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Abstract

The mass 
uctuation kinetics (MFK) model is a set of coupled ordinary di�erential equations
approximating the time evolution of means and covariances of species concentrations in chemical
reaction networks. It generalizes classical mass action kinetics (MAK), in which 
uctuations
around the mean are ignored. MFK may be used to approximate stochasticity in system tra-
jectories when stochastic simulation methods are prohibitively expensive computationally. This
paper presents a set of tools to aid in the analysis of systems within the MFK framework. A
closed-form expression for the MFK Jacobian matrix is derived. This expression facilitates the
computation of MFK equilibria and the characterization of the dynamics of small deviations
from the equilibria (i.e., local dynamics). Software developed in MATLAB to analyze systems
within the MFK framework is also presented. We outline a homotopy continuation method that
employs the Jacobian for bifurcation analysis, i.e., to generate a locus of steady-state Jacobian
eigenvalues corresponding to changing a chosen MFK parameter such as system volume or a
rate constant. This method is applied to study the e�ect of small-volume stochasticity on local
dynamics at equilibria in a pair of example systems, namely the formation and dissociation of
an enzyme-substrate complex, and a genetic oscillator. For both systems, this study reveals
volume regimes where MFK provides a quantitatively and/or qualitatively correct description
of system behavior, and regimes where the MFK approximation is inaccurate. Moreover, our
analysis provides evidence that decreasing volume from the MAK regime (in�nite volume) has
a destabilizing e�ect on system dynamics.

1 Introduction

Modeling the dynamics of species concentrations in chemical reaction networks at the cellular level
is becoming a central task in systems biology applications (see, for instance, [1]). The traditional
deterministic mass action kinetics (MAK) model describes the evolution of expected or mean con-
centrations of the di�erent chemical species in a system through ordinary di�erential equations
(ODEs). When molecules of some species occur in small numbers, a situation often observed at
volumes comparable to that of the cell, deviations from MAK expected concentrations can be-
come signi�cant, and more re�ned models are then needed to capture the inherent stochasticity of
trajectories [2].
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A widely used approach to describe the stochasticity of trajectories is the linear noise approxi-
mation [3] [4], which estimates all covariances in addition to the means, with the means being those
computed by MAK. Because the coupling of the covariances back to the means is not taken into
account, this approximation becomes increasingly inaccurate at small system volumes.

A more accurate but also more involved approach to describe the stochasticity of trajectories is
to use the chemical master equation (CME), which describes the evolution of the joint probability
distribution of molecule numbers [2]. The CME cannot be solved analytically most of the time,
due to the high number of possible system states, which is the product of the feasible number of
molecules for each of the chemical species in the system. As a consequence, stochastic simula-
tion methods, such as Gillespie's widely used stochastic simulation algorithm (SSA) [2], are often
used to draw a sample of trajectories from the CME, and statistics of the sample (means, covari-
ances, etc.) are then used to describe stochasticity. Simulation approaches are unfortunately often
computationally very expensive, so further approximations have been developed.

The mass 
uctuation kinetics (MFK) model is an approximation for the CME that describes
stochasticity deterministically through coupled ODEs, one for each concentration mean and co-
variance [5] [6]. The MFK model is derived under the `moment closure' assumption that central
moments of third-order are negligible (a reasonable assumption when, for instance, propensity func-
tions | de�ned in the next section | are quadratic, and the state distributions are approximately
symmetric). This is related to the method described in [7] in a broader setting, where all cumulants
of order greater than two are set to zero (thereby obtaining a normal distribution). The ability of
MFK to capture e�ciently the stochasticity in certain regimes of a range of systems, with accu-
racy comparable to the stochastic simulation methods but at a lower computational cost, has been
demonstrated [5]. A detailed comparative analysis of popular moment closure methods (including
MFK) can be found in [8]. A moment closure approach based on matching time derivatives between
exact and approximate moment equations is derived in [8] and shown also to be the most accurate
of the various methods (especially when molecule numbers are small), though at the expense of
using additional nonlinear terms.

