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Abstract

The interaction of acoustic and electromagnetic waves with periodic structures plays an important role
in a wide range of problems of scientific and technological interest. This contribution focuses upon the
robust and high-order numerical simulation of a model for the interaction of pressure waves generated
within the earth incident upon layers of sediment near the surface. Herein is described a Boundary
Perturbation Method for the numerical simulation of scattering returns from irregularly shaped periodic
layered media. The method requires only the discretization of the layer interfaces (so that the number of
unknowns is an order of magnitude smaller than Finite Difference and Finite Element simulations), while
it avoids not only the need for specialized quadrature rules but also the dense linear systems characteristic
of Boundary Integral/Element Methods. The approach is a generalization to multiple layers of Bruno &
Reitich’s “Method of Field Expansions” for dielectric structures with two layers. By simply considering
the entire structure simultaneously, rather than solving in individual layers separately, the full field can
be recovered in time proportional to the number of interfaces. As with the original Field Expansions
method, this approach is extremely efficient and spectrally accurate.

1 Introduction

The interaction of acoustic and electromagnetic waves with periodic structures plays an important role in a
wide range of problems of scientific and technological interest. From grating couplers to nanostructures to
remote sensing, the ability to simulate in a robust and accurate way the fields generated by such structures
is of crucial importance to researchers from many disciplines. In this contribution we focus upon the robust
and high–order numerical simulation of a model for the interaction of pressure waves generated within the
earth incident upon layers of sediment near the surface. While we focus on the simplified model of acoustic
waves in a two–dimensional structure, the issues we address are the largely the same as those which arise in
a three–dimensional simulation of the full equations of elasticity.

This problem is motivated jointly by the recent increased interest in oil exploration in mountainous
regions, and the rash of recent large earthquakes, which tend to occur in regions with significant topography.
Simulating the seismic wavefield accurately in such regions is key for both imaging (e.g. through waveform
inversion, see Virieux[31] for a recent review and Bleibinhaus[2] for a specific discussion of topography in such
algorithms), and hazard assessment [10, 29]. A wide array of numerical algorithms have been devised in the
past fifty years for the simulation of precisely the problem we consider. The classical Finite Difference (FDM)
[22, 28], Finite Element (FEM) [33, 13], and Spectral Element (SEM) [14, 15] methods are available but
suffer from the fact that they discretize the full volume of the model which not only introduces a huge number
of degrees of freedom, but also raises the difficult question of appropriately specifying a far–field boundary
condition explicitly. Furthermore, the Finite Difference method, while simple to devise and implement is
not well–suited to the complex geometries of general layered media. A compelling alternative are surface
integral methods [30, 3] (e.g. Boundary Integral Methods—BIM—or Boundary Element Methods—BEM)
which only require a discretization of the layer interfaces (rather than the whole structure) and which,
due to the choice of the Green’s function, enforce the far–field boundary condition exactly. While these
methods can deliver high–accuracy simulations with greatly reduced operation counts, there are several
difficulties which need to be addressed. First, high–order simulations can only be realized with specially
designed quadrature rules which respect the singularities in the Green’s function (and its derivative, in
certain formulations). Additionally, BIM/BEM typically give rise to dense linear systems to be solved which
require carefully designed preconditioned iterative methods (with accelerated matrix–vector products, e.g.,
by the Fast–Multipole Method [12]) for configurations of engineering interest.

In this work we describe a novel Boundary Perturbation Method (BPM) for the numerical simulation of
scattering returns from irregularly shaped periodic layered media. Like BIM/BEM, the method requires only
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Figure 1: Plot of problem domain with layer boundaries in solid lines, and mid–levels in dashed lines. Here
ḡ = 2, h̄ = −2, g(x) = 0.2 cos(x), h(x) = 0.2 cos(2x), and m̄ = 0.

the discretization of the layer interfaces (so that the number of unknowns is an order of magnitude smaller
than FDM, FEM, and SEM simulations), while it avoids not only the need for specialized quadrature rules but
also the dense linear systems characteristic of BIM/BEM. Our approach is a generalization of the “Method
of Field Expansions” (FE) described by Bruno & Reitich [4, 5, 6, 7] for dielectric structures with two layers
(denoted there the “Method of Variation of Boundaries”). This method is similar in spirit to the “Method
of Operator Expansions” (OE) of Milder [16, 17, 20, 21, 19, 18] and the “Transformed Field Expansions”
(TFE) approach of the author and Reitich [23, 24, 25, 26] and these approaches could also be extended in the
way we describe here, however, we save this for future work as the FE approach is the simplest to implement.
The FE method was generalized by Hesthaven and collaborators to the case of grating couplers and layered
media [8, 9, 32], precisely the problem we consider here, though we have found their method to be highly
inefficient. As we discuss at the end of § 3.2, their approach relies on the iterative solution of the problem
from one layer to the next with the two–layer solver of Bruno & Reitich [5], applied sequentially to each
pair of layers. After a great number of iterations, this method will eventually converge to the fully scattered
field at enormous computational cost. We have found that by simply considering the entire structure (more
specifically the full set of interfaces), the full field can be recovered simultaneously in time proportional to
the number of interfaces. As with the FE method as it was originally designed by Bruno & Reitich, our new
approach is spectrally accurate (i.e., convergence rates faster than any polynomial order) due to both the
analyticity of the scattered fields with respect to boundary perturbation, and the optimal choice of spatial
basis functions which arise naturally from the FE methodology.

