Verification of Semantic Commutativity Conditions and
Inverse Operations on Linked Data Structures
by
Deokhwan Kim

Submiitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

ARCHIVES
Master of Science -
t th E e :
e | SEp27 a0m
MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ;
! LIDRARIES

September 2011

(© Massachusetts Institute of Technology 2011. All rights reserved.

Department of Electrical Engineering and Computer Science
September 2, 2011

Certifiedby M NN L T
Martin C. Rinard
Professor
Thesis Supervisor
.
Acceptedby................. \.w. ceees

N L I L e
} ﬁe@ie A. Kolodziejski
Chairman, Department Committee on Graduate Theses

Verification of Semantic Commutativity Conditions and Inverse

Operations on Linked Data Structures
by

Deokhwan Kim

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2011, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

We present a new technique for verifying commutativity conditions, which are logical for-
mulas that characterize when operations commute. Because our technique reasons with the
abstract state of verified linked data structure implementations, it can verify commuting
operations that produce semantically equivalent (but not necessarily identical) data struc-
ture states in different execution orders. We have used this technique to verify sound and
complete commutativity conditions for all pairs of operations on a collection of linked data
structure implementations, including data structures that export a set interface (ListSet and
HashSet) as well as data structures that export a map interface (AssociationList, HashTable,
and ArrayList). This effort involved the specification and verification of 765 commutativity
conditions.

Many speculative parallel systems need to undo the effects of speculatively executed
operations. Inverse operations, which undo these effects, are often more efficient than
alternate approaches (such as saving and restoring data structure state). We present a new
technique for verifying such inverse operations. We have specified and verified, for all of
our linked data structure implementations, an inverse operation for every operation that
changes the data structure state.

Together, the commutativity conditions and inverse operations provide a key resource
that language designers, developers of program analysis systems, and implementors of
software systems can draw on to build languages, program analyses, and systems with
strong correctness guarantees.

Thesis Supervisor: Martin C. Rinard
Title: Professor

Acknowledgments

First, I would like to express my heartfelt thanks to Prof. Martin C. Rinard, my advisor. For
the past two years, he has taught me how to confront and tackle a difficult problem even
when it feels so overwhelming. He has also inspired me incessantly by keeping asking me,
”Are you brilliant?”” or ”Are you productive?”

I am deeply grateful to all the members of the Program Analysis and Compilation group
at MIT CSAIL: Michael Carbin, Vijay Garnesh, Fan Long, Sasa Misailovic, Jeff Perkins,
Stelios Sidiroglou-Douskos, and Karen Zee. They have kindly spent their valuable time
enlightening me in both research and daily life.

Finally, I thank my parents and family members from the bottom of my heart. They

have done anything for me at inconvenience to themselves. I can never thank them enough.

Contents

1 Introduction
1.1 PreviousResearch
1.2 Semantic Commutativity Analysis

1.3 Inverse Operations

1.4 Jahob

1.5 Contributions L
2 Example

2.1 AbstractState

2.2 Concrete State and Abstraction Function

2.3 Commuting Operations

2.4 Verifying Commutativity Condition Soundness

2.5 Verifying Commutativity Condition Completeness

2.6 Verifying Inverse Operations
3 Commutativity and Inverse Testing Methods

3.1 Completeness Commutativity Testing Template

3.2 Soundness Commutativity Testing Template

3.3 Inverse TestingMethods
4 Formal Treatment

4.1 Commutativity Conditions

4.1.1 Soundness and Completeness

7

13
14
15
16
17
18

21
21
23
23
23
25
26

29
29
31
31

4.1.2 Kinds of Commutativity Conditions

4.2 Inverse Operationso e e

5 Experimental Results
5.1 Commutativity Conditions
5.2 Verification of the Commutativity Conditions
5.2.1 Verifying the Remaining 57 Methods

53 Inverse Operations i

6 Related Work

7 Conclusion

39
41
46
48
49

51

55

List of Figures

2-1

2-3
2-4

3-1
3-2

4-1

The Jahob HashSet Specification 22
HashSet Commutativity Testing Methods for Between Commutativity Con-

dition for contains(vl) and add(v2) 24
HashSet Inverse Operation Testing Method for add(v) 26
HashTable Inverse Operation Testing Method for put(k, v) 26
Template for Completeness Commutativity Testing Methods 30
Template for Inverse Testing Methods 32
Execution on Concrete States and Abstract States 34

10

List of Tables

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

Before/Between/After Commutativity Conditions on Accumulator
Before Commutativity Conditions on ListSet and HashSet
Between Commutativity Conditions on ListSet and HashSet
Before Commutativity Conditions on AssociationList and HashTable
After Commutativity Conditions on AssociationList and HashTable
Between Commutativity Conditions on ArrayList
After Commutativity Conditions on ArrayList
Commutativity Testing Method Verification Times
Additional Jahob Proof Language Commands for Remaining 57 ArrayList

Commutativity TestingMethods

5.10 Inverse Operations o v v ittt

11

12

Chapter 1

Introduction

Commuting operations on shared data structures (operations that produce the same result
regardless of the order in which they execute) play a central role in many parallel computing

systems:

e Parallelizing Compilers: If a compiler can statically detect that all operations in a

given computation commute, it can generate parallel code for that computation [42].

e Deterministic Parallel Languages: Including support for commuting operations in
deterministic parallel languages increases the expressive power of the language while

preserving guaranteed deterministic parallel execution [5, 43].

e Transaction Monitors: If a transaction monitor can detect that operations within
parallel transactions commute, it can use efficient locking algorithms that allow com-
muting operations from different transactions to interleave [17, 50]. Because such
locking algorithms place fewer constraints on the execution order, they increase the

amount of exploitable parallelism.

e Irregular Parallel Computations: Exploiting commuting operations has been shown
to be critical for obtaining good parallel performance in irregular parallel computa-
tions that manipulate linked data structures [29, 30, 31]. The reason is essentially the
same as for efficient transaction monitors — it enables the use of efficient synchro-

nization algorithms for atomic transactions that execute multiple (potentially com-

13

muting) operations on shared objects. For similar reasons, exploiting commuting op-
erations has also been shown to be essential for obtaining good parallel performance

for the SPEC benchmarks [7].

Despite the importance of commuting operations, there has been relatively little re-
search in automatically analyzing or verifying the conditions under which operations com-
mute. Indeed, the deterministic parallel language, transaction monitor, and irregular par-
allel computation systems cited above all rely on the developer to identify commuting op-
erations, with no way to determine whether the operations do, in fact, commute or not. A
mistake in identifying commuting operations invalidates both the principles upon which

the systems operate and the correctness guarantees that they claim to provide.

1.1 Previous Research

Commutativity analysis [42] uses static program analysis to find operations that produce
identical concrete object states in all execution orders. But this approach is inadequate for
linked data structures — consider, for example, a linked list that implements a set interface.
Operations that insert elements into this data structure commute at the semantic level —
all insertion orders produce the same abstract set of elements. But they do not commute at
the concrete implementation level — different insertion orders (even though they produce
the same set) produce different linked lists. Any commutativity analysis that reasons at the
concrete implementation level (as opposed to the abstract semantic level) would therefore
conservatively conclude that such operations do not commute.

Another approach uses random interpretation [22] to detect commuting operations [1].
This technique explores control flow paths from different execution orders, with affine
join operations combining states from different control flow paths to avoid exponential
blowup in the number of analyzed states. Instead of directly comparing states from different
execution orders, the technique reasons about the return values of the functions that the
program uses to observe the different states. Because effective affine join operations do
not currently exist for linked data structures, this approach does not detect commuting

operations on linked data structures.

14

Both of these approaches are designed only to find operations that commute in all possi-
ble object states and for all possible parameter values. But some operations commute only
under certain conditions. Consider, for example, an operation that removes a key, value
pair from a hash table and an operation that looks up a given key in the hash table. These
operations commute only if the two keys are different. Recognizing and exploiting such
commutativity conditions is essential to obtaining good parallel performance for many ir-
regular computations [29, 30, 31] — these computations use the commutativity conditions
to dynamically recognize and exploit commuting operations whose commutativity proper-

ties they cannot statically resolve.

1.2 Semantic Commutativity Analysis

This paper presents a new approach for verifying the specific conditions under which oper-
ations on linked data structures semantically commute. Instead of reasoning directly about
the concrete data structure state, this approach builds on the availability of fully verified
linked data structure implementations [52, 53] to reason at the higher semantic level of the
(verified) abstract data structure state. The approach is therefore able to detect operations
that commute at the semantic level even though they may produce different concrete data
structure states. We have used this approach to verify both soundness (conceptually, if the
conditions hold, the operations produce the same abstract data structure state regardless of
the order in which they execute, see Chapter 4) and completeness (conceptually, if the con-
ditions do not hold, then different execution orders produce different abstract data structure
states, see Chapter 4) of commutativity conditions.

We have specified and verified sound and complete commutativity conditions for all

pairs of operations from a variety of linked data structure implementations:

e Sets: ListSet and HashSet both implement a set interface. ListSet uses a singly-

linked list; HashSet uses a hash table.

e Maps: AssociationList, HashTable, and ArrayList all implement a map interface.