This paper presents a set of tools to aid in the analysis of systems within the MFK framework.
Some necessary background is introduced in Section 2. A closed-form expression for the MFK Ja-
cobian matrix is derived in Section 3 and the Appendix. We show that the expression facilitates the
computation of MFK equilibria and the characterization of the dynamics of small deviations from
the equilibria (i.e., local dynamics). We outline a homotopy continuation method that employs
the Jacobian for bifurcation analysis, i.e., to generate a locus of steady-state Jacobian eigenvalues
corresponding to changing a chosen MFK parameter such as system volume or a rate constant.
Software developed in MATLAB to analyze systems within the MFK framework is presented in
Section 4. The homotopy continuation method is then applied to study the e�ect of small-volume
stochasticity on local dynamics at equilibria in a pair of example systems, by focusing on the
eigenvalue locus corresponding to decreasing system volume. More speci�cally, the systems consid-
ered are the formation and dissociation of an enzyme-substrate complex, and a genetic oscillator.
For both systems, this study reveals volume regimes where MFK provides a quantitatively and/or
qualitatively correct description of system behavior, and regimes where the MFK approximation is
inaccurate. Moreover, our analysis provides evidence that decreasing volume from the MAK regime
(in�nite volume) has a destabilizing e�ect on system dynamics.
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2 Background

2.1 CME and MAK

In what follows, Z denotes the integers and R the real numbers, with the dimensions of matrices
with entries in Z or R being indicated by superscripts. Consider molecules of n chemical species,
fXigni=1, interacting through L reactions of the form(

Rl :

nX
i=1

silXi
kl!

nX
i=1

silXi

)L
l=1

; (1)

in a constant volume �. The parameter kl is the rate constant for Rl. The stoichiometric coe�cient
of Xi in Rl, de�ned as the change in the number xi of molecules of Xi upon each �ring of Rl, is
calculated as sil = sil � sil. Stoichiometric coe�cients are grouped into the stoichiometry vectors
fsl 2 ZngLl=1 and further into the system's stoichiometry matrix S 2 Zn�L. System size is denoted
as 
 = A�, where A is Avogadro's number. The molecule numbers fxignl=1 for all species at a
particular time t are grouped in a state vector x(t) 2 Zn, and concentrations are computed in units
of moles per unit volume as y(t) = x(t)


 2 R
n. We are interested in the evolution of concentrations

with respect to time.
Propensity functions fal(x (t))gLl=1 for reactions fRlg

L
l=1 are de�ned such that the respective

�ring probabilities for the reactions are fal(x (t))dtgLl=1 within the next in�nitesimal interval dt,
with each reaction considered in isolation. This establishes a Markov process model for the system
of chemical reactions, with state x(t) 2 Zn and exponential state transition rates fal(x (t))gLl=1.
With P (x (t)) denoting the probability of obtaining state x(t) conditioned on some initial state
x(0), the forward Kolmogorov equation [9] for the Markov process is written as

dP (x (t))

dt
=

LX
l=1

[P (x (t)� sl)al(x (t)� sl)� P (x (t))al(x (t))] : (2)

This is the chemical master equation (CME). It is composed of one di�erential equation for each
possible state.

The deterministic MAK equations for the evolution of species concentrations y (t) follow from
the CME in the limit of large 
, and are written as

dy(t)

dt
=

LX
l=1

sl lim

!1

�
al(y(t)
)




�
=

LX
l=1

sl��l(y(t)); (3)

under the assumption that the indicated limit exists [2]. The deterministic macroscopic reaction
rates f��l(y(t))gLl=1 are proportional to the products of concentrations of their respective reactants
in fRlgLl=1. These deterministic equations are not suitable for capturing system dynamics when
stochasticity is a signi�cant feature of trajectories, as they ignore 
uctuations around the means
and the e�ect of 
uctuations on the means themselves.

2.2 MFK

The mass 
uctuation kinetics (MFK) model captures stochasticity deterministically through cou-
pled ODEs that approximate the evolution of all concentration means and covariances [5] [6], by
assuming third-order central moments to be negligible. MFK is signi�cantly less computationally
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expensive than simulation-based approaches. The introduction of covariances, and their coupling
to the means, enables it to capture dynamics better than MAK, which only tracks the means, and
better than the linear noise approximation [3] [4], which ignores the e�ect of covariances on the
means. The MFK rate equations can also be shown to follow (under the same moment-closure
assumption) from the evolution of generating functions obtained from the CME [8], [10], [11], [12].
This derivation approach di�ers from the approach taken in [5] and [6], and provides a systematic
way of extending MFK to central moments of arbitrarily higher order.