The organization of the paper is as follows: In § 2 we recall the governing equations of acoustic scattering
in a triply layered medium, and in § 2.1 and § 2.2 we describe our FE approach for such media with trivial
(flat) and non–trivial (perturbed) layering structure, respectively. In § 3, § 3.1, and § 3.2 we repeat these
considerations for the general (M + 1)–layer case. In § 4 we display results of numerical simulations for
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three– and five–layer structures to demonstrate the accuracy, efficiency, reliability, and flexibility of our new
numerical algorithm.

2 Field Expansions: Three Layers

For ease of exposition we begin by describing the case of a triply layered material in two dimensions. In
each of the layers the scattered pressure satisfies the Helmholtz equation with continuity conditions at the
upper interface, illumination conditions at the lower interface, and outgoing wave conditions at positive and
negative infinity. More precisely, we define the domains

Su := {(x, y) | y > ḡ + g(x)}
Sv :=

{
(x, y) | h̄+ h(x) < y < ḡ + g(x)

}
Sw :=

{
(x, y) | y < h̄+ h(x)

}
,

with (upward pointing) normals

Ng := (−∂xg, 1)T , Nh := (−∂xh, 1)T ;

see Figure 1.
In each of these domains is a constant–density acoustic medium with velocity cj (j = u, v, w); we assume

that plane–wave radiation is incident upon the structure from below:

w̃(x, y, t) = e−iωtei(αx+βy) =: e−iωtwi(x, y). (1)

With these specifications we can define in each layer the parameter kj = ω/cj which characterizes both the
properties of the material and the frequency of radiation in the structure. If the reduced scattered fields
in Su, Sv, and Sw are respectively denoted {u, v, w} = {u(x, y), v(x, y), w(x, y)} then the system of partial
differential equations to be solved are:

∆u+ k2
uu = 0 y > ḡ + g(x) (2a)

OWC[u] = 0 y →∞ (2b)

∆v + k2
vv = 0 h̄+ h(x) < y < ḡ + g(x) (2c)

u− v = 0, ∂Ng (u− v) = 0 y = ḡ + g(x) (2d)

∆w + k2
ww = 0 y < h̄+ h(x) (2e)

OWC[w] = 0 y → −∞ (2f)
v − w = ξ, ∂Nh

(v − w) = ψ y = h̄+ h(x), (2g)

where
ξ(x) := −wi(x, h̄+ h(x)), ψ(x) := − [∂Nh

wi(x, y)]y=h̄+h(x) . (2h)

In these equations OWC denotes the “Outgoing Wave Condition” [27] and states that the field must be
upward and downward propagating in Su and Sw, respectively.

The solutions of the Helmholtz equations—(2a), (2c) & (2e)—and the Outgoing Wave Conditions—(2b)
& (2f)— are given by [27]

u(x, y) =
∞∑

p=−∞
ap exp(i(αpx+ βu,p(y − ḡ))) (3a)

v(x, y) =
∞∑

p=−∞
bp exp(i(αpx− βv,p(y − m̄))) +

∞∑
p=−∞

cp exp(i(αpx+ βv,p(y − m̄))) (3b)

w(x, y) =
∞∑

p=−∞
dp exp(i(αpx− βw,p(y − h̄))), (3c)
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where m̄ = (ḡ + h̄)/2, provided that (x, y) are outside the grooves, i.e.

(x, y) ∈ {y > ḡ + |g|L∞} ∪ {h̄+ |h|L∞ < y < ḡ − |g|L∞} ∪ {y < h̄− |h|L∞}.

In these equations

αp := α+ (2π/d)p, βp :=


√
k2

j − α2
p α2

p < k2
j

i
√
α2

p − k2
j α2

p > k2
j

, (4)

j = u, v, w and d is the period of the structure. The boundary conditions—(2d) & (2g)— determine the
coefficients {ap, bp, cp, dp}.

2.1 Trivial Interfaces

In the case where the interfaces are flat (i.e., g = h ≡ 0) then the equations for ~zp := (ap, bp, cp, dp)T become
quite straightforward. In light of (3), (2d) & (2g) mandate that

0 =
∞∑

p=−∞
exp(iαpx) {ap − bp exp(−iβv,p(ḡ − m̄))− cp exp(iβv,p(ḡ − m̄))} (5a)

0 =
∞∑

p=−∞
exp(iαpx) {(iβu,p)ap − (−iβv,p)bp exp(−iβv,p(ḡ − m̄))

−(iβv,p)cp exp(iβv,p(ḡ − m̄))} (5b)

ξ(x) =
∞∑

p=−∞
exp(iαpx)

{
bp exp(−iβv,p(h̄− m̄)) + cp exp(iβv,p(h̄− m̄))− dp

}
(5c)

ψ(x) =
∞∑

p=−∞
exp(iαpx)

{
(−iβv,p)bp exp(−iβv,p(h̄− m̄)) + (iβv,p)cp exp(iβv,p(h̄− m̄))

−(−iβw,p)dp} . (5d)

Alternatively, if we view the coefficients {ap, bp, cp, dp} as defining the (generalized) Fourier coefficients of
functions {a(x), b(x), c(x), d(x)} via

(a(x), b(x), c(x), d(x))T :=
∞∑

p=−∞
(ap, bp, cp, dp)

T exp(iαpx),

then (5) states that

0 = a(x)−Dg[b(x)]− Ug[c(x)] (6a)
0 = Bu[a(x)] +Bv[Dg[b(x)]]−Bv[Ug[c(x)]] (6b)

ξ(x) = Dh[b(x)] + Uh[c(x)]− d(x) (6c)
ψ(x) = −Bv[Dh[b(x)]] +Bv[Uh[c(x)]] +Bw[d(x)], (6d)
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where we have defined the order–zero Fourier multipliers

