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ABSTRACT

The purpose of this thesis was to gain more knowledge and experience in the areas of modeling,
dynamics, and applied control theory. A single-axis magnetic suspension device originally
designed by Professor David Trumper for classroom demonstrations was chosen to improve the
understanding of the previously mentioned topics. The dynamics of these types of systems
provide interesting control challenges due to the nonlinear nature of its dynamics. As a result,
designing of a control system for this device required the understanding and experimentation of
two nonlinear controls techniques: linearization of the plant around an operating point, and
feedback linearization. A combination of electromagnetic theory and experimentation was used
to model the suspension actuator, and two different controllers were designed and implemented
using the different controls methods.
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Chapter 1: Introduction

The objective of this thesis was to improve my knowledge in feedback control systems by

designing and implementing a controller for a naturally unstable system. For this purpose, a one-

degree-of-freedom magnetic suspension system was chosen; the complexities due to the

nonlinear force/current/gap relationship provide an interesting challenge from a control theory

perspective. Many undergraduate control theory classes focus mostly on linear controllers, so

when studying nonlinear systems one is taught the method of linearizing around operating points

in order to use the linear control techniques. However, this approach is not optimal for this

system because many applications of magnetic suspension require that the system can operate

over large variations of air gap. Thus, we explored the use on feedback linearization, a type of

nonlinear control technique, as an alternate way to control systems with large variations around

operating points.

1.1 System Overview

The single degree of freedom magnetic suspension device studied in this thesis is

described in great detail in [1] and [2]. It was originally constructed and developed by Professor

David Trumper with his students at the University of North Carolina at Charlotte to be used as a

classroom demonstration illustrating nonlinear control. The levitation system, consisting of a

position sensor, a magnetic actuator and a controller, is shown in Figure 1 as a conceptual

schematic. Figure 2 shows an actual photograph of the hardware.



Light
Detector

Actuator

C (

+- (

Figure 2: Photograph of physical hardware of magnetic suspension device

Light
Source

Controller

Figure 1: Conceptual schematic of magnetic suspension device.



In this system, a steel ball of mass m = 0.067kg is suspended below a 2200-turn solenoid

wound on a one inch steel core. This solenoid is an electromagnet whose field strength depends

on the amount of current flowing through the coils at a given time, meaning that the

electromagnet's magnetic force can be controlled by adjusting the current. This magnetic force

can counteract the effect of gravity on the ball at a point of equilibrium. Hence, the vertical

position of the ball can be actively controlled by manipulating the current flowing through the

solenoid.

The other important part of the suspension system is the mechanism to detect the position

of the ball. In this case, an optical sensor is used consisting of a light source and a photo detector.

As the air gap between the ball and the pole of the electromagnet changes, so does the amount of

light detected by the sensor. The controller correlates the amount of light detected by the sensor

to the position of the ball and compares it to a reference input position, adjusting the magnetic

force on the ball as needed by manipulating the current flow through the electromagnet. To

calibrate the position sensor as well as characterize the nonlinear relationship between force,

current, and air gap, a micrometer fixture, depicted in Figure 3 which was taken from [2], was

used. Having these nonlinear equations, controllers were designed using two different

approaches. One method involved linearizing the nonlinear equations about an operating point.

The second approach used feedback linearization, which eliminates the operating point

dependency and allows suspension over a wide range of air gaps. Both controllers were

implemented and the systems response to step inputs were measured for both settings.



Figure 3: Photograph of the micrometer fixture. (Taken from [2])

1.2 Background

1.2.1 Linearized Model

In magnetic suspension systems, the nonlinearity emerges from the relationship between

force, current, and air gap. In one approach, when nonlinear components are present, the system

can be linearized about an operating point to yield a transfer function. As explained in [4], when

a nonlinear equation is linearized, it is done so "for small-signal inputs about the steady-state

solution when the small-signal input is equal to zero." This means that linearization of a system

is limited to the region around the operating points, or points of equilibrium. After finding the

equilibrium points, a Taylor series expansion is used to approximate the behavior of the system

for a small range around these operating points.



