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Abstract 
 

In this paper, we present a computational method to simulate wave propagation in porous rocks saturated 

with Newtonian fluids over a range of frequencies of interest.  The method can use a digital representation 

of a rock sample where distinct material phase and properties at each volume cell are identified and model 

the dynamic response of the rock to an acoustic excitation mathematically with a coupled equation system: 

elastic wave equation in solid matrix and viscous wave equation in fluid.  The coupled wave equations are 

solved numerically with a rotated-staggered-grid finite difference scheme.  We simulate P-wave 

propagation through an idealized porous medium of periodically alternating solid and fluid layers where an 

analytical solution is available and obtain excellent agreements between numerical and analytical solutions. 

The method models the effect of pore fluid motion on the rock dynamic response more accurately with a 

linearized Navier-Stokes equation than with the viscoelastic model of the generalized Maxwell body, a low 

frequency approximation commonly used to overcome the difficulty of modeling frequency-dependent 

fluid shear modulus in time domain.   

 

1. Introduction 

 
Intrinsic velocities and attenuations of wave propagation in porous rocks are very important rock 

properties that are commonly used in depth calibration for surface reflection seismograms, lithology 

classifications, hydrocarbon identifications, and reservoir management in oil/gas exploration and 

production industries.  However, the effects of pore structures and fluid motion on wave propagation in 

complex rocks such as carbonate are not well understood.  There are increasing needs for developing better 

understanding of the relationship between acoustic and physical properties of carbonate rocks over a range 

of frequencies of interest, from seismic to sonic logging to ultrasonic lab measurements.   

  

It is known that the wave-induced motion of viscous fluid in a porous rock causes significant 

frequency-dependence in both acoustic velocities and attenuation.  Different physical mechanisms and 

theoretical models have been developed in the past to describe the effects of viscous fluid motion on the 

acoustic dispersion and attenuation.  Biot (1956a, b) developed a theory of wave propagation in saturated 

porous rocks based on a macroscopic fluid-flow model.  Biot’s theory shows that acoustic waves produce 

relative motion between the fluid and solid frame due to inertial effects, resulting in viscous attenuation of 

the acoustic waves.  At the low frequency limit of Biot’s theory, the viscous layer is much larger than the 

pore sizes so that fluid and solid virtually move together.  At the high frequency limit, the viscous layer is 

very thin so that fluid is essentially decoupled from the solid frame.  At both limiting ends of the 

frequencies, Biot’s theory predicts little dispersion and attenuation.  The maximum dispersion and 

attenuation occurs at the so-called Biot’s characteristic frequency which is linearly proportional to the fluid 

viscosity.    
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For common fluid-saturated rocks, Biot’s characteristic frequency is much higher than seismic and 

sonic-logging frequencies.  Therefore, it is the common practice to apply Gassmann’s fluid substitution 

relation, the low-frequency limit of Biot’s theory, to predict the effect of different fluids on the effective 

elastic properties of the rock.  Though prediction from Gassmann’s relation fits the experimental data 

relatively well for simpler rocks such as sandstones (Winkler, 1985), its applicability to carbonate rocks is 

uncertain.  Experimental work (Wang, et al., 1991, Assefa, et al., 2003) has been done in the past to test the 

validation of Gassmann’s relation for carbonates but most of these experiements involved lab 

measurements at ultrasonic frequencies.  Recently Adam et al. (2006) reported some interesting results of 

laboratory experiments in both seismic and ultrasonic frequencies.   Their work shows not only the 

difference of the elastic properties between seismic and ultrasonic frequencies, but also noticeable 

dispersion within seismic frequencies (3-3000 Hz) for brine-saturated carbonates, a clear failure of 

Gassmann’s relation.  At 100 Hz and low differential pressure of 3.5 MPa, they observed that Gassmann’s 

relation generally over-predicts bulk modulus and under-predicts shear modulus.   The deviation between 

measured and predicted becomes smaller at increasing differential pressure. Though their experimental 

results are statistically insufficient to reach general conclusions about physical causes of the modulus 

dispersion and failure of Gassmann’s relation, it is clear that the existence of heterogeneous and compliant 

pores/micro-fractures in the samples and interaction of the fluid with solid grains on the pore-scale play an 

important role.     

