (green), and exponential (orange) model. Blue Trace: Average alpha power (7–14 Hz, mean and
standard error (S.E.), n = 12 subjects) from the hand area in SI across the experiment that has been divided into bins of 50 trials. For each subject,
alpha power was normalized to the earliest bin average. No significant improvement beyond linear model is seen. (Linear fit: R2 = 0.81, p = 0.03, one-
sided t-test) B) Within-Session Increase in Expression of Total Alpha Power. Blue Trace: Average alpha power (7–14 Hz, mean and S.E., n = 12 subjects)
from the hand area in SI across three blocks of the experiment (early (E), middle (M), and late (L) trials). For each subject, alpha power was normalized
to the early block (E) average. Linear regression analysis (orange dash) confirmed a statistically significant increase in total alpha power across the
experimental session (R2 = 0.99, p,0.01, one-sided t-test).
doi:10.1371/journal.pone.0024941.g002

Figure 3. Within-Session Changes in Cue-Induced Allocation of Alpha Power and Implication of Different Baseline Methods. A)
Within-session changes in differential allocation of alpha power following directed attention cueing using ‘‘all-trial baseline’’ method. Post-cue
temporal evolution of the hand area SI alpha activity in attend-hand and attend-foot conditions in three blocks of the experiment: First 100 trials
(F100), mid 100 trials (M100), and last 100 trials (L100). Alpha power was plotted as a percent change from baseline using an ‘‘all-trial baseline’’
(average across all conditions, see Methods). Green Asterisks: Significant differences between attend-hand and attend-foot conditions (p,0.05,
paired t-test). Significant differences evolved across the duration of the experiment with the longest time period of significance in the L100 trials. B)
Within-session changes in differential allocation of alpha power following directed attention cueing using ‘‘condition-specific baseline’’ method.
Different baseline methods showed different within-session progression of the dynamic allocation of alpha with cued attention. Green Asterisks:
Significant differences between attend-hand and attend-foot conditions (p,0.05, paired t-test). The trend in differentiation of alpha modulation post-
cue is highlighted by the gray shading.
doi:10.1371/journal.pone.0024941.g003

Within-Session Alpha Dynamics
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in the pre-cue baseline results from differences that actually

occurred at and immediately after the cue. This fact can be

visualized in the broadband cue evoked responses in Figure 4A. In

each panel of Figure 4A, a cue locked oscillation with a period of

,100 ms immediately following the cue was visible for both

attend-hand and attend-foot conditions. The amplitude of these

cue induced oscillations changed across the experiment such that

in the F100 trials, the amplitude of the attend-hand oscillation was

larger, and by the L100 trials the amplitude of the attend-foot

conditions was larger. This transformation was reflected in the

frequency analysis in Figure 3A. The frequency analysis was

calculated on each trial separately and thus reveals effects that may

or may not be time-locked to the cue. In this case, we see that at

least part of the significant differences near the cue in Figure 3A is

due to differences in evoked oscillations time locked to the cue.

Baseline Normalization
During our exploration of the within-session post-cue attention

modulation of alpha power, we also observed that the choice of

baseline normalization could cause distinct differences in the results,

particularly in the time period around the cue. One of two types of

normalization methods are typically employed when comparing two

conditions: (1) An ‘‘all trials’’ baseline, where a single baseline

calculated from averages of all conditions is used for normalizing

data [2], as in Figure 3A or (2) a ‘‘condition specific’’ baseline, where

specific conditions are normalized to their own baseline pinning each

condition to a common zero starting point [5,22], as in Figure 3B.

We observed a difference in the progression of within-session

dynamics using these two different baseline methods. While

attention induced modulation of alpha was present throughout the

experiment using both normalization methods, in contrast to the

‘‘all trials’’ baseline, where an evolution of differences in both the

early (pre-cue and around the cue) and the late (.500 ms post-

cue) time windows were apparent (Figure 3A), the ‘‘condition

specific’’ baseline emphasized differences in the later post-cue

activity only (Figure 3B).

Due to the fact that the ‘‘condition specific’’ baseline method

forces the data from each condition to start at a common zero

point, differences at the time of the cue were no longer visible.

However, the later post-cue differences between attention

conditions, which occurred .500 ms in Figure 3A, are now

significant at earlier time points beginning as early as 210 ms in

the first block of the experiment (F100). The starting point of

significant differences moves to later time points as the experiment

processes, beginning at 600 ms during M100 and at approxi-

mately 930 ms by the L100 in Figure 3B. The fact that the

duration and magnitude of pos-cue differentiation between

conditions appeared to shrink from the F100 to L100 trials is

the complete opposite of what was observed in the ‘‘all-trial’’

baseline methods. The contrast is highlighted by the comparing

the gray shading seen in Figure 3A and 3B.

These results showed that while the attention-induced allocation

of alpha was present in both baseline conditions across the

experiment, when studying the dynamics of the evolution of this

phenomena across the experimental session, the baseline condition

chosen can lead to different conclusions.