1.2.2 Feedback Linearization

Feedback linearization is a technique that transforms a nonlinear system into a linear and

controllable one. As described in [3], in the magnetic suspension application studied for this

thesis, the complete nonlinear description of the electromagnetic field can be transformed into an

apparent linear system. Hence, we could obtain consistent performance largely independent of

the operating point air gap. After the system has been transformed, it is possible to use

conventional linear feedback techniques to design a controller. Figure 4 shows a conceptual

block diagram of a controller design using feedback linearization.

Figure 4: Block diagram of system with controller based on feedback linearization.
(Taken from [2])



Chapter 2: Control Loop System

2.1 . Introduction

A schematic representation of the magnetic suspension device was taken from [2] and is

shows in Figure 5. The system consists of a position sensor, linear amplifier, digital controller,

and actuator coil. The position sensor consists of a photodiode array illuminated by an array of

light emitting diodes (LEDs). A steel ball is suspended between the LED light source and the

detector and as its vertical position changes, so does the amount of light that enters the detector.

Thus, the photodiode array produces a current proportional to the position of the steel ball. This

current passes through a transresistance amplifier that converts the photodiode current to a

voltage representative of position which can be fed into the computer. To control the actuator

coil, a linear amplifier receives a voltage signal from the computer and produces a proportional

current to drive the coil; hence, adjusting the magnetic force being applied to the steel ball.

The system is controlled via a desktop computer with a dSPACE board. We are able to

communicate with the hardware using the dSPACE board in conjunction with MATLAB and

Simulink software. Since Simulink supports block diagrams, a model of the compensated system

is built on Simulink and downloaded onto the dSPACE board.



Linear
Amplifier ci

D/A -- 16 Element
D Photodiode

Array

Set OSPACE 5 Elernent _

Ref Controller Superbright
LED Array

Transresistance
Amp ier

Figure 5: System control loop diagram. (Taken from [2])

2.2 Light Sensor

The magnetic suspension system uses a light sensor to determine the position of the

suspended steel ball. The air gap we are trying to control is the distance between the coil and

suspended ball. As the air gap decreases, the ball creates a shadow between the LED light source

and the light sensor which decreases its current output and thus the voltage reading that comes

into the dSPACE board. In order to determine the relationship between gap and voltage, a steel

ball was attached to a micrometer and moved through the gap range while recording the voltage

reading from the transresistance amplifier. The data is plotted in Figure 6. MATLAB was used to

plot the data and find a cubic fit to describe the air gap corresponding to a voltage reading. This

fit was used in the controller implementations in Simulink.
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Figure 6: Plot of air gap vs. load sensor readings used to calibrate the position
sensor. Data interpolated with a cubic fit.

2.3 Actuator Coil

2.3.1 Source of Data

In order to have a good understanding of the relationship between the current flowing

through the coil, the magnetic force it executes on the steel ball and the air gap, it was necessary

to run a series of tests. In past works, like those explained with great detail in [1], [2] and [5], a

piezo-electric load cell attached to the steel ball in the micrometer structure shown in Figure 3

was used to measure the force applied by the actuator coil, for an applied current, on the steel

ball at a given air gap. Due to time limitations, data from these sources was used in the present

work.



2.3.2 Actuator Model

The equation that describes the force produced by an electromagnet, as taken from [2] is

2

F = C , (1)x

where F is the force applied to the ball, i is the current through the coil, and x is the air gap, the

distance between the pole of the electromagnet and the steel ball. The constant C (Nm2/A 2)

depends on material properties and physical structure and it must be determined experimentally.

In addition, it is important to note that in this model, the gap length is increasing in the

downward direction, meaning that at large values of x, the ball is far from the pole of the

electromagnet.