Ug[ζ(x)] :=
∞∑

p=−∞
exp(iβv,p(ḡ − m̄))ζ̂p (7a)

Dg[ζ(x)] :=
∞∑

p=−∞
exp(−iβv,p(ḡ − m̄))ζ̂p (7b)

Uh[ζ(x)] :=
∞∑

p=−∞
exp(iβv,p(h̄− m̄))ζ̂p (7c)

Dh[ζ(x)] :=
∞∑

p=−∞
exp(−iβv,p(h̄− m̄))ζ̂p (7d)

and the order–one Fourier multipliers

Bu[ζ(x)] :=
∞∑

p=−∞
(iβu,p)ζ̂p (8a)

Bv[ζ(x)] :=
∞∑

p=−∞
(iβv,p)ζ̂p (8b)

Bw[ζ(x)] :=
∞∑

p=−∞
(iβw,p)ζ̂p. (8c)

Upon expansion of ξ(x) and ψ(x) in (generalized) Fourier series

ξ(x) =
∞∑

p=−∞
ξ̂p exp(iαpx), ψ(x) =

∞∑
p=−∞

ψ̂p exp(iαpx),

we can write (5) (equivalently (6)) “wavenumber–by–wavenumber” as

Ap~zp = ~rp (9)

where

Ap :=


1 − exp(−iβv,p(ḡ − m̄)) − exp(iβv,p(ḡ − m̄)) 0

(iβu,p) (iβv,p) exp(−iβv,p(ḡ − m̄)) −(iβv,p) exp(iβv,p(ḡ − m̄)) 0
0 exp(−iβv,p(h̄− m̄)) exp(iβv,p(h̄− m̄)) −1
0 −(iβv,p) exp(−iβv,p(h̄− m̄)) (iβv,p) exp(iβv,p(h̄− m̄)) (iβw,p)


and

~rp := (0, 0, ξ̂p, ψ̂p)T .

2.2 Non–Trivial Interfaces

To deal with non–trivial interfaces we once again appeal to the representations (3) which satisfy the Helmholtz
equations and Outgoing Wave Conditions. As before, the boundary conditions (2d) & (2g) determine the
coefficients ~zp = (ap, bp, cp, dp)T , however, these conditions must be understood as g– and h–dependent
equations. For instance, we may enforce (6) where the operators Ug, Dg, Uh, and Dh must now be generalized
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to:

Ug(g)[ζ(x)] :=
∞∑

p=−∞
exp(iβv,p(ḡ + g − m̄))ζ̂p (10a)

Dg(g)[ζ(x)] :=
∞∑

p=−∞
exp(−iβv,p(ḡ + g − m̄))ζ̂p (10b)

Uh(h)[ζ(x)] :=
∞∑

p=−∞
exp(iβv,p(h̄+ h− m̄))ζ̂p (10c)

Dh(h)[ζ(x)] :=
∞∑

p=−∞
exp(−iβv,p(h̄+ h− m̄))ζ̂p. (10d)

The Method of Field Expansions (FE) [5] as applied to (6) supposes that if the interfaces are small
perturbations of the flat interface case, g(x) = εf(x) and h(x) = εs(x), then the fields {u, v, w} =
{u(x, y; ε), v(x, y; ε), w(x, y; ε) will depend analytically upon ε, allowing the Taylor expansion about ε = 0

u(x, y; ε) =
∞∑

p=−∞
ap(ε) exp(i(αpx+ βu,p(y − ḡ))) =

∞∑
p=−∞

∞∑
n=0

ap,nε
n exp(i(αpx+ βu,p(y − ḡ)))

v(x, y; ε) =
∞∑

p=−∞
bp(ε) exp(i(αpx− βv,p(y − m̄))) +

∞∑
p=−∞

cp(ε) exp(i(αpx+ βv,p(y − m̄)))

=
∞∑

p=−∞

∞∑
n=0

bp,nε
n exp(i(αpx− βv,p(y − m̄))) +

∞∑
p=−∞

∞∑
n=0

cp,nε
n exp(i(αpx+ βv,p(y − m̄))

w(x, y; ε) =
∞∑

p=−∞
dp(ε) exp(i(αpx− βw,p(y − h̄))) =

∞∑
p=−∞

∞∑
n=0

dp,nε
n exp(i(αpx− βw,p(y − h̄))).

To determine the ~zp,n := (ap,n, bp,n, cp,n, dp,n)T we consider the generalization of equation (6)

0 = a(x; ε)−Dg(εf)[b(x; ε)]− Ug(εf)[c(x; ε)] (11a)
0 = Bu[a(x; ε)] +Bv[Dg(εf)[b(x; ε)]]−Bv[Ug(εf)[c(x; ε)]] (11b)

ξ(x) = Dh(εs)[b(x; ε)] + Uh(εs)[c(x; ε)]− d(x; ε) (11c)
ψ(x) = −Bv[Dh(εs)[b(x; ε)]] +Bv[Uh(εs)[c(x; ε)]] +Bw[d(x; ε)]. (11d)

Expanding the functions and operators in Taylor series result in

0 =
∞∑

n=0

εn

(
an(x)−

n∑
l=0

Dg,n−l(f)[bl(x)]−
n∑

l=0

Ug,n−l(f)[cl(x)]

)

0 =
∞∑

n=0

εn

(
Bu[an(x)] +

n∑
l=0

Bv[Dg,n−l(f)[bl(x)]]−
n∑

l=0

Bv[Ug,n−l(f)[cl(x)]]

)

ξ(x) =
∞∑

n=0

εn

(
n∑

l=0

Dh,n−l(s)[bl(x)] +
n∑

l=0

Uh,n−l(s)[cl(x)]− dn(x)

)

ψ(x) =
∞∑

n=0

εn

(
−

n∑
l=0

Bv[Dh,n−l(s)[bl(x)]] +
n∑

l=0

Bv[Uh,n−l(s)[cl(x)]] +Bw[dn(x)]

)
.