 

Though more lab measurements will be needed to provide insight on the uncertainty in the acoustics 

properties of carbonates, a recent advance in numerical simulation of the rock physics on the pore-scale 

may help provide answers to some of the unresolved questions.  This numerical simulation approach, 

commonly called computational rock physics, models the rock physics on the scale of the individual pore 

and grain out of digital rock images acquired from X-Ray CT scans and computes the effective physical 

properties of rocks numerically based on fundamental relations.  It has been used mostly to model the effect 

of pores, fractures and fluid on the static elastic properties with the finite element method (Roberts and 

Garboczi, 2000; Arns et al., 2003, Grechka and Kachanov, 2006).  Recently it has been used to study 

acoustic wave velocities and attenuation of the rocks using the finite difference method.   

 

Saenger et al. (2005) developed the viscolelastic rotated-staggered-grid (VRSG) algorithm that can 

perform pore-scale simulation of wave propagation in porous materials saturated with viscous fluid.  In 

their algorithm, they use a single-order generalized Maxwell body (GMB) model to approximate a 

Newtonian fluid.  The time-domain stress-strain relation with the single-order GMB model are defined as 

 

)()()( ttct ijklijklij ξεσ −=      (1) 

 

and   

 

klijklrijrij Y εωξωξ =+&       (2) 

 

where 
ijσ  and klε are the stresses and strains, ijklc is the tensor of elastic coefficient or un-relaxed 

modulus, ijξ
 
is the anelastic function, rω  is the angular relaxation frequency, and ijklY  is the tensor of 

anelastic coefficients, or defect modulus.  In the frequency domain, equations (1) and (2) give rise to the 

complex moduli simply as 
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The elastic and anelastic coefficients, and relaxation frequency of the GMB model have to be 

determined appropriately in order to use equations (1) and (2) to simulate wave propagation in time-

domain.   Saenger et al. (2005) approximate the equation (3) with a first-order Taylor series expanded at
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0=ω , and relate it to the behavior of Newtonian fluid at zero frequency.   As a result, the following 

relations are derived as the low frequency limits for the independent coefficients of the GMB model:  

 

rYc ωηµ== 4444       (4) 

rfKc ωηλ+=12       (5) 

rY ωηλ=12          (6) 

 

where fK is the bulk modulus, µη and λη  are the shear and bulk viscosity of the fluid.  Other coefficients 

can be determined as combinations of the above ones based on isotropic assumption.   Given the properties 

of the fluid, the relaxation frequency is the only remaining parameter to be determined.  Since the GMB 

model is a low-frequency approximation of the Newtonian fluid, it is expected that use of a finite frequency 

of the excitation source in the numerical simulation will introduce modeling errors.  The amount of the 

errors depends on the ratio of rωω / .  To see this clearly, let us substitute the relations (4), (5), and (6) into 

equation (3),  which gives two representative complex moduli:  
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Figure 1a and 1b plot the real and imaginary parts of 44C , normalized by the Newtonian shear 

modulus (
µωη ).  It is clear that two sources of the modeling errors are associated with the GMB: addition 

of a non-zero real shear modulus that peaks at rωω =  and reduction in the imaginary shear modulus.  The 

first error would cause propagation of shear waves which do not exist in the Newtonian viscous fluid, while 

the second would reduce viscosities. It should be noted that the first type of error is relatively larger than 

the second one.   With a sufficient high relaxation frequency such that rωω << , the GMB model is a good 

approximation of the dynamic behavior of the Newtonian fluids.  

           

This paper presents an alternative approach to Saenger’s VRSG algorithm for modeling wave 

propagation in porous rock saturated with Newtonian fluid. Instead of modeling the fluid with the GMB, 

we use linearized Navier-Stokes equations to describe the dynamic motion of the fluid induced by wave 

propagation.   With elastic wave equations for the solids, we numerically solve the coupled equation system 

by using the finite difference scheme with a rotated-staggered-grid (Saenger, et al., 2000).  To validate the 

approach, we simulate P-wave propagation through an idealized porous medium of periodically alternating 

solid and fluid layers where analytical solutions are available (Ciz, et al., 2006).  The numerical results 

agree well with those of the analytical solution.  