In [2], Yi Xie provides great details about the nonidealities of the system that are not

taken into account in Equation 1. From these, it is important to highlight that the ideal case

assumes that all the magnetic flux is concentrated in the air gap. Using a magnetic circuit

analogy to this system, Yi Xie explains that the ideal model suggests an infinite force on the ball

with zero air gap space. Taken this into account, a constant factor, xo, is added to the gap length

in the denominator of Equation 1 so that the force approaches a finite value as the air gap

approaches zero. The new equation is

F =C 2 (2)

Both xo and C were found experimentally in [2]. They were reported to be

x0 =0.0025 m, (3)



and

C =-0.003 x+ 6.54x 10-4  M (4)
A2

In [2] and in [5] the force-current-gap data was measured experimentally using the

micrometer fixture with the piezo-electric load cell. As different amounts of current were passed

through the coil, the magnetic force on the steel ball was recorded at different air gaps. Figure 7,

which was taken from [5], shows the force-current relationship measured at 7mm gap as well as

the model described by Equation 2. It can be seen that the model is not accurate after currents of

O.4A. In [2], careful experimentation and trial and error led to a higher order model which

models the force-current relationship more accurately at a particular gap. This higher order

model is shown in Equation 5 and was also included in Figure 7.

0)FL O 3x-0.002 )2 2 .=(x + x0 ) + F 0.0195e 0.001 - 3.5(x -0.007)) + 450(x - 0.0014)2F 2. (5)
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Chapter 3: Nonlinear Control Techniques

3.1 Linearization

3.1.1 System Dynamics

The concept behind magnetic suspension is to use the magnetic force created by the

electromagnet to counteract the effect of gravity on the steel ball; hence, when these two forces

are balanced, there is a point of equilibrium. A way to solve this control problem is to linearize

the system around these equilibrium, or operating, points and use traditional linear control

techniques. In order to linearize the system, we have to use a first-order Taylor series expansion

to approximate the behavior of the system over a limited range around the operating points. After

analyzing the free-body diagram of the system, shown in Figure 8, we can find the equilibrium

points by balancing the forces in the vertical direction.

Electromagnet

Fm X

mg

Figure 8: Free-body diagram of steel ball under suspension.



Sum of forces in the vertical direction yields

mx = mg-F.. (6)

Substituting for the magnetic force, we can rewrite Equation 6 as

m 32= Mg - C( -).(7

Looking at Equation 7, we can see the nonlinear term which depends on current and air

gap. Thus, we need to linearize the system about these two variables by taking a first-order

Taylor series expansion about points that describe a desired operating point and small deviations

from:

_~ - (8)
x=x+x

In Equation 8, the bar denotes the equilibrium operating point and tilde represents small

deviations from the operating point. Applying a first order approximation of the Taylor series

expansion of the magnetic force gives

I F C 2 8aF ~ WFF =C1 (9)
x ax7

Solving the partial differential equations, we get

-- = - 2C _2 x
x i 3x

(10)

2C - 2 -

For simplicity, we will assign the following constants:

-2

k =2C _
X(11)

k2 =2C-h.
x



To find the point of equilibrium or the system, we know the sum of forces in the vertical must

equal zero. This means that at the operating point,

mg=C 2. (12)

Combining Equations 7-12, we yield the final differential equation representing the linearized

system:

mx=k x -k 2 i (13)

Now, we can find the transfer function of the system that describes the air gap as a result of the

current input by taking the Laplace transform of the linearized differential equation and

rearranging some terms:

X(s) -k 2  (14)
I(s) ms 2 -k

Analyzing the transfer function in Equation 14, we can see that the system is open loop

unstable due to a pole in the right hand side of the complex plane. Thus, controller compensation

has to move the unstable pole into the stable left-half plane region.



3.1.2 Controller Design

In order to stabilize our system, we implemented a lead compensator with the form

Gc(s)=K cts + 1
r-s +1

(15)

A lead compensator allows us to add phase to the uncompensated system in the neighborhood of

the crossover frequency. We chose to place the compensator's pole and zero a decade a part,

meaning a = 10. For the controller design, we will choose a crossover frequency of 10 Hz (62.8

rad/s). To determine the parameters of the lead compensator, we will look at the plant's Bode

plot, shown in Figure 9, to see how we need to compensate the system to make it stable.

