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Abstract

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the
next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed
generation can each have detrimental impact on the existing electric grid infrastructure. However,
appropriate pairing of the two technologies along with some storage could mitigate their individual
negative impacts.

This thesis develops a methodology and an optimization tool for the design of grid connected electric
vehicle chargers that integrate distributed generation and storage into a single system. The optimization
tool is based on a linear programming approach that identifies designs with the minimum system lifecycle
cost. The thesis also develops the component and system cost models needed for this optimization. The
tool can handle single and multiple charger systems with centralized or distributed generation and storage.
To verify the tool’s accuracy, a search-based optimization technique that works for single chargers with
centralized generation and storage is also developed and used to validate the tool.

To demonstrate the usefulness of the optimization tool, it is used to design optimal architectures for a
single-charger residential charging case and a multi-charger public charging case. It is shown that designs
that draw the maximum available power from the grid have the lowest 20-year system lifecycle cost.
When storage is needed because the grid cannot provide full charging power, optimal designs may or may
not include solar PV based distributed generation depending on the location. For example, in locations
with solar irradiation profiles like Los Angeles, CA, electric vehicle charger designs that include solar PV
generation are optimal, while in locations like Eugene, OR, optimal designs do not include solar PV. It is
also shown that with the available technology, wind turbines are not cost effective for use in residential
chargers in locations with wind speeds similar to Los Angeles, CA and Boulder, CO. For the multi-
charger public charging case, designs with centralized storage and generation are optimal.
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Chapter 1

Introduction

Growing concern for climate change and energy security has renewed interest in Plug-in Hybrid
Electric Vehicles (PHEVs) and Electric Vehicles (EVs), collectively referred to as Plug-in Electric
Vehicles (PEVs). PEVs can offer benefits in terms of improved air quality and provide an opportunity for
economic growth to regions that take the lead in its technological development. These vehicles connect to
the electric grid in order to charge an internal battery which is later used, instead of or in addition to
burning gasoline, to propel the vehicle. A shift towards PEVs could substantially reduce the US’s
dependence on foreign oil since 60% of oil is imported and 71% of the oil is consumed by the
transportation sector, including 46% by cars and light trucks [1]. In the US, 27% of greenhouse gas
(GHG) emissions due to human activities are caused by the transportation sector, and transportation is the
fastest growing source of GHG emissions [1]. Depending on the grid’s generation mix, using electricity
instead of gasoline may result in substantial reductions in GHG emissions [2]. GHG emission reduction is
expected in a number of East and West coast states whose generation mix has low emissions. On the other
hand, GHG emissions reduction is not expected in states that depend heavily on coal power plants. When
compared to existing hybrid electric vehicles, which do not connect to the grid but still employ an internal
battery to make significant improvements in fuel efficiency, PEVs may have an increase in GHG
emissions depending on the generation mix [3]. The incremental electricity required to charge a PEV
should be generated from low emission sources such as nuclear or renewable generation to truly yield the
potential emissions benefits often claimed from using PEVs instead of existing vehicles.

Much effort has already been made to integrate renewable energy into the generation mix. There is
a strong legislative drive to mandate, or incentivize, large scale integration of renewable energy resources
(such as wind and solar) into the electric grid. Twenty-nine US states and the District of Columbia have
established renewable portfolio standards (RPS) that mandate, or set voluntary targets, to integrate
substantial amount of renewable energy into the grid over the next decade [4]. Some of these RPS goals
include carve-outs for distributed generation (DG). This type of generation specifically connects to the
distribution system and consists of generation units rated from a few kW to a few MW. The prominent
renewable DG that is seen today is rooftop solar photovoltaic (PV) systems although there has been some
installation of small-scale wind turbines.

It is anticipated that over the next few decades, both PEVs and renewable DG will become more

prominent. The increasing penetration level of each technology alone could present substantial
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challenges to the existing electric grid infrastructure if not integrated effectively. One way to mitigate the
impact of PEV charging on the electric grid, while at the same time helping to reduce negative
consequences of connecting DG to the grid, is to combine PEV charging, renewable DG and local storage
into a single system. This solution would also help achieve RPS goals and yield the often-discussed
emissions benefits of PEVs. This is an opportunity that has not been adequately exploited from a
component size optimization standpoint, and is the subject of this thesis. The purpose of this thesis is to
develop a methodology for sizing components to meet the charging needs of a PEV. To determine the
optimal design out of all possible designs that meet the PEV requirements, a system lifecycle cost model
complements the methodology. The design that yields the lowest system lifecycle cost is considered the
optimal design in this thesis.

This chapter will first discuss the challenges of interconnecting PEVs and renewable DG to the
electric grid which will drive the motivation to pair these two technologies together. Then it will review
some of the past work done on PEV charging system optimization as well as existing PEV charging
systems with integrated renewable generation. Moving forward, this chapter will present the scope and

objectives of this thesis. Finally, it will introduce the content and organization of the chapters that follow.

1.1 Motivation

The untraditional nature of PEVs and renewable DG can present many unique benefits as well as
challenges to utility system operators. The impact of these technologies, both good and bad, will depend
heavily on their penetration level. The next two sections will discuss the expected penetration levels and
challenges of PEVs and renewable DG in order to motivate combined systems that may offer reduced

system impact.

1.1.1  Plug-in Electric Vehicle Penetration and Impact

A number of automobile manufacturers have already released or plan to release PHEVs and EVs
into the market [1], [5]. Although estimates vary, by 2020 roughly 2 million PEVs are expected to be on
the road in the US, and this number is expected to climb to 13 million by 2030, representing about 4.5%
of the light duty vehicle population [6], [7]. However, penetration is not expected to be uniform across
the country. Some west coast utilities expect PEV penetration of around 10% in their service territories
by as early as 2020 [8]. Such levels of PEV penetration will require large scale deployment of residential
and public chargers. In 2010, the Society of Automotive Engineers (SAE) released an updated standard
for PEV chargers that established recommended practices for Level 1 (up to 1.9 kW) and Level 2 (up to
19.2 kW) charging [9]. Although homegrown standards for fast (Level 3) charging are under
development, chargers with power ratings of around 60 kW that meet Japanese rapid charging standards

are already being piloted in the US [10]. Level 1 and Level 2 charging is expected to be used for
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residential charging while Level 2 and Level 3 charging is expected to be used in developing a public
charging infrastructure [11].

Although the need for large scale deployment of PEV chargers is clear, their impact on the
electric grid is less certain. The potential impact of a deployment of PEVs on the electric grid can be seen
from the example of California shown in Fig. 1-1. As the penetration of PEVs increases, the additional
annual energy demand due to these vehicles marginally increases the total annual electrical energy
demand of the state (Fig. 1-1 (a)). Because generation asset capacity is sized to meet peak load demand,
generation units are underutilized most of the time. This means that a generation unit might only operate
for half of the year when there is enough demand and is available to operate more hours in the year if
needed to serve the extra generation requirements of PEVs. This means that the increase in annual energy
generated due to even a 100% penetration of PEVs in California is unlikely to require any additions to
generation infrastructure due to existing idle capacity. However, the peak power demand of coincident
peak PEV charging significantly increases the total peak power demand of the state (Fig. 1-1(b)). Most
increases in peak power demand are undesirable as they usually result in costly investments in upgrading
the capacity of existing transmission and generation infrastructure that would be used only a few hours
each year. Even small, but geographically concentrated, PEV penetration could have substantial
disruptive impact on local distribution systems, depending on the power rating of the chargers and the
time of day when the vehicles are charged [15]-[17]. Note that a 7.2 kW Level 2 charger draws as much
peak power as an entire house or two [18]. This sudden increase in power requirements at the distribution
level could easily overload the existing infrastructure, primarily the components closest to the point of

interconnection such as pole-mounted transformers.

400 160
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Figure 1-1: Impact on California's (a) annual electrical energy demand and (b) peak power demand for
varying levels of PEV penetration out of the state’s 30 million light duty vehicles. In (a), a 30 mile
average daily commute at 4 miles’lkWh vehicle efficiency is assumed. In (b), it is assumed that 50% of the
vehicles are charging at the same time as the system peak at an average rate of 6 kW. Electricity and
vehicle data for 2008 obtained from [12]-[14].
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1.1.2 Renewable Distributed Generation Penetration and Impact

Sixteen states and the District of Columbia have an RPS with specific DG and/or solar
provisions; compliance can be achieved by both large merchant DG and small residential DG facilities
[3]. A few examples of these provisions are listed in Table 1-1. RPS goals and other financial incentives
have the potential to greatly influence increasing numbers of DG connected to the distribution system.
While an increased penetration of renewable DG may increase societal benefits, especially with respect to
emissions, integrating large levels of renewable DG into the grid is challenging as the variable and
unpredictable nature of wind and solar make grid operations more difficult [19].

Many of the challenges presented by DG relate to the fluctuation in feeder voltage. For example,
this can result from a mismatch in voltage regulation coordination or from variable output power from the
DG that occurs with a sudden cloud or a drop in wind speed [19], [20]. When this happens, the feeder
voltage level may not comply with industry standards. These challenges can be mitigated through the use
of storage at the DG location or along the feeder to buffer the fluctuation in voltage and properly regulate
the voltage through appropriate power absorption or injection.

There are also complications associated with the disconnection protocol in use. This protocol was
originally motivated by protection of worker safety during system outages [21]. DG is required to
disconnect when there is a 12% drop in voltage and reconnection can only occur after five minutes of
voltage levels returning to normal. The idea was that the DG will cease to supply power to what should be
a deenergized line. This presents two problems: (1) any energy that could have been generated is lost and
(2) the disconnection of several DG can occur even if there is no sustained fault on the local system. The
first problem is detrimental to the investment made in DG technologies as well as decreases reliability
benefits that could have been achieved. The second problem can result in a cascade of disconnecting DG

leading to a severe sustained fault throughout a large region [22].

1.2  Past Work
On the commercial front, PEV chargers with renewable DG exist [23]-[26] but there is little
indication that the power rating of the DG was optimized to charge a particular PEV. There are

publications pertaining to sizing stand-alone renewable DG and/or storage systems to meet general load

Table 1-1: State RPS solar or DG generation requirements as a percentage of annual electricity sales [3].

Year | Arizona (DG) | Colorado (DG) | Illinois (Solar) | Nevada (Solar)
2011 | .75% 1.00% N/A N/A

2015 | 1.5% 1.75% 0.27% 1.2%

2020 | 3.0% 3.00% 0.96% 1.5%

2025 | 4.5% 3.00% 1.41% 1.5%
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requirements [27]-[30] but a lack of publications related to sizing grid-interfaced systems to meet PEV
charging requirements. Likewise, there are publications describing the use of PEVs to mitigate impacts of
variable renewable DG through the use of its internal battery as a storage unit [31], [32], but the
renewable DG is not sized to specifically meet the needs of PEVs. The next two sections discuss the
findings of past work and solutions and points out their limitations with respect to component

interconnection and/or lack of component size optimization.

1.2.1 Existing PEV Charging Systems with Integrated Renewable Generation

Manufacturers and ecofriendly enthusiasts alike have begun installing charging stations with
parking space shading provided by canopies mounted with solar PV panels. The vast majority of these
systems are most likely meant to be statements about a particular company’s efforts to generate low
emission electricity. Often there is no storage associated with these charging stations, meaning that any
renewable energy that is generated will only be supplied to a vehicle if it is plugged in. Also, the main
purpose for the rooftop on which the solar PV panels are mounted is to provide shading for vehicles, so
its dimensions may limit the use of an optimal number of solar PV panels needed to charge a PEV.

In the case of the National Renewable Energy Laboratory’s prototype SolarTree™ [23], the
canopy provides shade for parked cars and a surface for solar PV panels to be mounted. The expected
1,520 kilowatt-hours (kWh) per year generated for the two charging stations could fully recharge one
Chevrolet Volt’s 16 kWh battery [33] from 20% state-of-charge (SOC) up to 118 times. If a Chevrolet
Volt needs to be recharged every day, only one third of the total required energy each year will come
from the solar PV panels if the vehicle is plugged in every minute that the solar PV panel is generating
power. Keep in mind that these solar PV panels sit above two charging stations which makes solar energy
utilization per vehicle even lower. It is unclear if the chosen number of solar panels is based on a
predetermined canopy space or the type and frequency of PEVs that are expected to be charged.

The Solar EV Dock is another solution for charging PEVs using solar PV generated energy [24].
In this case, the integrated storage within the charger allows flexibility in time of charging. The PEV
does not need to charge exactly coincident with solar PV power production. The two-vehicle charging
station with associated canopy is claimed to produce between 4,000 kWh and 6,000 kWh a year. They
further claim that this is enough to supply a 20-mile work commute each way for both cars each year.
Using the Chevrolet Volt example again, 4,000 kWh will recharge it from 20% SOC up to 312.5 times.
This is just under half the year if both of the chargers are used every day. 6,000 kWh will recharge a
Chevrolet Volt 468 times — approximately 64% of the year if both chargers are used each day. This is
close to the claim of supplying enough energy for two vehicles that have a work commute of 20 miles

each way. The storage unit power rating and capacity are not listed.
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PEV charging using renewable DG is not limited to parking lot canopies, as seen with the 40 kW
solar PV installation on top of Nissan’s headquarters in Japan [25]. It is claimed that this installation can
charge 1,800 Nissan Leaf EVs per year with its three 50 kW chargers, four 3.3 kW chargers and 96 kWh
lithium-ion storage. This comes out to charging just under five Nissan Leafs each day. For continued
comparison, if it is assumed that 1,800 of the 24 kWh Nissan Leafs [34] are being charged from 20%
SOC to 100% SOC each year, then this would translate to charging 2,700 of the 16 kWh Chevrolet Volt
PHEVs from 20% SOC to 100% SOC each year. If there are seven chargers, each one could sufficiently
recharge a Chevrolet Volt each day. In fact, each charger could recharge two Chevrolet Volts 21 days of
the year if used every day.

Wind turbines, an alternative to solar PV panels, are also being explored. The Sanya Skypump
will be a combination street light, GE Wattstation™" and 4 kW wind turbine that can either charge a PEV
with renewable energy or send it to the grid when there is no vehicle charging [26]. There is no additional
storage unit. At an average wind speed of 5 m/s, the wind turbine is estimated to produce 4,700 kWh
which energy-wise could fully recharge a Chevrolet Volt from 20% SOC every day of the year assuming
the vehicle is plugged in whenever the wind turbine is producing power.

Table 1-2 summarizes these commercially available products that pair renewable DG and PEV
charging stations together. Here, the Chevrolet Volt is used as a comparison metric for each solution. If a
PEV with a much larger battery was used instead, then the renewable DG might be insufficient to provide
all the energy needs of the PEV. It is also unclear from each solution if any of the components were

optimized on either an economic or energy basis.

1.2.2 Past Work on PEV Charging System Optimization

Each investment into a generation technology often takes careful calculation and analysis to
sufficiently and adequately meet given load requirements. When the perfect balance between load and
generation cannot be met in every instance of time, often storage is used to absorb or supply excess

power. This storage becomes more crucial for generation sources, like wind and solar PV, where the

Table 1-2: Existing renewable energy based PEV Charging Solutions

Product/Charging Renewable  Storage? Number of Times a Chevrolet Source
Solution DG Source Volt can be Recharged per
Charger per Year'
Solar Tree ™ Solar PV No 59 [23]
Solar EV Dock Solar PV Yes 156-234 [24]
E‘;th;’faft‘:;; (Nissan Solar PV Yes 386 [25]
Sanya Skypump Wind Turbine No 367 [26]

" Assuming that the Chevrolet Volt’s 16 kWh battery will be recharged from 20% to 100% state-of-
charge (SOC)

16



relatively uncontrollable output power is dependent on the wind and sun. At the same time, these systems
must often make economic sense when compared to electricity that could be bought from the grid.