For notational convenience, the dependence of x(t), y(t), P (x(t)) and other quantities on t is
henceforth made implicit, with the variables respectively referred to as x, y and P (x). We de�ne
the microscopic reaction rates as appropriately scaled propensities, written as�

�l(y) �
al(y
)




�L
l=1

; (4)

being stacked into a single microscopic rate vector as

� (y) =
�
�1(y) � � � �L(y)

�T
: (5)

The mean concentration vector is de�ned as

� =
1



hxi ; (6)

with h�i denoting expectation taken over P (x). The concentration covariance matrix is de�ned as

V =
1


2

D
(x� �) (x� �)T

E
: (7)

Assuming that central moments of order three are negligible, the following equation may then be
derived from (2) for the evolution of the mean vector:

d�

dt
= S

�
� (�) +

1

2

d2�

dydy
(�) vec fVg

�
(8)

= Sr: (9)

Here, r denotes the quantity in parentheses in (8), and vec fVg denotes the vectorization of V,
the column vector formed by stacking its columns [13]. Similarly, the following equation may be
derived from (2) for the evolution of the covariance matrix:

dV

dt
= S

�
d�

dy
(�)

�
V +V

�
d�

dy
(�)

�T
ST +

1



S diagfrgST

= MV +VMT +
1



S�ST : (10)

Here,

M = S
d�

dy
(�) (11)

and
� = diagfrg; (12)

which is the diagonal matrix whose diagonal entries are the components of r. Equations (9) and
(10) constitute the MFK model. This model is exact for systems described by quadratic propensity
functions, and whose state distributions are symmetric (e.g., Gaussian). Since state distributions
are seldom symmetric, this is almost always only an approximation.

Setting 
 = 1 and initializing V (0) = 0 makes (10) evaluate to 0, implying that this is an
equilibrium regime for V. Moreover, (9) and (3) are then equivalent, so d�

dt in this case captures
MAK dynamics. We thus specify the MAK regime as f
;V (0)g = f1;0g.
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2.3 Quadratic Propensities

The assumption that reactions among three or more reactant molecules are rare allows us to express
each �l(y) as a quadratic function of y. We use the standard notationA
B to denote the Kronecker
product [13] of the matrices A and B, i.e., the block-matrix whose (i; j)th block is aijB, where
aij is the element of A in its ith row and jth column. Every �l(y) may then be expressed in the
quadratic form

�l(y) = kl
�
bl + c

T
l y + y

TDly
�
= kl

�
bl + c

T
l y + vec fDlgT (y 
 y)

�
: (13)

Each bl, cl and Dl can be found by inspection from the speci�cations of the reactions (see Example
1 below, also Appendix A of [5], for more details). We de�ne matrices

D =
�
vec(D1)j ::: jvec(DL)

�
; (14)

K = diag fk1; : : : ; kLg ; (15)

C =
�
c1j � � � jcL

�
; (16)

and �nd r in (8), (9) to be

r = K
�
b+CT�+DT (�
 �) +DT vecfVg

�
; (17)

where
b =

�
b1 � � � bL

�T
; (18)

and M in (11) to be

M = S
d�

dy
(�) = SK

�
CT + 2DT (In 
 �)

�
: (19)

Here, In denotes the n-by-n identity matrix.

2.4 Illustrative Example

The following simple example system will be used to illustrate key concepts in the remainder of
the paper. The MFK and MAK descriptions are contrasted.