 

2. General Governing Equations 

 
We consider a porous rock consisting of a matrix of elastic solid and pores filled with a Newtonian 

viscous fluid.  With a disturbance of small amplitude propagating through the rock, the governing equations 

for the displacement vector, u, of the rock at any point x and time t  due to the propagation of disturbance 
are given by  

 

Elastic dynamic equation in solid:  
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Linearized Navier-Stokes equation in fluid: 
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where sρ , λ  and µ  
are the density, Lamé elastic constants of solid phase, and fρ , fK , µη

 
and λη  

are the density, compressional or bulk modulus, and viscosity coefficients of fluid phase, and vector f  is 

the volumetric force.  The effect of the fluid pressure inside the pore is reflected by the value of .  In 

microscopic or pore scale, it is assumed that material properties of either solid or fluid are homogenous and 

isotropic but in macroscopic scale, they can be heterogeneous and anisotropic when the rock sample is 

considered as a whole.  Therefore, material properties are, in general, the functions of space. In addition, 

the equations above can be used to describe a rock composed of multiple solids or fluids.   

 

The equations are coupled through the boundary condition at the interface between adjacent solid and 

fluid phases.  The internal boundary conditions at the inter-phase between the solid and fluid are naturally 

satisfied by the equilibrium (equal stress) and non-slip (equal displacement) conditions because of the non-

zero viscosity. The external boundary condition depends on the loading and environment, and can be 

described by either traction or displacement conditions. 

 

From the point view of numerical simulation, it is advantageous to use a single equation to describe 

the wave propagation in either solid or fluid phase. To do so, let us consider a finite sample of porous rock 

with a domain of the rock medium Ω  and a boundaryΓ .  We can use a more general equation as follows 
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with general external boundary conditions on the surface of the rock sample as follows 
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and 
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and initial conditions 
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Comparing and combining the equations (9) and (10), we can write the constitution equation or 

stress tensor as  

 

fK
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where the strain and strain rate tensors are defined as  
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The coefficients of the constitution equation (16) are given, depending on the phase, as  

 

If p = isotropic solid phase, then 
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If p = Newtonian fluid phase, then  
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Furthermore, we can rewrite the stress and strain tensors in the vectors as 

 

{ }T
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and 
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Then we obtain the constitution equation as  
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where the matrices are simply given by 
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and  
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Numerically, the system of equations of (11)-(25) can be solved to simulate the displacement field 

provided that the material properties and pore geometries and arrangements in the space are known.  The 

high-resolution 3D X-ray micro-tomography images of rock samples provide detailed information for such 

numerical simulations.  Our main interest in numerical simulations of the porous rock dynamics in 

microscopic scale is to determine the effective acoustic properties (velocity dispersion and attenuation) of 

the rock in macroscopic scale.  

 

3. Numerical Implementation  

 
To couple the wave equations with the linearized Navier-Stokes equations (WLNS), we choose a 

velocity-stress scheme to solve the wave equations in solid domain. The advantage of using this scheme is 

to solve velocities both in solid and fluid domains, which makes the coupling of these two domains much 

easier.  In such a way, equations (9) and (23) can be expressed as: 

 

fσ
v
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where v  is the velocity in the solid domain, σ&  and ε&  are the rates of stress and strain.  While in the fluid 

domain, as described in the previous section, we have: 

 

fσ
v
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t
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In this paper, we numerically couple these two systems by using the finite difference method.  For 

finite difference solvers in the time domain, the standard-staggered-grid (SSG) scheme is the one usually 

used, which averages the shear moduli of the nearby cells to update the shear stress, as shown in Figure 2.  

This gives rise to the difficulty of calculating the interface between the solid and fluid domains because of 

the coexistence of the real number of the shear modulus µ  in the solid side and the complex number of 

frequency-dependent ωηµ if =  in the fluid side. Averaging of the shear moduli across the interface can 

introduce frequency-dependent moduli into the calculation. Calculating stresses with frequency-dependent 

moduli in the frequency domain is equal to calculating convolutions between moduli and strains in the time 

domain – which is time and memory consuming in numerical modeling.  One way to tackle the frequency-

dependent moduli in the time domain is to use the general Maxwell body (GMB) model to represent 

anelastic effects (Emmerich and Korn, 1987).   

