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Abstract
Time-resolved impulsive stimulated light scattering (ISS), also known as

transient grating spectroscopy, was used to investigate phonon mediated thermal
transport in semiconductors and mechanical degrees of freedom linked to structural
relaxation in supercooled liquids. In ISS measurements, short optical pulses are
crossed to produce a periodic excitation profile in or at the surface of the sample.
Light from a probe beam that diffracts off the periodic material response is
monitored to observe the dynamics of interest.

A number of improvements were put into practice including the ability to
separate so-called amplitude and phase grating signal contributions using
heterodyne detection. This allowed the measurement of thermal transport in lead
telluride and gallium arsenide-aluminum arsenide superlattices, and also provided
the first direct observation of the initial crossover from diffusive to ballistic thermal
transport in single crystal silicon and gallium arsenide at room temperature. Recent
first-principles calculations of the thermal conductivity accumulation as a function
of phonon mean free path allowed direct comparison to our measured results.

In an effort to test theoretical predictions of the prevailing first principles
theory of the glass transition, the mode coupling theory (MCT), photoacoustic
measurements throughout much of the MHz acoustic frequency range were
conducted in supercooled liquids. Longitudinal and shear acoustic waves were
generated and monitored in supercooled liquid triphenyl phosphite in order to
compare the dynamics. An additional interferometric technique analogous to ISS
was developed to probe longitudinal acoustic waves at lower frequencies than was
typically accessible with ISS. Lower frequency acoustic data were collected in
supercooled tetramethyl tetraphenyl trisiloxane in conjunction with piezo-
transducer, ISS, and picosecond ultrasonics measurements to produce the first truly
broadband mechanical spectra of a viscoelastic material covering frequencies
continuously from mHz to hundreds of GHz. This allowed direct testing of the MCT
predicted connection between fast and slow relaxation in supercooled liquids.

Measurements of the quasi-longitudinal speed of sound in the energetic
material cyclotrimethylene trinitramine (RDX) were also performed with ISS and
picosecond ultrasonics from 0.5 to 15 GHz in order to resolve discrepancies in
published low and high frequency elastic constants.

Thesis Supervisor: Keith Adam Nelson
Title: Professor of Chemistry
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Chapter 1

Overview

Spectroscopy is simply the study of the interactions of light and matter. As our mere

existence is certainly tied to the light that emanates from the sun, mankind, at least

to a certain extent, has likely pondered such interactions from the earliest times. It

was ponderings and investigations by Newton and a host of others that led to

deeper understanding of many foundational principles of the modern physical

sciences. When one stops to reflect, it truly is astounding the multitude of systems

that can be investigated and the myriad of physical processes that can be observed

using electromagnetic radiation.

It has long since been established that light can excite and probe acoustic modes and

thermal responses in the bulk or at the surfaces of samples. In fact the very first

stimulated Brillouin scattering photoacoustic experiments carried out by C. H.

Townes with a "giant-pulse ruby maser" were performed in the Spectroscopy

Laboratory at MIT [Chiao], the very lab where the photothermal and photoacoustic

experiments contained in this thesis were conducted. With the advent and

advancement of pulsed light sources, the ability to observe dynamics at short time

scales has become increasingly practical. Single spot, short-pulsed pump-probe

measurements were and still are important in research and offer a wealth of

information. But studies of the wave-nature of light long ago presented potential

advantages in spatial shaping due to constructive and destructive interference,

which really gave birth to the fields of optical holography [Collier] and four-wave-

mixing [Bloembergen] in which optical beams are combined in distinct temporal

and spatial patterns. Impulsive stimulated light scattering (ISS), also commonly

known as transient grating spectroscopy (TG), is a simplification of four-wave

mixing methods, where two time-coincident, coherent pump pulses are crossed to

form a spatially periodic excitation pattern. A probe beam diffracts off the periodic

material response and the time-dependent signal is monitored. Modeling of the



material response is facilitated due to the well-defined wavevector of the periodic

excitation. Many systems and transient grating responses may be studied, including

population density gratings, space charge gratings, concentration gratings, and the

main focuses of this work: thermal gratings and density/stress/strain/acoustic

wave gratings [Eichler,Fourkas].

In this thesis, I will discuss many of the ISS studies of thermal transport and

mechanical material properties that I have performed during my graduate studies.

Due to the collaborative nature of all the projects I've been involved with and the

many people I appreciate for helping to make this research possible, I will use the

plural 'we' in writing this thesis.

Chapter 2 provides an introduction to impulsive stimulated light scattering.

Focused on photoacoustic and photothermal measurements, the relevant

methodology will be developed. The experimental setup as situated in the G. R.

Harrison Spectroscopy Lab will be described. Additionally, a few variations on the

ISS theme will be presented. After the general experimental overview, this thesis is

divided into two major parts, reflecting the two major projects that my graduate

studies consisted of, namely the study of fundamental properties of thermal

transport in semiconductors and the nature of structural relaxation in supercooled

liquids. Chapters 3-5 cover thermal transport and Chapters 6-8 cover work

involving supercooled liquids.

In Chapter 3, we give a brief overview of important factors governing thermal

transport in semiconductors and dielectric crystals, as well as a short description of

efforts to design materials with modified thermal transport properties. In Chapter 4

we present the methodology in detail for reflective transient grating measurements

of thermal transport, and illustrate the technique by determining the in-plane

thermal diffusivity of a PbTe thin film, thus showcasing the ability to measure, in a

non-contact, non-destructive way, thermal transport properties of a surface layer.

In an effort to understand the effects of multiple interfaces on thermal transport, we

further utilize the technique to measure the in-plane thermal transport in two



GaAs/AlAs superlattices and compare the results with optical transient

thermoreflectance measurements of the cross-plane thermal transport in these one-

dimensional structures. Chapter 5 shifts to efforts aimed at deepening our

understanding of intrinsic properties in bulk materials that influence thermal

transport, namely the mean free paths of phonons that carry heat. When

considering whether transport is in the diffusive or ballistic regime, two key length

scales are the energy carrier mean free path and the distance over which transport

is measured. We show direct evidence of the initial crossover from diffusive to

ballistic thermal transport in the common semiconductors silicon and gallium

arsenide at room temperature and at measurement length scales much longer than

previously thought possible. These experimental results are compared with first-

principles calculations and we discuss the important information that can be

provided in order to aid in the design of novel materials with custom thermal

transport properties.

In Chapter 6, we introduce relevant phenomenology and theory related the nature

of structural relaxation in supercooled liquids. In Chapter 7 we derive appropriate

equations of motion for ISS measurements of viscous materials including the

propagation of longitudinal and shear acoustic waves, and present a comparison

between longitudinal and shear relaxation. Chapter 8 focuses on the analysis of a

broadband acoustic spectrum, acquired at many temperatures and compiled with

data collected using a number of experimental techniques, each with its own limited

frequency range.

Finally in Chapter 9, we diverge from the two main thesis themes to present ISS

photoacoustic measurements of the energetic crystal RDX. Discrepancies in

reported elastic constants determined using techniques with varied frequency

ranges led some to posit a relaxation-induced frequency dependent speed of sound.

We report measurements performed using ISS and picosecond acoustic

interferometry of the speed of sound in RDX, from which the elastic constants are

determined, at acoustic frequencies covering the range of the disagreeing

techniques.
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Chapter 2

Spectroscopic techniques to determine

mechanical and thermal transport properties

The theory of impulsive stimulated light scattering can be defined in the framework

of four-wave mixing and non-linear optics, but many processes that one would

naturally describe with such an approach are on much faster timescales than

experiments presented in this thesis, so adequate classical mechanics and

phenomenological descriptions will be used predominately to describe excitation

and probing processes. ISS measurements have been conducted on many types of

samples [Eichler] in transmission and reflection geometries. A typical transmission

setup is shown in Fig. 2.1. The relevant methodology for various cases, focused on

photoacoustic and photothermal measurements, is developed below. We will use

the term impulsive stimulated light scattering (ISS) generally, but to add more

specificity, we will use transient grating spectroscopy (TG) to describe

photothermal measurements. We begin with a description of excitation induced

with crossed laser beams, followed by the probing process and heterodyne

detection.

PM detector
n Sample

Probe 830nm
Pump 1030nn

Fig. 2.1. Schematic illustration of ISS transmission-mode setup. A diffractive optic, a binary
phase-mask (PM), splits pump and probe into ±1 diffraction orders. Pump beams are
focused and crossed at the sample surface by a set of lenses, generating the transient
grating. Diffracted probe light is combined with an attenuated reference beam (ND) and
directed to a fast detector. The relative phase difference between probe and reference
beams is controlled by adjusting the angle of a glass slide (Phase Adjust) in the probe beam
path. Half-wave plates allow independent polarization control of each beam.



2.1. Crossing beams
Constructive and destructive interference between crossed plane waves, having the

same polarization and wavelength, leads to a periodic intensity profile. This

interference fringe pattern can be visualized by crossing two optical beams, in this

case cylindrically focused, on the surface of a CCD as depicted in Fig. 2.2(a).

In an ISS experiment, two short pump pulses are crossed in or at the surface of a

sample of interest. Resonant absorption or non-resonant light-matter interactions

will lead to a periodic sample response, the "transient grating" [Nelson,Yan,

Eichler,Fourkas]. The transient grating period is given by

L = -= air A (2.1)
q 2n samplesin ""''' 2 sin 6

air
2 2

where A is the laser wavelength, n is the refractive index, 6 is beam crossing angle,

and q is the grating wavevector magnitude.

(a)

/0 0\Z 0/0 \Z 0/(b) GNO 0/0 QNG 0/
/0O \ 0/0 0\4 0/
/00\20O0/00\D0/
/00\00/00 >\'00/

(C) (VV) Y K Z (HH) Y K Z (VH) Y K Z

Kx X K, X

Fig. 2.2 (a) Optical interference pattern formed by crossing two cylindrically focused laser
beams with parallel polarizations (VV or HH) on a CCD. (b) Periodic optical polarization
pattern formed by crossing beams with crossed (VH) polarizations. (c) Diagram illustrating
different beam polarizations.



In a typical transmission-mode ISS experiment, both laser beams enter the sample

through a common face and the interference fringe period is identical to the case

where the beams cross in air, regardless of the material refractive index. This

follows because the change in angle between the incoming beams after refraction in

the sample exactly compensates for the change in optical wavelength due to the

refractive index. Crossing pump beams with vertical (indicated VV) or horizontal

(HH) polarizations (see Fig. 2.2(c)) will lead to a periodic intensity profile depicted

in Fig. 2.2(a). Using crossed polarized beams (VH or HV) will result in a uniform

intensity profile, but a periodic polarization pattern with alternating regions of

linear, elliptical, and circular polarizations as depicted in Fig. 2.2(b).

2.2. The excitation process

2.2.a. Impulsive stimulated thermal scattering
In a transmission measurement, the simplest case of ISS excitation occurs when VV

or HH pump light is simply absorbed by an isotropic sample. Periodic heating and

fast thermal expansion result in a transient thermal grating and a step-function-like

stress, which launches counter-propagating coherent acoustic waves with

wavelength L given by Eq. (2.1). The temperature rise, 6T, is related to the absorbed

energy, proportional to the light intensity, I, as

6T(x) cx I(x) = I cos( x) = I (1+ cos(qx)) . (2.2)

The periodic spatial profile of the thermally induced stress, OrT, is illustrated in Fig.

2.3(a) and given, using Einstein notation subscripts [Nye,Landau], as

op,(X) = CijkaklT ox cijlak1cos(qx), (2.3)

where aki is the thermal expansion tensor, cijki is the elastic stiffness tensor, and q is

the grating wavevector defined in Eq. 2.1. In an isotropic material, aki becomes the

scalar thermal expansion coefficient and cijk is the bulk elastic modulus. In addition

to the acoustic response, a periodic thermal profile will persist until heat diffuses

from grating peaks to nulls. Strain and thermally induced changes in the refractive

index will lead to time-dependent diffraction of a probe beam; the probing process



of the acoustic and thermal material response will be described in more detail in

section 2.3 below. This pump-probe process is termed impulsive stimulated

thermal scattering (ISTS) [Rogers94,Yang].

In a strongly absorbing material, as is typically the case in reflection geometry

measurements, light will only be absorbed close to the sample surface. Heating and

thermal expansion will therefore result in surface displacement and the coherent

generation of counter-propagating surface acoustic waves (SAWs) [RogersOO]. Now

the thermal transport dynamics will be governed by diffusion parallel to the surface

between grating peaks and nulls as well as perpendicular to the surface into the

depth of the material [Kading]. The temperature and displacement dynamics in the

case of surface heating will be described in more detail in Chapter 4.

y Y

Fig. 2.3. Laser induced stress profiles in isotropic materials for (a) VV and H H polarizations
via ISTS or ISBS mechanisms and (b) VH polarization via ISBS.

2.2.b. Impulsive stimulated Brillouin scattering
Even in the case of no optical absorption, there will still be an impulsive laser-

induced stress due to electrostriction, with the pump-probe process designated

impulsive stimulated Brillouin scattering (ISBS) [Nelson,Yan]. The time-averaged

electric field of the pump pulses non-resonantly distorts the electron cloud of the

sample, which induces nuclear motion toward new strained positions. The stress

lasts only as long as the pump pulse duration, and the spatial distribution is given by

oij(x) = y ijkEE . (2.4)

The material-dependent constants yijkl are directly related to the photoelastic

constants [Nye] and Ei are the optical electric fields. In contrast to the step-function

like time-dependence of the ISTS stress, the ISBS stress for temporally short pump



pulses is best described by a delta function in time, 6(t). The delta function is the

time-derivative of a step-function, which in the solutions to the equations of motion

(see Chapter 7), yields a linear frequency dependence in the elastic response

amplitude and the ISBS signal intensity; for a given speed of sound, the ISBS acoustic

signal will therefore scale with transient grating wavevector q. Using parallel (VV or

HH) or crossed (VH) polarization will lead respectively to an impulsive periodic

compressional or shear stress (as depicted in Fig. 2.3) able to excite longitudinal or

transverse acoustic waves, the latter when the material can support shear wave

propagation. When inspecting Newton's equations for a given system, the driving

force is related to the gradient of the applied stress. The electrostrictive driving

forces resulting from various pump beam polarizations are listed in Eq. 2.5

(VV) F, ox E2 qy1 22 sin(qx)5(t)

(HH) Fx o E2 q yIIcos2+Y 1122 sin 0 sin(qx(t) (2.5)

(VH ) F, OC E2 q{ y,1 n -Yn22) COS-0sin(qx po(t )2

In a mechanically isotropic material, ISBS can drive both longitudinal and transverse

acoustic waves, whereas ISTS can only drive longitudinal acoustic waves. But ISTS

has the advantage of heating the sample leading also to a thermal grating, which can

be analyzed to investigate thermal transport properties. Equations of motion

describing these material responses are described in more detail in subsequent

chapters.

A useful comparison between the step-function ISTS force and delta-function ISBS

force can be derived from the equation of motion for a simple damped harmonic

oscillator (see [Marion]). In the case of under-damping, as long as a driving force is

applied faster than -1/4 period, damped oscillations will result, but the initial phase

of the oscillations will depend on the nature of the driving force. Fig. 2.4 shows

calculated responses for a damped harmonic oscillator given a step, impulse, and

combined driving force. Due to oscillation about a new equilibrium position, the

step response is phase lagged behind the impulse response. In ISS, the angular

frequency, co, of the generated acoustic oscillations is given by the material speed of



sound, v, and excited wavevector, q, as c = vq. In general, the driving force will be a

combination of ISTS and ISBS, so the initial phase of acoustic oscillations will

depend on the relative contribution of each excitation mechanism.

-- Step

- impulse
-Step + Impulse

I\

Fig. 2.4 Response of a classical damped harmonic oscillator to step function (blue short
dashed line) and impulse function (red dashed line). The solid green line is a combination
step + impulse response. The dependence of the phase of the oscillations on the driving
force is evident in the plot.

2.3. The probing process
The excitation processes and resulting material responses described above lead to

time-dependent, spatially periodic changes in the optical properties of the material

that can be monitored with a probe beam [Berne]. ISBS- and ISTS-excited acoustic

waves as well as ISTS heating and thermal expansion lead to changes in strain and

temperature that can couple to the index of refraction [Eichler]. In the linear

regime, deviations from the equilibrium real and imaginary refractive index,

n*= n +ik, can be written as

an n A n don- d--dT)
k k 'T

ok-de +-dT

where E is the strain and T is the temperature. Time-dependent spatially periodic

variations in n and k will lead respectively to phase and amplitude transient



diffraction gratings; the dynamics of the induced transient grating will be encoded

in probe light diffracted and directed to a detector as illustrated in Fig. 2.5.a.

(a) signal (b)

prob

Aeoust Wav
Propogt"

(C) signal (d)
F"O'9 1'+ ref.

probe

Acoustc Wve .f.-t4 .
Propogate

Fig. 2.5. (a) Diagram illustrating diffraction of probe beam from transient grating (here
illustrated as counter-propagating acoustic waves). (b) Time-dependent diffracted signal
recorded on the oscilloscope according geometry in (a). (c) The heterodyne geometry
entails overlapping the diffracted signal with a reference beam. (d) Adjusting the
heterodyne phase allows for increased signal levels and removal of parasitic noise sources
as shown here (in comparison to (b)) and described in the text.

In practice either a variably delayed pulse or a continuous wave (CW) beam can be

used as probe. All of the ISS experiments presented in this thesis utilized CW

probing and fast detection electronics, with the electronic bandwidth determining

the time resolution of the experiment. The diffracted probe light is directed to a

detector and the time-dependent trace is recorded on the oscilloscope as shown in

Fig. 2.5.b. As is the case when any waveform is modulated in time, that modulation

will result in a shift or creation of side-bands in the frequency spectrum of the

original waveform. For example, in ISS the optical-frequency probe beam is

modulated by diffraction from excited acoustic waves, which leads to an optical



frequency shift of the diffracted probe light equal to the acoustic frequency. This

frequency shift can be resolved spectrally given a spectrometer with adequate

resolution [Maznev96] and is also the basis for Brillouin light scattering (BLS)

measurements, but in BLS light is scattered and frequency shifted by thermal

acoustic phonons [Vacher], rather than coherently generated phonons as in ISS.

One immediate downside to the approach of detecting the diffracted probe light

directly in the time (or frequency) domain is that only variations in intensity (or

frequency) are detected, and a phase shift between amplitude and phase grating

signal contributions is lost. Additionally, spurious signals may be detected and are

difficult to remove through any type of data processing or experimental

manipulation. In Fig. 2.5.b we observe the ISTS excited acoustic oscillations in liquid

isopropanol, but these may be obscured by the sharp spike at t=O due to scattered

pump light reaching the detector as well as slower modulations due to electronic

noise from a high-voltage switch driving the Pockels cell in the pump laser system.

2.4. Heterodyne detection
To allow for separation of amplitude and phase grating signal contributions, as well

as to facilitate cancelation of noise sources, we employ phase-controlled heterodyne

detection [Maznev98]. In heterodyne detection as depicted in Fig. 2.5.c with

accompanying signal trace in Fig. 2.5.d (also from isopropanol with identical grating

period to that used in 2.5.b), the diffracted probe beam is superposed with a

reference beam and directed to a detector. The relative phase difference between

probe and reference beams is well defined and easily adjusted by rotating a thin

glass plate in the path of either probe or reference beam before the sample (see Fig.

2.1).

As an example of heterodyne detection, let us consider the details of the signal

formation in a transmission ISS measurement. In an experiment as depicted in Fig.

2.1, a probe beam with wavelength Ap is incident at the sample on the transient

grating. The diffracted light is spatially overlapped with an attenuated reference

beam (derived from the same probe source as depicted in Fig. 2.1) and directed to a



detector where the time-dependent intensity is measured. Optical fields associated

with the probe and reference beams incident on the sample are approximated as

plane waves respectively as

E = E expi k -q2/4) z - i(q/2)x -iwpt + i#p (2.7)

and

ER =trEOexp(i(k 2- q2/4),2z+i(q2)x - it+i#R (2.8)

where Eop is the incident probe amplitude, k, is the optical wavevector, q is the

transient grating wavevector defined above, op is the optical frequency, #p and #R

are the phases of probe and reference beams respectively, and tr is the attenuation

factor for the reference beam. For a thin, time-dependent grating, and assuming the

grating is a small perturbation, the complex transfer function is given by

t * (t) oc 1+ cos(qx)[6k(t) + i6n(t)] , (2.9)

where on and 6k are deviations from the equilibrium refractive index as described in

Eq. 2.6. The first term in square brackets represents amplitude modulation of the

incident field while the second term represents phase modulation. The diffracted

field can be obtained by multiplying the input field by the complex transfer function

[Collier]. Assuming the sample is located at z = 0, for the +1 diffraction order of the

probe beam one obtains

E y, = E0 [6k(t) + i6n(t)] exp(i(k2 - q2/4)2Z + i(q/2)x - iwt + i#,) (2.10)

and for the zero order reference beam

ER(0) tr Ep exp(i(k2 - q2/4),2 z + i(q/2)x - iwpt + i#R (2.11)

We have neglected attenuation due to absorption, but this can easily by included.

The two beams are collinear and their interference gives an intensity

I, = IOp t2+6k2(t)+6n(t)2 +2tr(k(t)cos# -6n(t)sin#) , (2.12)

where Iop is the intensity of the probe beam and #= #p-#R is the heterodyne phase.

In the absence of the reference beam, the non-heterodyned diffraction signal is



given by

Inon-het Op [&2(t) + &2(t)] (2.13)

Thus without heterodyning the signal is comprised of a mixture of real and

imaginary refractive index terms. Since the relative magnitudes and time-

dependences of these terms are often unknown beforehand, unambiguous

quantitative analysis of this signal could be difficult. If the reference beam intensity

is much greater than that of the diffracted probe (tr >>6k, 6n), then the time-

dependent signal is dominated by the heterodyne term

Ihet 22t0 I0 [6k(t)cosp-6n(t)sinp] . (2.14)

As is evident in Eq. 2.14, the heterodyne signal is proportional to the probe intensity

and reference attenuation. Typically we would increase the probe intensity as high

as possible while avoiding over-heating and sample damage, and the reference

beam would be attenuated to optimum detector levels, mainly to avoid saturation.

The phase and amplitude grating probing processes can be thought of as the inverse

of the ISBS and ISTS excitation processes. Therefore one will only be sensitive to the

amplitude grating signal contribution when the probe beam is partially absorbed by

the sample. If the time-dependences of on and 6k are different, the temporal shape

of the signal will depend on #. By changing #, one can select the signal purely due to

an amplitude grating at # = 0,±z following the dynamics of 6k(t) and at #= ±/2

purely due to a phase grating following on(t). Amplitude and phase grating data are

often collected at two heterodyne phase settings allowing for cancellation of signals,

like the Pockels cell interference, that are not sensitive to the heterodyne phase. A

similar methodology can be used to derive the signal in a reflection ISS experiment,

but in such a case, surface displacement additionally contributes to the signal (see

Chapter 4).

2.5. The experimental setup

In the experiments described in this thesis, a short-pulsed excitation laser beam was

derived from an amplified Yb:KGW laser system (HighQ femtoRegen, usually set to 1



kHz repetition-rate) lasing at 1030 nm. Although the laser output pulse duration is

as short as 300 fs, electronically changing the position of an internal compressor

mirror can stretch the pulse to -1 ps. In most experiments, to avoid sample damage

or unwanted non-linear optical effects from high peak powers, we have completely

bypassed the compressor to obtain -60 ps pulses. For details on the operation and

potential trouble-shooting of the HighQ laser, please see Appendix A in

[Torchnisky]. When shorter pump wavelengths were desirable, we have utilized an

external, temperature-tuned BBO crystal for second harmonic generation to

produce 515 nm pulses. The BBO crystal was optimally cut for 1064 nm, not 1030

nm, so the temperature was tuned quite high (240 C) for efficient second harmonic

generation. In the ISS experiments the pump beam was split with a custom

diffractive optic (a binary phase mask pattern) into two beams, which passed

through a two-lens telescope, typically with 2:1 imaging, and were focused and

crossed with external angle 6 in the sample or at the sample surface. The

continuous probe beam followed an almost identical optical path as depicted in Fig.

2.1. To avoid undesirable effects due to chromatic aberrations in the imaging optics,

experiments were typically conducted with pump and probe wavelengths matched

with optimized optics for these wavelengths for transmission and reflection

geometries. When using the 1030 nm fundamental pump laser wavelength, a Sanyo

DL8032-001 150 mW at 830 nm or DL-8141-002 200 mW at 808 nm laser diode

was used as the probe laser together with Thorlabs NIR achromatic doublets. The

515 nm second harmonic pump was used with Thorlabs visible achromatic doublets

and probing with the output of a Coherent Verdi V5 single-longitudinal-mode,

intracavity frequency-doubled Nd:YAG laser at 532 nm. Mainly in order to reduce

sample heating, an electrooptic modulator (EOM - ConOptics 350-50 with 302RM

high voltage source) was used in conjunction with a delay generator to chop the

Verdi probe beam. Depending on the sensitivity and bandwidth needs, the probe

beam was directed to either a very sensitive Hamamatsu C5658 Si APD with 1 GHz

bandwidth or a New Focus 1591 high speed InGaAs photoreceiver with 4.5 GHz

bandwidth. The signal traces were recorded on a Tektronix TDS 7404 oscilloscope



with 4 GHz bandwidth. For ISS measurements, Thorlabs absorptive ND filters were

used to attenuate the reference beam, typcially ND 3 for the Hamamatsu detector

and ND 2 for the New Focus Detector. For phase control we found that the glass

slides originally used had very poor parallelism and thus could introduce phase

distortions that would reduce signal quality. We have found that highly parallel CVI

SQW1-1512-UV fused silica plates work well, and heterodyne phase selection

automation is possible with the use of a Thorlabs Z612 motorized actuator with

TDC001 Servo controller. For temperature control, we have used a Janis ST-100H

cryostat controlled by a Lakeshore 331 temperature controller. Data acquisition

and control of heterodyne phase and temperature were facilitated using Labview on

the computer. The laser table was set up as shown schematically in Fig. 2.6.

HighQAuocr
1030nm

BBT

Fig. 2.6. Schematic illustration of laser table and the location of various experimental setups.
The pump laser is labeled HighQ, the temperature controlled doubling crystal BBO, the
green probe with UV output capabilities is the Verdi V5, the -800 nm laser diode probe
source is LD, and the electrooptic modulator is EOM. The ISS setups are labeled VIS ISS and
NIR ISS. And a solid state laser with green (532 nm) output (SS) is used for the single pump
spot nanosecond acoustic interferometry technique described in section 2.9. The pump
pulse duration can be determined with the autocorrelator (Autocorr.).

2.6 ISS wavevector range
In ISS, the largest wavevector, and therefore smallest transient grating period, that

can be generated or probed is for 0= 1800 (grazing incidence), giving L = A/2n. But

this geometry can be very difficult in practice; relative phase stability between the



pump pair and probe & reference pair is needed, otherwise heterodyne detection

becomes significantly less efficient due to heterodyne phase fluctuations. In the

early ISS experiments, beam splitters and separate mirrors were used to divide and

cross the beams [Nelson]. The major advantages offered by the setups described

above are the common path optics, made possible by the phase mask, which

provides passive phase stabilization. Additionally the fact that the pump and probe

beams both pass through the same phase mask pattern ensures that the reference

beam is always at the correct angle to provide overlap with the Bragg diffracted

probe light for heterodyne detection. Essentially, the pump beams and probe and

reference beams image the grating pattern of the phase mask to the sample plane, so

the smallest grating period we can generate is given by the phase mask grating

period and the numerical aperture of the final lens in the imaging setup. The

numerical aperture (NA) is defined as

NA = n sin tan-' D (2.15)
2f

where n is the index of refraction,fis the lens focal length, and D is the lens

diameter. The NA in both NIR and visible ISS setups was 0.32 for two-inch diameter

lenses with 7.5 cm focal length. On the other hand, the largest transient grating

period essentially is given by the imaging ratio, the laser spot size and fluence

requirements for adequate signal at the sample, and how close the beams can be

without overlapping in the region between imaging optics, allowing for placement of

ND filters or a glass plate for heterodyne phase control. With the typical 2:1 imaging

this translates to about L = 2-75 tm on the NIR setup and L = 1-50 [tm on the green

setup.

2.7 Additional approaches for short grating periods
As the transient grating fringe spacing scales with light wavelength (Eq. 2.1), one

way to access smaller periods is to utilize a UV source for pump and probe. Other

alternatives to increase the NA of the final lens would involve using larger (>2")

diameter optics, aspheric lenses, large reflective optics, microscope objectives, or

multiple lens imaging. Each method could significantly reduce the grating period,



but would also present complications that would need to be overcome, such as

increased difficulty in alignment or being compatible with a cryostat for

temperature controlled experiments. There exist oil immersion microscope

objectives with NA as high as 1.6, but such imaging setups could prove impossible to

use with a cryostat, two objectives would be needed with near perfect alignment, a

small sample volume would be required for transmission measurements, and the

immersive nature of the setup would make reflection measurements significantly

more difficult to analyze. In attempting to go to higher NA setups, there will always

be tradeoffs in NA and working distance that need to be considered. Below we

illustrate two methods to perform measurements with increasingly small transient

grating periods that could be compatible with temperature-controlled

measurements in a cryostat and a variety of sample types.

2.7.a Reflective setup
As an example, in Fig. 2.7.a we show a schematic drawing for a reflective setup that

could potentially reach large beam crossing angles, and therefore small transient

grating periods. The phase mask splits pump and probe into two beams, which pass

the sample on either side. Spherical focusing mirrors cross and focus the beams in

the sample and the heterodyne signal can be directed to a detector. Fig. 2.7.b shows

the signal in ethylene glycol measured with the described setup with 1030 nm pump

and 808 nm probe. Based on the measured frequency of 1.53 GHz and known speed

of sound [Silence], the acoustic wavelength was -1 rim, almost half the shortest

acoustic wavelength possible to excite on the lens-based NIR setup. One difficulty of

this approach, or the idea of using short focal length aspheric lenses, is the potential

problem of compatibility with an optical cryostat; the cryostat must fit between

beams or optics.
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Fig. 2.7. (a) Reflective ISS setup capable of larger beam crossing angles. (b) Recorded trace
of ISTS generated acoustic waves at 1.53 GHz in ethylene glycol corresponding to -1 Lm
acoustic wavelength.