Standalone systems that are often found in remote locations require a DG unit that will supply all
of the energy needs of the load. A storage unit is definitely necessary to buffer any mismatch between
generation and load. Load control and curtailment are often necessary tools even when storage is present
in the system. The optimal sizing of the DG and the storage unit indeed poses a complex problem [27]-
[29]. IEEE has even established recommended practices for sizing lead-acid batteries for stand-alone solar
PV systems [30]. However, because standalone systems are not grid-connected, these systems compose
different architectures than the ones envisioned for this thesis.

Alternative publications on systems that do combine renewable DG, PEVs, and the grid often use
PEVs instead of a separate storage unit to provide ancillary services in response to power fluctuations
from the renewable DG. The use of PEVs in this manner often requires bi-directional power flow, in
which case it is called Vehicle-to-Grid (V2G). Some systems do not interconnect the PEVs to the grid
directly [31]. Systems that do interconnect PEVs to the grid are discussed with respect to power flow
control but not component size optimization [32]. While power flow optimization is an important
component in system sizing, previous work has assumed a fixed, predetermined amount of renewable
DG. The main goal of these publications was to describe control schemes that adjust power flow between
components to optimize utilization of each component rather than size components to optimize economic
utilization.

The next section will explain the scope of this thesis and how it differs from past work and the
commercial solutions available today primarily from a component size optimization standpoint but also
with respect to flexibility in interconnecting components (e.g., multiple chargers can have centralized or

distributed renewable DG) and power flow control options (e.g., the grid can charge the storage unit).

1.3  Thesis Scope and Objectives

There are a number of different ways to configure and control a system consisting of PEV chargers,
renewable DG, energy storage and electric grid interface. The system might not include storage and/or
renewable DG. Alternatively, it might be a self-sufficient, stand-alone system with substantial renewable
DG and storage, but no grid interface. If renewable DG, storage and grid interface are all present, their
relative ratings can be quite different depending on how power flow is managed. For example, the system
may or may not prefer to draw power from storage and/or renewable DG before drawing power from the
grid; and it may impose different limits on the power that can be drawn from or delivered to the grid. If
there are multiple chargers in the same geographical vicinity, alternative configurations can also be

conceived depending on whether the renewable DG and/or storage is centralized or distributed. Some
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possible configurations based on centralized versus distributed renewable generation sources and/or
storage are shown in Fig. 1-2. Different designs can also be developed using alternate technologies for
renewable DG (e.g., solar PV versus wind turbine) or storage (e.g., electrochemical battery versus
flywheel).

Without a quantitative comparison of these possible designs in terms of system attributes of
interest, it is not clear which design is the most appropriate. The system attributes that are of importance
for a PEV charging system are cost, efficiency and reliability. This thesis will compare alternative designs
in terms of system lifecycle cost, which includes initial capital costs and operating costs (consisting of
energy and maintenance costs). By including energy and maintenance costs in system lifecycle cost, the
impact of system efficiency and reliability is incorporated in the results of the comparative analysis.

The main objective of this thesis is to develop a methodology paired with a system lifecycle model
In its development, the

to find the optimal cost design for a given architecture and configuration.

methodology will be flexible enough to incorporate different inputs including PEV charging

Renewable Renewable Renewable
DG DG DG
Grid—® Charger [ PEV Grid—»  Charger | PEV Grid—T® Charger PEV
[} ()
Storage Storage
Unit Unit
Renewable Renewable
DG DG
—»  Charger [ PEV —»  Charger PEV —» Charger [ PEV
) , )
Storage . Storage
Unit H Unit
Renewable Renewable E
DG DG E
—» Charger [ PEV AP Charger —» PEV “» Charger [ PEV
[) y [ )
Storage Storage Storage
Unit Unit Unit
(@ (b) ©

Figure 1-2: Sample alternative configurations for integrating PEV chargers, renewable sources of energy
and storage into the electric grid: (a) fully distributed renewable sources and storage, (b) distributed
renewable sources but centralized storage, and (c) distributed storage but centralized renewable sources.
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requirements, renewable DG output power profiles, component cost models, and design constraints.
While this methodology is helpful in understanding the sensitivity of the various inputs, its usefulness
would be disregarded if the optimal designs did not make practical sense. Therefore, the second objective
of this thesis is to develop realistic, data-based models for the inputs including detailed incremental cost
analysis of the various components and historical output power profiles for the renewable DG. The third
and final objective is to analyze the results from applying the methodology and models to both residential
and public charging cases.

This thesis represents a major step in assisting the industry to develop cost optimized PEV charging
solutions that directly use low emission energy genérated from renewable sources. These solutions can be

optimized for various PEV types, applications (residential and public), and geographic locations.

1.4  Thesis Organization

There are six chapters in this thesis. Following this introductory chapter, Chapter 2 develops a
system lifecycle cost model that is used to compare alternative designs. It also investigates various
component costs necessary for the system lifecycle cost model. Vendor data is gathered and modeled for
solar PV and wind turbine generation units; lead-acid battery, lithium-ion battery and flywheel storage
units; and grid energy and connection charges.

Chapter 3 presents a methodology for determining an optimal design for a grid-interfaced PEV
charging system with integrated generation and storage. Two approaches are formulated for implementing
this methodology. The first approach is based on linear programming, while the second is based off a
limited search approach.

The two approaches are used to determine and explore optimal designs for a residential charger
case in Chapter 4. In developing this case, solar irradiation and wind speed data for two US locations is
obtained and used to create realistic models for solar PV and wind turbine output power profiles. Chapter
4 also presents a sensitivity analysis for lithium-ion batteries.

The linear programming formulation developed in Chapter 3 is expanded and applied to a multi-
charger case in Chapter 5. The multi-charger formulation includes two PEV chargers, a single grid
connection, and a combination of centralized or distributed generation and storage. In total, four
configurations involving two PEV chargers are analyzed in this chapter using solar irradiation data from
one US location.

Chapter 6 presents a summary, conclusions and directions for future work.

Includéd in this thesis are two Appendices. A PLECS simulation model developed to validate the
resulting design is presented in Appendix A. The MATLAB code for the linear programming and search-
based optimization approaches developed in Chapter 3 and Chapter 5 are included in Appendix B.

19



20



Chapter 2

System Lifecycle Cost Model

As various PEV charger designs are generated, it is important to be able to understand how one
design compares to another. In this thesis, system lifecycle cost is chosen as the comparison metric.
When comparing a design with a large solar PV system to a design with a small solar PV system or to a
design that only uses the electric grid, cost is a predominant factor in that decision. Most renewable DG
systems have high initial capital costs but low operating costs. On the other hand, purchasing energy from
the grid has low initial connection cost but the cumulative energy costs over a given time period can be

substantial. This is why total cost over the system life is used.

2.1 Development of System Lifecycle Cost Model
The system lifecycle cost, C, used in this thesis includes both the initial capital costs and the
operating costs of the system:

C=Cpg+Cs+Cc+Cy , 2.1
where Cpg and Cs are the initial capital costs for the renewable DG and the storage unit, respectively,
including any costs associated with their power electronic interface; Cg is the cost associated with getting
energy from the grid, and C), is the maintenance cost of the system. Collectively C; and C), represent
the operating costs of the system over its lifetime.

The initial capital costs of the renewable DG and storage unit are modeled as:
Cpc = Cpeo + C'p6Pogr (22)
Cs = C50 + C'sPsy + C5'Esr (2.3)
where Ppg ., and Pg, are the power ratings of the renewable DG and storage unit, respectively, and Eg, is
the energy storage capacity of the storage unit. The cost parameters are defined in Table 2-1.
The cost associated with getting energy from the grid is modeled as:

Tl ife,sys
Typ

" Tlife,sys

T .
Uesys 4 ¢l 2 Eop + G

Ce = Cc,o PG,r ’ 24

Typ
where T is the time period over which the battery state-of-charge (SOC) has to be maintained; E, is the
energy drawn from the grid over time period 73 and P, is the peak power drawn from the grid. The
remaining cost and time parameters are defined in Table 2-1. The first two terms of (2.4) capture the
consumption charge (consisting of distribution and energy charges) and the third term represents the

demand charge.
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The maintenance cost is modeled as a cost associated primarily with the cost of replacing the

renewable DG and the storage unit at the end of their respective lives. It is given by:

T T
CM = CDG -int (_Tllfelsys) + CS " lnt (—“fe'sys) ,

life.DG

life,S

2.5)

where int() is the floor function which rounds its argument down to the nearest integer. The time

parameters used in (2.5) are defined in Table 2-1.

Table 2-1: Cost and time duration parameters used in the system lifecycle cost model.

Parameter Description Value Unit
C Fixed capital cost of the renewable DG 200 (solar) $
ba.o s 3,750 (wind)
"""""""""" T T 400 (solar)y LT
C ’DG ) Varl_able capital cost of the ren(?wable DG 5: 500 Ez:l:;; ---------- $/k\7§’m
. L 7110 (lead-acid) N
Cso Fixed capital cost of the storage unit 80 (Liion) $
s Varlabl.e capital cost of the .storage unit 200 $/KW
depending on the power ratng
c Variable capital cost of the storage unit 220 (lead-acid) $/KWh
S depending on the energy capacity rating 800 (Li-ion)
T 9 (residential)
h fi
Cso i:ﬁf: dlitrri?:tljo,n charge from the grid per 15 (commercial/no demand) $
R 60 (commercialidemand)’!
, Demand charge from the grid per billing 0 (no demand) r
Cs . 1 $/kwW
period, Ty, 3 10 (demand_) _________
cne Varlal.)le distribution and energy charge from 0.14 $/kWh
the grid
Tiersys Expected life of the system 20 years
Tiepg Expected life of the renewable DG 25 _ years
e .76 (lead-acid)
ife, E ..
T, f,_s: ------ xpe-cted life of the storage unit 12 (Livion) ) years )
Ty Length of billing period . 7 - years
T Time period over which the storage unit 1/365 years

SOC is to be maintained

Note: The values of these cost and time duration parameters are discussed in Section 2.2 and Section 2.3,

respectively.

'Depending on the peak power drawn during the billing period, a commercial customer may incur a
demand charge. The values of C;o and C’; will depend on the presence of a demand charge.
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By combining (2.1)-(2.5), the system lifecycle cost in terms of the system ratings is given by:

Tii Ty; Ty;
C = Cpgo - int (1 4 esys “"”S) + Cs - int (1 4 esys e'sys) + Cgo—Leys
life,DG life,s Typ

T, T, T,
4 Chg - int (1 ; f_) Ppar +C's -int (1 ¥ _f__) Py, + eSS p  (26)
life,DG life,s Typ

", Tlifesys 1 Tlifesys
+ CS int (1 + _——Tlife,s )ES,T' + CG ——T EG,T
The cost and time duration parameters used in (2.2)-(2.6) are defined in Table 2-1, which also lists the
values for these parameters as used in this thesis. These cost and time duration parameter values are

developed in the next two sections.

2.2 Development of the Cost Parameters

The cost data used in the development of the cost parameters is in 2011 US dollars (USD) unless
otherwise stated. When cost data is not available in 2011 USD, it is adjusted for inflation using a GDP
deflator [35]. Because the GDP deflator only has data up through 2010, any values adjusted for inflation
will be reflected in 2010 USD. It is not expected that the difference between 2010 USD and 2011 USD
will be significant.

2.2.1 Renewable Generation

Renewable sources of generation connecting to the grid have become more prevalent over the
past decade through various government incentive programs. As a result, the cost of such systems has
fallen as the market for said technology grows making it difficult to determine a value for the cost
parameters. This analysis will present data to support the values listed in Table 2-1 for renewable DG. It
will present data that reflects realistic, current component and system costs. Subsidies and financial
incentives are not taken into account even though the cost reductions provided by these programs could

amount to significant savings.

Solar PV

This section will present a number of sources that aggregate past and current cost data on solar PV
systems [36]-[39]. The difficulty of an aggregation of past data is that it usually entails total system
installation costs but it does not necessarily reflect present costs, as the average installed cost of
residential and small commercial solar PV systems has dropped from about $11/W in 1998 to about $8/W

in 2007 [36]. On the other hand, aggregation of current cost data usually does not include installation or
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balance of system (BOS) costs, as they use mainly module and inverter cost data available from retail
manufacturers. In this sense, both types of data are relevant and useful.

To understand the installed cost of solar PV systems, it is insightful to understand the breakdown
of these costs based on system components. In 2006, the US Department of Energy (DOE) published cost
information for residential and commercial solar PV installations [37]. The residential installation cost
data was based on 5200 residential PV systems installed between 2000 and 2005 while the commercial
installation cost data was based on 330 installations. The installed system cost is broken down into 5
categories: (1) module, (2) inverter, (3) BOS, (4) installation, and (5) other/indirect. BOS includes all
hardware other than modules and inverters including mounting frames, fuses, disconnects, cables and
combiner boxes. Installation cost includes the cost of labor and equipment needed to perform on-site
installation. The other/indirect category contains additional costs such as design, engineering, site
preparations, permitting and profits. The breakdown of these costs for both residential and commercial
units is given in Table 2-2. Also according to the DOE report, the annual operation and maintenance cost
of these systems in 2005 was 0.5% and 0.45% of the installed cost for residential and commercial
systems, respectively. However, the DOE report projected that these operation and maintenance costs
would drop to 0.3% for the year 2011 which is relatively small. For this reason, the maintenance cost
term of the system lifecycle cost model ignores it and only considers the replacement cost at the end of
the solar PV system’s life.

A slightly more recent report by the US DOE utilizes a much larger dataset for installed solar PV
system costs [38]. This dataset includes 52,000 installations between 1998 and 2008 representing 71% of
all grid-connected solar PV capacity through 2008. Using information in the report that was provided by
installers, Table 2-3 shows the breakdown of system element costs by percent for residential, small
commercial and large commercial systems.

As can be seen in both reports, the cost of the module composes around 50% of the total installed

system cost. This percentage is also agreed upon by a Rocky Mountain institute study [40]. Due to the

Table 2-2: Installed costs for residential and commercial solar PV systems installed between 2000 and
2005 based on data from [37].

System Element ~ Unit  Residential System Commercial System

Module $w 4.44 3.89
Inverter $'w 1.00 0.67
BOS $'wW 0.68 0.60
Installation $'wW 1.84 0.61
Other/Indirect $'w 1.44 1.22
Total $/'W 9.40 6.99
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Table 2-3: Breakdown of average installed costs for residential, small commercial and large commercial
solar PV systems based on percentage data from [40].

System Element Residential System  Small Commercial System  Large Commercial System

% % %
Module 48 52 52
Inverter 7 7 6
Other Materials 7 12 11
Installation Labor 9 9 10
Other/Indirect 29 20 21
Total 100 100 100

age of the installations, the actual values of the cost data are already outdated. Instead, current cost data
for modules will be used to calculate present installed solar PV system costs.

Aggregate industry data suggests that as of August 2011, module costs are $2.84/W [39]. The
lowest prices seen are around $1.50/W but only 42.4% of module prices are under $3/W depending on the
retailer. The aggregate industry data is not broken down into fixed and variable costs. Therefore, one solar
manufacturer was chosen for further investigation in this thesis to pinpoint fixed and variable costs of
modules. Due to the range of module sizes available and the accessibility of web-based price, BP Solar
modules were chosen [41]. Many other solar module manufacturers exist but the information needed to
conduct this analysis was more readily available for BP Solar. Price data was collected from a number of
retail sites [42]-[47] and each module price was plotted against the module output power rating. Once this
was done, linear trendlines for each retailer were fitted against the data to calculate the fixed and variable
cost components. Using this method, the fixed cost is the intercept of the linear trendline and the variable
cost is the slope of the linear trendline. The resulting plot is shown in Fig. 2-1 and the costs are listed in
Table 2-4. The trendlines produce fixed costs between $55 and $165 and most of variable costs are
between $2/W and $2.25/W. The variable costs from the retailers are slightly lower than the aggregate
industry dataset but there is also a nonzero fixed cost. Considering this, the data presented in Table 2-4
corresponds well to the aggregate industry data if the fixed costs were absorbed into the variable costs.