Bode Diagram
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Figure 9: Bode plot for linearized plant transfer function (Equation 14).
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At the chosen crossover frequency of 62.8 rad/s, the magnitude of the uncompensated plant is

0.0118. In addition, we see that the plant's phase is -180* for all frequencies.

For the design of the lead compensator parameters we observe the system's loop

transmission:

ar-s+1
L.T.=- Kk 2  .2 - ± (16)

(MS2 - k -s +1),

We want the loop transmission to have a phase margin of at least 450 for good stability and a

magnitude equal to 1. This requirements mean that the phase of the loop transmission at the

crossover frequency must be less than or equal to -135' and the magnitude must be 1 at this

-1
frequency. From Equation 15, it can be determined that the zero is located at - and the pole at

ar

. The maximum phase of a lead compensator occurs at the geometric mean of the pole and

zero break frequencies, which in this case occurs at

S= 1 (17)

where cme is the crossover frequency. Given that we set a = 10, and o&e = 62.8 rad/s, we find that

r = 0.005 s. The proportional gain K is determined from the condition of having unity loop

transmission at the crossover frequency. Knowing that the magnitude of a lead compensator is

equal to K-Ja at the crossover frequency, we set unity magnitude of the loop transmission by

K- a(0.0118)=1 -> K = 27 . (18)

Figure 10 shows the theoretical loop transmission Bode plot and Figure 11 shows the step

response of the closed-loop system.



Bode Diagram
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Figure 10: Simulated Bode plot for loop transmission of linearized system with
model given by Equation 15 with K=27, a = 10, and -r = 0.005.



Step Response

0 0.5 1 1.5 2 2.5 3
Time (sec)

Figure 11: Simulated closed loop step response of linearized system with lead
compensation in the forward path; model given by Equation 15 with K = 27, a = 10,
and T=0.005.

The design parameters were not chosen correctly because this system is still unstable, with a

phase margin of just 38.40 at 19.2 rad/s. A possible explanation for this is that our chosen

crossover frequency of 10 Hz was too low. Looking back at the plant's frequency response from

Figure 9, at 10 Hz the plant's magnitude hasn't really started to decay. This can be seen clearer

in Figure 10, where it appears to be multiple crossover frequencies. Thus, to guaranty stability,

we chose a much higher crossover frequency of 140 rad/s. Keeping the compensator's pole and

zero a decade apart, Equation 17 yields r = 0.0023. In addition, Equation 18 yields a proportional

gain K = 92.With this new parameters, the new theoretical loop transmission Bode plot was

drawn and shown in Figure 12 and the closed loop step response is in Figure 13.
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Bode Diagram
Gm= -9.07 dB (at 0 rad/sec) , Pn= 54.9 deg (at 142 rad/sec)
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Figure 12: Simulated Bode plot for loop transmission of linearized system with
model given by Equation 15 with K=92, a = 10, and T = 0.0023.
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Step Response
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Figure 13: Simulated closed loop step response of linearized system with lead
compensation in the forward path; model given by Equation 15 with K = 92, a=10,
and T = 0.0023.

With the new controller, there is phase margin of 54.9' at a crossover frequency of 140

rad/s. This system appears capable of stabilizing our system but it can still be improved. First,

Figure 12 shows the system's magnitude to be relatively constant before reaching crossover and

it is too close to 0 dB. Secondly, the system's step response shows a steady-state error. To

address this, we designed a lag compensator with an integrator that would provide higher again

at low frequencies as well as eliminate steady-state error. To avoid negative phase contributions

from the lag compensator at crossover, the lag zero was placed roughly a decade before

crossover frequency. Thus, we place the lag zero at 10 rad/s and the pole at the origin. The

simulated frequency and step responses are shown in Figure 14 and Figure 15, respectively.



Bode Diagram
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Figure 14: Simulated Bode plot for loop transmission of linearized system with lead
and lag compensation in the forward path.
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Figure 15: Simulated closed loop step response of linearized system with lead and
lag compensation in the forward path.