AssociationList uses a singly-linked list of key, value pairs; HashTable implements a

15

separately-chained hash table — an array contains linked lists of key, value pairs with
a hash function mapping keys to linked lists via the array. ArrayList maps integers to
objects and is optimized for storing maps from a dense subset of the integers starting

at 0.
e Accumulator: Accumulator maintains a value that clients can increase and read.

Altogether, we specified and verified 765 commutativity conditions (216 from ListSet
and HashSet, 294 from AssociationList and HashTable, 243 from ArrayList, and 12 from
Accumulator).

Because the implementations of all of these data structures have been verified to cor-
rectly implement their specifications, the semantic commutativity conditions and inverses
are guaranteed to be valid for the concrete data structure implementations that execute when
the program runs. We emphasize, however, that our technique works with data structure
specifications, not data structure implementations. In particular, it is capable of verifying
semantic commutativity conditions and inverses even in the absence of any implementa-
tion at all (in this case, of course, the commutativity conditions and inverses are sound
only to the extent that the actual data structure implementation, when provided, correctly
implements its specification).

We note that the well-known difficulty of reasoning about semantic properties of linked
data structures [44] has limited the range of available results in this area. These verified
commutativity conditions therefore provide a solid foundation for the use of these linked

data structures in a range of parallel programs and systems.

1.3 Inverse Operations

In one of our usage scenarios, the system uses the commutativity conditions to dynamically
detect speculatively executed operations that do not commute with previously executed
operations [29, 30, 31]. In this case, the system must roll the data structure back to the
abstract semantic state before the operations executed, then continue from this restored

State.

16

Executing inverse operations that undo the effect of executed operations can be sub-
stantially more efficient than alternate approaches (such as pessimistically saving the data
structure state before operations execute, then restoring the state to roll back the effect of
the operations). Note that even though the restored abstract semantic state is the same,
the underlying concrete states may differ. For example, the inverse of an operation that
removes an element from a set implemented as a linked list inserts the removed element
back into the list. Even though the reinserted element may appear in a different position in
the list, the restored abstract set is the same as the original set.

We have developed an approach that is capable of verifying semantic inverse operations.
We have specified inverses for all of the operations on our set of data structures that update
the data structure state. We have used our approach to verify that all of these inverses undo
the effect of the corresponding operation to correctly restore the initial abstract state of the
linked data structure.

We note that the need to undo the effects of executed operations occurs pervasively
throughout computer systems, from classical database transaction processing systems [21]
to systems that recover from security breaches [20, 28, 39, 46]. In addition to the specific
motivating use described above, the verified inverse operations may therefore find broader
applicability in a variety of contexts in which it is desirable to efficiently undo data structure

state changes.

1.4 Jahob

We use the Jahob program specification and verification system to specify and verify the
data structure implementations, commutativity conditions, and inverse operations. Jahob
enables developers to write higher-order logic specifications for Java programs [52, 53]. It
also enables developers to guide proofs of complex program properties by using the Jahob
integrated proof language to resolve key choice points in these proofs [53]. Once these
choice points have been resolved, Jahob uses integrated reasoning to invoke a variety of
powerful reasoning systems (such as first-order provers [45, 49], SMT provers [10, 19],
MONA [24], and the BAPA [34, 35] decision procedure) to discharge the resulting auto-

17

matically generated verification conditions [52, 53].

In our approach, a data structure implementor specifies commutativity conditions for
pairs of data structure operations and/or inverses for individual operations that update the
data structure state. Our commutativity condition and inverse operation verification system
generates stylized Jahob methods whose verification establishes the validity of the corre-
sponding commutativity conditions and inverse operations. In our experience, Jahob is
often able to verify these methods without further intervention from the data structure im-
plementor. Specifically, for our set of linked data structure implementations, all but 57 of
the 1530 automatically generated commutativity testing methods and all of the eight au-
tomatically generated inverse testing methods verify as generated. If a method does not
verify, the data structure implementor uses the Jahob proof language [53] to appropriately
guide the verification of the method. For our set of linked data structure implementations,
Jahob was able to verify the remaining 57 commutativity testing methods after we aug-

mented the methods with a total of 201 Jahob proof language commands (see Chapter 5).

1.5 Contributions

This paper makes the following contributions:

e Semantic Commutativity Analysis: It presents a new commutativity analysis tech-
nique that verifies the soundness and completeness of semantic commutativity con-
ditions for linked data structures. Because this analysis reasons about the abstract
semantic state of the data structure (as opposed to the concrete implementation state),
it can verify semantic commutativity conditions that are inherently beyond the reach

of previously proposed approaches.
To the best of our knowledge, this analysis is the first to verify semantic commuta-
tivity conditions for linked data structures.

e Semantic Commutativity Conditions: It presents verified sound and complete com-

mutativity conditions for a variety of linked data structures. In this paper all of these

18

commutativity conditions are provided by the developer and verified by our imple-

mented system.

To the best of our knowledge, these are the first fully verified semantic commutativity

conditions for linked data structures.

e Semantic Inverse Analysis: It presents a new analysis for verifying inverse opera-
tions that undo the effect of previously executed operations on linked data structures.
Because the analysis reasons about the abstract data structure state, it can verify se-
mantic inverses that correctly restore the abstract data structure state even though

they may produce different concrete states.

To the best of our knowledge, this analysis is the first to verify semantic inverse

operations for linked data structures.

e Semantic Inverse Operations: It presents verified inverses for operations that up-
date the data structure state. Systems can use these operations to efficiently roll back

speculatively executed data structure operations.

To the best of our knowledge, these are the first fully verified semantic inverse oper-

ations for linked data structures.

o Experience: It discusses our experience using the Jahob [6, 52, 53] program spec-
ification and verification system to specify and verify commutativity conditions and
inverse operations for a group of data structures including a ListSet and HashSet that
implement a set interface, an AssociationList, HashTable, and ArrayList that imple-

ment a map interface, and an Accumulator.

We emphasize that in this paper, we focus on the specification and verification of the
commutativity conditions and inverse operations. We assume that any parallel system that
uses these conditions will implement some synchronization mechanism that ensures that
the operations execute atomically. Such mechanisms are already implemented and avail-

able in many of the systems which we expect to be of interest [5, 7, 17, 30, 31, 42, 43, 50].

19

20

Chapter 2

Example

Figure 2-1 presents the Jahob interface for the HashSet class, which uses a separately-
chained hash table [9] to implement a set interface. The HashSet class, like all of our data
structures, is written in Java augmented with specifications written in the Jahob higher-
order logic specification language. The interface exports a collection of specified oper-
ations. Each operation specification consists of a precondition (the requires clause), a
postcondition (the ensures clause), and a modifies clause. These specifications com-
pletely capture the desired behavior of the data structure (with the exception of properties

involving execution time and/or memory consumption) [52, 53].

2.1 Abstract State

The interface uses the abstract state of the HashSet to specify the behavior of HashSet
operations. This state consists of the set contents of objects in the HashSet, the size of
this set, and the flag init, which is true if the HashSet has been initialized (see lines 2, 3,
and 4 of Figure 2-1). The specification for the add (v) operation, for example, uses this
abstract state to specify that, if the HashSet is initialized and the parameter v is not null, it

adds v to the set of objects in the HashSet (see lines 11-16 of Figure 2-1).

21

—

10
11
12
13
14
15
16

17
18
19

20
21
22
23
24
25
26

27
28
29
30

public class HashSet {

/*: public ghost specvar init :: "bool" = "False"; */
/*: public ghost specvar contents :: "obj set" = "{}"; */
/*: public specvar size :: "int"; */

private Node[] table;
private int _size;

public HashSet ()
/*: modifies "init", "contents", "size"
ensures "init & contents = {} & size = 0" x/ { ... }

public boolean add(Object v)
/*: requires "init & v “= null"
modifies "contents", "size"
ensures "(v ~: old contents --> contents = old contents Un {v} &
size = old size + 1 & result) &
(v : old contents --> contents = old contents &
size = old size & “result)" */ {

public boolean contains(Object v)
/*: requires "init & v "= null"
ensures "result = (v : contents)" x/ { ... }

public boolean remove(Object v)
/*: requires "init & v ~= null"
modifies "contents", "size"
ensures "(v : old contents --> contents = old contents - {v} &
size = old size - 1 & result) &
(v 7: old contents --> contents = old contents &
size = old size & “result)" */ {

public int size()
/*: requires "init"
ensures "result = size" */ { ... }

Figure 2-1: The Jahob HashSet Specification

22

2.2 Concrete State and Abstraction Function

When the program runs, the HashSet operations manipulate the concrete state of the
HashSet. The concrete state consists of the array table, which contains pointers to linked
lists of elements in the HashSet, and the int _size, which stores the size of the hash table
(see lines 5 and 6 of Figure 2-1).

An abstraction function in the form of Jahob invariants (not shown, but see the complete
data structure specifications and implementations available in the technical report version of
the paper [26]) specifies the relationship between the concrete and abstract states [52, 53].
Like all of the data structures in this paper, we have used the Jahob system to verify that the
HashSet correctly implements its interface [52, 53]. This verification, of course, includes

the verification of the abstraction function.