Example 1 (MFK for Complex Formation/Dissociation) Consider the system described by
substrate S interacting with enzyme E to form complex C, written as the reversible reaction

E + S
k1

k2
C: (20)

Stoichiometry vectors s1 and s2 are grouped into the stoichiometry matrix S as

S =
�
s1 s2

�
=

E
S
C

R1 R224 �1 1
�1 1
1 �1

35: (21)

One molecule of E is consumed by R1 to produce one molecule of C, which is reversed exactly by
R2. Thus, �1 = yE + yC must be conserved. Similar reasoning concludes that �2 = yS + yC is
also conserved. Thus, the concentration of only one species, C, needs to be tracked, so e�ectively
S = [1;�1], the last row in (21). To determine the MFK evolution equations, microscopic rates
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are written for R1 and R2 (using the fact that for both reactions the rates are proportional to the
products of the concentrations of the reactants) as

�1(yC) = k1yEyS = k1 (�1 � yC) (�2 � yC)
= k1

�
�1�2 � (�1 + �2) yC + y2C

�
; (22)

�2(yC) = k2yC : (23)

The microscopic rate parameters are obtained by direct comparison with (13) as

b1 = �1�2; c1 = � (�1 + �2) ; D1 = 1;
b2 = 0; c2 = 1; D2 = 0:

(24)

Thus

r =

�
k1
�
�1�2 � (�1 + �2)�C + �2C + �CC

�
k2�C

�
: (25)

The MFK evolution equation for �C , the expected concentration of C, with the familiar MAK
portion indicated by the underbrace, is therefore

d�C
dt

= k1
�
�1�2 � (�1 + �2)�C + �2C

�
� k2�C| {z }

MAK

+ k1�CC (26)

(we have omitted the time argument t on �C and �CC , for notational simplicity). The matrix M
(in this case, scalar) is

M = k1 [2�C � (�1 + �2)]� k2: (27)

The MFK evolution equation for �CC , the variance of C, is thus

d�CC
dt

= 2�CC (k1 [2�C � (�1 + �2)]� k2)

+
1




�
k1
�
�1�2 � (�1 + �2)�C + �2C + �CC

�
+ k2�C

�
: (28)

3 MFK Jacobian Matrix

The goal of studying the properties of the local dynamics at MFK equilibria motivates establishing
a closed-form expression for the MFK Jacobian matrix, which is done in this section. While this
matrix can in principle be found via symbolic di�erentiation for any particular system, that can
be more unwieldy and less computationally e�cient than deriving and using a general closed-form
expression [14]. The Jacobian matrix governs the dynamics of small deviations from a nominal
solution or equilibrium point. It contains the partial derivatives of the MFK evolution equations
with respect to each state variable. Knowing the Jacobian can facilitate computation of equilibrium
points. When evaluated at a constant equilibrium point, its eigenvalues indicate the degree of local
stability (or instability) around the equilibrium. The Jacobian can also be applied to bifurcation
analysis using a homotopy continuation method, as is outlined in this section.

We begin by writing MFK in conventional state-space form. For this purpose, we will need
to vectorize MFK with vec f�g. Because V is symmetric, we will also need the half-vectorization
operator vech f�g, the column-wise stacking of only the lower-triangular part of a matrix [13], to
eliminate redundancy in expressions. The relationship between the two operators is captured by
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the (nonunique) selection and (unique) duplication binary matrices [13], En and Fn respectively,
through

vechfVg = Envec fVg ; (29)

vec fVg = FnvechfVg: (30)

The Appendix shows that the MFK description can now be rewritten as a conventional state-space
representation of the form

dz

dt
= g(z); (31)

where the state vector is

z =

�
�

vechfVg

�
=

�
�
v

�
2 R

n(n+3)
2 ; (32)

with v denoting vechfVg, z being a vector of dimension � = n(n+3)
2 , and the function g being

explicitly described in the Appendix (see, in particular, (46)).
The Jacobian of interest to us is now de�ned as

J (z) =
dg(z)

dz
2 R���

=

"
@
@�

n
d�
dt

o
@
@v

n
d�
dt

o
@
@�

�
dv
dt

	
@
@v

�
dv
dt

	 #
: (33)

The four terms of this block matrix are derived explicitly in the Appendix, resulting in (54)-(57).
Note that in (31) and (33), time dependence of the various terms has been been made implicit for
notational simplicity.