As seen in Figure 14, the crossover frequency is now better defined. Also, the step

response for the closed loop system chose no steady-state error, despite a high overshoot of

approximately 50%. To attempt and reduce this overshoot, we decided to move the lead

compensator from the forward path to the feedback path of the control loop. This change does

not change the loop transmission behavior but changes closed loop dynamics. New simulated

step response of the system with the lead compensator in the feedback path and the lag

compensator in the forward path is shown in Figure 16.
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Figure 16: Simulated closed loop step response of linearized system with lead
compensation in feedback path and lag compensation in the forward path.



3.1.3 Controller Implementation

The lead and lag compensators were implemented into the system through Simulink,

MATLAB, and the dSPACE board. Figure 17 shows the Simulink model used for the controlling

the linearized system. There is a transformation block at the input which converts the voltage

readings into gap length using the cubic fit found when calibrating the light sensor. After

configuring the physical controller view dSPACE, we noticed that there were discrepancies

between the simulated system dynamics and the physical responses. We were attempting to

stabilize the steel ball at a gap of 8 mm, but noticed the gain of 92 was too high and making the

system go unstable. Thus, through trial and error, it was determined that a gain of 50 was very fit

for the physical dynamics of the system. In order to test the behavior of the controller, we

measured the step responses of the system to a 0.5mm input at different operating points. While

measuring these responses, we noticed that the system was extremely noisy. In order to attenuate

the noise and get higher quality data, a low-pass filter was designed and implemented.

ibar

minus ibar

Xre G a i n Ki -. Vout to cunreit aarp
s J DAC CHI

Gain1 Integrator

alpha'tau.s+1 PKu 3 4- ADC

Lead Compensator convert [m] ball gap [mm] Low pass Filter Nght seas ad ch6

Figure 17: Simulink block diagram used to implement the linear controller for the
linearized system around an operating point, xbar.



These measurements of step responses were taken directly from the voltage readings of

the light sensor and converted to gap distance using the determined calibration. It can be seen

that the system responses are very noisy and the ball is constantly oscillating about its operating

point. Due to lack of time, this unexpected behavior could not be explored further. This

oscillatory motion made it difficult to precisely determine the range of stability of the system

because the system was not behaving optimally. Figures 18, 19, and 20 show the system's

position responses to a 0.5 mm step at air gaps of 6 mm, 7 mm, 8 mm, 9 mm, and 10 mm.

Through experimentation, we noticed that different air gaps required different gains for stability.

Beyond an air gap of 11mm, the gain had to be increased in order to maintain stability; in the

region of 12 mm gap, system required gain of over 125. Thus, we determined that the linear

controller is stable for air gaps between 5 mm and 11 mm.

Operating Point: 8mm; 0.5mm step
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Figure 18: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 8 mm air gap (Linearized).



Operating Point: 7mm; 0.5mm step
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Figure 19: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 7 mm and 6 mm air gaps (Linearized).
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Operating Point: 9mm; 0.5mm step
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Figure 20: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 9 mm and 10 mm air gaps (Linearized).
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3.2 Feedback Linearization

3.2.1 Theory

The design of a controller based on feedback linearization requires an accurate

relationship between the current in the coil, magnetic force on the steel ball, and the air gap

between the pole of the electromagnet and the ball. This method allows the controller to be valid

over the entire operating range because the nonlinear transformation allows the system to

calculate in real time the required current from a desired magnetic force at an instantaneous gap.

This transformation is shown schematically in Figure 4, where the block labeled "Nonlinear

Compensation" takes the desired force and instantaneous ball gap as inputs and outputs the

desired current. Thus, feedback linearization allows us to use typical linear feedback techniques

to design the controller because the software is making the nonlinearity look linear for all

operating points.