2.7.b. Immersion imaging
It is also possible to incorporate more complex optics with the existing visible and

NIR lens setups to increase the numerical aperture, which are also compatible with

cryostat use; another lens can simply be added before the sample (as well as after in

transmission measurements). For optimal imaging, a positive meniscus lens would

be best, but adequate signal has also been observed with short focal length, 1"

Thorlabs achromatic lenses as depicted in Fig. 2.8.a. In the case of liquid samples,
simply replacing the windows of the liquid sample cell [Halalay] resulted in

generation of 720 nm wavelength acoustic waves in the liquid 5-phenyl 4-ether oil

(5P4E), also known as Santovac 5, reduced from 1150 nm in the normal sample cell

as shown in Fig. 2.8.b. As in liquid-immersion lithography [Hoffnagle], both beams

do not enter the sample structure through a single plane so the index of refraction in



the material also contributes to reduction of the interference spacing. This

technique offers the distinct advantage of being easily compatible with existing

sample cells and cryostat.

(a)(b)

-5 0 5 10 15 20 25 30 35
time (ns)

Fig. 2.8. (a) Liquid sample cell with lenses in place of windows to be used in conjunction
with lens based ISS setup (see Fig. 2.1). (b) Longitudinal acoustic waves with 720 nm
wavelength recorded in liquid SP4E using lens cell.

2.8 Single beam excitation
ISS experiments are wavevector selective measurements. The transient grating

wavevector is in truth doubly determined by both the excitation and the probe. In

any type of experiment, it is not always necessary to excite a narrowband response

in order to probe at a particular wavevector or frequency, and that is indeed the

case with ISS. If a single beam is used to photo-excite a broadband acoustic

wavepacket, detection of a single wavevector component is still straightforward

with the ISS setups described above. In this case, the wavevector components

excited in the x direction are given by the Fourier transform of the laser spot at the

focus, given by

1 (4q 2a2  , 1 ( 2
I exp- )= 1 exp -- exp(-iqx)dx (2.16)

V2 r ( 4 -- a (_ a 2

where a is the l/e radius of the laser spot. One way to understand and visualize this

in comparison with crossing beams to excite a single wavevector as described by Eq.

2.1 is shown in Fig. 2.9.a. A single beam has portions, from either side of the beam,

that cross at many different angles and therefore excite a wide range of



wavevectors. But detection at a particular wavevector can still be selected by the

probe geometry, as illustrated in Fig. 2.9.b. A single pump beam with small spot size

was used to excite a broadband acoustic wavepacket in isopropanol, and signal was

monitored via heterodyne detection at the diffraction angle corresponding to

2,r/32.5 rim-' wavevector, showing damped coherent acoustic oscillations in Fig.

2.9.c.
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Fig. 2.9. (a) Simple comparison between angular intensity distribution in crossed beams and
a single beam. (b) Single-pump, crossed beam probe setup. (c) Broad band excitation,
narrow band crossed beam detection of acoustic signal recorded in isopropanol.

The fact that either the pump or probe process can select the wavevector opens the

avenue for studying narrowband acoustic properties with a number of broadband

acoustic excitations methods. Here we have illustrated the possibility simply due to

the material response from absorption by a single laser spot, but optically excited



metal or semiconductor acoustic transducers are also available for generation of

broadband acoustic wavepackets. Such high frequency techniques are

complimentary to ISS measurements; more details and a short comparison between

ISS and high frequency measurements will be offered in Chapter 9.

2.9 Point source/point probe - interferometric detection
The next natural step in progression of pumping and probing geometries is the use

of a single pump beam for multiple wavevector, broadband excitation, in

conjunction with a single probe laser spot for broadband detection. An

experimental setup for such an experimental geometry is illustrated in Fig. 2.10.a,

and again we utilize the photoacoustic response in a liquid as a means to

understand the methodology, which we call nanosecond acoustic interferometry

(NAI). A picosecond duration pump beam is loosely focused in the sample using a

spherical lens (-200-300 tm l/e beam radius). Weak absorption leads to heating

and thermal expansion through the sample, impulsively generating a cylindrical

wave radiating outwards [Patel,Neubrand], with frequency components in the low

MHz range. The cylindrical wave is detected at two points in space [Hess] using a

phase mask interferometer [Glorieux04]. As the cylindrical acoustic wavepacket

passes through the two interferometer arms in succession, a phase difference is

created due to density-induced changes in refractive index. As the interferometer

arms recombine at the diffraction grating, this translates to time-dependent changes

in the intensity of a single beam, which is directed to a detector.
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FIG. 2.10. (a) Nanosecond acoustic interferometry setup, where PBS is a polarizing beam-
splitting cube, QWP is a quarter wave-plate, and PM is the phase mask. (b) NAI trace
recorded in DC704 at room temperature. A pump pulse is absorbed in the sample
generating a cylindrical wave radiating outwards. We observe the acoustic pulse passing
first through one probe point and then through the second, where the amplitude reduction
is clearly observed. The inset shows the Fourier amplitude of the pulse at the first (blue)
and second (red) points.

To achieve maximum sensitivity, the incoming continuous wave probe beam passes

through, first, a polarizing beam splitting cube (PBS), and then a quarter waveplate

(QWP) to induce circular polarization. After passing through the phase mask (PM),

±1 diffraction orders are brought parallel and focused by a lens through the sample

cell to a dichroic mirror at the back of the sample cell, which reflects the probe

beams. The returning beams recombine at the phase mask, pass again through the

QWP, and the single beam is the correct polarization for transmission through the

PBS to a fast detector. We have also inserted a glass plate in the path of one
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interferometer arm that can be rotated for relative phase control. Signals were

recorded at relative phases -nt/2 and -r/2, midway between maximum constructive

and destructive interference, where the induced phase change, and therefore the

detected response, was greatest [Glorieux04]. In Fig. 2.10.b, a recorded trace shows

the acoustic pulse generated in liquid DC704 passing through the first probing point

at t=O and the second at longer times. The inset shows the Fourier amplitude of the

pulse at each point, where wave amplitude attenuation is apparent. With sufficient

signal-to-noise ratio, Fourier analysis can be performed to recover the frequency-

dependent speed of sound and attenuation rate data as described in more detail in

section 8.1.

2.10 Summary
In this chapter we have described important experimental details of ISS and related

optical techniques. Experiments have been carried out aimed at understanding

fundamental properties of thermal transport in semiconductors and measuring

complex mechanical properties to learn about structural relaxation in supercooled

liquids. These will be discussed in subsequent chapters, emphasizing important

benefits of the ISS experimental geometry with well-defined transient grating

wavevector.
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Chapter 3

Phonon mediated thermal transport

Active research and development of novel micro- and nano-structured materials

indicates the need for a deeper knowledge of material thermal transport properties.

Understanding how heat moves over short distances is central to manipulation and

management of thermal transport, and thus to development of more efficient nano-

electronics as well as thermoelectric materials for solid state power generation

[Cahill03]. Indeed the most recent progress in increased thermoelectric efficiency

has come by means of reducing the thermal conductivity

[ChenO3,Dresselhaus,Snyder,Kanatzidis].

In dielectrics and typical semiconductors relevant for thermoelectric or nano-

electronic applications, lattice excitations (phonons) are responsible for the

majority of thermal transport [Chen98]. In a simplified view, thermal conductivity

is directly related to the frequency-dependent phonon mean free path (MFP) and

group velocity over the entire thermal distribution of phonons [Callaway,Holland].

A rigorous method for calculating the thermal conductivity involves solving the

Boltzmann transport equations [Ziman,Majumdar], with phonons considered as

particles, given as

-+ v- Vf + a- - , (3.1)
dt Oscattering

wheref(r,v,t) is the phonon distribution function, v is the group velocity, a is the

particle acceleration (which can be neglected for phonons). The equation here is for

a single particle (wavevector), and the term on the right labeled scattering accounts

for coupling to other phonon modes which will be described in more detail below.

In general for phonon-mediated transport, solutions are exceedingly difficult and a

number of approximations have been developed to simplify the problem. In the so-

called relaxation time approximation (RTA) [Majumdar], the scattering term is

approximated using a single lifetime (for each wavevector) and the thermal
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conductivity can be calculated as

k = v(w)c(w)A(w)do, (3.2)
3 0

where o is the frequency of a phonon mode, and v, c, A are respectively mode

dependent values of group velocity, heat capacity, and mean free path; Eq. 3.2

essentially communicates how quickly, how much, and how far a particular phonon

mode carries heat. Integration is over all phonon frequencies the material supports,

and summation of three phonon polarizations is implied, with the 1/3 accounting

for 3 directions in space.

In this chapter, fundamental factors affecting thermal transport in semiconductors

and dielectrics will be described in brief, including the basics of phonon dispersion,

heat capacity, and scattering processes that determine the MFP. For a more

complete and introductory overview, the reader is directed to [Ashcroft]. For a

more in depth and well-presented overview, [Ziman] is very good.

3.1 Phonon dispersion
Just as molecular vibrations can be defined by the normal modes of the nuclear

motion, so the normal modes of a crystal lattice define the lattice excitations called

phonons, defined by polarization, angular frequency w, and wavevector k. Phonons,

like photons, are bosons with motion well described by the wave equation. In

isotropic solid materials phonons of three polarizations exist: one polarization that

makes up longitudinal phonons with oscillating motion parallel to the propagation

direction and two that make up transverse phonons with oscillating motion

perpendicular to the propagation direction. In mechanically anisotropic materials

(basically all crystals) these motions can be coupled which results in quasi-

longitudinal and quasi-transverse waves. In isotropic solids and along some

crystallographic directions in anisotropic materials, the two transverse modes will

be degenerate. Many phonon properties for the case of one or multiple dimensions

can be derived from simple periodic models of balls connected by springs (for



example, see Chapter 22 in [Ashcroft]), and more sophisticated models can involve

ab initio calculations or molecular dynamics simulations [HenryBroido,Ward].

In Fig. 3.1 we see the phonon dispersion (phonon mode frequency versus reduced

wavevector) for crystalline silicon (Si) along different crystal directions. The open

circles are experimentally determined points from inelastic neutron scattering and

the solid and dashed lines, which show reasonable agreement, come from an

adiabatic bond charge model calculation [Weber].
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Fig. 3.1 Silicon phonon dispersion curve (adapted from [Weber]). Open circles are
experimentally determined points from neutron scattering, and solid and dashed lines are
calculations from bond-charge models [Weber].

Starting from the bottom, we see longitudinal branches at higher frequencies and

transverse branches at lower frequencies, which are separate in some directions

and degenerate in others. The phonon group velocity is given by the slope of the

dispersion curve, which gives the speed of sound at low frequencies and approaches



zero at the zone boundary. Low frequency longitudinal phonons typically have

group velocities about twice that of transverse phonons in the same direction. In a

crystal with more than a single atom in the unit cell, as is the case with Si, zone

folding occurs resulting in what we term acoustic phonons at lower frequencies and

optical phonons at higher frequencies. We note the relatively flat nature of the

optical branches indicative of a low group velocity. The material dispersion curve

represents all of the possible phonon modes in a crystal along principle axes, from

which the density of states and heat capacity can be determined.

3.2 Phonon heat capacity
Historically, it was investigations of the temperature dependence of the heat

capacity in a variety of crystalline materials that led to the discovery of the quantum

mechanical nature of lattice excitations [Ashcroft]. The differential heat capacity in

Eq. 3.1 is given by

c(w) = ho g(w)-n(w,T) , (3.3)
OT

where h is Planck's constant divided by 2, g(w) is the density of states, and n is the

occupation number given by the Bose-Einstein distribution. In a three dimensional

solid,g(w) is given by the phonon wavevector and group velocity according to

q(w) 2/(2x 2v(w)). Fig. 3.2 shows the density of states as a function of frequency from

the same calculations displayed in Fig. 3.1. Starting at low frequencies we observe

the quadratic wavevector dependence and a peak due to the two transverse acoustic

branches (T). Following the peak and drop-off, quadratic dependence is again

observed due to longitudinal acoustic phonons (L). The peak at -14 THz is due to

the large optical phonon density of states (0). As temperature is increased, higher

frequency phonon modes are populated in great numbers due to the large density of

states, as well as the increased occupation number.
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Fig. 3.2. Phonon density of states for Si calculated from bond charge model (adapted from
[Weber]). Labels indicate regions dominated by transverse acoustic phonons (T),
longitudinal acoustic phonons (L), and optical phonons (0).

3.3 Phonon mean free paths
Of the three frequency dependent properties in Eq. 3.2 that are important to

calculating the thermal conductivity, the mean free path is the least well understood.

A number of factors affect phonon MFPs, including size and interface effects,

scattering from sample impurities, isotopes, and crystal defects, and intrinsic non-

linear multiple-phonon processes like normal (N) and umklapp (U) scattering

[Callaway,Holland]. Here we will loosely define a scattering event that determines

the MFP as some process that results in the creation of one (or more) new

phonon(s) characterized by a new wavevector and/or energy. Each type of

scattering process influences particular portions of the phonon spectrum with a

certain temperature dependence that influences the overall temperature

dependence of the thermal conductivity. Fig. 3.3 illustrates the typical temperature

dependence found in a variety of materials, exhibiting a peak at intermediate

temperatures [Brtiesch]. As depicted, this is often divided into temperature regions

reflecting mechanisms that control relevant phonon MFPs.

T _ L_

I



Log k

[.. T3
T3  1/

B p..p tog TB D

Fig. 3.3. Prototypical thermal conductivity temperature dependence divided into regions
with behavior ascribed to MFP determining mechanisms. Such mechanisms are boundary
or size effects (B), defect or impurity scattering (D), with different impurity or defect
concentrations illustrated by the dashed lines, and intrinsic phonon-phonon scattering (P-
P). Adapted from [Bruesch].

The MFP is strongly frequency dependent and can range essentially from

macroscopic distances down to the lattice spacing, with long wavelength phonons

(sound waves) having the longest MFPs. Thus long wavelength phonons may have

MFPs limited by the sample size. At low temperatures where only such low energy

phonon states are populated, all MFPs are fixed by the sample size and the thermal

conductivity scales with heat capacity showing T3 behavior.

Scattering also results from isotopes, impurities, or imperfections in the lattice (here

we will narrow our definition to point defects such as vacancies). In each of these

cases, the scattering cross section scales with phonon wavevector to the fourth

power (Rayleigh scattering) and the change in mass (AM) from a perfect lattice site

squared,

(q) oc q4 AM 2 . (3.4)

In the case of a vacancy, AM would be the mass of the removed atom. Due to the q4

dependence, this effect on the thermal conductivity can be dramatic as the

temperature is raised and higher frequency phonon modes become populated.



Impurity or defect scattering effects are most often seen as a decrease in the

maximum of the thermal conductivity peak as depicted by the dashed lines in Fig

3.3, but also are understood as the reason for low alloy thermal conductivities.

(a) Normal Scattering (b) Umklapp Scattering
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Fig. 3.4 Diagram graphically displaying wavevector selection rules for (a) Normal and (b)
Umklapp 3-phonon scattering processes. The lighter arrows are incident phonons and
darker arrows are the resulting phonons.

As temperature continues to increase, more and more high frequency phonon states

with higher heat capacity are populated. Due to larger numbers of phonons at

elevated temperatures, multiple phonon scattering events become significant. In

most bulk single crystals at room temperature, the intrinsic N and U scattering rates

typically control the phonon mean free path. N and U scattering are fundamentally

non-linear three phonon scattering events. In either case, wavevector and

conservation of energy selection rules apply, given by

q + q' = q +G (3.5)
CO + a)' = o"

Here, G is the crystal momentum, and the process is termed Normal when G=O and

Umklapp when G>O; the two types of processes are illustrated in Fig. 3.4 where the

lighter arrows indicate pre-scattering phonons, and the darker arrows indicate

post-scattering phonons.

In the Debye approximation, for N scattering events, the energy flow direction is

conserved as either two phonons combine to create one new phonon, or one phonon

decays into two phonons (Fig. 3.4.a). Due to the finite size of the Brillouin zone, two

phonons of large wavevector magnitude are forbidden to combine to create a new

phonon with wavevector outside the first Brillouin zone boundaries. Due to the



lattice momentum (G>O, U scattering), a new phonon can be created, but now

travelling in the opposite direction, severely disrupting the energy flow (Fig. 3.4.b).

Therefore even though N processes will influence the MFP, in the absence of

dispersion, U scattering solely contributes to a thermal resistance. A variety of

functional forms to describe the frequency dependence of N and U processes have

been suggested, but recent first principles calculations in silicon have shown that a

scattering rate proportional to w0 seems to be accurate for N processes and o 4 for U

processes [Ward].

We point out that the RTA, from which Eq. 3.2 is derived, was much criticized in the

past [Ziman] but is now viewed as adequate for temperatures on the order of or

higher than the Debye temperature. The main point of the criticism was that the

RTA does not distinguish between momentum-conserving N-scattering processes

and umklapp (U-) processes. Indeed, if only N-processes were present, the RTA

would definitely be wrong. However, for high frequency phonons, U-processes

dominate [Ward] and hence the distinction is not important. On the other hand, N-

scattering of a low-frequency phonon off the high frequency "thermal reservoir" is

followed by much faster U-processes within the latter, which redistribute the

momentum. Thus effectively the phonon momentum is lost at a dominant rate,

which is determined by N-processes for low-frequency phonons and by U-processes

for high-frequency ones and can be well approximated by a single rate

1/r=1/N+1/TU [Ward]. Recent first-principles calculations of the thermal

conductivity of Si [Henry, Broido, Ward] indicated the validity of RTA above -100 K.

A textbook estimate of the average MFP in semiconductors close to room

temperature based on simple kinetic theory [Blakemore,Burns] yields 1-100 nm;

thus thermal transport over longer length scales is thought to be well described by

the classical thermal diffusion model and ballistic effects may only be observed over

exceedingly short length scales. On the contrary, an increasing set of experimental

and theoretical studies indicate that the effective MFP of heat-carrying phonons in

single-crystals can be significantly larger than that cited above [Ju,Chen98], and
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indeed a single MFP is an oversimplification in understanding length scales for

diffusive versus ballistic transport.
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Fig. 3.5. Thermal conductivity accumulation as a function of phonon MFP according to first
principles calculations of [Henry] and [Ward]. Although discrepancies exist, the importance
of phonons with a wide range of MFPs to thermal transport is evident.

In fact, for any length scale there will be phonons of low enough frequency that

propagate ballistically rather than diffusively. The question is therefore how much

the relatively long MFP phonons contribute to the heat transport. Until very

recently, in order to answer this question one had to resort to guesstimates based

on fitting thermal conductivity data with Callaway- or Holland-type models with

many free parameters [Callaway, Holland]. In recent years, first principles

calculations of thermal conductivity free of fitting parameters have emerged [Henry,

Ward, Broido]. To emphasize the utility of such calculations, we plot in Fig. 3.5 the

thermal conductivity accumulation as a function of MFP for Si at room temperature

according to Henry and Chen [Henry] and Ward and Broido [Ward]. We see that

phonons with MFPs ranging over 5 orders of magnitude contribute significantly to

the thermal conductivity, demonstrating the gross inadequacy of describing the

phonons involved in thermal transport by a single MFP. Although quantitative

discrepancies between the different models still persist, they invariably point to an



important role of low-frequency phonons; for example in Fig. 3.5, we see phonons

with MFP exceeding 1 tm contribute 40-50% to thermal conductivity of Si at room

temperature.

3.4 Diffusion equation
The two length scales needed to determine if thermal transport is in the diffusive or

ballistic regime are the MFPs of heat carrying phonons and the length scale over

which transport is measured. At macroscopic length scales (and even microscopic

length scales in many materials), the diffusion equation accurately describes

thermal transport, and is thus the basis for thermal conduction modeling in many

applications, systems, and geometries (see [Carslaw] for an in-depth treatment).

Many of the transient grating measurements presented in this thesis are conducted

in the diffusive regime, and thus we derive equations for 1-D diffusive transport

relevant to an ISS experiment to give a basic introduction to the formulation. In

chapter 4 more complex 2-D equations are given in relation to ISTS surface heating

of opaque samples where heat diffuses parallel to the surface, as well as into the

depth of the material. The diffusive transport equations are valid in all cases where

the MFP of heat carrying phonons is shorter than the length scale of the

measurement. In Chapter 5, the contribution of longer wavelength phonons to an

ISS thermal grating decay and the crossover from diffusive to ballistic heat transport

will be explored further.

The 1-D heat equation with an impulsive, spatially periodic heat source can be

written

ooT d2zoT Q- = a 2 + - cos(qx)o(t), (3.6)
at a pc,

where 6T is the deviation from equilibrium temperature, a is the thermal diffusivity,

Q is the energy imparted by the laser, p is the equilibrium density, and cp the heat

capacity. As described in chapter 2, heat is deposited sinusoidally with wavevector

q. Assuming this sinusoidal spatial dependence of T and performing a Fourier

transform from the time to frequency domain according to f(w) = f(t)e~""tdt, we



arrive at

T(q,w) = Q 2 -(3.7)
pcP(im +aq2)

An inverse Fourier transform recovers the time dependent solution

T(q,t) = exp(-yt) = Q exp(-aq2t) . (3.8)
pc, pc,

From this simple solution, we see that the thermal decay rate y will depend simply

upon the material diffusivity and the transient grating wavevector squared. This

linear q2 dependence is clearly depicted for a decane nanofluid (a suspension of

alumina nanoparticles in liquid decane, see [Schmidt08b]) in Fig. 3.6. Here the

inverse relationship is plotted - decay time vs. inverse q2 and the slope of the line

gives the inverse thermal diffusivity.
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Fig. 3.6. Relaxation time versus inverse wavevector squared for decane nanofluid showing
linear dependence (reproduced from [Schmidt08b]). The diffusivity can be extracted from
each point or the slope of the line.

3.5 Manipulating thermal transport
Because they have nanometer wavelengths, heat-carrying phonons are sensitive to

any imperfections at surfaces and interfaces between adjacent materials

[Chenl998,Koh]. Gaining a greater understanding of phonon MFPs and how to



manipulate them is leading to novel materials with custom thermal transport

properties; introducing nanostructure such as layers or crystallite boundaries to

scatter heat-carrying phonons is becoming an established method to reduce the

lattice contribution to thermal conductivity [Kanatzidis,Chen2003,Dresselhaus]. As

an introduction relevant to experiments discussed in the following chapter, a brief

discussion of the effects of a single interface between adjacent materials on phonon

propagation will be given, as well as that of multiple interfaces in a superlattice

structure.

3.5.a Interfaces
Phonons propagate as described by wave mechanics, almost identical to how we

describe the propagation of light. Thus as the Fresnel equations include a material

dependent wavelength, a change in propagation direction is predicted as a wave

crosses a boundary between two materials with different impedances. This is

determined by the refractive index for light waves, the analog of which is the

acoustic impedance Z = pv for acoustic phonons where p is the material density and

v is the speed of sound. One difference between light and sound waves is that sound

waves include both transverse and longitudinal polarizations. When a sound wave

is incident at an interface at an oblique angle, a longitudinal motion can result in

transverse motion and vice versa, resulting in mode conversion. Thus in an

anisotropic material, a single acoustic wave incident to an interface can result in

potentially six propagating acoustic waves - three reflected (1 quasi-longitudinal +

2 quasi-transverse) and three transmitted (1 quasi-longitudinal + 2 quasi-

transverse). Such mode conversion has a selection rule given by kx-incident = kx-resuit

and is illustrated in Fig. 3.7.a. In certain cases, the wavevector selection rule may

not be met for conversion to a particular mode as illustrated in Fig. 3.7.b where we

see only two transmitted propagating modes; the third will be a diffusive mode

which in optics is termed an evanescent wave. The curves in Fig. 3.7 are called

slowness curves and indicate possible wavevectors for slow and fast transverse

waves (ST and FT respectively) and longitudinal waves (L) at a GaAs/AlAs interface

[Tamura].
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Fig. 3.7. Illustrations of mode conversion at GaAs/AlAs (100) interface (adapted from
[Tamura]). (a) Indicates full mode conversion of incident slow transverse (ST) wave to
three propagating reflecting waves and transmitted waves: one ST, one fast transverse (FT),
and one longitudinal (L). (b) An incident angle that results in only two transmitted
propagating waves due to the selection rules.

The preceding arguments are valid in the case of specular reflection, which assumes

a perfect interface and is termed acoustic mismatch theory. In reality, just as there

are defects in the bulk material, there may be defects and dislocations at interfaces,

which can lead to diffuse scattering. In such a case, it has been suggested that

phonons scattered at an interface lose all memory of a previous direction or state,

and transmission across an interface is proportional to the density of states; this

formulation is termed diffuse mismatch theory [Swartz]. As is the case with defect

scattering in the bulk, short wavelength phonons will be sensitive to atomic scale

defects or interface roughness. Thus whether a phonon sees the interface as

specular or diffuse will be highly wavelength dependent. In order to reduce thermal

transport, the MFPs of phonons with a variety of wavelengths should be decreased,

and so nano- as well as meso-scale structuring can be employed.

3.5.b Superlattices
Perhaps the most straightforward means to decrease MFPs due to diffuse scattering

at interfaces is to simply build a superlattice (SL) structure with a high interface

density. Thus the diffuse mismatch effect will be additive with the number of SL

layers. In the case of specular reflection, a number of interesting effects evolve in



periodic superlattices due to constructive and destructive interference wave effects,

as is also the case with optical Bragg stacks [Saleh]. Constructive and destructive

interference of multiple reflections off interfaces leads to the formation of "stop

bands", which means the transmission coefficient for a particular frequency tends to

zero with an increasing number of SL layers. Depending on the acoustic impedances

of individual layers composing the SL, stop bands develop with typically only 10-20

SL periods. A look at the dispersion curve indicates that the periodic SL leads to

zone folding. This is similar to the zone folding that distinguishes acoustic from

optical phonons, but instead of the lattice spacing, it is the SL period that determines

where the SL zone boundaries will be. Just like phonons in a bulk crystal, the group

velocity goes to zero at the SL zone edge (and center for higher frequencies) and

band gaps open (not coincidentally at identical frequencies to the stop bands).

Such a SL transmission and dispersion plot is shown in Fig. 3.8, which we calculated

for a 8nm GaAs/8nm AlAs SL according to a transfer matrix technique [Mizuno].

While scattering at interfaces will reduce the MFPs of heat carrying phonons

important to Eq. 3.2, the SL dispersion effects modify the material group velocity,

essentially cutting out phonons at stop band frequencies from contributing to the

thermal conductivity. One important thing to note in real SL structures such as

those measured and presented in the following chapter is that there are potentially

hundreds or thousands of layers. But the highest frequency phonons may have

short enough intrinsic MFPs that they won't "see" that many layers, thus stop bands

may not completely form.
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Fig. 3.8. (a) Stop band formation in 8nm GaAs + 8nm AlAs SL. Red indicates complete
transmission and blue zero transmission. (b) SL zone folded dispersion curve and group
velocity. The red line corresponds to transverse waves and the blue line to longitudinal.

A better understanding of the influence of interface scattering and zone folding on

reducing thermal conductivity in real materials is needed. While research in this

direction is currently underway in a number of groups, it is still an open question

and some means of distinguishing between the two effects independently must be

developed.

3.6 Summary and experimental techniquess
Although progress has been made in manipulating thermal transport, a number of

important issues remain unclear. What are the relevant length scales in bulk

materials for ballistic versus diffusive thermal transport? Does the acoustic

impedance mismatch determine reflection and transmission of phonons at

interfaces, or are phonons scattered diffusely? What are the relative contributions

to thermal conductivity reduction from rough interface versus zone-folding related

effects in superlattices? How strongly do these effects vary with temperature, if at
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all? The literature is extensive on these subjects [Chen98,Hyldgaard,Hepplestone]

but even with recent advances, clear understanding still awaits in the future. Some

of these important issues will be addressed in the following chapters.

These unanswered questions in conjunction with the development of innovative

materials create the need for accurate characterization of thermal transport

properties. A number of experimental approaches have been developed and utilized

to measure thermal transport such as ac calorimetric methods [Hatta,Govorkov]

including the 3w technique [Cahill], and optical methods including flash [Parker],

pump-probe transient thermoreflectance (TTR) [Capinski], and transient grating

techniques [Harata,Pennington,Rogers9 3]. Optical measurements of thin-film and

other structured materials offer potential advantages over contact methods such as

avoiding thermal contact [Fletcher] and interface conductance effects [Lyeo] and

offering contactless, non-destructive characterization.

In the transient grating method, which we have previously referred to as impulsive

stimulated thermal scattering [Rogers93], two crossed laser pulses create a spatially

sinusoidal temperature profile (thermal grating) in the sample and the dynamics of

acoustic and thermal responses is monitored via diffraction of a probe laser beam.

TG measurements have long proffered accurate and straightforward means for

measuring acoustic and mechanical properties of complex samples, and commercial

instruments exist for on-line measurements of layered materials

[Gostein,Maznev03]. In addition to ascertaining mechanical properties, TG

measurements simultaneously allow determination of thermal transport properties

[Eichler,Harata,Tokmakoff,Rogers,Kading].

TG measurements can be greatly enhanced by optical heterodyne detection

[Goodno,Maznev98] which has become a standard technique adopted for many

applications. As briefly outlined in Chapter 2, heterodyning allows separation of so

called phase and amplitude grating contributions to the transient grating signal

[Terazima,Gedik]. In the next chapter we utilize the phase control to resolve

ambiguities in the interpretation of the transient thermal grating signal.
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Chapter 4

Transient thermal grating measurements

in the reflection geometry

4.1 Introduction
In this chapter, the methodology for a heterodyned laser-induced transient thermal

grating technique for non-contact, non-destructive measurements of thermal

transport in opaque material and experimental measurements of a PbTe thin film

and GaAs/AlAs superlattices are presented. In materials with weak optical

absorption, thermal grating decay is exponential as outlined in section 3.4 and

extraction of the thermal diffusivity from the data is straightforward. In opaque

materials, the thermal grating is formed at the sample surface and a two-

dimensional thermal diffusion equation needs to be solved to determine the

temperature dynamics [Kdding]. Furthermore, measurements on opaque samples

are conducted in reflection geometry with the diffracted probe beam intensity

affected both by surface displacement and by variations of the reflection coefficient.

The dynamics of the surface displacement and thermoreflectance are different

[Kiding] which further complicates the interpretation of the data. Oftentimes it is

simply assumed that the diffraction signal is due to the surface displacement only

[Harata], and we will show that this assumption can be highly inaccurate.