3.1 Application to Computing Equilibria and Local Stability

An equilibrium �z of the MFK model (31) is characterized by g(�z) = 0. Newton's method [15] may
be implemented to �nd equilibria using the Jacobian, as is done in the software tool described in the
next section. At the ith iteration, the de�nition of the Jacobian and a �rst-order Taylor expansion
establish

J
�
zi
�
(zi+1 � zi) � g(zi+1)� g(zi): (34)

Here, zi+1 is the next (and one hopes better) approximation for the equilibrium, so we set g(zi+1)
to 0, thus obtaining the iteration

zi+1 = zi �
�
J
�
zi
���1

g(zi): (35)

This is started at some initial guess z0 and performed until some convergence tolerance is satis�ed.
The real parts of the Jacobian eigenvalues at the equilibrium specify whether the equilibrium

is locally stable or not. In particular, if the real parts of the eigenvalues are all negative, then the
equilibrium is locally stable. Otherwise, the equilibrium is not locally stable.
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3.2 Application to Bifurcation Analysis

It may be desirable to perform bifurcation analysis of the MFK model, i.e., to track a locus of
steady-state Jacobian eigenvalues corresponding to changing a given MFK parameter. Such anal-
ysis can reveal parameter regimes where the model exhibits desired steady-state behavior (e.g.,
stability, oscillation, etc). In what follows, a special case of this analysis is outlined, by focusing on
system size as a parameter to study the e�ect of small-volume stochasticity on steady-state local
dynamics. This is readily generalizable to other MFK parameters (e.g., one of the rate constants
kl, in place of system size). A bifurcation analysis method for the linear noise approximation,
which is conceptually similar to the method developed here but which di�ers in many details of its
development, is described in [16].

If 
 is made smaller, and initial concentrations are kept the same, then molecule numbers
must decrease. We expect stochasticity to then become increasingly important. Insight into the
e�ect of small-volume stochasticity on steady-state stability can then be obtained by studying local
stability along a sequence of MFK equilibria corresponding to decreasing 
. We take a homotopy
continuation approach [15], �nding an MFK equilibrium �zMAK in the MAK regime and tracking a
sequence of MFK equilibria with decreasing 
. The Jacobian is evaluated along this sequence, and
local stability is inferred by analyzing its eigenvalues.

We denote inverse system size as f = 1

 (which can be read as `mho') and make explicit the

dependence of g (z) on volume by rewriting it as g (z;f). Performing a �rst-order Taylor expansion
of g (z;f) around (�z1;f1), where �z1 is an equilibrium realized at f1, yields

g (z;f) �
0z }| {

g (�z1;f1) +

J(�z1;f1)z }| {
@g

@z
(�z1;f1) (z� �z1) +

@g

@f
(�z1;f1) (f� f1) : (36)

Letting (�z2;f2) be another similar equilibrium point su�ciently close to (�z1;f1), we �nd from (36)
that

g (�z2;f2) = 0 � J (�z1;f1) (�z2 � �z1) +
@g

@f
(�z1;f1) (f2 � f1) : (37)

The remaining partial derivative is obtained from (9) and (46) in the Appendix as

@g(z;f)
@f

=

�
0

En(S � S)r

�
; (38)

where � denotes the columnwise Kronecker product, also known as the Khatri-Rao product [17]. It
follows from (37) that

d�z

df
= � (J (�z;f))�1

�
0

En(S � S)r

�
; (39)

where r is evaluated at �z. This di�erential equation is integrated over a speci�ed range of f to
yield a sequence of equilibria. We start this sequence at ff;V (0)g= f0;0g, which corresponds to
the MAK equilibrium �zMAK , and end it at some speci�ed �nal f value. At each f�z;fg pair, the
Jacobian is evaluated and its eigenvalues computed.

The e�ect of small-volume stochasticity on local dynamics at equilibria is studied in the next
section for a pair of example systems, using the outlined method.

4 Numerical Study

To automate the analysis of systems within the MFK framework, we have written some software
in MATLAB. The software relies on the SimBiology MATLAB toolbox for system description via
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a convenient graphical user interface and conservation analysis. It uses the Symbolic Math toolbox
for building the MFK model description of a given system and conveniently displaying it in human-
readable analytic form (for su�ciently simple systems). An implementation of Gillespie's stochastic
simulation algorithm is included, for use as an adjunct to MFK computations, as illustrated in our
examples. The examples presented here and in [12] are included in the download.

