
HEAVILY FLUORINATED ELECTRONIC POLYMERS

by

JEEWOO LIM

A.B. Chemistry
Princeton University, 2006

Submitted to the Department of Chemistry
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN CHEMISTRY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE
OF TECHN'OLOG3Y

SEP 2 8 2011

LiBRARIES
ARCHNES

SEPTEMBER 2011

0 2011 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:
Department of Chemistry, September 6, 2011

Certified By:

K1~ (J Timothy M. Swager
John D. MacArthur Professor of Chemistry

Thesis Supervisor

Accepted By:
Robert W. Field

Haslam and Dewey Professor of Chemistry
Chairman, Departmental Committee on Graduate Students



This doctoral thesis has been examined by a Committee of the Department of Chemistry as

follows:

Professor Gregory C. Fu:
Chairman

-46?
Professor Timothy M. Swager:

Thesis Advisor

Professor Alice Y. Ting:______
Committee Member

- - 1 01 - W .1 a

,z



Dedicated to My Grandfather
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Doctor of Philosophy in Chemistry

ABSTRACT

Building blocks, containing majority fluorine content by weight, for PPEs and PPVs have been
synthesized. Some of the monomers were shown to give exclusively fluorous-phase soluble
polymers, the syntheses of which were achieved by fluorous biphasic polymerization conditions.
Perfluoroalkylated PPEs were found to have excellent fluorescence quantum yields and
photophysical and chemical stability, and were used to demonstrate their capability in sensing
electron-rich aromatic systems via fluorescence quenching. Perfluoroalkylated PPVs were shown
to have poor solubility in both fluorous and non-fluorous solvents. Furthermore, the polymer
displayed extremely high stability.

Utilizing the fluorous solubility of perfluoroalkylated PPE, fluorescent fluorocarbon-in-water
emulsions were achieved. When perfluoroalkylated carboxylate was used as the surfactant,
emulsions with surfaces that could be modified via amide-bond forming reactions were obtained.
When tagged with biotin, these emulsions showed large degrees of aggregation in the presence
of streptavidin.

The final chapter of this thesis describes an amide-bond forming reaction to attach gold
nanoparticles selectively to the termini of single-walled carbon nanotubes utilizing surfactants to
protect the sidewalls of nanotubes.

Thesis Supervisor: Timothy M. Swager
Title: Professor of Chemistry
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CHAPTER 1

Introduction to Heavily Fluorinated Materials



1.1 Introduction to Fluoroorganic Materials

1.1.1 Element Fluorine

The name of the element fluorine derives from the mineral fluorite (calcium fluoride),

which was first formally named and described in the context of metallurgy in 1530. The Latin

root,fluo, of the mineral's name means "stream" or "current", which is derived from the usage of

the mineral as an additive to lower melting points of various metal ores during their processing.

In 1811, nearly three centuries after the discovery and industrial application of fluorite, the name

"fluorine" was suggested. In 1886, synthesis of elemental fluorine was first described by Henri

Moissan, an achievement for which he was awarded the Nobel Prize for Chemistry in 1906.1 His

electrochemical method of fluorine synthesis is the only industrial method of fluorine production

to this day. 2

Since its first synthesis, fluorine and fluorine-containing organic and inorganic

compounds have been noted for their unique, sometimes unusual, properties. Fluorine gas, F2 , is

highly reactive due to its low bond dissociation energy (~38 kcal/mol).3 Hydrofluoric acid,

unlike other hydrohalic acids, is a weak acid and does not fully ionize in dilute solutions.4 Some

transition-metal tetra- and higher fluorides are molecular and often volatile. Zirconium

tetrafluoride is an ionic liquid,5 while germanium tetrafluoride is a gas.6 Uranium hexafluoride is

a volatile solid under ambient conditions, a property which is utilized in uranium enrichment

processes.7 Perfluorocarbons, derivatives of hydrocarbons where all hydrogen atoms have been

replaced with fluorine atoms, have boiling points nearly identical to their hydrogenated

counterparts despite having molecular weights nearly four times higher. Furthermore, while

branched isomers of hydrocarbons display lower boiling point compared to their linear isomers,

chain isomerism has a negligible effect on the boiling points of perfluoroalkanes. Interestingly,



perfluoroalkanes have boiling points only 25-30 K higher than those of noble gases of similar

molecular weights.8

X H F CI

BDE C-X (kcal/mol) 98 116 77

Electronegativity 2.2 4.0 3.2

Van der Waails radius (A) 1.20 1.47 1.75

Atom polarizabilty (1 0-cm ) 0.667 0 557 2.18

Table 1-1. Properties of fluorine atom.

A combination of microscopic properties of fluorine forms the basis of such unique

physical and chemical behavior of fluorine and fluorine-containing molecules. These are

summarized in Table 1-1, along with those of hydrogen and chlorine. While fluorine is the most

electronegative element on the periodic table, fluorine has a relatively small van der Waals

radius of 1.47A, 9 a combination of which gives fluorine a very low atom polarizability (0.557 x

10-24 cm- 3), significantly lower than that of a chlorine atom (2.18 x 10-24 cm-3) and even lower

than that of a hydrogen atom (0.667 x 10-24 cm-3 ) 10 These properties not only lead to a strong

ionic bond in metal fluorides, but also to a strong covalent bond between fluorine and carbon,

with a typical bond dissociation energy of 116 kcal/mol for sp 3-sp 3 C-F bonds.3 While both

organic and inorganic fluorides display unique material properties, inorganic fluorides are

outside the scope of this thesis, which will focus on highly fluorinated organic compounds.

1.1.2 Fluoroorganic Compounds

The small size of fluorine and the strength of a C-F bond make it possible for hydrogen

atoms in a compound to be partially, and sometimes even fully, substituted with fluorine atoms

without significant costs in stability or alteration of structure. Although C-F bonds have much



greater dipole moments compared to C-H bonds, filled non-bonding orbitals on fluorine

effectively shield the carbon atom on which it is bonded, resulting in the observed thermal and

chemical inertness of fluoroorganic compounds. These properties distinguish fluoroorganic

compounds from other halogenated organic compounds and are the basis of a large family of

compounds with unique, sometimes even strange, properties.

Fluoroorganic compounds have met a wide variety of applications in areas ranging from

biochemistry to material science. Fluorine is incorporated regularly into pharmaceutical agents,

with about 20% of drugs commercialized since 1957 containing fluorine." Fluorine-containing

natural products, unlike the ones containing other halogens, are extremely rare, and significant

amounts of effort have been dedicated to developing fluorinated pharmaceutical compounds.

From the perspective of organic materials chemistry, however, fluorinated compounds,

especially perfluoroalkyl-containing functional materials, have not yet received much attention.

Part of this comes from the commercial availability of only a handful of starting materials

containing perfluoroalkyl groups, and also from the practical difficulties in handling heavily

fluorinated molecules in a laboratory setting. Furthermore, the presence of a perfluoroalkyl group

in a molecule affects its reactivity in a manner that is sometimes completely reversed from that

of its non-fluorinated counterpart, and only a small fraction of known organic transformations

are applicable when a perfluoroalkyl group is attached directly to a reacting center.

Fluoroorganic compounds in material science can be divided into two large categories

depending on the nature of the contribution of fluorine to the overall physical properties of the

parent molecule. The first category consists of fluoroaryl compounds in which fluorine's

electron-withdrawing nature and small size is utilized for the control of the electronics of the

parent aromatic moiety without significant alteration of steric effects. The second category,



which will be the groundwork for this thesis, consists of fluoroalkyl compounds in which

fluorine's size and low polarizability give rise to unique physical properties. In the following

sections, representative work from both categories are discussed, followed by an introduction to

fluoroalkylated materials and their largest area of application, the fluorous phase.

1.1.3 Fluorinated Materials 1: Fluoroaryl Compounds

The electron-withdrawing nature of fluorine renders hexafluorobenzene to have a

quadrupole moment complementary to that of benzene.12 This raises the melting point of a 1:1

molar mixture of benzene and hexafluorobenzene to 23.7'C, which is significantly higher than

those of individual components, benzene (5.4'C) and hexafluorobenzene (5.0,C). 13 At the

molecular level, hexafluorobenzene and benzene stack in a face-to-face fashion due to their

a) b) F F
A F 4  F

5.0 1 F F 3.7 A

Figure 1-1. (a) Herringbone stacking in benzene. (b) Face-to-face stacking of benzene and

hexafluorobenzene.

complementary quadrupoles, whereas each component by itself stacks in an edge-to-face fashion

(Figure 1-1).14 The stabilization energy of the 2-stacking interaction between benzene and

hexafluorobenzene relative to each component is calculated to be -4.3 kcal/mole," which is

similar to that of a hydrogen bond in water. The strong 7r-t interactions between aromatic and

fluoroaromatic systems have been utilized by Grubbs and coworkers to exert topological control



over photodimerization and photopolymerization reactions of 1,3-diyines and olefins in the

condensed state (Figure 1-2).16

F

F F F F F

FF FF F F F F F

co-crystal >98%

Figure 1-2. Photodimerization of stilbene and octafluorostilbene co-crystals. Topochemical

control is obtained through benzene-pentafluorobenzene interaction.

Extended aromatic systems containing fluoroaryl groups are used in organic electronics

to make electron-deficient (N-type) organic semiconducting material. T. Don Tilley and

coworkers reported a synthesis of 9,10-diaryloctafluoroanthracene (Figure 1-3).17 The 9,10-

F Ar F
F F

F F
F Ar F

Figure 1-3. 9,10-diaryloctafluoroanthracene.

-bis(thienyl) derivative displayed donor-acceptor character. These materials displayed low

LUMO levels, consistent with the electron-withdrawing nature of fluorine atoms.

1.1.4 Fluorinated Materials 2: Fluoroalkyl Compounds

In 1938, Roy Plunkett at Kinetic Chemicals in New Jersey, USA, accidentally discovered

polymers of tetrafluoroethylene while attempting to make novel chlorofluorocarbon (CFC)



refrigerants. The resulting polymer, a fully fluorinated analogue of polyethylene (Figure 1-4),

was patented in 1941.18 From very early on, the polymer was noted for its extraordinary thermal

F F

An
F F

Figure 1-4. Structure of poly(tetrafluoroethylene) (TeflonTM).

and chemical stability, and was used as coating materials for uranium hexafluoride containers in

uranium enrichment plants. At the molecular level, the polymer was observed to have a longer

persistence length and much more "sluggish" kinetics than polyethylene.19

While the lack of suitable solvents which could dissolve the polymer at temperature

ranges suitable for its laboratory study was a severe limiting factor for experimental probe into

the molecular dynamics of the new material,20 several theoretical studies have led to an

6
steric repulsion

F F F F F F
E~ 4- I

o FF FF FEF

(D 2-7/

-180 -120 -60 0 60 120 180
Rotation Angle, (0)

Figure 1-5. Conformational energy diagram of a fluorocarbon chain (solid) and a hydrocarbon

chain (dotted). Inset shows the steric repulsion between fluorine atoms on 1,3-positions, causing

an offset of energy minimum from 00.



interesting description of the polymer. The conformational energy curve of a fluorocarbon

showed that the minima of trans conformation were off-set by ~150 with respect to 00, the trans

energy minimum for alkane (Figure 1-5).2 Furthermore, the eclipsed maximum is increased in

fluorocarbons by -1-1.5 kcal/mol. The off-set of energy minima and the increased barrier to

rotation are attributed to the electrostatic interaction between fluorine atoms attached to carbons

on 1,3-positions relative to one another (Figure 1-5, inset). This is attributed to the observed

rigidity and of perfluoroalkyl chains. A more recent theoretical study reveals that fluorocarbons

are not only rigid, but also have a significantly larger molecular volume and surface area

compared to corresponding hydrocarbons (Figure 1-6). It therefore requires significant

cavitation to accommodate a fluorocarbon in a non-fluorinated medium, giving large entropic

costs of mixing between heavily fluorinated and non-fluorinated materials regardless of their

polarity.

0.22
E 0.20 440

9.0 420-- 0.18 -42

8.8- E(. - 0.18 -400

1PI 

E 0.20- 

-80

8.4 . ~ 0.12

8.2 a.0.10M 38

Figure 1-6. Comparison of theoretical values22 of octane (black) and perfluoro(octane) (grey).

The end-to-end distance is an average value.

The rigidity of perfluoroalkyl groups and their tendency to segregate from non-

fluorinated media have been utilized in applications involving molecular alignment. Liquid

crystals without cyclic structures in their mesogenic cores have been achieved in the form of

semifluorinated alkanes, F(CF2)n(CH 2)mH.23 Also, perfluoroalkyl groups have been used as



pendants on aromatic cores to stabilize hexagonal columnar mesophase of liquid crystalline

molecules. 24 Recently, water-soluble micelles from surfactants with C60 anion as the polar

headgroup and perfluoroalkyl chains as the hydrophobic tails have been achieved. While lipid

micelles that utilize hydrocarbons as hydrophobic tails are known to collapse upon removal from

solution, these fluorocarbon-containing micelles displayed remarkable stability, maintaining their

structure on a solid substrate under vacuum.

1.2 Applications

1.2.1 Fluorous Biphase Chemistry

Among many applications involving heavily fluorinated organic materials, perhaps the

most extensively studied and widely used is the "fluorous" solvent system. Most perfluorinated

solvents are immiscible with non-fluorinated organic solvents at room temperature. The resulting

"third" phase, immiscible with aqueous and organic phases, is known as the "fluorous phase"

and is defined as the "fluorocarbon-rich phase of a biphase system." 26 Above certain critical

temperature (known as the consolute temperature), which is heavily dependent on the nature and

the ratio of the components, many combinations of fluorous and non-fluorous solvents become

monophasic. The switch between biphasic and monophasic states is reversible and can be

controlled simply by varying the temperature. Empirical criteria for solubility of a substrate in

the fluorous phase include greater than 60% fluorine content by weight,27 and a molecular

structure in which perfluoroalkyl chains "sheath" the "anti-fluorous" core of the molecule.28

Materials meeting such criteria are often soluble exclusively in the fluorous phase at room

temperature.

Such a solubility profile has been utilized since the early 1990s to recover expensive

catalysts following a reaction and to stabilize reactive intermediates (Figure 1-7 29). In 1994, I.T.



Horvath and J. Rabai reported a catalytic hydroformylation 26b process in which

perfluoroalkylated phosphane ligands were used to recycle the expensive rhodium catalyst

following a reaction from a toluene-perfluoro(methylcyclohexane) biphasic system. The concept

was also utilized in hydroboration. Since then, a variety of ligands3 0 for specific biphase

catalyses have been reported, including Stille coupling,3 ' Pd(O)-catalyzed allylic substitution,32

enantioselective C-C bond formation with fluorous BINOL, 33 along with those for reactions in

supercritical CO 2-34

Single phase

+ BH
Z- + 0 0o\/

OB B-0

Solvent: toluene heat cool Solvent: toluene

Solvent: CF3-C6 F11  CIRh-{P{CH 2CHz(CF2)5CF3]3} 3  Solvent: CF3-CrF11

ClRh-{P[CH2CH2 (CF2)CF313}3  CIRh-{P[CH 2CH2 (CF2)CF3 3}3

Separate phases and recycle

Cycle/TON: 1/854 2/785 3/770

Figure 1-7. Example of fluorous biphase chemistry utilized in hydroboration.

1.2.2 Orthogonal Processing

The mutually exclusive solubility of fluorous materials in fluorous solvents has led to

investigations to utilize fluorous solvents to solution-process organic electronic devices.

Conventional photolithographic device fabrication involves a "lift-off' step where the photoresist

is removed using aggressive organic solvents. This step has limited processing of organic

electronic materials via photolithography since the active materials are also washed off the

device during this step. Recently, Christopher Ober and coworkers reported that neither an

21



inorganic electroluminescent device based on [Ru(bpy) 3]2*(PF6 2 nor an organic P3HT (poly(3-

hexylthiophene)) thin-film transistors showed any loss in performance when exposed to HFEs

(hydrofluoroethers), a class of fluorous solvents.35 The devices were highly unstable to non-

fluorous organic solvents such as acetonitrile and xylenes, and the observed benignity of HFEs

was attributed to their inability to dissolve [Ru(bpy) 3]2*(PF6) 2 or P3HT. Soon thereafter, a

resorcinarene-based photoresist with moderate solubility in HFEs was reported. This photoresist

could be cleanly removed with HFEs during the "lift-off' step without affecting patterned active

materials, enabling patterning of [Ru(bpy)3]2*(PF6) 2 and P3HT using conventional

photolithographic techniques. 36 Ober also reported semifluoroalkyl polyfluorenes that were

soluble in fluorous solvents and demonstrated that the material's fluorous solubility could be

utilized in the fabrication of patterned electroluminescent devices.