2.3 Commuting Operations

Consider the add(v1) and contains(v2) operations on a HashSet s. These operations
commute if and only if v1 does not equal v2 or v1 is already in s. Figure 2-2 presents the
two methods that our system automatically generates to verify the soundness and complete-
ness of this commutativity condition. The first method (contains add between_s_40,
line 1 of Figure 2-2) verifies soundness. The second method (contains_add between_c 40,
line 15 of Figure 2-2) verifies completeness. The methods are written in a subset of Java

with Jahob annotations [53].

2.4 Verifying Commutativity Condition Soundness

The generated soundness testing method executes the add(v1) and contains(v2) oper-
ations in both execution orders on equivalent HashSets (HashSets with the same abstract
state). The method specification checks that, if the commutativity condition is true, then
both execution orders produce the same return values and final abstract HashSet states. If

Jahob verifies the method (which it does in this case without developer assistance), it has

23

O o~ N R W N =

—
(=]

11
12

13
14

25
26

27
28

void contains_add_between_s_40(HashSet sa, HashSet sb, Object vi, Object v2)
/*: requires "sa "= null & sb "= null & sa "= sb &
sa..init & sb..init & v1 "= null & v2 "= null &
sa..contents = sb..contents & sa..size = sb..size"
modifies "sa..contents", "sb..contents", "sa..size", "sb..size"

ensures "True" */

void contains_add_between_c_40(HashSet sa, HashSet sb, Object v1, Object v2)
/*: requires "sa "= null & sb "= null & sa "= sb &
sa..init & sb..init & vl "= null & v2 "= null &
sa..contents = sb..contents & sa..size = sb..size"
modifies "sa..contents", "sb..contents", "sa..size", "sb..size"
ensures "True" */

{

boolean rla = sa.contains(vi);

/*: assume "vli "= v2 | rl1a" x/

sa.add(v2);

sb.add(v2);

boolean rib = sb.contains(vl);

/*: assert "rla = rib & sa..contents = sb..contents & sa..size = sb..size" x/
}

{

boolean rla = sa.contains(vl);

/*: assume "~ (vl "= v2 | ria)" %/

sa.add(v2);

sb.add(v2) ;

boolean rib = sb.contains(vl);

/*: assert "“(rla = rib & sa..contents = sb..contents & sa..size = sb..size)"
}

Figure 2-2: HashSet Commutativity Testing Methods for Between Commutativity Condi-

tion for contains(v1) and add (v2)

24

verified that if the commutativity condition holds, then the operations commute.

The requires clause (lines 2—4 of Figure 2-2) ensures that the method starts with
two HashSets (sa and sb) that have identical abstract states. The method first applies
the sa.contains(v1) and sa.add(v2) operations to one of the HashSets (sa). A Jahob
assume command (line 9 of Figure 2-2) instructs Jahob to assume the commutativity con-
dition (vl "= v2 | rila). The method next executes the two operations in the reverse
order on the second HashSet sb (lines 11 and 12 of Figure 2-2). The assert command at
the end of the method (line 13 of Figure 2-2) checks that the return values are the same in
both execution orders and that the two HashSets have the same abstract states at the end of

the method.

In this example the commutativity condition works with the between state that is avail-
able after the first operation executes but before the second operation executes. A system
would use such a between condition just before executing the add (v2) operation to dynam-
ically check if this operation commutes with a previously executed contains(v1) opera-
tion. We also verify before conditions (which may be used to determine if two operations
that have yet to execute will commute when they execute) and after conditions (which may

be used to trigger rollbacks when already executed operations do not commute [30, 31]).

2.5 Verifying Commutativity Condition Completeness

The contains_add_between_c_40 method, which checks completeness, uses a similar pat-
tern except it negates both the commutativity condition and the assertion at the end of the
generated method. If Jahob verifies the method (which it does in this case without devel-
oper assistance), it has verified that if the commutativity condition does not hold, then the
operations produce different return values or different abstract data structure states when

they execute in different orders.

25

~N AN kW N =

~N AW R W N -

O oo

void add_O(HashSet s, Object v)

/*: requires "s "= null & s..init & v = null"

modifies "s..contents ", "s..size"

ensures "True" */
{

boolean r = s.add(v);

if (r) { s.remove(v); }

/*: assert "s..contents = s..(0ld contents) & s..size = s..(old size)" */
}

Figure 2-3: HashSet Inverse Operation Testing Method for add (v)

void put_O(HashTable s, Object k, Object v)

/*: requires "s "= null & s..init & k “= null & v "= null"
modifies "s..contents ", "s..size"
ensures "True" */

{

Object r = s.put(k, v);

if (r != null) { s.put(k, r); } else { s.remove(k); }

/*: assert "s..contents = s..(old contents) & s..size = s..(o0old size)" x*/
}

Figure 2-4: HashTable Inverse Operation Testing Method for put (k, v)
2.6 Verifying Inverse Operations

Figure 2-3 presents the generated inverse testing method for the HashSet add(v) op-
eration. This method first executes the add(v) operation, then the inverse if (r) {
s.remove(v); }. The inverse must consider two cases: when v was in the set before
the execution of add (v) (in which case the inverse must not remove v) and when v was not
in the set before the execution of add (v) (in which case the inverse must remove v). Note
that the inverse uses the return value r to distinguish these two cases. The final assert
command forces Jahob to prove that the final abstract state is the same as the initial ab-
stract state. Note that there is no requirement that the final concrete state must be the same
as the initial concrete state.

Figure 2-4 presents the inverse testing method for a more complex operation, the
HashTable put (k, v) operation. If the initial state of the HashTable mapped k to a value,
the inverse reinserts the mapping (the value to which the HashTable mapped k is available

as the return value r from the put (k, v) operation). If the initial state did not map k to a

26

value, the inverse removes the mapping that the put (k, v) inserted, leaving k unmapped
as in the initial state.

Both of the inverses in our example use the return value from the operation to carry
information from the initial state that the inverse can then use to undo the effect of the
operation. This approach works for all of our linked data structures. We note that it is, in
general, possible for operations to destroy information from the initial state that the inverse
needs to restore this initial state. In this case the operation needs to save information from
the initial state so that the inverse can later use this saved information to restore the initial

state.

27

28

Chapter 3

Commutativity and Inverse Testing

Methods

The commutativity testing method generator takes as input the data structure interface and,
for each pair of data structure operations, developer-specified before, between, and after
commutativity conditions. It produces as output the commutativity testing methods. It then
presents each method to the Jahob program verification system [52, 53]. If the method
verifies, the system has verified the corresponding commutativity condition. If it does not
verify, either the commutativity condition is not sound or complete or Jahob is not capable
of verifying the soundness and completeness without additional developer assistance. The
developer then, as appropriate, either modifies the commutativity condition or augments
the generated commutativity testing methods with additional proof commands written in

the Jahob proof language [53].

3.1 Completeness Commutativity Testing Template

Figure 3-1 presents the template that the generator uses to produce the completeness com-
mutativity testing method. The generation process simply iterates over all commutativity
testing conditions (and corresponding pairs of operations in the data structure interface),
filling in the template parameters as appropriate. In Figure 3-1 all template parameters

appear in italic font.

29

O 0 NN R W N =

void methodl_method2_(before | between | after)_c_id
(sa_decl, sb_decl, argvl decls, argv2_decls)
/*: requires "sa "= null & sb "= null & sa "= sb & sa_abstract_state = sb_abstract_state"
modifies "sa_frame_condition", "sb_frame_condition"
ensures "True" */
{
[/*: assume "~ (before_commutativity_condition)" */]
/*: assume "methodl precondition" */
rla_type rla = sa.methodl (argvl) ;
[/*: assume "~ (between_commutativity_condition)" */]
/*: assume "method2_precondition" */
r2a_type r2a = sa.method2(argv2) ;
[/*: assume "~ (after_commutativity condition)" */]
/*: assume "method2_precondition" */
r2b_type r2b = sb.method2(argv2) ;
/*: assume "methodl _precondition" */
rlb_type rib = sb.methodl (argvl) ;
/*: assert "“(rla = rlb & r2a = r2b & sa_abstract_state = sb_abstract_state)" */
}

Figure 3-1: Template for Completeness Commutativity Testing Methods

The name of the commutativity testing method contains the names of the two opera-
tions, a field that specifies whether the method tests a before, between, or after commuta-
tivity condition, the tag ¢ (which identifies the method as a completeness testing method),
and a numerical identifier id. The method takes as parameters two data structures (sa and
sb) and the parameters of the two data structure operations. The requires clause ensures

the data structures are distinct but have identical abstract states.

The generated method uses Jahob assume commands to instruct Jahob to assume that
the preconditions of the operations hold in the first execution order. If the preconditions do
not involve the state of the data structure (as in our example in Figure 2-2), the generator

moves the preconditions up into the requires clause.

The generator also uses an assume command to insert the negation of the commuta-
tivity condition (recall that the template is a completeness template and therefore includes
the negation of the condition) in the appropriate place in the generated method. The tem-
plate identifies the insertion points for all three kinds of commutativity conditions (before,
between, and after). A generated method, of course, contains a commutativity condition at

only one of these points.

30

The method next contains the operations in the reverse order, with assume commands
instructing Jahob to assume that the preconditions of the operations hold. Once again, if
the preconditions do not depend on the data structure state, the generator places them in the
requires clause of the method, not before the operation invocations as in the template.

The method ends with the final assertion (which Jahob must prove) that either one of
the corresponding return values or the final abstract states are different in the two different
execution orders.