We now apply the software to study the e�ect of stochasticity on equilibrium local dynamics
for a pair of example systems, using the homotopy continuation method described in the previous
section. The �rst example is simple enough to be analyzed and presented in full detail. The second
example is considerably more complex; the application of MFK tools to it yields some qualitative
and quantitative insights, but also suggests questions for further research.

Example 2 (Numerical Study with MFK for Complex Formation/Dissociation) The
Jacobian of the system in Example 1 is obtained from (33) as

J (z;f) =
�

k1 [2�C � (�1 + �2)]� k2 k1
4k1�CC +

1

 (k1 [2�C � (�1 + �2)] + k2) 2k1 [2�C � (�1 + �2)]� 2k2 + k1




�
:

The right-hand side of the MFK evolution equations at f = 0 is

g (z; 0) =

�
k1
�
�1�2 � (�1 + �2)�C + �2C + �CC

�
� k2�C

2�CC (k1 [2�C � (�1 + �2)]� k2)

�
: (40)

In what follows, all initial concentrations are set to 15, all rate constants are set to 1, and the
conserved concentrations are � = [30; 30]T . Setting d�C=dt = 0 in the MAK regime yields two
possible MAK equilibrium mean concentrations of 25 and 36. However, 36 is not realizable since
�C � 30. Hence the MAK equilibrium is �zMAK = [25; 0]

T . The Jacobian at this point is

J (�zMAK ; 0) =

�
�11 1
0 �22

�
: (41)

This is an upper triangular matrix with eigenvalues equal to its diagonal elements, which are both
real and negative. Thus, this is a locally stable equilibrium. A plot of the real and imaginary parts
of the eigenvalues with varying f is shown in Figure 1. The red line corresponds to the real part
of the less stable eigenvalue and the green line to the real part of the more stable eigenvalue; both
eigenvalues have zero imaginary parts in the indicated range of f. The equilibrium is observed to
become unstable at f � 4:7.

To picture the bifurcation in the time domain, trajectories are generated for MAK, as well
as in stable, marginally stable and unstable MFK regimes. The MAK trajectory is shown in
Figure 2, and is consistent with the dominant time constant of 1=11 � 0:09 seconds associated
with the eigenvalues in (41). The trajectories for f = 3; 4:5 and 5 are shown in Figures 3, 4 and
5 respectively. In each �gure, a sample SSA trajectory, along with \true" means and standard
deviations obtained from an ensemble of 1000 SSA trajectories, is shown. True system behavior
is seen to become more stochastic but remain stable with increasing f. The MFK approximation
shows excellent accuracy at f = 3, but degrades as f approaches 4:7, and becomes unstable beyond
that. The decreasing stability of MFK as f increases (within the regime where MFK is accurate)
suggests that small-volume stochasticity has a destabilizing e�ect on the equilibrium of the real
system.
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Figure 1: Homotopy continuation analysis results for Example 2.
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Figure 2: MAK trajectory for Example 2.
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Figure 3: Trajectories in stable MFK regime for Example 2; SSA mean and standard deviation are
obtained by averaging over an ensemble of 1000 trajectories.
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Figure 4: Trajectories in marginally stable MFK regime for Example 2.
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Figure 5: Trajectories in unstable MFK regime for Example 2.

Example 3 (Numerical Study with MFK for a Genetic Oscillator) In [18], a genetic oscil-
lator described by the following reactions is presented:

X1 +X7
k1

k2
X2; X2

k3! X2 +X5; X1
k4! X1 +X5;

X3 +X7
k5

k6
X4; X4

k7! X4 +X6; X3
k8! X3 +X6;

? k9 X5
k10! X5 +X7; ? k11 X6

k12! X6 +X8;

X7 +X8
k13! X9

k14! X8; X7
k15! ?; X8

k16! ?:

This example is also studied in [5]. Here, X1 and X3 denote two DNA sequences, X5 and X6 denote
their respective messenger RNAs, while X7 and X8 denote their respective gene products (activator
and repressor respectively). Moreover, X9 denotes the activator-repressor complex, while X2 and
X4 denote DNA-activator complexes. Initial conditions and parameter values are the same as those
listed in Figure 1 of [18], and are not listed in detail here. The system size 
 and maximum initial
concentrations were chosen in [18] to be 1, and these values are used in [5] and here.