1.2.3 Facile Formation of Microarrays for Biosample Screening

Nearly simultaneous to the investigations of fluorous biphase catalyses were the

investigations of facile separation of reaction products by "tagging" them with perfluoroalkyl

groups then extracting with a suitable fluorous solvent.37 The method met a general use in

combinatorial chemistry, since it did not require the use of "beads." It was also observed that a

single perfluoroalkyl chain of eight carbons or longer is often enough for a facile separation of

substrates using fluorous solid-phase extraction.38 The observation was soon applied to

microarrays for small biomolecule screening in which molecules such as sugars were tagged

with C8F17 ponytails and subsequently deposited onto commercially available Teflon-epoxy

coated glass microscope slides.39 The resulting microarrays were reported to withstand repeated

washes with detergent-containing buffer solutions.



1.3 Limitations and Challenges

The unique properties of fluorocarbon-based materials have led to their applications in

various areas. There are, however, limitations that leave much room for further investigation.

First is the lack of tangible guidelines, beyond the highly empirical "60% rule", for designing

molecules which would be soluble in the fluorous phase. It is still unknown how the structure of

perfluoroalkyl chains (branched or linear) or their arrangement on a molecule alters the fluorous

compatibility of the parent compound. Also, the effect of increasing conformational flexibility of

a fluorous chain (by incorporation of heteroatoms) on the overall solubility has yet to be studied.

Furthermore, although there have been efforts to qualitatively rate fluorous solvents in terms of

both fluorophilicity and polarity (assuming the two scales are orthogonal), 4 0 a quantitative index,

analogous to the polarity index, has not been established for fluorophilicity.

The second limitation is both the limited scope of available perfluoroalkylated materials

and the relative dearth of known chemical transformations applicable to fluorocarbon chemistry.

Nucleophiles are known to attack perfluoroalkyl bromides and iodides on the halogen, with the

perfluoroalkyl anion acting as the leaving group.41 Some apparent SN2 reactions of

perfluoroalkyl halides have a radical mechanism, and only "nucleophiles" which can internally

stabilize radicals can be directly perfluoroalkylated using this method.42 Also, perfluoroalkylated

alkenes and alkynes are known to undergo addition reactions under very mild conditions, causing

undesirable byproducts.4 3  Also, the only general and scalable methodology of

perfluoroalkylating aromatic halides known to date is a non-catalytic coupling reaction with a

limited substrate scope.44

Solutions to these issues would make possible the application of fluorocarbon chemistry

to endeavors requiring higher precision and finer control of molecular structures. One approach



towards the solutions would be a theoretical approach to better model systems containing

perfluoroalkyl chains. Another approach would be to design and synthesize novel molecular

architecture involving perfluoroalkyl chains and to study their behavior. The work described in

this thesis, which is focuses on the syntheses, properties, and applications of heavily fluorinated

fluorescent conjugated polymers, would take the latter approach. In the process, the unique

properties of perfluoroalkyl chains are exploited to create materials with novel characteristics.
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CHAPTER 2

Synthesis of Rigid Poly(para-Phenyleneethynylene)
with Perfluoroalkyl Chains

Adapted from

Lim, J.; Swager, T.M. Angew. Chem. Int. Ed. 2010, 49, 7486-7488



Introduction

Organic conjugated polymers (CPs)l display electrochemical and photophysical

properties which could be controlled by chemical modification of the polymers' molecular

structures. The ability to fine-tune the properties of CPs has led to the application of these

materials in areas such as sensing, polymer light-emitting diodes (PLEDs), organic field-effect

transistors (OFETs), 3 and photovoltaic devices. 4 Among numerous conjugated polymers, poly(p-

phenyleneethynylene)s (PPEs, Figure 2-1)5 are known for their highly emissive nature, excellent

=n

Figure 2-1. Core structure of PPE.

exciton migration lengths, 6 and robust polymerization methods 5 largely unaffected by the nature

of monomers. Polymers in this family have been utilized in a variety of applications, including

sensing of chemical7 and biological8 analytes.

While many PPEs with electron-donating substiuents have been reported, there is relative

dearth of PPEs with electron-withdrawing groups. Electron-rich and electron-poor PPEs are

electronically well-suited for detection of electron-poor7 c and rich9 analytes, respectively, and

therefore a greater diversity in electron-poor PPEs would lead to an expansion of the scope of

detectable analytes. Furthermore, given that the currently available platforms for PPE-based

sensing are focused around solutions, thin films, and microsphere ("bead") supports, 8d, 8g it could

be anticipated that PPEs with novel physical properties which could be exploited to produce

novel platforms for potential sensing would be of interest.

Perfluoroalkyl groups have several properties that make them attractive pendants on

functional materials.' 0 Thermal and chemical stability of the perfluoroalkyl groups could



translate directly to material stability. Also, the extremely hydrophobic nature of perfluoroalkyl

groups could lead to materials with very low surface energy in solid state. From the perspective

of light-emitting compounds, the rigidity of perfluoroalkyl chains may reduce vibrational energy

loss, resulting in enhanced quantum yields. Also, the high electronegativities of perfluoroalkyl

groups" would increase the electron affinity of a-systems to which they are directly attached.

Another advantage of perfluoroalkylated materials is that they can display orthogonal solubility

profiles, dissolving in fluorous solvents with limited solubility in non-fluorous organic solvents,

allowing for facile purification via liquid-to-liquid extraction and/or fluorous solid phase

extraction. 12

C6F13 -- C6F13

C6F13 C6F13
C6F13 OC14H27

C6F13C6F3 nCF13 C14H270

C 6F13 C 6F13

P1 P2

Figure 2-2. Chemical structures of P1 and P2.

PPEs containing perfluoroalkyl groups have merit both in that they would allow for facile

purification and processing and in that their unique physical properties would open up

possibilities for novel methods of sensing. This chapter describes the syntheses and properties of

two PPEs (P1 and P2, Figure 2-2) from a heavily fluorinated monomer with specific design

principles. One of the polymers, P1, contains ~60% fluorine content by weight in the form of

perfluoroalkyl chains conjugated to the 2-system of the polymer backbone. The polymer shows

moderate to good solubility in the fluorous phase while showing no solubility in non-
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Figure 2-3. Fluorous biphase synthesis of fluorescent fluorous polymers.

fluorous solvents, and can be synthesized via fluorous biphase polymerization for facile isolation

and purification of the polymer (Figure 2-3). Furthermore, the polymer displays remarkable

photophysical properties such as a very high quantum yield and a small Stokes shift.

Results and Discussion

1st Generation Monomer Synthesis.

Our group has previously shown that [2.2.2] bicyclic ring structures incorporated to the

main chain of fluorescent polymers prevent aggregation, via n-n stacking, of polymer chains, and

R R

R,

Figure 2-4. Homoconjugative interaction between the bridging alkene and benzene in a [2.2.2]

bicyclic architecture.



introduce nanoscale porosity in solid state, facilitating analyte permeation into the polymer

matrix. Our group has also shown that [2.2.2] bicyclic systems featuring alkenes with electron-

withdrawing groups raise the ionization potential of the parent conjugated polymer through

homoconjugative interactions (Figure 2-4). 9, 13 Based on these findings, a monomer with

bis(perfluoroalkyl)alkenes on the [2.2.2] bicyclic ring architecture was targeted, the design

principles of which are shown in Figure 2-5. The most direct approach to installing

bis(perfluoroalkyl)alkene moiety involves a two-fold Diels-Alder cycloaddition reaction between

perfluoroalkyne and a pentacene derivative.

Long perfluoroalkyl
groups for majority
fluorine content

1RF
Directly attached

Diacetylene moiety RF perfluoroalkyl groups
for polymerization

Figure 2-5. Design principles of the target PPE monomer with a non-compliant structure for

potential sensory applications.

Scheme 2-1 shows the synthesis of a symmetrical perfluoroalkyne, perfluoro(7-

tetradecyne) (1), and Scheme 2-2 shows the Diels-Alder reaction of the pentacene derivative 39

with 1 and a previously reported14 perfluoroalkyne, perfluoro(2-undecyne) (2). The pentacene

derivative 3 has been reported to undergo two-fold Diels-Alder cycloaddition reactions with

hexafluorobutyne to give the anti isomer as the major products (1:2 syn/anti).9 When 3 was

treated with an excess of perfluoro(2-undecyne) (2) in xylenes in a sealed tube at 135*C for 3

days, the corresponding di-adduct 4 was obtained in 88% yield. The longer reaction time



Scheme 2-1. Synthesis of perfluoro(7-tetradecyne) (1).

OH NaOH C6F131 C6F13 KOH

C6F13 - C 6F13  - H I H 0

Direct Distillation 230 C, 3 h C6F13 Distillation
(350 Torr) 46% 90% (8-12 Torr)

C6F13

47%

compared to that of hexafluorobutyne was attributed to the increased steric demand in 2. The

selectivity, however, was in sharp contrast to that of the hexafluorobutyne addition, giving a

1.9:1 syn/anti ratio.

When 3 was treated with an excess of perfluoro(7-tetradecyne) (1) in xylenes, no reaction

took place even after 4 days at 145'C. The lack of reactivity was attributed to the poor solubility

of 1 in xylenes even at elevated temperatures. When the reaction mixture was homogenized with

a high-sheer mixer at 80'C before raising the temperature to 145'C, the desired two-fold Diels-

Scheme 2-2. Diels-Alder reactions of 3 with perfluoroalkynes 1 and 2.

C8F17 C8F17

TIPS

TIPS
3

F3C -- C8F17
2

Xylenes, 145 C,
3 days

F3C :

syn-4 syn I anti = 1.9 : 1 anti-4

C6F13 -

C6F13  C61
C6F13__ C6F13

TIPS ---- ---- TIPS + TIPS-
Xylenes, 145 *C -

4 days after
homogenization C6F13

C6F13

syn-5 syn I anti = 5.8 : 1 anti-5



Alder reaction took place to give the corresponding diadduct 5 in 86% yield. The syn-selectivity

was even more dramatic in this reaction, which gave a 5.8:1 syn/anti ratio.

The observed reversal in selectivity to favor a sterically more demanding product may be

caused by a formation of emulsion of fluorous alkynes in xylenes, with the Diels-Alder reactions

taking place at the interface. Emulsions, even those stabilized with surfactants, are dynamic in

nature, with molecules constantly dissolving out of and into the emulsion particles, 15 and the

lower syn-selectivity of the reaction of 2 could be associated to its higher solubility in xylenes,

consistent with the observation that perfluoro(7-tetradecyne) (1) requires physical emulsification

in order for the two-fold Diels-Alder reaction to take place, while 2 does not.

C8F,

F3C

-I/

C8F17
F3C

6

Scheme 2-3. Deprotection and structures of isomers.

C8F17  .- F13

F 3 C CF13

3s - / - TIPS TIPS - --- TIPS

C8F1 C6 F1 3

F3C C6F13

syn-4 mixture of diastereomers syn-5

TBAF THIF TBAF THE-78 C to r.t. -78 FC to r.t.

7 .- F3C .. C6F13

C8F17  ...- CF13

\ - -/\ - - /\ -

CBF 17  C6F13

F3C C6F13

-1 94% combined 6-2 98%
diastereomers separable 7

6-1/6-2 = 2.7:1



For both diadducts, 4 and 5, the anti-isomers were sparingly soluble in most organic

solvents while the syn-isomers showed moderate-to-good solubilities. In both cases, syn-isomers

could be isolated using a combination of recrystallization and chromatography. The syn-4

isolated as a mixture of diastereomers which differed in the relative orientation of the

perfluoroalkyl groups. The diasteromers were not separable at this stage. Due to the lack of

solubility of the anti-isomers, the synthesis was carried forward using only the syn-isomers.

Removal of the TIPS moieties gave the corresponding diacetylenes 6 and 7. The two

diastereomers of 6 could be separated by recrystallization and chromatography to give 6-1 and 6-

2, the structure of which could be assigned via 'H NMR spectroscopy (Scheme 2-3).

Sonogashira-Hagihara cross-coupling polymerization between 7 and 1,4-bis(perfluorohexyl)-2,5-

diiodobenzene (8; synthesis described in Scheme 2-4) under various temperatures and catalyst

Scheme 2-4. Synthesis of co-monomer 8.

C6F131, Cu, C6F13  NBS C6F13  1. n-BuLi, C6F13

2,2'-bipy Br THF, -780C

DMSO TFA, H2SO4, Br 2. 1,2-diiodoethane,

70IC, 3d C6F13  6000, 2dC6F13 r.t. C6F 13

78% 52% 8, 93%

loading in toluene/diisopropylamine solvent system only gave mixtures dimeric and trimeric

products. Similar results were obtained when 6-1 was subjected to identical polymerization

conditions. In both cases, the oligomers were soluble in perfluorocarbon solvents, such as

perfluoro(methylcyclohexane), FC-72 (perfluorohexanes), and FC-77 (perfluorooctane), as well

as in non-fluorous solvents such as THF and hexanes.

In order to determine whether there were any differences in degrees of polymerization of

each monomer, dynamic light scattering (DLS) on the polymer solutions were carried out. DLS



has been used previously to determine lengths of polymers, and PPEs have been reported to have

persistence lengths of ~15 nm. 16 The DLS studies conducted in perfluoro(methylcyclohexane)

indicated that polymers from 6-1 had length distributions (10.4 nm) higher than those from 7 (4.2

nm). Since both values were below the persistence lengths of PPEs, the result indicated that the

polymerization from the 6-1 was giving materials with slightly higher degrees of polymerization.

This suggested that steric effects around the reacting acetylene groups, rather than solubility,

may be playing a role in preventing formation of longer polymers.

In order to address the steric issue, a new monomer, 10, was synthesized as shown in

Scheme 2-5. Monomer 7 was chosen over 6-1 and 6-2 as the starting material due to its higher

fluorine content and a higher syn-selectivity in synthesis. Attempts to remove the TMS groups

from 9 at room temperature gave bright yellow solids after chromatography. Although the NMR

spectra of this product were clean, the emission spectrum from the resulting polymer suggested

that there was a trace amount of highly emissive byproduct. Although NMR spectra of the

product were clean, the emission spectrum suggested that the trace byproduct is from an inverse

Diels-Alder reaction. The deprotection reaction of 9 with TBAF at -78*C gave the monomer 10

as a byproduct-free, off-white powder. The single-crystal X-ray structure of monomer 10 is

shown in Figure 2-6.

Scheme 2-5. Synthesis of monomer 10 from 7.

C6F13  -6F13

C6F13 TMS C6F13

/ \ Pd(PPh3)Cl2, Cui

-- toleuene/diisopropyl amine
50 *C, 24h

C6F13  CeF13

C6F13 CF1

7 TBAF,THF 9: R = TMS 98%
-78*C to r.t. 20 min 10: R = H 92%

39



Figure 2-6. Single-crystal X-ray structure of monomer 10. Thermal ellipsoids represent 50%

probability. Hydrogen atoms are removed for clarity.

When monomer 10 was subjected to Sonogashira-Hagihara cross-coupling

polymerization with diiodide 8 in toluene/diisopropyl amine solvent system, higher polymers

were obtained. This polymer, however, was still soluble in non-polar solvents such as hexanes,

and it was expected that fluorous solvent conditions for Sonogashira-Hagihara cross coupling

reaction would yield polymers with higher molecular weights, which may subsequently render

the material selectively soluble in fluorous solvents.

Fluorous Biphase Systems for Sonogashira-Hagihara Polymerization

Our initial approach was to replace toluene in toluene/diisopropyl amine system with

perfluoro(methylcyclohexane). Interestingly, mixtures of perfluoro(methylcyclohexane) and

diisopropyl amine became monophasic at an unexpectedly low temperature range of 40-45'C,

and only separated out slowly upon cooling to room temperature. It had been previously reported



Table 2-1. Consolute temperature (T,) of toluene/perfluoro(methylcyclohexane) mixtures.' 7

Volume Fraction of Mole Te (*C)
Toluene Fraction

0.900 0.943 63.7
0.800 0.880 83.1
0.700 0.810 87.7
0.600 0.733 88.9
0.500 0.647 88.6
0.400 0.550 87.2
0.300 0.440 82.0
0.200 0.314 68.7
0.100 0.169 42.8

that toluene/perfluoro(methylcyclohexane) biphasic mixtures become monophasic at moderate

temperature ranges (Tc, consolute temperature) which vary depending on the ratio of the two

solvents (Table 2-1), and separate out cleanly upon cooling.17 When toluene in this system was

substituted with a 1:1 mixture of toluene/diisopropyl amine as the non-fluorous component, the

resulting biphasic mixtures had significantly (35-40'C) lower consolute temperatures than those

of toluene/perfluoro(methylcyclohexane) mixtures. When the fluorous component of this

biphasic mixture was replaced with a more polar fluorous solvent, perfluoro(N-propyl

morpholine) (FC-770), consolute temperatures at 30-70% volume fraction of the fluorous

component were all above 90'C, a temperature range impractical for PPE synthesis. Based on

these observations, 1:1:1 v/v/v mixture of toluene/diisopropyl amine/perfluoro

(methylcyclohexane) system was chosen for the fluorous biphase polymerization.