Below we introduce the relevant methodology for measuring thermal transport in

an opaque sample using the transient thermal grating technique in reflection

geometry with phase-controlled heterodyne detection. In every sample we have

tested, the phase grating signal includes components associated with both transient

reflectivity and surface displacement whereas the amplitude grating contribution is

governed by transient thermoreflectivity alone. We isolate the thermoreflectance

component of the signal, which allows direct comparison to a two-dimensional
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thermal transport model for the extraction of the thermal diffusivity. Measurements

of the in-plane thermal diffusivity of a 5 m thick single crystal PbTe film yielded

excellent agreement with the model over a range of grating periods from 1.6 to 2.8

tm. In-plane thermal diffusion measurements of GaAs/AlAs superlattices were also

performed in tandem with transient thermoreflectance (TTR) measurements, which

are more sensitive to the cross-plane thermal transport, allowing comparison of in-

and cross-plane thermal transport on 1-D, and therefore presumably anisotropic,

superlattice structures.

Detector Probe 532nm
Pump 515nm L2

ND A Sm l
ref. probe

pum
pumps ,

signal
+ ref.

PM L1 Adjust L2
Fig. 4.1. Schematic of transient thermal grating experiment in reflection geometry. A
diffractive optic, a binary phase-mask (PM), splits pump and probe into ±1 diffraction
orders. Pump beams are focused and crossed at the sample surface by a set of lenses (L1
and L2), generating the transient thermal grating. Diffracted probe light is combined with
an attenuated reference beam (ND) and directed to a fast detector. The relative phase
difference between probe and reference beams is controlled by adjusting the angle of a glass
slide (Phase Adjust) in the probe beam path. To the right, the spatial arrangement of beams
on L2 is depicted.

4.2 Amplitude vs. phase grating signal
In a reflection transient grating experiment as depicted in Fig. 4.1, two short

excitation pulses with wavelength Ae are crossed, at the surface of the sample of

interest at an angle 0. Optical interference leads to a periodic intensity profile with

fringe spacing given by

L 2- . (4.1)
q 2sin(6/2)

Absorption leads to spatially periodic heating and rapid thermal expansion,

resulting in a transient grating with period L and grating wavevector magnitude q.

There are two main transient grating contributions from which a probe beam can be
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diffracted: a static "thermal grating", of primary interest here, that remains until the

heat diffuses away as well as an oscillating, standing-wave grating from impulsively

generated surface acoustic waves (SAWs) that persists until the acoustic waves are

damped out or simply leave the probing region [Rogers94]. A probe beam with

wavelength Ap is incident on the transient grating. The diffracted light is spatially

overlapped with an attenuated reference beam (derived from the same probe

source as depicted in Fig. 4.1) and directed to a detector where the time dependent

intensity is measured.

Many of the details of the signal formation in the set-up described above have

already been presented in section 2.4. But here for a thin, time-dependent reflection

grating, again assuming the grating is a small perturbation, the complex transfer

function is now a combination of the complex reflection coefficient and phase

change due to surface displacement, which we give by

t * (t) = ro(1 + cos(qx)[r'(t) + i(r'(t) - 2ku(t)cos #,)]) , (4.2)

where the dynamic complex reflection coefficient is r*(t) = ro[1+ r'(t) + ir"(t)], u(t) is

the vertical surface displacement, and #3p is the incidence angle of the probe beam on

the surface. The first term in square brackets represents amplitude modulation of

the incident field while the second term represents phase modulation. Again the

diffracted field can be obtained by multiplying the input field (Eq. 2.7) by the

complex transfer function [Collier]. For the +1 diffraction order of the probe beam

one obtains

Ep 1 = roE 0 r'(t) + i(r'(t) - 2k u(t)cos PP)]exp(-i(k - q2/4) 2 z + i(q/2)x - iOt + i,) (4.3)

and for the zero order reference beam

E R(0) 0trE0,exp(-i(k2 -q2 /4)/ 2 z+i(q/2)x -iopt +ipR (4.4)

The two beams are collinear and their interference gives an intensity

I, =IOR t2+ r'2 (t) + (r'(t) + 2k u2(t)cos#3P) + 2tr(r'(t)cos$P - (r'(t) -2k u(t)cos#,P)sin] , (4.5)

where Iop is the intensity of the incident probe beam, Ro = Iro| 2 is the surface



reflectivity, and # = #p-#R is the heterodyne phase. In the absence of the reference

beam, the non-heterodyned diffraction signal is given by

Ionhet =IoPRo r'2(t) + r"2(t) - 4r'(t)k~u(t)cosP + 4k u2 (t)cos 2 p]. (4.6)

Thus without heterodyning the signal is comprised of a mixture of real and

imaginary transient reflectivity and displacement terms. Since the relative

magnitudes of these terms are rarely known beforehand, unambiguous quantitative

analysis of this signal would be difficult to say the least. If the reference beam

intensity is much greater than that of the diffracted probe (tr >>r',r",kpu), then the

time-dependent signal is dominated by the heterodyne term

Ihet = 2 trO pRO r'(t)Cos- r(t)-2k~ucosP)sin# . (4.7)

If the time dependences of the reflectivity and displacement are different, the

temporal shape of the signal will depend on #. By changing #, one can select the

signal purely due to an amplitude grating at #= 0,±;, following the dynamics of r'(t),

and at # = ±7r/2 purely due to a phase grating, representing the combination of r"(t)

and u(t). Thus while straightforward to isolate the transient reflectivity signal r'(t),

it is not at all straightforward to isolate the displacement signal u(t). Assuming that

r'(t)and r"(t)follow the same temporal dependence, the displacement signal may be

isolated at # = -arctan(r'/r); however, this requires knowledge of the relative

amplitudes of r' and r" which is not readily available. Sometimes a distinct known

feature in the temporal behavior of the transient reflectivity such as a sharp step can

be used to determine r'/r" (for example, see [Wright]). For our purposes, the

preferable strategy for the quantitative analysis of the TG signal is to set # for pure

amplitude grating and work with transient reflectivity rather than displacement.

4.3 TG experiments on a PbTe thin film
Heterodyne TG measurements were performed on a 5 [tm-thick single crystal,

undoped PbTe film grown via molecular beam epitaxy (MBE) on a (111) BaF2



substrate'. The deposition sequence entailed a 30-minute substrate bake at 575 *C

to desorb any moisture or native oxide on the surface. After the substrate bake, the

temperature was reduced to 325 *C and PbTe film growth was initiated with a 10:1

PbTe/Te flux. Fig. 4.2 is an atomic force microscope image of the PbTe film surface,

showing the surface step structure with very low surface roughness (9 A rms

roughness over 10 [Lm 2) indicative of a single crystal thin film. We note that the

single crystal PbTe film does have a high dislocation density (>108 cm- 2), as

determined by cross-sectional transmission electron microscopy, and is due to the

PbTe/BaF2 lattice mismatch producing 4.1% strain. PbTe has shown promise for

use in solid-state thermoelectric power generation [Khokhlov] and therefore

thermal transport properties of thin films are of interest.

RoughnessRus=9A

10 pm
10 pm

Fig. 4.2 Atomic force microscope image of 10 Am2 section of the PbTe thin film. The low
surface roughness is indicative of a single crystal layer, but it still has a high dislocation
density due to the film/substrate strain mismatch.

For these measurements the visible-wavelength ISS setup was used, which entails a

short-pulsed laser beam (Ae = 515 nm, second-harmonic of HighQ femtoRegen, 60 ps

pulse width, 1 kHz repetition-rate) that is split with a diffractive optic (binary phase

mask pattern, PM) into two beams, which are then focused (300 Rm le beam

radius, 0.66 IJ per pulse total energy) and crossed with angle 6at the surface'of the

sample of interest as depicted in Fig. 4.1. Pump-induced changes in the complex

transfer function of the sample will lead to time dependent diffraction of an incident

'PbTe films were grown by M. Bulsara in E. Fitzgerald's group at MIT and T. C.
Harman, S. Calawa, C. J. Vineis, and G. Turner at Lincoln Laboratory.
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continuous wave probe beam (532 nm, Coherent Verdi V5, 150 tm radius at the

sample, chopped with an electro-optic modulator to 64 ts pulses to reduce sample

heating, 8.7 mW average power). In the heterodyne detection scheme as described

above, this diffracted light is superposed with a reference beam, derived from the

same source and attenuated by a neutral density filter (ND), and directed to a fast

detector (Hamamatsu C5658, 1 GHz bandwidth); the temporal signal is observed

and recorded on the oscilloscope. The heterodyne phase # is controlled by

motorized adjustment of the angle of a glass plate in the path of the probe beam.

In a direct gap semiconductor like PbTe (0.31 eV bandgap at 300 K [Wang]), above

gap excitation results in fast thermalization of hot carriers, which promptly relax

and transfer energy to the lattice [Siegal,Othonos]. In a TG experiment, energy is

deposited with sinusoidal spatial dependence at the sample surface, exponentially

decaying with penetration depth 1/C. Heat will subsequently diffuse into the depth

of the material as well as from grating peak to null parallel to the surface. Initial

rapid thermal expansion will also launch counter-propagating surface acoustic

waves resulting in a rapidly oscillating standing wave pattern. The combined effect

of thermal grating and acoustic waves will lead to a time dependent complex

transfer function described by Eq. (4.2). In general, the complex reflectivity may

include contributions from changes in temperature (thermoreflectance) as well as

strain (photoelasticity). Photoelastic and displacement responses should include

contributions of both the thermal grating and acoustic waves whereas the

thermoreflectance response includes only the contribution of the thermal grating.

To calibrate the heterodyne phase, we use a transparent liquid reference sample of

m-xylene in transmission experimental geometry. The liquid acoustic response

yields a pure phase grating signal. It would be preferable to use an opaque

reference sample that could be measured in reflection geometry; however, a

number of materials we tried, including metals such as Au, Cu, Al and Ni, and

semiconductors such as Si and GaAs, invariably exhibited both phase and amplitude

grating contributions at the probe wavelength of 532 nm. This underscores the



point that the TG signal from opaque samples cannot generally be ascribed to the

surface displacement alone.
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Fig. 4.3. Transient grating data at four phase settings, #= r/2, 0, -n/2, -n, for (a) reference
sample liquid m-xylene and (b) PbTe. In the transparent liquid reference sample, only the
phase grating shows signal from damped acoustic waves. PbTe also shows acoustic waves
only in the phase grating signal, whereas the amplitude grating dynamics are governed by
the temperature decay only. Subtraction of signals corresponding to appropriate relative
phase settings cancels spurious signals and increases signal to noise as shown in the lowest
two traces for each sample.

A transparent sample in which the acoustic waves are generated via electrostriction

(i.e., by impulsive stimulated Brillouin scattering [Yan]) ensures that the signal

comes from the phase grating only. Switching between transmission and reflection

geometries only requires a minor re-configuration of the set-up, and can be

accomplished with no reconfiguration at all if separate detectors are used for each

scheme.

m-Xylene transient grating signal traces were collected at four phase settings as

depicted in Fig. 4.3(a). At # =.r/2 and # =-.7r/2 we see decaying acoustic oscillations;

the traces are nearly identical except opposite sign, with the only difference due to a

small amount of scattered pump light that reaches the detector at t=0. The



electrostrictively generated longitudinal acoustic waves modulate the density,

which couples strongly to the index of refraction. This oscillating periodic index of

refraction creates a time-dependent phase grating, and therefore when the acoustic

oscillations are maximized, we know that the heterodyne phase is selected so signal

is due to the phase grating signal contribution. When the acoustic oscillations are

minimized, the signal is pure amplitude grating and due to the absence of an

amplitude grating signal in m-xylene, only a spike due to scattered pump light is

observed at t = 0. Once the heterodyne phase is calibrated, we can take

measurements from the PbTe sample and observe the pure amplitude or phase

grating signal as shown in Fig. 4.3(b). As is particularly apparent in the frequency

content of the signals in the inset to Fig. 4.4, we note that surface acoustic wave

oscillations are only present in the PbTe phase grating signal. The absence of the

acoustic component in the amplitude grating signal indicates that r'(t) reflects the

temperature dynamics rather than the photoelastic response. As can be seen in Fig.

4.3, phase grating signals at # =x/2 and # =-7r/2, as well as amplitude grating signals

at # =0 and # =-, can be subtracted to cancel any spurious signals with no phase

dependence. Examples of spurious signals include the scattered pump light at t=0 in

the m-xylene traces and "non-heterodyned" signal components in Eq. (4.5). We also

note the difference between PbTe phase and amplitude grating signals is not limited

to acoustic oscillations; not unexpectedly the dynamics are totally different: the

amplitude grating signal follows the temperature dynamics and the phase grating

signal reflects a combination of displacement and temperature dynamics. As will be

shown in Sec. 4.6 below, the initial rise of the phase grating signal is explained by

the opposite signs of the displacement and thermoreflectance contributions.

By establishing that maximum displacement signal indicates the pure phase grating

in PbTe, traces at #=xi/2,-n/2, and #=0,-n can therefore be selected by respectively

maximizing or minimizing the amplitude of SAW peaks in the signal Fourier

transform in real time on the oscilloscope. For all four heterodyne phase settings,

traces of 40,000 averages were collected for transient grating periods L = 1.55, 1.80,

2.05, 2.40, and 2.75 xm. For the thermal transport analysis described in the



following sections, we used the amplitude grating response obtained by subtracting

corrected #=0 and #=- signals.

We used the following correction procedure to minimize the error in the heterodyne

phase. Let us assume that the signals nominally corresponding to #2= 0 and #2= x/2

were in fact collected at #i= 6 1 and #2= ;r/2+62, where 6
2 and 62 are unknown phase

errors. According to Eq. (4.9), the respective signal waveforms are given by

S, = 2t,IopRO [r'(t)cos6 - (r"(t) - 2kpu(t)cos fp,)sino6] (4.8)

S2 = -2trIpRo r'(t)sin62+ (r"(t) -2k u(t)cos3p)cos62 ]

We find the corrected signal as a linear combination S2*= S2 + bS2, where the factor

b is adjusted to minimize the SAW Fourier peak in the spectrum of the corrected

signal. The value of b that makes the displacement contribution vanish is

sinb1/co562, hence

S = 2tIop Ror'(t) cosoi + sin=in 62 2trIOPRor'(t) 1+616 2 - 12 (4.9)
coso2 12

Thus the corrected signal S *recovers the pure amplitude grating response

determined by r'(t).
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Fig. 4.4. Amplitude and phase grating signals for a 2.05 pm grating period. The Fourier
transform inset shows four thin film waveguide acoustic modes originating from the
displacement contribution to the phase grating signal. The amplitude grating signal tracks
temperature dynamics and is not influenced by the displacement.



4.4 Analysis of the thermal transport
In analyzing the thermal grating decay, we follow [Kiding] but allow for a finite

absorption depth of the excitation light. Temperature dynamics following transient

grating heating at the surface of a semi-infinite sample are given by the thermal

diffusion equation

a2T a 2T aT
kx 2 =+ k -2=-pc -+ Q, cos(qx) exp(-Cz)o(t) , (4.10)

ax2 az 2 at

where x is the grating dimension, z is into the depth of the material, T is the

deviation from equilibrium temperature, p is density, c is heat capacity, Qo is the

energy deposited by the short (8-function) laser pulse to penetration depth 1/c, and

kx and kz are the thermal conductivity components respectively parallel and

perpendicular to the sample surface (the z = 0 plane), which are not assumed to be

equal to incorporate the treatment of samples with anisotropic thermal transport.

Appropriate boundary conditions at the surface are given by

az (4.11)

T(z=oo)=0

Assuming a sinusoidal spatial dependence of T on x according to the source term in

Eq. (4.10) and performing a Fourier transform from the time to frequency domain

according to j(o) = f (t)e-"dt, we arrive at

a 2 - + T +Qo exp(-Cz), (4.12)
8Z2 az

where ai = ki/pc is the thermal diffusivity and the boundary conditions are identical

to Eq. (4.11). Using solutions for the homogenous and particular solutions

respectively of the form

T= A exp(-qpz) + Bexp(q'z) (4.13)
T = Cexp(-Cz)

and utilizing the boundary conditions gives us the analytical frequency-domain

solution

- Q ()w a q2 +iw(>
T 2 2 exp(-Cz) - --exp(-qgz) ,where 9= , q (4.14)

P -92 Za a



and time-domain solutions may be recovered through numerical inverse Fourier

transform. This treatment can easily be extended to multi-layered structures

[Kiding].
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Fig. 4.5. Simulation of signal illustrating sensitivity to the in-plane diffusivity a as a function
of transient grating period. The solid blue lines are simulated traces for an in-plane
diffusivity of 1.3x10-6 m2/s for TG periods of 1.1, 2.1, and 4.3 [tm from shortest to longest
decay time, and the solid black uppermost line shows t-1/ 2 decay. The dotted red traces are
±20% values of the diffusivity and show high sensitivity for small periods and decreased
sensitivity at larger periods as the signal approaches the t1/2 decay due to diffusion into the
depth of the material.

To better understand the time domain decay, we refer to the analytical solution in

the limit of surface heating (1/C= 0). The temperature grating decay at the surface

then follows the form [Kading]

T(z = 0) = A,(azt)V exp(-a~q2t). (4.15)

In this case, the transient grating measurement is insensitive to the cross-plane

diffusivity az because changing it is equivalent to changing only the amplitude A of

the signal. On the other hand, the in-plane thermal diffusivity contained in the

exponentially decaying term can be determined by fitting the signal waveform. In

Fig. 4.5, we see illustrated the signal decay as modeled by Eq. 4.15 for three grating

wavevectors. The heavy dark line denotes a t1/ 2 decay. As the wavevector gets

small (large grating period), it takes more time for heat to diffuse from grating peak

to null. As the decay gets longer, the long tail of the t-1/2 decay starts to dominate the
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signal. This leads to less sensitivity to the in-plane diffusivity, as clearly indicated

by the dotted traces with ±20% values of the diffusivity.

We note that Eq. (4.15) diverges at t = 0. This is not the case for the full solution

given by the inverse Fourier transform of Eq. (4.14) that accounts for the finite

penetration depth of the laser heat source, which essentially smoothes out the

diverging temperature over an initial time period At = (4az2)-'. Therefore

analyzing the initial part of the signal may help determine the cross-plane

diffusivity. However, due to limits in temporal resolution and potential

complications due to excited carrier diffusion, we fit the decay after 10 ns to extract

only the in-plane diffusivity. Typical transient thermoreflectance (TTR)

measurements [Schmidt08a] are more sensitive to the cross-plane diffusivity, so

TTR and TG measurements can be used in tandem to potentially reveal anisotropic

thermal transport properties, as described below in section 4.7.

4.5 Thermal diffusivity measurement of PbTe film
Fig. 4.6 shows the amplitude grating signal for three representative grating periods

along with the fit, which shows excellent agreement. The extracted thermal

diffusivity was nearly identical for all data sets as shown in the inset to Fig. 4.6,

giving an average value of 1.32(± 0.03) x 10-6 m2 /s. The fact that for a range of

grating periods we get an excellent fit yielding the same value of ax testifies to the

soundness of our methodology. The determined thermal diffusivity is lower than the

accepted value for bulk single-crystal PbTe of 1.8 x 10-6 m2/s at room temperature

[Lide], but we note that a PbTe thin film deposited on BaF2, although single crystal,

is prone to a high dislocation density (>108 cm-2 determined for similar samples

from XTEM images) due to the lattice parameter mismatch (i.e., introduction of

4.1% strain). Dislocations are expected to increase phonon scattering and reduce

thermal transport [Cahill, Swartz] and a similar reduction has been observed in GaN

at room temperature for comparable dislocation densities [Mion].
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Fig. 4.6. Amplitude grating signal for PbTe film for three representative transient grating
periods (1.55[tm, 2.05 Am, and 2.75[tm). The darker dashed line with each trace is the best-
fit line using the 2-D diffusion equation. The inset shows the literature PbTe thermal
diffusivity in comparison with the measured thin film diffusivity at different transient grating
periods.

The thermal grating period is always smaller than the film thickness; therefore, the

presence of the BaF2 substrate should have no effect on the analysis. Indeed,

assuming a cross-plane thermal diffusivity equal or close to the measured in-plane

diffusivity, the thermal penetration depth 2(at)1/ 2, where t=150 ns is the time

window of the experiment, will only be -1 tm, substantially shorter than the 5 tm

PbTe film thickness.

4.6 Modeling the phase grating signal
Even though we chose to use the amplitude grating signal for the thermal diffusivity

measurements, the treatment of the subject matter would be incomplete without

demonstrating that our model provides an adequate description of the phase

grating signal as well. In particular, the initial dynamics of the phase signal poses an

intriguing question. Both thermoreflectance and displacement contributions to the

TG signal are expected to reach a maximum immediately following the excitation

pulse at t=O and decay thereafter (assuming the thermal expansion time is fast

compared to the time scale of measurement). Yet the phase grating signal initially

rises and reaches its maximum at t-4ns. This behavior can be explained if we



assume that thermoreflectance and displacement contribute to the phase grating

signal with opposite signs.
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Fig. 4.7. Phase-grating signal for 2.05 [im transient grating period. The dash-dotted green
and dotted blue lines are respectively the calculated surface-displacement and thermal
responses. The black line, the surface-displacement response minus the thermal response,
represents the more complicated dynamics of the phase-grating signal.

According to Eq. (4.6), the phase grating signal is governed by the combination of

thermoreflectance and displacement, r"(t)-2kpu(t)cosplp. Assuming a small

absorption depth, 1/ -- 0, which is a good approximation for PbTe at 515nm

excitation wavelength, and isotropic thermal diffusivity, the surface displacement

dynamics is given approximately by [KAding] (neglecting a fast initial rise)

u(t) = Auerfc(q-Txt ) . (4.18)

Fig. 4.7 shows the phase grating signal from Fig. 4.4 together with calculated traces

using the thermal diffusivity determined from the amplitude grating data. The dash-

dotted line shows the pure surface-displacement response according to Eq. (4.18)

and the dotted line shows the pure thermal response according to Eq. (4.15). The

solid dark line, which has excellent agreement with the phase grating data, is a

linear combination of the calculated displacement and thermal responses, taken

with the opposite signs. Thus the phase grating signal follows neither displacement

nor temperature dynamics. To use this signal for quantitative analysis of the
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thermal transport, one would need to use an additional fitting parameter, i.e., the

ratio of the transient reflectivity and displacement contributions to the phase

grating signal. Such analysis might prove useful for samples yielding a weak

amplitude grating signal and a strong phase signal.

4.7 In- vs. Cross-plane thermal diffusivity of GaAs/AlAs superlattices
The developed methodology has proven successful in measuring thermal transport

in a number of semiconductor samples in addition to the PbTe measurements

described. As discussed in Chapter 3, introducing interfaces is a means to reducing

thermal transport. Understanding thermal transport in superlattice (SL) structures

has applications in developing novel materials for thermoelectrics applications, as

well as increasing the performance of optoelectronic devices such as semiconductor

lasers. It has been shown that the thermal transport in one-dimensional SLs both

across and parallel to the layers is greatly reduced from what one might expect from

average values of the bulk thermal conductivities of the materials constituting the

SL [Chen98]. As a model SL system, we have conducted optical measurements of the

in-plane thermal transport using the transient grating technique illustrated here in

conjunction with cross-plane measurements utilizing transient thermoreflectance

(TTR) [Paddock,Capinski,SchmidtO8a,Stevens]. Measurements of cross- and in-

plane thermal transport have been conducted in GaAs/AlAs SLs [Capinski,Yao,Chen],

but this constitutes the first comparison using all optical techniques and,

importantly, identical samples.

4.7.a SL samples
Two sets of GaAs/AlAs thin film superlattice samples were fabricated via

metalorganic chemical vapor deposition in an Aixtron close-coupled showerhead

reactor 2. The epitaxial films were deposited on (100) oriented GaAs substrates,

which were held at a deposition temperature of 700 *C. One GaAs/AlAs superlattice

structure consisted of 8 nm GaAs/8 nm AlAs (total period of 16 nm) repeating units

2 Superlattice samples were grown by A. Jandl and M. Bulsara in E. Fitzgerald's
group at MIT.



and the other consisted of 2 nm GaAs/2 nm AlAs (total period of 4 nm) repeating

units. The total thickness for each superlattice thin film structure was 3 gm (see Fig.

4.8). Fig. 4.8 also shows a cross-sectional transmission electron microscopy image

of region of the 8 nm GaAs/8 nm AlAs superlattice structure showing the alternating

layers of AlAs and GaAs and the abrupt interfaces between all the layers. High-

resolution x-ray diffraction scans of both samples showed diffraction peaks

associated with the additional periodicity from the superlattice structure; peak

positions affirmed periods of 16 and 4 nm.

8nm GaAs
8 nm A As

-~_3tim total on
GaAs Substrate

Fig. 4.8. Diagram indicating entire sample structure and cross-sectional transmission
electron microscopy image of 16 nm period, GaAs/AlAs thin film superlattice structure
grown on GaAs substrate. The AlAs (light contrast) and GaAs (dark contrast) layers are of
the requisite thickness and exhibit sharp interfacial characteristics. The 4 nm period SL has
a similar sample structure with the same total SL thickness.

4.7.b TG In-plane and TTR Cross-plane measurements
We measured the in-plane thermal diffusivity on the both SL samples with an

identical setup and procedure as was used for PbTe, except with a pump energy of

0.8 p.J per pulse. By comparison to the m-xylene reference sample, it was found that

the amplitude grating signal did not contain any acoustic components, and thus the

Fourier amplitude of SAWs was again used for isolation of amplitude and phase

grating signals. The resulting isolated signals for a 2.4 ptm grating period in the 16

nm period SL are shown in Fig. 4.9.a. In Fig. 4.9.b we see amplitude grating decays

for four grating periods fit to Eq. 4.15 to obtain the thermal diffusivity; the short

dashed lines indicate the fits, and again, we see good agreement between the signal



traces and theory. Similar signal quality and results were obtained for the 4 nm

period SL.
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Fig. 4.9 (a) Isolated amplitude and phase grating signal for the 16 nm period GaAs/AlAs SL
collected with 2.4 [tm grating period. (b) Amplitude grating decays for the 16 nm period SL
at four grating periods as indicated in the legend, which show good agreement to the fit
(dashed lines).

Transient thermoreflectance (TTR) measurements are essentially single-spot,

pump-probe measurements that are predominately sensitive to cross-plane thermal

transport. A femtosecond optical pulse was incident on a thin metal transducer

(aluminum) coated on the SL sample surface and the intensity of a second, variably

time-delayed probe pulse is monitored. The probe intensity is related to the

temperature of the sample surface, and the signal decay can be modeled using the

heat diffusion equation to recover the thermal transport properties of the

underlying sample. The details of TTR are explained in depth in the literature

[Capinski,Schmidt08a] and won't be described in full here. In Fig. 4.10 we show a

TTR trace for the 16 nm period SL at room temperature3 . The circles are the

recorded reflectivity points and the solid green line is a best fit of the model to the

data, which incorporates the Al transducer layer, the interface conductance between

the Al and SL structure, and models the SL as a single material. The dotted lines are

fits with ±10% values of thermal conductivity demonstrating the sensitivity to the

cross-plane thermal conductivity.

3 TTR measurements reported here were performed by M. Luckyanova in G. Chen's
group at MIT.
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Fig. 4.10 Recorded TTR trace for 16 nm period GaAs/AlAs SL. The green line is from a best
fit to the model and the red dotted lines are calculated according to the model with ±10%
values of the best fit thermal conductivity value.

4.7.c SL thermal transport results and discussion
The resulting measured thermal diffusivities are plotted as open squares (16 nm

period) and triangles (4 nm period) and dashed lines (TTR results for 16 and 4 nm

periods) in Fig. 4.11. In Fig. 4.11.a we see that in- and cross-plane diffusivities for

both SL samples are dramatically lower than an average of bulk GaAs and AlAs

diffusivities (given by the dashed purple line), with the shorter period SL having a

slightly lower in-plane thermal diffusivity. In Fig. 4.11.b we see that, as anticipated,

the cross-plane diffusivities are lower than the in-plane diffusivities in both SLs. We

measure 0.069 ± 4% and 0.042 10% for respectively in- and cross-plane values for

the 16 nm period SL and 0.049 6% and 0.043 ± 10% for respectively in- and cross-

plane values for the 4 nm period SL. This results due to considerations given in

section 3.5. Phonon scattering may occur at each interface in these 1-D layered

structures, and the interface density will vary with angle of phonon propagation,

leading to anisotropic effects. Additionally, the SL dispersion effects depend on the

propagation direction with respect to the SL, with reduced modification of phonons

traveling perpendicular to the SL layers (the in-plane direction). Thus based on

these arguments, one would expect significant anisotropy in the transport

properties. When comparing to the bulk effective value, the differences in cross-
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and in-plane thermal diffusivities is in fact not as great as have been measured in

similar Si/Ge superlattices [Liu0l,Lee,Chen98] at a variety of temperatures,
including ambient conditions.
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Fig. 4.11 Open squares and triangles are in-plane diffusivities as a function of transient
grating period. The dashed lines along with the in-plane values indicates cross-plane (X)
diffusivity measured via TTR. (a) Comparison to average value of GaAs and AlAs indicates
large reduction in SL structures. (b) In- and cross-plane diffusivities are equivalent.

For the reader's consideration in Fig. 4.12, we present a compilation of reported

thermal diffusivities in equal-layer-thickness GaAs/AlAs SLs, as a function of layer

thickness, including measurements of both in- and cross-plane thermal diffusivity.

We include TTR cross-plane measurements of Maris and co-workers [Capinski] and

ac calorimetric in-plane measurements of Yao [Yao] and Chen [Chen]. The open

squares indicate the in-plane diffusivities we measured and the triangles indicate

the cross-plane values. First we note that the overall trend of thermal diffusivity

increasing with layer thickness is consistent for both in- and cross-plane, the

increase is approximately linear on a plot with a linear abscissa. We also point out

that our newly recorded values are similar to previously reported values.

Comparing all the data, there are only slight differences in cross- and in-plane

diffusivities where layer thicknesses coincide. Differences in the reported values

could be explained by differences in sample quality, and we also note that the

measurements of [Yao] are more prone to error and inconsistencies. Given these

considerations, we see that our data are consistent with reported GaAs/AlAs



thermal diffusivities and that the anisotropy of such SL structures may not be as

pronounced as in other SLs.
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Fig. 4.12 Comparison of reported in- and cross-plane thermal diffusivities for equal layer
thickness GaAs/AlAs SLs as a function of layer thickness. Linear increase in diffusivity with
layer thickness is observed when plotted with linear abscissa.