The MAK description for this set of parameters does not oscillate, as shown in Figure 6, unlike
the SSA trajectories, which oscillate for the speci�ed f = 1 (see Figure 7) as well as for f values
as low as 0:11 (see Figures 8-10). The SSA trajectories in an ensemble corresponding to a �xed
f de-synchronize over time, despite having the same initial condition (see Example C of [5] for a
more detailed discussion of this point). Accordingly, the ensemble means, computed here from a
sample of 100 SSA realizations, show some initial oscillation, but with an amplitude that decays
over time. Since the MFK model is an approximation of the ensemble means and covariances, the
MFK means should show some oscillatory behavior with decaying amplitude as well (if MFK is at
least qualitatively accurate in the corresponding regime). This is the case for f = 0:16 and 0:11
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in Figures 9 and 10. Surprisingly, for f values larger than � 0:18 (see Figures 7 and 8), the MFK
means instead oscillate with a period and amplitude remarkably close to that of the individual SSA
realizations, even though the MFK model is clearly inaccurate for these values of f.

We use our software to further analyze in an automated fashion the behavior of the MFK model
for this high-dimensional system. The eigenvalue locus corresponding to changing system volume
from in�nity downwards is shown in Figure 11; only the rightmost two eigenvalues are shown, and
these have identical real parts, which appears as a single red line in the �gure. Here, as in Example
2 (see Figure 1), the real parts of the rightmost eigenvalues become more positive as f increases
(and in particular the slope of the real parts of the rightmost eigenvalues is positive at f = 0). This
suggests that the MFK model becomes more unstable with decreasing system size. We infer that
adding small-volume stochasticity to the macroscopic (MAK) model makes the system equilibrium
more unstable locally.

Figure 11 suggests that the MFK model will begin to qualitatively di�er from MAK at some
value of f approaching 0:2 (since at this point the corresponding equilibrium becomes unstable).
The trajectories in Figure 8 con�rm that this prediction is correct, as MFK begins to oscillate for
f � 0:18. For lower values of f, such as f = 0:16 in Figure 9, MFK does not oscillate (although it
does oscillate twice before settling, perhaps suggesting oscillatory behavior of the ensemble means
and the individual SSA trajectories). For even lower values of f, such as f = 0:11 in Figure 10,
the MFK model oscillates once and then settles. The MFK model is thus quantitatively inaccurate
in this regime, as it fails to closely follow the ensemble statistics.

It is worth noting that in general, even for parameter values where individual state trajectories
exhibit sustained oscillations, the solution to the master equation (the joint distribution of molecule
numbers) will likely reach a constant steady state, leading to steady-state ensemble statistics (like
the means, variances and covariances) that are constant. Detecting sustained oscillations in indi-
vidual state trajectories by analyzing the master equation solution, or any approximation thereof
(including SSA ensemble statistics or moment closures like MFK), is thus not straightforward. For
such systems, perhaps other ensemble statistics, like the autocorrelations and cross-correlations,
might reveal the possibility of sustained oscillations in individual state trajectories.

5 Conclusion

A set of tools to aid in the analysis of systems within the MFK framework has been presented. A
closed-form expression for the MFK Jacobian matrix was derived. The application of this expres-
sion to the computation of MFK equilibria and their bifurcation analysis was outlined. Software,
developed in MATLAB to systematize the analysis of systems within the MFK framework, was
presented. Bifurcation analysis was applied to numerically study the e�ect of small-volume stochas-
ticity on local dynamics at equilibria in a pair of example systems, by focusing on the eigenvalue
locus corresponding to decreasing system volume. For both systems, the numerical study revealed
volume regimes where MFK provides a quantitatively and/or qualitatively correct description of
system behavior, and regimes where the MFK approximation is inaccurate. Our analysis suggests
that decreasing volume from the MAK regime (and thus increasing small-volume stochasticity)
has a destabilizing e�ect on system dynamics. That is, the rightmost eigenvalues of the Jacobian
evaluated at the macroscopic equlibrium move towards the origin as the system size becomes �nite
(as our parameter f goes from zero to some small value ").
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Figure 6: MAK trajectory for Example 3.
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Figure 7: Trajectories in oscillatory MFK regime for Example 3; SSA mean and standard deviation
are obtained by averaging over an ensemble of 100 trajectories.
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Figure 8: Trajectories in oscillatory MFK regime for Example 3.
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Figure 9: Trajectories in non-oscillatory MFK regime for Example 3.
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Figure 10: Trajectories in non-oscillatory MFK regime for Example 3.
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Figure 11: Homotopy continuation analysis results for Example 3.
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A Derivation of the MFK Jacobian Matrix