The same analysis can be done for inverters. The source of aggregate industry data presented
earlier prices inverter variable costs at $0.714/W [39]. Repeating the same procedure done for calculating
module fixed and variable costs, one inverter manufacturer, Enphase, was selected for a detailed
investigation [48]. The same retailers were used to find cost data [42], [44]-[47]. Enphase grid-tied solar
microinverters are sized to convert power from a single PV module rather than from a group of modules.
Due to the close proximity of rated intput power, most trendlines do not have a positive slope resulting in

a fixed cost that is higher than the actual price of the microinverter. The datapoints that did have a
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Figure 2-1: BP Solar module cost and corresponding fitted linear trendlines as a function of module rated
output power based on data from six retailers [42]-[47].

Table 2-4: Fixed and variable module costs based on the linear trendlines in Fig. 2-1.
Fixed Cost  Variable Cost

. 2
Retailer ) $/W) R Value
EcoDirect 135.65 2.1580 0.9077
BD Batteries 164.08 5.9836 0.9509
Affordable Solar 132.31 2.0993 0.9505
Solar Home 55.194 2.2533 0.8841
Mr. Solar 117.59 2.1822 0.9607
altE Store 71.707 4.7506 0.9452

positive slope between them resulted in a negative fixed cost. Therefore, the best determination of fixed
and variable costs is to simply assume a zero fixed cost and attribute all of the cost into the variable cost.
To calculate this, the price was divided by the input power rating for each microinverter sold by each
retailer. All of the calculated costs were then averaged. The average cost was $0.76/W which matches
relatively well to the aggregate manufacturer data.

To conduct a similar analysis for the remaining components of a solar PV system would require
data that is not readily available. However, since it is generally accepted that the module cost is roughly
50% of the total installed cost of a solar PV system, a reasonable estimate can be made using the module
cost [37], [38], [40]. As can be seen from Table 2-4, the fixed cost of the module is roughly $100.
Doubling this yields a fixed installed cost for solar PV systems (in the power range of interest in this
thesis) of $200. Also, the variable cost of the module is approximately $2.2/W. Hence, the variable cost of
the installed solar PV system would be roughly $4.4/W which includes the inverter, BOS, installation and
other costs. Therefore, in this thesis, the variable cost of an installed solar PV system is chosen to be

$4.4/W, or equivalently $4,400/kW as presented in Table 2-1.
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Wind Turbine

Wind turbines that can be used at the residential or small commercial level are less common than
small solar PV systems. Many MW level wind turbines are available, but these are not appropriate for
individual residential or small commercial applications. Also, cost data for small wind turbines is not
readily available. According to the American Wind Energy Association, the cost of distributed wind
turbines is between $3/W and $6/W for the period 2007 to 2009 [49]-[51]. However, it is not clear
whether this is just the cost of the wind turbine or the total installed wind turbine system cost.

A reasonable way to determine fixed and variable costs is through the compilation of
manufacturer data as was done for solar modules. This task is made complex by the variety of products
offered by retailers. Some retailers sell the wind turbine itself while others offer a package that includes
an inverter, a tower, or both. Some wind turbines even have the power conditioning modules already
integrated into the turbine hub. The process to determine fixed and variable installed costs is made even
more complicated by the fact that the cost of towers is dependent on both the power rating of the turbine
and the desired tower height. The following data is presented as coherently as possible given the broad
range of data and possible system combinations.

Installed system costs are generally difficult to obtain. However, SoleVento, LLC has publically
listed costs for installing a number of wind turbines from different manufacturers [52]. The installed
system costs are plotted against turbine power rating in Fig. 2-2. The installed fixed and variable costs
according to the fitted trendline are $15,984 and $5.67/W, respectively. While the variable cost is within
the expected range, the fixed cost is too high to be reasonable. It happens to be higher than some of the
installed costs within the set itself. It is possible that the dataset would be better fit with two linear

trendlines; one trendline for lower output power and one trendline for higher output power. That analysis
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Figure 2-2: Small wind system installation costs and corresponding fitted linear trendline as a function of
turbine rated output power based on data from one installer [52].
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will not be done here in order to remain consistent with the cost model and the analysis done with solar
PV systems. Instead, a closer look at the individual cost components is in order.

As mentioned previously, some retailers [42], [53]-[58] list only wind turbines without any
towers or power conditioning units (i.e., inverters). Those prices are shown in Fig. 2-3. As before, the
wind turbine cost is plotted against its rated output power and a linear trendline is fitted. The fixed and
variable costs come out to $1,092 and $2.82/W, respectively. Both these values seem reasonable. These
units will also require an inverter for grid-connected systems. The SMA Windy Boy inverter series is
mentioned often and is the basis for the inverter cost analysis [59]. Due to a slight difference in price
between vendors [45], [56], [57], [60], the R-squared value of the linear trendline in Fig. 2-4 is low

however, the fixed and variable costs of $803 and $0.38/W, respectively, do not appear unreasonable.
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Figure 2-3: Small wind turbine costs and corresponding fitted linear trendline as a function of turbine
rated output power based on data from seven retailers [42], [53]-[58].
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Figure 2-4: SMA Windy Boy inverter costs and corresponding fitted linear trendline as a function of
inverter rated input power based on data from four retailers [45], [56], [57], [60].
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When individual linear trendlines are fitted for data from each retailer separately, the fixed and variable
costs have very similar values. After summing the turbine and inverter costs, the values for fixed and
variable costs are $1,895 and $3.20/W, respectively.

Some wind turbine manufacturers [61]-[65] offer the power conditioning units packaged with the
turbine itself thereby eliminating the need to purchase a separate inverter. The cost data from retailers
[42], [47], [53], [54], [58], [60], [66], [67] for these power conditioned wind turbines is used to compare
against the sum of the wind turbine and inverter costs that was just presented. The fitted linear trendline
results in a positive variable cost of $4.18/W but a negative fixed cost of -$870.93. Instead, separate linear
trendlines for each retailer is presented in Fig. 2-5 and the resulting fixed and variable costs are listed in
Table 2-5. The average values of these costs are $2,592 and $3.45/W which are not the same as the values
calculated for separate turbine and inverter components but they are relatively close.

Taking the middle ground between the two cost points for wind turbine and inverter costs, it is
reasonable to assign fixed and variable costs of $2,250 and $3.30/W, respectively. The remaining
installation costs would be attributed to the towers, installation labor, fees, etc. Due to lack of such

information, it would be very difficult to do a similar analysis with any accuracy. If wind turbine systems
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Figure 2-5: Power conditioned wind turbine costs and corresponding fitted linear trendlines as a function
of turbine rated output power based on data from eight retailers [42], [47], [53], [54], [58], [60], [66],
[67].

Table 2-5: Fixed and variable power conditioned turbine costs based on various data presented in Fig. 2-5.
Fixed Cost  Variable Cost

2
Manufacturer ) $/W) R” Value
Southwest Windpower 90.9 2.7880 0.9427
Bergey Windpower - 784 3.0588 0.9957
Hummer Wind 8,011.6 4.0131 0.9772
WE Power 3,000.9 3.7663 0.9915
Kestrel 1,932.5 3.6020 0.9943
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followed the same cost trends as solar PV systems, then the wind turbine and inverter would compose
about 60% of the total installation cost based on percentage breakdown in Table 2-3. Using this
percentage, the overall system installation fixed and variable costs are approximately $3,750 and $5.5/W,
respectively. This assigns a variable cost that is consistent with the values stated by the American Wind
Energy Association and the variable cost calculated from the trendline in Fig. 2-2. While the fixed cost is
much lower than calculated earlier, it is more reasonable. Therefore, $3,750 and $5.5/W are used in this

thests for wind DG systems.

2.2.2 Storage Unit

There are three different types of storage units that will be investigated in this thesis. The first
type is lead-acid batteries, the standard storage unit often seen in renewable energy projects. The second
type is lithium-ion (Li-ion) batteries, an emerging alternative to lead-acid batteries. These have gained
increased use in consumer electronics and now EVs. While still a relatively new technology for
renewable energy projects, it is useful to understand how it compares to lead-acid batteries both in terms
of cost and in life. The last storage technology explored is flywheel energy storage. This kinetic energy
based technology is not new, but has recently been promoted as a grid-scale energy storage technology

for frequency regulation [68]. Therefore, it is worthwhile to do a brief cost analysis for this alternative.

Lead-Acid Battery

The lead-acid battery is the most common deep-cycle battery technology available for renewable
energy projects. Although it is not always operated in such a way, a deep-cycle battery is capable of
discharging down to 20% SOC without significant damage to the battery. This is a beneficial feature for
a renewable energy application. For example, on a rainy day, the solar PV system may not supply
sufficient energy and the storage unit would have to be safely drained below normal. As of August 2011,
a survey of battery pricing indicates that batteries cost around $213/kWh while the most common
batteries used average between $239/kWh and $260/kWh [39]. One important note on these calculations
pertains to the kWh basis. Battery manufacturers list a voltage for the battery and a few amp-hour (Ah)
ratings. Each Ah rating is based on how quickly the battery is discharged. In order to calculate the energy

a particular battery can deliver, one would follow:
_ Vg X Ahg
5771000
where Ej; is the energy delivered by the battery in kWh, V; is the voltage supplied by the battery in volts

Q.7)

(V), and Ahp is the manufacturer provided Ah value in Ah. Ah ratings are typically given for 5-hour, 20-
hour, and 100-hour discharging rates. Batteries are more efficient when they are charged and discharged

slowly. Therefore Ah ratings for a 100-hour discharge will be higher than Ah ratings for a 20-hour or 5-
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hour discharge. The kWh values provided by [39] are based on a 20-hour discharge rate. While the data
from [39] is useful, it would be beneficial to know the fixed and variable costs of lead-acid batteries.

Cost data for lead-acid batteries is available from most retailers that sell solar modules and/or
wind turbines [42], [44], [46], [47], [69]. Among these retailers, there are batteries from five common
battery manufacturers [70]-[74] and these batteries will be the basis for this cost analysis. The values
used in Fig. 2-6 are based on a 100-hour discharge rate which is typically the highest capacity that is
stated on manufacturer specification sheets. This means the anticipated variable cost should be lower than
the $239/kWh and $260/kWh values presented earlier. As seen in Fig. 2-6, the calculated fixed cost is
$24 and the variable cost is $169/kWh. When the same analysis is done at the 20-hour rated energy
capacity, the fixed and variable costs are $36 and $242/kWh. This matches well with the values from
[39]. For this thesis, an averaged fixed cost of $30 and variable cost of $220/kWh for lead-acid batteries
is used based on data from all three datasets analyzed because the practical capacity of the battery can

vary between the values given in the specification sheets.

Lithium-Ion (Li-ion) Battery

The market for Li-ion batteries has increased due to use in personal electronics and now in
electric vehicles. However, it is still a new storage technology and fairly expensive. It is expected that the
price of Li-ion batteries will continue to drop as their market increases. Today, there are few retailers
supplying Li-ion batteries for large energy storage systems. The analysis done for lead-acid batteries
cannot be duplicated for Li-ion batteries due to a lack of data. Fortunately, the Electric Power Research
Institute recently released a report analyzing the costs for various storage technologies that can be used

for grid-scale storage [75]. In general, they conclude that Li-ion battery systems are a relatively new
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Figure 2-6: Lead-acid battery costs and corresponding fitted linear trendline as a function of lead-acid
battery 100-hour rated energy capacity based on data from five retailers [42], [44], [46], [47], [69].

31



option that is only in the demonstration stage. They are only somewhat confident about their cost
estimates which are based on vendor quotes and system installation estimates. Table 2-6 summarizes their
cost findings for each application. Disregarding the very large energy storage systems presented in Table
2-6, it appears that the average cost of Li-ion energy storage systems are between $800/kWh and
$3,600/kWh. The very high energy and power applications exhibit much higher variable costs. Because
the variation in cost is so great, it is very difficult to estimate a single variable cost for Li-ion batteries.
While using Li-ion batteries for a slightly different application, a report by Deutsche Bank
estimates that Li-ion batteries used in EVs cost $650/kWh in 2010 and this will drop to $315/kWh in
2015 and $250/kWh in 2020 [75]. These are much lower than the costs listed in Table 2-6. This is
because the Electric Power Research Institute cost estimates include installation, interconnection and grid
integration costs which include power electronic interfaces, transformers, communication and controls.
They note that significantly lower costs may be possible if combined with renewable DG systems.
Therefore, the battery-only costs are lower than cost data presented in Table 2-6. Also, installation and
power conditioning components were already incorporated into the fixed and variable costs for the
renewable DG. Therefore, this thesis will use battery-only cost data. It will be chosen as $800/kWh for
Li-ion batteries which is slightly higher than the EV battery cost but on the low end of the grid storage

system costs. Fixed cost, due to lack of data, is assumed to be zero.

Table 2-6: Li-ion energy storage averaged system cost estimates by application [75].

Application Capacity Power Duration Cost
PP (kWh) (kW) (hours)  ($/kWh)

Frequency Regulation

- 4,340-
Power Quality 250-25,000 110’3%% 0 0.25-1 6.200
Defer Capital Cost e T
gt:ll:}é:&? Sull:Stﬁ:;irlliGrld wuppert 4,000- 1,000- 2-4 900-1,700

eak Shaving, Reflability 24000 10,000 :
Frequency Regulation ~~ ~~ ~ ~  ~»— o
Commercial and Industrial Energy Management T
- - - -1

Power Quality, Reliability 100-800 50-200 2 4 950’900
Distributed Energy Storage
DlsFrlb.u.tlon Deferral, Peak Shaving 25.50 25.50 14 950-3,600
Reliability
Frequency Regulation
Residential Energy Storage
Back-up Power, Reliability 7-40 1-10 1-7 800-2,250

Home PV Time Shifting

Note: A large part of these costs may be due to power electronics, BOS and installation.
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Flywheel Storage

Flywheel energy storage technology is attractive because it has very fast response (less than 4
ms), high power density (5 to 10 times that of batteries), high round-trip energy efficiency (~ 93%), and
long lifetime (20 years) [75]. It has not had widespread use in grid energy storage systems because of its
low energy density. For example, although exact density is unpublished, a 1 MW flywheel system will
take several hundred square feet to store 250 kWh.

The market for flywheels is even smaller than the market for Li-ion batteries. Fortunately, the
same Electric Power Research Institute report also analyzes flywheel energy storage technologies.
Unfortunately, there is only one current application for flywheel energy storage systems - frequency
regulation. (The time scale for energy buffering in frequency regulation is relatively short — on the order
of minutes and below, but not hours.) From the capacity and power data given, it can be assumed that the
cost data is based on a single flywheel frequency regulation project. The cost presented is $7,800/kWh to
$8,800/kWh which will include any costs due to power electronics, BOS and installation [75]. This is an
order of magnitude higher than the cost of battery technologies. It is not likely that this is a viable
technology option for EV charging energy storage systems. Therefore, flywheel technology is not

explored any further in this thesis.

Charge Controller

The last component necessary for storage units, particularly of the battery variety, is a charge
controller which prevents damage to the storage unit as it charges or discharges. Aggregate industry data
indicates that charge controllers cost $5.93/A [39]. However, the cost model developed does not have
output current from the charge controller as a variable. Instead, the power rating of the storage unit is
used. Therefore, the output current must be translated into power. Most batteries offered are 12V although
2V and 6V batteries are occasionally used. Batteries can be placed in series for larger voltage drops (such
as 24V or 48V) however balancing circuits would be required to ensure the voltage across each battery in
the series is safe. If 12V is assumed to be the standard battery voltage and subsequently the required
output voltage of the charge controller, then dividing $5.93/A by 12V will yield a cost of $0.494/W or
equivalently, $494/kW.