Polymer Synthesis

The fluorous biphase Sonogashira-Hagihara cross coupling polymerization between 10

and 8 gave, upon cooling, a biphasic mixture in which bright blue fluorescence was localized in



Scheme 2-6. Synthesis of P1 and P2. The photographs show reaction mixtures at the end of the

reaction irradiated with a hand-held long-wave UV lamp.

8

perfluoro(methylcyclohexane)/ /
toluene/diisopropyl amine

Pd(PPh3)4, Cul, 70 *C, 3 days C6FI3

P1
10 

OC 14H27

I . (11)

OC14H27

perfluoro(methylcyclohexane)/
toluene/diisopropyl amine

Pd(PPh3)4, u, 70 C, 3 daysCF13

COF13

P2

the lower, fluorous layer (Scheme 2-6). The removal of the organic layer, followed by washing

the fluorous layer successively with methanol, acetone, and ethyl acetate, gave P1 in 87% yield.

Figure 2-7 shows the molar absorptivity (per phenylethynylene unit) of P1 and oligomers

(discussed earlier) obtained from the polymerization of 7 and 8. There is a three-fold increase in

the molar absorptivity, accompanied by a red-shift and sharpening of the absorption spectrum,

indicating that P1 has a significantly greater degree of polymerization than the oligomer. DLS

analysis of the fluorous layer gave a value of 16.4 nm, a typical persistence length of a PPE-type

polymer with a high molecular weight.'16 The polymer obtained in this manner was optically pure

and was used without further purification for photophysical measurements.

When monomer 10 was treated with a non-fluorinated co-monomer 11 under identical

conditions, a complete reversal of solubility was observed, with the fluorescence of the product

biphasic mixture localized in the upper, non-fluorous, phase (Scheme 2-6). Removal of the
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Figure 2-7. Molar absorptivity of P1 (dashed) and oligomer from polymerization between 7 and

8 (solid).

fluorous layer, followed by precipitation of the organic layer into ethanol and washing the solids

with acetone, gave P2 in 78% yield.

Photophysical Properties

The normalized absorption and emission spectra of P1 and P2 are shown in Figure 2-8.

Fluorous soluble P1 displays band edge and emission maximum that are both blue-shifted in

relation to the more electron-rich P2. A small Stokes shift (5-6 nm) and sharp absorption and

emission spectra of P1 suggest that the structure of the polymer in solution is highly rigid. Both

polymers are highly fluorescent. Fluorous-soluble P1 has a quantum yield of 0.95 in

perfluorodecalin and the organic-soluble P2 has a quantum yield of 0.84 in toluene. Furthermore,

both polymers exhibit high quantum yields in thin film (0.32 for P1 and 0.42 for P2).
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Figure 2-8. Absorption (dotted) and emission (solid) spectra of P1 (blue, in perfluorodecalin;

Q.Y. 0.95) and P2 (red, in toluene; Q.Y. 0.84).

It is notable that P1 showed a high quantum yield in perfluorodecalin. Perfluorodecalin'8

is a solvent which was approved by the U.S. Food and Drugs Administration (FDA) for use as a

component in a human blood surrogate formulation, Fluosol,Tm due to its ability to dissolve up to

50% v/v of oxygen at ambient pressure and 37 *C and its chemical and biological inertness. This

finding motivated us to process P1 as a fluorescent component in a perfluorodecalin emulsion in

PBS buffer, details of which are described in Chapter 2 of this thesis.

To compare the properties of P1 and P2 with a non-fluorinated polymer with a similar

structure, a new polymer, P3, featuring a rigid, three-dimensional architecture and dialkyl aryl

moiety in the backbone, was synthesized (Scheme 2-7). This polymer displayed lower quantum

yield (0.48 in toluene) compared to P1 and P2. Furthermore, whereas the thin-film emission

spectra of P1 and P2 do not show any noticeable change from their respective solution spectra,



Scheme 2-7. Structure and synthesis of P3.
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the thin-film emission spectrum of P3 showed a broad and significantly red-shifted peak,

suggesting large degrees of aggregation (Figure 2-9).

Although monomer 10 is soluble in organic solvents including acetone, hexanes,

chloroform, ethyl acetate, and THF, and insoluble in non-polar fluorous solvents such as FC-77,

perfluoro(methylcyclohexane), and perfluorodecalin, P1 is soluble in these fluorous solvents but

is insoluble in non-fluorous solvents. The exclusive fluorous solubility of P1 made it difficult to

characterize the polymer using standard procedures such as gel permeation chromatography

(GPC). DLS measurements conducted on P1 in both perfluorodecalin and perfluoro(methyl-

cyclohexane) were both consistent with the typical persistence length.16 When P1 was end-

capped with an addition of 1-bromo-4-tert-butylbenzene, no tert-butyl signals were observed in

the proton NMR spectrum, indicating a high degree of polymerization (>20). The organic soluble

P2 could be analyzed by GPC, and was shown to have Mn = 520 kDa, M, = 2,850 kDa, and PDI

= 5.48.
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Figure 2-9. (a), top; solution emission spectra of P1 (dotted) and P2 (solid) in

perfluoro(methylcyclohexane) and toluene, respectively, and bottom; thin-film emission spectra

of P1 (dotted) and P2 (solid). (b), top; solution emission spectrum of P3 in toluene, and, bottom;

thin-film emission spectrum of P3.

Conclusion

In summary, we have synthesized two PPEs from a novel, heavily fluorinated building

block, 10, and established a fluorous biphasic polymerization method involving Sonogashira-

Hagihara cross coupling reaction. We have also demonstrated that, depending on the choice of

the co-monomer, the solubility properties of the product could be altered drastically. Both

polymers from 10 were highly fluorescent both in solution and in thin film. The fluorous phase
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soluble PPE, P1, was soluble in perfluorodecalin, a solvent approved by the FDA to be used as a

component in artificial blood surrogate. Furthermore, the fluorescence quantum yield of the

polymer in this solvent was 0.95, which is extraordinarily high even for a fluorescent polymer.

Experimental Section

General

All air- and moisture-sensitive synthetic manipulations were performed under an argon

atmosphere using standard Schlenk techniques. Column chromatography was performed using

ultra pure silica gel (SILIYCYCLE, 40-63 jim). NMR spectra were obtained on a Varian

Mercury-300 spectrometer, and all proton chemical shifts are referenced to residual CHCl3 or

THF-d8 , and all fluorine chemical shifts are referenced to an external CFCl3 standard. High-

resolution mass spectra were obtained at the MIT Department of Chemistry Instrumentation

Facility (DCIF) on a Bruker Daltronics APEX 113 Tesla FT-ICR-MS. Polymer molecular

weights and polydispersity indexes were estimated by gel permeation chromatography (GPC)

using a HP series 1100 GPC system. Polystyrene standards were used for calibration, and

tetrahydrofuran (THF) was used as the eluent at a flow rate of 1.0 mL/min. Fluorescence spectra

were measured on a SPEX Fluorolog-T3 fluorimeter (model FL-321, 450 W Xenon lamp) using

right-angle detection for solutions and front-face detection for thin films. Ultraviolet-visible

absorption spectra were measured with an Agilent 8453 diode array spectrophotometer and

corrected for background signal with a solvent-filled cuvette for solutions and glass slide for thin

films. Fluorescence quantum yields of polymer solutions were determined by the optically dilute

method' 9 using quinine sulfate in 0.1M H2SO4, coumarin 6 in ethanol, or 9,10-

diphenylanthracene in hexanes as standards and were corrected for solvent refractive index and



absorption differences at the excitation wavelength. Fluorescence quantum yields of polymer

thin films were determined using 9,10-diphenylanthracene in poly(methyl methacrylate)

(PMMA)(<} = 0.83).2' Dynamic light scattering (DLS) data for polymer length distribution was

obtained from Wyatt Technologies DynaPro Titan using perfluoro(methylcyclohexane) and

perfluorodecalin as solvents.

Materials

All solvents were spectral grade unless otherwise noted. Anhydrous toluene and was

obtained using a solvent purification system (Innovative Technologies). Tetrahydrofuran (THF)

was dried by refluxing overnight over freshly cut sodium and benzophenone, followed by

distillation under argon. Perfluorohexyl iodide (C6 F1 31) was freshly distilled before use.

Diisopropyl amine was distilled over calcium hydride and stored over activated 4A molecular

sieves. Perfluoro(methylcyclohexane) and FC-77 (perfluorooctane) was purified according to

literature procedures for fluorocarbons2 1 prior to use. All other chemicals were used as received.

Solvents for polymerization (perfluoro(methylcyclohexane), toluene, and diisopropyl amine)

were degassed via freeze-pump-thaw prior to use.

Synthesis

C6 F13 - H

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooct-1-yne. A flame-dried 50 mL round-bottom flask

equipped with distillation apparatus was charged with 5,5,6,6,7,7,8,8,9,9,10,10,1 0-tridecafluoro-

2-methyldec-3-yn-2-o122 (35.3 g, 88 mmol) and NaOH pellets (2.5 g, 61 mmol) under argon. The

pressure was reduced to 400 mmHg and the flask was heated to 100'C. The crude product was



collected over an hour in a receiving flask in a brine/ice bath. The product was washed 3 times

with distilled water and was subsequently dried over MgSO 4. Removal of drying agent via

filtration gave the title compound (13.4 g, 46%) as a clear liquid. B.p. 92-940 C. 'H NMR (300

MHz, CDCl 3): 6 3.07 (t, JH-F = 5.7 Hz, 1H). 19F NMR (282 MHz, CDCl 3): 6 -126.69 (2F), -

123.39 (2F), -123.25 (2F), -121.83 (2F), -99.76 (2F), -81.33 (3F).

H

C6F13 CF1

(Z)-1,1,1,2,2,3,3,4,4,5,5,6,6,9,9,10,10,11,11,12,12,13,13,14,14,14-hexacosafluoro-7-

iodotetradec-7-ene. 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooct-1-yne (17.5 g, 50 mmol) and

C6F13I (33.4 g, 75 mmol) were added to a 470 mL Parr bomb under N2, and the reaction was

sealed and heated to 230'C. The pressure of the reaction vessel increased initially to 95-100 psi,

and was gradually reduced to 28 psi over 3 hours. The reaction was removed from heat and

allowed to cool to room temperature before exposing the reaction chamber to atmosphere. The

excess C6F131 was removed by distillation at 10 mmHg, and the title compound (31.8 g, 80%)

was obtained as a clear liquid by distillation at 6 mmHg. B.p. 99-101'C (6 mmHg). 1H NMR

(300 MHz, CDCl 3): 6 7.14 (t, JH-F 12.6 Hz, 1H). '9F NMR (282 MHz, CDCl 3): 6 -126.62 (4F),

-123.35 (6F), -122.22 (2F), -121.18 (2F), -119.25 (2F), -111.34 (4F), -104.21 (2F), -81.21 (6F).

HR-MS (EI): calcd for C14HF261 789.8702; found 789.8723.

C6 F13 - C6F13

Perfluoro(7-tetradecyne) (1). A flame-dried 100 mL round-bottom flask was charged with

anhydrous KOH (10 g, 170 mmol) under argon in the glove box. Outside the glove box, (Z)-

1,1,1,2,2,3,3,4,4,5,5,6,6,9,9,10,10,11,11,12,12,13,13,14,14,14-hexacosafluoro-7-iodotetradec-7-

ene (27.7 g, 35 mmol) was added, and the flask was equipped with a 15 cm vigreux column and



a short-path distillation apparatus. The pressure was decreased to 6 mmHg, and the reaction

mixture was placed in an oil bath pre-heated to 60'C. The reaction was heated slowly to

105 0C.** The product collected in the receiving flask was further purified by distillation at 6

mmHg (65-67'C) and the title compound (8.8 g, 38%) was obtained as a clear liquid. B.p. 65-

67'C (6 mmHg). 1H NMR (300 MHz, CDCl 3): blank. 9F NMR (282 MHz, CDCl3): 6 -126.43

(4F), -123.14 (4F), -122.83 (4F), -121.61 (4F), -102.44 (4F), -81.04 (6F).

** WARNING: The reaction is often violent and increasing the temperature at rates above

20C/min, using a smaller reaction flask, and/or starting the reaction above 6 mmHg can lead to

explosion. Extreme caution should be taken when setting up this reaction.

C8F17  .- F3C . C8F17  F 3C

F3C C8 F17  F3C C8F17

TIPS - TIPS + TIPS - / -- TIPS TIPS - --- TIPS + TIPS - --- TIPS

CF 3  CF 3  CBF 17  C8 F 1 7

C8F17  C8 F17  F3C F3C

anti-4-1 anti-4-2 syn-4-1 syn-4-2

Compound 4. A flame-dried 45 mL pressure tube was charged with 323 (3.0 g, 4.7 mmol), 214

(8.8 g, 17.2 mmol), and xylenes (18 mL). The reaction mixture was degassed by bubbling argon

through for 20 minutes while stirring. The reaction vessel was then sealed and heated to 145*C.

The color of the reaction changed gradually from deep blue to yellow over 3 days, at which point

the reaction was allowed to cool to room temperature. Solvent and excess 2 were removed via

distillation. The crude product was recrystallized from hexanes to give a mixture anti isomer

s(1.27 g, 16%). The mother liquor was concentrated under reduced pressure and recrystallized

from acetone to give mixtures of both syn and anti isomers (3.46 g, 44%). The mother liquor was

concentrated in vacuo and purified by column chromatography (silica gel, 100% hexanes) to give

a mixture of syn isomers (3.05 g, 38%). Anti (anti-4 mixture): M.p. > 300*C. 'H NMR (300



MHz, CDC13): 6 1.28 (m, 42H), (5.92 and 5.97) (s, 4H), 7.12 (dd, JH-H= 5.4 and 3.3 Hz, 4H),

(7.36 and 7.39) (dd. J = 5.4 and 3.3 Hz, 4H). Syn (syn-4-2 mixture): M.p. > 300'C. 'H NMR

(300 MHz, CDCl 3): 6 1.28 (m, 42H), (5.97, 5.97, 5.92, 5.91) (s, 4H), 7.03 (dd, JH-H= 5.4 and 3.3

Hz, 4H), 7.278(dd. J= 5.4 and 3.3 Hz, 4H).

C6F13 / C F13 ---

C6F13 C6F13

TIPS / ---- TIPS + TIPS -- -- TIPS

C6F1 3 6F13

C6F13  ~ C6F13

syn-5 anti-5

Compound 5. A flame-dried 25 mL pressure tube was charged with 323 (640 mg, 1.0 mmol), 1

(2.0 g, 3.0 mmol), and xylenes (6 mL). The reaction mixture was degassed by bubbling argon

through for 20 minutes while stirring. The reaction vessel was then placed in an oil bath at 80'C.

After stirring for 20 minutes, the reaction mixture was homogenized with a high-sheer mixer for

20 seconds. The reaction vessel was then sealed and heated to 145*C. The color of the reaction

changed gradually from deep blue to yellow over 4 days, at which point the reaction was allowed

to cool to room temperature. Solvent and excess 1 were removed via distillation. The crude

product was recrystallized in dichloromethane to give the anti-5 (217 mg, 11%). The mother

liquor was concentrated and was purified by column chromatography (silica gel, 100% hexanes),

followed by recrystallization from acetone to give the syn-5 (1.44 g, 73%) as rod-like crystals

and an additional batch of anti-5 (32 mg, combined yield of 13%). Anti (anti-5): M.p. > 300'C.