As is appropriate for a completeness testing method, this structure forces Jahob to prove
that if the operation preconditions and the negation of the commutativity condition holds
in the first execution order, then either one of the operation preconditions is violated in the

reverse execution order or the final assertion holds.

3.2 Soundness Commutativity Testing Template

The soundness commutativity testing template has the same basic structure as the com-
pleteness template, with the exception that 1) it inserts the commutativity testing condition
(not its negation), 2) it omits the assume command for the operation preconditions in the
second execution order, and 3) the final assertion forces Jahob to prove that the return
values and final abstract states are the same in both execution orders.

As is appropriate for a soundness testing method, this structure forces Jahob to prove
that if the operation preconditions and commutativity condition holds in the first execution
order, then the operation preconditions hold in the reverse execution order and the return

values and final abstract states are the same.

3.3 Inverse Testing Methods

The inverse testing method generator takes as input the data structure interface and a
developer-specified set of inverse operation pairs. It produces as output the inverse test-
ing methods and feeds each method to the Jahob program verification system [53]. As for

the commutativity testing methods, the developer may, if necessary, augment the inverse

31

N N N e W N -

oc

void method_id (s_decl, argv_decls)

/*: requires "s = null & method_precondition"
modifies "s_frame_condition"
ensures "True" x*/

{

rtype r = s.method(argv) ;

execute_inverse_operation();

/*: assert "s_abstract_state = s_initial_abstract_state" */
}

Figure 3-2: Template for Inverse Testing Methods

testing methods with additional Jahob proof commands.

Figure 3-2 presents the template that the generator uses to produce the inverse testing
methods. The generation process simply iterates over all of the specified inverses, filling in
the template parameters (in italic font) as appropriate. The final Jahob assert command
requires Jahob to prove that the final abstract state (after the application of the inverse
operation) is the same as the initial abstract state from the start of the method. Jahob must

also prove the precondition of the inverse operation.

32

Chapter 4

Formal Treatment

We assume a set s € S of concrete states and a corresponding set 5 € S of abstract states.
We also assume that the data structure defines an abstraction function o : § — .

The commutativity and inverse testing methods work with logical formulas written in
the higher-order logic Jahob specification language [53]. For our data structures, the spec-
ifications, commutativity conditions, commutativity testing methods, and inverse testing
methods require only first-order logic.

Given an operation m(v) on a given data structure, pre(m(v)) denotes the precondition
of the method m from the data structure specification. The precondition is a logical formula
written in the Jahob specification language [53]. It is expressed in the name space of
the caller (i.e., with the formal parameter from the definition of m replaced by the actual
parameter v from the caller). We write a(s) = pre(m(v)) if the precondition is true in the
abstract state a(s).

We write (s, r) = s.m(v) if executing the operation m(v) in state s produces return value
r and new state s’. Given a starting state s and two operations m;(v{) and my(v;), we are

interested in the following states and return values (see Figure 4-1):

o (s®:2,r®:2) = s.m(v1): the intermediate state sg» and return value), that results

from executing m, (v1) in the original state s.

e (51.@,71.@) = Sop-m2(v2): the final state s1.@ and return value 7. that results from

executing my(v2) in the intermediate state sq.».

33

N

r®;2=m1(:y \&@\;lzmz(vz) r®: 2—my %:mz v2)
S S

S®;2 S@;1 l——) ®:2) @, 1)
r1.@=ma(v2) ry.@=m (vi) \ /
1@ [l 20 T, ®—m2 V2 r2® mj vl)
51:@ 52:® Sl ® = a(SZ ®

Figure 4-1: Execution on Concrete States and Abstract States

® (5@:1,7@;1) = s.my(v2): the intermediate state sp,; and return value rg),; that results

from executing my (v,) in the original state s.

® (52.@,M:®) = S@:1-m1(v1): the final state 5.5 and return value r,,q that results from

executing m; (v1) in the intermediate state sg);.

We are interested in states and return values for the two operations m(vy) and my(v;)
executing in both execution orders (m;(v;) followed by m;(v2) and my(v,) followed by
mj(v1)). The subscripts in our notation are designed to identify both the execution order
and (with a circle) the most recent operation that has executed. So, for example, s,
denotes the state after the operation m (v1) executes when the operation m (v;) executes
first and then m;(v;) executes. Similarly, r,.5 denotes the value that the operation m; (v1)
returns when the operation m;(v;) executes first and then the operation m; (v)) executes

and returns ry.q.

4.1 Commutativity Conditions

A commutativity condition ¢ is a logical formula written in the Jahob specification lan-
guage [53]. In general, the free variables of ¢ can include the arguments v; and vy,
the return values rg., and ri.», and abstract specification variables that denote
various elements of the three abstract states o(s), &t(s@2), and a(s;.@). We write
((s@:2:r:2) = s-m1(V1); (S1.@,"1:@) = Sa2-m2(v2)) = ¢ if the commutativity condition ¢

is satisfied when the operations execute in the order m;(v;); my(v2) (first m;(v;), then

my(v2)).

34

We anticipate that static analyses will work with commutativity conditions that involve
the abstract state. Systems that dynamically evaluate commutativity conditions, of course,
must work with the concrete data structure state, not the abstract data structure state. We
therefore use the abstraction function to translate commutativity conditions over the ab-
stract states into commutativity conditions over the concrete states. Chapter 5 presents

examples that illustrate this translation.

4.1.1 Soundness and Completeness

Conceptually, a commutativity condition is sound if, whenever the commutativity condition
and the preconditions of the two operations are satisfied in the first execution order, then
1) the preconditions of the operations are satisfied in the second execution order, 2) the
operations return the same return values in both execution orders, and 3) the abstract final
states are the same in both execution orders. We formalize this concept as follows.

Given a commutativity condition ¢ for two operations m;(v;) and m(v;), the verifi-
cation of the soundness commutativity testing method for these two operations establishes

(by the construction of this method) the following property:

Property 1 (soundness). If a(s) = pre(m;(v1)) and a(s@p2) = pre(ma(va)) and
((so2:ro2) = s:mi(v1); (1.0, M10) = So2-m2(v2) | ¢, then a(s) |= pre(my(v2)) and
a(s@;1) = pre(mi(vi)) and rap = ryq and 1.9 = rg;1 and o(s1,@) = 0U(s2,@)-

Conceptually, a commutativity condition is complete if, whenever the preconditions of
the two operations are satisfied in the first execution order but the commutativity condition
is not satisfied, then either 1) the preconditions of the operations are not satisfied in the
second execution order, 2) the return values are different in the second execution order,
or 3) the abstract final states are different in the two execution orders. We formalize this
concept as follows.

Given a commutativity condition ¢ for two operations m (v) and m(v;), the verifica-
tion of the completeness commutativity testing method for these two operations establishes

(by the construction of this method) the following property:

35

Property 2 (completeness). If a(s) = pre(mi(vi)) and a(s@pp) = pre(ma(va)) and
(o2, ro2) = sm1); (St@ @) = so2-m2(v2)) | 79, then a(s) = “pre(ma(v2)) or
o(s@;1) = "pre(mi(v1)) or rop # ra@ or rie # ren or o(s1e) # A(s2@).

4.1.2 Kinds of Commutativity Conditions

In general, a system or analysis may wish to test if a commutativity condition is satisfied
either 1) before either operation executes, 2) after the first operation executes but before the
second operation executes, and/or 3) after both operations execute. We therefore identify

the following kinds of commutativity conditions:

e Before Condition: A commutativity condition ¢ is a before condition if its free vari-
ables include at most the arguments v, and v, and elements of the initial abstract state
o(s). Because a before condition does not involve the return values rg.» and ry.g,
the intermediate state o¢(s@.2), or the final state a(s;.@), it is possible to evaluate the

condition before either of the operations executes.

e Between Condition: A commutativity condition ¢ is a between condition if its free
variables include at most the arguments v; and v;, the initial abstract state o(s), the
first return value r@).,, and elements of the intermediate abstract state o¢(sp.2). Be-
cause the between condition does not involve the second return value r;. or the
final abstract state o¢(s;.@), it is possible to evaluate the condition after the first op-
eration m; (v;) executes but before the second operation m;(v,) executes. Note that
if the between condition references elements of the initial abstract state a(s), the
system may need to save corresponding values from this state before the first opera-
tion m; (v;) executes so that it can subsequently use the saved values to evaluate the

between condition after the first operation executes.

o After Condition: All commutativity conditions are after conditions. Note that if
an after condition references the first return value 7)., or elements of the initial or
intermediate abstract states o(s) or &(s@.2), the system may need to save referenced
elements of these states so that it can evaluate the after condition after both operations

execute.

36

In practice we expect developers to minimize references to elements of previously com-
puted initial or intermediate abstract states when they specify between and after conditions.
One strategy replaces clauses in commutativity conditions that reference elements of the
initial or intermediate abstract states with equivalent clauses that reference return values
from executed operations. Before conditions for our set-based data structures, for example,
often test whether a parameter v of one of the operations is an element of the set in the
initial state s. The return value of the operation often indicates whether the element was, in
fact, an element of this initial set. The corresponding between and after conditions can then
replace the clause that tests membership in the initial set with an equivalent clause that tests
the return value. See Chapter 5 for specific occurrences of this pattern in the commutativity
conditions for our set of data structures.

