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SUMMARY

Most acoustic logging while drilling (LWD) tools generate
a single pure borehole mode (e.g., dipole or quadrupole) to
estimate the formation shear velocity. We propose an ap-
proach where multipole modes are generated simultaneously
and used to obtain a better shear estimation. This approach
uses an asymmetric source with arrays of receivers distributed
azimuthally around the tool to generate and identify signals
from different modes. We investigate such an approach using
both synthetic and laboratory data. The laboratory data are
collected from a scale-model LWD tool with one active source
transducer mounted on the side of the tool. Four sets of re-
ceiver arrays, each separated by 90 degrees azimuthally, are
used to isolate monopole, dipole and quadrupole modes by co-
herently adding and subtracting received arrivals. A method
is then apply to perform dispersion analysis on these arrivals.
With least square fitting, formation shear velocities are esti-
mated from both dipole and quadrupole modes’ arrivals. We
find that, by averaging the estimates obtained independently
from dipole and quadrupole modes, we can reduce the uncer-
tainty and improve the confidence of the estimation for the for-
mation shear velocity.

INTRODUCTION

Acoustic LWD tools have been designed with specific appli-
cations. One of these applications is to estimat the formation
shear velocity, which can be quite challenging because higher
order borehole modes, such as dipole and quadrupole, are dis-
persive and the phase velocity equals to the formation shear
velocity only at the cutoff frequency. In the case of dipole
logging, it is difficult to effectively generate this mode at fre-
quency ranges that are low enough to close the cut-off fre-
quency. The presence of a tool flexural mode that interacts
strongly with the formation flexural mode in these frequency
ranges further complicates the analysis and makes the inter-
pretation of formation properties more difficult (Rao et al.,
1999). Quadrupole logging has the advantage of not having
an interfering tool screw mode to deal with, however the dis-
persion problem remains an issue as does the lower excitation
energy of this mode. An additional complication exists if the
tool is not centered in the borehole or the source transducers
are not matched. In these situations, pure dipole or quadrupole
mode will not be excited as both higher and lower order modes
are also generated. Byun et al. (2004) and Byun and Toksoz
(2006) studied the effects of source mismatch and off-center
tools on the modes generated in acoustic LWD. Although the
dipole or quadrupole mode could still be isolated by appropri-
ate summation of receivers located around the tool circumfer-
ence, Stoneley and higher order modes are also present in the
time series.

These issues and complications in acoustic LWD tool could
lead to significant errors in the estimated formation shear ve-
locities. An example of such errors is given in Briggs et al.
(2004), where a comparison of shear wave velocity measured
by wireline and dipole LWD showed differences averaging 5-
7%, with some zones showing differences greater than 10%. In
general, there was a consistent bias with the LWD values being
faster than the wireline values (Briggs et al., 2004). Although
these disagreements could, in part, be due to the fact that the
wireline data was collected 10 days later than the LWD data
allowing some time for alteration and invasion effects to take
place, it is more likely that the bias is due to mode impurity in
the LWD data and resulting uncertainty in dispersion correc-
tions applied to the measurements.

These observations and previous studies suggest another ap-
proach to estimate shear velocity. Rather than focus on gen-
erating a single pure borehole mode (e.g., dipole, quadrupole,
etc) and estimating the shear velocity from that mode, we gen-
erate several modes each with different sensitivity to the shear
velocity over different frequency bands and average the esti-
mated results from all the modes to reduce uncertainty and im-
prove the confidence of the estimation. We propose using an
asymmetric source, that is a single source on one side of the
tool, together with arrays of receivers distributed azimuthally
around the tool to allow different modes to be identified and
analyzed. We investigate this approach using both synthetic
and laboratory data. The laboratory data uses a scale-model
LWD tool as described in Zhu et al. (2008) with one ac-
tive sources transducer mounted on the side of the tool. This
source geometry simultaneously generates all borehole modes
with different amplitudes. We use four sets of receiver arrays
each separated by 90 degrees azimuthally to isolate and an-
alyze monopole, dipole and quadrupole modes by coherently
adding and subtracting the signals received from different re-
ceiver arrays. We then apply a method of estimating the dis-
persion curves from time series data developed by Rao and
Toksoz (2005). This method estimates the phase velocities of
the monopole, dipole and quadrupole modes at different fre-
quency ranges through the use of a series of narrow bandpass
filters combined with a time semblance analysis by Kimball
and Marzetta (1986). With this approach, a dispersion cor-
rection could be used to estimate the formation shear velocity
when the frequency range of the measurements does not in-
clude the cut off frequency for each individual mode. We ap-
ply the least square fitting to estimate formation shear velocity
from each individual mode’s arrivals, and finally average the
estimated results from all the modes to obtain the estimate for
the formation shear velocity.
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METHODOLOGY