In a simplified picture, we argued that there should be strong anisotropy. But the

real problem is fairly complex, as seems to be the case in GaAs/AlAs SLs. The in-

plane and cross-plane thermal transport are not made up of phonons just traveling

in one single direction each, but are really integrated over all directions, taking

wavevector components along the direction of interest. There are also the

important issues of the acoustic impedance mismatch ratio, which is much smaller

for AlAs and GaAs than for Si and Ge (Z1/Z 2 = 0.84 vs. 0.69 respectively) and the fact

that mode conversion and diffuse scattering at interfaces redistribute phonons in

different branches and directions, thus coupling the in- and cross-plane transport.

Attempts at modeling these effects have been made with significant simplifications

[Chen98,Hyldgaard,Hepplestone], but due to complexities, a rigorous theory is still

forthcoming, thus underscoring the importance of such anisotropic measurements



on identical samples. Furthermore, in order to achieve a high degree of phonon

scattering in all directions, designer 2- and 3-D nanostructured materials can be

fabricated. In reality, an ideal, low thermal conductivity material will probably have

nano-crystalline grains of many shapes and sizes such as those produced by the Z. F.

Ren group at Boston College [Poudel], but in order to learn more about the

fundamentals of thermal transport across interfaces, well defined superlattice

samples are favorable starting points. Further measurements exploring the thermal

transport properties of selected superlattice structures at different temperatures

are currently under way.

4.8 TG discussion and outlook
The presented methodology removes ambiguities in the analysis of transient

thermal grating responses and lays the foundation for the use of the heterodyned

transient grating method for thermal transport measurements in opaque materials.

We have shown that ascribing the TG signal to the surface displacement alone may

lead to significant errors in the analysis. By employing phase-controlled heterodyne

detection, we have isolated the thermoreflectance component of the TG response

and performed analysis with a two-dimensional thermal diffusion model to extract

the thermal diffusivity of thin film PbTe and GaAs/AlAs SL samples.

We have taken advantage of a number of aspects of the technique and we can

envision other benefits that could be utilized in future experiments. Unlike many

transient thermoreflectance measurements [Pad dock,Capinski,SchmidtStevens],

the method does not require a metal transducer film deposited on the sample

surface. Another benefit of TG measurements is the ability to impart a well-defined

length scale of the thermal transport (effectively one half of the transient grating

period L), which can be varied typically in the range 0.5-100 tm. Measurements at

small periods are useful for characterization of thin films and on small areas (ust a

few TG fringes need to fit in an area to enable a measurement), while the ability to

vary L could be exploited to determine depth dependent thermal properties

[Kdding,Harata]. On the other hand, the ability to control the thermal transport



length scale opens prospects for studying non-equilibrium thermal transport at

small distances. Measurable deviations from the Fourier law at room temperature

are expected to occur, for example in gold at L-1 [m [Maznev], and the same is

shown to be true in Chapter 5 for materials with high lattice thermal conductivity: Si

and GaAs. Reducing the transient grating period by using shorter optical

wavelengths, possibly combined with other approaches, such as immersion lens or

near-field imaging, will open the avenue for studying thermal transport at the

nanoscale. The use of extreme ultraviolet (EUV) light to probe photothermal and

photoacoustic responses has already been demonstrated [Siemens]; using EUV to

excite transient gratings would be a great advance for nanometer range

measurements albeit implementing phase-controlled heterodyne detection with

EUV will be a challenge. We anticipate interesting developments ahead, both

experimentally and in applications to material science and thermal transport

physics.
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Chapter 5

From diffusive to ballistic thermal transport

5.1 Introduction
Thermal transport at microscopic distances is an area of active research [Cahill03]

largely stimulated by practical needs such as thermal management of

microelectronic devices [Pop], but also posing a number of fundamental physical

chemistry problems. As briefly discussed in Chapter 3, the relationship between the

phonon mean free path (MFP) and a characteristic length scale plays the key role in

analyzing thermal transport at small distances. At cryogenic temperatures, ballistic

phonon propagation over macroscopic distances has been studied extensively

[Wolfe]. At room temperature, on the other hand, the majority of phonons have

MFPs in the nanometer range. The frequently cited "textbook value" of the phonon

MFP in Si at 273K based on a simple kinetic theory [Blakemore, Burns] is 43 nm,

with even shorter MFPs listed for most other materials. Thus one would not

normally expect deviations from the classical thermal diffusion model at distances

significantly exceeding 40 nm.

However, a growing body of experimental and theoretical studies has been

indicating that the effective MFP of heat-carrying phonons in Si is significantly larger

than the number cited above. Indeed, low-frequency phonons with large MFPs are

expected to contribute more to thermal conductivity than they do to specific heat.

Thus the numbers 260-300 nm have been suggested for the analysis of thermal

transport in thin films [Ju] and superlattices [Chen98]. Still, it has been widely held

that at the -1 [tm scale room temperature heat transport in Si is consistent with

simple diffusion theory [Cahill].

On the experimental side, deviations from diffusive transport at room temperature

have been reported in sapphire [Siemens] and semiconductor alloys [Koh,Highland]

at length scales 100-500 nm. Measurements in Si indicated non-diffusive transport



at -1 Rm scale at temperatures 100-200 K [Sverdrup] but at room temperature no

deviations from the classical diffusion model have been detected [Koh, Sverdrup].

Measuring non-diffusive thermal transport at small distances in a configuration that

can be quantitatively compared to theoretical models has been a challenge for

experimentalists. For example, the model of heat transport through a slab of

material between two black-body walls favored by theoreticians [Majumdar, Mittal,

Narumanchi] is all but impossible to realize in experiment. Just to mention one

difficulty, any real interface between two materials involves thermal boundary

resistance, which by itself presents a long-standing problem in nanoscale thermal

transport [Cahill, Swartz]. In order to be persuasive and enable theoretical analysis

beyond the diffusion model, an experiment should preferably (i) avoid interfaces,

(ii) ensure one dimensional thermal transport, and (iii) clearly define the distance of

the heat transfer and provide a way to vary this distance in a controllable manner.

A method satisfying the above requirements has in fact been well known in the

transient thermal grating technique described in this thesis. In addition to meeting

the above requirements, this method yields a spatially sinusoidal temperature

profile facilitating theoretical treatment. However, application of transient gratings

to studying thermal transport on the nanoscale requires optical wavelengths in the

UV or deep UV range, which entails experimental challenges [Cucini]. On the other

hand, measurements on the -1 Rm scale pose no difficulty and can be done with

conventional laser sources in the visible range. In this chapter, we present transient

thermal grating measurements of in-plane heat transport in free standing silicon

membranes as well as bulk GaAs. By varying the grating period we are able to

directly measure the effect of the heat transfer distance on thermal transport.

5.2 Si membrane fabrication
In order to ensure one-dimensional thermal transport in the sample while utilizing

above-band-gap excitation for optical heating, the penetration depth of the pump

and probe wavelengths needed to be longer than the sample size. Even though

indirect gap silicon (Si) has a relatively long -1 Rm penetration depth at 515 and



532 nm wavelengths, it is still too short to use bulk Si wafers, thus necessitating the

use of thin free-standing membranes. Free-standing Si membranes were fabricated

by backside etching of silicon on insulator (SOI) wafers1 . In this process, the

underlying Si substrate and buried oxide layer are removed through a combination

of dry and wet etching techniques to leave a top layer of suspended silicon (see Fig.

5.2). As the process used on the current samples is not currently in the literature,

we present it here.

a) b) c)

d) e) f)

Fig. 5.2. Process flow for the fabrication of free-standing Si membranes (a) Original SOI
wafer (b) Oxidation process to reduce thickness of Si layer (c) Deposition of Si3N4,
photolithography of the etching window, including spin-coating, exposure, and
development of the resist layer, and RIE of the Si3N4 and SiO 2 layers (d) Wet etching of the Si
substrate using KOH, until approximately 1 [im of Si remains (e) Finishing of the etching of
the substrate with TMAH, followed by removal of the Si3N4 by RIE (f) Final wet etching
using HF to remove the top protective oxide and the buried oxide layers, releasing the free-
standing Si membrane.

The initial SOI wafers were 625 tm thick in total, with a top Si layer thickness of

-1.5 [tm and a -1 [m buried oxide layer. The target thickness of the top Si layer was

achieved through oxidation of the wafer; as the thermal oxide incorporates silicon

during growth, the thickness of the top Si layer is reduced. For every unit thickness

1 Si membranes were fabricated by J. Cuffe and T. Kehoe in C. Sotomayor Torres'
group at ICN in Barcelona.



of Si consumed, 2.27 unit thickness of oxide is grown. The oxidation was performed

at a temperature of 1100 *C in an atmosphere of water vapor in two steps to achieve

better control over the growth process, due to the large initial thickness of the top Si

layer. Oxidation was continued until approximately 400 nm of Si remained on the

top layer, and the thermal oxide was left as a protective layer as illustrated in Fig

5.2.b until the final stage of the process.

A further silicon nitride (Si3N4) layer was deposited to act as a mask during the

subsequent wet etching of the Si substrate and the free-standing areas of the

membranes were determined through photolithography on the backside of the

wafer, involving spin-coating of a photoresist, exposure, and development. The

remaining photoresist was then used as a mask for Reactive Ion Etching (RIE) to

open etching windows in the Si3N4 and SiO2 (see Fig 5.2.c).

A wet etching process with potassium hydroxide (KOH) and tetramethylammonium

hydroxide (TMAH) was be used to remove the Si substrate. The selectivity of TMAH

is better when using a Si3N4 or SiO 2 mask for the etching of Si, though the cost is

higher, and the etch rate is slower. The layer of Si3N4 was deposited to improve the

etch selectivity compared to the Si0 2, and the Si substrate was etched with KOH

until approximately 1 tm of Si substrate remained (Fig. 5.2.d). The etching of the

substrate was finished with TMAH, and the Si3N4 was then removed by RIE. (Fig.

5.2.e). KOH etches preferentially in the <100> direction with an etching angle of

54.7 degrees, thus the areas of the membranes are substantially smaller than the

original patterns on the backside of the wafer. The reduction in length of one side

can be calculated approximately by xf= xi - 2dsu/tan(54.7), where dsub is the

thickness of the Si substrate, xi is the initial length on the backside of the wafer, and

xf is the final length on the topside of the wafer. This relaxes the resolution

requirements for the photolithography, and the photolithography masks were

produced from disposable acetate in place of quartz, offering the advantage of cheap

custom masks.



After the wet etching process of the Si substrate, the top, bottom, and buried oxides

were removed by a wet etch of Hydrofluoric acid (HF) to release the free standing Si

membranes (Fig. 5.2.0. Measurements were conducted on two membranes with

400x400 m2 free-standing area and thicknesses of 392 and 390 nm, determined by

optical reflectometry.

A

pumps

Fig. 5.3 (a) Schematic illustration of the backside etching process for the fabrication of free-
standing Si membranes from SOI wafers. (b) Pump beams are focused and crossed in the
silicon membrane, generating the transient thermal grating. Diffracted probe light is
combined with a reference beam and directed to a fast detector.

5.3 Experiments on Si membranes
515 nm excitation laser pulses derived from the frequency-doubled output of the

amplified Yb:KGW system were focused to a 300 [tm l/e beam radius and crossed in

the Si membrane with external angle Oe as depicted in Fig. 5.3.b. Optical

interference and spatially periodic optical absorption in the silicon membrane led to

excitation of hot carriers, which promptly transferred energy to the lattice and

relaxed to the conduction band edge [Goldman,Othonos]. Energy was deposited

with a sinusoidal intensity profile resulting in a transient thermal "grating" with

period L and wavevector magnitude q; excited carriers and heat subsequently

diffused from grating peak to null parallel to the surface. Temperature and excited

carriers induced changes in the complex transmittance, giving rise to time-

dependent diffraction of a continuous wave probe beam (A, = 532 nm, 150 [tm beam

radius at the sample). We used optical heterodyne detection as described in



Chapter 2. Heterodyne detection not only increases the signal level but also yields a

signal linear with respect to material response, simplifying the interpretation and

analysis of the data [Maznev].

Data were collected at -15 transient grating periods ranging from 2.4 to 25 [tm in

the two silicon membranes. Fig. 5.4.a shows traces collected from the 392 nm

membrane with transient grating periods from 3.2 to 18 Rm. A complete waveform

shown in the inset reveals a sharp negative peak due to electronic excitation, which

gives rise to a carrier population grating. Fortunately, the ambipolar carrier

diffusion coefficient in Si [Linnros,Li,Zhang] is about an order of magnitude greater

than the thermal diffusivity. Thus electronic and thermal transport are well

separated in the time domain. From the traces in Fig. 5.4.a, we can see that the signal

decay is slower as the grating period increases; it takes longer for heat to move from

grating peak to null. The initial rise due to carrier transport is also slower for larger

grating periods, but always far faster than the thermal tranpsport.
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Fig. 5.4. (a) Experimentally measured, normalized thermal decay traces in a Si membrane
for transient grating periods ranging from 3.2 to 18 pm. The inset shows the complete trace
for the 7.5 m period. (b) Full traces of 4.9, 10, and 18 m grating periods on logarithmic
time scale with accompanying hi-exponential fits (dashed lines).

As outlined in Chapter 3, the thermal grating decays exponentially according to the

diffusion equation,

T o exp(-yt), (5.1)



where the thermal decay rate y is simply given by

y = aq 2 , (5.2)

where a is the thermal diffusivity expressed in terms of the thermal conductivity

A1, density p, and heat capacity C as a = k/pC.

To account for the electronic response, which follows a similar diffusion equation

[Linnros], we fit the signal to a bi-exponential form; good agreement at all times is

seen in Fig. 5.4.b for three representative grating periods, thus indicating that the

thermal decay remains exponential. However, the decay rate deviates from the

expected q2 dependence as can be seen in Fig. 5.5.a. This departure from diffusive

behavior is even more apparent in Fig. 5.5.b where we have plotted the thermal

diffusivity, obtained from the measured thermal decay rate using Eq. 5.3, as a

function of the grating period for the two silicon membranes.
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Fig. 5.5 (a) Thermal decay rate versus q2 showing the departure from diffusive behavior
(dashed line). The dashed line was obtained by fitting the low-wavevector data in the range
15-25 [m. (b) The scaled thermal conductivity determined at different transient grating
periods compared with theory. (b) The theoretical scaled thermal conductivity as a function
of transient grating period for different membrane thicknesses calculated using Eqs. 5.10
and 5.11 with differential thermal conductivity values from [Henry].

At large grating periods, the measured thermal diffusivity approaches a constant

value, which is still significantly smaller than the bulk diffusivity of 0.89 cm 2/s. It is

well known that in-plane thermal transport of thin membranes is reduced due to

scattering of phonons at the boundaries [Ju, Majumdar, Narumanchi]. However, as

long as the diffusion model is valid, the thermal grating decay rate should vary as q2 ,



and the measured thermal diffusivity value should remain independent of the

grating period. We observe a significant further reduction in measured thermal

diffusivity as the grating period is reduced below about 10 [Im, indicating a clear

departure from purely diffusive thermal transport. We note that measurements very

similar to the ones described here have been in fact reported [Schmoltz]; however,

the shortest grating period was about twice that in the current work, which,

together with a large uncertainty in the data, prevented detection of non-diffusive

transport.

5.4 Transient thermal grating decay in the non-diffusive regime
The fact that the crossover to the ballistic transport regime for part of the phonon

spectrum slows down thermal transport compared to the predictions of the

diffusion model has been well appreciated [Koh,Sverdrup,Majumdar]. In the

relaxation time approximation [Henry,Ward], thermal conductivity is given by the

integral over the phonon spectrum,

k = " C,vAdo>, (5.3)

where Cis the differential frequency-dependent specific heat, v is the phonon group

velocity, A is the frequency-dependent MFP, and the summation over all phonon

branches is implied. According to Eq. 5.3, the contribution of phonons at a given

frequency to the heat flux is given by

1 A T
Q = -CvA , (5.4)

3 1

where I is the distance between the heat source and the heat sink and AT is the

temperature difference. According to Eq. 5.4, the heat flux increases indefinitely

with increasing MFP, which cannot be true when the MFP exceeds the heat transfer

distance; obviously, the heat flux cannot exceed the black body radiation limit,

1
QwOBB = 1C AT . (5.5)

4

Thus the contribution of ballistic phonons with A>>l to thermal transport will be

suppressed at least by a factor of %(l/A) compared to the predictions of the



diffusion model. In the simplest model [Koh] the contribution of all phonons with

A>l is simply disregarded, while for all phonons with A<l the diffusion model is

assumed to hold. In this case the "effective" thermal conductivity is found by simply

cutting off the low frequency part of the integral in Eq. 5.3,

keff = m C~vAdo, (5.6)3 NO

where A(wo)=l.

The simplicity of the transient grating geometry allowed us to develop a more

rigorous theory based on the Boltzmann transport equation for phonons with MFP

on the order of or larger than I= L/2 in combination with the diffusion equation for

the "thermal reservoir" of high frequency phonons with A<<l [Maznevllb]. We

found that the grating decay remains exponential, and the decay rate can be

obtained by replacing thermal conductivity in Eq. 5.3 by the effective conductivity,

keff = f3 " AC~vAdw

3 arctan(qA)) (5.7)
A(qA)= -I

qA2 qA

where the "correction factor" A becomes unity in the diffusive limit qA<<1 and falls

off as (qA)- 2 in the ballistic limit qA>>1. Unlike the simple "cut-off' model, Eq. 5.7

describes a smooth transition between diffusive and ballistic limits as plotted in Fig.

5.6. The contribution of ballistic phonons to thermal transport is suppressed even

more than according to an estimate based on black body radiation limit. This is

because in the transient grating experiment the heat transport does not occur

between black bodies; our heat "sources" and "sinks", i.e. maxima and minima of the

thermal grating, become almost transparent for ballistic phonons in the limit qA>>1,

which accounts for an additional factor of -(qA)' in the ballistic phonon

contribution to the heat flux.
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Fig. 5.6 Transient grating thermal conductivity correction factor A from Eq. 5.7 showing
transition from diffusive (A=1) to ballistic (A=O) behavior for a particular phonon mean free
path A and transient grating period q.

To get a more quantitative view of how the ballistic phonon contribution to the

thermal grating decay rate is modified from the long-grating-period, diffusive limit,

we show in Table 5.1 how much the contribution of a phonon of particular MFP to

the TG signal decay is reduced for a given transient grating period.

Table 5.1. Reduction in contribution of phonons to thermal grating
diffusive model according to correction factor A in Eq. 5.7.

decay relative to the

transient grating period L (Rm)
10

bulk MFP A (4m)
10
5
1

0.5
0.1
10
5
1

0.5
0.1
10
5
1

0.5
0.1

relative contribution
6%
18%
81%
95%
100 %

2%
6%

54%
81%
99%
0.1%
0.3 %
6%

18%
81%



Eq. 5.7 solves the problem of finding the thermal grating decay rate provided that

phonon density of states, group velocities and relaxation times for all phonon

branches are known. For Si at room temperature, these quantities have been

calculated from first principles [Henry, Broido, Ward]. Still, performing calculations

according to Eq. 5.7 would be a tedious task. Fortunately, we can take advantage of

the calculation of the thermal conductivity accumulation vs. MFP [Henry, Ward],

kt0, =f 0 k dA - (5.8)

We find the effective thermal conductivity by multiplying the integrand by the

correction factor,

keff = fcA(qA)kAdA . (5.9)

It is instructive to plot keff(q), or equivalently kef(L), to see how reducing the TG

period L reduces the effective thermal transport measured; the result of this

calculation for bulk Si is shown in Fig. 5.7.a. Effective conductivity approaches the

bulk value at large grating periods and drops down at small periods. The calculation

is valid under the assumption of [Maznevllb] that diffuse phonons with A<<L/2

account for most of the specific heat, which holds well at L>1 [tm. Below we discuss

how the membrane thickness can be accounted for.

(a) 1.0 .... .. (b)) (b)0 0ulk . M..
2~a IOU0.8~ 2 m.6 006 ......--...........

0.6 - ..-- m 0.5

0 390 nm membrane
0.2 - 0 392 nm membrane

- - Theory ([Henry] p=0)
-.-. Theory ([Ward] p=0.6)

0.0 - 0.4 - - I - - .-
0.01 0.1 1 10 100 1000 0 5 10 15 20 25 30

transient grating period (pm) transient grating period (pm)
Fig. 5.7 (a) The theoretical scaled thermal conductivity as a function of transient grating
period for different membrane thicknesses calculated using Eq. 5.11 with differential
thermal conductivity values from [Henry]. (b) The scaled thermal conductivity determined
at different transient grating periods compared with theory.



5.5 Si membrane comparison to theory
In the Si membrane, we should account for the reduction of MFP caused by

boundary scattering. In-plane phonon transport in thin films has been studied

extensively [Ju, Majumdar, Narumanchi, Liu, Turney]. The theoretical foundation has

been laid by Fuchs [Fuchs] and Sondheimer [Sondheimer] who derived the

expression for the effective MFP (originally for electrons) reduced by surface

scattering:

A'= AF,(d)

3 i\ (5.10)
FP(Z3= - 13 1 -e-xt '

2X t t 1-pe-

where d is the film thickness and p is the specularity parameter, with p = 0

indicating completely diffuse scattering at the surfaces and p = 1 indicating specular

reflection. It is important to note that using the specularity parameter as a free

parameter introduces a measure of arbitrarity in the data analysis [ChenOS];

moreover, the commonly used model (Eq. 5.10) with a constant "specularity

parameter" independent of both frequency and incidence angle [Sondheimer] is

rather unphysical. Most studies of thermal conductivity in thin films use the "diffuse

scattering" model (p = 0), with satisfactory results [Ju, Liu, Turney]. Still, the

observed small systematic difference between the data from the two samples seen

in Fig. 5.7.b invites a conjecture that the scattering may be not totally diffuse in

which case variations in the surface roughness might cause sample-to-sample

differences in the measurements.

Table 5.2. Reduction in contribution of phonons to thermal transport in membrane relative
to bulk material according to correction factor Fp in Eq. 5.11 with p=O.

membrane thickness bulk MFP ( m) relative contribution
390 nm 10 11 %

5 18%
1 46%

0.5 63%
0.1 90%



In Table 5.2 we show the relative reduction of the contribution of a phonon to

thermal transport in a thin membrane compared to the bulk value, calculated

according to Eq. 5.10. It's interesting to note that for a 390 nm membrane, the

contribution of a phonon with 1 [tm MFP is reduced from the bulk value by about

the same amount as for a 5 [tm transient grating period according to Eq. 5.8

(compare Tables 5.1 & 5.2).

We account for both thermal grating and boundary scattering effects in a somewhat

crude way by simply taking the MFP reduced by the boundary scattering from Eq.

5.10 and plugging it into Eq. 5.7 in order to derive a new equation

kef = fA(qAF)kFdA. (5.11)

To be rigorous, one would need to solve the non-equilibrium thermal transport

problem anew with appropriate boundary conditions at the surfaces of the

membrane, which would be much harder than the analysis for an unbounded

medium [Maznevllb]. Fig. 5.7.a shows the calculated results for three membrane

thicknesses alongside the curve for bulk Si. The behavior of the membrane curves

is similar to those for bulk material, but now in the A-*oo limit the thermal

conductivity is reduced from its bulk value due to the boundary scattering. In Fig.

5.7.b, we compare the calculations for d=390 nm with the experimental data.

Qualitatively, calculated curves agree with experimental data. A systematic

deviation between theory and experiment is seen at short grating periods when

using the calculations of [Henry] and deviations at longer periods using the

calculations of [Ward]. These deviations may be explained by the approximation

made in combining Eqs. 5.10 and 5.11, as well as by possible uncertainties in the

thermal conductivity accumulation vs. MFP calculations. It is important to note that

both sets of calculations recover the correct total thermal conductivity, but obvious

differences exist in the thermal conductivity MFP spectrum.

5.6 Experiments on bulk GaAs
One difficulty in measuring purely one-dimensional thermal transport in

semiconductors is the finite penetration depth of pump and probe pulses. For a



significant amount of lattice heating, photon energies should be significantly above

the band gap, which translates to a high absorption coefficient and short

penetration depth. This difficulty was removed in measurements of free-standing Si

membranes due to the film thickness being shorter than the relatively long

penetration depth. As mentioned above, this transmission geometry ensures 1-D

thermal transport and also circumvents the need to separate temperature and

displacement dynamics in reflection TG measurements, as described in the

preceding chapter. But if we wish to measure thermal transport in other

semiconductors with shorter penetration depths than Si, it becomes increasingly

difficult to perform transmission measurements. For example, at green excitation

and probe wavelengths, GaAs has -100 nm penetration depth and PbTe is even

shorter with -15 nm. With recent advances it is possible to fabricate free standing,

ultra thin GaAs membranes [Yoon], but boundary scattering effects would be much

more pronounced, obscuring the non-diffusive effects we wish to observe. The ideal

situation would be the case of a weakly absorbing bulk sample, perhaps due to two-

photon absorption so carriers are initially excited with enough energy to induce

enough lattice heating. Then the thermal transport would be purely 1-D as with the

Si membranes, but without complicating boundary scattering effects.

In the absence of this ideal situation, we have performed reflection TG

measurements of thermal transport in bulk GaAs. The heat transport in this case is

indeed 2-D with transport from grating peaks to nulls parallel to the surface and

into the depth of the material, but as discussed in the previous chapter, the TG

measurement is predominately sensitive to the in-plane transport at short transient

grating periods. At such periods, we unambiguously observe non-diffusive

transport effects at 295 K and 425 K in a semi-insulating GaAs wafer.

Fig. 5.8 shows the results of the GaAs measurements. In Fig. 5.8.a we see

representative corrected (as described in Chapter 4) amplitude grating decay traces

recorded at room temperature along with fits to Eq. 4.15 to allow extraction of the

in-plane effective thermal diffusivity. The inset to Fig. 5.8.a shows similar departure

from diffusive behavior as was observed in Si (see Fig. 5.5.a), where here the dashed



line was calculated using the literature GaAs diffusivity [Adachi]; the decay rate still

increases with q2, but not in a linear fashion nor as quickly as the diffusion model

predicts. In Fig. 5.8.b we see that the experimentally determined effective thermal

diffusivity is close to the literature reported values (the dash dotted lines) at large

grating periods, but decreases as we move to shorter and shorter length scales at

both 295 K and 425 K; we also observe the known decrease in thermal diffusivity of

the limiting large period value with increasing temperature.
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Fig. 5.8 (a) Thermal decay (amplitude grating) traces in GaAs at 295 K. The inset shows the
comparison with the in-plane decay rate (see Eq. 4.15) to q2; the dashed line shows the
diffusion model predicted behavior calculated using the literature GaAs diffusivity. (b) The
measured effective thermal diffusivity as a function of transient grating period. The purple
squares are for 295 K and the green diamonds are at 425 K. The labeled dash-dotted lines
give the bulk GaAs diffusivity from the literature [Adachi].

5.7 GaAs comparison to theory
Very recent first principles calculations of the thermal conductivity accumulation in

GaAs [Luo] make it possible to compare our measured bulk GaAs values to

simulation without surface scattering complications. Although not shown here,

these calculations produce good agreement with the bulk GaAs thermal conductivity

at many temperatures. In Fig. 5.9.a we show the thermal conductivity accumulation

as a function of MFP in GaAs at 300 K and 425 K; similar behavior as was observed

with Si is seen here, with a good portion of the heat being carried by phonons with

MFP > 1 [im at both temperatures. Due to the absence of surface scattering effects,

we can now use the differential thermal conductivity directly in Eq. 5.9, which gives



us the dashed traces to compare with the real data. In Fig. 5.9.b we show this

comparison where we have converted the measured thermal diffusivity to thermal

conductivity using the literature GaAs density and heat capacity values [Adachi].

Again we see good qualitative agreement at both temperatures, but now with larger

systematic deviations at short distances. We're currently unsure of the reason for

discrepancies between theory and experiment, but it appears that more heat is

carried in GaAs by long MFP phonons than the calculations predict. We note that

the calculations are only now becoming tractable and the results should not be

regarded as quantitative.
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Fig. 5.9 (a) Thermal conductivity accumulation as a function of phonon MFP calculated for
GaAs at 300 K and 425 K [Luo] (b) Comparison between theory and experiment for the
effective GaAs thermal conductivity.

5.8 Conclusions and discussion
The fact that deviations from the Fourier law in phonon-mediated thermal

conductivity occur at much larger distances than previously thought should change

the way we think about micro-scale thermal transport. One immediate implication is

that accurate measurements of thermal conductivity may be impossible on micron-

sized samples. We have seen that commonly cited textbook values of a phonon MFP

are of little relevance in analyzing the onset of size effects in thermal conductivity.

We believe that a much more appropriate value would be that of a "median thermal

conductivity MFP" Am, such that phonons with A > Am contribute 50% to the bulk



thermal conductivity. For Si at room temperature, Am -0.5 tm according to [Henry]

and -1.0 tm according to [Ward]. Moreover, if we approximate that Am is

equivalent to L/7rwhen the effective conductivity we measure experimentally is half

the bulk value, we report Am = 1 tm for Si and Am = 0.8 [tm for GaAs at room

temperature, and Am = 0.5 tm for GaAs at 425 K. As the first principles calculations

[Henry, Ward] often result in the correct total thermal conductivity but with

quantitative differences in the MFP distributions as shown in Fig. 3.5, experimental

measurements such as these will allow detailed refinement of the simulations.

Additionally, an interesting question is whether the median MFP would be even

larger for semiconductor alloys despite Rayleigh scattering caused high frequency

phonon MFP reduction, which is thought to increase the relative importance of the

low-frequency phonons [Koh].
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Chapter 6

Supercooled Liquids

One of the longest standing, grand challenges of condensed matter science is a

fundamental understanding of the dynamics of disordered systems [Binder]. It is

not well understood how the largely uncorrelated, relatively fast relaxation of

molecules in the liquid develop into slow, correlated molecular motions (many

orders of magnitude slower) upon supercooling, ultimately leading to seemingly

non-ergodic structural arrest at the glass transition. Such disordered, vitreous, or

amorphous "glassy" materials lack the periodicity of crystals like liquids but behave

mechanically like solids. From antiquity to modern times mankind has found use

for amorphous solids in a number of forms and applications. Today, in addition to

obvious uses of silica glass in construction and communication, amorphous

semiconductors are key to many microelectronic devices, advantages of amorphous

drugs have been shown in comparison to their crystalline counterparts, most

plastics are amorphous solids, and even golf clubs made of metallic glasses are being

manufactured [Debennedetti,Blanshard,Greer]. Furthermore, it is possible that

most of the water in the Universe is in a glassy form [Jenniskens].