For completeness, some of the between conditions cannot help querying the initial state
(the state before the first operation executes). For the same reason, some of the after condi-
tions query the initial and/or between states. In practice, there are two ways to dynamically
check such commutativity conditions: 1) perform the query before the operation executes
and record the result for the commutativity condition to check after the operation executes,
or 2) drop the clause containing the query from the commutativity condition and use the
resulting simpler, conservative, but not complete commutativity condition that does not
reference the initial and/or between states.

Because the commutativity conditions for our set of data structures are both sound and
complete, the before, between, and after conditions are equivalent even if they reference

different return values or elements of different abstract states.

4.2 Inverse Operations

Conceptually, an operation is an inverse of an initial operation if whenever the precondition
of the initial operation is satisfied, then 1) the precondition of the inverse is satisfied after
the initial operation executes and 2) executing the inverse after the initial operation executes
restores the abstract state (but not necessarily the concrete state) back to what it was before

the initial operation executed. We formalize this concept as follows.

37

Given an operation m| (v}) with inverse operation m;(v2), the verification of the inverse
testing method for these two operations establishes (by the construction of this method) the

following property:

Property 3 (inverse). If oaf(s) |= pre(mi(vy)), then a(spp) = pre(ma(vz)) and
o(s) = asi;@)-

38

Chapter 5

Experimental Results

We next discuss the commutativity conditions, inverse operations, and verification process
for our set of data structures. We first discuss the operations that each data structure exports.
The source code for all of the data structures (including both specification and implemen-
tation) as well as the commutativity and inverse testing methods (which contain all of the
commutativity conditions and Jahob proof constructs required to enable Jahob to verify the
methods) is available in the technical report version of the paper [26].

The Accumulator implements a counter with two operations:
e increase(v): Adds the number v to the counter.
e read(): Returns the value in the counter.

HashSet and ListSet implement a set of elements with the following operations. Be-
cause they implement the same specification, they have the same commutativity conditions

and inverse operations.

e add(v): Adds the element v to the set of elements in the data structure. Returns false

if the element was already present and true otherwise.
e contains(v): Returns true if the element v is in the set and false otherwise.

e remove(v): Removes the element v from the set. Returns true if v was included in

the set and false otherwise.

39

e size(): Returns the number of elements in the set.

HashTable and AssociationList implement a map from keys to values with the fol-
lowing operations. Because they implement the same specification, they have the same

commutativity conditions and inverse operations.
e containsKey(k): Returns true if there exists a value v for the key k in the map.
e get (k): Returns the value v for the key k, or null if k is not mapped.

e put(k, v): Maps the key k to the value v. Returns the previous value for the key k,

or null if k was not mapped.

e remove(k): Removes the mapping for the key k. Returns the value that the key k

was mapped to, or null if the data structure did not have a mapping for the key k.

e size(): Returns the number of key, value pairs in the data structure.
ArrayList implements a map from the integers to objects with the following operations:

e add_at(i, v): Pushes all objects with indices greater than or equal to i up one
position to create an empty position at index i, then inserts the object v into that

position.
e get(i): Returns the object at index 1i.

e index0f (v): Returns the index of the first occurrence of the object v or -1 if the

object v is not in the map.

e lastIndex0f (v): Returns the index of the last occurrence of the object v or -1 if

the object v is not in the map.

e remove_at(i): Removes the element at the specified index i, then slides all objects

above i down one position to fill the newly empty position at index 1.

e set(i, v): Replaces the object at the index i with the object v. Returns the replaced

object previously at index i.

e size(): Returns the number of elements in the map.

40

Methods] Before/Between/After Commutativity Condition |

s,.increase(v;) sy.increase(vy) | true true
! VT =sy.read() vi =0 vi=0
ri = s1.read() sy.increase(v;) | v, =0 v, =0
1= ry = sp.read() true true

Table 5.1: Before/Between/After Commutativity Conditions on Accumulator
5.1 Commutativity Conditions

Tables 5.1 through 5.7 present the commutativity conditions for selected illustrative pairs of
operations from our set of linked data structures. The complete set of all 765 commutativity

conditions is available in the technical report version of the paper [26].

The first and second columns in each table identify the pair of operations. The third col-
umn presents the commutativity conditions in terms of the arguments, return values, and
abstract data structure states. These commutativity conditions are suitable for static analy-
ses that reason about the commutativity conditions at the level of the abstract states. The
fourth column translates any abstract state queries (typically set membership operations)
into operations that can be invoked on the concrete data structure. These commutativity
conditions are suitable for dynamically checking the commutativity conditions when the

program runs.

The commutativity conditions assume the operations operate on the same data structure
(operations on different data structures trivially commute). s; denotes the data structure
state before the first operation executes; s denotes the state of the same data structure after
the first operation executes but before the second operation executes. Each commutativity
condition in the table corresponds to the execution order in which the operation in the first

column executes first followed by the operation in the second column.

The before condition tables are symmetric (for a given pair of operations, the commu-
tativity conditions are the same for both execution orders). The between condition tables
may be asymmetric if the commutativity condition references either the return value from
the first operation (which is not available in the other execution order) or depends on the
intermediate data structure state (which may be different in the other execution order). Sim-

ilarly, the after tables may be asymmetric if the commutativity condition depends on the

41

Methods

Before Commutativity Condition |

si.add(vy)

$7.add(v;)

true

true

r) = sy.contains(vo)

VI #Vva Vv €5

Vi # v2 Vsj.contains(vy) = true

sp.remove(vy)

VI V2

Vi#E V2

r| = sj.contains(v;)

s2.add(v7)

VI Vv € s

v1 #v2 Vsi.contains(vy) = true

ry = sp.contains(v;)

true

true

sy.remove(vz)

Vi #v2 Vv €51

vi # va Vsp.contains(vy) = faise

sy.remove(vy)

s2.add(v2)

Vi # V2

Vi £ 2

r» = sp.contains(vz)

v Z VvV €5y

v £ va Vsj.contains(v;) = false

sp.remove(v;)

true

true

Table 5.2: Before Commutativity Conditions on ListSet and HashSet

Methods

Between Commutativity Condition

52.add(v2)

true

true

s1.add(vy)

r2 = s3.contains(v;)

VI F V2V €51

vi # va Vsi.contains(v)) = true

§p.remove(1;)

Vi # V2

Vi # V2

52.add(v2)

Vi # va V| = true

v £vaVry = true

ri = sj.contains(vy) | rp = sz.contains(vy) | true true
sz2.remove(vy) vi £ v Vr =false | vi ZvaVr) = false
s7.add(v7) Vi £ v Vi # Vv

si.remove(vy) r, =sy.contains(va) | vi Zva Vv € 5 vi # va Vsy.contains(vy) = false
s2.remove(vs) true true

Table 5.3: Between Commutativity Conditions on ListSet and HashSet

Methods

| Before Commutativity Condition]

r; =sp.get (kz)

true

true

r = si.get(k;)

sa-put(ky,v2)

ky # ky V (k1,v2) € 51

ki # ko \/Sl.get(kl) =V

sy.remove(ky)

kl 7ék2\/<k1’—> gsl

ki # ky V s1.containsKey(k;) = false

ry =s3.get (kz)

ki kv <k1,V1> € 5

ky # kg\/sl.get(kl) =

51 .put(kl,w)

s2.put(kz,v2)

ki #kaVvi=w

ki #kaVvi=v

sy.remove(ky) | ki £k ky #ky

rn=sy.get(k2) | ki #kaV{ky,-) €51 | ki # k2 Vs).containsKey(k;) = false
sy.remove(k;) | sz2.put(kz,va) ki #ky ki £k

sy.remove(ky) | true true

Table 5.4: Before Commutativity Conditions on AssociationList and HashTable

| Methods

ri =s;.get(kp)

| After Commutativity Condition]
r» =sa.get(ky) | true true
SZ.put(kz,Vz) ki ZkyVri=w ki ZkyVry=v;

sz.remove(ky)

k1 #£kyVr = null

ki #kyVry =null

r2 = s2.get(kz)

k1 # ky V (k1,v1) € 5

ki #ky VS1.get(k1) =V

sl.put(kl,vl) Sz.put(kz,VQ) ki #£kyVvi=w ki£kraVvi=vy

sp.remove(ky) | k1 #£ ko ki #ky

ra=sy.get(kz) | ki #kaV{ki,_) €51 | ki # ka Vs;.containsKey(k;) = false
sj.remove(k;) | s2.put(ka,v2) ki £k ki #kj

sy.remove(ky) | true true

Table 5.5: After Commutativity Conditions on AssociationList and HashTable

42

314

Methods

Between Commutativity Condition

sl.add‘at(i;,vl)

s2.add_at(iz,v2)

(i1 <ip<|s2|—1 /\Sz[iz] = vz)V
(li =i Avy :Vz)\/
(il >i2/\sz[i1—1]:v1)

(i1 <ix < s2.8ize() — 1 Asa.get(in) = v2)V
(i1 =ibAvi=1)V
(il > iz/\Sz.get(il — 1) = v1)

r) = s7.index0f (v;)

—(3i: sz[i] =)V

(Fi<iy: Sz[i] =w)V

(=(Fi < iy ISz[i] = V2)/\S2[i1] =wmnA
s2[i1 +1]=w)