In this section, we briefly review the method to extract mul-
tipole modes from a LWD system with an asymmetric source
and four receiver arrays. The direct acoustic potential excited
by anasymmetric source, as shown in Tang and Cheng (2004),
is expressed as

Φi(r,r0,z,z0,k,ω)

=
1
π

∞
∑

n=0

εn

{

In( f r0)Kn( f r), r > r0
In( f r)Kn( f r0), r < r0

}

×cos(n(θ −θ0))e
ik(z−z0) (1)

by applying the Bessel addition theorem (Watson, 1944), where
k is the axial wavenumber,ω is the angular frequency,r and
r0 are the receiver and source distance off the borehole cen-
ter respectively,z andz0 are the receiver and source position
along z direction,θ0 and θ are the azimuthal angles of the
source and receiver. The radial wavenumberf is equal to
√

k2− (ω/c f )2, wherec f is the fluid velocity. Similar toΦi

, the scattered potential(Tang and Cheng, 2004) off the bound-
aries can be written as

Φsca(k,ω) =

∞
∑

n=0

(DnIn( f r)+EnKn( f r))cos(n(θ −θ0))e
ik(z−z0), (2)

whereDn andEn can be determined by matching the bound-
ary conditions. The total potentialΦtot(k,ω) in the borehole
is the sum of the direct and the scattered potentials. We can
calculate the dispersion curve (modal phase velocity versus
frequencies) for the multipole modes, by searching the local
maximum value ofΦtot(k,ω) in the frequency-wavenumber
domain.

When an asymmetric source is in the borehole, all modes are
simultaneously excited, and receiver arrays over a range of
azimuthal directions are required to resolve each individual
mode. With four receivers distributed at 0o, 90o, 180o and
270o azimuthal angles, which is the case with our LWD tool
(shown on Figure 1), we approximately resolve the monopole,
dipole and quadrupole modes by neglect all higher order modes.
The total potentials at these four receivers can be expressed as

Φtot
r1 (θ = 0) = M +D+Q+ ε;

Φtot
r2 (θ = π/2) = M−Q+ ε;

Φtot
r3 (θ = π) = M−D+Q+ ε;

Φtot
r4 (θ = 3π/2) = M−Q+ ε, (3)

where the source is put at 0o azimuthal angle without losing
generality, M, D and Q are the total potential of monopole,
dipole and quadrupole modes andε is the sum of higher order
potential. By adding and subtracting the potentials expressed
in Eq. 3, the potentials of the monopole, dipole and quadrupole
modes are

Φmono = Φtot
r1 +Φtot

r2 +Φtot
r3 +Φtot

r4 ,

Φdi = Φtot
r1 −Φtot

r3 ,

Φquadru = Φtot
r1 −Φtot

r2 +Φtot
r3 −Φtot

r4 . (4)

We could also resolve hexapole, octupole and higher modes
if given more receivers symmetrically distributed over the az-
imuthal direction.

NUMERICAL MODELING AND LABORATORY MEA-
SUREMENTS

In this section, we investigate the acoustic field of the monopole,
dipole and quadrupole modes excited by an asymmetric source
in a borehole from numerical modelings and laboratory mea-
surements. We perform a frequency-velocity dispersion anal-
ysis on synthetic and measured time traces for both slow and
fast formation.

Figure 1: The geometry of borehole, positions of the source,
receiver and LWD tool.

The geometry of the borehole, positions of the source, receivers
and the scaled LWD tool used in this paper is shown in Fig-
ure 1. A detailed description of this acoustic tool can be found
in Zhu et al (2008). The isotropic slow and fast formation sur-
rounding the borehole is simulated by Lucite (Zhuet al 2008)
and Berea Sandstone respectively. Other parameters including
densities, shear and compressional velocities of the tool, fluid
in the borehole, Lucite and Berea Sandstone are contained in
Table. 1. A single-cycle sinusoidal source waveform centered
at 50 kHz is used in all the laboratory measurements. Since the
monopole mode can not be effectively excited by this source
waveform, we will exclude the monopole mode and only use
dipole and quadrupole modes in the following formation ve-
locity inversion.