The cost of charge controllers provided by retailers is not simply based on output current alone.
As can be seen graphically in Fig. 2-7, charge controllers with the same output current can have a spread
of prices. As with other components, it is reasonable to believe that the variation of cost in Fig. 2-7 is due
to the difference between manufacturers [77]-[84] and retailers [42], [44], [46], [47], [69]. But even when
cost data is plotted for one manufacturer [82] as sold by one retailer [42], there are multiple cost points for

a given output current (see Fig. 2-8). A single manufacturer can produce several charge controllers that
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have the same output current. The differences between charge controllers are the input voltage, the output
voltage, number of input phases and other characteristics such as meters or type of control methodology
used. A single charge controller unit is even capable of several output voltages ranging from 12V to 72V.
This is why there is a cost spread for a given output current. For each fitted linear trendline in Fig. 2-7 and
Fig. 2-8, the fixed cost of $18 and $12 is quite low and the variable cost of $6.83/A and $5.11/A are about
a dollar off from the aggregate industry cost.

If instead, the cost data was plotted against maximum output power, the spread of data points
does not see significant improvement (see Fig. 2-9). In this case, the maximum output power is the
output current times the maximum output voltage for each unit, which varies from 12V to 72V. The fixed
and variable costs in this case are roughly correlated to $110 and $123/kW, respectively. This is lower
than the $494/kW calculated from the aggregate industry data almost exactly by a factor of four indicating
that the average designed output voltage that should be used is 48V, not 12V. If only charge controllers
with a maximum output of 12V are used in the cost analysis, the fixed cost comes out to $50 and the
variable cost is $284/kW. The 12V charge controllers have less than a 1.2 kW maximum output power.
As seen in Fig. 2-9, it is very plausible that the cost points for output powers less than 1.2 kW have a
steeper linear variation than the cost points for output powers greater than 1.2 kW.

Because the output voltage of the charge controller will depend on the system setup and specific
battery bank that is used, the 12V only charge controller data cannot be used exclusively. On the other
hand, because most batteries are 12V, it is reasonable to believe that most systems may only require a
12V output charge controller. To remedy this, the fixed cost that is used is $80 which is halfway between
$50 and $110 and the variable cost that is used is $200/kW which is halfway between $123/kW and
$284/kW.

Summary of Storage Unit Costs

In summary, only lead-acid and Li-ion batteries will be used for the storage units. Flywheel
energy storage systems are not cost competitive for this storage application. Lead-acid battery costs are
$30 fixed and $220/kWh. Li-ion battery cost is $800/kWh. Each system with a battery will require a
charge controller to ensure that the battery is not damaged when charged. The charge controller costs are
$80 fixed and $200/kW. The lead-acid storage unit will have a fixed capital cost (Cs) of $110, which is
the summation of $30 and $80. The Li-ion storage unit will have a fixed capital cost (Cs,) of $80. The
variable cost of the entire storage unit that depends on the rated power (C’s) will be $200/kW for either
battery technology used. The variable cost that depends on the energy capacity (C’’s) will be $220/kWh
for lead-acid battery systems and $800/kWh for Li-ion battery systems.
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Figure 2-7: Charge controller cost and corresponding fitted linear trendline as a function of output current
based on data from five retailers [42][44][46][47][69)].
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Figure 2-8: Morning Star charge controller cost and corresponding fitted linear trendline as a function of
output current based on data from one retailer [42].
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2.2.3 Electric Grid

When purchasing electricity from the grid, there are three typical charges that appear on utility
bills. The most familiar charge is the retail price of electricity that customers pay for each kWh they
consume. Lesser known are the fixed distribution charge that can appear on each bill for connecting to the
grid and the demand charge based on the peak power consumed within the billing cycle.

‘ The fixed distribution charge allows distribution utilities to recover fixed costs associated with
the delivery of electricity. These costs do not depend on how many kWh are delivered in a particular
billing period. For example, depending on the utility, an employee may have to go to each individual
consumer and read their meter to report back how many kWh were delivered that month to that customer.
This meter reader visits the meter whether the consumer used only a few kWh or many kWh and his
salary is considered a fixed cost. The fixed distribution charge varies by utility. Some utilities may not
have a fixed monthly charge on top of their energy charge for their residential customers, although they
may still have a minimum charge if no energy was sold that month to that customer. Other utilities may
have charges in excess of $15. It would be a very daunting task to seek out all of the various monthly
charges for the thousands of utilities in the US. Instead, the fixed distribution charges for the top five
utilities (by consumers) are listed in Table 2-7 along with the average for each consumer type [85]-[89].
Using the average values, Cg ¢ is taken to be $9 for residential consumers, $15 for commercial customers
who do not incur a peak monthly demand charge and $60 for commercial customers who do incur a peak
monthly demand charge.

Also shown in Table 2-7 are the peak demand charges. These charges are based on the

consumer’s peak demand over a 15 minute interval for the entire month. This charge is in place to

Table 2-7: Monthly fixed distribution charges and demand charges for the top five distribution utilities by
number of consumers [85-89].

Residential Commercial Commercial Peak

Utility Monthly (no Demand)  (with Demand) Demand

Charge  Monthly Charge Monthly Charge Charge

®) (&) % ($/kW)
Pacific Gas & Electric Company 0 3.94 3.94 18.05
Southern California Edison 0.88 22.30 134.17 12.15

Florida Power & Light Company 5.90 6.89 16.44 6.5

Commonwealth Edison Company 16.50 10.95 19.37 5.14
Consolidated Edison Company of New York 15.76 24.06 117.14 17.22
Average 8.71 13.63 58.21 10.01

Note: Commercial (no Demand) is typically retail customers whose peak monthly demand is less than
10kW or 20kW depending on the utility. Commercial (with Demand) is typically customers whose
peak monthly demand is greater than 10 kW or 20kW depending on the utility.
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incentivize lowering the overall system peak for better capacity utilization. Since demand charge is
typically applicable only to industrial and large commercial customers, C'; is assumed to be zero for the
residential charging case. The public charging case will depend on the charging system setup. Some
commercial customers will not incur a demand charge if their peak monthly demand is less than 10 kW or
20 kW depending on the utility. If a single public charging station is only rated at 7.2 kW, then it is likely
that this charging station will not incur a demand charge. If there are several charging stations together or
if the charging rate of a single charger is above 20 kW, then this charging scenario will incur a demand
charge. Therefore, C’; is assumed to be zero for charging stations which are not expected to incur a
demand charge and $10/kW for charging stations that are expected to incur a demand charge.

The last cost parameter for using the grid is the variable distribution and energy charge which is
based on the kWh consumed by the customer. This cost is derived from the electricity that the
distribution utility purchases from the generation units and also the cost of the infrastructure of wires to
deliver this electricity. In 2010, the average residential and commercial retail price of electricity was
$0.112/kWh and $0.0997/kWh, respectively [90]. Table 2-8 breaks up the average price for residential
and commercial customers by state (and region). The New England, Middle Atlantic, and Pacific
Noncontiguous regions have average retail prices that are much higher than the nationwide average, while
the East South Central and the West North Central regions have retail prices that are much lower than the
nationwide average. The areas that are more prone to see large penetration of electric vehicles and
renewable DG are going to be those with strong incentives and history for alternative vehicles, charging
infrastructure, and/or renewable DG. California is a prime example of a state that is expected to have a
high penetration of both technologies based on existing number of hybrid electric vehicles, EV charging
stations, and incentives or laws promoting EVs [91], [92]. Likewise, using renewable DG instead of the
grid is more cost competitive in areas where retail electricity prices are high. Therefore, an average retail
price of $0.14/kWh is chosen which is higher than the nationwide average but lower than the average
retail price in the state of California and the regions of New England, Middle Atlantic, and Pacific
Noncontiguous. The difference between residential and commercial sectors is small and $0.14/kWh will

be used for C’’; independent of residential or public charging scenarios.

2.3 Time Duration Parameters

This section describes how the values to the time duration parameters listed in Table 2-1 were
determined. The system lifecycle cost will be calculated over the system life, 7jy. ,,. The system life is
chosen to be close to but less than the life of the renewable DG so that the DG does not have to be
replaced. For this thesis, a value of 20 years is chosen. Also of great importance within this thesis is the

period, 7, over which the storage unit will return to its initial SOC. For this thesis, it is assumed that the
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Table 2-8: Average retail price of electricity to ultimate customers for 2010 [90].

Census Division
and State

Connecticut
Maine
Massachusetts
New Hampshire
Rhode Island
Vermont

New York
Pennsylvania

District of Columbia
Florida

Georgia

Maryland

North Carolina
South Carolina
Virginia

West Virginia

Illinois
Indiana
Michigan
Ohio
Wisconsin

Alabama
Kentucky
Mississippi
Tennessee

w Jrsey .

18.12
12.45

13.25
11.09
9.64

14.39
10.05
10.22
10.33
8.47

109

9.22
12.01
10.8
1229

10.47
8.12
9.61
8.64

Residential Commercial
(C/kWh) (C/kWh)
19.42 16.61
15.62 12.49
15.44 15.23
15.97 13.98
8.71 13.63
15.34 13.32

1342

1531
10.12

1137

13.8
9.57
9.01
11.61
8.08
8.62

Yl
7.51

8.22
9.98
9.74
9.74

10.17
7.48
932
9.13

Census Division
and State

‘Arkansas
Louisiana
Oklahoma
Texas

Arizona

Colorado
Idaho
Montana
Nevada
New Mexico
Utah
Wyoming

California

Oregon
Washington

Alaska
Hawaii
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Kansas
Minnesota
Missouri
Nebraska
North Dakota
South Dakota

Residential
(C/kWh)

9.65

9.43
9.92
8.02
8.01
7.35
8.28

874
8.72
8.56
11.59

10.78

7.79
8.74

12.71

10
835
8.37

16.26
27.46

Commercial
(C/kWh)

732

7.87
791
6.67
727
6.68
122

Faal
8.61
6.87
9.41

894

8.78
6.7
8.23

10.35

8.36
6.9
7.36

13.83
25.43



EV charger will be used daily. Therefore, T is chosen to be one day in order to minimize the battery size.

2.3.1 Renewable Generation

To determine the expected life of renewable DG, the warranty is generally a good indicator
although the life of the unit can easily go past the warranty timeframe. For solar PV modules, many
manufacturers have a product and parts warranty of 5 years [41], [93]-[100]. What is more useful is the
performance warranty which typically guarantees at least a 90% of rated power output for 10 years and
80% of rated power output for 25 years. This indicates a reasonable life for solar PV modules that is
greater than or equal to the system life. The Enphase microinverter is also backed by a 25-year limited
warranty [48].

Wind turbines also typically come with a 5-year product warranty [61]-[64]. They do not come
standard with the same performance warranty as solar PV modules. Most of the manufacturers used in the
cost analysis above claim a design life of 20 years but it is reasonable for the life to extend beyond 20
years [61], [62], [65]. The SMA Windy Boy inverters come with a 10-year warranty and it can be
extended for another 10 years [59]. |

In this thesis, 25 years is used for 7j, ps, although the analysis could use anything above 20 years

and system lifecycle cost would remain the same.

2.3.2 Storage Unit

The life of the storage unit depends on the number of times it has been charged and discharged.
One charge and discharge is called a cycle. Battery manufacturers sometimes provide graphs that present
the number of cycles a battery can sustain based upon the depth of discharge (DOD) of the battery. A
graph for SunXtender lead-acid batteries is used in the cost analysis above and is shown in Fig. 2-10 [71].
The lower the DOD, the more cycles the battery can provide. If a battery is drained all the way and
recharged, it can only survive few cycles. If the battery is drained halfway and recharged, it can sustain
more cycles. For each case just presented, the amount of energy provided from each cycle is different.

The following equation is used to determine the life of the battery:

T, _ Ncycles
li f eS — 3 6 5
where N,y is the number of cycles expected out of a given battery and 365 indicates that the battery will

2.8)

go through 365 cycles a year or one cycle per day.

The energy that will be required out of the storage unit is fixed. The rated energy capacity of the
storage unit will have to be adjusted to ensure that the required amount of energy is delivered when the
DOD is varied:
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Edelivered
lelvered 2.9
Esr DOD (2.9)

where Egejiereq is the fixed energy that must be delivered and DOD is the depth of discharge that the
battery will incur. The system lifecycle cost from (2.6) is proportionate to the number of cycles and the

depth of discharge for each battery:

T;:
int(l + e 365)
cycles

(2.10)
DOD = CE,factor

C x

where Cgae,r is defined as a comparative factor between various pairs of DOD and Ngyeres. This is used to
generate the values seen in Table 2-9 from the data presented in Fig. 2-10. These values do not represent
the actual system lifecycle cost but rather the relative cost of the energy portion of the storage system for
comparison. The higher the value, the higher the overall system lifecycle cost will be. It can be seen that
the lowest cost factor occurs when the DOD is limited to 20%. The battery life that this corresponds to is

just under 8 years. However, there will be days when the clouds may cover the sun or the wind may not

Expected Life Cycles
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Figure 2-10: SunXtender lead-acid battery cycle life versus depth of discharge [71].

Table 2-9: Relative system lifecycle energy cost factors for SunXtender lead-acid batteries [71].

% DOD  Approximate Cycles Ct factor
100 380 20
80 520 18.75
50 1000 16
30 1800 16.67
20 2900 15
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blow. In these cases, the battery may be drained past 20% DOD. Likewise, over time, it is expected that
the battery capacity may decrease. Toward the end of the battery life, Egiveres Will comprise a much
higher percentage of the current battery capacity. The battery would be regularly drained past 20% DOD.
For these reasons, the expected life, 7). s, of the lead-acid battery is chosen to be 6 years rather than 8
years because the DOD will likely go beyond 20%.

It is difficult to duplicate the analysis for Li-ion batteries because there is a lack of cycles versus
depth of discharge graphs. Instead, EV battery lifetimes will be used. EV manufacturers desire batteries
that can last many years for warranty purposes but at the same time do not want a very oversized battery
for space and weight purposes. Discharging to 80% DOD has become a standard among auto
manufacturers [101]. Both Nissan and GM expect their Li-ion batteries will experience a capacity
degradation of about 30% over their life and they will warranty the battery for 8 years although the
degradation will not be covered [33], [34]. For the same reliability and capacity degradation reasons
stated for lead-acid batteries, it would be preferred if the Li-ion batteries also only had a 20% DOD. It is
assumed that Li-ion batteries will have similar DOD and cycle life characteristics as lead-acid batteries.
If this is true, it would be reasonable for Li-ion batteries to have at least a 10 year life for 20% DOD. For
the 20 year system life used in this thesis, any Li-ion battery lifespan above 10 years and below 20 years
would not affect the system lifecycle cost because the battery would still need to be replaced once.
Assuming a 20-year Li-ion battery life would be too far of a jump based on the current data. In this thesis,
the expected life, 7} s, of the Li-ion battery is chosen to be 12 years.

For both battery technologies, a designed maximum DOD is chosen to be 20% but it is assumed

that the battery will go through instances of increased discharge in actual system use.

2.3.3 Electric Grid

The last time parameter to consider is 7, the length of the billing period associated with
connecting to the electric grid. Most consumers receive a utility bill once a month and the fixed and
demand charge cost data that was gathered was based on monthly intervals. Therefore, in this thesis, 7},

is taken to be one month.
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Chapter 3

Optimization Methodology for a Single Charger

In this thesis, an optimal architecture is one with the lowest system lifecycle cost, as modeled by
(2.1). Hence, a method is needed to size the individual elements of the system so as to yield designs with
minimum lifecycle cost that meet all system requirements. The system elements that need to be sized are
the distributed renewable generation source and the storage unit. The renewable DG’s power rating,
Ppc,, needs to be determined and the storage unit’s power and energy capacity ratings, Pg, and Eg,
respectively, also need to be determined. In order to calculate system lifecycle cost, the peak power, Pg,,
and the energy drawn from the grid over period 7, E;,, are needed. These ratings depend upon Pc(), the
power drawn by the PEV charger as a function of time #, as well as the design constraints and the power

flow control methodology.