1H NMR (300 MHz, CDCl 3): 6 1.28 (s, 42H), 5.97 (s, 4H), 7.11 (dd, JH-H= 5.4 and 3.3 Hz, 4H),

7.36 (dd. H-HJ= 5.4 and 3.3 Hz, 4H). 19F NMR (282 MHz, CDCl 3): 6 -126.73 (4F), -123.41 (4F),

-122.33 (4F), -119.58 (4F), -109.62 (4F), -81.33 (6F). HR-MS (El): calcd for C76H38F 5 2Si2

1994.1676; found 1994.1624. Syn (syn-5): M.p. > 300'C. 1H NMR (300 MHz, CDCl 3): 6 1.28



(s, 42H), 5.97 (s, 4H), 7.03 (dd, J= 5.4 and 3.3 Hz, 4H), 7.27 (dd. J= 5.4 and 3.3 Hz, 4H). 'F

NMR (282 MHz, CDC13 ): 6 -126.77 (4F), -123.47 (4F), -122.50 (4F), -119.83 (4F), -109.50 (2F),

-108.30 (2F), -81.47 (6F). HR-MS (El): calcd for C7 6H3 8F5 2Si2 1994.1676; found 1994.1624.

C8F17

F3 C

C8F17

F3C

6-1

Compound 6-1. In a flame-dried 100 mL round bottom flask under argon, syn-4 mixture (840

mg, 0.51 mmol) was dissolved in anhydrous THF (20 mL). The flask was cooled to -78'C in dry

ice/acetone bath. Tetrabutyl ammonium fluoride (1.2 mL, 1.2 mmol) solution was added

dropwise. The reaction was stirred at -78'C for 30 minutes. After warming up to room

temperature, the reaction mixture was diluted with 10 mL ethyl acetate and 40 mL hexanes and

subsequently passed through a plug of silica gel. The solvents were evaporated under reduced

pressure and the crude product was purified by column chromatography (silica gel, 5% CH 2Cl 2

in hexanes as the eluent) followed by recrystallization from ethanol to give 6-1 as needle-like

solids (430 mg, 63%). M.p. > 300 0C. 'H NMR (300 MHz, CDCl 3): 6 3.73 (s, 2H), 5.85 (s, 2H),

5.91 (s, 2H), 7.04 (dd, JH-H = 5.3, 3.3 Hz, 4H), 7.37 (dd, JH-H = 5.3, 3.3 Hz, 4H). 9F NMR (282

MHz, CDCl 3): 6 -126.49 (2F), -123.05 (2F), -122.19 (6F), -120.84 (2F), -81.04 (3F), -61.57 (3F).

HR-MS (ESI): calcd for C54H 14F5 2 1373.0354 [M+Na]*; found 1673.0371.



C6F13

C6F13

H __. - H

C6F13

7

Compound 7. In a flame-dried 100 mL round bottom flask under argon, syn-5 (800 mg, 0.41

mmol) was dissolved in anhydrous THF (20 mL). The flask was cooled to -78'C in dry

ice/acetone bath. Tetrabutyl ammonium fluoride (0.85 mL, 0.85 mmol) solution was added

dropwise. The reaction was stirred at -78'C for 20 minutes. After warming up to room

temperature, the reaction mixture was diluted with 10 mL ethyl acetate and 40 mL hexanes and

subsequently passed through a plug of silica gel. The solvents were evaporated under reduced

pressure and the crude product was purified by column chromatography (silica gel, hexanes as

the eluent) to give 7 as white, foamy solids (690 mg, quantitative). M.p. > 300'C. 'H NMR (300

MHz, CDCl 3 ): 6 3.73 (s, 2H), 5.90 (s, 4H), 7.04 (dd, JH-H = 5.4, 3.1 Hz, 4H), 7.37 (dd, JH-H

5.4, 3.1 Hz, 4H). '9F NMR (282 MHz, CDCl 3): 8 -126.70 (4F), -123.38 (4F), -122.47 (4F), -

119.86 (4F), -108.89 (2F), -108.57 (2F), -81.34 (6F). HR-MS (ESI): calcd for C54H14F5 2

1673.0157 [M+Na]*; found 1673.0192.

C6F13-

C6F13

TMS ~-~--~-~ TMS

C6F13

C6F13
9

Compound 9. Flame-dried 10 mL Schenk flask was charged with 7 (415 mg, 0.251 mmol), 4-

iodophenylethynyl trimethylsilane (180 mg, 0.600 mmol), Pd(PPh 3)2Cl2 (9.0 mg, 0.013 mmol),

and copper(I) iodide (5.0 mg, 0.026 mmol). The flask was evacuated and back-filled with argon



three times. Toluene (2 mL) and diisopropyl amine (1 mL), degassed by freeze-pump-thaw, was

added via syringe. The reaction mixture was stirred at 40'C for 12 hours. The reaction mixture

was poured into 100 mL hexanes / 100 mL aqueous hydrochloric acid (0.1 M). The organic layer

was washed with saturated aqueous sodium bicarbonate solution followed by water, dried over

MgSO 4, and solvent removed under reduced pressure. Crude product was purified by column

chromatography (silica gel, gradient from 100% hexanes to 5 % dichloromethane in hexanes) to

give 9 as off-white solids (478 mg, 95%). M.p. > 300 0C. 'H NMR (300 MHz, CDCl 3): 6 0.30 (s,

18H), 5.95 (s, 4H), 7.05 (dd, JH-H = 5.4, 3.0 Hz, 4H), 7.40 (dd, JH-H = 5.4, 3.0 Hz, 4H), 7.56 (s,

8H). '9F NMR (282 MHz, CDCl 3): 8 -126.53 (4F), -123.25 (4F), -122.32 (4F), -119.77 (4F), -

108.53 (2F), -108.26 (2F), -81.17 (6F). HR-MS (El): calcd for C76H38F52Si 2 1994.1676; found

1994.1624.

C6F13-

C6F13

H ---- - H

C6F13

CWF13'

10

Monomer 10. In a 50 mL round bottom flask under argon, 9 (320 mg, 0.160 mmol) was

dissolved in 10 mL anhydrous tetrahydrofuran. The solution was cooled to -78 C, and

tetrabutylammonium fluoride (1.0 M in tetrahydrofuran, 0.340 mL, 0.340 mmol) was added

dropwise. The reaction mixture was stirred at -78'C for 30 minutes and warmed up to room

temperature, and subsequently passed over a plug of silica gel, eluting with 25 % ethyl acetate in

hexanes. The solvents were removed under reduced pressure, and the crude product was purified

by column chromatography (silica gel, 2% dichloromethane in hexanes) to give 10 as an off-

white powder (276 mg, 93%). M.p. > 3000C. 'H NMR (300 MHz, CDCl 3 ): 6 3.26 (s, 2H), 5.95



(s, 4H), 7.06 (dd, JH-H = 5.3, 3.0 Hz, 4H), 7.40 (dd, JH-H = 5.3, 3.0 Hz, 4H), 7.59 (s, 8H). 19F

NMR (282 MHz, CDC13): 6 -126.71 (4F), -123.42 (4F), -122.49 (4F), -119.84 (4F), -108.72 (2F),

-108.33 (2F), -81.35 (6F). HR-MS (ESI): calcd for C70 H2 2F5 2 1873.0783 [M+Na]*; found

1873.0822.

C6F13

C6F13

1,4-bis(perfluorohexyl)benzene. A 100 ml Schlenk flask equipped with a stir bar was flame-

dried and then charged with 1,4-diiodobenzene (3.30g, 10 mmol), Cu powder (5.08 g, 80 mmol),

and 2,2'-bipy (156 mg, 1 mmol). The flask was evacuated and back-filled with argon three times.

Anhydrous dimethylsulfoxide (30 mL) was added via a syringe. Perfluorohexyl iodide (6.5 mL,

30 mmol) was added dropwise while stirring. Upon completion of addition, the reaction mixture

was heated to 70 'C for 72 hours then removed from heat. The reaction mixture was poured into

100 mL H20 / 100 mL diethyl ether and stirred vigorously for 30 min. Solid residues were

removed by filtration, and the organic layer was washed twice with dilute NH40H solution,

twice with water, dried over MgSO 4. The solvent was removed by evaporation under reduced

pressure, and the resulting off-white solids were subjected to sublimation (0.025 mmHg, 70'C)

to give the title compound as white solids (5.61 g, 78 %). 'H NMR (300 MHz, CDCl 3): 6 7.77 (s,

4H). '9F NMR (282 MHz, CDCl 3): 6 -126.58 (4F), -123.26 (4F), -122.15 (4F), -121.87 (4F), -

111.71 (4F), -81.16 (6F).



C6F13
Br

Br

C6F13

1,4-dibromo-2,5-bis(perfluorohexyl) benzene. A 50 mL round-bottom flask was chaged with

1,4-bis(perfluorohexyl)benzene (2.00 g, 2.80 mmol), trifluoroacetic acid (20.0 mL), and

concentrated H2 SO 4 (6.0 mL). The reaction mixture was heated to 60 'C, and N-

bromosuccinimide (1.50 g, 8.43 mmol) was added in portions (250 mg/hr) over 6 hours. The

stirring was continued for 48 hours at 60 *C, and the reaction mixture was poured into iced water.

Yellow precipitate was collected by filtration and were recrystallized twice in ethanol to give the

title compound as clear crystals (1.27 g, 52%). 'H NMR (300 MHz, CDCl3): 6 7.94 (s, 2H) '9F

NMR (282 MHz, CDCl 3): 6 -126.60 (4F), -123.16 (4F), -122.31 (4F), -119.70 (4F), -108.01 (4F),

-81.23 (6F). HR-MS (El): calcd for CisH 2Br 2F26 871.8090; found 871.8049.

C6F13

C6 F13
8

1,4-diiodo-2,5-bis(perfluorohexyl) benzene (8). A flame-dried 100 mL round-bottom flask was

charged with 1,4-dibromo-2,5-bis(perfluorohexyl) benzene (872 mg, 1.0 mmol), and evacuated

and back-filled with argon three times. Anhydrous diethyl ether (8.0 mL) and anhydrous

tetrahydrofuran (8.0 mL) were added via syringe. The flask was cooled to -78'C and tert-

butyllithium (1.5 M in pentanes, 3.0 mL, 4.5 mmol) was added dropwise over 15 minutes. The

stirring was continuted for 1.5 hours at -78'C and diiodoethane (900 mg, 3.2 mmol) was added

in one portion. The reaction was stirred in the dark at -78'C for an additional hour and was

removed from bath. The stirring continued for an additional 16 hours. Water (50 mL) was added

56



to quench the reaction and the mixture was extracted with diethyl ether (2 X 50 mL). Organic

layer was washed twice with NaOH solution (0.2 M), water, then brine, and solvent was

removed under reduced pressure. Crude product was recrystallized in ethanol to give 8 (898mg,

93 %). M.p. 129-131 0C. 'H NMR (300 MHz, CDC13): 6 8.14 (s, 2H). 19F NMR (282 MHz,

CDCl 3): 6 -126.31 (4F), -122.88 (4F), -121.83 (4F), -118.83 (4F), -107.47 (4F), -80.93 (6F). HR-

MS (EI): calcd for C18H2F2612 965.7825; found 965.7859.

P1. A flame-dried 100 mL Schlenk vessel with teflon screw-on cap under argon was charged

with monomer 10 (74.35 mg, 0.0402 mmol), monomer 8 (37.67 mg, 0.0390 mmol), Pd(PPh 3)4

(2.30 mg, 0.0020 mmol), and Cul (0.40 mg, 0.0021 mmol). In a glove box,

perfluoromethylcyclohexane (6 mL), toluene (10 mL), and diisopropyl amine (2 mL) were added.

The Shlenk vessel was removed from the glove box and was stirred vigorously at 85'C for 3

days. The reaction mixture, which was initially biphasic, became monophasic at c.a. 82*C. After

allowing to cool down to room temperature, 10 mL of FC-77 was added. The fluorous (lower)

phase, which was fluorescent, was subsequently removed and was washed 3 times with methanol

(5 mL each), 3 times with ethyl acetate (5 mL each), and 3 times with acetone (5 mL each).

Removal of the fluorous solvents under reduced pressure yielded P1 as a yellow film, which was

detached from the flask via sonication in ethanol (20 mL). Ethanol was then removed under

reduced pressure to give P1 (89.7 mg, 87%) as a bright yellow film. Polymer persistence length

= 16.4 nm. 'H NMR (500 MHz, FC-77, C6D6 external lock): 6 8.15-7.26 (br, 14H), 6.89 (br, 4H),

6.23 (br, 4H).



P2. A flame-dried 100 mL Schlenk vessel with teflon screw-on cap under argon was charged

with monomer 10 (28.60 mg, 0.01505 mmol), monomer 116 (11.17 mg, 0.01500 mmol),

Pd(PPh3)4 (0.80 mg, 0.00069 mmol), and Cul (0.20 mg, 0.0011 mmol). In a glove box,

perfluoromethylcyclohexane (5 mL), toluene (10 mL), and diisopropyl amine (5 mL) were added.

The Shlenk vessel was removed from the glove box and was stirred vigorously at 70'C for 3

days. The reaction mixture, which was initially biphasic, became monophasic at c.a. 65'C. After

allowing to cool down to room temperature the fluorous layer, which was not fluorescent, was

removed. The organic layer was divided into two portions and each portion was added to 50 mL

methanol. Yellow precipitates were collected via centrifugation, and the process was repeated

three times with methanol, followed by three times with acetone to give P2 (27.6 mg, 78%) as

bright yellow solids after drying under vacuum. Mn = 520 kDa; PDI = 5.48; DP = 219 (THF-

GPC). 'H NMR (500 MHz, CDCl 3 ): 6 7.67 (br, 8H), 7.44 (br, 4H), 7.11 (br, 6H), 6.00 (br, 4H),

4.12 (br, 4H), 1.93 (br, 4H), 1.61 (br, 4H), 1.44 (br, 4H), 1.26 (br, 36H), 0.84 (t, 6H). 19F NMR

(282 MHz, CDCl 3): 6 -126.66 (4F), -123.37 (4F), -122.38 (4F), -119.71 (4F), -108.72 (2F), -

108.19 (2F), -81.32 (6F).

__I TMS

Pd(PPh 3)2Cl2, CuR

toluene/diisopropyl amine
50*C, 24 h.

S1 TBAF,THF R = TMS

r.t. 20 min R = H S2

Monomer S2. Flame-dried 10 mL Schenk flask was charged with S1 (180 mg, 0.376 mmol), 4-

iodophenylethynyl trimethylsilane (237 mg, 0.790 mmol), Pd(PPh3)2Cl 2 (13.2 mg, 0.019 mmol),

and copper(I) iodide (7.2 mg, 0.038 mmol). The flask was evacuated and back-filled with argon
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three times. Toluene (2 mL) and diisopropyl amine (0.5 mL), degassed by freeze-pump-thaw,

was added via syringe. The reaction mixture was stirred at 60'C for 16 hours. The reaction

mixture was then precipitated into methanol (50 mL). The solids were further cleaned by re-

precipitation in methanol three times, followed by re-precipitation in acetone three times. The

resulting off-white solids were suspended in 10 mL anhydrous tetrahydrofuran under argon.

Tetrabutylammonium fluoride (1.0 M in tetrahydrofuran, 0.770 mL, 0.770 mmol) was added

dropwise. The reaction mixture was stirred at room temperature for 15 minutes, and

subsequently passed over a plug of silica gel, eluting with 50 % dichloromethane in hexanes. The

solvents were removed under reduced pressure, and the crude product was purified by column

chromatography (silica gel, 30% dichloromethane in hexanes) to give S2 as an off-white powder

(203 mg, 81% over two steps). M.p. > 300 0C. 'H NMR (300 MHz, CDCl 3): 6 3.27 (s, 2H), 5.86

(s, 4H), 6.96 (dd, J = 5.1, 3.3 Hz, 8H), 7.38 (dd, J = 5.1, 3.3 Hz, 8H), 7.65 (d, J = 5.1 Hz, 4H),

7.75 (d, J = 5.1 Hz, 4H). 13C NMR (300 MHz, CDCl 3): 6 52.52, 79.55, 83.46, 87.08, 96.54,

114.92, 122.65, 124.00, 124.07, 125.57, 141.90, 132.58, 144.33, 144.92.