52.index0f (v2) <OV

0 < sp.index0f(v;) < i; V
(s2.index0f (v2) = i1 A
s2.get{it+1) =)

s2.remove_at(iz)

(<b<|a]—TAs L] =slha+1)V
(|s2] =2 > iy =ir Asafi1 + 1] =v1) V
(Is2] =2 > iy > i Asalis +1] = 1)

(i1 <iy < sy.size()— 1 Asy.get(iz) =sz2.get(ia+1))V
(s2.81ze() —2> i1 =i2 Asa.get{ii+1)=v)V
(s2.8ize(}) —2 > i1 > i Asa.get(ii +1) =vy)

r1 = sj.index0f (v{)

(r1 <OAvV #£v)V

(7‘1 <0Av; ?é\)z)\/

s2.add_at(ip,v2) 0<r<ipV 0<r<ipV
(rn=iAvi=w) (r1=i2Avi =v2)
r2 = 5p.index0f(vy) | true true
ry <0v r<ov
§2.remove_at(iz) 0<rn<iaVv 0<r<ihVv

(r1 =A< \32|—1/\S2[i2+1] :vl)

(rn =i Aiy <sp.size() — 1 Asy.get(ir+1)=v;)

sj.remove_at (i)

s2.add-at(iz, v2)

(h <ip /\sz[iz— 1] =w)V
(i =i2/\.§‘1[i1] =w)V
(il > iz/\.s‘z[i] — 1] = Sl[il])

(i1 <iaAsz.get(ia—1)=v)V
(i1 =i2 Asi.get(i)) =v2) vV
(i1 > ia Asa.get(ip — 1) = 51.get(iy))

r; = s57.index0f(v,)

(ﬂ(Ei : Sz[i] = VZ) AS] [i]] # vz) \Y
(Fi<ip:sfil=w)V

(—(Fi<ip sl =vo)Asplit] =2 A
S][il] =A< |SQ|)

(s2.index0f(v;) < OAsy.get(iy) #v2)V
0 < s5;.index0f(v2) < i V
(s2.index0f (v2) = i1 A

si.get(i]) = vy Aip < sz.size())

$7.remove_at(iy)

(i1 <ty /\Sz[iz — 1] = Sz[iz]) \
=iV
(|s2] > i1 > iz /\S][il] =Sz[i1])

(i1 <izAszget(ip—1)= s2.get(iz)) VvV
1=V
(s2.size() > i) > i Asy.get(i) = s2.get(iy))

Table 5.6: Between Commutativity Conditions on ArrayList

Methods

After Commutativity Condition

s1.add_at(ij,vy)

57.add_at(iz,v7)

(i1 <ip <|s3| —2As3[ia+ 1] =)V

(=i Avi=wn)V
(i >i2/\53[i1]:V1)

(i1 <ir <s3.size() —2Ass.get(ir+1)=wn)V
(Ii=hAvi=wn)V
(i > iy As3.get(i]) =vp)

r; = s2.index0£ (v;)

rn <0V
0<rn<iVv
(rz =1 /\S3[i] —Vz)

ra <0V
0<rn<iiVv
(n=i1As3.get(ii+1) =)

s2.remove_at(iz)

(11 <12<|S3|/\S2{12]—S3[])
(Is3|=1>iy =i As3lit] =v1)V
(Is3] =1>i1 > ia As3lit] =v1)

(i1 < iz < s3.8ize() Asz.get(in) = s3.get(ir))V
(s3.8ize()—1 >4 =i Asz.get(i) =vi)V
(s3.5ize() —1>1i1 >ix As3.get(i1) =v1)

ry = s1.index0f (vq)

(rn <0Avi £w)V

(r1 <0AWV; #Vz)v

s57.add_at(iz,vs) 0<r<ipVv 0<r<ipVv
(rn=i2Avi =w) (rn=iaAvi=w)
r» = 55.index0£(v;p) | true true
rp <oV ry<ov
s2.remove_at(iy) 0<r <ihV 0<rn<ipVv

(r1 =iy Nia < s3] Ass[ig] = v1)

(rn=ixAiz < s3.size() Ass.get(iz) =v;)

sj.remove_at (i)

52.add_at(iz,vz)

(il <i2As3[ia—1] =v2)V
(L =i2 Asi[i] = v2) V
(iy > i2 Assir] = s1[i1])

(i <iaNAs3.get(ip—1)=w)V
(I =i Asi.get(i)) =v)V
(i1 > ix As3.get(i]) = s1.get(i1))

r, = s7.index0£(v;)

(r2 <OAs[i]) #v2) V
0<rn<i1Vv
(rz =1 /\Sl[il} =A< |S3D

(ra <OAs;.get(iy) #v2)V
0<rn<ihVv
(ro=1i1 Asp.get(i)) =v2 Al < s3.size())

sy.remove_at(iz)

(i1 <iy /\S3[i2 — 1] =s2[i2])V
i1 =iV

(|S3|+1 >0 >0 /\sl[il] :S3{i1 - 1])

(i1 <y /\S3.get(i2 — 1) = SZ.get(iz)) \
=iV

(s3.8ize()+1> i) > i3 Asy.get(i)) = s3.get(ip — 1))

Table 5.7: After Commutativity Conditions on ArrayList

44

intermediate or final data structure states.

In general, our data structures implement the update operations that return values
(add(v), remove(v), put (k, v), remove(k), remove_at(i), and set(i, v)). For ex-
ample, the add(v) operation from the ListSet and HashSet data structures returns true if
the element v was not already present in the abstract set, while the remove (v) operation

returns true if the element v was in the abstract set.

We have verified commutativity conditions for two variants of these operations — one
in which the client records the return value (typically by assigning the return value to a
variable) and another in which the client discards the return value. The tables in this paper
present the commutativity conditions only for the variants that discard the return value; the
complete tables available in the technical report version of the paper [26] present commu-
tativity conditions for both variants. Because clients that record the return values observe
more information about the data structure, the commutativity conditions for these vari-
ants can be more complex. For example, the between commutativity condition for the
rl = s.add(vl); r2 = s.add(v2) pairis (vl "= v2 | ~r1) (ie., either vi and v2
are different or v1 was already in the set before the first operation executed), while the

commutativity condition for the s.add(v1), s.add(v2) pair is simply true.

In general, the commutativity conditions take the form of a disjunction of clauses.
Dropping clauses produces conservative sound commutativity conditions that may be easier
(for static analyses) or more efficient (for dynamic checkers) to work with. Such commu-
tativity conditions are, of course, no longer complete. If the dropped clauses usually have
no effect on the value of the commutativity condition, the gain in ease of reasoning or

efficiency may be worth the loss of completeness.

One particularly useful special case is when the commutativity condition is simply
true — i.e., the operations commute regardless of the data structure state. For example,
add operations typically commute with other add operations, contains operations typi-
cally commute with other contains operations, and remove operations typically commute
with other remove operations. Such commutativity conditions are particularly easy to rea-
son about at compile time since the compiler does not need to reason about the parameter

values or states to find commuting operations.

45

‘ Data Structure ’ Verification Time {

Accumulator 0.8s
AssociationList Im 35s
HashSet 44s
HashTable 3m 20s
ListSet 40s
ArrayList 12m 18s" (3m 04s, 27s)

Table 5.8: Commutativity Testing Method Verification Times

For a data structure with n operations, there are 3n? commutativity conditions — a
before, between, and after condition for each pair of operations. For our data structures
we consider two versions of operations that update the data structure — one with a return
value and one that discards the return value. So there are 2 operations for Accumulator,
6 for HashSet and ListSet, 7 for HashTable and AssociationList, and 9 for ArrayList,
for a total of (3%2%) +2x(3%6%) 4 2% (3%7%) 4 (3%9%) = 765 commutativity condi-
tions and 1530 generated commutativity testing methods — a soundness testing method

and a completeness testing method for each commutativity condition.

5.2 Verification of the Commutativity Conditions

For HashSet, ListSet, AssociationList, HashTable, and Accumulator, all of the automati-
cally generated commutativity testing methods verify as generated. Table 5.8 presents the
time required to verify all of these automatically generated methods. The verification times
are all quite reasonable — less than four minutes for all data structures except ArrayList.
For ArrayList, 429 of the 486 methods verify as generated. The entry for ArrayList
in Table 5.8 indicates that Jahob spent 12m 18s attempting to verify all 486 automatically
generated methods (with the majority of this time spent waiting for the Jahob integrated
reasoning systems to time out as they try, but fail, to verify the 57 methods that require
additional proof commands), 3m 04s verifying the 429 methods that verify as generated,
and 27s verifying the remaining 57 methods after the addition of the required Jahob proof

commands.

"The Z3 [10] and CVC3 [19] decision procedures were each given a 20-second timeout.

46

| Proof Language Command | Count |

note 128
assuming S1
pickWitness 22
Total 201

Table 5.9: Additional Jahob Proof Language Commands for Remaining 57 ArrayList Com-
mutativity Testing Methods

In general, the commutativity conditions for ArrayList are substantially more compli-
cated than the other data structures. We attribute this complexity in part to the use of
integer indexing and in part to the presence of operations (such as add_at and remove_at)

that shift the indexing relationships across large regions of the data structure.