We �rst outline the key de�nitions and identities that are used in the derivation.
The derivative of the scalar f(h) with respect to h 2 Rn is de�ned as the gradient vector

df(h)

dh
=
h
df(h)
dh1

� � � df(h)
dhn

i
2 R1�n: (42)

Note that df(h)
dhT

is simply the transpose of the gradient vector above. These de�nitions are applied
element-wise to �nd the derivative of a vector or matrix function of h.

We use the standard notation A 
B to denote the Kronecker product of the matrices A and
B, i.e., the block-matrix whose (i; j)th block is aijB, where aij is the element of A in its ith
row and jth column. Recall also the de�nitions of vec and vech from the beginning of Section
3. The following identities [13], for matrices of compatible dimensions, are useful for algebraic
simpli�cation purposes:

vec fA1A2A3g =
�
AT3 
A1

�
vec fA2g ; (43)

(A1 
A2) (A3 
A4) = A1A3 
A2A4: (44)

The �rst task in deriving the Jacobian it to vectorize the MFK equations (10) for the evolution of
the concentration covariance matrix V. (The MFK equations for the evolution of the concentration
mean values is already in vector form, namely (9).) Straightforward computations show that

vec

�
dV

dt

�
=
d (vec fVg)

dt
= vec

�
MV +VMT

	
+ vec

�
1



S�ST

�
= (In 
M+M
 In)vec fVg+

1



(S
 S)vec f�g ; (45)

from which we get

d (vech fVg)
dt

= En(In 
M+M
 In)FnvechfVg+
1



En(S � S)r; (46)

where � denotes the Khatri-Rao product, i.e., the column-wise Kronecker product, [17].
Denoting vech fVg by v, and invoking the preceeding identities as needed, we can now obtain

the partial derivative matrices that comprise the four blocks of the Jacobian matrix, as speci�ed
by (33):

@

@�

�
d�

dt

�
= S

@r

@�
=M; (47)

@

@v

�
d�

dt

�
= S

@r

@v
; (48)

@

@�

�
dv

dt

�
=

@

@�

�
En(vec fMVg+ vec

�
VMT

	
) +

1



En(S � S)r

�
= En (V 
 In + (In 
V)Pnn)

@ (vec fMg)
@�

+
1



En(S � S)

@r

@�
; and (49)

@

@v

�
dv

dt

�
= En(In 
M+M
 In)Fn +

1



En(S � S)

@r

@v
: (50)

Here, Pnn is the commutation matrix, de�ned so that vec
�
MT

	
= Pnnvec fMg [13].
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To specialize the Jacobian to the case of quadratic propensities, we need to explicitly �nd all
necessary derivatives above, using the information in Section 2.3:

@r

@�
= K

�
CT + 2DT (In 
 �)

�
; (51)

@r

@v
= KDTFn; (52)

@ (vec fMg)
@�

=
@

@�

�
vec

�
2SKDT (In 
 �)

		
=

�
In 
 2SKDT

� @
@�
fvec fIn 
 �gg

=
�
In 
 2SKDT

�
(vec fIng 
 In) : (53)

Substituting these expressions into (47), (48), (49) and (50) as appropriate, we get the four block
entries of the Jacobian for the case of quadratic propensities to be

@

@�

�
d�

dt

�
= SK

�
CT + 2DT (In 
 �)

�
; (54)

@

@v

�
d�

dt

�
= SKDTFn; (55)

@

@�

�
dv

dt

�
= En (V 
 In + (In 
V)Pnn)

�
In 
 2SKDT

�
(vec fIng 
 In)

+
1



En(S � S)K

�
CT + 2DT (In 
 �)

�
; (56)

@

@v

�
dv

dt

�
= En(In 
M+M
 In)Fn +

1



En(S � S)KDTFn: (57)
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