For clarity of exposition we note that our notation in these and subsequent formulas is

a(x; ε) =
∞∑

n=0

∞∑
p=−∞

ap,ne
iαpxεn =

∞∑
n=0

an(x)εn =
∞∑

p=−∞
ap(ε)eiαpx,
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and similarly for b, c, and d; note that, of course, an(x) 6= ap(ε).
It is not difficult to see that

Ug,0 = Ug(0), Dg,0 = Dg(0), Uh,0 = Uh(0), Dh,0 = Dh(0),

so that at order n = 0 this amounts to precisely (6) or, at each wave–number p,

Ap~zp,0 = ~rp (12)

c.f. (9). For n > 0 we must solve

an(x)−Dg,0[bn(x)]− Ug,0[cn(x)] =
n−1∑
l=0

Dg,n−l(f)[bl(x)] +
n−1∑
l=0

Ug,n−l(f)[cl(x)]

Bu[an(x)] +Bv[Dg,0[bn(x)]]−Bv[Ug,0[cn(x)]] = −
n−1∑
l=0

Bv[Dg,n−l(f)[bl(x)]]

+
n−1∑
l=0

Bv[Ug,n−l(f)[cl(x)]]

Dh,0[bn(x)] + Uh,0[cn(x)]− dn(x) = −
n−1∑
l=0

Dh,n−l(s)[bl(x)]−
n−1∑
l=0

Uh,n−l(s)[cl(x)]

−Bv[Dh,0[bn(x)]] +Bv[Uh,0[cn(x)]] +Bw[dn(x)] =
n−1∑
l=0

Bv[Dh,n−l(s)[bl(x)]]

−
n∑

l=0

Bv[Uh,n−l(s)[cl(x)]],

which, for each wave–number p, amounts to

Ap~zp,n = ~Rp,n (13)

where ~Rp,n are the (generalized) Fourier coefficients of the right hand sides ~Rn

~Rn :=
n−1∑
l=0


Dg,n−l(f)[bl(x)] + Ug,n−l(f)[cl(x)]

−Bv[Dg,n−l(f)[bl(x)]] +Bv[Ug,n−l(f)[cl(x)]]
−Dh,n−l(s)[bl(x)]− Uh,n−l(s)[cl(x)]

Bv[Dh,n−l(s)[bl(x)]]−Bv[Uh,n−l(s)[cl(x)]]

 .

We emphasize that the matrix Ap need be constructed and inverted only once per p to determine the entire
solution. Using the definitions of Ug, Dg, Uh, and Dh, c.f. (10), we find that

Ug,n(f)[ζ(x)] =
∞∑

p=−∞
Fn(iβv,p)n exp(iβv,p(ḡ − m̄))ζ̂p = FnB

n
v [Ug,0[ζ]]

Dg,n(f)[ζ(x)] =
∞∑

p=−∞
Fn(−iβv,p)n exp(−iβv,p(ḡ − m̄))ζ̂p = Fn(−Bv)n[Dg,0[ζ]]

Uh,n(s)[ζ(x)] =
∞∑

p=−∞
Sn(iβv,p)n exp(iβv,p(h̄− m̄))ζ̂p = SnB

n
v [Uh,0[ζ]]

Dh,n(s)[ζ(x)] =
∞∑

p=−∞
Sn(−iβv,p)n exp(−iβv,p(h̄− m̄))ζ̂p = Sn(−Bv)n[Dh,0[ζ]],
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where Fn := (f(x)n)/n!, Sn := (s(x)n)/n!. In this way we see that

~Rn =
n−1∑
l=0

Fn−l


Fn−l

{
(−Bv)n−l[Dg,0[bl(x)]] +Bn−l

v [Ug,0[cl(x)]]
}

Fn−l

{
−Bv[(−Bv)n−l[Dg,0[bl(x)]]] +Bv[Bn−l

v [Ug,0[cl(x)]]]
}

Sn−l

{
−(−Bv)n−l[Dh,0[bl(x)]]−Bn−l

v [Uh,0[cl(x)]]
}

Sn−l

{
Bv[(−Bv)n−l[Dh,0[bl(x)]]]−Bv[Bn−l

v [Uh,0[cl(x)]]]
}
 .

3 Field Expansions: (M + 1) Layers

In the general (M + 1)–layer case (M > 1) we consider interfaces specified at y = a(m) + g(m)(x) for
1 ≤ m ≤M . Defining the domains

S(0) :=
{

(x, y) | y > a(1) + g(1)(x)
}

S(m) :=
{

(x, y) | a(m+1) + g(m+1)(x) < y < a(m) + g(m)(x)
}
, 1 ≤ m ≤M − 1

S(M) :=
{

(x, y) | y < a(M) + g(M)(x)
}
,

with normals N (m) := (−∂xg
(m), 1)T , the scattered field v satisfies the system of Helmholtz equations (c.f.