3.1 Development of Optimization Methodology

Design constraints arise from the maximum power that can be drawn from and delivered to the
grid, PG maxgpy and PG maxmy, respectively; limits on the maximum rating of the renewable DG, Ppg mar; the
maximum power and energy rating of the storage unit, Pg . and Eg .., respectively; and the maximum
and minimum state-of-charge allowed for the storage unit, SOC,,.. and SOC,,,, respectively. These

constraints can be expressed as follows:

—Pgmaxn) < Pc(t) £ Pgr < Pgmaxp) 3.

0 < Pp(t) < Ppgr < Ppgmax » (3.2)

—Psmax < —Psy S Ps(t) < Psyr < Psmax » (3.3)
EsySOCmin < Es(t) < Esy - SOCmax < Esmax " SOCmax » (B4

where Pg(t), Ppg(t), and Pg(t) are the instantaneous powers delivered by the grid, the renewable DG, and
the storage unit, respectively; and Eg() is the instantaneous energy stored in the storage unit. The
maximum power available from the grid could be limited due to the limited rating of a distribution
transformer or a feeder line. The limits on the DG and storage could be due to space constraints. These
design constraints along with their assumed values for the purpose of analyzing example cases in this
thesis are summarized in Table 3-.

Additional constraints are imposed by physical laws and the connections between the

components; including the following from energy conservation:
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Table 3-1: Design constraints.

De51gr} Description Unit  Value
Constraint
PG maxgp) Maximum power allowed from the grid kW 5
PG maxm Maximum power allowed into the grid kW 0
PG max Maximum power rating of the renewable distributed generation source kw 10
Py ax Maximum power rating of the storage unit kW 10
Eg o Maximum energy capacity of the storage unit kWh 100
SOCpax Maximum fractional SOC of the storage unit (between 0 and 1) - 1
SOC i Minimum fractional SOC of the storage unit (between 0 and 1) - 0.80

Ps(t) + Ppg (1) + Ps(t) = Pc (D). (3.5

An additional constraint is on the instantaneous power from the renewable DG:

Ppg(t) = Ppgrfoe(t) , (3.6)

where fiG(?) is the normalized output power profile of the renewable distributed generation source, and
varies between 0 and 1 due to variation in solar irradiation or wind speed.

Also, the energy in the storage unit is related to the power drawn from it by:
t

Es(t) — Eg(t — At) = —f , Ps(thdt' , 3.7
t-At
where Pg(t) is given by:
Ps(t)
3 S22 P(t)>0
Bs(ty=4 n s : (3.8)

JnPs@®),  Ps() <0

and incorporates the effect of the round-trip efficiency of the storage unit, #. It is assumed that the round-
trip energy loss is divided equally between discharging and charging of the storage unit. When the storage
unit is discharging, it will supply less energy than what was stored. To account for this, when Py(f) is
positive, Pg(t) becomes greater than P(r) since ﬁ is less than one. There will be more energy drawn
internally from the storage unit, but due to the losses, the output power P,(f) is smaller than P;(t) and the
output energy is less than what is drawn internally. When the storage unit is charging, it will store less
energy than is supplied to it. This is why when P(7) is negative, Ps(t) becomes less than Py(7) since \/ﬁ
is less than one. The lower P(t) effectively accounts for the energy losses and therefore the actually
energy that is stored is less than the energy that was supplied.

Additionally, the system must return the storage unit to its original SOC over some time period,
T, ie.,
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T
Eg(T) — Eg(0) = — ]0 Pi(thdt' =0. (3.9)

As mentioned in chapter 2, T is taken to be one day, unless otherwise specified.

Finally, the energy and instantaneous power drawn from the grid are related as follows:

T
EG,T = f PG(t’)dt, . (310)
0

3.2 Linear Programming Formulation
In order to find the minimum lifecycle cost architecture the optimization problem described in the
previous section is framed as a linear programming one. First it is framed for the case of one PEV

charger, one renewable DG, one storage unit, and one connection with the grid. This setup is shown in

Fig. 3-2.
A linear programming problem can be expressed in conical form as:
Ax<b
min (c"x) subjectto D-x=g |, 3.11)
lmin SxX= lmax

where ¢’x is the cost function to be minimized, c is the cost vector and x is the feasible vector consisting
of the decision variables [102]. In this case the cost function ¢’x is equal to the variable part of the
system lifecycle cost expression developed in Chapter 2. The vectors b, g, I,.;, and /.., and the matrices A
and D model the constraints of the system, in our case given by (3.1)-(3.10). Based on the system
lifecycle cost model of (2.1), the decision variables in x could simply be Pg,, PpG.r Pss Esr and Eg,.
However, since some of the constraints are on the instantaneous values of Pg(?), Ppg(t), Ps(t) and Es(?),

these must also be represented in x. Hence, x can be expressed as:

PG,r

x=|Ps |, | (3.12)

DG |
[ Grd } > Charger |——> PEV |

|_ Storage Unit |

Figure 3-1: Residential PEV charging configuration.
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where pg, ppc, and ps are vectors representing the discrete time output power profiles of the grid,
renewable DG and storage unit, respectively; and Aes represents the delta in E(f), the energy stored in the

storage unit, i.e.:

rPG1
Pq2
Pg = Pq3 , (3.13)

LDGN

'Ppeci1
PpeG2
Ppg =|Ppe3 |, (3.14)

LPDpGN
[Ps1
Ds2
ps =|Ps3|, (3.15)

LDsn

'A951

Aesz

Aes = Aes3 . (316)

| Aegy
These four vectors are of length N, where N equals the time period, 7, divided by the desired time step,

At. Hence, x is of length 4V+5. To match the variable part of (2.1) to c’x, ¢ is expressed as:
i 0
T,
C('; . life,sys
Typ
0

T;:
C'pg *int (1 Loy “”)
life,DG
0
CIS -int (1 +
0
Ty:
CY -int (1 + esys e'sys)
life,s

Tl ifesys
T

Thife,sys

> , (3.17)

life,S

Ce-

where each zero vector is of length V.

3.2.1 Development of the Constraint A-x < b

This inequality will be used to model the constraints given by (3.1)-(3.4). These constraints can
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be expressed in such a way that b is a zero vector. Its length is the same as the number of rows in 4. In

our formulation A is a matrix with 4N+5 columns and 4N rows. It takes the form:

A4, 0 0 0 o
0 A4, 0 0 o

A4=10 o0 4, o o’ -18)
0O 0 0 4, O
where each submatrix, 4;, A,, A3, A4 has Nrows and N+1 columns.
A; and A, model the constraint on the output power of the grid and the renewable DG,
respectively. At each time instant the output power from the grid must be less than or equal to Pg,, i.€.:
Pn— Pgr <0 foralll<n<N. (3.19)
Similarly, the output power from the renewable DG must be less than or equal to Ppg, at each time
instant, i.e.:
Ppen — Ppgr <0 foralll1<n<N. (3.20)
Due to its location, 4; is multiplied against the portion of x that contains pg, and Pg,. A;is multiplied

against the portion of x that contains ppg, and Ppg,. Hence, 4; and A4; can be expressed as:

10 0 - 0 0 -1
A=Ay = ? 10 0 0 _:1 (3.21)
6 0 O 0 1 - 1
When formulated this way, the first row of A; multiplied against pg, and P, will yield:
P1+0+0++0+0—-P;,. <0 , (3.22)

where the zero on the right hand side of the inequality comes from b, a zero vector. Repeating this process
for every row will ensure that (3.19) is upheld. The same process is true for A, multiplied against pp¢,
and Ppg, to uphold (3.20).

Development of A; is a little more involved. The storage unit can either supply power or draw
power. Pg, is determined by the magnitude of the maximum power supplied or magnitude of the
maximum power drawn. In any given situation, it is not clear which magnitude is greater. This means that
Ps, is equal to the absolute value of the largest magnitude element of p;. Hence, the structure of A;
depends on the sign (positive or negative) of each element of ps. If the storage unit is charging, then pg, is
negative or if the storage unit is discharging, then pg, is negative. The power drawn by the charger pc,
where:

Pca
Pc2

Pc = |Pc3) (3.23)
PéN
is used to determine if the storage unit is charging or discharging. It is assumed that there will not be

excess generation to supply both the charger and the storage. If the PEV is charging, then the storage unit
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will not also be charging, it can only be discharging. When the vehicle is charging, p¢, and pg, are non-
negative. The power rating, Ps,, has to be greater than the value of pg,:

Psn —Ps, <0 ifpc, > 0. (3.24)

If there is no PEV charging, the storage unit should not be discharging. This relates to the power

flow control. The optimal storage unit size is to supply the PEV with sufficient energy when the grid or

the renewable DG cannot. Therefore, if pc, is zero or negative, then the storage unit should only be

capable of charging and ps, will be negative. The power rating, Ps,, has to be greater than the negative of

the value of pg,:
—Psn — Psy <0 ifpe, <0 . (3.25)

In order to ensure (3.24) and (3.25) are satisfied, A, has to incorporate p¢, in its development:

aq1 0 0 oo 0 0 -1
0 o -« 0 0o -1 -1, <0

Az = | | @22 : . | where ay, = { 1 gz: >0 (3.26)
0 0 0 ter 0 aNN —1

where 7 is the row of A4;. Due to its location, A; is multiplied against the portion of x that contains pg, and
Pg,.

Lastly, A, relates to the energy capacity of the storage. There are constraints on the minimum and
maximum SOC for the storage unit. These constraints were established in chapter 2 in order to extend the
life of the storage unit and to increase reliability for contingencies. Under designed operation, the storage
unit should not go below the minimum SOC or above the maximum SOC. The minimum SOC is
determined by multiplying Es, by SOC,;, and the maximum SOC is determined by multiplying Eg, by
SOCpax. The storage unit will charge and discharge such that the stored energy will remain between the
minimum SOC and the maximum SOC. When the storage unit is charging, Aeg will increase. When the
storage unit is discharging, Aes will decrease. The energy capacity of the storage unit, Eg,, will be

determined by the maximum of Aeg, the minimum SOC and maximum SOC. The maximum of Aeg is:
max(Aeg) = (SO0Cpgy — SOCrin)Es - . (3.27)
This is used to determine Ej, as follows:
Aesn — (SOCmax — SOCmin)Esy < 0. (3.28)

In this way, Eg, is compared to every value in Aeg because it is unknown which element of Aeg is the

maximum. To implement this, 44 is:
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1 0 o -+ 0 0 "(SOCmax - SOCmin)
0 1 0 0 0 "(SOCmax - SOCmin) (3.29)

0 0 0 - 0 1 —(S0Cnax—SO0Cmin)

Ay, is multiplied against the portion of x that contains Aeg and Eg,.

3.2.2 Development of the Constraint D x = g

This equality ensures that the constraints given by (3.5)-(3.10) are met. D is a matrix with 4N+5
columns and 3N+1 rows; g will be a vector whose length is 3N+1, based on the number of rows in D. D
takes the following form:

D, D, D, 0 O
0 D, 0 0 O
0 0 D; D, O
d; 0 0 0 -1

where each submatrix D;, D;, D; and D, has N rows and N+1 columns and the row vector ds has N+1

D= : (3.30)

columns.
D; is used to model the conservation of energy established by (3.5), i.e.:
Ppn + Psn + Pon = Pcn » (3.31)
where n is the row of D;. The vectors ppg, ps and pg are contained in the vector x and will by multiplied

by D;. Therefore, D, has the following form to satisfy (3.31):

i1 0 0 « 0 O O
D1=? 1 0 0 0 0 (3.32)
o o 0 - 0 1 O
Since pc is not within x, it has to be represented in g:
Pc
0
g=101]. (3.33)
0

Here, the remainder of the vector g is zero as the remaining equality constraints can be satisfied with D,
D;, D, and dssimilarly to what was done in the previous section with b as a zero vector.
D, is used to model (3.6) in order to scale the output power of the renewable DG to fps(?), i.e.:

Poen — Pper fogn =0, (3.34)

where fpg, is the n™ element of fp;, the discrete time version of foa(t):
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fDGi
fDGZ

fDG = fDG3 . (335)
foen
D; will have the following form which incorporates the f;; factor:

1 0 0 ter 0 0 _fDGl

A

. . : (3.36)
6 0 0 0 1 _fl.)GN

Next, e is calculated using D; and D,. To calculate the n™ element of Aeg, both the previous
element of Aes and #™ element of pg are required. Inefficiency is incorporated depending on whether the
storage unit is charging or discharging as seen in equation (3.8). Using the same assumption as before,
the storage unit should only be discharging when the vehicle is charging because it is assumed that the
storage unit and the vehicle will not be charging simultaneously. When the vehicle is charging, the
relationship between the delta of the stored energy and the power drawn from the storage unit is:

Aeg, — Aegp_qy + ps—n-At = Owhenpg, > 0, (3.37)

N
where At is the time step. When the vehicle is not charging, the delta of the stored energy and power
drawn are related as:

Aes, — Aegp_y + Psy /0 *At = 0for pep, < O . (3.38)
D; is multiplied against the portion of x which contains ps. By doing so, the elements of pg will be

scaled based off of p.to account for the third term in (3.37) and (3.38):

T oo~ 0 0 Viht - Pon <0

D;=| 22 : | wheredy, =4 1 P >0 (3.39)
M . . ’ n
0 0 O cer 0 dNN 0 \/77

D, is multiplied with the portion of x that contains es. In doing so, the necessary elements of e

will be summed together according to the first two terms in (3.37) and (3.38):

1 00 « 0 -1 0
p,="1 1 0 0 00 (3.40)
0 0 0 ~ -1 1 0

In D, the first row shows that the last element in eg is subtracted from the first element in eg. In doing so,
(3.9) is satisfied because it ensures that the difference between the final SOC and the initial SOC is
attributed to the storage power and not from a mismatch in energy balance.

Lastly, Eg,, is simply a scaled summation of all of the elements in p; based on (3.10):

(P61 + P2+ + pPen) At —E;, =0. (3.41)
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This is implemented by the row vector ds. Due to its location, ds is multiplied with the portion of x that
contains pg. ds is simply given by the scalar coefficient for all but the last term in (3.41)

ds = [At - At 0]. (3.42)
The Eg, term in (3.41) is accounted for directly in D where the last element of the matrix is a negative

one.

3.2.3 Development of the Constraint l,;;, < X < L4«

The last part of developing the linear programming framework is the maximum and minimum
constraints on the decision variables as defined by (3.1)-(3.4). The Z,,, vector represents the minimum
constraints and the Z,,,, vector represents the minimum constraints. These constraints apply to the vectors,
PG, Ps> Pc and es, as well as the scalar ratings, Ppg,, Psy» PGr Esy and Eg,. The two vectors are quite
simply:

[ _pG,max(n)

Ppc,min

Lpin =|  Psmin : (3.43)

SOCmin€smin
EG,min
pG,max(p)
PpG,max
Psmax

SOCrnax€smax
EG,max

, (3.44)

Lnax =

where each vector, P maxms PDG,mins Psmins €smins PG,max(p)s PDGmax> PS.max> ANd €gmay, is of length N+1. The
value of each element within each vector is equal to corresponding minimum or maximum constraint
listed in Table III. For example:

pG,max(n)

PG, max(n)

PG max(n) = pG.mf\X(n) . (3.45)

PG, max(n)
Minimum constraints that are not listed in Table III are taken to be zero. Maximum constraints not listed
in Table III are taken to be large enough in order to not limit the design space with respect to that
constraint.

This linear programming formulation is implemented in MATLAB.