Within-Session Changes in Visual-Cue-Evoked Broadband
Signal and Corresponding Frequency Responses in SI

In addition to attention-induced alpha modulation, we also

previously reported significant differences in the immediate cue-

Figure 4. Within-Session Changes in Cue-Evoked Broadband Signal and Corresponding Frequency Response. A) Average of hand area
SI broadband evoked response from the visual cue in attend-hand and attend-foot conditions (mean n = 12 subjects) in the three blocks (F100, M100
and L100 trials) of the experiment. B) Corresponding normalized TFR spectrogram of the immediate cue-locked evoked response (calculated
individually for each subject then averaged; n = 12 subjects). C) Normalized alpha power (mean 7–14 Hz) for the attend-hand and attend-foot
conditions. Pink Asterisks: Significant differences between attend-hand and attend-foot conditions (p,0.05, paired t-test). Green Asterisks: Trend
differences (p,0.08). Differences in immediate cue-locked alpha power evolved across the duration of the experiment emerging significantly only in
the L100 trials.
doi:10.1371/journal.pone.0024941.g004
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evoked SI hand responses between attend-hand and attend-foot

conditions [2]. Here, we investigated if this significant difference

also evolved over the course of the experiment.

We found that, as described in Jones et al. (2010) [2], there were

significant differences in several peak values between attend-hand

and attend-foot conditions when comparing the averaged

broadband signal of cue-evoked responses in the L100 trials.

During L100 trials, the attend-foot waveform was lower than the

attend-hand waveform, and the magnitude of peak activity was

significantly larger in the attend-foot condition at ,70 ms,

,200 ms, ,250 ms, ,400 ms, and ,500 ms activity (Figure 4A

bottom panel), as described in our prior report. When comparing

these differences in the cue-evoked response to the F100 and

M100 trials, we again found that there was an evolution of

differences across the experiment. In the F100 trials, the cue-

evoked waveforms were closely aligned during the first 200 ms,

and the attend-foot condition emerged higher at ,250 ms

(Figure 4A, top panel). During the M100 trials, the attend-foot

waveform appeared to become more oscillatory particularly from

,250–350 ms, where larger windows of difference emerged again

with the attend-foot condition greater than attend-hand conditions

(Figure 4A, middle panel). By the L100 trials, earlier differences

emerged, beginning at ,70 ms, and now the early oscillation in

the attend-foot condition was clearly larger in magnitude and the

entire waveform was consistently lower than the attend-hand

condition showing a reversal from the F100 and M100 trials.

Further, as described above in the discussion of Figure 3A,

visual inspection of the broadband cue-evoked responses in

Figure 4A showed the emergence of an immediate cue-locked

oscillation with a period of ,100 ms, placing it in the alpha-band.

To confirm the presence of this cue-locked oscillation, and to

investigate its evolution across the experiment, we calculated a

time-frequency response spectrogram (TFR) on the averaged

broadband signals for each subject (unlike Figure 3 where TFRs

were calculated separately for each trial, see Methods), normalized

each subject by converting the TFRs to percent change from the

‘‘condition specific’’ baseline. The spectrogram of the group

average of this cue-locked activity across subjects is shown in 4B.

Responses averaged over only the alpha band are in depicted in

Figure 4C. In the alpha band, significant differences across

conditions emerged only in the L100 trials (p,0.05) in a small

time window around 275 ms with a longer trend period (p,0.08)

(Figure 4C, panel 3).

Discussion

Human imaging studies that use EEG, MEG, and fMRI often

average event-related activity across trials taken from an entire

experimental session. Here, we demonstrate a key potential

shortcoming of this approach. We found within-session variation

in many aspects of the SI alpha rhythm, including total power, the

degree of differentiation in attention-induced alpha allocation, the

peak differences in broadband signals of visual cue-evoked

response, and cue-locked frequency responses in the alpha band.

Further, we found that the evolution of alpha dynamics across the

experiment were distinctly different when using two conventional

baseline normalization methods — a phenomenon that can

introduce different interpretations regarding short-term learning

and adaptation. These findings are not only relevant for

understanding this commonly measured rhythm, but is, more

generally, a case study in the necessity of tracking within-session

analyses in human scanning. It is a kind of analysis that is almost

never carried out, and yet could drastically impact data

interpretation and the choice of analysis technique.

Relevance of Within Session Changes in Total Alpha
Power and Attention-Induced Modulation of Alpha

Two existing hypotheses as to the functional relevance of alpha

oscillations could explain the increased alpha power observed

across an experimental session. Classic theory treats alpha power

as an indicator for states of drowsiness [1] and active disengage-

ment from the task [33]. Our analysis between SI alpha power and

blink count did not show any evidence for a correlation between

vigilance measured by blink count and alpha power, and the

absence of a behavioral indicator of decreased vigilance and

increased drowsiness suggested that the systematic increase of

alpha across the session was not a generalized decline of arousal

state. However, our threshold stimuli were actively manipulated to

maintain a 66% detection rate, so the data we collected did not

include enough psychophysical or behavioral information to either

support or refute an influence of alpha rhythm activity due to

active disengagement from the task on performance.