Upon cooling any liquid, if crystallization is avoided, a glass will be formed.

Attempts have been made to describe the transition from a liquid to glass in terms

of a conventional phase transition such as the entropy theory by Adams, Gibbs and

DiMarzio [Gibbs,Adams], and "free" volume models like those introduced by Cohen

and Turnbull [Cohen], but so far, no conventional order parameter has been defined

to describe behavior near the glass transition. For example, even though the liquid-

glass transition resembles a second-order phase transition in which a liquid is

transformed continuously into an amorphous solid with no latent heat, the glass-

liquid system exhibits no diverging correlation length, symmetry change, or obvious

order parameter during the transition as is expected in a thermodynamic phase
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transition [Santen].

A common feature of glass-forming liquids is their propensity for supercooling

(avoiding crystallization below the freezing temperature). The transition from

supercooled liquid to glass is marked by a jump in heat capacity at a particular

temperature, even though a thermodynamic phase transition order parameter is

absent; but this calorimetric glass transition temperature increases with the cooling

rate, thus leading to some ambiguity in its definition for a particular material

[Angell95].

A hallmark of supercooling is a dramatic increase in the viscosity with decreasing

temperature, in fact changing over 17 orders of magnitude in a relatively small

temperature window [Angell95]. This decrease in the material flow rate is closely

related to a characteristic structural relaxation time. Due to such strong kinetic

markers, the approach to the glass transition is most appropriately understood in a

dynamical framework; but again, an obvious transition, also in the dynamics, is

lacking. Therefore the kinetic glass transition temperature Tg is defined arbitrarily

when the characteristic relaxation time reaches 102 or 103 seconds or the viscosity

reaches 1013 Poise. Upon further cooling, the viscosity and relaxation time continue

to increase, but quickly become longer than most experimentalists will reasonably

desire to watch. This dynamical nature has led some to state that a glass isn't a solid

at all, but only behaves as a solid on time scales shorter than the characteristic

relaxation time associated with structural rearrangement and flow.

A plethora of phenomenological theories has been developed and tested to describe

the dynamical slowing down of the structural relaxation, some of which involve

models connecting the elastic, short-time, properties of a material to the slow

relaxation [Dyre96,Novikov,DyreO6,Torchnisky09]. For many years, the only

theory derived from first-principles aimed at explaining the structural relaxation in

supercooled liquids has been the Mode-Coupling Theory of the glass transition

(MCT). Developed by Kawasaki [Kawasaki] and Oppenheim [Keyes] to describe

seemingly anomalous liquid dynamics, it was first extended to the supercooled
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regime, independently, by Das [Das86] and Gotze [G6tze88]. An interesting

commonality between MCT and elastic models is a connection between fast and

slow dynamics. In section 6.3 we will discuss more details of MCT including

experimentally testable predictions. Experiments discussed in the following

chapters are aimed at testing MCT predictions and studying the structural

relaxation of supercooled liquids. Despite over a century of theoretical and

experimental work surrounding the subject, there is still much to learn about the

transition from a supercooled liquid to the amorphous solid state.

6.1 Phenomenology of Supercooling
The many-order-of-magnitude increase in viscosity upon cooling is universal

amongst supercooled liquids. The viscosity is connected with the characteristic

structural relaxation time, and the variation with temperature is illustrated for a

number of materials in Fig. 6.1 where viscosity is plotted versus inverse

temperature scaled by Tg (reproduced from [Angell85]). This led Angell to classify

materials as "strong", "intermediate", and "fragile" glasses (with no connection to

the likelihood of fracture upon impact).

For strong materials such as silica glass the temperature-dependence of the

viscosity, i(T), is well represented by the Arrhenius law

r1(T) = A exp(Ea/kBT) (6.1)

where A is temperature independent material parameter, kB is the Boltzmann

constant, Ea is an activation energy associated with a structural rearrangement.

Pure Arrhenius behavior is shown with the solid straight line in Fig. 6.1. Many

materials also apparently deviate from the Arrhenius predicted behavior and show

a strong, super-Arrhenius increase in viscosity approaching Tg. The slope of the

viscosity or relaxation time approaching Tg is taken as a metric for material

classification and is termed the fragility index m [Angell85]. Strong, Arrhenius

behaving materials have a low m value typically in the 4-10 range, intermediate

glass formers have m values ranging from 20-50, and fragile glass formers with the

steepest slopes have m values ranging from 60 to over 100. So we see that for
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fragile materials, the relaxation time is extremely sensitive to temperature close to

Tg. Many attempt to extract fundamental information about the underlying

dynamics by fitting the temperature-dependent relaxation time to certain

expressions, but often expressions that fit well over a broad temperature range have

many fitting parameters thus leading one to question the information content of the

fit. For an overview of the numerous expressions used to fit the temperature-

dependent relaxation time, see section A.1.2 of reference [AngellOO].
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Fig. 6.1 Angell plot of the logarithm of viscosity versus inverse temperature scaled to Tg (Tg
is arbitrarily defined as when the viscosity reaches 1013 poise). The solid diagonal line
illustrates Arrhenius behavior. Materials close to Arrhenius are termed "strong" while
those with super-Arrhenius behavior approaching Tg are "fragile". Figure reproduced from
[Angell85].

Relaxation times are often extracted from measurements of a complex susceptibility

spectrum X(w) in the frequency domain or from the decay of a relaxation function in

the time domain F(t). In measuring a change in a property 6A of a system due to a

driving field aW at frequency w in the linear regime, the complex susceptibility X(w)

= x'(w) + iX"(w) is defined according to
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6A = X(w)a. (6.2)

Such frequency-domain spectra have been measured utilizing different driving

fields for various techniques including dielectric spectroscopy [Lunkenhiemer],

mechanical and ultrasonic spectroscopy [Christensen, Mandanici,Yan87], NMR

[B6hmer], and a number of other techniques (see [G6tze99,Binder,DasO5] for

reviews of examples). The relation between the susceptibility X(w) and relaxation

function F(t) is given through an intermediate function [Brodin] - the impulse

response function X(t), defined as the Fourier transform of the susceptibility

function

x(t) = fx(w)e""tdo. (6.3)

The relaxation function, which is the step response function (for a perturbation

turned on at t=-oo and turned off at t=O), is given using the impulse response as

F(t)= f -X(t,)dt,. (6.4)

Complex dielectric susceptibility spectra measured in glycerol at different

temperatures, here in terms of real frequency, are shown in Fig. 6.2 (adapted from

[Schneider]); apparent are a number of spectral features common to many glass

formers. The most prominent feature is what has been termed the a-relaxation, the

broad peak in the imaginary (loss) spectra in Fig. 6.2.b that shows strong

temperature dependence and is associated with the primary structural relaxation.

Due to a Kramers-Kronig relation, a connection exists between real and imaginary

parts and a corresponding step is seen in the real (reactive) spectra in Fig. 6.2.a.
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Fig. 6.2. Dielectric susceptibility (a) real (reactive) and (b) imaginary (dissipative) spectra
at many temperatures for the glass former glycerol adapted from [Schneider].

A characteristic structural relaxation time is extracted often directly from the

imaginary spectra alone or a combination of the pair by fitting to a variety of

phenomenological functions. The behavior in the frequency domain is similar to

Debye relaxation, which corresponds to a simple exponential relaxation in the time

domain. A general functional form for the frequency domain is the Havriliak-

Negami relaxation function (HN) [Havriliak] given by
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(o)= X+ ,(6.5)

1I+{(iovr 
HN a~f

where Xo is the low frequency limiting value, Xo is the high frequency limiting value,

THN is the characteristic relaxation time, and a and # are spectral parameters that

can vary between 0 and 1. Debye relaxation is given by a= #/= 1. An analogous

time-domain function is the Kohlrausch-Williams-Watts (KWW) stretched

exponential relaxation function [Kohlrausch,Williams]

F(t)=Fexp t (6.6)
TKW pKWW

with TKww the characteristic relaxation time and #Kww the stretching parameter

which varies between 0 and 1. The frequency domain functions for Debye (a=#3=1)

and HN (a=1; p=0.5) relaxation with ZHN = 1 are illustrated in Fig. 6.3.a.

(a) - - - -
1.0 - Real Debye ( 10 = 1(Debye)

- Imag Debye 0.8 p =0.8
0.8 Real HN =0.6

- -- Imag HN
0.6 -0.

0.4 0.4

0.2 I0.2

0.0L -0.0

1E-3 0.01 0.1 1 10 100 1000 0 10 20 30 40 50

frequency time
Fig. 6.3. Phenomenological relaxation functions (a) Real (solid lines) and imaginary (dashed
lines) part of Debye (black) and HN (orange) with aHN= 1 and PHN = 0.5 (b) KWW relaxation
function with the stretching parameter pIww = 1 (Debye), 0.8, and 0.6.

The Debye peak, even though narrow in comparison to the HN peak, is still

somewhat broad, covering nearly two decades in frequency. The HN spectral

parameters a and P serve respectively to broaden and skew the peak. The stretched

exponential function is plotted in Fig.6.3.b with Tvww =10 and /Kww = 1, 0.8, 0.6. We

note that even though the KWW relaxation time is identical for each trace, the

stretching parameter significantly alters the actual decay. A similar behavior is also

105



seen comparing HN to Debye relaxation in Fig. 6.3.a: even though TrHN is identical, the

corresponding frequency of the peak maximum is different. The stretching of

relaxation functions is often thought of in two limiting descriptions: in one case we

simply have exponential relaxation events with a distribution of relaxation times

and in the other we have relaxation events that are inherently non-exponential. In

all likelihood, a combination of these two descriptions may be the reality [Binder].

These simple functions are mainly used to model the a-relaxation, yet there are

other evident features in the recorded spectra. Another prominent feature

appearing in Fig. 6.2.b is a temperature-independent peak at high frequencies, also

with corresponding step in Fig. 6.2.a, that the a-relaxation seems to grow out of as

temperature is reduced. This high frequency peak (sometimes peaks) is thought to

arise from differing mechanisms ranging from the fast microscopic rearrangements

associated with particle motion in "cages" of nearest neighbors (termed simply the

microscopic peak or high frequency #-relaxation in an MCT framework) as well as

an excess of oscillatory states above the Debye description (the Boson peak - a

controversial subject) [Lubchenko,Taraskin,Schirmacher]. A final feature we'll point

out, especially observable for the lower temperature data, is an excess wing to the

a-relaxation peak occurring at intermediate frequencies. In many materials this

excess wing is manifest as a separate peak called the Johari-Goldstein 3 relaxation

process, often associated with segmental motion of longer chain molecules [Johari].

In order to gain a deeper understanding of the underlying physical processes than

these phenomenological functions offer, the measured relaxation should be

connected with an appropriate correlation function. Because our primary interest

lies in understanding structural relaxation, a density space-time correlation function

termed the intermediate scattering function, given by Eq. 6.7, is of premier

importance.

F(q,t) = Np(q,t)op*(q,t)) = expliq- ry () exp[-iq- r,(t), (6.7)
j=1 k=1

where N is the number of particles, q is the wavevector, q is the wavevector
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magnitude, ri is the position vector of the ith particle, and bp is the deviation from

equilibrium density. For good discussions of correlation functions relevant to liquid

dynamics and the glass transition, please see [Balucani,Boon,Frenkel]. It's also

crucial to have a technique with enormous dynamic range, as is the case with the

dielectric spectroscopy data displayed in Fig. 6.2, showing data over an unmatched

17 orders of magnitude; but dielectric spectroscopy probes primarily the

orientational correlation function, not the density relaxation. Dielectric data offer

clues to the structural relaxation due to rotational-translational coupling (coupling

between orientational motion and collective structural relaxation), but this coupling

is a rich field of study in its own right and can obscure comparison to theory.

Techniques that measure the frequency-dependent mechanical and acoustic

properties are promising due to the direct coupling between sound waves and

density correlations [Balucani]; the complex acoustic compliance has direct

connections to the density correlation function (equivalent to the relationship

between a susceptibility spectrum and the corresponding relaxation function)

[Wang85]. Measurements of mechanical properties at relatively low frequencies

(sMHz) utilizing piezo-transducer and ultrasonic techniques have been

commonplace for a number of years [Christensen,Mandinici], but extending to

higher frequencies has been challenging. ISS offers a clear means of generation and

detection of MHz to low GHz frequency longitudinal and shear acoustic waves, and

recent improvements in picosecond ultrasonic measurements in liquids have

extended the range to even higher frequencies [Yan87,Yang]; indeed temperature-

dependent broadband acoustic compliance spectra of the glass forming liquid

tetramethyl tetraphenyl trisiloxane (DC704) have, for the first time, been

constructed utilizing these different techniques [Hecksher,Torchinsky,Klieber].

Such broadband acoustic spectra offer a unique look at the high and low frequency

material response with the ability to test mode-coupling-theory predictions linking

fast and slow relaxation. In Chapter 8 we add additional data to frequency gaps in

the reported broadband spectra [Klieber] using the nanosecond acoustic

interferometry technique introduced in Chapter 2 and we test key MCT predictions.
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6.2 Mode Coupling Theory of the glass transition

6.2.a Introduction
Mode coupling theory provides an intuitively appealing physical picture involving

caging effects and associated retardation of collective structural relaxation. The

theory of MCT is developed for a system of particles to describe the dynamics of the

intermediate scattering function. In the sixties and seventies theoretical methods

were developed to quantitatively describe the dynamics of simple liquids

[Kawasaki]. Equations of motion for the intermediate scattering function that

provided a good description of liquid dynamics at the triple point were derived

using the Zwanzig-Mori projection operator formalism [Zwanzig] with mode-

coupling approximations. They showed that the dynamics could be understood in

terms of trapping of particles in a cage formed by their neighbors; a nonlinear

feedback mechanism re-routes the energy back to the original particle, keeping it in

place until collective relaxation (flow) occurs, breaking up the "cages". MCT

describes this collisional energy and momentum transfer between the central

particle and the surrounding particles and later equations were simplified

neglecting terms deemed irrelevant at low temperatures [Bengtzelius]. Lowering

the temperature increases the density and reduces the available energy for

structural rearrangement, leading to a quasi-static disordered structure (glass) for

longer and longer times, emphasizing the purely dynamical nature of the liquid-

glass transition. The following section outlines a few key steps and approximations

in the theory originally developed by G6tze and Sj6gren [Bengtzelius,Leutheusser],

and is given in more detail in [Binder].

6.2.b Mode Coupling Theory equations
Considering an isotropic system so that F(q,t) only depends on the magnitude of q,

the equations of motion can then be written as an integro-differential equation

P(q,t)+ <D(q,t)+ fJMre(q,t - t') + M(q,t - t')] (q,t')dt' = 0 . (6.8)

where <(q,t) is the normalized intermediate scattering function, F(q,t)/F(q,O), and

the squared frequency Aq2 follows directly from the short time expansion of the

equations of motion and is given by
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02 q2k B(
q = (69

mS(q)

where S(q) F(q,O) is the static structure factor, m is the mass of the particles and kB

is Boltzmann's constant. The memory function has been divided into two parts with

Mreg(q,t) representing the "regular" short time dynamics and M(q,t) responsible for

the dynamics at long times of interest here. One of the central approximations in

the original MCT formulation is given in the expression for M(q,t) as a bi-linear

product of the correlation functions

M(q,t) = dkV (q,k,q -k|)<(k,t)<D(lq -k|,t) , (6.10)
2(2 r)3

with vertex V(2) that can be calculated from the static structure factor as

V(2)(q,k,|q - k|) = n S(q)S(k)S(q - k|)([kc(k)+(q - k)c(|q - k|)]) (6.11)

Here n is the particle density and c(k) = n(1-1/S(q)). The mode-coupling equations

6.8-6.11 form a closed set of self-consistent coupled equations for F(q,t), where the

only input parameter is the static structure factor S(q) that can be measured

experimentally or calculated from first principles. S(q) gives the strength of the

vertex (Eq. 6.11), which in turn determines the amplitude of non-linear couplings in

the product of correlation functions in the memory function in Eq. 6.10. These non-

linear couplings describe the feedback mechanism that is the core of MCT. There

are two main assumptions involved in the derivation of these equations, which has

been termed Ideal MCT. One is that the full expressions for Eq. 6.10 and 6.11 in fact

include higher order correlation functions, here approximated as a product of 2-

point correlation functions. Another simplification given in the full derivation (see

[Binder] for details) is an explicit substitution of an anomalous propagator for a

typical one in the Zwanzig-Mori formulation. Even with the two main assumptions,

the equations are still too complex for an analytical solution without making

simplifications to the static structure factor [Leutheusser], but numerical solutions

to the coupled equations of motion can be obtained.

Given one such simplification to the static structure factor, [Bengtzelius] calculated
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the decay of the density correlator <D(q,t), shown in Fig. 6.4.a, where the lines

labeled A-G are simulated for decreasing temperature. As temperature is reduced,

the decay of the correlator slows down and a step in the decay becomes apparent;

physically this is associated with the cage trapping effect mentioned above and

reproduces in the frequency domain two main peaks such as those in Fig. 6.2.b. One

of the immediately visible shortcomings of Ideal MCT is that, as temperature is

further decreased, a divergence in the relaxation time appears - as t -oo for low

temperatures labeled B',D', F', the correlator never fully decays to zero. Albeit this

mathematical non-ergodicity at some critical temperature Tc is not physical, it has

led, in the MCT framework, to a number of testable predictions as to the decay of the

density correlator.

(a) (b)I I I I I I T I

Ideal MCT - Extended MCT
08 0.8L:
06 0.6

0 2 -0. -

1 12 10 0 101 1 102 10' 10 08
(units of Q-) f(units of Q')

Fig. 6.4 MCT calculations of the decay of the density correlator. (a) Ideal MCT calculations
for decreasing temperature (A-G, D', C', B') showing non-ergodic transition as T is lowered
below Tc. (b) Due to coupling to transverse current and thermally activated hopping,
ergodicity is restored at all temperatures according to Extended MCT calculations. (Plots
adapted from [Bengtzelius].)

Through the years a number of improvements to the Ideal MCT have been proposed

that restore ergodicity for all temperatures, resulting in what is termed Extended

MCT. [Bengtzelius] added somewhat phenomenological couplings that involved

shear modes and thermally assisted hopping, with the results shown in Fig. 6.4.b.

The original formulation by Das and Mazenko utilizing fluctuating hydrodynamics

[Das86,DasO4,DasO9] did not result in such unphysical non-ergodic behavior

because to the coupling to shear modes restores ergodicity at all temperatures.
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Other approaches have shown that this divergence results from the mathematical

simplifications discussed above, and by removing these assumptions and including

higher order density correlation functions, the correlator will in fact eventually

decay to zero at all temperatures without coupling to other modes [Wu,Mayer]. We

know that experimentally there is no divergence in viscosity or relaxation time, but

understanding the connections to theory and potential influence of coupling

between modes to facilitate structural rearrangement is one of the goals of modern

research.

6.2.c Predictions of the Mode Coupling Theory
As discussed, the pertinent predictions of mode-coupling theory revolve around a

critical temperature Tc at which the c-relaxation time of the system diverges (we

will use -rHN in the analysis in subsequent chapters). Despite the MCT extensions and

improvements that suppress this divergence, some predictions of the Ideal MCT are

still shown to hold near the transition temperature Tc, where now Tc is understood

as a crossover to different low temperature dynamics [Das04,Mayer]. Here we

outline these Ideal MCT predictions, which should hold, strictly speaking, when the

separation parameter,

T -T
a - , (6.12)

Tc

is small (often this separation parameter and related MCT predictions are given in

terms of density or packing fraction as well: a = (A-Ac)/Ac where A is the packing

fraction).

In both Ideal and Extended MCT, as temperature decreases, the step in the

correlator decay becomes longer and longer as well as higher. The non-zero level to

which the correlator decays in Ideal MCT at Tc and below, as well as the plateau

height above Tc, is called the non-ergodicity parameterfqc. Just above Tc, the MCT

equations can be expanded in terms of <D(q,t) -fqc and the asymptotic analysis of

this behavior yields the derivation of several MCT predictions.

The first is what we call the factorization property given by
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<D(q,t) - fqc = hqG(t) , (6.13)

which predicts that the q-dependence of <D(q,t) -fqc in the asymptotic region is

completely encapsulated in the amplitude hq and the time dependence is given by

the q-independent function G(t), called the p-correlator. MCT solutions show that

G(t) first decays as t-a (the critical decay) down to the plateau termed the

p-relaxation regime, then decreases initially from the plateau as -tb (the Von

Schweidler law) to the a-relaxation regime (note that some confusion can arise

because the a exponent is associated with p-relaxation, while the b exponent is

associated with the a-relaxation). The MCT connection between fast and slow

dynamics mentioned previously is due to the predicted relationship between the

two exponents a and b according to

F2(i _ a) 2(1+ b)
A = = , (6.14)

F(1 - 2a) F(i + 2b)

where l' is the gamma function. Just below Tc, it is predicted that the amplitude of

the non-ergodicity parameterfq increases as

( f ( T > Tc)
f f (T) = >0) (6.15)

fq"+ ha (T < T )

where oais the separation parameter defined in Eq. 6.12. This predicted square-root

cusp in fqc(T) has been observed experimentally to be present in several fragile glass

formers [Yang95a] but absent in others that are less fragile [Paolucci].

MCT also predicts scaling laws in both the a- and #-relaxation regimes. In the a-

relaxation regime, the primary structural relaxation has been shown experimentally

in many materials to obey the principle of time-temperature-superposition (TTS), at

least over a limited temperature range. This is perhaps most easily described in the

frequency domain - the a-relaxation feature merely moves to a new position

without changing shape as the temperature is changed. Even without a careful

analysis, we can see that this is likely the case for the glycerol dielectric data in Fig.

6.2. In terms of the phenomenological fitting functions Eqs. 6.2 & 6.3, this means

that while the relaxation time is temperature dependent, if TTS is obeyed the

shape/stretching parameters will be constant with temperature and all the data
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could be scaled in time to overlap. In terms of MCT, this relation is given

mathematically using the characteristic relaxation time r to scale the data with a

temperature independent master function Fq

<b(q,t) = Fq(t/r) . (6.16)

Although an analytical form for Fq is not available, numerical solutions to the MCT

equations show that it fits well to the KWW relaxation function Eq. 6.6. Again we

note that this prediction is expected to hold only close to Tc. As Tc is approached

from above, MCT predicts that the relaxation time r diverges according to

r(T) =t 0 (T - Tc ) . (6.17)

Here, To is a microscopic relaxation time and again an MCT connection exists

between fast and slow dynamics given by the relation y = 1/2a + 1/2b. Of all the

MCT predictions, this is the most difficult to ascertain the value of Tc because such a

divergence doesn't exist in real systems.

While density fluctuations, which constitute the longitudinal waves, are the natural

variable of the theory, MCT suggests relationships between the various relaxing

variables (e.g., density fluctuations, transverse current fluctuations, orientational

fluctuations, etc.) through the so-called a-scale coupling [G6tze99]. This prediction

states that if two variables, A and B, couple to the density fluctuations, their

associated relaxation times, TA(T) = CAT(T) and TB(T) = CBT(T), are equivalent, up to a

temperature independent factor, to a universal relaxation time T(T). The

relationship between these relaxation times can break down and decoupling may

then occur at Tc. In order to test this prediction, characteristic relaxation times

associated with different correlation functions need to be compared.

As flow includes both changes in density and shearing motions, additional MCT

predictions have been presented concerning the transverse current fluctuations.

One such prediction is a power-law divergence of an upper bound length scale for

shear wave propagation derived using MCT calculations with the static structure

factor for hard spheres in a Percus-Yevick approximation [Ahluwalia]. While such an

upper bound has been established in the literature [Balucani] in terms of a
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wavelength at which the corresponding shear acoustic frequency goes to zero

(indeed one distinction between liquids and solids is that a solid can support

transverse acoustic waves at arbitrarily long wavelengths while liquids cannot), this

particular temperature dependence is unique to MCT and, to our knowledge, has not

been investigated experimentally.

To review further predictions surrounding the density correlation function, in the /3-

relaxation regime the so-called p-correlator G(t) obeys the scaling laws

gitt,)foro-<O
G(t)= - for . (6.18)

g.A9,(tl tj for o-> 0

The scaling time t, is given by

t, = t , (6.19)

where to is the microscopic time scale to = Qo-. Both master functions g±(t/t,) follow

the critical decay law (t-a) for short times, g.(t/t) follows the von Schweidler law

(-th) for longer times, and g+(t/t,) for longer times has a constant value of (1-X)1/2

(with A defined in Eq. 6.14).

6.2.d The susceptibility spectrum

The predicted scaling laws have corresponding frequency domain forms that could

as well be tested via measurements of the susceptibility spectrum. As we have

already discussed a-relaxation scaling, we will conclude with a discussion of scaling

in the /3-relaxation regime. The imaginary susceptibility '(w) should scale as

x "(a) = hq Ck[ X "(Ot0) , (6.20)

where X" is the susceptibility master function. The critical and von Schweidler

decays mentioned above are expressed power laws predicted to be

X"(W) Ca (a <<O << Qq) (6.21)

on the low frequency side of the high frequency peak,

X "(0) a (~b (Ca << C «w ) (6.22)

on the high frequency side of the a-relaxation peak, and
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X (w) c C (0 << O << 2 ))

on the low frequency side of the a-relaxation peak, where wa = 1/r and w= 1/t,

and the exponent a ranges from 0 to 0.5 and b ranges from 0 to 1. A depiction of the
meaning of power law expressions Eq. 6.21 and Eq. 6.22 is given in Fig. 6.5.

-IT T T3*
-b* *a

(0

log(co)
Fig. 6.5 Plot depicting imaginary susceptibility spectra at three temperatures illustrating
power law MCT predictions according to Eqs. 6.21 and 6.22.

Above Tc, Eqs. 6.21 and 6.22 can be combined more explicitly to describe the

behavior of the minimum in the imaginary part of the susceptibility between high

and low frequency peaks, with an expression given by

'(w) = Xmin a( +b( to , (6.24)
a+b wm wi

where a and b are the critical exponents given above, /'min is the magnitude of the

minimum, and min is the position of the minimum. Each of these latter two values

also has predictions about the behavior approaching Tc from above, which are

Xn(COmin) o IT - TcI" and Co | IT - C (6.25)

In the following chapters we test these MCT predictions with measurements of

mechanical material properties that couple directly to correlation functions related

to structure and flow.
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Chapter 7

Longitudinal & shear acoustic waves in

supercooled liquids using ISS

As discussed in the previous chapter, fundamental to the study of supercooled

liquids is a thorough characterization of the a-relaxation across a broad range of

frequencies. A survey of the literature quickly makes clear that this challenge of

ultra-broadband spectroscopy has been tackled most often and completely with

dielectric spectroscopy, with an unparalleled dynamic range in the study of glass

forming liquids [LunkenheimerOO,Schneider,LunkenheimerO8]. But as discussed in

the previous chapter, dielectric spectroscopy is most sensitive to orientational

motion, while the dynamic nature of supercooling is more naturally understood in

terms of density correlations that may be probed by longitudinal acoustic waves,

and the transverse current, which couples to shear waves [Balucani,Boon]. Indeed,

the Ideal and general MCT formulations and predictions are centered on the

intermediate scattering function and higher order density correlation functions, as

well as the shear waves in their own right [Wu,Mayar,Das86,Ahluwalia].

Even though an exceedingly broad frequency range is required for a complete

characterization of the a-relaxation as manifest in any degree of freedom, the

acoustic frequency range made accessible using impulsive stimulated light

scattering is often ideal for testing MCT predictions. In past ISS studies, this has

allowed many MCT predictions to be tested in a variety of glass-formers

[Halalay92,Yang95b,Yang96]. In the current chapter we will provide new tests of

MCT predicted a-scale coupling between shear and longitudinal modes, as well as

the scaling law for shear wave propagation mentioned in Chapter 6. These tests

were made possible by improvements in the ISBS generation and detection of shear

waves spearheaded by Darius Torchinsky in the Nelson group

117



[Torchinsky,Torchinsky09]; much of the work and analysis presented here was

carried out together with now Dr. Torchinsky. In this chapter, we discuss generally

the equations of motion controlling ISS excited acoustic wave propagation in

viscoelastic materials, and then present specific results and tests of the mode

coupling theory.

7.1 ISS equations of motion
Derivations of ISS signal generation in supercooled liquids can be found with

formulations in terms of viscosity or a complex modulus and different levels of

detail in the literature [Yan88,Yang95a]. Here we present phenomenological

versions of the isotropic linearized thermoviscoelastic equations of motion,

including equations for displacement, temperature, and an orientational variable.

The equation for the displacement dynamics is essentially a statement of Newton's

equation given as [ChristensenO7]

U2 = MV(V- u) - GV x (V x u) - #V6T +Va, (7.1)

where u is the displacement vector, po is the equilibrium density, M is the

longitudinal acoustic modulus, G is the shear acoustic modulus, 3 is the pressure

coefficient (often given as a the product of the thermal expansion coefficient a and

bulk modulus K - see Eq. 2.3), 6T is the deviation from equilibrium temperature, and

o7 is the impulsive, electrostrictive stress exerted by the laser (ISBS) given by Eq.

2.4. Given certain experimental conditions one could appropriately attach

subscripts to the moduli and pressure coefficient indicating thermodynamic

conditions such as T for isothermal, S for adiabatic, or V for isochoric, but it is not

always straightforward in the ISS experiment; for simplicity we leave off the

subscripts. The equation for the temperature dynamics is derived from the

conservation of energy and given as

__T a
C -+ PTO -(V. u) = kV26T+Q,, (7.2)at at

where C is the heat capacity, To is a reference temperature (typically much less than

the initial temperature), k is the thermal conductivity, and Q' is the heat deposited
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by the laser (ISTS; see Eq. 2.2). We see in Eqs. 7.1 and 7.2 that the pressure

coefficient 3 gives the coupling between temperature and displacement (and the

equations governing each). Solutions to these equations given real modulus values

result in propagating waves in Eq. 7.1; the ISBS driving force drives acoustic waves

directly while the ISTS driving force is manifest through the # term in Eq. 7.1. Next

we will give simplified equations for the case of longitudinal wave generation using

VV polarized pump beams (ISBS and ISTS) and shear wave generation using VH

polarized pump beams (ISBS). The third equation of motion regarding orientational

dynamics needs to be accounted for due to rotational-translational coupling.