(2a), (2c), & (2e)):
∆v(m) + (k(m))2v(m) = 0 in S(m), 0 ≤ m ≤M,

where v(m) is v restricted to S(m). For incident radiation of the form (1) one has k(m) = ω/cm. These must
be supplemented with the general boundary conditions:[

v(m−1) − v(m)
]

y=a(m)+g(m)
= ξ(m), 1 ≤ m ≤M, (14a)[

∂N(m)v(m−1) − ∂N(m)v(m)
]

y=a(m)+g(m)
= ψ(m), 1 ≤ m ≤M, (14b)

c.f. (2d) & (2g), where ξ(m) ≡ 0, ψ(m) ≡ 0 for m 6= M , for a plane-wave incident from below; we briefly
discuss other incident fields in the next section. Again, the solutions of these Helmholtz problems outside
the grooves are

v(m)(x, y) =
∞∑

p=−∞
d(m)

p exp(i(αpx− β(m)
p (y − ā(m)))) +

∞∑
p=−∞

u(m)
p exp(i(αpx+ β(m)

p (y − ā(m)))), (15)

where the ā(m) are the mid–levels of each layer:

ā(0) := a(1), ā(m) :=
1
2

(
a(m) + a(m+1)

)
, ā(M) := a(M),

and

βp :=


√

(k(m))2 − α2
p α2

p < (k(m))2

i
√
α2

p − (k(m))2 α2
p > (k(m))2

.

The OWC can be enforced by choosing d(0)
p = u

(M)
p ≡ 0. To determine the other coefficients we appeal to

the boundary conditions at the interfaces y = a(m) + g(m)(x), (14).
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3.1 Trivial Interfaces

For the case of flat (trivial) interfaces, i.e. g(m) ≡ 0 for 1 ≤ m ≤M , the Dirichlet condition (14a) coupled to
the representation (15) states that

ξ(m)(x) =
∞∑

p=−∞

{
d(m−1)

p exp(−iβ(m−1)
p (a(m) − ā(m−1)))

+ u(m−1)
p exp(iβ(m−1)

p (a(m) − ā(m−1)))

− d(m)
p exp(−iβ(m)

p (a(m) − ā(m)))

−u(m)
p exp(iβ(m)

p (a(m) − ā(m)))
}

exp(iαpx),

or, in operator notation,

ξ(m) = D(m,m−1)d(m−1) + U (m,m−1)u(m−1) −D(m,m)d(m) − U (m,m)u(m) (16)

(recall that d(0) = u(M) ≡ 0), c.f. (6), where we have defined the order–zero Fourier multipliers:

D(m,l)[ζ] :=
∞∑

p=−∞
exp(−iβ(l)

p (a(m) − ā(l)))ζ̂p exp(iαpx)

U (m,l)[ζ] :=
∞∑

p=−∞
exp(iβ(l)

p (a(m) − ā(l)))ζ̂p exp(iαpx),

c.f. (7). The Neumann condition, (14b), together with the formula (15) provides the equations

ψ(m)(x) =
∞∑

p=−∞

{
(−iβ(m−1)

p )d(m−1)
p exp(−iβ(m−1)

p (a(m) − ā(m−1)))

+ (iβ(m−1)
p )u(m−1)

p exp(iβ(m−1)
p (a(m) − ā(m−1)))

+ (iβ(m)
p )d(m)

p exp(−iβ(m)
p (a(m) − ā(m)))

−(iβ(m)
p )u(m)

p exp(iβ(m)
p (a(m) − ā(m)))

}
exp(iαpx),

which can be alternatively expressed as

ψ(m) = −B(m−1)D(m,m−1)d(m−1) +B(m−1)U (m,m−1)u(m−1) +B(m)D(m,m)d(m) −B(m)U (m,m)u(m), (17)

where we define the order–one Fourier multipliers, c.f. (8):

B(m)[ζ] :=
∞∑

p=−∞
(iβ(m)

p )ζ̂p exp(iαpx).

Thus, we have the following system of linear equations to solve:

A~z = ~r (18)

where

~z := (u(0), d(1), u(1), . . . , d(M−1), u(M−1), d(M))T ,

~r := (ξ(1), ψ(1), ξ(2), ψ(2), . . . , ξ(M), ψ(M))T ,
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and

A :=



U1,0 −D1,1 −U1,1 0 0 0
B0U1,0 B1D1,1 −B1U1,1 0 0 0

0 D2,1 U2,1 −D2,2 −U2,2 0
0 −B1D2,1 B1U2,1 B2D2,2 −B2U2,2 0
...

...
0 0 0 DM,M−1 UM,M−1 −DM,M

0 0 0 −BM−1DM,M−1 BM−1UM,M−1 BMDM,M


.

Of course all of these operators are diagonalized by the Fourier transform so we can solve, wavenumber–by–
wavenumber, the systems

Ap~zp = ~rp (19)

where

~zp := (u(0)
p , d(1)

p , u(1)
p , . . . , d(M−1)

p , u(M−1)
p , d(M)

p )T ,

~rp := (ξ̂(1)p , ψ̂(1)
p , ξ̂(2)p , ψ̂(2)

p , . . . , ξ̂(M)
p , ψ̂(M)

p )T ,

and Ap is penta–diagonal:

(Ap)2m−1,2m−2 = (Dm,m−1)p = exp(−iβ(m−1)
p (a(m) − ā(m−1)))

(Ap)2m−1,2m−1 = (Um,m−1)p = exp(iβ(m−1)
p (a(m) − ā(m−1)))

(Ap)2m−1,2m = −(Dm,m)p = − exp(−iβ(m)
p (a(m) − ā(m)))

(Ap)2m−1,2m+1 = −(Um,m)p = − exp(iβ(m)
p (a(m) − ā(m)))