 

Instead of using the SSG scheme, we chose the rotated-staggered-grid (RSG) scheme (Saenger, et 

al., 2000) to handle the interface problem occurring in the SSG scheme.  As shown in Figure 3, in the RSG 
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scheme, all the stresses are at the center of each cell and velocities are at the corners.  For cells located in 

the solid, we put elastic moduli at the center, and for those in the fluid, we put viscosities and bulk modulus 

of fluid at center.  The advantage of using the RSG scheme is that it does not need to average shear moduli, 

which means that, in our coupled model, there is no need to use the complex number of  in 

cells in the fluid domain that are close to boundaries.  In this way, we can solve the wave equations and the 

linearized Navier-Stokes equations (WLNS) separately without introducing frequency-dependent moduli.  

The coupling between these two systems is fulfilled naturally by the continuities of velocities and stresses 

on the boundaries, as shown in Figure 4. 

 

The finite difference method of solving the wave equations by using the RSG scheme has been 

established by Saenger et al. (2000).  In order to solve the linearized Navier-Stokes equations, we begin 

with updating stress tensor σ , which is related to pressure p  and velocity v  by bulk modulus fK  and 

viscosities µη  and λη .  From equation (10) and (29), we can see that the way to update stress tensor  

can be: 
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where an intermediate step for updating pressure is needed.  Assuming we know pressure )(
2
1−tp  at time

)(
2
1−t and velocities )(tvi at time t , we can update the pressure field )(

2
1+tp  at time )(

2
1+t  by using 

equation (31), and then with the new pressure  and the known velocities, we can calculate the 

stresses by equation (30); finally we can update the velocities )1( +tv at time )1( +t by using equation 

(28).    

 

4. Numerical Validation of The Coupled Model 

 
In order to validate our coupled model, we choose a model with periodically alternating solid and 

viscous fluid layers as a benchmark. This layered model can be considered as an idealized porous medium 

and has analytic solutions for velocity and attenuation for the compressional wave (Ciz, et al., 2006, see 

also Appendix A).  

 

As shown in Figure 5, one two-layered model with one solid layer and one viscous fluid layer is 

introduced in our numerical validation.  Periodic boundary conditions are applied on both top and bottom, 

which represent periodic layers of solid and fluid extending into infinity.  The modeling parameters are 

listed in Table I.  We use a compressional plane wave as the source, and for calculating the velocities and 

attenuations, three lines of receivers are deployed in such a way that lines R1 and R2 are separated by 1000 

grid points, and R1 and R3 are separated by one wavelength.  We chose peaks of waveforms to measure the 

travel time delay between R1 and R2 for estimating effective velocities, and the amplitude change between 

R1 and R3 for estimating attenuation of Q/1  by assuming a constant Q model.  A snapshot of wave 

propagating in such an idealized porous medium at some time step is shown in Figure 6, from which we 

can see that the compressional wave traveling in solid induces particle motion in fluid along the interface 

within certain skin depth.  This type of friction between solid and fluid interface actually plays an important 

role in causing wave dispersion and attenuation.  Also due to the fast wave speed of solid, the 

compressional wave in fluid moves faster close to the interface than in the middle part of the wave front.    

  

ωηµ if =

σ

)(
2
1+tp
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We then compare the results from the coupled model with those of analytic solutions, as shown in 

Figure 7 for effective velocities and Figure 8 for attenuation.  From Figure 7, we can see that at higher 

viscosities, the velocities and attenuations estimated from the coupled model agree well with those of 

analytic ones.  While the estimations from the coupled model deviate from the analytic ones at lower 

viscosities.  The lower the viscosity is, the larger the discrepancy is, which can be attributed to insufficient 

sampling of the viscous boundary layer that becomes much thinner at low viscosity.  According to Ciz et al. 

(2006), at least 3 grids inside the boundary layer are needed to minimize this kind of numerical dispersion.  

However, in the case with 01.0=µη  kg/ms, for example, there is less than one grid sampling the boundary 

layer for  m, which is not sufficient according to this criterion.  When we increase the sampling within skin 

depth by using  m, we can obtain good estimations of velocities and attenuation again. At the relatively 

higher viscosities, the attenuations estimated agree with the analytic solutions well because of sufficient 

sampling in the boundary layer. 

 

Since the GMB model (Saenger, et al., 2005) is a low-frequency approximation method, we can expect 

the discrepancy between the results of our fully coupled model and the GMB model for cases with relative 

higher source frequency and greater viscosity of fluid. As an example, for a case with source frequency of 

500 kHz and 100=µη  kg/ms, four groups of traces received at different distances from the source are 

shown in Figure 9.  We can see that the differences between traces from the coupled model and the GMB 

model increase with increasing distance.  These differences cannot be ignored especially when we try to 

measure the attenuation of seismic waves due to the viscosity of fluid.   