P3. A flame-dried 100 mL Schlenk vessel with teflon screw-on cap under argon was charged

with monomer S2 (69.92 mg, 0.103 mmol), 1,4-diiodo-2,5-dioctylbenzene (55.43 mg, 0.100

mmol), Pd(PPh 3)4 (5.8 mg, 0.050 mmol), and Cul (1.3 mg, 0.070 mmol). In a glove box, toluene

(16 mL), and diisopropyl amine (4 mL) were added. The Shlenk vessel was removed from the

glove box and was stirred at 750 C for 3 days. The reaction was then precipitated into 100 mL

methanol. Yellow precipitates were collected via centrifugation, and the process was repeated

three times with methanol, followed by three times with acetone to give P3 (66.7 mg, 68%) as

bright yellow solids after drying under vacuum. Mn = 73.7 kDa; PDI = 10.5; DP = 75 (THF-



GPC). 'H NMR (500 MHz, THF-d8): 6 7.92 (br, 4H), 7.78 (br, 4H), 7.52 (br, 2H), 7.41 (br, 8H),

6.95 (br, 8H), 6.00 (br, 4H), 1.30-1.60 (br, 24H), 1.44 (br, 4H), 0.98 (br, 10H).
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Table 2-2. Crystal data and structure refinement for 10.

Compound

Identification code

Empirical formula

Formula Weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

10

11183

C70 H22 F52

1850.862

100(2) K

0.71073 A

Triclinic

P1

a= 14.7185(11)
b = 16.0923(12)
c = 16.5895(12)
3478.25 A3

= 69.4790(10)0
p3=88.2100(10)0
y = 71.6190(10)

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta =

30.520
Absorption correction

Max. and min. transmission

Refinement method

Data/restraints/parameters

Goodness-of-fit on F2

1.767 g/cm 3

0.201 mm~1

1820

0.12 mm x 0.25 mm x 0.30 mm

2.26 to 30.52 0

-20<h<20, -22 <k22,
-23 < k < 23
86526

19989

99.5%

Multi-scan

0.9763 and 0.9421

Full-matrix least-squares on F2

19989 / 645 / 1208

1.017
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CHAPTER 3

Properties and Sensory Applications of Fluorous
Poly(para-Phenyleneethynylene)



Introduction

Since the late 1990s, fluorescent conjugated polymers (CPs) have been recognized as an

important class of materials for sensory applications.' The advantages of CPs over traditional

small-molecules in sensory applications is that the extended n-conjugated structure of CPs, often

described as "molecular wires," 2 features large signal amplification in fluorescence-based

sensing due to facile diffusion of excitons through the polymer backbone. Small energy

perturbations, such as those caused by analyte binding event, on a monomer unit can therefore

produce observable changes in the emissive properties of the entire polymer chain (Figure 3-1).

Such efficient delocalization is observed in both solution 3 and in solid state,4 allowing for both

solution-phase and solid-phase sensing.

Conduction
Band

b-- LUMO (Analyte)

Valee++
Band

In

Receptors Analvte

Figure 3-1. Schematic representation of sensing activity of a CP chain. Excitons migrating

along the polymer backbone are quenched when a non-emissive pathway for recombination is

provided by an analyte.

Electron-rich PPEs, such as the one shown in Figure 3-2, with rigid three-dimensional

architecture have been previously synthesized by our group and have been shown to be excellent

sensors of electron-deficient aromatics.4 5 The fluorescence of these polymers in thin film show



strong quenching response to nitroaromatic compounds, including TNT at equilibrium vapor

pressure (10 ppb).

C14H290

OC14H29

Figure 3-2. Structure of an electron-rich PPE with efficient quenching response to TNT.

An electron-poor PPE with [2.2.2] bicyclic architecture with pendant -CF 3 groups has

also been previously reported. The polymer in solution was demonstrated to be efficiently

quenched by electron-rich aromatic systems such as indole. From thin films of this polymer,

however, a novel emissive signal was observed upon exposure to indole vapor, which was

attributed to exciplex formation.6 In some cases, [2.2.2] bicyclic structures were reported to

undergo thermal and/or photophysical decomposition via retro Diels-Alder reaction, creating

lower band-gap anthryl defects along the polymer chains (Figure 3-3).7 The emissions from the

defect sites were prominent in thin films while negligible in solution. This is probably due to

enhanced interchain exciton migration in solid state. Stable electron-poor PPEs, which can detect

electron-rich analytes in vapor phase, are therefore of interest.

Thin-films of PPEs have been coated on to solids supports, such as silica microspheres,8

in order to achieve emissive water-soluble and water-dispersible platforms. While this approach

has potentials biological imaging and sensing applications, difficulties of modifying polymer-

coated bead surfaces poses a major challenge. Furthermore, solubility properties of the solid

supports vary heavily depending on the nature of the polymer coating the outermost surface, and



presence of water-soluble side chains is required on PPEs in order to make PPE-coated particles

soluble in water. Novel water-soluble PPE-based emissive platforms, therefore, are of interest for

their potential of expanding the applications of these highly fluorescent materials.
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Figure 3-3. Anthryl defect formation in PPEs via retro Diels-Alder reaction.

In this chapter, quenching studies of thin films of P1 (Chapter 2) is discussed, followed

by the synthesis of fluorescent fluorous emulsions in PBS buffer (pH 7.4). The thin films of P1

are photophysically and chemically stable, displaying excellent stability under UV irradiation

and upon exposure to basic vapors such as indole and aniline. Fluorescence of P1 is efficiently

quenched by vapors of electron-rich aromatic molecules such as indole, aniline, and phenol.

Furthermore, P1 could be processed into fluorocarbon-in-water emulsions, preliminary studies of

which suggest that it is possible to modify the surface of the emulsion for potential imaging

applications.



Results and Discussion

Thin Film Properties

Thin films of P1 spun-cast from perfluoro(methylcyclohexane) solutions onto glass were

studied. Films cast from solutions with concentrations above 0.05 mg/ml gave emission signals

with a relatively intense and broad shoulder, likely due to aggregation. Furthermore, emission

from these films was too high for consistent measurement. Formation of aggregation was

initially associated with the fluorous nature of the polymer resulting in unfavorable interactions

with glass substrate surface. Treatment of glass surfaces with 1H,]H,2H,2H-

perfluorodecyltrichlrosilane prior to spin-casting, however, did not lead to reduction of the

intensity of the shoulder. When films were cast onto untreated glass from solutions with

concentrations of 0.025 mg/ml, the emission spectrum resembled that of the polymer in fluorous

solutions. The studies discussed in this section are from thin-films cast from 0.025 mg/ml

solutions of P1 in perfluoro(methylcyclohexane). The optical densities of films prepared in this

manner were 0.014 ± 0.001.

Water droplet contact angle, the angle at which water/air interface meets a solid surface,

is a useful measurement for determination of relative surface energies of solid substrates. Among

various methods of measuring contact angles, the dynamic sessile drop method measures both

the maximum and minimum contact angle achievable on a solid substrate by dynamically adding

and removing small volumes of water to and from the droplet. Water contact angle

measurements using this method showed that thin films of P1 had surface energies on par with

that of Teflon (Figure 3-4). Both advancing and receding contact angle values were similar to

those of Teflon-coated aluminum foil substrates. Prolonged exposure of the thin film to water

droplets, however, led to detachment of the film from the surface of glass slides.
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Figure 3-4. Schematic representation of dynamic sessile measurement (a), and side-long view of

advancing (left) and receding (right) water droplets on Teflon (b) and P1 thin film (c).



Prior to thin-film quenching studies, the polymer's solid state photostability was tested by

exposing the films to continuous UV irradiation at 395 nm (Figure 3-5). At maximum excitation

intensity (6.0 mW), the 97.5% of fluorescence intensity remained after a 15-minute exposure. At

excitation intensities where all photophysical measurements discussed in this chapter were

conducted, 98.6% of fluorescence intensity remained after 15 minutes. These values are higher

than those reported for typical PPEs.6

1.01 1.01-D
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Figure 3-5. Time-dependent fluorescence intensity of a thin-film of P1 under continuous

irradiation at its absorption maximum using maximum excitation intensity (red) and at excitation

intensity used in sensing studies (blue).

Thin Film Fluorescence Studies

With photostable and highly emissive thin films with very low surface energy in hand,

we set out to test the stability of the films under exposure to chemical vapors and the potential

for using P1 as a sensor for electron-rich aromatic substrates. The fluorescence response of thin

films of P1 to various analytes in vapor phase was monitored by inserting a thin film into a



sealed 20 mL quartz cuvette at room temperature containing small quantities of solid (indole and

phenol) and liquid (benzene, toluene, hexafluorobenzene, and aniline) analytes so that the film

was not in direct contact with an analyte. The films were then continuously irradiated at 395 nm

over a specific period of time while monitoring the emission intensity at the emission maximum

(428 nm) at 0.5-second intervals. The fluorescence intensities were normalized to the value

measured before the films were exposed to the analyte. Full emission spectra (410-650 nm) were

also acquired before and after exposure to monitor the shape of the emission curves for possible

defect formation.

Fluorescence response of P1 thin films to indole, phenol, and aniline vapor are shown in

Figure 3-6. Upon exposure to indole (vapor pressure = 0.012 mmHg), the fluorescence of the

thin film was reduced to -60 % of original intensity immediately and to -14% over 15 minutes

(Figure 3-6a). Emission from anthryl defects were not observed during the quenching studies,

indicating that the [2.2.2] bicyclic core structure of P1 remained intact.

Fluorescence change of the thin film upon exposure to phenol vapor (vapor pressure

0.35 mmHg) is shown in Figure 3-6b. Quenching is less efficient compared to indole, with

fluorescence reduction of -20% over 15 minutes. The emission spectra before and after 15-

minute exposure to phenol indicate that there is a slight blue-shift (4 nm) in the emission

maximum.

Aniline (vapor pressure = 0.70 mmHg) induced a very efficient quenching response from

a thin film of P1 (Figure 3-6c). Fluorescence of the thin film was reduced to nearly 8% of the

original intensity upon exposure, and eventually to 3% over 15-minutes. The higher rate and the

larger degree of quenching compared to indole could be attributed to the higher equilibrium

vapor pressure of aniline.
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Fluorescence response to toluene, benzene, and hexafluorobenzene are shown in Figure

3-7. Exposure to toluene (vapor pressure = 26 mmHg) vapor (Figure 3-7a) led to a gradual

enhancement in fluorescence to 130% of the original intensity over 15 minutes. The emission

spectra acquired before and after the 15-minute exposure demonstrate that only the emission

maximum is enhanced, while there is no noticeable change in the rest of the emission curve. This

suggests that the enhancement is coming from deaggregation of the polymer by toluene uptake.

The fluorescence enhancement is more prominent with the more volatile benzene (vapor

pressure = 75 mm Hg) (Figure 3-7b). Nearly 40% increase was observed over 3 minutes, and the

enhanced fluorescence was maintained in presence of benzene. After removal of benzene,

original emission intensity was restored in a few seconds.

Given the response of P1 to toluene and benzene vapors, it was anticipated that similar

behavior could be observed from exposure of the thin film to hexafluorobenzene (vapor pressure

= 95 mmHg). Hexafluorobenzene has been reported to dissolve fluorous polymers such as

poly(hexafluoropropylene) and poly(methacrylate)s bearing perfluoroalkyl chains.9 When a thin

film of P1 was exposed to hexafluorobenzene vapor, however, no enhancement of fluorescence

was observed (Figure 3-7c). Upon exposure, there was about 5% reduction in fluorescence over

2.5 minutes, followed by slow recovery of fluorescence to 97.5% of original intensity over 15

minutes.

In summary, electron-rich aromatic compounds, such as indole, phenol, and aniline,

caused quenching of fluorescence from thin films of P1. Toluene and benzene enhanced

fluorescence, probably by swelling the thin film. In the case of hexafluorobenzene, small initial

quenching response was followed with a recovery of fluorescence. None of these analytes caused

formation of novel emission peaks, suggesting that P1 in solid state is stable to these vapors.
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Fluorescent Aqueous Fluorous Phase Emulsion

In order to make possible sensory applications of our fluorous-phase soluble fluorescent

polymer in aqueous environments, we set out to process fluorous solutions of P1 into stable

emulsion in water with easily modifiable functional groups adorning the surface.

Various fluorocarbon-in-water emulsions formed with'0 and without" surfactants have

previously been reported. The majority of research effort involving these emulsions focuses on

the coarsening mechanism of the emulsion and formulation of biocompatible and stable

surfactants which would prevent coarsening in both in vitro and in vivo settings. The focus of

this section is the synthesis of fluorescent fluorocarbon-in-water emulsions with chemically

modifiable surface.

Perfluorodecalin,12 which has been approved by the FDA for use as a component in

human blood surrogate, Fluosol-DA,' 3 (page 650) was chosen as the fluorous component of the

emulsion due to its non-toxic nature. Furthermore, P1 displayed a quantum yield of 0.95 in

perfluorodecalin (see Chapter 1). When a solution of P1 in perfluorodecalin was added slowly to

a hot solution of 2H,2H,3H,3H-perfluorononanoic acid (0.01 M) in IX PBS buffer (pH 7.4)

under probe sonication, a turbid and strongly fluorescent solution was obtained. After cooling

and filtering off excess 2H,2H,3H,3H-perfluorononanoic acid crystals, the solution was analyzed

via DLS, which showed presence of spherical emulsion with an average diameter of 245.8 ± 43.9

nm.

Figure 3-8 shows the absorption and emission spectra and a photograph of the emulsion

in PBS buffer. The absorption and emission spectra (Figure3-8a) were identical to that of P1 in

fluorous solution. The emulsion was highly fluorescent, with a quantum yield of 0.58. Surface

potential (Z-potential) measurement is a useful method of determining stability of colloidal



particles in water, because higher surface charge will discourage aggregation of particles.

Colloids with surface potential of ± 40 mV and higher are considered to have good stability."

Surface potential measurements of the emulsion of perfluorodecalin solution of P1 in PBS buffer

gave - 57 ± 13 mV, the sign of which was consistent with the presence of carboxylate moieties

on the surface and the degree which indicated that the surfaces of the emulsion are sufficiently

charged to confer good stability to the overall emulsion.
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Figure 3-8. (a) Absorption (dotted) and emission (solid) spectra of the emulsion of

perfluorodecalin solution of P1 in PBS buffer. The inset shows a pictorial representation of an

emulsion particle. (b) Photograph of the emulsion with (right) and without (left) irradiation with

hand-held laboratory UV lamp (long wave).

Increasing surfactant concentration in attempts to decrease the emulsion size resulted in a

greater Z-potential without a significant decrease in emulsion size. Doubling surfactant

concentration to 0.02 M gave Z-potential of - 79 ± 11 mV (1.4-fold increase) with emulsion size



of 242.1 ± 23.6 nm (no statistically significant difference). Further increasing concentrations of

the 2H,2H,3H,3H-perfluorononanoic acid caused significant amount of surfactant precipitating

upon cooling, with little fluorescence remaining in the solution. Phosphate surfactant with

perfluorooctyl groups (8:2 monoPAPS' 5 ) had lower solubility in PBS buffer compared to

2H,2H,3H,3H-perfluorononanoic acid, and emulsions synthesized with this surfactant gave

micron-scale emulsions (3-4 pm) with - 42± 6 mV Z-potential.

Emulsion Surface Modification

With carboxylate groups covering the surface of fluorescent fluorous emulsions, we set

out to investigate the possibility of modifying the surface via amide bond-fomring reaction. We

chose biotin, since derivatives of biotin that can be readily conjugated to carboxylic acid

moieties are readily available along with various dye-labeled streptavidin, a protein with a high
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affinity for biotin.16 Streptavidin is consisted of four equivalent monomeric units,' 7 each of

which has an equal affinity for biotin. We therefore expected that successful modification of

emulsions with biotin tags would produce an observable change.

Treatment of the emulsion with (+)-biotinyl-3,6,9-trioxaundecanediamine (Amine-PEG3-

Biotin; 1, Scheme 3-1) in presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) (EDC)

and N-hydroxysulfosuccinimide (sulfo-NHS) in PBS buffer (pH 7.4), followed by dialysis of the

resulting solution against PBS gave solutions without significant reduction in fluorescence (3,

Scheme 3-1). Treatment of the emulsion with 2-(2-(2-methoxyethoxy)ethoxy)ethanol (2) under

the same conditions gave solutions with reduced fluorescence (4), along with formation of

fluorescent precipitates.

Both emulsions were treated with streptavidin labeled with Texas Red@ dye, and

subsequently subjected to dialysis against PBS buffer. The resulting solutions were imaged with

confocal microscopy. Figure 3-9 and 3-10 shows images of emulsion 4 and 3, respectively,

treated with the dye-labeled streptavidin.

Figure 3-9. Confocal fluorescence microscope images of 4 treated with dye-labeled streptavidin,

with excitation wavelength of 364 nm (a) and 564 nm (b). Image c is an overlay of a and b.

White bar indicates 5 pim.