The necessary characterization for calculating the current output as a result of the desired

magnetic force can be found by rearranging Equation 1 to get

i F= x , (19)

where Fd is the desired magnetic force, x is the air gap, i is the current output to the coil and C is

the constant found experimentally in Section 2.3.2. However, as discussed also in Section 2.3.2

of this work, Equation 19 is only accurate for small levels of current. Thus, for this controller we

used the higher order relationship from Equation 5.



3.2.2 Controller Design

As discussed, feedback linearization in this suspension system allows for the combination

of the nonlinear compensation block with the plant to appear linear over the entire range of air

gaps to the linear compensation block. As seen in Figure 4, if the nonlinear compensator and the

plant are taken as one, its input is the desired magnetic force and it outputs the desired air gap

length. Thus, they can be collectively described by the transfer function

X(s) 1 (20)
F(s) mis2

meaning that the system is marginally stable. Hence, the goal of the controller design is to move

these poles far away from the origin and into the left-hand stable plane.

Similar to the linearized system, a lead compensator was used to stabilize the plant.

Figure 21 shows the Bode plot of the model based on feedback linearization (Equation 20) which

has aof -180'. A phase margin greater than 450 can be achieved through successful

implementation of a lead compensator. For the design of the lead compensator parameters, we

assume the compensator is in the forward path of the loop and we observe the system's loop

transmission:

L.T.= K a.s+1 (21)
ms2 (vs +1)

For this controller, the crossover frequency was chosen to be 10 Hz (62.8 rad/s). Keeping the

zero and pole of the lead compensator a decade apart (a=10), Equation 17 was used to find r =

0.005. The proportionality gain K was found through the use of Equation 18 with the difference

that the plant's magnitude at the crossover frequency is now 0.0038. Thus, K = 83.

Figure 22 shows the theoretical loop transmission Bode plot of the feedback linearized

system with lead compensation and Figure 23 shows its closed-loop step response. The phase
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margin is 54.9' at crossover, which is more stable than we had anticipated while designing the

controller. Looking at the step response in Figure 23, despite the overshoot, the system is well

damped and appears to have no steady-state error.

Bode Diagram
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Figure 21: Simulated Bode plot for plant transfer function with feedback
linearization based on Equation 20.



Bode Dagram

Gm = -Inf dB (at 0 rad/sec), PM= 54.9 deg (at 62.1 rad/sec)
100

50 -

-50-

-100
-120 r-

-150

-180 -
0 1 2 3 4

10 10 10 10 10

Frequency (rad/sec)

Figure 22: Simulated Bode plot for loop transmission of feedback linearized system
with lead compensation; model given by Equation 15 with K=83, a = 10, and T =
0.005.
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Figure 23: Simulated closed loop step response of feedback linearized system with
lead compensation in the forward path; model given by Equation 15 with K = 83, a
= 10, and T = 0.005.
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Figure 24: Root locus plot of suspension system with lead compensation.

The step response of the system has a small overshoot due to a closed loop zero. As seen

in the root locus plot, shown in Figure 24, as the gain increases, the poles at the origin leave the

real axis, circle around the lead compensator zero, and then one of the poles goes into higher

frequencies while the other moves towards the zero from the compensator. At K = 83, one of the

poles is at this low frequency zero that causes the overshoot seen in Figure 23. Thus, by moving

the controller into the feedback path, poles in the feedback path become closed-loop zeros

without affecting the loop transmission. This way, the closed-loop zero will move to a higher

frequency and eliminate this overshoot. Figure 25 shows the closed-loop step response for the

feedback linearized system with the lead compensator in the feedback path.
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Figure 25: Simulated Closed loop step response of feedback linearized system with
lead compensation in the feedback path; model given by Equation 15 with K = 83,
a= 10, and T = 0.005.