Lucite Berea Sandstone Tool Fluid
Vp(m/s) 2700 4660 4800 1480
Vs(m/s) 1290 2640 2400 0

ρ(kg/m3) 1180 2200 4800 1000

Table 1: Parameters of fluid, formation and tool

Slow formation simulated by Lucite
We use a method developed by Rao and Toksoz (2005) to per-
form the dispersion analysis on dipole and quadrupole mode.
This method includes the following steps:



(1) Fourier transform the received array time series into the
frequency domain.
(2) For a given frequencyωl , use a Gaussian window to weight
the frequency spectrium over a given frequency interval cen-
tered atωl .
(3) Inverse Fourier transform the weighted spectrium to obtain
“narrow-band” time series.
(4) Use the same non-dispersive time semblance analysis by
Kimball (1986) on the new time series to obtain the phase ve-
locity at frequencyωl .

Figure. 2(a) shows the dispersion curves of the dipole mode
calculated from synthetic and measured time traces, where the
theoretical dispersion curve, represented by white circules, is
calculated by searching for the local maximum values ofΦtot(k,ω).
The estimated dispersion curve, as represented by black stars,
is obtained through searching for the local maximum values
of Fig. 2(a) for each frequency. Figure. 2(b) shows the esti-
mated dispersion curve from the measured time traces. The
energy and coherence of the tool mode is so strong that it to-
tally masks the dipole mode at frequencies below 40kHz. This
makes it is impossible to detect any dipole modes. For frequen-
cies higher than 40kHz, the coherence of the dipole mode is
still very weak compared to the tool mode although its ampli-
tude is already larger. The amplitude of the tool mode is much
larger than that of dipole mode at frequencies below 35kHz
and vice-versa at frequencies higher than 40kHz, as shown in
Figure. 2(c). In order to make use of the coherence and rela-
tively large amplitude of the dipole mode simultaneously, we
modify the non-dispersive time semblance analysis by Kimball
(1986). Instead of calculating the coherence function defined
in Eq. 3.8 of Tang and Cheng (2004)

ρ(s,T ) =

∫ T+Tw

T

∣

∣

∑N
m=1 Xm(t + s(m−1)d)

∣

∣

2
dt

N
∑N

m=1

∫ T+Tw

T |Xm(t + s(m−1)d)|2dt
(5)

whereXm(t) is the acoustic time signal at themth receiver in
the array ofN receivers, with a receiver spacingd, we use

ρ(s,T ) =

∫ T+Tw

T

∣

∣

N
∑

m=1

Xm(t + s(m−1)d)
∣

∣

2
dt (6)

to take advantage of the relatively large amplitude of dipole
mode at higher frequencies. As shown in Figure. 2(d), the
dipole mode now can be identified separately from the tool
mode and other background “noise” at frequency higher than
40kHz.

Figure. 3(a) shows the dispersion curve for the quadrupole
mode including the leaky modes whose velocity are larger than
the formation shear velocity. For the laboratory measurement,
the energy in the leaky mode is so small that we can barely
record any signals and the dispersion curve is “cut-off” at the
formation shear velocity, as shown in Figure. 3(b). The esti-
mated dispersion curve seems higher than the theoretical one
for the laboratory measurements, as shown in Fig. 3(b). This
difference leads to a higher estimated shear formation velocity.

Fast formalation simulated by Berea sandstone
We apply the same procedures described in Sec. to calculate
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Figure 2: Dispersion curves of the (a) modeled and (b) mea-
sured dipole mode in the slow formation. (c) The amplitude
of the total potential field at freqeuncy 20 kHz, 45 kHz and 75
kHz. The dispersion curve shown on (d) is based on a weighted
coherence function expressed in Eq. 6. White circles represent
the theoretical calculations and black stars represent the local
maximum values of the coherence functions.