 

These comparisons validate that our coupled model can accurately model the effect of viscous fluid, 

especially at higher frequency and greater viscosity.  However, by directly coupling the wave equations and 

the linearized Navier-Stokes equations, the coupled model gives us more physical insights into the relative 

interaction between the solid and the fluid when a seismic wave passes by.  

 

5. Stability of The Coupled Model 

 
In the coupled model, with using finite difference operators, it is necessary to satisfy certain criteria 

between grid spacing x∆  and time increment t∆  so as to make the numerical calculation stable.  The 

relation between  and  in solving the wave equations is well known (Saegner, et al., 2000), and we 

derive the stability criteria for the linearized Navier-Stokes equations in this paper (see Appendix B for the 

details for a 2D case).  Numerically solving the quartic equation (B.8) by using the Eigenvalue method 

(Press, et al., 1992) can give us four roots { }4321 ,,, λλλλ=g , which are real or complex values.  The 

stability criterion requires the absolute values of these four roots to be less than one, as described in 

equation (B.14).   

 

Figure 10 and Figure 11 show the distribution of four roots in the complex coordinate plane with 

respect to combinations of wavenumber ( )zx kk , .  We can see that given the same physical properties of 

viscous fluid and grid spacing x∆ , all four roots can be within the unit circle for cases with smaller  

(Figure 11) and the computation can be stable, while for cases with larger , some roots, like 1λ  and 3λ  

in Figure 10, are outside of the unit circle and the computation becomes unstable.   

 

As we know that the stable region for solving wave equations depends not only on  and  but 

also on the velocities of materials, analogously the stable region for solving the linearized Navier-Stokes 

equations also depends on the viscosities of fluid.  As shown in Figures 11 - 13, keeping  and  the 

same while increasing the viscosities of fluid, the distribution of the roots changes from where all roots are 

within the unit circle to where some roots step outside of it, which means that the computation becomes 

unstable with increase of viscosities.    

 

x∆ t∆

t∆
t∆

t∆ x∆

x∆ t∆
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Compared to the analysis applied to the wave equation, the von Neumann analysis of the linearized 

Navier-Stokes equations becomes more complicated such that it is not easy to obtain a simple analytic 

relation among ,  and the physical properties of viscous fluid to provide guidance for how to choose 

these values to make the computation stable.   However, we can numerically calculate the stable and 

unstable regions for cases with different combinations of ,  and the physical properties of viscous 

fluid, as shown in Figure 14.  In the stable region, the absolute values of all roots are ensured to be less than 

one, and in the unstable region, the absolute values of at least one root are larger than one.   

 

As shown in Figure 14 in a log-log scale, we can see that for larger grid spacing , the relation 

between and  is linear in log-log scale for any value of viscosity, while it becomes nonlinear for 

smaller grid spacing and larger viscosity.  It is worth noting that for relative smaller viscosities ( 1.0≤µη  

kg/ms), which cover most of the fluids in nature that we are interested in, the relation stays linear even for 

smaller grid spacing.  As a result, once the computation is stable for a particular combination of ( , ,

µη ) where 1.0≤µη , it will be stable for other combinations of (
't∆ ,

'x∆ ,
'

µη ) which can be derived 

based on the linear relationship among them.  Since in most studies of computational rock physics the grid 

space of the digital rocks is in order of 
610−
m, the linear relation between  and  for smaller 

viscosities is helpful.  

 

6. Conclusions 

 
In this paper, we developed a multi-phase model by explicitly coupling the wave equations and the 

linearized Navier-Stokes equations to study the effects of wave-induced particle motion of viscous fluid on 

seismic velocities and attenuations in porous rocks. The whole coupled system is solved by using the finite 

difference method with implementation of the rotated-staggered-grid scheme.  Compared to the GMB 

model with a low-frequency approximation, our coupled model gives more accurate results by fully taking 

into account the viscosity of fluid.  A benchmark carried out on an idealized porous medium, a model with 

periodically alternating solid and viscous fluid layers, shows excellent agreement of results calculated by 

the coupled model with the analytic solutions both for velocities and attenuations of compressional waves.  