(Ap)2m,2m−2 = −(Bm−1Dm,m−1)p = −(iβ(m−1)
p ) exp(−iβ(m−1)

p (a(m) − ā(m−1)))

(Ap)2m,2m−1 = (Bm−1Um,m−1)p = (iβ(m−1)
p ) exp(iβ(m−1)

p (a(m) − ā(m−1)))

(Ap)2m,2m = (BmDm,m)p = (iβ(m)
p ) exp(−iβ(m)

p (a(m) − ā(m)))

(Ap)2m,2m+1 = −(BmUm,m)p = −(iβ(m)
p ) exp(iβ(m)

p (a(m) − ā(m))),

for 1 ≤ m ≤M ; formulas which produce indices outside the range 1 ≤ m ≤M (i.e. (Ap)1,0 and (Ap)M,M+1)
are ignored. Since the system (18) is penta–diagonal it can be solved quickly (in time O(M)) using standard
techniques. This is the crucial observation which enables our accelerated method for couplers with non–trivial
interface shapes.

3.2 Non–Trivial Interfaces

To address the case of non–trivial interfaces we can again use the representation (15) together with d
(0)
p =

u
(M)
p ≡ 0. The Dirichlet and Neumann conditions remain (16) and (17), respectively, however we must now

understand the operators D(m,l) and U (m,l) as g(m) dependent:

D(m,l)(g(m))[ζ] :=
∞∑

p=−∞
exp(−iβ(l)

p (a(m) + g(m) − ā(l)))ζ̂p exp(iαpx)

U (m,l)(g(m))[ζ] :=
∞∑

p=−∞
exp(iβ(l)

p (a(m) + g(m) − ā(l)))ζ̂p exp(iαpx).

Following our previous developments, we pursue the Field Expansions (FE) method [5] beginning with the
assumption that the interfaces g(m) are deviations of the trivial interface case, and that these deviations can
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be parametrized by the single variable ε, i.e. g(m)(x) = εf (m)(x). A generalization of the work of Nicholls &
Reitich [25] will show that the fields v(m) depend analytically upon ε so that the expansions

v(m) = v(m)(x, y; ε)

=
∞∑

p=−∞
d(m)

p (ε) exp(i(αpx− β(m)
p (y − ā(m)))) + u(m)

p (ε) exp(i(αpx+ β(m)
p (y − ā(m))))

=
∞∑

p=−∞

∞∑
n=0

{
d(m)

p,n exp(i(αpx− β(m)
p (y − ā(m)))) + u(m)

p,n exp(i(αpx+ β(m)
p (y − ā(m))))

}
εn (20)

can be rigorously justified provided that the f (m) are sufficiently small and smooth. To find the coefficients
d
(m)
p,n and u(m)

p,n we use the conditions (16) and (17) with the dependence of ε emphasized:

ξ(m) = D(m,m−1)(ε)d(m−1)(ε) + U (m,m−1)(ε)u(m−1)(ε) − D(m,m)(ε)d(m)(ε) − U (m,m)(ε)u(m)(ε), (21)

and

ψ(m) = −B(m−1)D(m,m−1)(ε)d(m−1)(ε) +B(m−1)U (m,m−1)(ε)u(m−1)(ε)

+B(m)D(m,m)(ε)d(m)(ε)−B(m)U (m,m)(ε)u(m)(ε). (22)

To use these we need the Taylor expansions

D(m,l)(εf (m)) =
∞∑

n=0

D(m,l)
n (f (m))εn, U (m,l)(εf (m)) =

∞∑
n=0

U (m,l)
n (f (m))εn,

where D(m,l)
0 = D(m,l)(0), U (m,l)

0 = U (m,l)(0),

D(m,l)
n (f (m))[ζ] = F (m)

n (−B(l))nD
(m,l)
0 ζ, (23a)

U (m,l)
n (f (m))[ζ] = F (m)

n (B(l))nU
(m,l)
0 ζ, (23b)

and F
(m)
n := ((f (m))n)/n!. With these we can realize the following recursions from (21) & (22): At order

zero we have

D
(m,m−1)
0 d

(m−1)
0 + U

(m,m−1)
0 u

(m−1)
0 −D

(m,m)
0 d

(m)
0 − U

(m,m)
0 u

(m)
0 = ξ(m) (24a)

−B(m−1)D
(m,m−1)
0 d

(m−1)
0 +B(m−1)U

(m,m−1)
0 u

(m−1)
0 +B(m)D

(m,m)
0 d

(m)
0

−B(m)U
(m,m)
0 u

(m)
0 = ψ(m), (24b)

which, of course, is simply (16) & (17) and we can solve this system, for each wavenumber, in linear time in
M . For n > 0 we obtain

D
(m,m−1)
0 d(m−1)

n + U
(m,m−1)
0 u(m−1)

n −D
(m,m)
0 d(m)

n − U
(m,m)
0 u(m)

n = Q(m)
n (25a)

−B(m−1)D
(m,m−1)
0 d(m−1)

n +B(m−1)U
(m,m−1)
0 u(m−1)

n

+B(m)D
(m,m)
0 d(m)

n −B(m)U
(m,m)
0 u(m)

n = T (m)
n , (25b)
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where

Q(m)
n := −

{
n−1∑
l=0

D
(m,m−1)
n−l d

(m−1)
l + U

(m,m−1)
n−l u

(m−1)
l −D

(m,m)
n−l d

(m)
l − U

(m,m)
n−l u

(m)
l

}
(26a)