Although this may be important for both shear and longitudinal wave propagation,

it will be included in the more immediately relevant shear ISS derivation discussed

here; treatments of rotational-translational coupling in the case of ISS generated

longitudinal waves are given in [Glorieux02,PickO3,Azzimani].

7.2 Longitudinal acoustic waves
Appropriate one-dimensional simplifications to Eq. 7.1 and 7.2 for the case of

longitudinal waves (VVVV ISS experiments) give the coupled equations

2u 22 adpUo = M - --6T +-Fx0 cos(qx)(t)
dt 2x dX dX (7.3)

86T 826T
C =k 8X2 +QOcos(qx)6(t)

dt

with Fxo and Qo giving the amplitude of each laser induced source and q the transient

grating wavevector magnitude (see Eq. 2.1).

Typically the coupling term in Eq. 7.2 is small, so we neglect it, and inserting the

sinusoidal VV source terms in each equation allows us to drop the shear modulus

term in Eq. 7.1. Assuming spatially periodic solutions according to the source terms

and performing a temporal Fourier transform according to f(w)= f (t)e-"wdt,

the differential equations can be expressed as coupled equations in matrix form

-Pow2+q2M -/C u, (q,) 'iqFxo (7.4)
0 ine + q 2 kCa on t . of

Taking the inverse of the matrix on the right of Eq. 7.4 and multiplying both sides on
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the left by the inverse allows the determination the variables u" and 6T. As

discussed in Chapter 6, viscoelastic behavior is given by frequency-dependent

complex elastic moduli; this complex behavior is manifest not only in the

longitudinal modulus, but also in the heat capacity and pressure coefficient with

similar behavior, such as the manifestation of a-relaxation, in real and imaginary

parts. The correspondence principle allows the direct substitution of complex

moduli in the frequency domain, and time domain solutions can be recovered by an

inverse Fourier transform. With certain assumptions, an analytic Fourier transform

is possible and given in [Berne,Boon,Yang], but for the full solution with frequency

dependence in all relevant variables, only numerical solutions are currently

available. Given Yang's simplifications, the time domain follows the form

S(t) = A(e-, , cos(wAt) + B(e-rh' - e(tT)) + Ce-At sin(wCAt) , (7.5)

where wA is the acoustic frequency, TA is the acoustic damping rate, Fth is the

thermal decay rate from which the thermal diffusivity can be determined (see

Chapter 3), and -ris the structural relaxation time with # the KWW stretching

parameter. This equation was derived in the Debye approximation and stretching

was added to capture the supercooled dynamics. Further key approximations

specified that the relaxation time must be much longer than the inverse acoustic

period and much shorter than the inverse thermal decay rate (1/oA<< -r << 1/Fth).

[Yang95a] connected this equation to a number of MCT predictions and

[Torchinsky] showed that relaxation dynamics could be measured and linked with

ISS acoustic measurements. As our emphasis is mainly on the acoustics in this

chapter, we will forego further discussion of the complete longitudinal ISS signal,

and focus on the damped longitudinal oscillations.

In Fig. 7.1.a we show three traces displaying 1.55 ptm acoustic waves in the glass

former 5-phenyl 4-ether (5P4E) at different temperatures with the express interest

in observing how the structural a-relaxation couples to longitudinal waves. At low

temperatures the material is in the solid-like glassy state. The frequency is high

corresponding to a high speed of sound and the damping rate is low. As
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temperature is increased the solid starts to soften and when the characteristic

structural relaxation time is on the same time scale as the inverse acoustic

frequency we see strong damping. As the temperature is raised higher and the

structural relaxation time moves to shorter times scales, the acoustic damping rate

decreases again, the frequency continues to go down, and we can recover the lower

liquid speed of sound. We also note that the acoustic oscillations extend below the

zero-baseline, indicative of a combination of ISTS and ISBS excitation. Fig. 7.1.b

shows the measured speed of sound as a function of temperature for 1.0 rim, 4.9 Rm,

and 29 [tm acoustic wavelengths. Relaxation-induced dispersion is evident in the

temperature range from 280-350 K and the dashed labeled lines show the limiting

behavior of the speed of sound at high (vo) and low (vo) frequencies.

(a)

380

T (K)

Time (n)

Fig. 7.1 (a) Longitudinal ISS traces in SP4E with 1.55 [tm wavelength at three different
temperatures showing behavior due to structural relaxation as described in the text. (b)
Longitudinal speed of sound in 5P4E at measured at 3 wavelengths showing relaxation-
induced dispersion from 280-350 K. The dashed labeled lines show limiting behavior of the
sounds speed at high (voo) and low (vo) frequencies.
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7.3 Shear acoustic waves
In a depolarized (VHVH) experiment, each of the pump arms carries a different

polarization and the ensuing grating is described as an alternating polarization

pattern, depicted in the Fig. 2.2.b. As described above and in Chapter 2, it is the

regions of linear polarization that perform electrostrictive work, deforming the

excited region in a fashion that generates counter-propagating shear acoustic

waves. Shear acoustic waves only affect a change in the shape of a material volume

element, with no density change and thus coupling to temperature is absent in

isotropic materials. Therefore Eq. 7.2 can be omitted for shear waves, and with

simplifications including the VH ISBS driving force and the addition of the

orientational equation of motion [Frenkel,Glorieux02], the relevant coupled

equations are given by

d2azu
P at2 V- (GVu+ o + p )

0 i -r + _ u '. (7.6 )

at at ar;- ari

G is the shear acoustic modulus, or is the electrostrictive stress (see Eq. 2.4), <Dij are

matrix elements representing orientational motion, p is the rotational-translational

coupling term, Fo is the orientational damping rate C determines the strength of

coupling from displacement to orientation, and <DI is the torque exerted by the laser.

Just as we did with the equations of motion for longitudinal waves, we assume

spatially periodic solutions according to the source terms and perform a temporal

Fourier transform to express the differential equations as coupled equations in

matrix formEp02 + q2G -iqp uq,cw)] iqF (7.7)
qwiy iw+ FD(q,o) (Do

Taking the inverse of the matrix on the right of Eq. 7.7 and multiplying both sides on

the left by the inverse allows the determination the variables uy and <D, which we

give in Eq. 7.8:
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uy(qco) iqp0 + iqF0(o + ico)
A

(q,o) (qG - poco) - (7.8)
A

A = q2G(Fo + io) + io(q2,2 + ipow(]o+ iw))

In order to arrive at a time-domain solution, we make the assumptions that the ISBS

signal depends predominately the orientational variable (meaning the polarizability

anisotropy couples strongly to orientation) and that 4q2 u2 is a higher order coupling

that can be ignored. For the orientational variable we arrive at, using s = iw to avoid

confusion of variables in subsequent steps,

P(q,s) = (0 (7.9)
(o s) po(o0 +s)(s2 + q2 Gpo0)

To determine the effect of structural relaxation dynamics on the signal and to

recover an analytical time-domain solution, we model the a-peak by Debye

relaxation (see Eq. 6.5). Eq. 7.9 can then be recast into the form

(D(q,s)= 4 q ,0  (7.10)
("o + s) pO (Fo + s)(s +, + io,)(s+ F ) - i()

where the shear acoustic damping rate F, is given by

2, - , (7.11)
2-c,

and the frequency of oscillating shear waves os is

12
, vq 2 - ) . (7.12)

The shear relaxation time is -r and the infinite frequency speed of sound is vo. One

standard distinction between liquids and solids is that solids can support shear

waves, whereas liquids cannot. We note that in the Debye relaxation approximation

used here, whether the material behaves like a solid or liquid at a particular

wavevector is determined by the relaxation time. The acoustic wavevector qo for

which propagation ceases is determined using Eq. 7.12 when cos goes to zero:

1
o= (7.13)
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Shear waves will propagate for q > qo, but diffusive motion will result for'

wavevectors q < qo. Separation of 7.10 by partial fractions, and a subsequent

inverse Fourier transform, yields the time-domain solution

b(q,t) = A[(Bsin(wOt) + Ccos(w,t))e-r' - Ce-Tot] + -o

q24pF0A =
s - o +0w (7.14)

B =Ws
WS

C = FO - 27

Typically B is much larger than C, giving a simple equation of a damped oscillation

for the shear waves and a single exponential for the orientational response.

Despite the importance of both longitudinal and shear degrees of freedom, due to

the relatively limited means by which shear waves may be generated and probed,

the majority of the supercooled liquid literature has centered on the study of the

longitudinal modulus. As will be discussed in more detail in the next chapter, a

variety of methods can continuously cover the longitudinal spectrum from mHz up

to the mid-GHz regime. However, broadband shear wave generation is more

accessible experimentally at lower frequencies and exhibits a gap in the range from

the ~10 MHz limit of transducer methods [Ferry,Rossiter] to the low GHz

frequencies probed by depolarized (VH) Brillouin Scattering [Huang,Dreyfus,Tao].

The bulk of depolarized Brillouin Scattering studies are performed in a single

scattering geometry, permitting observation of only one acoustic wavevector. Many

attempts have been made to obtain relaxation information, but of necessity complex

modeling is employed with imprecise multi-parameter fitting, incorporating

contributions from the various channels that give rise to depolarized light

scattering.

In this chapter, we utilize recent advancements in the ISBS generation and detection

of coherent shear waves [Nelson,Torchinsky09] to provide tests of the MCT

predicted a-coupling [Gotze99]. Earlier experimental studies that have examined a-

coupling have focused on, e.g., the coupling of dielectric to rheological variables
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[Zorn], dielectric to shear mechanical relaxation [Jakobsen], and of translational to

rotational diffusion [Lohfink]. However, there have been no studies that directly

compare elastic degrees of freedom with each other. We will also examine the

predicted, albeit untested power-law divergence of an upper bound length scale for

shear wave propagation upon cooling [Ahluwalia].

7.4 Experimental study of triphenyl phosphite
Building upon prior work [Silence9l,Silence92], we present an expanded study of

the shear acoustic behavior of the fragile glass-former triphenylphosphite (TPP) (Tg

= 202 K [Mizukami]). Together, the experiments fill in the gap between 10 MHz and

1 GHz in the shear relaxation spectrum, and thus constitute the broadest bandwidth

shear acoustic measurements performed optically on any glass forming system,

enabling characterization of shear relaxation in glass-forming liquids in this

frequency regime. Although supercooled liquid a-relaxation spectra are typically

broader than two decades at any temperature and, as T is varied, the spectra move

across many decades, the 10-1000 MHz range is sufficient to permit comparison of

relaxation spectra from shear and longitudinal wave measurements at similar

frequencies.

We utilized the NIR setup where the pump laser wavelength was the fundamental of

the Yb:KWG system lasing at 1030 nm and producing pulses of 500 ptJ at a repetition

rate of 1 kHz, although 150 ptJ was routinely used to avoid cumulative degradation

of the sample. The excitation beams were cylindrically focused to a spot that was 2.5

mm in the grating wavevector dimension and 100 gm in the perpendicular

dimension so that the acoustic waves would have many periods and the decay of

signal would be due primarily to acoustic damping rather than propagation away

from the excitation and probing region of the sample. The probe and reference

beams were derived from the 150 mW 830 nm CW diode laser focused to a spot of 1

mm in the grating dimension by 50 gm in the perpendicular dimension.

In order to generate crossed polarizations, we inserted X/2 waveplates into each of

the beams between imaging lenses as depicted in Fig 2.1. The waveplates were held
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in precision rotation mounts to provide accurate alignment of the relative

polarizations of the V and H polarized beams. This set the upper limit on the grating

spacing that could be achieved in our measurements; for longer wavelengths, the

beams came close enough together to be clipped by the rotation mounts. Imaging

with longer focal length optics allowed access to longer transient grating periods.

The shear signals were weak and required 10,000 averages, resulting in data

acquisition times of a few minutes for each temperature/wavevector trace.

TPP at 97% nominal purity was purchased from Alfa Aesar and had both water and

volatile impurities removed by heating under vacuum with the drying agent MgSO4

immersed in the liquid. The sample was then transferred to a cell with movable

windows [Halalay] via filtering through a millipore 0.22 im teflon filter. After

loading, the cell was placed in the cryostat for temperature tuning.

The seventeen transient grating periods examined in this study ranged from 2.33 to

50.7 lim, with additional data for 0.48 ptm, 1.52 pm, 3.14 [im, and 4.55 pm periods

taken from prior reported results [Silence9l,Silence92]. The acoustic wavelengths

were calibrated through ISS measurements in ethylene glycol, for which the speed

of sound is known to a high degree of accuracy [Silence]. Data were recorded for

each wavevector heating the sample every 2 K from 220 K to 250 K, which we found

slowed crystallization relative to cooling. The tendency toward crystallization was

particularly pronounced in the temperature range between 234 K and 242 K.

Additionally, after a few days of use we replaced the sample with a new one due to a

slightly cloudy yellowish hue developing; comparison of the signals obtained from

the degraded samples and fresh ones yielded the same frequency and damping rate

values, indicating that uncertainties in either of these quantities were due mainly to

noise in the data.
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The data are black and the fits are red. As temperature is increased, the acoustic wave
becomes more heavily damped, until eventually it becomes over damped and oscillatory
motion ceases. (d-f) Shear waves in TPP at T = 220 K for (d) L = 10.2 m, (e) 21.3 m, and
(f) 44.2 lm. Again the data are black and the fits are red. We observe that the acoustic
damping increased for larger grating periods at the same temperature.

7.5 TPP results and discussion
Six shear acoustic signal traces recorded in TPP are shown in Fig. 7.3. Immediately

following the initial hyperpolarizability spike, oscillations due to counter-

propagating shear waves appear about the zero baseline. In 7.3.a for 2.33 m

grating period, the shear oscillations are seen to disappear at 220 K on the scale of

tens of nanoseconds due to acoustic damping. As the sample was warmed in 7.3.b

and 7.3.c, the frequency was observed to decrease and the damping increased

dramatically. At sufficiently high temperatures, eventually oscillatory motion ceased

and the shear wave became over damped. Additionally at higher temperatures, the

signature of orientational relaxation was observed as a non-oscillatory decay

component in the signal (e.g. in 7.3.c). In 7.3.d-f we provide another illustration of

the influence of relaxation dynamics on the signal by examining data from a
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collection of wavevectors at a common temperature: data recorded with (d) 10.2

pm, (e) 21.3 pm, and (f) 44.2 pm periods at 220 K. Data with a fourth wavelength,

2.33 ptm, are shown in (a). As the wavevector and the frequency are reduced, the

acoustic oscillation period increases toward the characteristic relaxation timescale

Ts and the shear wave is more heavily damped.

Based on the analysis of section 7.3, time-domain signals were fit to the function

S(t) = A'exp(-ITt)sin(wot + )+ B'exp(-FR t) + C6(t) , (7.15)

which was convolved with the instrument response function, modeled here by a

Gaussian with duration 0.262 ns. The convolution was necessary to determine the

true t = 0 for the experiment. A' is the acoustic amplitude, l's is the shear damping

rate and os is the shear frequency, and # is a phase which accounts for the cosine

term in Eq. 7.14, which only becomes important when the damping is strong. In the

next term, B' is the optical Kerr effect signal amplitude and FR is the orientational

relaxation rate, and C in the last term is the strength of the hyperpolarizability spike.

As discussed above, to model the orientational behavior by a single decaying

exponential is a simplification [Hinze]; however, since the orientational signal

contributions are weak, we were able to obtain excellent fits using a single

exponential form.

The obtained values of the shear acoustic velocity vs = ws/q at a collection of

wavevectors are shown in Fig. 7.4.a and in Fig. 7.4.b the scaled damping rates are

shown. Both figures incorporate the data from [Silence9l,Silence92] as unfilled

symbols and data at other wavevectors, although consistent with those shown here,

were omitted for clarity. In 7.4.a we observe significant acoustic dispersion in the

shear sound speed for all temperatures below about 220 K. We also note that at

each temperature above 240 K, there is an acoustic wavelength above which we are

unable to observe the shear wave in our measurements due to the increased

damping and reduced signal strength. This wavelength is observed to decrease as

temperature increases.
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Fig. 7.4 (a) Shear sound speed and (b) scaled damping rate in TPP as a function of
temperature for six grating periods. Significant dispersion and damping is observed at
higher temperatures. The open squares for L = 1.52 [tm are from [Silence9l,Silence92].

From the fitted values for the shear frequency os and the damping rate ['s, we may

compute the real and imaginary parts of the shear modulus according to

]F2
G'(w) = po 2

q (7.16)
G'(wO)= PO2

Identical equations allow the determination of the complex longitudinal modulus

using measured longitudinal frequencies and damping rates. The density values for

TPP we obtained from data in [Ferrer] that fit to a quadratic function as

po(T) =1.507[g/cm3] - 1.3 x 10-3T[K] +6.8 x 10-''T2[K2]. (7.17)

Fig. 7.5 shows plots of the real (a) and imaginary (b) parts of the shear modulus, as

functions of temperature. These plots are for the same collection of wavevectors

plotted in Fig. 7.4. As in the plot of the velocity, we see the softening of the modulus

at higher temperatures. The imaginary part shows generally monotonic behavior as

a function of temperature as well.
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Fig. 7.5 Complex shear modulus as a function of temperature for six grating periods.
Significant dispersion in the real part (a) and damping in the imaginary part (b) are
observed at higher temperatures, following the speed and damping rate trends. The open
squares for L = 1.52 [Lm are again from [31,32].

In order to extract the shear relaxation time rs at each temperature, we plotted the

modulus as a function of frequency and then fit it to the Havriliak-Negami relaxation

function [Havriliak]

G*(co) = G. I - (1+ (ion,)" .(7.18)

Note in comparison to Eq. 6.5 that by definition, Go = 0 for all temperatures. Time-

temperature superposition has been observed to hold for a-relaxation in many

liquids including TPP [Olsen], so we fit all spectra simultaneously to obtain -rs(T)

with the spectral parameters a and f acting as temperature-independent global

variables. The value for the temperature-dependent infinite frequency shear

modulus G. = pv. 2 was taken from our low temperature data combined with

depolarized Brillouin scattering results performed by [Chappell]. A linear fit to the

combined data set gives

v. = 2620.4[m/s] - 7.93T[K] . (7.19)

To obtain the above expression, we needed to derive a temperature-dependent

refractive index using (VV) Brillouin scattering data from longitudinal acoustic

waves [Ferrer], which we could then use to recover the shear sound speed in

[Chappell].
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Fig. 7.6 Plots of the real (G') and imaginary (G") shear moduli of TPP at (a) 224 K, (b) 234 K,
and (c) 242 K. The shear relaxation spectrum shifts with temperature and we observe a
different portion in our experimental frequency window at each temperature.

Three representative plots of the complex shear modulus with corresponding fits

are shown in Fig. 7.6. As the temperature is increased, the shear relaxation spectrum

moves to higher frequencies in the probed region. The fits produced spectral

parameters a = 0.61 and P = 0.39. Although not shown here, the longitudinal data
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from [Silence91,Silence92] were refit using the same procedure for consistency and

comparison of T, and Ti, yielding spectral parameters a = 0.69 and P = 0.30, which

given the accuracy of the fits, are comparable to the shear spectral parameters.

The fitted values of Tsand Ti as a function of temperature along with respective VFT

fits are presented in Fig. 7.7. There is excellent agreement between the two

timescales up to the temperature T = 231 K, where the characteristic relaxation

times clearly separate. At the lower sample temperatures measured, we conclude

that the shear acoustic wave dynamics differ significantly from those obtained from

the earlier longitudinal ISS data [Silence9l,Silence92]. Based on a larger data set

taken with a broader range of acoustic wavevectors, this conclusion supersedes the

results of the previously published work.
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Fig. 7.7 Characteristic shear (ts) and longitudinal (tl) relaxation times plotted versus
temperature (left ordinate) with associated VFT fits (solid lines). Also shown is the
decoupling parameter log Ts - log Ti as a function of temperature (right ordinate). The
dashed line is to guide the eye and indicates the decoupling at 231 K.

We can now use our data to examine the MCT predicted a-coupling described briefly

in section 6.2.3. Using the determined values of Ts and Ti as a function of

temperature, the decoupling parameter defined as log Ts - log Ti is plotted alongside

the relaxation times in Fig. 7.7. The decoupling parameter is constant and essentially

zero until it begins to decrease with decreasing temperature, reflecting the shear
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relaxation becoming faster than the longitudinal relaxation. MCT predicts that

variables that couple to structural relaxation will have a decoupling parameter that

doesn't vary with temperature above Tc, thus this decoupling provides an estimate

of the MCT crossover temperature Tc = 231 K.

We may attempt to further understand our results in the mode-coupling framework

of [Ahluwalia]. Briefly, when MCT calculations are performed using the static

structure factor of a collection of hard spheres in the Percus-Yevick approximation,

the critical length scale Lo = 21r/qo above which propagation of shear waves becomes

over damped obeys a power law approaching the critical temperature according to

A
L = A ,(7.20)

(Ac -A)'

where A = 1, 6= 1.2, A is the packing fraction, and Ac is the Ideal MCT critical

packing fraction beyond which shear wave propagation is allowed for all length

scales. Using Eq. 7.13, we attempt to deduce a limiting length scale for shear wave

propagation as a function of temperature by considering at which wavevector shear

wave propagation becomes over damped. For this analysis, we chose the

temperature T to be the independent parameter, yielding a similar power law

Lo = A(T - T)-, where T'represents a critical temperature. Here we consider two

significant temperatures for the liquid, i.e., the glass transition temperature

Tg = 202 K [Mizukami] and the crossover temperature Tc as determined from the

MCT decoupling analysis above.

Figure 7.8 shows a plot of the derived upper bound, as deduced from Eq. 7.13 as a

function of the variable 0 = (T - T'). The results of [Ahluwalia] are also shown as a

function of packing fraction 0 = (Ac - A) for comparison. A power law fit is shown to

the four points approaching the relevant temperatures (open symbols). Picking T'=

Tc as the relevant temperature yields a fitted value of 6= 1.2, which is in excellent

agreement with the theoretical result. A similar fit to the data using the literature

value of T' = Tg produces a significantly higher value of 6 = 13.4. We remark that the

wavelength scales Lo reached as this temperature is approached from above are

several orders of magnitude larger than those corresponding to any diverging
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structural correlation length scale.
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Fig. 7.8 Determined value of the critical length scale for shear wave propagation as a
function of temperature 0 = T - T using the decoupling temperature T = Tc (blue circles)
and the glass transition temperature T = T. (green diamonds). For comparison, the
calculations of [Ahluwalia] are also shown as a function of packing fraction 19 = Ac - A (red
squares). The exponents come from fits to the open symbols approaching e = 0.

7.6 Summary
We have used depolarized impulsive stimulated Brillouin scattering to measure

shear acoustic waves in supercooled TPP from 220 K to 250 K. Combined with

previous results [Silence9l,Silence92], we are able to examine a frequency regime

from ~ 10 MHz to almost 1 GHz. We observed decoupling of the longitudinal and

shear degrees of freedom, yielding an estimate of the mode-coupling Tc = 231 K.

Using the decoupling temperature, we verified a power law for the diverging

lengthscale of shear wave propagation as 8 = 1.2. A similar test using the literature

value of Tg was not in agreement with the theoretical model, as should be expected

since Tg is not a mode-coupling theory parameter. One clear disadvantage to the

Ideal MCT, is the prediction of a divergence in the relaxation time as given in Eq.

6.17. The analysis given in this chapter has the advantage of determining the MCT

Tc when no divergence exists in reality (see Fig. 7.7).

Further work in the study of shear relaxation in supercooled liquids will center on
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expanding the dynamic range of the measurements. We note that recent

measurements comparing the relaxation spectrum of different degrees of freedom

of the glass formers DC704 and 5P4E, including shear and longitudinal moduli, at

lower temperatures and frequencies indicate a constant decoupling parameter with

temperature (log Ts - log Ti = constant) [Hecksher], just as we see at high

temperature in TPP. If this behavior is universal in many glass formers, including

TPP, then we would expect a step in decoupling parameter from high to low

temperatures, indicating some change in dynamics at the MCT Tc. For a complete

analysis of this idea, broadband spectra over many orders of magnitude in

frequency would need to be collected and compared. In the next chapter, we outline

some major steps in this direction where we present the most comprehensive to

date, broadband longitudinal acoustic spectrum.
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Chapter 8

Broadband longitudinal acoustic

spectroscopy of DC704

Due to the many order of magnitude change in the a-relaxation time with

temperature, an enormous experimental dynamic range is required for a complete

characterization of supercooled liquid dynamics. For many years it has been a goal

in the Nelson group to produce broadband mechanical spectra of a glass forming

liquid that rivals the frequency content possible with dielectric spectroscopy. ISS

experiments performed to examine longitudinal wave dynamics at MHz to low GHz

frequencies have been carried out in the group since the earliest days

[Nelson,Yan87,Silence91,Halalay92, Yang95b,Torchinsky]. But as discussed in

Chapter 2, ISS experiments are fundamentally limited by the smallest and largest

acoustic wavelengths that can efficiently be generated. Fortunately we have

collaborators in Jeppe Dyre's group at Roskilde Universitet in Denmark, including

Tina Hecksher who worked in our group for a time, who were able to directly

measure the complex shear and bulk moduli at low frequencies (mHz to kHz) using

piezo-transducer methods [Christensen,Hecksher]. More recent progress in the

Nelson group led by Christoph Klieber has also advanced our capabilities in

generating and detecting higher frequency GHz acoustic waves in liquids utilizing

picosecond ultrasonics. Recently we have been able to combine temperature-

dependent data collected using the three techniques for the glass forming liquid

liquid tetramethyl tetraphenyl trisiloxane (DC704), a diffusion pump oil originally

produced by the Dow Corning company. The cohesive force between DC704

molecules in the liquid is predominately due to weak van der Waals interactions.

The molecule is depicted in Fig. 8.1 Tina Hecksher used the piezo-transducer

technique to measure the shear (G) and bulk (K) moduli, which can be combined to

give the longitudinal modulus (M = K + 4/3G). Darius Torchinsky collected much of
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the longitudinal ISS data, and I added some additional points at higher wavevectors.

Christoph Klieber collected the vast majority of picosecond ultrasonic data. In-

depth details on each of these techniques and measurements can be found in their

respective theses [Hecksher,TorchinskyKlieber] and will not be reproduced here.

Si Si Si

oo o

Fig. 8.1 The chemical structure of tetramethyl tetraphenyl trisiloxane. Van der Waals
interactions provide the attractive force in the liquid.

Together, these techniques cover acoustic frequencies from mHz to hundreds of

GHz, but there is a large gap in frequency between the low-frequency measurements

(up to -10 kHz) and the ISS measurements (down to -30 MHz). To help close this

gap we developed the nanosecond acoustic interferometry (NAI) technique

introduced in Chapter 2. In this chapter, we will give a brief overview of NAI and

discuss the analysis in regards to viscoelastic materials, namely DC704. We will

then present the combined broadband spectra and several tests of MCT. It is

important to note that even though the analysis shown here has been performed

carefully, it is still a work in progress as more careful analysis from all the data sets

may provide modifications to the broadband spectra.

8.1 Nanosecond acoustic interferometry of DC704
As outlined in Chapter 2, in an NAI experiment a single, round pump laser spot is

focused through a dichroic mirror into the liquid sample cell (-250 tm le beam

radius) containing DC704. The precise laser spot size is not important to the
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analysis, but it does determine the wavevector and therefore frequency content of

the wavepacket (see Eq. 2.16) radiating outward from the pump beam. As depicted

in Fig. 2.10, the wavepacket with -1-10 MHz frequency components will pass first

through one probe arm of the grating interferometer and subsequently the second.

Acoustic wave-induced changes in refractive index vary the phase of each

interferometer probe arm in turn, translating to time-dependent changes in

intensity at the optical detector. In Fig. 8.2 we show NAI traces collected in DC704
at a number of different temperatures.

1.0
- 215 K

0.8 , - 225 K
-235 K

0.6 . - 244 K
-- 256 K

" 0.4 -276 K
Cd - 300 K

0.2

C 0.0

-0.2

-0.4

-0.6
0 1 2 3 4

time (ps)

Fig. 8.2 NAI traces recorded in DC704 at a number of different temperatures showing the
effects of structural relaxation. The probe beams were spaced about 5 mm apart.

The effects of the coupling of structural relaxation to the acoustic waves are

apparent. Firstly, we observe that as temperature is decreased, the wavepacket

arrives at the second probe point more quickly, corresponding to the speed of sound

increasing at lower temperatures. Secondly, we see that the amplitude of the

wavepacket has strong temperature dependence. Acoustic damping is relatively

low at high temperatures in the liquid state, but as temperature is reduced and the

a-relaxation peak shifts to lower frequencies, eventually it overlaps with the

frequency content of the wavepacket and strong damping is evident. As

temperature is decreased further, the a-relaxation shifts to lower frequencies and
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we see the damping is reduced in the low-temperature glass state. We also note that

even in the absence of acoustic damping, the amplitude of the pulse at the second

probe point will decrease solely due the divergent nature of the cylindrical

wavepacket. In principle it would be possible to conduct such NAI experiments with

a line-focused pump pulse, but in practice the acoustic damping is weak enough for

these low-MHz frequencies that relatively long propagation distances are necessary

- so long that divergence effects would be significant even for a line-focused pump

beam (with adequate laser fluence to generate a response). To avoid such

complications, we used the round spot excitation to generate cylindrical acoustic

waves with a well-defined r -1/2 reduction in amplitude.