3.3 Search based Formulation

To validate the results of the linear programming based optimization, and to investigate its design

decisions, a search based optimization technique is also developed and implemented in MATLAB. In this
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approach the renewable DG and storage unit are sized for different design options. That is to say, one
design may be generated with a very large renewable DG system and one design may be generated with a
very small renewable DG system. The alternate designs are compared in terms of their system lifecycle
cost. To keep the search manageable the search is performed across only a limited set of feasible designs.
Hence, the success of this approach requires ensuring that the feasible designs considered include the
optimal design. For the cases consider in chapter 4, a feasible design must include storage, however,
designs with and without renewable DG are feasible.

The sizing algorithm depends upon whether or not the renewable DG is present. In architectures
where a renewable distributed generator is present, the algorithm takes an iterative approach. It starts
with Ppg,equal to zero, computes the change in the SOC of the storage unit over the time period T using
(3.9), and keeps increasing the size of the renewable DG until the change in the state-of-charge is zero.
For this SOC calculation, Pg(z) must be known and is computed using (3.5), where Ppg(?) is given by (3.6)
and Pg(?) is calculated from:

Pg(t) = min (Pgr, max (~Pg maxqmy, Pe(®) = Poc(®))) - (3.46)
In developing (3.46) it is assumed that the power flow in the system is controlled in such a way that the
PEV charger first takes power from the renewable DG. When the renewable DG cannot meet the full
power needs of the charger, the remaining power is first drawn from the grid. Only when the grid power
hits its limit is power drawn from the storage unit. This power flow control assumption limits the
architectures that are searched. However, since this control methodology minimizes the amount of
storage needed, this approach will search through the space of potential least cost architectures that
contain renewable DG. This sizing algorithm is parameterized in terms of Pg,, and used to generate
multiple designs by sweeping across different values of Pg, in the range of 0 through Pg yaxgy)-
In architectures where no renewable DG is present, a slightly different approach is followed.
This is necessary because now instead of the renewable DG, the grid will have to charge the storage unit.
It will do so when the electric vehicle is not charging. To incorporate this change in the control
methodology, the energy that has to be supplied to the charger from the storage unit when the electric

vehicle is charging must be calculated by:

T
Esac =_/ Pgyc(t)dt , 3.47)
0

where Pg,c(t) is the power supplied to the charger from the storage unit according to:

0, P(t)<0
Ps2c() ={Pc(t)—PG,r. Pe®) >0 °

The energy taken from the storage unit must be returned to it from the grid when the electric vehicle is not

(3.48)

charging. Hence, the output power flowing from the storage unit at all times can be expressed as:
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1 ESZC

Ps(t) =3 1 Tcorr
Pc(t) — Pg 1, Pc(t) >0

o Pe®=0 (3.49)

Here it is assumed that the system controller recharges the battery evenly across the time period when the
PEV is not charging, T¢.: Now that the output power profile of the storage unit is known, the

instantaneous power drawn from the grid is:

Pe(t) = min (Pg . max (—Pg max(y, Pc() = Ps(8))) - (3.50)
For either case (with or without DG), once Pg(?), Pps(t) and Pg(?) that satisfy the state-of-charge
requirement have been determined, the sizing algorithm proceeds to calculate the remaining three system
ratings needed for system lifecycle cost calculation. Of these E, is calculated using (3.10); and the other
two are calculated using:

Ps, = max(|Ps(0)D) (3.51)

_ mtax(AES ®) - mtin(AES(t))
SO0C ax — SOCpmin '

where max,() and miny() return the maximum and minimum value of their argument over 0 < ¢ < 7, and

Es, (3.52)

AE (1) is given by:

t
AE(t) = Es(t) — Es(0) = — fo B(t")dt' . (3.53)

Once the system has been designed the algorithm also checks to make sure that the following

design constraints are satisfied:

Ppgr < Ppgmax » (3.54)
PS,r < PS.max ’ (3-55)
ES,r < ES,max . (3'56)

If these are not satisfied the design is discarded. This search based formulation is represented graphically
in Fig. 3-2.
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Figure 3-2: Search based process for sizing a single design given EV charging requirements and other
system constraints.
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Chapter 4

Optimal Design Results and Discussion for a Single Charger

The optimization methodology developed in the previous chapter is applied to the design of a
residential PEV charging case. The two formulations of the optimization methodology developed in
Chapter 3 are used and their results compared. The analysis uses the cost parameters developed in

Chapter 2. It also uses solar irradiation and wind speed profile data for various locations in the US.

4.1 Residential Charging Case Study Overview

The first case analyzed using the optimization methodology is that of a residential charging
system. It is assumed that an electric vehicle with a 30 kWh battery has to be fully recharged every
evening from 20% state-of-charge. It is also assumed that the owner desires to charge the vehicle within 4
hours using a 6 kW Level 2 charger starting at 7 pm each day. However, the neighborhood in which the
house is located is serviced by a 25 kVA transformer and the typical load between 7 pm and 11 pm of all
the houses serviced by this transformer is 20 kW, excluding the charging needs of the EV. Hence, the
maximum power that can be drawn from the grid, Pg maxg), Without overloading the transformer is 5 kW.

Clearly the system requirements cannot be met with a grid-only charging solution, as the charging
rate (6 kW) exceeds the maximum allowable power draw from the grid. Hence, a storage unit and/or
renewable DG will be needed. The storage unit will be necessary with solar PV systems as the solar panel
cannot produce any power in the late evening hours when the vehicle is to be charged. In this thesis,
designs with a solar PV distributed generator and a lead-acid electrochemical storage unit (battery system)
are considered for two locations in the US: Eugene, OR and Los Angeles, CA. Then, designs with a solar
PV distributed generator and a Li-ion electrochemical storage unit are compared with the designs using a
lead-acid electrochemical storage unit. Finally, designs with a small wind turbine system and a lead-acid
electrochemical storage unit are considered for two locations as well: Los Angeles, CA and Boulder, CO.

For each location, an optimal design is determined based on a 20-year system lifecycle cost using
the linear programming formulation of Chapter 3. The parameters and design constraints given in Table
2-1 and Table 3-1 are used and the round-trip efficiency of the storage unit, #, is assumed to be 85%. The
results are validated using the search-based optimization approach. The linear programming approach is
an order of magnitude faster than the search-based one (3.88 s versus 41.14 s for the residential case).
However, it requires large memory resources to store matrices A and D. For the residential charging case,
it takes four times more memory to run the linear programming tool than it does to run the search-based
one (~800 MB versus ~200 MB).
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4.2 Dependence on Solar Irradiation Profile

An important parameter in the optimization methodology is the normalized output power profile
of the renewable DG, fps. Figure 4-2 shows the variation in fpg over a day for high (95" percentile),
median (50" percentile) and low (5" percentile) output power profile cases using 5-minute interval
irradiation data for Eugene, OR from 1995-2011 [103]. The 95", 50®, and 5™ percentile f»; represent
profiles that are above 95%, 50% and 5% of the data at a particular time of the day, respectively. The 95"
percentile fp; has a flat top because typical solar module name-plate output power ratings are based on
1000 W/m’ solar irradiation, while the 95" percentile irradiation for Eugene goes above 1000 W/m’
around 12 noon.

When the 95" percentile fp; is used in the design of the charging system, the lowest lifecycle cost
solution is one that includes a solar PV DG. The ratings of the individual components for this optimal
design are given in Table 4-1. The power flow and stored energy as a function of time for this optimal
design are shown in Fig. 4-2 (a). As expected the stored energy returns to its initial value after 24 hours.
Note that the optimal design uses the maximum available power from the grid when the vehicle is
charging. This is expected since without a high demand charge, the grid is the lowest cost alternative for
peak power. However, notice that the battery is charged using the DG instead of the grid. This is because
the cost of solar PV is lower than the cost of energy from the grid over the 20-year system life.

When the median f); is used in the design of the system, the lowest lifecycle cost solution is one
that does not include a solar PV generator. Instead, the system relies on the grid to charge the battery for
use when the vehicle is charging. This is because the lower normalized energy under the median fp;
profile necessitates the need for a DG with roughly twice the rating compared to the DG needed for the
95™ percentile case. As a result the cost of the DG is more than the cost of energy from the grid over the

system life. The power flow and stored energy for this optimal design are shown in Fig. 4-2(b).
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Figure 4-1: Normalized output power profile for solar PV generation at different levels of solar
irradiation. Irradiation data is for Eugene, OR from 1995 to 2011 [103].
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Table 4-1: Optimal design ratings and lifecycle costs for designs with solar PV systems.

fDG P DG,r P Sr PG,r ES,:’ EG,r C
(percentile) (kW) (kW) (kW) (kWh) (kWh) %
95™ 0.578 1 5  21.64 20 45,631
50" 0 1 5 21.69 24.1 47,739
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Figure 4-2: Power and energy profile for the optimal design of a residential EV charger with integrated
solar PV system and lead-acid battery, assuming (a) 95" percentile and (b) median (50" percentile)

normalized output power profiles of Fig. 4-1.
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Clearly, whether or not the DG based design is optimal depends on the solar irradiance profile.
Fig. 4-3 presents the system lifecycle cost of the optimal design for different fj; profiles, ranging from 5™
percentile to 95" percentile using Eugene, OR data. Up to the 50", percentile the optimal design does not
utilize a solar PV. However, once the solar irradiance is at or above the 53™ percentile level,
corresponding to a noon-time irradiance of about 720 W/m®, the design with solar PV is optimal. The
median irradiance of Eugene, OR is just below this threshold. Fig. 4-3 also displays that the linear

programming and search based approaches both identify the same optimal design.

4.3  Optimization Across Non-identical Days

The analysis so far has implicitly assumed that all days have identical solar irradiation profiles. In
order to investigate optimal designs for systems operating over dissimilar irradiance days, an fj; profile
was created that models the variation in irradiance over a full year using 6 day-length irradiance profiles,
where each day's irradiance represents the median values at each time point for the days of two
consecutive months. This 6-day fj; profile is shown for Eugene, OR and Los Angeles, CA in Fig. 4-4.
The Los Angeles fj; profile is based on 1-minute interval irradiation data from 2010-2011 [104]. Notice
that Eugene has lower average irradiation than Los Angeles.

When the fp; profiles of Fig. 4-4 are used in the design of the charging system with T set to 6

days, the optimal design for Eugene does not have a solar PV generation source, while the optimal design
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Figure 4-3: (a) System lifecycle cost and (b) components costs as the solar PV system's normalized output
power profile is varied from the 5" percentile to the 95" percentile using Eugene, OR data.
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Figure 4-4: Two-month median normalized output power profiles across a year for (a) Eugene, OR and
(b) Los Angeles, CA [103,104].

for Los Angeles does. The power flow and stored energy waveforms for Eugene and Los Angeles optimal
designs are shown in Fig. 4-5 a) and (b), respectively. As before, the lowest cost design uses the
maximum available power from the grid when the vehicle is charging. Notice also that the optimal design
returns the stored energy to its initial level after each day, even though the imposed constraint is over 6
days. This is because the battery cost is a very large fraction of the total lifecycle cost, and by bringing
the battery SOC to its original position after each 24-hour period, the size of the battery can be

minimized.

4.4  Exploration of Li-ion Electrochemical Batteries

As can be seen from Fig. 4-3, the cost of storage is nearly 50% of the system lifecycle cost. One
reason this cost is so large is that the lead-acid batteries have a life of only six years. Hence in the 20-
year life of the system, four lead-acid batteries have to be purchased. Because lead-acid batteries are a
very mature technology, major advancements in increasing their life or reducing their cost seems unlikely.
On the other hand, Li-ion batteries are a relatively new technology with longer life than lead-acid units
and with the potential for significant cost reductions over the next decade. Assuming 12-year life Li-ion
batteries, the price, C"’s, at which Li-ion battery technology becomes cost competitive with lead-acid
batteries is investigated. It is further examined whether or not this price for Li-ion is reasonable to expect

over the next decade.
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Figure 4-5: Power and energy profiles for the optimal design of a residential PEV charger with integrated
solar PV generation and lead-acid storage, assuming the normalized output power profile of (a) Eugene,
OR and (b) Los Angeles, CA as depicted in Fig.4-4.

When the median solar irradiation profile for Los Angeles, CA is used to find the optimal design
for a PEV charging system with a solar PV generation source and a lead-acid battery, the resulting system
lifecycle cost is $46,793 of which $20,330 is the storage cost. The lifecycle cost of systems with Li-ion
storage technology depends on the specific cost, C’’s (in $/kWh), of Li-ion batteries. The system
lifecycle costs for designs with Li-ion storage technology are plotted as a function of Li-ion specific cost

in Fig. 4-6. Also plotted for reference in Fig. 4-6 is the lifecycle cost of the system with a lead-acid
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Figure 4-6: System lifecycle cost as a function of specific cost of Li-ion batteries. The triangle indicates
the specific cost below which Li-ion storage technology is cost competitive with lead-acid storage
technology, when it is assumed that the Li-Ion battery achieves a 12-year life while the lead-acid battery
has a 6-year life.

battery. The breakeven point between Li-ion and lead-acid is marked by a triangle. When the specific cost
of Li-ion storage drops below $455/kWh, Li-ion storage becomes more attractive than lead-acid storage.
The current cost of Li-ion batteries as used in this thesis is $800/kWh. However, some industry analysts
expect this cost to reduce by 60% over the next decade [76]. Hence, these are battery only prices and do
not include other costs associated with a complete storage unit. Given these costs, it is quite feasible for
Li-ion storage technology to become cost competitive with lead-acid storage technology for PEV
charging applications over the next decade. However, with the current cost of Li-ion technology, designs
with Li-ion batteries result in system lifecycle costs that are almost 33% higher than designs with lead-

acid batteries. Therefore, all the remaining designs explored in this thesis use lead-acid battery storage.

4.5 Dependence on Wind Speed Profile
Another option for distributed renewable generation is a wind turbine. This option may offer a
more cost effective solution for charging systems at locations that have reasonable wind, since the wind
blows even at night when the PEV is to be charged and could reduce the required battery size. The output
power of a wind turbine is a highly nonlinear function of wind speed. A normalized output power versus
wind speed model for wind turbines is developed using the averaged output power data of five wind
turbines from three manufacturers [35], [62], [63]. This normalized output power versus wind speed is
shown in Fig. 4-7 and given by the following polynomial expression:
fpewina(Wy) = —0.000000136v;5 + 0.000015661v,; — 0.000513088v;%
+ 0.005882602 v — 0.013104647 v — 0.015410784v,, “57)
+ 0.058081524

for2.5m/s < v, <20m/s
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Figure 4-7: Normalized output power versus to wind speed of wind turbines used in this thesis.

As in the case of solar PV, fig s Was clipped at its maximum value of 1, even if (4.1) gave a higher
value. Wind turbines have a cut-in wind speed below which they produce no power. Wind turbines also
have a cut-out wind speed beyond which they produce no power in order to protect themselves from
damage. In this model, the cut-in wind speed is 2.5 meters per second (m/s) and the cut-out wind speed is
20 m/s. Using this model, the output power from wind turbines installed in Los Angeles, CA and in
Boulder, CO is calculated and plotted in Fig. 4-8 using actual wind speed data for 2010-2011 [104].
Figure 4-8 shows the high (95™ percentile), median (50" percentile), and low (5™ percentile) output power

profiles for these two locations.

As can be seen from Fig. 4-8(a), in Los Angeles, even the 95" percentile wind profile utilizes less
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Figure 4-8: Normalized output power profile for wind turbine generation at different percentiles of wind
speed for (a) Los Angeles, CA and (b) Boulder, CO [104].
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than 15% of the rated output power capability of the wind turbine. This is extremely poor utilization of
the wind turbine and leads to optimal designs that do not use a wind turbine. Hence solar PV is a better
option than small wind turbines for Los Angeles, CA.