the dispersion cuver for the dipole and quadrupole modes for a
fast formation (Berea Sandstone). Figures. 4(a) and 4(b) shows
the dispersion curves of the dipole mode from both synthetic
and measured waveforms as well as the theoritical calcula-
tions. A very good match is found between the theoretical
calculations (white circles) and both synthetic and laboratory
measurements (black starts). The higher order dipole mode
can also be seen clearly at 90 kHz to 100 kHz in the labora-
tory measurements, which could potentially be included in the
dispersion curve fit for sheal estimation. Figures. 5(a) and 5(b)
shows the dispersion curve of quadrupole mode. We find the
dispersion curve from estimations of both synthetics and the
measurments are slower than the theoretical calculation and
the match is not as good as the dipole mode.
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Figure 3: Dispersion curves of the quadrupole mode in the
slow formation for (a) numerical modeling (b) laboratory mea-
surements. White circles represent the theoretical calculations
and black stars represent the local maximum values of the co-
herence functions.
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Figure 4: Dispersion curves of the dipole mode in the fast
formation for (a) numerical modeling (b) laboratory measure-
ments. White circles represent the theoretical calculations and
black stars represent the local maximum values of the coher-
ence functions.

RESULTS AND DISCUSSION

We apply the method of least square fitting to estimate the for-
mation shear velocity from measured. For both dipole and
quadrupole mode measurements, we first apply a band-pass
filter to minimize the effects from tools mode. The best es-
timation of formation shear velocity is the one whose sum of
squared velocity residuals over a desired frequency range has
the least value, where the residual is defined as the phase ve-
locity difference between the laboratory measurements and the
theoretical calculations. We apply this least square fitting to
both dipole and quadrupole mode measurements for the soft
formation and only to dipole measurement for the hard forma-
tion. For quadrupole mode in the hard formation, we define
the residual as the phase velocity difference between the lab-
oratory measurements and the synthetics instead of the theo-
retical calculations. This is because the dispersion curve es-
timated from synthetic data can better capture the dispersion
characteristics of quadrupole mode compared to the theoreti-
cal calculation, as shown in Fig. 5(c).

Slow formation
Figure. 6(a) shows the root of square velocity residuals as a
function of the assumed formation shear velocity for the dipole
and quadrupole mode. It is found that, the best estimates of the
formation shear velocities are 1335 m/s (dipole), and 1360 m/s
(quadrupole), respectively. Both of them are larger compared
to the true formation velocity of 1290 m/s . When compared to
the dipole measurements, the quadrupole measurements have
larger residuals. We compute the best estimate for the shear
velocity (1347.5 m/s) by averaging the values from dipole and
quadrupole estimates. Using both dipole and quadrupole esti-
mates simultaneously may sacrifice some accuracy under cer-
tain scenarios, ??? this case, where the dipole value is closer
to the ture velocity. However, it provides greater confidence
and reduce the ambiguity in shear velocity estimation since it
utilizes two independent measurements.

Fast formation
Figure. 6(b) shows the root of square velocity residuals for the
dipole and quadrupole modes, but for the fast formation (Berea
Sandstone), where the best estimates of the shear velocity is
2650 m/s (dipole) and 2500 m/s (quadrupole) respectively. The
ture velocity is 2640 m/s. The resolution of quadrupole resid-
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Figure 5: Dispersion curves of the quadrupole mode in the fast
formation for (a) numerical modeling (b) laboratory measure-
ments. (c) Dispersion curve estimated from laboratory mea-
surements and synthetic data. White circles represent the the-
oretical calculations and black stars represent the local maxi-
mum values of the coherence functions in Figure (a) and (b).
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Figure 6: Squared velocity residual versus the assumed forma-
tion shear velocity for the dipole and quadrupole mode in the
(a) slow formation, (b) fast formation

ual minumum is much better than the dipole although its es-
timation error, which is the difference between the estimated
shear velocity and the ture value, is larger than the one from
dipole. The velocity estimate by combining both dipole and
quadropole is 2575 m/s.

CONCLUSION

In this paper, we show that the concept of asymmetric source
logging could improve shear velocity estimates compared to
traditional single mode methods. We demonstrate that, by
adding and subtracting recorded signals from four-receiver ar-
rays, we are able to extract and separate monopole, dipole and
quadrupole modes simultaneously excited by an asymmetric
source. When using both dipole and quadrupole modes, we ef-
fectively utilize two independence measurements to estimate
the formation shear velocity, which could reduce ambiguity
and improve the confidence of the estimation.
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