Using Fourier analysis, we can determine the velocity and attenuation for the

excited frequency components, and therefore determine the complex acoustic

modulus and compliance. The Fourier shift theorem states that for a function

shifted in the time domain, the Fourier transform acquires a phase factor as

f(t -a) => e -ia'mF(co) , (8.1)
Fourier
Transform

wheref(t) and F(w) are Fourier transform pairs. Using this property and the

distance d between interferometer probe arms, we can recover the speed of sound

for the excited frequency components. In Eq. 8.1, the acquired phase (<p) of the

Fourier transform is aw, and thus by taking the derivative of the phase (0,9p) with

respect to frequency, we recover the frequency-dependent shift in time a(w). Using

the Fourier transforms of the wavepacket individually at the first probe point and

second probe point, we can determine the frequency-dependent sound speed v(w)

= d d

o9[/p 9(ow) -- do (w) = At(w)

In practice, the amplitude of the phase recovered from a numerical Fourier

transform may depend on the number of time points in the time-domain trace, and

so we needed to multiply Eq. 8.2 by a constant calibration factor. All recorded traces

contained an identical number of time points, and therefore a single calibration

factor for all analysis was sufficient. The calibration factor was picked to recover
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the solid sound speed determined at low temperatures from piezo and ISS data; this

calibration factor also recovered the liquid sound speed at high temperatures (in

comparison to ISS data), and so we confidently use it for all temperatures. All points

presented here were also collected with the same probe distance d, which can be

determined using the grating period and the lens focal distance, according to

d = 2f tan sin-- ), (8.3)
.2g

wherefis the lens focal length, Ap is the probe wavelength, and g is the grating

period. With 532 nm probe wavelength, 85 mm lens focal length, and 8.5 [tm

grating period, this translated to -5 mm between probe beams which agreed with a

physical measurement of the distance.

The frequency-dependent acoustic attenuation y(w) can be determined by the

amplitude of the Fourier transform of the acoustic pulse at each probe point

according to the Beer-Lambert law which we give as

y(o)[m-] = ln(A|F2(o)/Fi (co)) . (8.4)

We note that attenuation here is given in units of inverse distance, whereas the

damping rate in the previous chapter is given in inverse time units; conversion

between the two can be performed using the speed of sound. Correction due to the

acoustic wave divergence is accomplished by simply adding the constant factor A

that appears in Eq. 8.3. A depends on d and the distance from the pump spot to the

first probe spot (dp) and is given by

d, + d
A = (8.5)

For the density of DC704 we use an expression that includes the thermal expansion

coefficient and density at a reference temperature [Hecksher] given by

po(T) = 1.07/(1+0.00072 (T[K] - 298)). (8.6)

Using the density and determined frequency-dependent velocities and attenuation,

we can construct the complex longitudinal modulus, with real and imaginary parts
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given by [Herzfeld]

Mf(j) PO2 1-(Y' vN/(0)2
M()= pvo, 1-

() + (Y( v( / J)2 ) 2(8 .7 )
M'(w) = 2pOv 2 yv,/

(1 + (yOv, /w)2)

In the following section, we combine the NAI-determined modulus values with the

piezo, ISS, and picosecond ultrasonics data for broadband analysis and tests of MCT.

8.2 Broadband spectra of DC704
As briefly discussed in Chapter 6, even though the relationship between the complex

acoustic compliance J*(w) and the complex modulus M*(w) is simply

J*() = J'(w) - iJ'(w) = , (8.8)
M* (w0)

it is in fact the compliance, not the modulus, that is directly related to the density

correlation function [Wang] which MCT predictions are based on. Certain MCT

predictions, like the behavior of the relaxation time close to Tc or the a-coupling

discussed in the previous chapter, may be analyzed in terms of modulus or

compliance because the information content is essentially the same (the relaxation

time recovered from the modulus is merely shifted by about a factor of 2 from the

compliance value). But the predicted scaling laws, particularly those relating fast

and slow relaxation given by power law behavior in the susceptibility spectrum (see

Eqs. 6.20-6.25), should only be tested using the complex compliance. In Fig. 8.3 we

present, for selected temperatures to avoid an overly crowded figure, the

broadband longitudinal compliance for DC704 as a function of real frequency

(w/2xr) with the real part in the top panel and the imaginary part in the bottom

panel. Features similar to what was seen in dielectric spectra (see Fig. 6.2) are

observed, most notably the c-relaxation peak in the imaginary part and

corresponding step in the real part.
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Labels, as well as small gaps between groups of points, mark data collected via the

various techniques. Even with the addition of the NAI data, there still exists a

moderately sized gap between 10 kHz and 1 MHz. Work is currently underway to

improve the data analysis of the piezo-transducer measurements to extend the

range to 100 kHz, and to additionally add data points using transducer resonances

between 100 kHz and 1 MHz. Even with the current gap in frequency content, the a-

relaxation features are very broad and smooth; we don't anticipate any out-of-the-

ordinary-behavior happening at the missing frequencies. Interestingly, the dielectric

data showed another corresponding step to go along with the high frequency peak

in the imaginary part, but here we observe not even the beginnings of a

corresponding change in the real part of the acoustic compliance. To extract a

temperature-dependent relaxation time we have fit the spectra to the HN function,

but we have added a power law Wa to the imaginary part to account for the high

frequency loss.

In Fig. 8.4 we present a number of plots showing the results from the fits. The main

panel (8.4.a) shows the temperature dependence of the relaxation time, changing

over 10 orders of magnitude from low temperature to high temperature. The higher

sensitivity of relaxation time to temperature at low temperatures characteristic of

all "fragile" liquids is apparent. In (b) we show how the fit values of the infinite and

zero frequency speeds of sound compare with those measured at the highest and

lowest frequencies [Klieber]. We see significant departure at higher temperatures

that could indicate the presence of dispersion due to a high frequency relaxation

process even at room temperature, or it likely illustrates a shortcoming of the

phenomenological Havriliak-Negami fitting function. In (c) we plot the fit HN

spectral parameters a and #3 as a function of temperature. Neither displays much

sensitivity to temperature with relatively small changes as temperature increases.

This lack of temperature dependence of the spectral parameters is what accounts

for the small spread in data in the TTS plot (d). This plot, obtained by shifting the

frequency axis by the inverse relaxation time and dividing the real and imaginary

parts by the infinite frequency modulus, we observe that time-temperature
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superposition is generally obeyed.
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Fig. 8.4 (a) Relaxation time extracted from HN fits. The dashed and dotted lines show fits to
Eq. 8.10 with a Tc value of 256 K respectively. (b) Values of voo and vo recovered from the
fits. The dashed lines show a linear fit from values measured at the highest and lowest
frequencies [Klieber]. (c) Temperature dependence of HN spectral parameters a and p. (d)
TTS compliance plot obtained by frequency shifting each temperature trace by the inverse
relaxation time, and dividing byJo.

8.3 Tests of MCT predictions
In the remainder of the chapter we will focus on testing a number of the Ideal MCT

predictions introduced in Chapter 6. A few of the equations will be repeated here in

identical or similar form to aid the discussion. We will begin by examining the
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functional form given in Eq. 6.25 that is predicted to describe the behavior of the

minimum between high and low frequency peaks in the imaginary part of the

susceptibility (compliance). Essentially this is a mathematical statement that a

version of TTS should apply to the susceptibility minimum separate from the a-

relaxation TTS. We fit each trace using Eq. 6.25 to determine the minimum J"min and

the position of the minimum wmin, as well as critical exponents a and b. Using the

values recovered from the fits, we plot in Fig. 8.5.a the values of a and b as a function

of temperature. Close to Tc,J"min and omin are predicted to follow the power laws

Jc |T - T| and wm*|a o |T - Tc|. (8.9)

In order to determine the MCT Tc, in Fig. 8.5.b we plot fJmin2 and Wmin 2a. The

resulting plots should be linear and the intercepts with the temperature axis give Tc.

We see that the behavior is not linear over all temperatures, but we extrapolate

from the linear region at higher temperatures (assuming this is the region just

above Tc) to recover Tc = 257 K using wmi and a slightly lower value of Tc = 255 K

usingf'min for an average value of 256 K, which is higher than Tg = 210 K [Hecksher].

The agreement in recovered Tc from both of these power law fits is exceptional.

(a)0-7 -. '. -. -. -. - . -. - . - .- . (b).5+ a
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Fig. 8.5 (a) Critical exponents a and b from fits of the imaginary compliance minimum to Eq.
6.25. (b) Plots ofJ"min2 and Wmin2a in order to recover Tc from the intercept of a linear fit with
the temperature axis. We determine Tc = 257 K using wmin and a slightly lower value of Tc =
255 K using J"min.

MCT predicts that close to Tc the relaxation time will obey a power law

T(T) o| T - Tc|I-' , (8.10)

146



where y= 1/2a + 1/2b. With the fit high temperature a and b values and

determined Tc values, we can see if this form offers good agreement with the data

over a limited range at high temperatures. Above, in Fig. 8.4.a, the dotted line is

calculated using y= 1.8 with Tc = 256 K.

Using the fitted values for awmin andJ"min we can construct a TTS plot for the

compliance minimum to visually see how well TTS is obeyed. We take j" and shift

the frequency by whmin and divide byJ"min; the results are shown in Fig. 8.6 where the

solid lines are calculated from the values of the fits to Eq. 6.25. Here we clearly see

that the data confirm the slightly changing values of the power law exponents with

temperature.
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Fig. 8.6. TTS plot of the compliance minimum showing good overlap for all temperatures.
The solid lines are calculated from fits to Eq. 6.25.

Finally, we will conclude with an investigation of perhaps the most prominent of

MCT predictions: the connection between the fast and slow relaxation given by
2 (1- a) F2(1+ b) (8.11)
q(1-2a) - (1+2a)

Using the fit a and b exponent values shown in Fig. 8.5.a, we calculate Xi, where i

indicates a or b. The results are shown in Fig. 8.7 and even though they are

somewhat noisy, we see that there is relatively good agreement at all temperatures
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above 240 K (the difference is -0.1 or less from 240 K to 300 K). The predicted

connection between fast and slow relaxation appears to be present in DC704 at

temperatures close to and above the determined value of Tc, which connection

previously had remain untested by probes of the mechanical degrees of freedom in

any supercooled liquid.
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Fig. 8.7 The MCT parameter X calculated according to Eq. 8.11 using a and b exponents from
the fits to the compliance minimum. MCT predicts that X calculated with a or b should be
equivalent in close to Tc.

8.4 Conclusions
In this chapter we have presented the first ultra-broadband mechanical spectra of a

glass forming liquid. We utilized NAI to measure the complex acoustic compliance

in the 1-10 MHz frequency range to fill in an important gap in the broadband

spectra, and we analyzed the behavior of the a-relaxation by fitting to the

phenomenological HN function. We saw that TTS of the primary a-relaxation holds,

as well as TTS of the compliance minimum as predicted by MCT. Fitting the

compliance minimum as a function of temperature produced results confirming the

validity of the predicted MCT relationships, most notably the connection between

the fast and slow relaxation critical exponents.
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Chapter 9

High frequency speed of sound in RDX

In this final chapter, we change themes to show more of the versatility ISS offers.

We report photoacoustic measurements of the quasi-longitudinal speed of sound

along different crystallographic directions in the energetic molecular crystal

cyclotrimethylene trinitramine (RDX). Measurements in (100)-oriented RDX were

made using two complementary techniques, ISS and picosecond acoustic

interferometry (PAI) [Lin], to probe acoustic frequencies in the 0.5 to 15 GHz range

in order to resolve large discrepancies in reported sound speed values measured

using different techniques and frequency ranges. We will present a short

comparison of the ISS and PAI measurements, and to facilitate the discussion, a few

equations given in earlier chapters will be repeated.

9.1 Background
The mechanisms through which energetic materials undergo initiation of detonation

have been the subject of much experimental and theoretical effort [Bdzil, Walley,

Zeman]. Mechanical shock induces detonation in many energetic materials, posing

challenging questions as to how high-energy, microscopic bond breaking can be

triggered by low-energy, long-wavelength acoustic modes, associated more with

macroscopic material properties rather than microscopic chemical dynamics.

Coupling between acoustic modes and other lattice and molecular degrees of

freedom clearly plays a crucial role. This can be revealed in part through frequency-

dependent dispersion in the elastic properties, which arises close to acoustic

frequencies that coincide with energy relaxation rates of coupled higher-frequency

modes. Many energetic materials are molecular crystals with low crystal symmetry

and anisotropic mechanical properties. Determination of their frequency-dependent

elastic constants is important for modeling of their dynamical responses and may
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indicate the extent of interactions between acoustic modes and other degrees of

freedom.

A number of methods have been employed to measure the elastic constants in

anisotropic crystals in different acoustic frequency ranges from kHz to GHz

[Leisure,Brown,Vacher,Every,Maznev9 9]. Often there is no practical difference

between the resulting elastic constants regardless of the experimental frequency

range or measurement technique, but recent studies of energetic materials by

Brillouin light scattering (BLS) at -10-20 GHz acoustic frequencies

[Haycraft,StevenslO] have yielded intriguing discrepancies with ultrasonic

measurements performed at kHz frequencies [Hausstihl,Schwarz]. In particular, the

longitudinal elastic modulus Cu of RDX measured by BLS [Haycraft] was reported to

be 40% higher, whereas C42 was 6 times lower compared to the ultrasonic data

[Haussifhl,Schwarz].

Some of the reported discrepancies point to a possible relaxation mechanism that

would result in dispersion and thus frequency-dependent elastic constants. When

relaxation that couples to acoustic modes, for example vibrational relaxation in

molecular gases [Herzfeld] and liquids [Rubio] or structural relaxation in

supercooled liquids (see previous chapters), is on a time scale much faster than the

acoustic period, the acoustic wave will propagate as if there is no coupling of modes.

But when the relaxation time becomes coincident with or slower than the acoustic

period, coupling will result in acoustic dispersion. The speed of sound at high

frequencies (co>>1) will be different than the speed of sound at low frequencies

(wT<<1). For the simplest case of a single exponential (Debye) relaxation, the

dispersive region will span more than one decade in frequency.

The discrepancies in RDX elastic constants led Sun et al. [Sun] to address the issue of

potential relaxation-induced acoustic dispersion by determining the elastic

constants at an intermediate frequency of -450 MHz using ISS [Nelson82]. The ISS-

determined elastic constant values were essentially identical to the ultrasound

results and significantly different from the BLS results. However, the acoustic
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frequency of the ISS measurements was too low to conclusively rule out the

possibility of relaxation coupling to GHz frequency acoustic waves in RDX. The

confirmation of such dispersion in energetic materials could lead to deeper

understanding of energy transfer pathways involved in the initiation of detonation,

thus emphasizing the need for a number of experimental methods that together

continuously cover a broad range of frequencies from the kHz to THz ranges,

essentially across the entire Brillouin zone. In this work, we take steps in this

direction by utilizing ISS and PAI to measure the quasi-longitudinal speed of sound

in single crystal RDX at acoustic frequencies spanning the frequency gap between

previous ISS [Sun] and BLS [Haycraft] measurements.

In BLS, ISS, and PAI, the detection mechanism results from inelastic light scattering

off of acoustic modes. In contrast to BLS that probes incoherent thermally

populated acoustic phonons, both ISS and PAI rely on the generation of coherent

acoustic waves. In ISS, coherent acoustic phonons of a well-defined wavevector with

typical frequency range from MHz to low GHz are generated by crossing laser beams

inside a sample. In PAI, a laser beam is focused onto a thin metal film coated on the

sample surface that acts as an acoustic transducer, launching an acoustic wave-

packet with frequency components potentially up to hundreds of GHz into the

sample. The specific details of each of our current measurements are described

below.

9.2 Experimental methods

9.2.a Sample preparation
RDX crystals have an orthorhombic structure (Pbca space group, nine independent

elastic constants), with lattice parameters a = 1.3182 nm, b = 1.1574 nm, and c =

1.0709 nm, and a density of 1.806 g/cm 3 [Choi]. Single crystal samples were

prepared at the Los Alamos National Laboratory Energetic Materials Crystal

Laboratory, as previously described in detail [Hooks]. Briefly, the RDX crystals were

grown by evaporation using an acetone solution reflux technique. The crystals were

oriented to 1.85 degrees from (100) normal using X-ray diffraction and were cut
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into thin (-1 mm) slabs with a diamond wire saw. The slabs were polished to an

optical finish using aluminum oxide slurry (1 [m final grit size) in aqueous

detergent. For PAI measurements, a thin (-100 nm) gold film was deposited by

thermal evaporation on the surface of the RDX crystal.

(a) -ignl (b)
+ ref.

signal + ref.
pum ps -- . .......... . ..

probe

a axis a axis
Fig 9.1 (a) In ISS, optical pump beams with picosecond pulses were crossed to create a
spatially periodic, temporally impulsive driving force that launches acoustic waves in the
RDX bc-plane. CW probe light diffracted from the acoustic waves was combined with a
reference beam and directed to a detector. (b) In PAI, a short pump pulse was focused onto
a thin gold transducer. Heating and thermal expansion launched a broadband acoustic
strain pulse into the RDX along the a axis. A variably delayed femtosecond probe pulse was
partially reflected off the acoustic strain pulse and directed to a detector along with light
reflected from the gold film that served as a reference beam.

9.2.b ISS technique
Impulsive stimulated light scattering has been described in more detail previously

[Nelson,Sun]. In the present ISS experiments, a short-pulsed excitation laser beam

(Ae = 515 nm, 60 ps pulse width), derived through second harmonic generation of

the amplified Yb:KGW laser system, was split with a diffractive optic into two

beams, which passed through a two-lens telescope and were focused to a 300 [m

le beam radius and crossed with external angle 0 in the sample as depicted in Fig.

9.1.a. Interference between the two beams created a spatially periodic intensity and

absorption pattern with the interference fringe spacing

L = 2x/q = Ae/(2sin(Oe/2)). (9.1)

Laser-induced electrostriction (i.e. impulsive stimulated Brillouin scattering [Yan])

as well as periodic absorption, heating, and rapid thermal expansion (impulsive

stimulated thermal scattering [Rogers]) generated coherent, counter-propagating
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acoustic waves with the wavelength L and wavevector magnitude q. The thermal

expansion-induced driving force depends on the absorption at the pump

wavelength, while the electrostrictive driving force depends on the relevant

photoelastic constants and scales with wavevector [Nelson]. For the highest

wavevectors in our current measurements, the electrostrictive force dominates,

while at lower wavevectors it accounts for less than half of acoustic wave

generation. Strain-induced changes in the refractive index due to the acoustic

waves gave rise to time-dependent diffraction (i.e. coherent scattering) of an

incident continuous wave probe beam (A, = 532 nm, 150 tm beam radius). The

probe beam was split into two parts (probe and reference) which were recombined

at the sample (focused to 150 tm beam radius) by the same diffractive optic and

two-lens telescope used for the excitation beams, ensuring that the probe beam was

incident on the spatially periodic acoustic wave "grating" at the Bragg angle for

diffraction and that the diffracted signal was superposed with the reference beam

for heterodyne detection [Maznevl998]. Thus Eq. 9.1 holds for excitation

parameters as well as the probe and reference wavelength Ap and angle of

intersection 6p (i.e. scattering angle). The signal and references beams were

directed to a fast detector and the time-dependent acoustic oscillations were

recorded on an oscilloscope.

9.2.c PAI technique
The sound velocity at -15 GHz was obtained using picosecond acoustic

interferometry (PAI) [Lin] as depicted in Fig. 9.1.b. A -100-nm gold film was

deposited onto one face of a (100) RDX crystal. Laser light from an amplified

Ti:Sapphire system (Coherent RegA, A = 790 nm, 300 fs pulse duration, 250 kHz

repetition rate) was split into excitation and variably delayed probe beams. The

excitation beam was attenuated to 6 mW to reduce sample heating and focused to a

45 tm beam radius on the free surface of the gold film, which due to rapid heating

and thermal expansion acted as a transducer launching an acoustic wavepacket with

broadband frequency components that propagated into the RDX along the a-axis.
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The probe beam, attenuated to 3 mW, entered the crystal at normal incidence and

was focused to the back surface of the gold film to a 25 [tm beam radius. The probe

reflection from the gold film (reference beam) interfered with coherent

backscattering signal light from the acoustic wave as it propagated through the

sample, creating a time-dependent oscillation in the intensity of the reflected beam

at the detected acoustic frequency. The signal and reference light were directed to a

photodectector and the signal was collected with a lock-in amplifier at the frequency

of an acousto-optic chopper in the excitation beam. The probe wavelength and

scattering angle selected a well defined acoustic wavelength given by

L = 2x7r/q = Ap/(2nsin(6p/2)), (9.2)

where A, is the probe wavelength, 6, is the internal scattering angle, and n is the

refractive index. We note that Eq. 9.2, which determines the acoustic wavelength

probed in PAI, is similar to Eq. 9.1, which determines the acoustic wavelength in ISS.

The only difference is that in PAI the probe beam enters and leaves the crystal from

the same face so the refractive index must be accounted for in relating the acoustic

wavelength in the crystal to the optical wavelength in air. In ISS this is not

necessary because refraction of the incident beams as they enter the crystal

compensates for the shorter light wavelengths in the crystal, yielding the same

interference fringe-spacing in the crystal as would be produced in the air. The

acoustic wavelength probed in PAI through coherent backscattering could be

generated through ISS measurements with counter-propagating excitation beams

entering the crystal from opposite faces, but it is more convenient to conduct ISS

measurements with all the beams entering the same crystal face (yielding a

minimum acoustic wavelength of about 1 Vm in practice). We thus conduct PAI

measurements to probe the smallest PAI wavelength (highest frequency) of L =

Ap/2n. PAI measurements can be conducted with smaller probe scattering angles to

select longer wavelengths and lower frequency components of the photo-induced

broadband acoustic wavepacket, but experimental difficulties arise at small internal

angles. Due to these details, PAI and ISS are complementary techniques for
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accessing acoustic wavelength ranges of 250-350 nm and 1-100 tm respectively

with our current pump and probe wavelengths.
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Fig. 9.2 (a) Example of ISS signal. At t=0 pump beams crossed in the sample generating 1.8
[rm wavelength acoustic waves. The inset shows the Fourier transform of the data
displaying a sharp peak 1.85 GHz. (b) Time derivative of PAI signal. The signal derivative
minimizes the large thermoreflectance background so acoustic oscillations are apparent.
The inset shows a peak in the Fourier domain at 14.9 GHz.

9.3 Results and discussion
Fig. 9.2.a shows ISS data recorded with an acoustic wavelength of 1.8 um. At t = 0,

the pump pulses were crossed in the sample, generating a spike due to

instantaneous non-resonant electronic responses, followed by damped acoustic

oscillations. The inset shows the Fourier transform of the data giving a very sharp

peak just below 2 GHz. For quantitative analysis, the data were fit in the time

domain to a damped sinusoid to recover the acoustic frequency v, and the quasi-

longitudinal speed of sound V = vL was determined using the experimentally set

acoustic wavelength L given in Eq. 9.1. In practice the acoustic wavelength was

ascertained from the binary phase mask period and the two-lens telescope imaging.

The previous ISS measurements were all conducted with an imposed wavelength of

7.2 [m corresponding roughly (depending on the speed of sound along a particular

direction in the anisotropic crystal) to a longitudinal frequency of 450 MHz. To

achieve higher acoustic frequencies, we collected data with ten acoustic

wavelengths ranging from 6.6 um down to 1.0 um corresponding to acoustic

frequencies from 490 MHz to 3.4 GHz. Data were collected with a number of
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different wavectors corresponding to acoustic waves traveling along different

directions in the bc plane.

Fig. 9.2.b shows the time-derivative of the PAI signal. Laser heating-induced

changes in reflectivity of the transducer lead to a large thermal background that can

be minimized by taking the derivative of the signal. The inset shows a strong peak

at 14.9 GHz in the Fourier transform. The speed of sound V was determined by V=

vL using the acoustic wavelength given in Eq. 9.2 with O,=180 degrees and n (790

nm) = 1.56. Linear extrapolation of refractive index data in the visible region (450-

670 nm) [McCrone] was used to estimate n at the probe wavelength. The lack of

absorption bands in the visible [Whitley] and the small index variation observed in

this wavelength range validate this procedure.
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Fig. 9.3 (a) ISS and (b) PAI measured quasi-longitudinal speed of sound along different
crystal axes of RDX together with previously published ISS (small squares) [Sun],
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ultrasonics (dashed line), and BLS data (solid line) [Haycraft]. Degrees are counted from
the b-axis in (a) and from the a-axis in (b).

In Fig. 9.3 we present digitized data from [Sun] and [Haycraft] alongside our new ISS

and PAI results. We see that for all acoustic wavelengths and frequencies there is

good agreement with previously measured speeds of sound from ISS and ultrasonic

[Schwarz] techniques. For example, using ISS we measure an acoustic frequency of

2.91 GHz at acoustic wavelength 1.15 Rm along the b-axis (180 degrees in Fig. 9.3.a),

corresponding to a speed of sound of 3350 m/s, which is very close to 3340 m/s

from [Sun] and [Schwarz]. PAI along the a-axis (180 degrees in Fig. 9.3.b)

determines the speed of sound to be 3790 m/s at 14.9 GHz, also in good agreement

with 3750 m/s from [Sun] and 3700 m/s from [Schwarz]. Our data do not suffice

for the determination of the full set of elastic constants of RDX at any given

frequency; however, close agreement with previous ISS and ultrasonic data at all

frequencies and directions measured suggests that other crystal orientations and

directions should also yield similar results and elastic constant values. In contrast,

we see significant disagreement between our ISS and PAI data and the reported BLS

results. For example, [Haycraft] reports much higher values of the speed of sound:

3750 m/s for the b-axis and 4500 m/s for the a-axis.

Altogether, we observe good agreement between previously measured anistropic

speeds of sound [Hausstihl,Schwarz,Sun] from acoustic frequencies of 100 kHz up to

450 MHz and our new ISS and PAI results from 490 MHz up to 14.9 GHz. The lack of

acoustic dispersion is strong evidence against any kind of relaxation process

coupling significantly to acoustic waves in this frequency range. We are not certain

of the reason for the disagreement between these results and the reported BLS

results [Haycraft].

9.4 Conclusions
Discrepancies in the reported speeds of sound in RDX from BLS and other

techniques have prompted the discussion of possible relaxation processes coupling
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to acoustic waves at high frequencies. We report new measurements made using ISS

and PAI spanning acoustic frequencies from 490 MHz up to 14.9 GHz. These results

are in agreement with previous ultrasonics and ISS measurements

[Hauss~ihl,Schwarz,Sun] at lower frequencies. The lack of acoustic dispersion is

persuasive evidence that there is no relaxation process that couples significantly to

linear acoustic waves in RDX at acoustic frequencies from 100 kHz up to 15 GHz.

Although we have extended measurements of the speed of sound in RDX to cover

acoustic frequencies over six orders of magnitude, these results do not rule out the

possibility of an internal molecular relaxation process coupling to acoustic waves at

higher frequencies. Nor do they shed light on potential coupling of large amplitude

non-linear acoustic and shock waves to molecular modes that would be involved in

detonation. Extending acoustic measurements of energetic materials to higher

frequencies (up to THz) as well into the non-linear acoustic and shock domains

presents exciting challenges for future research.

160



161



162



Bibliography
[Adams] J. H. Adams, G. Gibbs. On the temperature dependence of cooperative
relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

[Ahluwalia] R. Ahluwalia, S. P. Das. Phys. Rev. E 57, 5771 (1998).

[Angell85] C. A. Angell. Relaxation in Complex Systems, eds. K. L. Ngai, G. B. Wright
(US Dept. Commerce, Springfield, 1985).

[Angell95] C. A. Angell. Formation of glasses from liquids and biopolymers. Science
267, 1924 (1995).

[AngellOO] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, S. W. Martin.
Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113
(2000).

[Ashcroft] N. W. Ashcroft, N. D. Mermin. Solid State Physics. (Saunders College
Publishing, Orlando, 1976).

[Azzimani] A. Azzimani, C. Dreyfus, R. M. Pick, P. Bartolini, A. Taschin, R. Torre.
Analysis of a heterodyne-detected transient-grating experiment on a molecular
supercooled liquid. II Application to m-toluidine. Phys. Rev. E 76, 011510 (2007).

[Balucani] U. Balucani, M. Zoppi. Dynamics of the Liquid State. (Oxford University
Press, 1995).

[Bdzil] J. B. Bdzil, D. S. Stewart. The dynamics of detonation in explosive systems.
Annu. Rev. Fluid Mech. 39, 263 (2007).

[Bengtzelius] U. Bengtzelius, W. Gotze, A. Sjdlander. Dynamics of supercooled liquids
of the glass transition.J. Phys. C: Sol. State Phys. 17, 5915 (1984).

[Berne] B. J. Berne, R. Pecora. Dynamic Light Scattering with Applications to
Chemistry, Biology, and Physics. (Dover Publications, Mineola, NY, 2000).

[Blakemore] J.S. Blakemore, Solid State Physics (Cambridge Univercity Press,
Cambridge, 1985).

[Blanshard] J. M. V. Blanshard, P. Lilford, eds. The Glassy State in Foods. (Nottingham
Univ. Press, Nottingham, 1993).

[Bloembergen] N. Bloembergen. Nonlinear Optics (Benjamin, New York, 1965).

[Boon] J. P. Boon, S. Yip. Molecular Hydrodynamics. (Dover Publications, New York,
1980).

163



[Brodin] A. Brodin, E. A. R6ssler. Depolarized light scattering versus optical Kerr
effect spectroscopy of supercooled liquids: Comparitive analysis.. Chem. Phys. 125,
114502 (2006).

[Broido] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Appl. Phys.
Lett. 91, 231922 (2007).

[Brown] J. M. Brown, E. H. Abramson, R. J. Angel. Triclinic elastic constants for low
albite. Phys. Chem. Minerals 33, 256 (2006).

[Brtiesch] P. Bruesch. Phonons: Theory and Experiment III. (Springer, London, 1987).

[Burns] G. Burns, Solid State Physics (Academic Press, Orlando, 1985).

[B6hmer] R. B6hmer, G. Diesemanna, G. Hinzee, E. A. R6ssler. Dynamics of
supercooled liquids and glassy solids. Prog. Nuc. Mag. Res. Spect. 39, 191 (2001).

[Cahil190] D. G. Cahill. Thermal conductivity measurement from 30 to 750 K: the 3o
method. Rev. Sci. Intrum. 61, 802 (1990).

[Cahill03] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J.
Maris, R. Merlin, S. R. Phillpot. Nanoscale thermal transport.J. Appl. Phys. 93, 793
(2003).

[Callaway] J. Callaway, Phys. Rev. 113, 1046-1051 (1959).

[Capinksi] W. S. Capinski, H. J. Maris. Improved apparatus for picosecond pump-and-
probe optical measurements. Rev. Sci. Instrum. 67, 2720 (1996).