In the case of Boulder, CO, the median output power profile is also quite poor and not favorable
for a wind turbine in an optimal PEV charger design. On the other hand, the 95™ percentile profile favors
a wind turbine. These results are summarized in Table 4-2. The power flow for the 95" percentile case is
shown in Fig. 4-9. As seen in Fig. 4-9, the output of the wind turbine is fairly flat across the day. This
means that the storage unit is slowly charged during the day when the PEV is not charging, and when the
PEV is charging, the wind turbine directly supplies it part of its required power. However, it is not
reasonable to design the PEV charging system based on the 95" percentile output. Also, the wind data
used in this analysis is for 50 meters height which may be on the high side for a residential application.

Therefore, while wind can be an attractive resource as it can be available at night (as well as

when solar is not an option) and therefore reduce the need for storage, the available wind technology is

Table 4-2: Ratings and lifecycle costs for optimal PEV charger designs with wind turbine as the
renewable generation option.

ﬁ)(} PDG,r PS.r PGJ ES,r E:G,r C
(percentile) (kW) (kW) (kW) (kWh) (kWh) (&3]
95™ 0.200 0.840 5 17.62 20 44,065
50" 0 1 5 21.69 24.1 47,739
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Figure 4-9: Power and energy profile for the optimal design of a residential PEV charger with integrated
wind turbine and lead-acid battery, assuming the 95" percentile normalized output power profile for
Boulder, CO as shown in Fig. 4-8(b).
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not suitable for capturing energy from low wind speeds. It is possible that if the cut-in wind speed was
lower and if the wind turbine could reach its rated turbine output power at lower wind speeds, then the
utilization factor of wind turbines would be much greater. However, with the available technology, wind
turbines are not cost effective for use in PEV chargers at least in locations with wind speeds similar to
Los Angeles, CA and Boulder, CO.
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Chapter 5

Multiple Charger Optimization Methodology and Analysis

This chapter will present modifications to the linear programming formulation in order to model
the multiple charger case. Here only a two PEV charger case is formulated. However, the steps taken to
expand the linear programming formulation to model systems with two PEV chargers can be repeated to
expand the formulation to model more than two PEV chargers. Three configurations involving a
combination of centralized or distributed generation and storage will be implemented. The implemented
configurations are applied to a two PEV charger public charging case using solar irradiation data for Los
Angeles, CA.

5.1 Modifications for the Multiple Charger Case
Table 5-1 defines each of the vectors that will be used in the two charger case. Because two PEV
chargers are used, there will be two charging profiles for the PEVs: Pc,(¢) and Pc,(¢). The grid connection

Table 5-1: Vectors used in the formulation of the two charger case.

Vector Description
Pci Discrete time power profile of charger 1
Pc2 Discrete time power profile of charger 2
PG Discrete time power drawn from the grid by charger 1
Pc2 Discrete time power drawn from the grid by charger 2
PG Discrete time total power drawn from the grid
Discrete time output power profile of DG 1 or the power drawn from the centralized DG
Pri by charger 1 depending on the configuration
» Discrete time output power profile of DG 2 or the power drawn from the centralized DG
DG2

by charger 2 depending on the configuration
PG Discrete time output power profile from the centralized DG
Discrete time output power profile of storage unit 1 or the power drawn from the

Pst centralized storage unit by charger 1 depending on the configuration
Discrete time output power profile of storage unit 2 or the power drawn from the
Ps: centralized storage unit by charger 2 depending on the configuration
Ps Discrete time output power profile from the centralized storage unit
Adeg; Discrete time change in energy of storage unit 1
Adeg; Discrete time change in energy of storage unit 2
Aes Discrete time change in energy of the centralized storage unit
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point is shared between the two chargers. There is only one grid constraint based on the sum of power
that is drawn from the grid by both chargers but there is no constraint on how the power from the grid is
divided between the two chargers. Here, the total grid power, Ps(7), will also be represented by the power
from the grid that goes into each charger, P,(7) and Pg(f) where:
Pg1(t) + Pgp(t) = Pg(t) . .1
Each charger will also be powered by a DG and a storage unit and the associated power balance
for each one is:
Pg1(t) 4 Ppga(t) + Psy(t) = Pey () . (5.2)
P2 (t) + Ppga(t) + Psp(t) = Pep(t) . (53)
where the discrete time vector representations of each power profile listed is defined in Table 5-1. As
implemented here, a distributed DG can only supply power to the charger to which it is connected or to a
centralized storage unit. A distributed storage unit can only supply power to the charger to which it is
connected.
b will still be a zero vector in each configuration and its length is still determined by the number

of rows in A. g is the same between each configuration:

Pc1
Pc2
g=|0 (5.4)
0
where the length is still dependent on the number of rows in D. The remaining changes in x, ¢, A, and D

will depend on the configuration.

5.1.1 Configuration A: Distributed DG and Distributed Storage
In configuration A shown in Fig. 5-1, each PEV charger has its own DG and own storage unit.

The power from the renewable DG that is connected to one charger does not supply power to the other

L DG |
e % o[ g > eV ]

| Storage Untt, |

DG |

> Charger, —>{ PEV |
{ Storage Unit, |

Figure 5-1: Configuration A for a two charger system consists of distributed renewable DG and
distributed storage units.
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charger. The same is true for the storage unit. For this system, x, is:

r P61 T

L EG’r A

PGl,r
Pc2
PGZ,r
P
PG,r ’
P2pc

D2s
Aezs

(5.5)

where the subscript of x indicates the configuration and p,pg, p2s and Ae;s are represented by:

P2pc —

D2s =

Aezs =

The corresponding ¢, is:

Ca = C(’;

[ Ppc1
PDGl,r
Poc2
-PDGZ,r

[ Ps1
P S1i,r
Ps2

cg-

_P S2,r
A851

ESl,r
Aesz

ESZ,r

(=R R e I )

. Tli fe,sys

Typ
CapG
Cas
Tlife,sys
T

(5.6)

5.7

(5.8)

(5.9)

where each zero vector is of length N and ¢;p¢ and c,¢ are the cost for two distributed renewable DG and

two distributed storage units, respectively:

Ca2pe =

C’DG . lnt(l +

C’DG : lnt(l +

0

0
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C2s =

where each zero vector is of length V.
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Due to the new x,, A, is in the following form:
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The ratings are determined using the same setup as before where A; corresponds to the power rating of

the grid, A; corresponds to the power rating of the renewable DG, A; corresponds to the power rating of

the storage unit, and A, corresponds to the energy capacity rating of the storage unit. The only difference

can be seen in A;; and A;; where the second number in the subscript indicates which discrete time vector

of the charging profile, pc, or pc;, is used to develop the matrix.

D, is also modified to incorporate (5.1)-(5.3) in the new configuration and the additional

components:

D, 0
0 D,
D, D,
0 0
0 0
0 o0
0 o0
Lo o

o
N

“X-E=-F

ecoFo

N

Ecocc?

X=X

[

o

cocooco Vo

N
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oSococococecs

(== I — I I — Y -y )

[y

(5.13)

The first two rows correspond to (5.2) and (5.3). The third row matches (5.1). D,;and D, are determined

by fpe,1 and fpg,:, the discrete time vectors for the output power profiles of DG, and DG,. D;; and Dj,

scale the output power of storage unit 1 and storage unit 2 based on p¢; and pc,. D;; and D;, are each
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paired with D, to complete calculating the change in energy stored in each storage unit.
Finally, the constraints are established by:

r —P6max(n) 1
—pG,maX(n)
_pG,max(n)
PpGmin
pDG,min
lmi”'a = Psmin !
pS,min
SO0Cmin €smin
S0 Cmin eS,min
L EG,min

(5.14)

Pcma x(p)

Pcmax(p)

PG max(p)
pDG,max
PpG,max

lmax,a = Psmax

pS,max

S Ocmaxes,max

S OcmaxeS,max

EG,max

(5.15)

As can be seen, there is almost a one to one matching between the minimum and maximum constraints
based on the component listed in x, except for the first two vectors in ., which have a charger
constraint on the power drawn from the grid by each charger. This is to prevent the grid from charging
both the PEV and the storage unit simultaneously. If this were to happen, it would violate the assumptions
made earlier in the formulation with respect to the output power of the storage unit. This constraint was
not necessary in the single charger case because the limit on the grid was lower than the power drawn by

the charger.

5.1.2 Configuration B: Distributed DG and Centralized Storage

The difference between configuration B and configuration A is that the storage is now
centralized. The centralized storage can be charged from either renewable DG. Configuration B is shown
graphically in Fig. 5-2. Similar to the power from the grid, the power from the storage is divided between
the two chargers:

Pg1(t) + P, (t) = Ps() . (5.16)
To accommodate the change in the configuration, there is an addition of a storage unit power vector to

represent the output power of the centralized storage unit and a deletion of a storage unit energy vector

because there is only one storage unit and only one change in energy capacity of that storage unit:
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Figure 5-2: Configuration B for a two charger system consists of distributed renewable DG and a
centralized storage unit.
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where each zero vector is of length N.
Due to the addition of a storage unit output power vector and the removal of an energy capacity

vector in x;, A, takes on a slightly different form:

A 0 0 0 0 0 0 0 0 O
0 4 0 0 0 0 0 0 0 0
0 0 4 O 0 0 0 0 0 0
0 0 0 A, 0 0 0 0 0 O
Ap=|0 0 0 0 A, 0 0 0 0o 0 | (5.19)
0 0 0 0 0 A4, O 0 0 0
0 0 0 0 0 0 A4;, O 0 O
0 0 0 0 0 o0 0 4;; 0 O
) 0 0 0 0 0 0 0 A4, O

where the difference is in the replacement of A, in the second to last row with A3 ;. This new submatrix
will determine the rating of the centralized storage. The centralized storage is considered to discharge if
either of the chargers are charging.

D is also slightly modified due to (5.16) and the centralized energy capacity:

D, 0 O D, 0 D, 0 O O O
o D, O 0 D, 0 D, 0 0 O
p, p, -, 0 0 o0 0 O 0 O
_lo o o 0 O D, D, =D, 0 0
Prv=10 o o D, 0 o0 o0 0 0 o0/’ (5-20)
o o O 0 D,, 0 0 O 0 O
o o O 0 0 0 0 D; D, 0
L0 0 ds o0 o 0 0 0 0 -1

where (5.16) is mapped to the fourth row and there is only one row that calculates the change in the
energy stored in the storage unit.

The constraint vectors for configuration B are almost the same as the vectors for configuration A
except for the ninth subvector which relates to the storage unit power:

r —Pé6ma x(n) 7
—Pémaxn)
—P¢ max(n)
pDG,min
PpGmin
lmin,b = Psmin s (5.21)
Psmin
Psmin
SOCmines,min
EG,min
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' Pcmax(p)
Pcma x(p)
pG,max(p)
pDG,max
_ pDG,max
lmax,b - pS,max
pS,max
pS,max
SOCmaxeS,max
EG,max

(5.22)

5.1.3  Configuration C: Centralized DG and Distributed Storage
In this last configuration, the storage is distributed as it was in configuration A but now the
renewable DG is distributed. Configuration C is shown graphically in Fig. 5-3. Similar to the power from

the grid, the power from the renewable DG is divided between the two chargers:
Ppg1(8) + Ppgz(t) = Ppg(D). (5.23)

To accommodate the change in configuration C from configuration A, there is an addition of a renewable

DG power vector to represent the output power of the centralized renewable DG:

r P61 T
PGl,r
Pq2
PGZ,r
Pc
xc=|For . (5.24)
P2pe6
Poc
P2s
Ae,g
| Eg, |

c. will also see the addition of one more zero vector and term:

L_Dc |
[ Gnd | 1——){ Charger, ——> PEV |
| Storage Unit, |
> Charger, |—>] PEV |

|_ Storage Unit, |

Figure 5-3: Configuration C for a two charger system consists of a centralized renewable DG distributed
storage units.
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life,DG
Cas

Tlife,sys

cg -

where each zero vector is of length V.
Due to the addition of a renewable output power vector in x, and (5.23), A, gains a row and a

column as compared to A,:

rA, 0 0 o o0 o 0 0 0 0 0
0 A 0 o 0 O 0 0 0 0 0
0 0 4, 0 o0 o 0 0 0 0 0
0 0 0 A, 0 o0 0 0 0 0 0
0 0 0O o0 4, O 0 0 0 0 o0
A=o o o o 0 4, o0 o o0 o0 of - (5.26)
0 0 0 0 0 0 4, 0 0 0 0
0 0 0 0 o0 0 0 A;, 0 0 0
0 0 0 0 0o 0 0 0 A, 0 O
. 0 0 0o o0 0o 0 0 0 0 4, Ol
D, gains a row and a column:
D, O 0 D, O 0 D, 0 0 0 0]
0 D, 0 0 D, O 0 D, 0 o0 O
D, D, =Dy 0 0 0 0 0 0O 0 O
D. = 0 O 0 D, D, -D;, O 0 0 0 0
c“lo o 0 o o D, O 0 0 0 o |’ (5.27)
0o o 0 0 0 0 D3; O D, 0 O
0o o0 0 0 0 0 0 D;; 0 D, 0
L0 O d;s 0 o 0 0 0 0 0 -1

where the fourth row incorporates (5.23) and the fifth row is the only row that calculates the output power
rating of the renewable DG.

The last part of configuration C is the constraint vectors:
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r —P¢,ma x(n) 7
—Péma x(n)
—Pé,max(n)

PpG,min
Ppoé,min
Ppé,min
Psmin
Psmin
S Ocmin €s,min
N Ocmin €s,min
E G,min

, (5.28)

lmin,c =

Pcmax)
Pcma x(p)
P:6.max(p)
PpG,max
PpG,max
lnaxe =| PpGmax _ (5.29)
P S,max
pS,max
) Ocmax eS,max
SO Cmax eS,max

E G,max

This linear programming formulation for each configuration is implemented in MATLAB.

5.2 Optimal Design Results and Discussion for Multiple Chargers

It is expected that many PEV owners will charge their vehicles at home but there will also be
need for public PEV charging infrastructure for use when traveling or needing a quicker recharge than
available at home. Public chargers may be installed in office parking lots, outside coffee shops and
shopping centers or at traditional gas stations. The case study examined in this thesis is that of a public
charging station outside a restaurant. This restaurant decides to install two 7.2 kW Level 2 PEV chargers
in its parking lot. It expects heavy usage during lunch and dinner hours when customers come to eat. The
average time a customer spends at the restaurant is approximately 30 minutes during lunch time and one
hour during dinner time. At any given time, two PEVs can be charged and the restaurant expects roughly
ten PEVSs to be charged during a day - 5 during lunch and 5 at dinner. The expected drawn power profiles
for the two chargers are shown in Fig. 5-4. The utility uses a separate meter for the PEV chargers. If the
chargers draw more than 10 kW, the utility will charge the restaurant a demand charge for the peak power
drawn during the month.

The restaurant is trying to decide between four possible configurations for the charging system. In
each configuration, there is only one grid connection point through the separate meter from the utility.
The first configuration is a fully distributed one. It has two individual solar PV generators above two

parking spots (which provide shade for two cars) and two storage units. One solar PV generator and
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Figure 5-4: Expected average daily charge profiles for (a) charger 1 and (b) charger 2, for the public
charging case.

battery is associated with each charger and only supply power to one PEV. The second configuration is
similar except it has only one shared storage unit. The third configuration combines the two solar PV
systems into a single renewable source but has separate storage units for each charger. The last
configuration has one solar PV source and one shared storage unit. In all four configurations, there is only
one connection with the grid and this is through the separate meter installed by the utility.

The first three configurations are the same as the three configurations developed in Section 5.1.
The last configuration will use the residential configuration with a charger profile that is the sum of the
two public charging profiles. Therefore, the three configurations are considered with Pg yaxp) equal to 10
kW. The monthly connection charge is $15 and there is no demand charge applied to the power drawn
from the grid. It will be assumed that the restaurant has the same solar resource as Los Angeles, CA and

therefore the median solar irradiation profile for Los Angeles, CA is used for this analysis.