T (m)
n := −

{
n−1∑
l=0

−B(m−1)D
(m,m−1)
n−l d

(m−1)
l +B(m−1)U

(m,m−1)
n−l u

(m−1)
l

+B(m)D
(m,m)
n−l d

(m)
l −B(m)U

(m,m)
n−l u

(m)
l

 (26b)

are known from the solution at previous orders. Using the calculation above in (23b) we can simplify the
terms in (26):

Q(m)
n = −

{
n−1∑
l=0

F
(m)
n−l (−B

(m−1))n−lD
(m,m−1)
0 d

(m−1)
l + F

(m)
n−l (B

(m−1))n−lU
(m,m−1)
0 u

(m−1)
l

−F (m)
n−l (−B

(m))n−lD
(m,m)
0 d

(m)
l − F

(m)
n−l (B

(m))n−lU
(m,m)
0 u

(m)
l

}
(27a)

T (m)
n = −

{
n−1∑
l=0

F
(m)
n−l (−B

(m−1))n−l+1D
(m,m−1)
0 d

(m−1)
l + F

(m)
n−l (B

(m−1))n−l+1U
(m,m−1)
0 u

(m−1)
l

−F (m)
n−l (−B

(m))n−l+1D
(m,m)
0 d

(m)
l − F

(m)
n−l (B

(m))n−l+1U
(m,m)
0 u

(m)
l

}
. (27b)

Our key observation is that (25) is simply (18) with the right hand side replaced by

~Rn := (Q(1)
n , T (1)

n , Q(2)
n , T (2)

n , . . . , Q(M)
n , T (M)

n )T ,

and can therefore be solved rapidly via standard techniques. In fact, a quick count of operations yields a work
estimate of O(MN2Nx log(Nx)) if we truncate our Fourier–Taylor series {d(m)

p,n , u
(m)
p,n } after Nx modes and

N orders. More precisely, at every Taylor order 0 ≤ n ≤ N , and every wavenumber −Nx/2 ≤ p ≤ Nx/2− 1,
we solve a linear system of size M in linear time. To form the right hand sides of the linear system requires
fast convolutions (via the FFT algorithm in time O(Nx log(Nx))), and a sum of length n (over indices
0 ≤ l ≤ n− 1).

This is to be contrasted with the work of Wilcox, Dinesen, & Hesthaven [32] who solve these layer
problems sequentially using the two–layer solver of Bruno & Reitich [5]. For instance, in the three–layer case
outlined in § 2, incident radiation from below results in a field scattered by the lowest layer at y = h̄+ h(x)
which is partially reflected downward and partially transmitted upwards. Wilcox et al compute these at the
interface y = h̄+ h(x) with a two–layer solver, but now must account for the fact that the transmitted field
will interact with the layer at y = ḡ+ g(x) producing a scattered field transmitting further up the structure
and a reflected field which travels back to y = h̄+ h(x). This transmitted/reflected pair is computed in the
second “bounce,” but this procedure continues ad infinitum (albeit with decreasing amplitude in the inner
part of the structure at every bounce). So, to compare with the cost of our new approach, that of Wilcox
et al is O(BN2Nx log(Nx)) where B is the number of bounces required to reach a certain error tolerance.
These authors report values of B in the range of 500–1000 for configurations with M = 2 interfaces, clearly
disadvantaged with respect to our new approach.

4 Numerical Results

In this section we display how the algorithms we have described can be used in multi–layer simulations.
In brief, the method discussed above can be summarized as a Fourier Collocation [11]/Taylor method [23]
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enhanced by Padé summation techniques [1]. In more detail, we approximate the fields v(m), c.f. (20), by

v(m,Nx,N) =
Nx/2−1∑

p=−Nx/2

N∑
n=0

{
d(m)

p,n exp(i(αpx− β(m)
p (y − ā(m)))) + u(m)

p,n exp(i(αpx+ β(m)
p (y − ā(m))))

}
εn,

(28)

which are then inserted into (25). At this point the only considerations are how the convolution products
present in the right hand sides, {Qn, Rn} c.f. (26), are to be computed, and how the sum in ε is to be
formed. For the former we utilize the Discrete Fourier Transform accelerated by the Fast Fourier Transform
algorithm [11], and for the latter we approximate the truncated order N Taylor series by its N/2–N/2 Padé
approximant.

We now present results of two numerical experiments featuring three– and five–layer structures. In both
of these experiments we have chosen d = 2π periodic interfaces with α = 0.1. In the three–layer case we
have selected

βu = 1.1, βv = 2.2, βw = 3.3,
ḡ = −1, g(x) = ε cos(x), h̄ = 1, h(x) = ε sin(2x), (29)

and ε = 0.1. For numerical parameters we selected Nx = 128 and N = 24. To verify the accuracy of our
simulations we consider the “energy defect” in our solution. For a lossless structure like the ones considered
in this paper, it is known that the total energy is conserved [27]. This principal can be stated precisely in
terms of the efficiencies

e(0)p :=

∣∣∣u(0)
p

∣∣∣2 β(0)
p

β
p ∈ U (0) =

{
p | α2

p < (k(0))2
}

e(M)
p :=

∣∣∣d(M)
p

∣∣∣2 β(M)
p

β
p ∈ D(M) =

{
p | α2

p < (k(M))2
}
,

which characterize the “outgoing energy fraction” propagating away from the structure upward and down-
ward, respectively. Conservation of energy is now stated precisely as∑

p∈U(0)

e(0)p +
∑

p∈D(M)

e(M)
p = 1,

and we can use as a diagnostic of convergence the “energy defect”:

δ := 1−
∑

p∈U(0)

e(0)p +
∑

p∈D(M)

e(M)
p . (30)

In Table 1 we display results of this energy defect, δ, as N , the number of terms retained in the Taylor series
is increased. Clearly, the convergence is exponential (down to machine zero) as we would expect. In Figure 2
we plot the real (left) and imaginary (right) parts of the scattered acoustic field with the layer interfaces
superimposed with solid lines. In Figure 3 we display the real (left) and imaginary (right) parts of the total
field for the same experiment.