Also compared to the results from the GMB model, we can see that the attenuation estimation from the 

GMB model can be different from our coupled model for cases with higher frequency and greater viscosity 

of fluids.  We investigated the numerical stability by doing von Neumann analysis for the linearized 

Navier-Stokes equations, and found out that there is a linear relation in log-log scale between grid spacing

and time increment  for cases when the viscosity of the fluid is small (  kg/ms). 

t∆ x∆

t∆ x∆

x∆
t∆ x∆

t∆ x∆

t∆ x∆

x∆ t∆ 1.0≤µη



 10 

Acknowledgements 
 

This work was supported by Schlumberger Doll Research and the MIT Earth Resources Laboratory 

Founding Member Consortium. 

 



 11 

APPENDEIX A: ANALYTIC SOLUTION FOR DISPERSION AND ATTENTION OF 

COMPRESSIONAL WAVE IN IDEALIZED POROUS MEDIUM 

 

Propagation of the compressional wave in an idealized porous medium with periodically 

alternating solid and viscous fluid layers denoted by � and � is governed by (Brekhovskikh, 1981; Ciz, et 

al., 2006): 

 

 ���� � ��	
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where ��
 � �
� !��
 �  !�
" , ��
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� !��
 �  !�
	  and �� � #��� 
 ���!$"!��%�!
 ,  �� �
���� 
 ���!$	!����!
  are compressional velocity in solid and fluid, respectively, and ��
 � �
� !&�
 �
 !�
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	 and &� � #��!��%�!
,  &� � ���!����!
 are shear velocity in the solid and 
fluid, respectively.  �� � �'�( and �� � )� 
 ���!$.  �� and �� are the thickness of solid and fluid layers, 
respectively.  � is the speed of compressional wave propagating in such system.  Once we obtain �, we can 
estimate the wave attenuation by 
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APPENDEIX B:  STABILITY ANALYSIS FOR LINEARIZED NAVIER-STOKES EQUATIONS 

IN 2D 

 

In a 2D case, the linearized Navier-Stokes equations are: 
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where iv , ijσ , p  are the velocity, stress rates and pressure field, fK , fρ , µη  and λη  are the bulk 

modulus, density, and the viscosities of viscous fluid. In the implementation of the finite difference scheme 

with grid spacing x∆  and time increment t∆ , we can represent these equations above by using discrete 

difference operators tD  and xD  (Saenger, et al., 2000) with 2
nd
 order both in space and time as 
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In terms of displacement, we can introduce displacements xu  and zu  through relations 
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Therefore, we can rewrite and combine the equations (B.2) in displacements as 

    

0=uA       (B.4) 

 

where A , a 22×  matrix operating on displacement vector [ ]Tzx uuu ,= , is given by definition as 
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In the von Neumann stability analysis, we usually assume a time-harmonic plane wave with 

wavefield 
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where we only consider the case of that xz ∆=∆ .  To make the numerical computation stable, we need 

ensure that 

 

kkg ∀≤ 1)(       (B.7) 

 

The solution for )(kg  is obtained by solving equation (B.4), which requires the determinant of 

the system of equations to be equal zero, i.e. ( ) 0det =A .  The determinant then yields a quartic equation 

of )(kg as 
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where the coefficients ic are functions of the physical properties of the viscous fluid, grid spacing and time 

increment defined as 
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)cos()cos(1 xkxk zx ∆∆−=φ      (B.10) 
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Equation (B.8) is associated with four roots of { }4321 ,,, λλλλ=g  which may be real or 

complex values.  Eigenvalue method (Press, et al. 1992) is used to solve this quartic equation, where a 

Hessenberg matrix is constructed with the coefficients ic as 
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The four roots of Equation (B.8) correspond to the four eigenvalues of matrixH . The stability 

criterion requires these four roots to be satisfied by 
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Table I: Parameters for numerical modeling with the coupled model (In all the cases, we only consider the 

situation where µλ ηη = ). 