As seen in the new step response in Figure 25, we have eliminated the overshoot by

gaining a steady-state error. Thus, we designed and implemented a lag compensator with an

integrator to eliminate this steady-state error. For this case, we also placed the lag zero a decade

before the crossover frequency, at 5 rad/s, and the pole at the origin. The simulated frequency

and step responses are shown in Figure 26 and Figure 27, respectively.
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Figure 26: Simulated Bode plot for loop transmission of feedback linearized system
with lead compensation in feedback path and lag compensation in forward path.
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3.2.3 Controller Implementation

The lead compensator was implemented into the system through Simulink, MATLAB,

and the dSPACE board. Figure 28 shows the Simulink model used for the controlling the

feedback linearized system. In this system, the weight of the ball, which is the desired force the

electromagnet must produce to counteract gravity, is subtracted because the desired force is in

the negative direction. Also, the nonlinear transformation block implements Equation 5 to

accurately find the desired current given the instantaneous force and gap length. Similarly to

what happened when implementing the controller for the linearized model, the calculated gain

based on simulations made the system unstable. Through experimentation, we noticed that gain

for stability varied on the desired air gap, but it wasn't as sensitive as it was with the linearized

system. For this controller, we used gain of 50 for air gaps between 4 mm and 11 mm and gain of

90 for the range 11-15 mm. In order to address the same noise issues, we implemented the same

low-pass filter to the feedback linearization controller.

Lead
Compensator

Figure 28: Simulink block diagram used to implement the controller for
feedback linearized system.



Figures 29, 30, 31, 32, 33 and 34 show the system's postion responses to a 0.5 mm step at

air gaps of 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 13 mm, 14 mm, and 15

mm. Like previously explained, we had to adjus the gain for air gaps of 11 mm or greater.

However, unlike for the controller designed using linearization about an operating point,

feedback linearization allowed the controller to be valid for greater ranges of air gap. With the

same gain, we were able to have stable suspension rangin from 5 mm to 11 mm, although at 11

mm there was considerable oscilation. We increased the gain at this air gap and continued using

it for greater air gaps. Interestingly, step responses seem to improve as air gap is greater; not only

were the responses quicker and with less overshoot, but the signals were less noisy.
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Figure 29: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 5 mm air gap (Feedback Linearization).



Feedback Linearization: 6mm, 0.5mm step
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Figure 30: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 6 mm and 7 mm air gaps (Feedback
Linearization).



Feedback Linearization: 8mm, 0.5mm step
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Figure 31: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 8 mm and 9 mm air gaps (Feedback
Linearization).
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Feedback Linearization: 10mm, 0.5mm step
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Figure 32: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 10 mm and 11 mm air gaps (Feedback
Linearization).



Feedback Linearization: 12mm, 0.5mm step
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Figure 33: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 12 mm and 13 mm air gaps (Feedback
Linearization).
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Feedback Linearization: 14mm, 0.5mm step
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Figure 34: Position response as calculated from position sensor voltage
measurement to a 0.5 mm step at 14 mm and 15 mm air gaps (Feedback
Linearization).
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3.3 Levitating Steel Ball

After successful implementation of two controllers uing different nonlinear control

techniques, we were able to get the ball to levitate, as seen in Figure 35. The controller based on

the linearized system uses simpler models, but has a limited range of validity. The controller

based on the feedback linearization model operates accurately for a wider range of gap lengths at

the expense of requiring higher levels of characterization.

Figure 35: Photograph of steel ball in suspension.



Chapter 4: Conclusion

The thesis presented the design and implementation of feedback control tehniques for a

naturally unstable system. The single-degree of freedom magnetic suspension device is an

example of a classic nonlinear controls problem that required knowledge on modeling, dynamics,

and nonlinear control techniques for the succesful implementation of a controller. After

understanding the nonlinear nature of the single-axis suspension system, it was necessary to learn

how to correctly use nonlinear control techniques: linearization around an operating point and

feedback linearization. In addition, theoretical and experimentally fit models were developed for

determining gap length from light sensor voltage readings and for relating force, current, and ball

gap. A controller was designed using each approach to meet similar performance specifications.

Throughout this process, we learned that while linearizing the plant about an operating point

didn't require high order characterization of the electromagnet actuator, it had a very limited

operating range. As for feedback linearization, it granted a nonlinear control independent of

operating point on the expense of high sensitivity to modeling errors.
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