Even without the presence of biotin on the surface, the blue emission of the emulsion and

the red emission from Texas Red@ appear to be co-localized, with the blue emission coming

from the core and the red coming from the outer edges of the emulsion. The spherical shape of

the emulsion is maintained (Figure 3-9a), suggesting simple adsorption of streptavidin on the

negatively charged emulsion surface.

Figure 3-10. Confocal fluorescence microscope images of emulsion 3 treated with dye-labeled

streptavidin, with excitation wavelength of 364 nm (a, d) and 564 nm (b, e). Image c is an

overlay of a and b, and image f is an overlay of d and e. White bar indicates 5 pm.

In the case of biotin-labeled emulsion (3), large degrees of aggregation and loss of

spherical shape of the emulsion were observed upon treatment with streptavidin, with emission

from both the emulsion and Texas Red@ co-localizing (Figure 3-10 c and f). While the results
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are preliminary and significantly more control studies need to be conducted in order to confirm

surface modification, these observations suggest that the surface modification of the carboxylate-

coated emulsion maybe possible via peptide coupling reactions and the modified emulsions have

potentials in bioimaging applications. It can be expected that, with the emergence of novel

fluorocarbon-in-water emulsion formulations, fluorescent fluorous emulsions with various

molecular tags on their surfaces would be possible.

Conclusion

We have processed the fluorous fluorescent polymer, P1, into thin films and

fluorocarbon-in-water emulsions. The thin films show good stability under UV irradiation, and

display efficient quenching response to electron-rich aromatic systems such as indole and aniline.

Importantly, emissive signals from anthryl defects, which are known to occur in various PPEs

with a [2.2.2] bicyclic structure under UV irradiation or exposure to chemical vapors, are not

observed. The photophysical and chemical stability of P1 are promising characteristics for

potential application of the polymer in sensory devices as the active material.

The emulsion of perfluorodecalin solution of P1 in PBS buffer forms a homogenous

mixture with absorption and emission spectra identical to the parent polymer in fluorous solution.

Furthermore, an excellent quantum yield of 0.58 was achieved in an aqueous environment.

Preliminary results from EDC-mediated amide bond forming reactions on the emulsion show

promise in the potential for these emissive emulsions to be used in biosensing and imaging

applications.



Experimental Section

General

Fluorescence spectra were measured on a SPEX Fluorolog-1r3 fluorimeter (model FL-321,

450 W Xenon lamp) using right-angle detection for solutions and front-face detection for thin

films. Ultraviolet-visible absorption spectra were measured with an Agilent 8453 diode array

spectrophotometer and corrected for background signal with a solvent-filled cuvette for solutions

and glass slide for thin films. Fluorescence quantum yields of fluorescent emulsions were

determined by the optically dilute method1 8 using quinine sulfate in 0.1M H2SO 4 as the standard

and were corrected for solvent refractive index and absorption differences at the excitation

wavelength. The emulsion size and Z-potential was obtained from Malvern Zeta Sizer Nano

ZS90.

Thin films were prepared by carefully dropping 0.025 mg/ml solution of P1 onto

microscope slide cover slips and subsequently spinning the cover slip at 2000 rpm for 20 seconds.

The films were dried under air for 10 minutes prior to photophysical measurements. The thin

films were inserted into a Teflon cuvette lid featuring a cover slip holder. The holder with the

cover slip was initially inserted into an empty cuvette for initial emission acquisition. It was then

inserted into a 20 mL quartz cuvette containing small amounts of analyte at the bottom in order

to prevent the analytes from coming in direct contact with the thin film. Time-dependent

emission intensity was monitored at 428 nm at 0.5-second intervals with excitation at 395 nm.

Fluorescence confocal microscopy was conducted with Leica TCS SP2 confocal

microscope with pinhole set at 120 pim. Emission from emulsion were monitored at 375-450 nm,

and emission from Texas Red® was monitored at 600-750 inn.



Materials

All solvents were spectral grade unless otherwise noted. Perfluoro(methylcyclohexane)

was purified according to literature procedures for fluorocarbons 19 prior to use. All other

chemicals were used as received.

Emulsion Synthesis

Table 3-1. Emulsion synthesis conditions and the resulting emulsion properties.

in Volume of PFD Volume of lX Surfactant Surfactant Emulsion size Emulsion
(gm solution (mL) PBS buffer Concentration Z-potential

2 0.01 5.0 mL S1 0.01 M 245.8 ±43.9 nm -57± 13 mV

2 0.01 5.0 mL S1 0.02 M 242.1 ± 23.6 nm -79 ±11 mV

2 0.01 5.0 mL S2 0.0025 M 3~4 pm -42± 6 mV

S1: 2H, 2H, 3H, 3H-perfluorononanoic acid, S2: 8:2 monoPAPS'

In a 50 mL round-bottom flask, surfactant (Table 3-1, columns 4 and 5) in 5.0 mL PBS

buffer was heated to 75'C while stirring. After complete dissolution of the surfactant, P1 (10 pL,

2 mg/ml in perfluorodecalin) was added. The flask was then removed from heat and was

sonicated with a probe sonicator at 3 Watts (rms) for 5 minutes. The solution was subsequently

allowed to cool to room temperature. Excess surfactant was removed via filtration. The size

distribution and Z-potentials of the emulsions are shown in Table 3-1 (columns 6 and 7).

Biotin Modification of Emulsion Surface

Emulsion was synthesized from 0.01M 2H,2H,3H,3H-perfluorononanoic acid in PBS

buffer (see above). 5 mL of this emulsion was treated with Amine-PEG 3-Biotin (4.2 mg, 0.01

mmol) or triethyleneglycol monomethyl ether (2 pl, 1.3 mmol), EDC (0.16 mg, 0.01 mmol), and

sulfo-NHS (11 mg, 0.05 mmol). The reaction mixture was stirred vigorously overnight, and
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subsequently dialyzed against PBS buffer over 12 hours, while introducing fresh PBS buffer in

3-hour intervals. To this mixture, 0.1 mg/ml streptavidin Texas Red@ conjugate (0.1 ml) was

added. The resulting mixture was dialyzed against PBS buffer over 12 hours, while introducing

fresh PBS buffer in 3-hour intervals.

The dialyzed solution was dropped onto a microscope slide. The cover slip was fixed

onto the slide with 5-minute epoxy prior to imaging.
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CHAPTER 4

Heavily Fluorinated Poly(para-Phenylenevinylene)s



Introduction

While polymers, such as the one discussed in Chapter 2 of this thesis, in which

phenylene units are conjugated to ethynylene units (poly(phenyleneethynylene)s, or PPEs), have

various advantages in sensory applications, those polymers in which phenylene units conjugated

to vinylene units (poly(phenylenevinylene)s, or PPVs)' (page 343-351) are distinct in that they

generally have lower band gaps and higher crystallinity than their ethynylene counterparts

(Figure 4-1).2 PPVs have been extensively investigated for applications in electroluminescent

devices,3 organic photovoltaic devices,4 field-effect transistors,5 and sensing.6

n

Figure 4-1. Core structure of PPV.

Many electron-rich PPVs are known. MEH-PPV (Figure 4-2a) is a highly soluble PPV

derivative studied extensively for its light-emitting properties and facile processibility. The

polymer has also found a wide use as a component in organic photovoltaic devices and as an

organic light-emitting diode (OLED). Another electron-rich PPV with bulkier side chains for

reduction of aggregation-induced self-quenching in thin film has been used in devices for the

detection of explosives (Figure 4-2b).7

Compared to the wide availability of various electron-rich (donor) PPVs, there is a

relative scarcity of corresponding electron-deficient (acceptor) PPVs. The most prevalent method

of preparing electron-deficient PPVs reported thus far involve installment of electron-

withdrawing groups such as -CF 3
8 or -CN 9 on the vinyl groups of the PPV backbone. These

polymers and oligomers still feature electron-donating alkoxy groups on the phenyl groups of the

polymer backbone. Furthermore, the increased steric demand along the vinyl groups gives rise to
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undesirable conformational deviation from planarity, causing disruption in transport properties of

the polymers.' 0

0

0

MeO n

Figure 4-2. Structure of MEH-PPV (a) and a PPV for lasing-based TNT sensing (b).

Our group has previously reported poly-[2,5-bis(trifluoromethyl)-p-phenylenevinylene]

(CF3-PPV; Figure 4-3), which was shown to have high resistance to oxidation, maintaining 100%

of its fluorescence intensity even after 120 minutes of continuous UV irradiation. This polymer,

however, showed poor solubility in dichloroethane or chloroform, and only partial solubility in

THF and DMF.

CF3

Figure 4-3. Structure of CF3-PPV.

The high photostability of the CF3-PPV and its solubility profile led us to investigate the

effects of substituting trifluoromethyl groups with longer perfluoroalkyl chains. It was expected

that higher fluorine content may render the resulting PPV soluble in the fluorous phase, allowing

for facile processing of the material.



Results and Discussion

Monomer Synthesis

CF3  CF3
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Scheme 4-1. Synthesis of monomer 3.
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Scheme 4-1 outlines the synthesis of PPV monomers containing perfluoroalkyl chains of

various lengths. Copper-mediated coupling between 4-iodobenzotrifluoride and perfluorooctyl

and perfluorodecyl iodide proceeded smoothly to give corresponding 4-(perfluoroalkyl)

benzotrifluoride in good yields. Slow addition of NBS to the product in hot trifluoroacetic

acid/sulfuric acid mixtures gave the corresponding 1,4-dibromo-2-(perfluoroalkyl)-5-

(trifluoromethyl)benzene (1) cleanly after sublimation. Compound 1 was soluble in THF at room

temperature, but was insoluble at -78'C. Lithiation was therefore carried out with a slow addition

of solutions of 1 in THF to n-butyllithium solution at -78 'C. Cannulation of this lithiation

mixture into solution of DMF in THF gave compound 2 in a moderate yield. Reduction with

BH 3-THF gave the corresponding benzyl alcohols, which were converted to monomer 3 by

treatment with PBr3.
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Gilch Polymerization

Monomer 3 was soluble in THF at room temperature, but was insoluble at lower

temperatures. Treatment of a suspension of 3 in THF at -78 'C with freshly prepared potassium

tert-butoxide in THF, followed by gradually warming the reaction mixture to room temperature

overnight gave a brown, slightly fluorescent solution. Attempts to precipitate the product by

pouring the reaction mixture into methanol gave a clear brown solution from which no

precipitation was observed upon standing over several days.

It was found that FC-770 (perfluoro(N-propyl morpholine)) was miscible with THF

above c.a. -20 'C, and FC-770 was envisioned as a solvent capable of accommodating alkoxide

bases in anionic polymerization reactions. Treatment of an FC-770 solution of monomer 3 at -

15 'C with a THF solution of potassium tert-butoxide gave, upon warming up to room

temperature overnight, a cloudy reaction mixture. Removal of FC-770 under reduced pressure

followed by washing with methanol gave yellow solids with green fluorescence. The product

was insoluble in common organic solvents, as well as in perfluoro(methylcyclohexane), FC-770

(perfluorooctanes), and FC-770, even under refluxing conditions. A weakly fluorescent solution

was obtained by extracting the product with boiling hexafluorobenzene. Although the solubility

was not high enough for NMR characterization, absorption and emission spectra of the product

could be recorded in hexafluorobenzene and are shown in Figure 4-4a.

The absorption emission spectra were suggestive of a formation of a PPV structure.

Surprisingly, differential scanning calorimetry measurement (DSC) from 25 'C to 375 'C

displayed no shift in slope typically observed at the glass transition temperature (Tg) of polymers

(Figure 4-4b). Furthermore, no endotherm/exotherm corresponding to degradation of the sample
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Figure 4-4. (a) Absorption (black) and emission (red) spectra of polymerization products of 3

and its differential scanning calorimetry (25 'C to 375 C) (b).

was observed. More surprisingly, scanning to 375 'C three times yielded nearly identical traces.

The absorption and emission data, along with DSC measurements indicate that the obtained

material is a highly heat-stable fluorescent polymer with a very high Tg.

Second Generation Monomer and Polymer Synthesis

In attempts to synthesize PPVs soluble in the fluorous phase, we set out to further

increase the fluorine content by installing two perfluoroalkyl groups per monomeric unit, the

synthesis of which is outlined in Scheme 4-2. Monomers with two perfluorohexyl chains per

C6F131, C6F13  
C6F13Br C6F13Br

2,2'-bipy, Cu NBS, AIBN / / Br
S I*I +I

DMSO, chlorobenzene,
85*OC 115 *C, 12 h

I 3 day' C6F13 Br C6F13  Br C6F13

4,51% 5,78% <10%

Scheme 4-2. Synthesis of bis(perfluorohexyl) monomer, 5.
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repeat unit were synthesized from 1,4-diiodo-2,5-dimethyl benzene, the treatment of which with

an excess of perfluorohexyl iodide under copper-mediated coupling conditions mentioned in the

previous section gave 1,4-dimethyl-2,5-bis(perfluorohexyl)benzene (4) in a moderate yield.

Radical bromination with NBS and AIBN in chloroform and carbon tetrachloride gave trace

amounts of desired product, with the major product being the mono-brominated species. The

reaction proceeded smoothly in refluxing chlorobenzene to give monomer 5 in a good yield with

a small fraction of over-brominated byproduct.

Treatment of 5 with potassium tert-butoxide solution in THF in identical polymerization

conditions as mentioned previously gave similar yellow solids with green fluorescence. The

product was insoluble in common organic solvents and in perfluoro(methylcyclohexane), FC-77,

and FC-770. It was slightly soluble in hexafluorobenzene at room temperature.

Absorption, emission, and excitation spectra of the product in hexafluorobenzene are

shown in Figure 5. The absorption maximum is identical to the product of polymerization of

monomer 3. The emission spectra, however, is slightly blue-shifted (by 12 nm). The excitation

spectra recorded at the emission maximum show a maximum at 360 nm, which is 35 nm red-

shifted from the absorption maximum. This suggests that the short the product contains mainly

short-chain polymers that dominate absorption, while a small fraction of longer-chain polymers

present are responsible for majority of the emission at 446 nm.

The properties of polymers from monomers 3 and 5 indicate that substitution of

trifluroomethyl groups in CF3-PPV (Figure 3) with longer perfluoroalkyl chains give emissive

materials with very high thermal stability. While these properties are rare among emissive

polymers and therefore very attractive, the lack of solubility of these materials poses a major

barrier for further investigation. One method of approaching polymer solubility problems
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Figure 4-5. Absorption (black) and emission (red) spectra of polymerization products of

monomer 5. Green curve is the excitation spectra recorded while monitoring emission at 446 nm.

involves synthesis of soluble "pre-polymers" from which the desired polymer could readily be

generated after processing the pre-polymer into desired platform. Elsenbaumer reported usage of

bis-sulfoxide-containing monomer to synthesize soluble, non-conjugated polymer. Casting a thin

film of this polymer and subsequent thermal elimination of sulfenic acid gave the desired

conjugated polymer (Scheme 4-3).

/\ ,O S s o
s KOtBu 1. drop-cast

S S
THF \/ 2. heat Rn

n RO
RO OR RO OR

Scheme 4-3. Bis-sulfoxide pre-polymer approach to CPs.

Bromines on monomer 3 could be smoothly substituted with thiophenolates. Oxidation of

this compound with mCPBA, however, gave solids insoluble in chloroform, THF, hexanes, and

ethyl acetate, and also insoluble in fluorous solvents.
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Conclusion

Various monomers for the syntheses of perfluoroalkylated PPVs have been explored. Our

studies suggest that the desired PPVs are insoluble in both fluorous and non-fluorous solvents

and exhibit extremely high thermal stability. The lack of solubility, which is an asset for

emissive materials in device applications, severely limits the processibility of the polymer. To

address the lack of solubility of the desired polymer, the bis-sulfoxide pre-polymer approach was

investigated. Unfortunately, the bis-sulfoxide monomers also exhibited very limited solubility,

and attempts at anionic polymerization on the monomer led to no conversion, probably due to the

highly electron-deficient nature of the molecule.
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Experimental Section

General. All air- and moisture-sensitive synthetic manipulations were performed under an argon

atmosphere using standard Schlenk techniques. Column chromatography was performed using

ultra pure silica gel (SILIYCYCLE, 40-63 Rm). NMR spectra were obtained on a Varian

Mercury-300 spectrometer, and all proton chemical shifts are referenced to residual CHCl3 or

THF-d6, and all fluorine chemical shifts are referenced to an external CFCl3 standard. High-

resolution mass spectra were obtained at the MIT Department of Chemistry Instrumentation

Facility (DCIF) on a Bruker Daltronics APEX 113 Tesla FT-ICR-MS. Fluorescence and

excitation spectra were measured on a SPEX Fluorolog-r3 fluorimeter (model FL-321, 450 W

Xenon lamp) using right-angle detection for solutions and front-face detection for thin films.