[Carslaw] H. S. Carslaw, J. C. Jaeger. Conduction of Heat in Solids. (Oxford University
Press, Oxford, 1986).

[Chappell] P. J. Chappell, D. Kivelson.j. Chem Phys. 76, 1742 (1982).

[Chen98] G. Chen, Phys. Rev. B 57, 14958 (1998).

[ChenO3] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. -P. Fleurial, T. Caillat. Recent
developments in thermoelectric materials. Inter. Mater. Rev. 48, 45 (2003).

[Chen05] G. Chen, Nanoscale Energy Transport and Conversion (Oxford University
Press, New York, 2005).

[Chiao] R. Y. Chiao, C. H. Townes, B. P. Stoicheff. Stimulated Brillouin Scattering and
Coherent Generation of Intense Hypersonic Waves. Phys. Rev. Lett. 12, 592 (1964).

[Choi] C. S. Choi, E. Prince. The crystal structure of cyclotrimethylene triamine. Acta
Cryst. B28, 2857 (1972).

164



[Christensen] T. Christensen, N. Olsen. Determination of the frequency-dependent
bulk modulus of glycerol using a piezoelectric spherical shell. Phys. Rev. B 49, 15396
(1994).

[Christensen07] T. Christensen, N. B. Olsen, J. C. Dyre. Conventional methods fail to
measure cp(co) of glass-forming liquids. Phys. Rev. E 75, 041502 (2007).

[Cohen] M. H. Cohen, D. Turnbull. Molecular transport in liquids and glasses.J. Chem.
Phys. 31, 1164 (1959).

[Collier] R. J. Collier, C. B. Burckhardt, L H. Lin. Optical Holography. (Academic Press,
1971).

[CRC] D. R. Lide, editor. CRC Handbook of Chemistry and Physics, Internet Version
2011. Taylor & Francis, Boca Raton, FL, 91st Edition, 2011.

[Cucini ] R. Cucini, F. Bencivenga, and C. Masciovecchio. All-reflective femtosecond
optical pump-probe setup for transient grating spectroscopy. Opt. Lett. 36, 1032
(2010).

[Das86] S. P. Das, G. F. Mazenko. Fluctuating nonlinear hydrodynamics and the
liquid-glass transition. Phys. Rev. A 34, 2265 (1986).

[Das04] S. P. Das. Mode-coupling theory and the glass transition in supercooled
liquids. Rev. Mod. Phys. 76, 785 (2004).

[Das09] S. P. Das, G. F. Mazenko. Fluctuating nonlinear hydrodynamics does not
support an ergodic-nonergodic transition. Phys. Rev. E. 79, 021504 (2009).

[Debenedetti] P. G. Debenedetti, F. H. Stillinger. Supercooled liquids and the glass
transition. Nature. 410, 259 (2001).

[Dresselhaus] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren,
J. -P. Fleurial, P. Gogna. New Directions for Low-Dimensional Thermoelectric
Materials. Adv. Mater. 19, 1043 (2007).

[Dreyfus] C. Dreyfus, A. Aouandi, R. M. Pick, T. Berger, A. Patkowski, W. Steffen. Eur.
Phys. J. B 9, 401 (1999).

[Dyre96] J. C. Dyre, N. B. Olsen, T. Christensen. Local elastic expansion model for
viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B 53,
2171 (1996).

[Dyre06] J. C. Dyre, T. Christensen, N. B. Olsen. Elastic models for the non-Arrhenius
viscosity of glass-forming liquids.]. Non-Crystal. Solids 352, 4635 (2006).

[Eichler] H.J. Eichler, P. Ginter, and D. W. Pohl, Laser-Induced Dynamic Gratings
(Springer, Berlin, Heidelberg, 1986).

165



[Every] A. G. Every. Measurement of the near-surface elastic properties of solids and
thin supported films. Meas. Sci. Technol. 13, R21 (2002).

[Ferrer] M. L. Ferrer, C. Lawrence, B. G. Demirjian, D. Kivelson, C. Alba-Simionesco, G.
Tarjus.J. Chem. Phys. 109,8010 (1998).

[Ferry] J. D. Ferry. Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York,
1980).

[Fletcher] L. S. Fletcher. Recent Developments in Contact Conductance Heat
Transfer.J. Heat Transfer 110, 1059 (1988).

[Fourkas] J. T. Fourkas, M. D. Fayer. The Transient Grating: A Holographic Window
to Dynamic Processes. Acc. Chem. Res. 25, 227 (1992).

[Frenkel] J. Frenkel. Kinetic Theory of Liquids. (Dover Publications, New York, 1955).

[Fuchs] K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

[Gedik] N. Gedik and J. Orenstein. Absolute phase measurement in heterodyne
detection of transient gratings, Opt. Lett. 29, 2109 (2004).

[Gibbs] E. A. Gibbs, J. H. DiMarzio. Nature of the glass transition and the glassy state.
J. Chem. Phys. 28, 373 (1958).

[Glorieux02] C. Glorieux, K. A. Nelson, G. Hinze, M. D. Fayer. Thermal, structural, and
orientational relaxation of supercooled liquids studied by polarization-dependent
impulsive stimulated scattering.J. Chem. Phys. 116, 3384 (2002).

[Glorieux04] C. Glorieux, J.D. Beers, E. H. Bentefour, K. Van de Rostyne, K. A. Nelson.
Phase mask based interferometer: Operation principle, performance, and
application to thermoelastic phenomena. Rev. Sci. Instr. 75, 2906 (2004).

[Goldman] J. R. Goldman, J. A. Prybyla. Phys. Rev. Lett. 72, 1364 (1994).

[Goodno] G. D. Goodno, G. Dadusc, and R. J. D. Miller, J. Opt. Soc. Am. B 15, 1791
(1998).

[Gostein] M. Gostein, M. Banet, M. Joffe, A.A. Maznev, R. Sacco, J.A. Rogers, K.A.
Nelson, "Thin film metrology using impulsive stimulated thermal scattering (ISTS)",
in Handbook ofSilicon Semiconductor Metrology, ed. A.C. Diebold (New York: Marcel
Dekker. 2001).

[Govorkov] S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodmann, M. Rothschild.
A new method for measuring thermal conductivity of thin films. Rev. Sci. Intrum. 68,
3828 (1997).

[Greer] A. L. Greer. Metallic Glasses. Science 267, 1615 (1995).

166



[G6tze88] W. G6tze, L. Sj6gren. Scaling properties in supercooled liquids near the
glass transition. J. Phys. C: Sol. State Phys. 21, 3407 (1988).

[G6tze99] W. G6tze. Recent tests of the mode-coupling theory for glassy dynamics.J.
Phys.-Cond. Matt. 11, Al (1999).

[Halalay] . C. Halalay, K. A. Nelson. Improved sample cell design for optical studies
of glass-forming liquids in the 4-530 K range. Rev. Sc. Instr. 61, 3623 (1990).

[Halalay92] I. C. Halalay, K. A. Nelson. Time-resolved Spectroscopy and Scaling
Behavior in LiCl/H20 near the Liquid-Glass Transition. Phys. Rev. Lett. 69, 636
(1992).

[Harata90] A. Harata, H. Nishimura, T. Sawada. Laser-induced surface acoustic
waves and photothermal surface gratings generated by crossing two pulsed laser
beams.Appl. Phys. Lett. 57, 132 (1990).

[Harata98] A. Harata, N. Adachi, T. Sawada. Subnanosecond transient-reflecting-
grating measurements and depth-profiling analysis of mesoscopic subsurface
properties of a nickel single crystal. Phys. Rev. B 58, 7319 (1998).

[Hatta] I. Hatta, Y. Sasuga, R. Kato, A. Maesono. Thermal diffusivity measurement of
thin films by means of an ac calorimetric method. Rev. Sc. Instrum. 56, 1643 (1985).

[Hausstihl] S. Haussfihl. Elastic and thermoelastic properties of selected organic
crystals. Z. Kristallogr. 216, 339 (2001).

[Havriliak] S. Havriliak, S. Negami. A complex plane representation of dielectric and
mechanical relaxation processes in some polymers. Polymer 8, 161 (1967).

[Haycraft] 1. J. Haycraft, L. L. Stevens, C. J. Eckhardt. The elastic constants and related
properties of the energetic material cyclotrimethylene triamine (RDX) determined
by Brillouin scattering.j. Chem. Phys. 124, 024712 (2006).

[Hecksher] T. Hecksher. PhD Thesis. (Roskilde University, 2010).

[Henry] A. Henry and G. Chen, J. Comp. Theor. Nanosci. 5, 1 (2008).

[Hepplestone] S. P. Hepplestone, G. P. Srivastava. Theory of interface scattering of
phonons in superlattices. Phys. Rev. B 82, 144303 (2010).

[Herzfeld] K. F. Herzfeld, T. A. Litovitz. Absorption and Dispersion of Ultrasonic
Waves. (Academic Press, 1959).

[Hess] P. Hess. Laser diagnostics of mechanical and elastic properties of silicon and
carbon films. App. Surf Sc. 106, 429 (1996).

[Highland] B.C. Gundrum, Y. K.Koh, R. S. Averback, D.G. Cahill, V. C. Elarde, J. J.
Coleman, D. A. Walko, and E. C. Landahl, Phys. Rev. B 76, 075337 (2007).

167



[Hinze] G. Hinze, D. D. Brace, S. D. Gottke, M. D. Fayer.J. Chem. Phys. 113, 3723
(2000).

[Hoffnagle] J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle. Liquid immersion
deep-ultraviolet interferometric lithography.J. Vac. Sc. Technol. B 17, 3306 (1999).

[Holland] M.G. Holland, Phys. Rev. 132, 2461-2471 (1963).

[Hooks] D. E. Hooks, K. J. Ramos, A. R. Martinez. Elastic shock profiles in oriented
single crystals of cyclotrimethylene triamine (RDX) at 2.25 GPa.J. Appl. Phys. 100,
024908 (2006).

[Huang] Y. Y. Huang, C. H. Wang.j. Chem. Phys. 62, 120 (1975).

[Hyldgaard] P. Hyldgaard, G. D. Mahan. Phonon superlattice transport. Phys. Rev. B
56, 10754 (1997).

[Jena] A. Jena, H. E. Lessing. Theory of laser-induced amplitude and phase gratings
including photoselection, orientational relaxation and population kinetics. Opt.
Quant. Electron. 11, 419 (1979).

[Jenniskens] P. Jenniskens, D. F. Blake. Structural transitions in amorphous water ice
and astrophysical implications. Science 265, 753 (1994).

[Johari] G. P. Johari, M. Goldstein. Viscous liquids and the glass transition. II.
Secondary relaxations in glasses of rigid molecules.]. Chem. Phys. 53, 2372 (1970).

[Jakobsen] B. Jakobsen, K. Niss, N. B. Olsen.j. Chem. Phys. 123, 234511 (2005).

[Joshi] A. A. Joshi and A. Majumdar, "Transient ballistic and diffusive phonon heat
transport in thin films", J. Appl. Phys. 74, 31 (1993).

[Ju] Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).

[Kanatzidis] M. G. Kanatzidis. Nanostructured Thermoelectrics: The New Paradigm?
Chem. Mater. 22, 648 (2010).

[Kawasaki] K. Kawasaki. Correlation-Function approach to the transport coefficients
near the critical point. Phys. Rev. 150, 291 (1966).

[Keyes] T. Keyes, I. Oppenheim. Bilinear Contributions to Equilibrium Correlation
Functions. Phys. Rev. A 7, 1384 (1973).

[Khoklov] D. Khoklov, editor. Lead Chalcogenides: Physics and Applications. (Taylor &
Francis, New York, 2003).

[Klieber] C. Klieber. PhD Thesis. (Massachusetts Institute of Technology, Cambridge,
MA 2010).

168



[Koh] Y. K. Koh and D. G. Cahill, "Frequency dependence of the thermal conductivity
of semiconductor alloys", Phys. Rev. B 76, 075207 (2007).

[Kohlrausch] F. Kohlrausch. Prog. Ann. Phys. 119, 352 (1863).

[Kading] 0. W. KAding, H. Skurk, A. A. Maznev, E. Matthias. Transient thermal
gratings at surfaces for thermal characterization of bulk materials and thin films.
Appl. Phys. A 61, 253 (1995).

[Landau] L. D. Landau, E. M. Lifshitz. Theory of Elasticity. (Pergamon Press, New
York, 1970).

[Lee] S. M. Lee, D. G. Cahill, R. Venkatasubramanian. Thermal conductivity of Si-Ge
superlattices. Appl. Phys. Lett. 70, 2957 (1997).

[Leisure] R. G. Leisure, F. A. Willis. Resonant ultrasound spectroscopy.J. Phys.:
Condens. Matter 9, 6001 (1997).

[Leutheusser] E. Leutheusser. Dynamical model of the liquid-glass transition. Phys.
Rev. A 29, 2765 (1984).

[Li] C-M. Li, T. Sjodin, H-L. Dai, Phys. Rev. B 56, 15252 (1997).

[Lin] H. N. Lin, R. J. Stoner, H. J. Maris, J. Tauc. Phonon attenuation and velocity
measurements in transparent materials by picosecond acoustic interferometry.J.
Appl. Phys. 69, 3816 (1991).

[Linnros] J. Linnros, V. Grivickas, Phys. Rev. B 50, 16943 (1994).

[Liu0l] W. L. Liu, T. Borca-Tasciuc, G. Chen, J. L. Liu, K. L. Wang. Anisotropic Thermal
Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices.J.
Nansci. Nanotech. 1, 39 (2001).

[Liu] W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, "Modeling and Data for
Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature",
IEEE Trans. Electron Dev. 53, 1868 (2006).

[Lohfink] M. Lohfink, H. Silescu, in AIP Conf Proc. No. 256. (American Institute of
Physics, New York, 1992).

[Lubchenko] V. Lubchenko, P. G. Wolynes. The origin of the boson peak and thermal
conductivity plateau in low temperature glasses. Proc. Nat. Acad. Sc. 4, 1515 (2003).

[Lunkenheimer00] P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl. Contemp. Phys.
41,15 (2000).

[Lunkenheimer02] P. Lunkenheimer, A. Loidl. Dielectric spectroscopy of glass-
forming materials: a-relaxation and excess wing. Chem. Phys. 284, 205 (2002).

169



[Lunkenheimer08] P. Lunkenheimer, L. C. Pardo, M. Koehler, A. Loidl. Phys. Rev. E
77, 031506 (2008).

[Lyeo] H-K. Lyeo, D. G. Cahill. Thermal conductance of interfaces between highly
dissimilar materials. Phys. Rev. B 73, 144301 (2006).

[Majumdar] ASME J. Heat Transfer 115, 7 (1993).

[Mandanici] A. Mandanici, X. Shi, G. B. Mckenna, M. Cutroni. Slow dynamics of
supercooled m-toluidine investigated by mechanical spectroscopy. J. Chem. Phys.
122, 114501 (2005).

[Marion] J. B. Marion, S. T. Thornton. Classical Dynamics of Particles & Systems.
(Harcourt Brace Jovanovich, Orlando, 1988).

[Mayer] P. Mayer, K. Miyasaki, D. Reichman. Cooperativity beyond caging:
Generalized Mode-Coupling theory. Phys. Rev. Lett. 97, 095702 (2006).

[Maznev96] A. A. Maznev, K. A. Nelson, T. Yagi. Surface Phonon Spectroscopy with
Frequency-Domain Impulsive Stimulated Light Scattering. Sol. State Com. 100, 807
(1996).

[Maznev98] A. A. Maznev, J. A. Rogers, K. A. Nelson. Optical heterodyne detection of
laser-induced gratings. Optics Letters, 23, 1319 (1998).

[Maznev99] A. A. Maznev, A. Akthakul, K. A. Nelson. Surface acoustic modes in thin
films on anisotropic substrates.J. Appl. Phys. 86, 2818 (1999).

[Maznev03] A.A. Maznev, A. Mazurenko, L. Zhuoyun, M. Gostein. Laser-based
surface acoustic wave spectrometer for industrial applications. Rev. Sci. Instrum. 74,
667 (2003).

[Maznevll] A. A. Maznev, J. A. Johnson, K. A. Nelson. Non-equilibrium transient
thermal grating decay in metal.J. Appl. Phys. 109, 073517 (2011).

[Maznevllb] A. A. Maznev, J. A. Johnson, K. A. Nelson. Onset of non-diffusive phonon
transport in transient thermal grating decay. In preparation.

[McCrone] W. C. McCrone. RDX (Cyclotrimethyline trinitramine). Anal. Chem. 2, 81
(1941).

[Mittal] A. Mittal and S. Mazumder, "Monte Carlo Study of Phonon Heat Conduction
in Silicon Thin Films Including Contributions of Optical Phonons", ASME J. Heat
Transfer 132, 052402 (2010).

[Mizuno] S. Mizuno, S. Tamura. Theory of acoustic-phonon transmission in finite-
size superlattice systems. Phys. Rev. B 45, 734 (1992).

[Mizukami] M. Mizukami, K. Kobashi, M. Hanaya, M. Ogumi.J. Chem. Phys B 103,
4078 (1999).

170



[Narumanchi] S.V.J. Narumanchi, J.Y. Murthy, and C.H. Amon, "Submicron Heat
Transport Model in Silicon Accounting for Phonon Dispersion and Polarization",
ASME J. Heat Transfer 126, 947 (2004).

[Nelson] K. A. Nelson, R. Casalegno, R. J. D. Miller, M. D. Fayer. Laser-induced excited
sate and ultrasonic wave gratings: Amplitude and phase grating contributions to
diffraction.J. Chem. Phys. 77, 1144 (1982).

[Nelson82] K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer. Optical generation of
tunable ultrasonic waves. J. Appl. Phys. 53, 1144, 1982.

[Neubrand] A. Neubrand, P. Hess. Laser generation and detection of surface acoustic
waves: Elastic properties of surface layers.J. Appl. Phys. 71, 227 (1992).

[Novikov] V. N. Novikov, A. P. Sokolov. Poisson's ratio and the fragility of glass-
forming liquids. Nature 431, 961 (2004).

[Nye] J. F. Nye. Physical Properties of Crystals. (Oxford University Press, London,
1964).

[Olsen] N. B. Olsen, T. Christensen, J. C. Dyre. Phys. Rev. Lett. 86, 1271 (2001).

[Othonos] A. Othonos. Probing ultrafast carrier and phonon dynamics in
semiconductors. J. Appl. Phys. 83, 1789 (1998).

[Paddock] C. A. Paddock, G. L. Eesley. Transient thermoreflectance from metals
films. Optics Lett. 11, 273 (1986).

[Paolucci] D. M. Paolucci, K. A. Nelson. Impulsive stimulated thermal scattering
study of the structural relaxation in supercooled glycerol.J. Chem. Phys. 112, 6725
(2000).

[Parker] W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott. Flash Method for
Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity.J. Appl.
Phys. 32, 1679 (1961).

[Patel] C. K. N. Patel, A. C. Tam. Pulsed optoacoustic spectroscopy of condensed
matter. Rev. Mod. Phys. 53, 517 (1981).

[Pennington] D. M. Pennington, C. B. Harris. Dynamics of Photothermal Surface
Expansion and Diffusivity Using Laser-Induced Holographic Gratings. IEEEJ.
Quantum Electron. 28, 2523 (1992).

[Pick03] R. M. Pick, T. Franosch, A. Latz, C. Dreyfus. Light scattering by longitudinal
acoustic modes in molecular supercooled liquids I: phenomenological approach.
Eur. Phys. J. B 31, 217 (2003).

[Pop] E. Pop, "Energy Dissipation and Transport in Nanoscale Devices", Nano Res. 3,
147 (2010).

171



[Poudel] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto,
D. Vashaee, X. Chen. J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren. High-Thermoelectric
Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science,
320,634 (2008).

[Rogers93] J.A. Rogers, A.R. Duggal, K.A. Nelson. Non-contact real-time evaluation of
polyimide thin film thermoelastic properties through impulsive stimulated thermal
scattering, in Amorphous Insulating Thin Films, ed. by J. Kanicki, R.A.B. Davine, W. L.
Warren, and M. Matsumura (Mater. Res. Soc. Symp. Proc. 284, 1993), pp. 547-553.

[Rogers94] J. A. Rogers, Y. Yang, K. A. Nelson. Elastic modulus and in-plane thermal
diffusivity measurements in thin polyimide films using symmetry selective real-time
impulsive stimulated thermal scattering. Appl.Phys. A 58, 523 (1994).

[RogersOO] J.A. Rogers, A.A. Maznev, M.J. Banet, and K.A. Nelson, Annu. Rev. Mater.
Sci. 30, 117 (2000).

[Rossiter] Physical Methods of Chemistry, Volume 7, Determination of Elastic and
Mechanical Properties, 2nd ed. B. W. Rossiter, R. C. Baetzold eds. (Wiley, New York,
1991)

[Rubio] J. E. F. Rubio, M. Taravillo, V. G. Baonza, J. Ndfiez, M Caceres. Light-scattering
study of vibrational relaxation in liquid xylenes.J. Chem. Phys. 124, 014503 (2006).

[Saleh] B. E. A. Saleh, M. C. Teich. Fundamentals of Photonics. (Wiley, Hoboken, NJ
2007).

[Santen] L. Santen, W. Krauth. Absence of thermodynamic phase transition in a
model glass former. Nature 405, 550 (2000).

[Schirmacher] W. Schirmacher, G. Diezemann, C. Ganter. Harmonic Vibrational
Excitation in Disordered Solids and the "Boson Peak". Phys. Rev. Lett. 81, 136 (1998).

[Schmidt08a] A. J. Schmidt, X. Chen, G. Chen. Pulse accumulation, radial heat
conduction, and anisotropic thermal conductivity in pump-probe transient
thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

[Schmidt08b] A. J. Schmidt, M. Chiesa, D. H. Torchinsky, J. A. Johnson, K. A. Nelson, G.
Chen. Thermal conductivity of nanoparticle suspensions in insulating media
measured with transient optical grating and a hotwire.J. App. Phys. 103, 083529
(2008).

[Schmotz] M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, "Optical temperature
measurements on thin freestanding silicon membranes", Rev. Sci. Instrum. 81,
114903 (2010).

[Schneider] U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl. Dielectric and far-
infrared spectroscopy of glycerol.J. Non-cryst. Sol. 235, 173 (1998).

172



[Schwarz] R. B. Schwarz, D. E. Hooks, J. J. Dick, J. I. Archuleta, A. R. Martinez.
Resonant ultrasound spectroscopy of the elastic constants of cyclotrimethylene
trinitramine. J. Appl. Phys. 98, 056106 (2005).

[Siegal] Y. Siegal, E. N. Glezer, L. Huang, E. Mazur. Laser-induced phase transitions in
semiconductors. Annu. Rev. Mater. Sci. 25, 223 (1995).

[Siemens09] M. E. Siemens, Q. Li, R. Yang, M. M. Murnane, H. C. Kapteyn, R Yang, E. H.
Anderson, K. A. Nelson. High-frequency surface acoustic wave propagation in
nanostructures characterized by coherent extreme ultraviolet beams. Appl. Phys.
Lett. 94, 093103 (2009).

[SiemenslO] M. Siemens, Q. Li, R. Yang, K. A. Nelson, E. Anderson, M. Murnane, and
H. Kapteyn, Nature Materials 9, 26 (2010).

[Silence] S. Silence. PhD Thesis, (Massachusetts Institute of Technology, Cambridge,
1991).

[Silence9l] S. M. Silence, S. R. Goates, K. A. Nelson.j. Non-Cryst. Solids 131, 137
(1991).

[Silence92] S. M. Silence, A. R. Duggal, L. Dhar, K. A. Nelson.J. Chem. Phys. 96, 5448
(1992).

[Snyder] G. J. Snyder, E. S. Toberer. Complex thermoelectric materials. Nat. Mat. 7,
105 (2008).

[Sondheimer] E. H. Sondheimer, "The mean free path of electrons in metals", Phil.
Mag. 1, 1 (1952).

[Stevens] R. J. Stevens, A. N. Smith, P. M. Norris. Measurement of Thermal Boundary
Conductance of a Series of metal-Dielectric Interfaces by the Transient
Thermoreflectance Technique. J. Heat Trans. 127, 315 (2005).

[Stevens10] L. L. Stevens, D. E. Hooks, A. Migliori. A comparative evaluation of
elasticity in pentaerythritol tetranitrate using Brillouin scattering and resonant
ultrasound spectroscopy.J. Appl. Phys. 108, 053512 (2010).

[Sun] B. Sun, J. M. Winey, N. Hemmi, Z. A. Dreger, K. A. Zimmerman, Y. M. Gupta, D. H.
Torchinsky, K. A. Nelson. Second-order elastic constants of pentaerythritol
tetranitrate and cyclomethylene trinitramine using impulsive stimulated thermal
scattering.J. Appl. Phys. 104, 073517 (2008).

[Sverdrup] P. G. Sverdrup, S. Sinha, M. Asheghi, S. Uma, and K. E. Goodson, Appl.
Phys. Lett. 78, 3331 (2001).

[Swartz] E. T. Swartz, R. 0. Pohl. Thermal boundary resistance. Rev. Mod. Phys. 61,
605 (1989).

173



[Tamura] S. Tamura, D. C. Hurley, J. P. Wolfe. Acoustic-phonon propagation in
superlattices. Phys. Rev. B 38, 1427 (1988).

[Tao] N. J. Tau, G. Li, H. Z. Cummins. Phys. Rev. B 45, 686 (1992).

[Taraskin] S. N. Taraskin, Y. L. Loh, G. Natarajan, S. R. Elliott. Origin of the Boson
Peak in Systems with Lattice Disorder. Phys. Rev. Lett. 86, 1255 (2001).

[Terazima] M. Terazima. Optical Heterodyne Detected Transient Grating for the
Separations of Phase and Amplitude Gratings and of Different Chemical Species. J.
Phys. Chem. A 103, 7401 (1999).

[Tokmakoff] A. Tokmakoff, M. D. Fayer, W. Banholtzer. Thermal diffusivity
measurement of natural and isotopically enriched diamond by picosecond infrared
transient grating experiments. App. Phys. A 56, 87 (1993).

[TorchinskyT] D. H. Torchinsky. PhD Thesis, (Massachusetts Institute of Technology,
Cambridge, MA 2008).

[Torchinsky09] D. H. Torchinsky, J. A. Johnson, K. A. Nelson. A direct test of the
correlation between elastic parameters and fragility of ten glass formers and their
relationship to elastic models of the glass transition.J. Chem. Phys. 130, 064502
(2009).

[Turney] J. E. Turney, A. J. H. McGaughey, and C. H. Amon, "In-plane phonon
transport in thin films", J. Appl. Phys. 107, 024317 (2010).

[Vacher] R. Vacher, L. Boyer. Brillouin Scattering: A Tool for the measurement of
Elastic and Photoelastic Constants. Phys. Rev. B 6, 639 (1972).

[Walley] S. M. Walley, J. E. Field, M. W. Greenaway. Crystal sensitivites of energetic
materials. Mat. Sci. Tech. 22, 402 (2006).

[Wang85] C. H. Wang, E. W. Fischer. Density fluctuations, dynamic light scattering,
longitudinal compliance, and stress modulus in a viscoelastic medium.J. Chem. Phys.
82, 632 (1985).

[Wang] J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, R. A.
Synowicki. Structural, electrical, and optical properties of thermally evaporated
nanocrystalline PbTe films. J. AppL. Phys. 104, 053707 (2008).

[Ward] A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).

[Weber] W. Weber. Adiabatic bond charge model for the phonons in diamond, Si, Ge,
and a-Sn. Phys. Rev. B, 15, 4789 (1977).

[Whitley] V. H. Whitley. Optical Absorption Measurements of RDX. Shock
Compression of Condensed Matter. 2005, p. 1357.

[Williams] G. Williams, D. C. Watts. Trans. Faraday Soc. 66, 80 (1970).

174



[Wolfe] J.P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge,
England,1998).

[Wright] 0. B. Wright, V. E. Gusev. Acoustic generation in crystalline silicon with
femtosecond optical pulses. Appl. Phys. Lett. 66, 1190 (1995).

[Wu] J. Wu, J. Cao. High-Order Mode-Coupling Theory for the Colloidal Glass
Transition. Phys. Rev. Lett. 95, 078301 (2005).

[Yan] Y. Yan, E. B. Gamble, K. A. Nelson. Impulsive stimulated scattering: General
importance in femtosecond laser pulse interactions with matter, and spectroscopic
applications. J. Chem. Phys. 83, 5391 (1985).

[Yan87] Y. Yan, K. A. Nelson. Impulsive stimulated light scattering. II. Comparison to
frequency-domain light-scattering spectroscopy.J. Chem. Phys. 87, 6257 (1987).

[Yan88] Y. Yan, L. Cheng, K. A. Nelson. The temperature-dependent distribution of
relaxation times in glycerol: Time-domain light scattering study of acoustic and
Mountain-mode behavior in the 20 MHz-3 GHz frequency range.j. Chem. Phys. 88,
6477 (1988).

[Yang95a] Y. Yang, K. A. Nelson, Impulsive Stimulated light scattering from glass-
forming liquids. I. Generalized hydrodynamics approach.J. Chem. Phys. 103, 7722
(1995).

[Yang95b] Y. Yang, K. A. Nelson. Impulsive stimulated light scattered from glass-
forming liquids. II. Salol relaxation dynamics, nonergodicity parameter, and testing
of mode coupling theory.J. Chem. Phys. 103, 7732 (1995).

[Yang96] Y. Yang, K. A. Nelson. Impulsive stimulated thermal scattering study of a
relaxation dynamics and the Debye-Waller factor anomaly in CKN.J. Chem. Phys.
104, 5429 (1996).

[Yoon]. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman,
U. Paik, J. A. Rogers. GaAs photovoltaics and optoelectronics using releasable
multilayer epitaxial assemblies. Nat. Lett. 465, 329 (2010).

[Zeman] S. Zeman. High energy density materials. Struct. Bond. 125, 195, 2007.

[Zhang] X. Zhang, B. Li, C. Gao, App. Phys. Lett. 89, 112120 (2006).

[Ziman] J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960).

[Zorn] R. Zorn, F. I. Mopsik, G. B. McKenna, L. Millner, D. Richter.J. Chem. Phys. 107,
3645 (1997).

[Zwanzig] R. Zwanzig. Time-Correlation Functions and Transport Coefficients in
Statistical Mechanics. Ann. Rev. 16, 67 (1965).

175



176