The second theory comes from recent studies that have

demonstrated alpha modulation induced by attention demand,

which can be restricted to specific neocortical regions. Results

from these studies suggested that an increase in alpha in a specific

region could be correlated with shifting attention away from that

representation, presumably to enhance signal-to-noise-ratio

through the suppression of distracting stimuli [2,3,5,6].

Our data, while unable to fully address the question of

underlying mechanisms, favored the second view. Our finding of

a steady increase in total alpha power suggested more effort was

exerted to suppress distracting stimuli, and that the subjects’ were

progressively more effective in recruiting this rhythm through

learning to control brain dynamics within a session. Further, we

found that the subjects’ ability to modulate alpha according to cue

accompanied the increased overall alpha power, which suggested

that the increased alpha power measured through the session was

explicitly linked to changes in the ability to allocate alpha with an

attention cue. This evolution in dynamics with attention allocation

may imply a rapid form of perceptual learning and adaptation

even in non-training paradigms.

Relevance of Baseline Normalization
By comparing two common baseline methods, we found that

while both methods showed alpha allocation with attention

throughout the experiment, conclusions on the evolution of these

the dynamics across the session were baseline dependent. The ‘‘all

trial’’ baseline preserved the natural relationship between the two

conditions at all times and showed significant differentiation

before, during, and after the onset of the cue. The evolution of

these high differentiation periods suggested that the attention-

induced allocation of alpha improved progressively through the

entire ,1 h session of the experiment, increasing in duration and

magnitude. Further, the immediate cue-evoked response in alpha,

which smeared into the pre-cue period, switched from being

higher in attend-hand condition to higher in attend-foot conditions

(Figure 3A), reflective of changes in the immediate cue-locked

evoked response (Figure 4A). The ‘‘condition specific’’ baseline

method focused on isolating the dynamics occurring post-cue

because it pinches the conditions to a common zero point at the

cue (Figure 3B). This method suggested that there is a mechanism

that produces a rapid cue-induced alpha allocation occurring

around 200 ms post-cue that only occurred in the beginning of the

experiment and disappeared as the experiment progress. With this

method, the duration and magnitude of the significance

differences across attention conditions appeared to progressively

decrease across the experiment.
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Our results suggested that studies that examine the temporal

evolution of neocortical dynamics should carefully consider the

baseline procedures used, as different interpretation on adaptation

and short-term learning can be inferred depending on the baseline

methods used.

Relevance of Within Session Changes in Visual-Cue-
locked Broadband Evoked Response

Rapid responses (,100 ms) to visual stimuli in SI have been

observed previously in primates, and have been correlated to

performance in tactile perception tasks [34,35]. The increased

response to different visual cues in SI in our data, in the

broadband signal and frequency domain, suggested that within-

session learning effects influence the emergence of these rapid

cross-modal responses. The observed immediate increase in cue-

locked alpha oscillations in the SI hand representation during the

visual cue to attend-foot was consistent with our view that alpha

was being specifically allocated to unattended regions to decrease

distraction in those regions. Our results suggested that this more

rapid response is a dynamic process that only becomes statistically

significant after training. This result suggested that there is a

potentially different mechanism that induces a cue-locked alpha

response in SI following a visual cue, which occurs in addition to

the mechanism that produces a non-time-locked attention-induced

alpha modulation at a later onset.

Implications of these Findings for Studies of Neural
Dynamics

Shifts in the expression of neural oscillatory dynamics on the

time scale of 1–2 hours are well documented in studies of learning

and vigilance [23,26], however these changes are seldom explicitly

factored into the design of studies that involve scanning sessions

lasting this duration, therefore interesting dynamics may be

overlooked.

While the data presented here do not change the overall

conclusion of our prior study showing allocation of alpha with

attention, they make explicit suggestions that can reveal important

shorter time scale evolving dynamics that are canceled when

averaging over the entire session. First, our results indicated that

within session time-dependence of dynamics should be considered

prior to assuming that event-related averaging is proper, as

interesting differences may be evident in only a specific segment of

the experiment and would be otherwise overlooked. This

implication applies not only studies conducted using MEG or

EEG, but also to the myriad fMRI studies published using similar

data culling methods. Second, our data suggested that even

paradigms without an overt or intended learning component

might demonstrate an evolution in the allocation of dynamics that

appears to reflect an explicit or implicit learning process. Third,

our data suggested that relatively subtle differences in normaliza-

tion techniques, which are generally essential when averaging data

across sessions or subjects, can lead to significant differences in the

interpretation of oscillatory dynamics and in the progression of

their within-session changes. As such, these findings recommend

the explicit comparison of these and related normalization

techniques as part of a data analysis approach to studying the

evolution of dynamics.
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