In the five–layer case we chose

β(m) = (1.1, 2.2, 3.3, 4.4, 5.5), a(m) = (1.5, 0.5,−0.5,−1.5),

g(m) = (cos(x), sin(2x), cos(3x), sin(4x)), (31)

and ε = 0.1. Again, for numerical parameters we selected Nx = 128 and N = 24. In Table 2 we display
results of this energy defect, δ, as N , the number of terms retained in the Taylor series is increased. Again,
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Table 1: Energy defect (δ) versus number of Taylor series terms retained, c.f. (28), in a simulation of scattering
by a three–layer structure. Physical parameters are reported in (29), while the numerical parameters were
Nx = 128 and Nmax = 24.

N Energy Defect (δ)
0 0.00547926
2 0.00206438
4 −2.27676× 10−5

6 −1.52311× 10−7

8 3.93408× 10−8

10 −3.12122× 10−9

12 1.76252× 10−10

14 −7.7639× 10−12

16 2.60902× 10−13

18 −5.44009× 10−15

20 −3.33067× 10−16

22 0
24 0
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Figure 2: A plot of the scattered field (Left: Real part, Right: Imaginary part) in a simulation of scattering
by a three–layer structure. Physical parameters are reported in (29), while the numerical parameters were
Nx = 128 and N = 24.
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Figure 3: A plot of the total field (Left: Real part, Right: Imaginary part) in a simulation of scattering
by a three–layer structure. Physical parameters are reported in (29), while the numerical parameters were
Nx = 128 and N = 24.

Table 2: Energy defect (δ) versus number of Taylor series terms retained, c.f. (28), in a simulation of scattering
by a five–layer structure. Physical parameters are reported in (31), while the numerical parameters were
Nx = 128 and Nmax = 24.

N Energy Defect (δ)
0 0.0197169
2 0.0171099
4 −0.000155799
6 −4.50847× 10−5

8 3.0206× 10−6

10 −8.05347× 10−8

12 2.20133× 10−9

14 −5.54635× 10−10

16 7.60854× 10−11

18 −5.36948× 10−12

20 1.56319× 10−13

22 8.21565× 10−15

24 2.17604× 10−14
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Figure 4: A plot of the scattered field (Left: Real part, Right: Imaginary part) in a simulation of scattering
by a five–layer structure. Physical parameters are reported in (31), while the numerical parameters were
Nx = 128 and N = 24.

we note exponential convergence (down to machine zero) as expected. In Figure 4 we depict the real (left)
and imaginary (right) parts of the scattered acoustic field with the layer interfaces superimposed with solid
lines.

To conclude, we present results of some preliminary numerical simulations of a point–source disturbance
within the lowest layer meant to model a subterranean earthquake. As we saw in (2g), the incident radiation
can be quite general and our point–source model is no exception provided that we consider a periodic family
of point sources, which is quite natural given the periodic nature of our interfaces. With this specification,
we recall that such a function can be defined with the upward propagating, periodized free–space Green’s
function [27]

Gqp(x, y) = − i
4

∞∑
p=−∞

eiαpdH
(1)
0

(
k
√

(x− pd)2 + y2
)
,

where H(1)
0 is the zeroth–order Hankel function of the first kind. If the singularity is located at (x0, y0) then

the point–source is given by
wps(x, y) := Gqp(x− x0, y − y0).

For utilization in our recursions it is more convenient to use the spectral representation [27]

Gqp(x, y) =
1

2id

∞∑
p=−∞

ei(αpx+βp|y|)

βp
,

and, again, wps(x, y) := Gqp(x − x0, y − y0). Setting wi = wps, (x0, y0) = (d/2,−20) and α = 0 (so that
the point sources are periodic rather than quasiperiodic) we can now test the capabilities of our method in
the three–layer configuration outlined above; c.f. (29) with ε = 0.1. In Table 3 we report computations of
the scattering efficiencies e0 and e−2 in the upper layer as the perturbation order N is increased. As we
have seen in all of the simulations above, a rapid and stable convergence of the efficiency is displayed as the
perturbation order is increased resulting in full double precision accuracy by N = 24.
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Table 3: Efficiencies versus number of Taylor series terms retained, c.f. (28), in a simulation of point–
source scattering by a three–layer structure. Physical parameters are reported in (29), while the numerical
parameters were Nx = 128 and Nmax = 24.

N e0 e−2

0 2.638809126959936× 10−5 0.0005213256160486521
2 4.317263372822617× 10−5 0.0006943499382756026
4 4.063250064761511× 10−5 0.0006894970545861178
6 4.075330989714637× 10−5 0.0006894225965224039
8 4.075037414093768× 10−5 0.0006894312866295445
10 4.075036372657268× 10−5 0.0006894309333885411
12 4.075036820779545× 10−5 0.0006894309404349986
14 4.075036798603324× 10−5 0.0006894309405442724
16 4.075036799146814× 10−5 0.0006894309405292778
18 4.075036799148951× 10−5 0.0006894309405298982
20 4.075036799148102× 10−5 0.0006894309405298865
22 4.075036799148142× 10−5 0.0006894309405298864
24 4.075036799148141× 10−5 0.0006894309405298864
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