Ultraviolet-visible absorption spectra were measured with an Agilent 8453 diode array

spectrophotometer and corrected for background signal with a solvent-filled cuvette for solutions

and glass slide for thin films.

Materials. All solvents were spectral grade unless otherwise noted. Anhydrous toluene and was

obtained using a solvent purification system (Innovative Technologies). Tetrahydrofuran (THF)

was dried by refluxing overnight over freshly cut sodium and benzophenone, followed by

distillation under argon. FC-770 (mixture of perfluoro(N-alkyl morpholine)) was distilled over

calcium hydride and stored under argon. Dimethylsulfoxie (DMSO) was dried by distillation

under reduced pressure (10 Torr) over CaH2 and stored under argon over 4A molecular sieves.

Perfluoro(methylcyclohexane) and FC-77 (perfluorooctane) was purified according to literature

procedures" prior to use. Solvents for polymerization (FC-770 and THF) were degassed via

freeze-pump-thaw directly prior to use. Perfluorohexyl iodide (C6F1I) and perfluorooctyl iodide
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(C8 F1 71), clear liquids which turn purple upon storage, were freshly distilled prior to use. 2,2'-

bipyridyl was recrystallized from hexanes and dried under vacuum. N-bromosuccinimide (NBS)

was recrystallized from water and dried under vacuum. 2,2'-Azobis(isobutyronitrile) (AIBN) was

recrystallized from chloroform and dried under vacuum in the dark. All other chemicals were

used as received.

Synthesis

CF3

C8F17

1-(perfluorooctyl)-4-(trifluoromethyl)benzene. The synthesis is modified from a literature

procedure. To a flame-dried 100 mL round-bottom flask equipped with an addition funnel was

charged 4-iodobenzotrifluoride (2.5 g, 9.2 mmol), copper powder (4.7 g, 74 mmol), 2,2'-

bipyridyl (110 mg, 0.7 mmol), and anhydrous DMSO (30 mL). The reaction mixture was stirred

vigorously and heated to 75'C. Perfluorooctyl iodide (10.0 g, 18.4 mmol) was added dropwise

over 10 minutes at 75'C. The reaction mixture was stirred at 75'C for 3 days. After cooling to

room temperature, the reaction mixture was poured into a mixture of 200 mL water and 200 mL

diethyl ether. The cloudy mixture was stirred vigorously for 1hour and then the solids were

filtered and washed with 50 mL diethyl ether. The organic layers were combined and washed 3

times with 100 mL 1.0 N ammonium hydroxide and then twice with 100 mL water. The organic

layer was then dried over MgSO 4 and the solvent was removed under reduced pressure. The

resulting solids were sublimed (10 mTorr, 70'C) for 16 hours to give the title compound as white

crystalline solids (5.01 g, 97%). 1H NMR (300 MHz, THF-d8): 6 7.87 (d, JH-H = 8.5 Hz, 2H),
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7.95 (d,JH-H 8.5 Hz, 2H). 19F NMR (282 MHz, THF-d8): 6 -127.29 (2F), -123.75 (2F), -122.74

(6F), -122.21 (2F), -112.04 (2F), -82.25 (3F), -64.22 (3F).

CF3
Br

Br

C8F17

1,4-dibromo-2-(perfluorooctyl)-5-(trifluoromethyl)benzene (1). The synthesis is modified

from a literature procedure.1 To 200 mL round-bottom flask was added 1-(perfluorooctyl)-4-

(trifluoromethyl)benzene (4.0 g, 7.1 mmol), TFA (40 mL), and 96% sulfuric acid (12 mL). Equip with a

reflux condenser and heat to 80'C. N-Bromosuccinimide (NBS) (4.01 g, 21.3 mmol) was added in small

portions over 6 hours. Upon completion of addition, the reaction was allowed to stir for additional 48

hours. The reaction mixture was then cooled to room temperature and poured into ice/water mixture.

White precipitates were filtered, dried, and washed with ethanol. The resulting crude material was

sublimed (0.025 mmHg, 80'C) to give the title compound (3.2g, 63%) as white crystalline solids. IH

NMR (300 MHz, THF-d8): 6 8.16 (s, 1H), 8.24 (s, 1H). "F NMR (282 MHz THF-d): 6 -126.76

(2F), -123.23 (2F), -122.30 (4F), -121.96 (2F), -119.73 (2F), -107.66 (2F), -81.74 (3F), -64.27

(3F).

CF3
CHO

OHC

C8F17

2-(perfluorooctyl)-5-(trifluoromethyl)terephthalaldehyde (2). A flame-dried 50 mL round-

bottom flask was charged with 20 mL anhydrous THF, followed by n-BuLi (11 mL, 1.6 M in

hexanes, 18 mmol). The reaction mixture was cooled to -78'C. 1,4-dibromo-2-(perfluorooctyl)-

5-(trifluoromethyl)benzene (1) (5.8 g, 8.0 mmol) dissolved in 20 mL THF was added dropwise

over 20 minutes. The reaction mixture was then stirred at -78'C for 30 minutes and then was
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cannulated slowly into a separate flame-dried flask containing DMF (4.4 mL, 56 mmol) and THF

(20 mL) at 00 C. The reaction was removed from cooling bath and was stirred at room

temperature for 3 hours. The reaction was then quenched by addition of 0.1 N HCl and diluted

with addition of 100 mL water and 50 mL diethyl ether. The aqeuous layer was further extracted

with diethyl ether (2 x 50 mL) and combined organic layers were dried over MgSO 4 and the

solvent was removed under reduced pressure. Flask column chromatography (silica gel, gradient

from 9:1 hexanes/dichloromethane to 8:2 hexanes/dichloromethane) gave the title compound

(3.4 g, 69%) as white solids. 'H NMR (300 MHz, THF-d8): 6 8.44 (s, 1H), 8.51 (s, 1H), 10.35 (m,

1H), 10.38 (q, 1H). 19F NMR (282 MHz THF-ds): 6 -126.76 (2F), -123.29 (2F), -122.29 (4F), -

121.66 (2F), -120.70 (2F), -103.77 (2F), -81.73 (3F), -67.95 (3F).

CF3

HO OH
H O/

C8F17

(2-(perfluorooctyl)-5-(trifluoromethyl)-1,4-phenylene)dimethanol. Flame-dried 200 mL

round-bottom flask was charged with 2 (3.2 g, 5.2 mmol) and anhydrous THF (52 mL). At 00 C,

BH 3-THF (21 mL, 1.0 M in THF, 21 mmol) was added dropwise. White precipitates began to

form. The reaction was then removed from cooling bath and stirred for 3 hours at room

temperature. 0.3 M NaOH was then added carefully until all solids dissolved. The resulting

reaction mixture was diluted with water (100 mL) and was extracted with diethyl ether (3 x 50

mL). The organic layer was dried over MgSO 4 and the solvent was removed under reduced

pressure. Flask column chromatography (silica gel, 9:1 hexanes/ethyl acetate) gave the title

compound (3.2 g, quantitative) as white solids. 'H NMR (300 MHz, THF-d): 6 4.80 (m, 6H),
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8.09 (s, 1H), 8.24 (s, 111). '9F NMR (282 MHz THF-d8 ): 6 -126.77 (2F), -123.26 (2F), -122.33

(4F), -121.94 (2F), -121.30 (2F), -106.46 (2F), -81.66 (3F), -62.05 (3F).

CF3

Br Br
Br

C8F17

1,4-bis(bromomethyl)-2-(perfluorooctyl)-5-(trifluoromethyl)benzene (3). A flame-dried 100

mL round-bottom flask was charged with (2-(perfluorooctyl)-5-(trifluoromethyl)-1,4-

phenylene)dimethanol (3.3 g, 5.2 mmol). PBr3 was then added dropwise, and the reaction was

stirred at room temperature for 10 hours. After quenching with careful addition of saturated

NaHCO 3 solution, the reaction mixture was diluted with water and extracted with diethyl ether.

The organic layer was dried over MgSO 4 and the solvent was removed under reduced pressure.

Flask column chromatography (silica gel, 9.5:0.5 hexanes/ethyl acetate) gave the title compound

(1.1 g, 27%) as white solids. 'H NMR (300 MHz, CDCl 3): 6 4.60 (s, 2H), 4.63 (s, 1H), 7.79 (s,

1H), 7.90 (s, 1H). "F NMR (282 MHz CDCl3): 6 -126.33 (2F), -122.92 (2F), -122.05 (4F), -

121.46 (2F), -120.80 (2F), -106.96 (2F), -80.95 (3F), -60.69 (3F).

C6F 13

C6F13#

1,4-dimethyl-2,5-bis(perfluorohexyl)benzene. To a flame-dried 50 mL Schlenk flask was charged

1,4-diiodo-2,5-dimethylbenzene1 3 (2.0 g, 5.6 mmol, 1.0 eq), copper powder ( mesh, 2.2 g, 34 mmol, 6.0

eq), 2,2'-bipyridyl (90 mg, 0.56 mmol, 0.10 eq), and anhydrous DMSO (25 mL). The reaction mixture

was stirred vigorously and heated to 85'C. Perfluorohexyl iodide (10 g, 22 mmol, 4.0 eq) was added

dropwise over 10 minutes (fast addition often resulted in a highly exothermic reaction). The reaction

mixture was stirred at 85'C for 3 days. After cooling to room temperature, the reaction mixture was
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poured into a mixture of 100 mL water and 100 mL diethyl ether. The cloudy mixture was stirred

vigorously for 1 hour and then the solids were filtered and washed with 20 mL diethyl ether. The organic

layers were combined and washed 3 times with 50 mL 0.1 N ammonium hydroxide and then twice with

50 mL water. The organic layer was then dried over MgSO 4 and the solvent was removed under reduced

pressure in presence of a small amount of silica. Flash column chromatography (silica gel, 100 % hexanes)

of the dry solids gave 1,4-dimethyl-2,5-bis(perfluorohexyl)benzene as white solids (2.1 g, 51%). 1H

NMR (300 MHz, CDCl3): 6 2.50 (t, JH-F = 2.7 Hz, 6H), 7.42 (s, 2H). 19F NMR (282 MHz,

CDCl 3): 6 -126.38 (m, 4F), -123.01 (s, 4F), -121.96 (s, 4F), -121.03 (s, 4F), -107.36 (t, JF-H

15.1 Hz, 4F), -81.04 (t, JF-F 10.2 Hz, 6F).

Br

C6F13

C6F13

Br

1,4-bis(bromomethyl)-2,5-bis(perfluorohexyl)benzene (5). Flame-dried 50 mL round-bottom

flask equipped with a reflux condenser was charged with 1,4-dimethyl-2,5-

bis(perfluorohexyl)benzene (1.50 g, 2.02 mmol, 1.00 eq), NBS (1.20 g, 6.74 mmol, 3.34 eq), and

AIBN (20 mg, 0.12 mmol, 0.060 eq) under argon. Chlorobenzene (20 mL) was then added and

the reaction was stirred at 11 51C for 42 hours. After cooling to room temperature, solvent was removed

under reduced pressure. Flash column chromatography (silica gel, 100% hexanes) of the resulting crude

solids gave 1,4-bis(bromomethyl)-2,5-bis(perfluorohexyl)benzene as a white powder (1.41 g, 78%).

NMR: JL4-152-2H (IH for mono brominated product). 'H NMR (300 MHz, CDCl 3): 6 4.60 (s, 4H),

7.81 (s, 3H). 19F NMR (282 MHz CDCl3): 6 -126.29 (2F), -122.89 (2F), -121.69 (2F), -121.46 (2F), -

120.81 (2F), -107.59 (2F), -80.94 (3F).
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CF3

PhS SPh

PhS

((2-(perfluorooctyl)-5-(trifluoromethyl)-1,4-phenylene)bis(methylene))bis(phenylsulfane).

Flame-dried Schelnk vessel was charged with 3 (1.29 g, 1.49 mmol) and THF (10 mL). In a

separate flask, NaH (184 mg, 60% w/w suspension in mienral oil, 4.50 mmol) was suspended in

THF (5 m) and the flask was charged with thiophenol (460 ptL, 4.50 mmol) at 00 C. After

cessation of gas evolution, the latter solution was transferred dropwise to the solution of 3 in

THF at 00C over 15 minutes. The reaction mixture was stirred vigorously over an hour and

quenched with a slow addition of water (50 mL). The resulting mixture was extracted with

diethyl ether (3 x40 mL). The organic layer was then dried over MgSO 4 and the solvent was removed

under reduced pressure in presence of a small amount of silica. Flash column chromatography (silica gel,

7:3 hexanes/ethyl acetate) of the dry solids gave the title compound as a white solid (0.87 g, 72%). 'H

NMR (300 MHz, CDCl 3): 6 2.50 (t, JH-F = 2.7 Hz, 6H), 7.42 (s, 2H). 19F NMR (282 MHz,

CDCl 3): 6 -126.38 (m, 4F), -123.01 (s, 4F), -121.96 (s, 4F), -121.03 (s, 4F), -107.36 (t, JF-H =

15.1 Hz, 4F), -81.04 (t, JF-F 10.2 Hz, 6F). HR-MS (ESI): calcd for C29H16F2OS2 831.0272 [M+Na]*;

found 831.0279.

General Method of Polymerization - THF as Solvent

Monomer (0.2 mmol) was dissolved in THF (10 mL) in a flame-dried Schlenck vessel and cooled

to -78'C. Freshly prepared KOtBu (90 mg) in THF (1 mL) was added dropwise. The reaction, which

initially turned bright yellow, was allowed to warm up to room temperature overnight, during which the

color of reaction turned orange-brown. The reaction mixture was poured into 0.1 N HCl, and precipitates

were collected by centrifugation. The solids were washed with methanol and were subjected to Soxhlet
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extraction with chloroform and hexanes to remove non-fluorous impurities, followed by extraction with

hexafluorobenzene.

General Method of Polymerization - FC-770 as Solvent

Monomer (0.2 mmol) was dissolved in -770 (1OmL) in a flame-dried Schlenck vessel and cooled

to -15'C. Freshly prepared KOtBu (90 mg) in THF (I mL) was added dropwise. The reaction, which

initially turned bright yellow, was allowed to warm up to room temperature overnight, during which the

color of reaction turned orange-brown. Solvents were removed under reduced pressure, and the solids

were washed with water and methanol, and were subjected to Soxhlet extraction with chloroform and

hexanes to remove non-fluorous impurities, followed by extraction with hexafluorobenzene.
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CHAPTER 5

Regiospecific Synthesis of Gold Nanorod-SWCNT
Heterojunctions

Adapted from
Yossi Weizmann, Jeewoo Lim, David M. Chenoweth, and Timothy M. Swager

Nano Lett. 2010, 10, 2466-2469*

*Initial synthesis of the materials was conducted by YW. TEM imaging and determination of

product distribution were done by JL. Characterizations of materials by AFM and Raman

spectroscopy were done by YW and DMC.
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Introduction

High aspect ratio building blocks such as gold nanorods and carbon nanotubes (CNTs)

have the potential to be used as "wires" for construction of interconnected arrays of electronic

materials at the nano level. Gold nanorods and CNTs possess large surface areas along with

highly directional electronic conduction pathways, characteristics which are of particular utility

in creating materials for resistivity-based sensory applications.' A wide range of methods for

functionalization of carbon nanotubes which allow for immobilization 2 of tailored metallic

and/or semiconducting nanoparticles on the sidewalls of nanotubes is known. Regioselectivity

(end functionalization versus sidewall functionalization), however, remains a major problem.f.6

The formation of heterojunctions between carbon nanotubes and metals has received

increased attention due to the potential of allowing single carbon nanotube strands to be

incorporated directly into devices in electronic and materials applications. Previous

heterojunction fabrication methods have relied on vapor phase growth of materials directly onto

nanotubes, solid-phase reactions at elevated temperatures >450 'C, or ablative techniques using

intense electron beam irradiation to destroy the nanotube wall around a metallic core.'a, b, Ij

Heterojunctions between gold nanorods and CNTs have previously been reported. The

approach involved attachment of gold nanoparticles (Au-NP) "seeds" to CNTs, followed by gold

nanorod growth from the nanoparticles. 3 The attachment of Au-NPs to CNTs, however, could

not be controlled, resulting in multiple random attachment on both surfaces and termni of CNTs.