Material Properties: 

 Vp (m/s) Vs (m/s) Density (kg/m
3
) Viscosity µη  (kg/ms) 

Solid 5100 2944 2540  

Fluid 1483 0.0 1000 0.001,0.01,0.1,1,10,100 

 Parameters for finite difference: 

Periodic boundary conditions applied at the top and bottom of the model; 

Ricker wavelet: 500=domf kHz; 

m 101 5−×=∆x  , s 105 10−×=∆t  

m 102 6−×=∆x , s 101 10−×=∆t  
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Figure 1a: Real part of C44 of GMB model against that of Newtonian fluid, 

normalized by ( µωη ) 

 

 
 

Figure 1b: Imaginary part of C44 of GMB model against that of Newtonian fluid, 

normalized by ( µωη ) 

 



   

 18 

 

 

 

 

  

 
 

Figure 2: Cells close to the boundary between solid and fluid.  Averaging of the 

shear moduli across the boundary is needed in the standard-staggered-grid, 

which introduces the complex number of frequency-dependent shear moduli.   

                                         (a)         (b) 

 
 

Figure 3: Rotated-staggered-grid scheme for (a) cells in solid and (b) cells in viscous 

fluid.   
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Figure 4: Cells close to the boundary between solid and fluid. Putting the shear 

modulus and viscosity at the center of each cell, solid and fluid cells can 

represent themselves respectively.  No averaging of shear moduli is involved in 

the rotated-staggered-grid scheme.  



   

 20 

 

 

 

 

 

 

 
 

Figure 5: Model with periodically alternating solid and fluid layers. A compressional 

plane wave is used as the source.  Three receiver lines R1, R2 and R3 are deployed. 

Periodic boundary conditions are applied at the top and bottom of the model. 

 
 

Figure 6: A snapshot of compressional wave propagating in an idealized porous 

medium at some time step.  Waves travel faster in solid (upper half) than those in fluid 

(lower half).  Motion of fluid particles within certain skin depth along interface is 

induced by wave traveling in solid.  
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Figure 7: Variations of the velocity of compressional wave with viscosity of fluid. 

Numerical results calculated with the coupled model (triangle at -. �  /  �,01m 
and square for -. � � /  �,2 m) are compared to analytic solutions (solid curve), 
which shows a good agreement at higher viscosities.  At lower viscosities, because of 

insufficient sampling of the thin viscous layer at the boundary between the solid and 

the fluid, numerical dispersion occurs, which can be remedied by increasing sampling 

within skin depth (square for -. � � /  �,2 m.) 
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Figure 8: Variations of the attenuation of compressional wave with viscosity of fluid. 

Numerical results calculated with the coupled model (triangle for -. �  /  �,01m) 
are compared to analytic solutions (solid curve), which shows a good agreement at 

higher viscosities. At lower viscosities, because of insufficient sampling of the thin 

viscous layer at the boundary between the solid and the fluid, numerical dispersion 

occurs, which can be remedied by increasing sampling within skin depth (square for 

-. � � /  �,2 m.) 
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Figure 9:  Four groups of traces located at four different distances away from source 

position are shown.  In this case, source frequency of 500 kHz and fluid viscosity 

100=µη  kg/ms are considered.  The discrepancies between results from the coupled  

model (solid curves) and the GMB model (dot curves) increase with distance, which 

shows that the low-frequency approximation of the GMB model might not accurately 

estimate the attenuation factor of Q/1 for cases with relatively higher source 

frequency and greater viscosity.   
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Figure 10: Distribution of the four roots in the complex coordinate plane with respect 

to combinations of wavenumber ( )zx kk , .  The model considered is viscous fluid with 

6102 −×=∆x  m, 01.0=µη  kg/ms, and a relative larger 
8101 −×=∆t s. 

 
 

Figure 11: Distribution of the four roots in the complex coordinate plane with respect 

to combinations of wavenumber ( )zx kk , .  The model considered is viscous fluid with 

6102 −×=∆x m, 01.0=µη  kg/ms, and a relative smaller 
910338.1 −×=∆t s. 
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Figure 12: Distribution of the four roots in the complex coordinate plane with respect 

to combinations of wavenumber ( )zx kk , .  The model considered is viscous fluid with 

6102 −×=∆x m, 910338.1 −×=∆ t s, and a greater viscosity 1.0=µη  kg/ms. 

 

 
Figure 13: Distribution of the four roots in the complex coordinate plane with respect 

to combinations of wavenumber ( )zx kk , .  The model considered is viscous fluid with 

6102 −×=∆x m, 910338.1 −×=∆ t s, and a much greater viscosity  1=µη  kg/m s. 
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Figure 14: Distribution of the stable and unstable regions for the linearized Navier-

Stokes equations after the von Neumann analysis.   

 