The verification of the remaining 57 ArrayList commutativity testing methods required
the addition of 128 note commands, 51 assuming commands, and 22 pickWitness com-

mands (see Table 5.9).

In general, the note command allows the developer to specify an intermediate formula
for Jahob to prove. Jahob can then use this formula in subsequent proofs. In this way, the

developer can identify a lemma structure that helps Jahob find the proof.

The assuming command allows the developer to prove formulas of the form A — B
(by assuming A, then using A to prove B). We typically use the assuming command when
Jahob is unable to prove a goal B in one case A of the cases of the commutativity condition
(or, when proving completeness, the negation of the commutativity condition). Providing

a proof of A = B enables Jahob to verify the commutativity condition.

The pickWitness command allows the developer to start with an existentially quanti-
fied formula, name an element for which the formula holds, then remove the quantifier and
use the resulting formula in a subsequent proof. We typically use this command when the
commutativity condition (or its negation) contains an existential quantifier and we need to

use the commutativity condition to prove a goal.

47

5.2.1 Verifying the Remaining 57 Methods

The 57 remaining methods fall naturally into four categories. Each requires the proof
language commands to manipulate either an existentially quantified formula or the negation

of such a formula.

12 of the 57 methods are soundness testing methods for combinations of either
add_at (i,v1l) or remove_at (i) with either index0f (v2) or lastIndex0f (v2). The
commutativity condition is either a between or after condition. We discuss the between
condition for add_at(i, v1) with index0f (v2). The other combinations are similar.
One of the cases of the commutativity condition states that v2 is not present in the inter-
mediate state of the map (so that index0f (v2) returns -1). In this case Jahob must prove
that the element is also not present in the initial state before add_at (i, v1) executes (so
that the return value of index0f (v2) is -1 in both execution orders). In effect, Jahob must
prove that if the element is not present in the intermediate state, it is also not present in
the initial state — in other words, Jahob must prove that the negation of one existentially
quantified formula implies the negation of another existentially quantified formula. To en-
able Jahob to prove this fact, we use an assuming command, a pickWitness command,
and several note commands to prove the contraposition (i.e., that if the element is present
in the initial state, then it is also present in the intermediate state). A key step in the proof
of the contraposition involves the identification of the new position of v2 in the array after
the add_at (i, v1) shifts it over (Jahob can automatically prove the cases when it is not

shifted).

8 of the 57 methods are soundness testing methods for combinations of remove_at (i)
with index0f (v). In these methods Jahob must prove that the return value of index0f (v)
is the same in both execution orders. The proof involves a case analysis of the initial state
of the ArrayList. In one of the cases, the initial state contains two adjacent copies of v:
one at location i and the other at location i + 1. In this case, remove_at (i) removes the
first occurrence of v, leaving the second occurrence of v in location i. In both execution
orders index0f (v) returns i (but i references conceptually different versions of v in the

two execution orders). Jahob is unable to prove this fact without help. The addition of

48

a note command that identifies the case and the new position of the second v after the
remove_at (v) operation executes enables Jahob to complete the proof. The formula that
identifies the case is the negation of a complex existentially quantified formula.

20 of the 57 methods are completeness testing methods for various combinations of
add_at(i, v), remove_at(i, v), and set(i, v). In these methods Jahob must prove
that the two final abstract states are different. In general, Jahob accomplishes such a proof
by finding an element that is present in one abstract state but not the other. In some cases,
however, Jahob is unable to find such an element. The addition of an assuming command
(which identifies the case) and note commands that identify the element and help Jahob
prove which abstract state contains the element and which does not enables Jahob to com-
plete the case analysis. The relevant formula identifying the case is existentially quantified.

17 of the 57 methods are completeness testing methods for combinations of either
add_at(i,v1) or remove_at (i) with either index0f (v2) or lastIndex0f (v2). Recall
that the operation add_at (i, v1) shifts the region of the map above i up to make space
for v1 at index i. Similarly, remove_at (i) shifts the region of the map above i down
to fill the hole left by the removed element. The verification of the completeness testing
method involves a case analysis of the relative positions of the inserted or removed element
and the element v2 (whose index is returned by index0f (v2) or lastIndex0f (v2)). In
one of the cases Jahob is unable to reason successfully about these relative positions. The
addition of an assuming command (which identifies the case) and a note command that
identifies the precise position of v2 (this note command follows from the formula which
identifies the case) enables Jahob to complete the case analysis. Once again, the formula

identifying the relevant case is existentially quantified.

5.3 Inverse Operations

Table 5.10 presents, for every operation that changes the data structure’s abstract state, the
corresponding inverse operation that rolls back the effect of the first operation to restore
the original abstract state. s; and s, denote the data structure states before and after the

first operation executes, respectively. Note that some of the inverse operations use the

49

Operation Inverse Operation
p p

Accumulator sj.increase(v) sy.increase(—v)
ListSet r =sj.add(v) if r = true then s;.remove(v)
HashSet r = sj.remove(v) if r = true then s5.add(v)
AssociationList | r = s;.put(k,v) if r # null then sp.put(k,r) else s;.remove(k)
HashTable r=s;.remove(k) if r # null then sy.put (k,r)
s1.add_at(i,v) sp.remove_at(i)
ArrayList r=si.remove_at(i) | sp.add at(i,r)
r=sj.set(i,v) sp.set(i,r)

Table 5.10: Inverse Operations

return value from the first operation. Any system that applies such inverse operations must
therefore store the return value from the first operation so that it can provide the return value
to the corresponding inverse operation. All of the eight inverse testing methods verified as

generated without the need for additional Jahob proof commands.

50

Chapter 6

Related Work

We have already surveyed related work in detecting and exploiting commuting operations
(see Chapter 1). To use the commutativity conditions in practice, systems must typically
deploy some synchronization mechanism to ensure that operations execute atomically. The
specific synchronization mechanisms are orthogonal to the issues we address in this paper
(our goal is to verify the correctness of commutativity conditions and inverses, not to design
mechanisms that ensure that operations execute atomically).

One synchronization approach is to simply use standard pessimistic (such as mutual
exclusion locks [2, 4, 21] or their extension to views of objects [12]) or optimistic (such
as optimistic locks [21] or software transactional memory [47]) concurrency control mech-
anisms. It is also possible to deploy customized nonblocking synchronization algorithms
that are tailored for the specific data structure at hand [25, 40].

Bridge predicates enable developers to specify equivalent states in parallel programs
with operations that are intended to execute atomically but whose execution is, in practice,
interleaved [8]. These predicates can then be used to recognize and discard false positives
in the interleaved execution. In the absence of bridge predicates, such false positives occur
when the interleaved execution produces a concrete state that is unrealizable in the atomic
execution but nevertheless semantically equivalent to some state that an atomic execution
produces. Bridge predicates enable the testing system to recognize the state equivalence
and therefore the acceptability of the interleaved execution.

It is often possible to exploit the structure of the commutativity conditions in order

51

to develop optimized mechanisms to dynamically detect speculatively executed operations
that do not commute with previously executed operations. For example, abstract locks,
forward gatekeepers, and general gatekeepers are successively more general conflict de-
tection mechanisms, each of which is appropriate for a successively larger class of com-
mutativity conditions [29]. Our sound and complete commutativity conditions typically
take the form of a disjunction of clauses. Dropping clauses produces sound, simpler, but in
general incomplete commutativity conditions. Simpler commutativity conditions are typ-
ically more efficient to check but expose less concurrency. It is possible to start with a
sound and complete commutativity condition and generate a lattice of sound commutativ-
ity conditions by dropping clauses (here the least upper bound is disjunction [29]). Which
commutativity condition is most appropriate for a given context depends on the interaction
between the commutativity condition checking overhead and the amount of concurrency

that the commutativity condition exposes in that context.

Commuting operations can be used to simplify correctness proofs of parallel
programs [14]. The basic idea is to use commutativity information to enable reduction
— obtaining larger-grained atomic blocks by showing that finer-grain statements adjacent
in one thread commute with statements in other threads. The specific method uses a form of
computation abstraction (replacing statements with statements that have more behaviors)
to enhance their ability to obtain statements that commute with other statements. While
this may increase the possible behaviors of the program, the idea is to prove assertions at
the end of the program. If these assertions are valid under the extended set of behaviors of

the abstracted program, they are also valid for the original program.

The research presented in this paper uses a different form of abstraction (data abstrac-
tion as opposed to computation abstraction) for a different purpose (reasoning about the
semantic equivalence of commuting and inverse operations on linked data structures). Our
results may, however, enhance the effectiveness of techniques that reason about explicitly
parallel programs — they provide such reasoning techniques with useful commutativity

and inverse information about operations that manipulate linked data structures.

We recently became aware of a project that reduces the verification of commutativity

conditions and inverses to solving automatically generated SAT problems [41]. The spec-

52

ification language is an abstract imperative language (as opposed to logic specifications
as in our research). To enable the reduction to SAT, the specification language does not
include loops and recursion. It instead adds additional constructs to provide an acceptably

expressive specification language.

A general theme in this research is decoupling the verification of data structure imple-
mentations from the analysis of data structure clients. The immediate goal of the research
presented in this paper is to verify commutativity conditions and inverses for sophisticated
linked data structures. Other systems can then build on the availability of these verified
conditions and inverses to more effectively analyze and transform clients that use the data

structures.