Gold nanorod growth from this hybrid material gave unpredictable patterns. 6 Harsh experimental

conditions and the difficulties in precise positioning of the metal junctions have limited the

widespread utility of these methods.Ia, b, If, ij Methods for the regioselective synthesis of well-

defined Au-nanorod/CNT/Au-nanorod nanocomposites would represent a major step forward in

the controlled functionalization of SWCNTs with precisely defined metallic heterojunctions.
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This chapter describes an operationally simple method for the regiospecific synthesis of

terminally-linked Au-nanorod/SWCNT/Au-nanorod nanostructures. Our method allows for the

growth of Au-nanorods from the termini of single-walled CNTs (SWCNTs), creating precisely

positioned metallic heterojunctions. These nanocomposites are synthesized in solution and are

found to be very stable under a variety of experimental conditions.

Results and Discussion

The Au-nanorod/SWCNT/Au-nanorod synthesis is depicted schematically in Scheme 5-

1. In order to remove carbon particles and metal impurities and introduce carboxylic acid groups

to the surface, HiPco SWCNTs were treated with a mixture of concentrated sulfuric and nitric

acid (3:1, 98% and 70%, respectively), subjected to bath sonication for 35 min. at 40 *C, and

then oxidized with a mixture of concentrated sulfuric acid and hydrogen peroxide (4:1, 98% and

30%, respectively, 35 minutes).4 Previous studies have demonstrated treatment with mixtures of

strong acids leads to chemical shortening of SWCNTs, along with oxidation at the nanotube ends

(resulting in formation of carboxylic acid groups), and can also introduce oxidative defects along

the nanotube sidewall.4

The oxidized SWCNTs were incubated with Triton X-100/PEG (Mr = 10,000) in an

aqueous solution and sonicated for 4 hours in an ice bath. This process results in a stable

dispersion of SWCNTs wrapped by the surfactant. The surfactant also acts as a "protective

sheath," preventing non-specific surface adsorption and/or undesired covalent functionalization

of defects on nanotube sidewalls.5 The oxidized termini of the shielded SWCNTs were then

coupled to the monofunctionalized 1.4 nm Au-nanoparticles (Au-NPs) bearing a

118



Au I

Ascorbic acid

CTAB Templated
Au-Nanorod Growth

PEGio,ooo = Triton X-100 CTAB

H H NNW
CH3

HaC(H2C)s- 4 LCH

n CH3 A

Hydrophilic Hydrophobic Hydrophilic Hydrophobic Hydrophilic Monoamino Au-NP (1.4 nm)

Scheme 5-1. Schematic of the synthesis of Au-nanorod/SWCNT/Au-nanorod hybrid material.

single primary amine group per nanoparticle. Efficient coupling was achieved using 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-

hydroxysulfosuccinimide (sulfo-NHS), resulting in SWCNTs functionalized with Au-NPs at

their termini. The Au-NP diameter (~1.4 nm) is slightly larger than the diameter of HiPco

SWCNTs (-0.7-1.2 nm), and the steric bulk of the Au-NPs provides a basis for

monofunctionalization of the nanotube ends. The resulting Au-NP conjugated SWCNTs were

used to seed the growth of Au-nanorods from the termini of the SWCNTs. Catalytic enlargement

of the Au-nanoparticles was achieved using HAuCl 4 and CTAB as a template.6

Characterization of the Au-nanorod/SWCNT/Au-nanorod nanostructures was performed

using a combination of transmission electron microscopy (TEM) (Figure 5-1), atomic force
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Figure 5-1. TEM images of Au-NP/SWCNT/Au-NP (a and b), and Au-nanorod/SWCNT/Au-
nanorod assembly (c-f).

microscopy (AFM) (Figure 5-2a-c and Figure 5-3), and confocal Raman spectroscopy (Figure 5-

2d) before and after Au-nanorod growth. AFM images revealed that, prior to Au-nanorod growth,
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Figure 5-2. AFM images and cross-section profiles (a-c) and confocal Raman spectroscopy (d)

of Au-nanorod/SWCNT/Au-nanorod assembly.
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the surfactant-wrapped SWCNTs were well dispersed as unbundled monomeric species with

average lengths of -200 nim (Figure 5-3). The regiospecific Au-NP conjugation to the termini of

the SWCNTs was confirmed by TEM and Figure 1 a and lb show images of individual SWCNTs

labeled with a single gold nanoparticle at one end and at both ends, respectively. A rare

occurrence is shown in Figure 5-la, where two SWCNT's in close proximity to one another are

mono-functionalized with Au-NPs. Mono-functionalized nanotubes represented <10% of the

structures observed prior to Au-nanorod growth. The bis-functionalized SWCNTs were the

predominant structures, representing -90% of the structures observed by TEM and are shown in

Figure 5-lb. The relative abundance of each type of assembly is summarized in Figure 5-5.

Figure 5-3. AFM images and Au-NP/SWCNT/Au-NP prior to Au-nanorod growth.

122



Dispersed individual nanotubes are difficult to see with TEM, since their local electron density is

similar to the amorphous carbon supports on which microscopy is conducted. However, the

individual Au-NPs attached directly to the tube termini are clearly visible and provide enough

contrast ratio to unambiguously identify SWCNTs.

Figure 5-1c-e are TEM images of the Au-nanorod / SWCNT / Au-nanorod nanostructures

obtained after Au-nanorod growth from the Au-NP functionalized SWCNT termini and the

distribution of observed nanostructures are shown in Figure 5b. Au-nanorod lengths of -200-400

nm are observed to be attached directly to the termini of short (-10 nm) and long (-100-250 nm)

SWCNTs. The nanorod growth pattern and direction is also affected by nearby structures (i.e.

SWCNT termini), and a majority of connections of the SWCNTs to the ends of the Au-nanorods

suggest that the nanorod growth is mainly in a direction opposite from the point of Au-NP

conjugation. Some (-24%) of the SWCNT structures contained perpendicularly connected Au-

nanorods, which are presumed to be produced from the seed-mediated growth in two directions

orthogonal to the lengthwise axis of the SWCNTs (Figure 5b). 6a Additionally, we observed a few

(-15%) structures where a SWCNT has one terminus connected to a single Au-nanorod and the

other to a large Au-nanoparticle (Figure 5-4) produced by non-directional growth of the Au-NP.

We expect that as improved methods for controlling Au-nanorod growth are investigated, even

more homogenous materials could be achieved.

The Au-nanorod/SWCNT/Au-nanorod nanostructures were further characterized by AFM

(Figure 5-2a-c). Long nanorods 40-45 nm in height and 200-400 nm in length, with SWCNT 0.7-

2.2 nm in height and 10-500 nm in length, were observed after drop-casting of the solution onto

freshly cleaved mica surface. A topographical AFM image of a gold nanorod-linked SWCNT is

shown in Figure 2a with the associated height profiles. Figure 2a shows an individual
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Figure 5-4. TEM images and Au-nanorod/SWCNT/enlarged Au-NP assembly.

nanostructure where two Au-nanorods are attached regiospecifically to the termini of a SWCNT.

The Au-nanorod height and length dimensions range from 40x200 nm to 45x300 nm. The

SWCNT fixed between the two Au-nanorods has a height of ~2.2 nm and a length of -100 nm

(Figure 5-2a). Figure 2b shows the AFM image of a perpendicularly connected Au-

nanorod/SWCNT/Au-nanorod nanostructure. The height and length dimensions of the Au-

nanorods varied from 40x400 nm to 45x400 nm. The SWCNT positioned between the two rods

has a height of ~0.7-1.2 nm and a length of -500 nm. The Au-nanorod on the left is

perpendicularly connected to the SWCNT terminus whereas the other nanorod is connected in an

end-to-end fashion with the SWCNT. Figure 5-2c shows a SWCNT with one end connected to a

Au-nanorod and the other terminated by an Au-NP which failed to seed a nanorod. Inhibition of

nanorod growth could be attributed to interference from nearby objects.6

Further characterization of the Au-nanorod/SWCNT/Au-nanorod nanocomposites at each

step in the synthesis was performed by laser scanning Raman confocal microscopy. Previously

reported resonance Raman studies have demonstrated that SWCNTs filled with metallic silver

displayed an altered Fermi level with silver behaving as an electron donor increasing the electron

carrier density.7 Utilizing laser scanning confocal Raman microscopy and a laser excitation
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Figure 5-5. Summary of distribution of various structures before and after gold nanorod growth

as counted from TEM images.

wavelength of 784.4 nm (1.58 eV), we characterized our Au-nanorod/SWCNT/Au-nanorods

after oxidation, after Au- NP conjugation, and after Au-nanorod growth (Figure 5-2d).

Gold nanorod growth results in significant changes in the Raman spectra and the RBM

region showed major peaks at 235, and 267 cm-1. The RBM peak at 235 cm' shows a significant

increase in intensity after Au-nanorod growth whereas the peak at 267 cm 1 shows a significant

decrease, implying an increased isolation of individual SWCNTs by Au-nanorods.7a The

intensity of the D-band increases with significant broadening upon Au-nanorod formation and

shows a slight -4 cm-1 shift to higher frequency from 1588 cm 1 consistent with previous studies

of SWCNTs on silver surfaces.8 Increases in the D/G ratio upon Au-nanorod formation reflects a

modification of the nanotube surface and/or a plasmonic enhancement of scattering from sights

proximate to the Au-nanorods. Additionally, the peak in the G' region shows a 6 cm~1 shift to
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higher wavenumbers. Control spectra for CTAB, CTAB-coated gold nanorods, and 1.4 nm gold

nanoparticles are shown in Figure 5-6. The control spectra show no significant resolvable signals

above the baseline when compared to the spectra in Figure 5-3d.
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Figure 5-6. Confocal Raman spectra of Au-nanorod/SWCNT/Au-nanorods (red, left), Au-

nanorods (green), 1.4 nm Au-nanoparticles (black), CTAB (yellow) using a laser excitation

wavelength of 784.4 nm (1.58 eV). (a) Full scale spectrum. (b) Expanded view of y-axis

intensity from 0-250 counts showing the Au-nanorods (green), 1.4 nm Au-nanoparticles (black),

and CTAB spectra in the baseline.

Conclusion

An operationally simple and controllable method for the regioselective synthesis of well-

defined Au-nanorod/SWCNT/Au-nanorod nanostructures represents a major step forward in the

controlled functionalization of SWCNTs with precisely defined metallic heterojunctions. Control

of gold nanorod length, growth direction, and alignment are under investigation in addition to the

use of alternate metals such as silver as well as the use of multiwalled CNTs as a seed scaffold.
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Applications utilizing the optical and electronic properties are under investigation and range

from field effect transistors to chemical sensors and Raman active nanoscale devices.

Experimental Section

Materials

Unless otherwise noted, all the starting materials were obtained from commercial

suppliers and used without further purification. Purified HiPco Single-Wall Carbon Nanotubes

were purchased from Unidym, Inc. Purified MWCNT; hexadecyltrimethylammonium bromide,

99% (CTAB); N-hydroxysulfosuccinimide sodium salt (sulfo-NHS); Triton X-100 and

polyethylene glycol (PEG) with average mol wt 10,000 were purchased from Sigma-Aldrich.

Hydrogen tetrachloroaurate (III) hydrate (HAuCl 4xXH20), 99.999%; L-(+)-ascorbic acid, 99+%

and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 98+% (EDC) were

purchased from Alfa Aesar. HEPES and hydrogen peroxide 30% were purchased from EMD

Biosciences, Inc. Monoamino gold nanoparticles were obtained from Nanoprobes, Inc. Centricon

separation devices and 0.6 ptm polycarbonate membrane filters were purchased from Millipore.

Ultrapure water from a NANOpure Diamond (Barnstead) source was used throughout all of the

experiments.

General Methods

Transmission electron microscopy (TEM) images were taken on JEOL 2010 and JEOL

200CX instruments (acceleration voltage 200 KV) using 200-mesh carbon-coated copper grid

(Electron Microscopy Sciences). All atomic force microscopy (AFM) imaging measurements

were performed at room temperature by using a Multimode scanning probe microscope with a
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Nanoscope 3A controller (Digital Instruments/Veeco Probes). AFM topographical images were

taken on samples deposited on freshly cleaved grade v-4 mica surfaces (Structure Probe, Inc.)

that were first passivated with a 5 mM MgCl 2 solution for 1 min followed by drop casting the

solution of interest. Images were taken with Ultrasharp SiN AFM tips (MikroMasch) in tapping

mode at their resonant frequency, and these images were analyzed with WsXM SPIP software

(Nanotec).la Confocal Raman microscopy was performed using a Horiba Jobin Yvon Raman

confocal microscope (model LabRAM-HR) with a 784.4 nm (1.58 eV) laser as the excitation

light source. A x50 objective was used for imaging with a pin hole size of 300 microns. All

sonication procedures were conducted with an ultrasonic bath (Branson Ultrasonics Corporation,

model 3510). SEM images were taken with a cold field-emission gun scanning electron

microscope (FEG-SEM).

Shortening and Oxidation of SWCNT

Commercial HiPco SWCNTs were cut and etched according to a reported procedurelb

with some modification, to give shortened SWCNTs bearing carboxylic groups at their ends

(SWCNT-COOH) and also as defect sites on the sidewalls. Specifically, 50 mg pristine pure

HiPco SWCNTs were place in oxidative reaction of 24 mL suspension contains a 3:1 H2 SO4

(98%)/HN0 3 (70%) solution at 40 0C and under sonication at 42 kHz. Sonication during the

cutting protocol was reduced to 35 min. The solution was filtered using a 0.6 [Im polycarbonate

membrane filter and then etched for 30 minutes with a 20 mL of a 4:1 H2SO 4 (98%)/H20 2 30%

solution to remove all carbon particles produced by the first reaction. The resulting diluted

nanotube-acid mixture was then filtered using a 0.6 pLm polycarbonate membrane filter leaving a
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SWCNT filter cake. The nanotubes were then rinsed with water until a pH above 5 was obtained.

Final rinsing was done using ethanol and the resulting filter cake dried in a vacuum desiccator.

Shielding SWCNT-COOH Sidewall Surface

Typically, 0.1% SWCNTs-COOH (wt/v) were place in water solution contains 0.25%

Triton x-100 (v/v) and 0.25% PEG (10,000 Mr) (wt/v) in a final volume of 1 mL, and sonicated

for 4 hrs at 42 kHz in ice bath, followed by centrifugation at 14,000 r.p.m for 1 hour. Next, the

supernatant was collected; leaving a small residual amount of unwanted aggregated SWCNTs

behind.

Tethering AU-NPs to the Termini of Shielded SWCNT-COOH

Generally, 0.02% SWCNT-COOH (wt/v) were placed in a HEPES buffer solution 0.1 M,

pH 7.4 consisting of 0.05% Triton X- 100 (v/v), 0.05% PEG (10,000 Mr) (wt/v), 0.6x 10-9 mol 1.4

nm monoamino gold nanoparticles, 2 mM EDC and 5 mM sulfo-NHS in a final volume of 1 mL,

and stirred gently overnight in the dark at room temperature. The reaction mix was then purified

and separated from the excess Au-nanoparticles using a Centricon filtration device (100,000

cutoff), and concentrated to a final volume of 500 ptL.

Synthesis of Gold Nanorods

Gold nanorods were synthesized by the three-step seeding protocol as described by

Murphy et al.3 Specifically, two 20 mL flasks and one 100 mL conical flask (labeled A, B, and C,

respectively) were used. To these flasks were added 9 mL (in flasks A and B) and 45 mL (in

flask C) of growth solution containing a mixture of 2.5x10~4 M HAuCl 4 and 0.1 M CTAB
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solutions and kept at 27 0C. Then, 50 pL of 0.1 M freshly prepared ascorbic acid (flasks A and B)

and 250 tL (flask C) were added and hand shaken, the solutions became colorless. Next, 200 p1L

of seed solution (Au-NP/SWCNT/Au-NP) was added to flask A (step 1) and gently mixed.

Immediately after 15 seconds 1 mL of the resulting mixture was transferred quickly from flask A

to flask B and gently mixed (step 2). This was followed by transferring 5 mL portion of flask B

into flask C after 30 seconds and mixing gently by hand shaking (step 3). The color of the

resulting solution slowly changed to purple. Flask C was then kept undisturbed for additional 16

h at 27 C. High aspect ratio nanorods along with other shapes (triangles, hexagons, and small

rods) precipitate from the solution and form a thin barely noticeable film at the bottom of the

flask. The resulting supernatant, which contained mostly spherical nanoparticles, was carefully

removed and the film on the bottom was carefully rinsed with a small portion of pure water to

remove the residual amount of the supernatant. The same procedure was used for the SWCNTs.
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