This approach is designed to encapsulate the complex reasoning required to verify so-
phisticated data structure properties (such as commutativity and inverses) within a special-
ized analysis and verification framework. This encapsulation then enables the development
of simpler but more scalable client analyses that can work at the higher level of the veri-
fied properties rather than attempting to directly analyze the data structure implementations

along with the client together in the same analysis framework.

Decoupling data structure and client analyses is appropriate because data structure im-
plementations and clients have different analysis/verification needs. With current technol-
ogy, the verification of linked data structure implementations requires the use of sophisti-
cated but unscalable techniques. Such techniques are appropriate in this context because of
the tractable size of data structure implementations, the abstraction boundary between data
structure implementations and clients, and because the cost of the resulting ambitious data
structure verification efforts can be effectively amortized across many uses of the verified
properties. Client analyses, in contrast, face significant scalability requirements. Working
with verified data structure properties (instead of directly with data structure implemen-
tations) can enable the development of simpler but still precise client analyses that can

acceptably scale to analyze large client code bases.

In previous research we have found that aspect-oriented techniques can help develop-
ers productively factor and modularize the desired client correctness properties, enabling

client analyses to work within an appropriately focused analysis scope [36]. In partic-

33

ular, this approach supports the expression and verification of client correctness prop-
erties that involve interactions among multiple data structures and invariants over them.
Other examples of projects that are designed to exploit or enable decoupled data struc-
ture implementation and client analyses include the Hob project [33, 36, 37, 38, 51], the
Jahob project [6, 52, 53], research on efficient implementations of multiple relations over
objects [23], and research on verifying properties of programs that use containers [13].
Typestate analyses are designed to scalably verify simpler properties involving abstract

object state changes [3, 11, 15, 16, 18, 32, 37, 48].

54

Chapter 7

Conclusion

We have presented new techniques for verifying semantic commutativity conditions and
inverse operations for linked data structures. Our results show that these techniques can
effectively verify inverse operations and sound and complete commutativity conditions for
a collection of challenging linked data structures.

Our results provide a useful foundation that others can build on as they develop a broad
range of current and envisioned static reasoning systems and parallel programs, languages,
and systems. Commuting operations, commutativity conditions, and inverse operations
play an important role in such systems.

In the longer term we envision the integration of the commutativity condition and in-
verse verification techniques presented in this paper into mature software development kits.
Deploying these techniques in this way would promote their wider use by developers within
a familiar environment as well as their productive integration with other software develop-

ment tools.

55

56

Bibliography

(1]

(2]

(3]

[4]

[5]

[7]

(8]

[9]

Farhana Aleen and Nathan Clark. Commutativity analysis for software paralleliza-
tion: Letting program transformations see the big picture. In Proc. of the Interna-

tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), 2009.

Thomas E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Trans. Parall. Distrib. Syst., 1(1), 1990.

Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael,
and Martin Vechev. Laws of order: Expensive synchronization in concurrent algo-
rithms cannot be eliminated. In Proc. of the ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), 2011.

David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks: Feath-
erweight synchronization for Java. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 1998.

Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and
Mohsen Vakilian. A type and effect system for Deterministic Parallel Java. In Proc.
of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), 2009.

Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and Martin C. Rinard.
Using first-order theorem provers in the Jahob data structure verification system. In

Proc. of the International Conference on Verification, Model Checking, and Abstract
Interpretation (VM CAI), 2007.

Matthew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas B. Jablin, and David I.
August. Revisiting the sequential programming model for the multicore era. IEEE
Micro, 28(1), 2008.

Jacob Burnim, George Necula, and Koushik Sen. Specifying and checking semantic
atomicity for multithreaded programs. In Proc. of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS),
2011.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press and McGraw-Hill Book Company, 1989.

57

[10] Leonardo de Moura and Nikolaj Bjgmer. Efficient E-matching for SMT solvers. In
Proc. of the International Conference on Automated Deduction (CADE), 2007.

[11] Robert DeLine and Manuel Fiahndrich. Enforcing high-level protocols in low-level
software. In Proc. of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2001.

[12] Brian Demsky and Patrick Lam. Views: Object-inspired concurrency control. In
Proc. of the ACM/IEEE International Conference on Software Engineering (ICSE),
2010.

[13] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using
containers. In Proc. of the ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL), 2011.

[14] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In
Proc. of the ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 2009.

[15] Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical linear types for
imperative programming. In Proc. of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2002.

[16] Manuel Féhndrich and K. Rustan M. Leino. Heap monotonic typestates. In Proc.
of the International Workshop on Aliasing, Confinement and Ownership in Object-
Oriented Programming (IWACO), 2003.

[17] Alan Fekete, Nancy A. Lynch, Michael Merritt, and William E. Weihl.
Commutativity-based locking for nested transactions. In Proc. of the International
Workshop on Persistent Object Systems (POS), 1989.

[18] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Abstrac-
tion techniques and complexity results. In Proc. of the International Static Analysis
Symposium (SAS), 2003.

[19] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification condi-
tions using satisfiability modulo theories. In Proc. of the International Conference on
Automated Deduction (CADE), 2007.

[20] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The Taser
intrusion recovery system. In Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), 2005.

[21] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[22] Sumit Gulwani and George C. Necula. Precise interprocedural analysis using random
interpretation. In Proc. of the ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL), 2005.

58

(23]

(24]

(25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv. Data
representation synthesis. In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2011.

Jesper G. Henriksen, Jakob Jensen, Michael Jgrgensen, Nils Klarlund, Robert Paige,
Theis Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in practice.
In Proc. of the International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 1995.

Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queue as an example. In Proc. of the International Conference on
Distributed Computing Systems (ICDCS), 2003.

Deokhwan Kim and Martin C. Rinard. Verification of semantic commutativity con-
ditions and inverse operations on linked data structures. Technical Report MIT-
CSAIL-TR-2010-056, Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, December 2010.

Deokhwan Kim and Martin C. Rinard. Verification of semantic commutativity condi-
tions and inverse operations on linked data structures. In Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2011.

Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion recov-

ery using selective re-execution. In Proc. of the Symposium on Operating Systems
Design and Implementation (OSDI), 2010.

Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui, and Keshav Pingali.
Exploiting the commutativity lattice. In Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2011.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala,
and L. Paul Chew. Optimistic parallelism requires abstractions. In Proc. of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2007.

Milind Kulkarni, Dimitrios Prountzos, Donald Nguyen, and Keshav Pingali. Defining
and implementing commutativity conditions for parallel execution. Technical Report
TR-ECE-09-11, School of Electrical and Computer Engineering, Purdue University,
August 2009.

Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proc. of the ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL),
2002.

Viktor Kuncak, Patrick Lam, Karen Zee, and Martin C. Rinard. Modular pluggable

analyses for data structure consistency. IEEE Transactions on Software Engineering,
32(12), 2006.

59

[34] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding Boolean algebra with
Presburger arithmetic. Journal of Automated Reasoning, 36(3), 2006.

[35] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for
Boolean algebra with Presburger arithmetic. In Proc. of the International Confer-
ence on Automated Deduction (CADE), 2007.

[36] Patrick Lam, Viktor Kuncak, and Martin Rinard. Crosscutting techniques in pro-
gram specification and analysis. In Proc. of the International Conference on Aspect-
Oriented Software Development (AOSD), 2005.

[37] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking for
data structure consistency. In Proc. of the International Conference on Verification,
Model Checking, and Abstract Interpretation (VM CAI), 2005.

[38] Patrick Lam, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying data struc-

ture consistency. In Proc. of the International Conference on Compiler Construction
(CC), 2005.

[39] Prince Mahajan, Ramakrishna Kotla, Catherine C. Marshall, Venugopalan Ramasub-
ramanian, Thomas L. Rodeheffer, Douglas B. Terry, and Ted Wobber. Effective and
efficient compromise recovery for weakly consistent replication. In Proc. of the ACM
European Conference on Computer Systems (EuroSys), 2009.

[40] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proc. of the ACM Symposium on Principles
of Distributed Computing (PODC), 1996.

[41] Eliot Moss. Personal communication, 2011.

[42] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: a new analysis tech-
nique for parallelizing compilers. ACM Transactions on Programming Languages
and Systems, 19(6), 1997.

[43] Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of
Jade. ACM Transactions on Programming Languages and Systems, 20(3), 1998.

[44] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming Languages and Systems,
24(3), 2002.

[45] Stephan Schulz. E — a brainiac theorem prover. AI Commun., 15(2-3), 2002.

[46] Fareha Shafique, Kenneth Po, and Ashvin Goel. Correlating multi-session attacks via
replay. In Proc. of the Workshop on Hot Topics in System Dependability (HotDep),
2006.

[47] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2), 1997.

60

[48] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering, 12(1),
1986.

[49] Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 2,
chapter 27, pages 1965-2013. The MIT Press, 2001.

[50] William E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers, 37(12), 1988.

[51] Thomas Wies, Viktor Kuncak, Patrick Lam, Andreas Podelski, and Martin Rinard.
Field constraint analysis. In Proc. of the International Conference on Verification,
Model Checking, and Abstract Interpretation (VM CAI), 2006.

[52] Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional verification of
linked data structures. In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2008.

[53] Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof language for
imperative programs. In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2009.

61