5.2.1 Configuration A

This configuration has distributed solar PV generation and distributed storage units. Because the
solar PV and storage unit are only meant to charge the PEV charger to which they are connected, their
size depends on the power drawn by their respective charger. In this example, charger 2 has a longer
period of power demand than charger 1 during lunch hours (i.e., at a time when the solar PV is generating
power). As a result, the solar PV source and storage unit connected to charger 2 are larger than those
connected to charger 1. This result can be explained by the fact that it is more cost effective over the life
of the system to install a larger solar PV source to meet the needs of the PEV charger instead of

purchasing energy from the grid. However, to prevent oversizing the storage unit, there is a limit to how
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large this solar PV system can be. Therefore, some power is still drawn from the grid during lunchtime.
Fig. 5-5 shows the power and energy profiles of each charger, as well as the aggregate power profiles of
the optimal design. The ratings and costs of each component of the optimal design are given in Table 5-2

and Table 5-3, respectively.

5.2.2 Configuration B

This configuration has distributed solar PV generation and a centralized storage unit. The advantage
of this configuration is that surplus energy from one solar PV generator can be stored in the central
storage unit and later used by either charger. Another advantage is a lower fixed cost for one storage unit
than the fixed costs of two storage units. Table 5-3 shows that the cost of the storage unit for this
configuration is less than the sum of the storage unit costs for configuration A. This can be attributed, in
part, to the lower total energy capacity rating of the single storage unit than the sum of the energy
capacity of the separate storage units. As seen in Table 5-2, the solar PV sources are equal in rating
meaning that the parking lot shading canopies could have the same design (e.g., same area, same module
layout, etc.). Fig. 5-6 shows the power profiles of each charger, as well as the aggregate power and
energy profiles of the optimal design. The ratings and costs of each component of the optimal design are

given in Table 5-2 and Table 5-3, respectively.

5.2.3 Configuration C

This next configuration has a centralized solar PV source but distributed storage units. In this
configuration, the solar PV source can supply power to both of the chargers simultaneously. It can also
charge either storage unit. As seen in Table 5-2, the two storage units have similar energy storage
capacity. However, the cost of the solar PV source in this configuration is greater than it was in the
previous two configurations due to a higher power rating. The total system lifecycle cost is slightly lower
than that of configuration A but greater than that of configuration B. Fig. 5-7 shows the power profiles of
each charger, as well as the aggregate power and energy profiles of the optimal design. The ratings and

costs of each component of the optimal design are given in Table 5-2 and Table 5-3, respectively.

5.2.4 Configuration D

The last configuration has one solar PV source and one storage unit which can supply power to both
chargers simultaneously. The ratings and costs of each component of the optimal design are given in
Table 5-2 and Table 5-3, respectively. As seen in Table 5-3, this configuration yields the lowest cost
solution out of all four configurations. However, it is interesting to note that the system lifecycle costs for
configurations with separate storage units are similar and the system lifecycle costs for configurations

with a single storage unit are similar. The restaurant should choose a design that has a single storage unit
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Table 5-2: Optimal design ratings for public charging designs with solar PV system and lead-acid battery.

PDG1 x l)DGZ,r PDG,r PS] X PSZ,r PS,r PG,r ES Ir ES2,r ES,r EG,r

OPtion \wy W) kW) (kW) (KW) (kW) (kW) (kWh) (kWh) (kWh) (kWh)
A 0667 1.194 N/A 28 2461 N/A 10 7478 11.124 N/A 45.83
B 0.645 0644 N/A NA NA 44 10 NA NA 17354 47.101
C N/A N/A 2059 28 2462 N/A 10 9163 9439 N/A 44.067
D N/A NA 192 NA NA 44 10 NA  NA 17347 44336

Table 5-3: Optimal component costs for public charging designs with solar PV system and lead-acid

battery.
Option DG, DG, DG Storage; Storage, Storage Grid Lsi;z:ct;:;e
A $3,135  $5,454 N/A  $9,261 $12,199 N/A  $49,777 $79,826
B $3,039  $3,035 N/A N/A N/A  $19,232  $51,738 $77,044
C N/A N/A  $9,259 $10,743 §10,715 N/A  $48,636 $79,354
D N/A N/A  $8,648 N/A N/A $19,224  $48,912 $76,785

but there is marginal difference between a design that employs separate solar PV sources or one that has a

single solar PV source.
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Figure 5-5: Power and energy profiles for the optimal design of a public charging system with distributed
solar PV and distributed lead-acid battery as described in configuration A. The power and energy profiles
are shown for (a) Chargerl and (b) Charger2 as well as (c) the aggregate power profiles of each
component. Gridl and Grid2 represent the power drawn from the grid by charger 1 and charger 2,

respectively.
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Figure 5-6: Power and energy profiles for the optimal design of a public charging system with distributed
solar PV and centralized lead-acid battery as described in configuration B. The power profiles are shown
for (a) Chargerl and (b) Charger2 as well as (c) the aggregate power and energy profiles of each
component. Gridl and Grid2 represent the power drawn from the grid by charger 1 and charger 2,
respectively. Storagel and Storage 2 represent the power drawn by the storage unit from charger 1 and
charger 2, respectively.
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Figure 5-7: Power and energy profiles for the optimal design of a public charging system with centralized
solar PV and distributed lead-acid battery as described in configuration C. The power and energy profiles
are shown for (a) Chargerl and (b) Charger2 as well as (c) the aggregate power profiles of each
component. Grid]l and Grid2 represent the power drawn from the grid by charger 1 and charger 2,
respectively. DG1 and DG2 represent the power drawn from the DG from charger 1 and charger 2,
respectively.
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Chapter 6

Summary and Conclusions

Plug-in electric vehicles (PEVs) and renewable distributed generation (DG) are expected to have
increasing penetration levels over the next few decades as they promise many societal benefits. The
penetration density of these technologies in some geographic areas may be high enough to cause
problems for the electric distribution system. This presents an opportunity to optimize the design of
charging solutions that integrate renewable DG and/or storage with PEV chargers in order to mitigate

their negative electric grid impacts.

6.1 Summary

This thesis presents a methodology and an optimization tool for the design of grid-interfaced PEV
charging systems that integrate renewable generation and storage. The optimization tool is based on a
linear programming approach which selects designs with minimum system lifecycle cost. A search-based
optimization technique is also developed to validate the results.

A system lifecycle cost model is developed in Chapter 2 in order to compare alternate designs.
The design with the lowest system lifecycle cost is considered optimal. Vendor data for renewable DG
and storage is presented and used to determine the values of the cost and time duration parameters that are
used in this thesis. Utility cost data is also compiled to determine appropriate values for electric grid
related cost parameters. With this system lifecycle cost model (based on real data), a realistic analysis can
be performed using the optimization tools.

Chapter 3 develops of the optimization methodology for a single charger system with centralized
DG and storage. The methodology is formulated using two approaches. The first approach is based on
linear programming, while the second is based on a limited search approach. In Chapter 4, these
approaches are applied to a residential charging case in which the peak power drawn by the charger is
greater than what can be supplied from the grid. Optimal designs are found for systems that included a
lead-acid battery and a solar PV source or a wind turbine for two locations in the US. A sensitivity
analysis is also performed to determine the cost competitiveness of lithium-ion battery technology relative
to lead-acid batteries.

The linear programming formulation developed in Chapter 3 for a single charger is extended for

multi-charger cases in Chapter 5. Four possible configurations of a two-PEV charger system are analyzed

in this chapter using solar irradiation data from one US location. The configurations considered include
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combinations of centralized and distributed solar PV generation and lead-acid storage. The system is

analyzed using the developed tool to find the optimal design configuration for a specified case study.

6.2 Conclusions

A number of conclusions have been drawn from this thesis. These include:

1) The proposed linear programming technique is an effective means to optimize charger
systems with integrated distributed generation and/or storage.

2) Designs that draw the maximum available power from the grid have the lowest 20-year
system lifecycle cost.

3) On a lifecycle basis, designs with a solar PV distributed source are better than those without
one if the median noon-time irradiation of the location is greater than about 720 W/m?>,

4) Li-ion storage technology is not yet cost competitive with lead-acid storage technology but
may become more attractive as its cost decreases over the next decade.

5) Available wind turbine technology is not cost effective for PEV chargers at least in locations
with wind speeds similar to those of Los Angeles, CA and Boulder, CO.

6) When comparing configurations for a multiple PEV charging case, the one with centralized

storage and generation has the lowest system lifecycle cost.

6.3  Directions for Future Work

In the future, the optimization tool can be further developed to make the analysis of multi-charger
systems easier. For one, it needs to be extended to handle systems with more than two chargers,
generation sources and storage units. Also, it would be valuable to reformulate it in such a way that it can
handle the various configurations in a unified manner.

The system lifecycle cost model used in the optimization can also be improved. One aspect would
be to gather additional cost data and come up with more accurate parameter values. Also, the lifecycle
cost model could incorporate time-of-use electricity prices, so that designs that try to derive economic
benefit from storing electricity when it is cheaper (e.g., during the night) and selling it back when it is
more expensive can be evaluated.

In terms of analysis, it would be valuable to consider optimal designs for a residential
neighborhood where renewable generation and storage resources are used in a cooperative manner by
multiple houses.

Finally, the results of this work can be used to guide the development of the actual power
electronic hardware needed for a grid-connected PEV charging system that integrates renewable

generation and storage.
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Appendix A

PLECS Simulation Model

In order to verify that the designs generated by the two formulations meet the system requirement
of returning the storage unit to its original SOC at the end of the time period 7, a simulation model for the
PEV charging system was developed in PLECS — a switched-mode circuit and system simulation
platform. A simulation model for the PEV charging system built in PLECS is shown in Figure A-1. In
this simulation model, controllable current sources are used to model the power drawn from the grid, the
renewable DG and the PEV charger. The energy stored in the storage unit is modeled using the voltage
across a capacitor. The storage unit and renewable DG used in this simulation model are sized using the
developed formulations. The simulation model also includes the control logic for controlling the power
flow in the system. The power drawn by the PEV charger and the power available from the renewable
DG are system inputs, while the power drawn from the storage and the grid are determined by the control
logic. A switch in series with the storage unit is used to stop the flow of power from or to the storage unit
when the energy stored in the storage unit goes below or above its minimum or maximum limits,

respectively.
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Figure A-1: Simulation model for the PEV charging system in PLECS.
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Appendix B

MATLAB Code

This Appendix contains the MATLAB code that was used to generate the results that were presented in
this thesis. There are a total of five files. The first file is the linear optimization tool for the single charger
case. The second file is the search-based optimization tool for the single charger case. The third, fourth
and fifth files are the multi-charger optimization tools for configurations A, B and C, respectively. Each
file will require the necessary .csv input files for the charger and DG profiles. The remaining parameters
and constraints can be manually set.

F 55T FTFTHEFTFFTETFTFFFEYFTFEEFTFTFFYTFFEYYYVFFY YV
% Linear Programming - Single Charger

% General equation to be solved: C = ¢' x

% Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt

% x =[Pg' Pg_rating Pdg' Pdg rating Ps' Ps_rating Es' Es_rating Eg_rating]'
% length of x is 4*dt + 5
%
%
%
%
%

To change between solar, wind, or no DG, you will have to vary which
‘profile’ to load. Also, the prices will have to be adjusted. To vary
which architecture is displayed at the end, vary the Pc_max.

F 55T FTYTFTFTFTFEETFTFNFTFTFEFEFFEFTFEFYEFYY YR

o0 O° o o of of o o O o of

clear all
cle
close all

%$Cost Parameters

T lifesys = 20; $system life (years)
T lifedg = 25; $DG life (years)
T lifes = 6; $storage unit life (years)

%6 for lead-acid
%12 for Li-ion
T bp = 1/12; $billing period (years)

C dg 0 = 200; $fixed cost of DG independent of rating (%)
%$5200 for solar PV
%$$3,750 for wind
C_s 0 = 110; $fixed cost of storage unit independent of...
$rating ($)
%5110 for lead-acid
%$$80 for Li-ion
C g 0 = 15; $fixed cost of grid connection applied to each...
$bill (%)
%59 for residential
$$515 for general, no demand
$$60 for general, demand
4400; $variable cost of DG ($/kW)
%$$4400 for solar PV (includes inverter cost)
%$$5500 for wind (includes power conditioning)

Cp_dg
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Cp_s = 200; $variable power cost of storage unit ($/kW)
$$200 for charge controller

Cpp s = 220; $variable energy cost of storage unit ($/kWh)
%5220 for lead-acid
$5800 for Li-ion

Cp g = 0; $variable power cost of the grid ($/kw)
%$$0 when no demand charge
%¥$10 when demand charge

Cpp_g = 0.14; $variable energy cost of the grid ($/kWh)
%$50.14

% Establish constraints
Pc_max = 7.2;

Pg max = 10; %5 for residential
%10 for general, demand
Pdg max = 50; %10 for residential
%50 for general
Ps max = 10; %10 for residential
%¥50 for general
Es_max = 500; %100 for residential
$500 for general
Eg_max = 1000; %¥arbitrarily high value, no constraint
Pdg min = 0; %$power cannot go into the DG
Ps_min = -Ps_max; %high enough to charge
Pg min = 0; %¥no power into the grid

Es_min =
Eg min = 0

o
~

$¥battery cannot reach zero state of charge
%¥no energy into the grid

-

n = 0.85; tefficiency of the storage unit

SOC max = 1; %set maximum state of charge for the storage unit
SOC min = 0.80; %¥set minimum state of charge for the storage unit
d = 1; %¥days in time period

h = 24; $hours in time period

m = 60; %60/m is the resolution of the time wvector

dt = d*h*m; %time period in intervals

t = 1:1:d4¢t; %¥time vector in minutes for one full day

% EV charge profile
Pc_rating = 6; $fixed, defined charge rating
Cprofile = load('Cprofile.csv');

Pc = Pc_rating*Cprofile’';

% DG power profile
fdg = load('DGprofile.csv');

%% Develop c

$fill in c where appropriate

c = [zeros(1l,dt), Cp_g*T_lifesys/T bp, zeros(l,dt),...
Cp_dg*floor (1+T_lifesys/T lifedg), zeros(1l,dt),...
Cp_s*floor (1+T lifesys/T lifes), zeros(l,dt),...
Cpp_s*floor (1+T_lifesys/T_lifes), Cpp_g*365/d*T lifesys]';
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%% Develop A and b to solve A*x <= b

% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg rating, every value in Ps' is less than or equal to

% Pdg_rating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

¥create Al
Al = zeros(dt, dt+1);

for i=1:dt
Al(i,i) = 1; $fill in 1 to compare a Pg value to Pg_rating
Al(i,dt+1l) = -1; %fill in -1 at Pg rating to compare with Pg value
end
$create A2
A2=A1;

¥create A3
A3 = zeros(dt, dt+1l);
for i=1:dt
$this is a trick to make Ps_rating equal the to absolute value of
$the maximum charge or discharge power for the storage unit
if Pc(i) > 0 $vehicle is charging, storage will be discharging
$meaning Ps will be positive, Ps <= Ps_rating

A3(i,i) = 1; $fill in 1 at Ps value to compare to Ps_rating
else $vehicle is not charging, storage can only charge
$meaning Ps will be negative, -Ps <= Ps_rating
A3(i,1) = -1; $fill in 1 at Psrating to compare with Ps value
end
A3 (i,dt+1l) = -1; $fill in -1 at Psrating to compare with Ps value
end
$create A4
A4 = zeros(dt, dt+l);
for i=1:dt
A4 (i,i) = 1; $fill in 1 at Es value to compare to Es_rating

A4 (i,dt+1) = -(SOC_max-SOC_min) ; $£ill in - (SOC_max-SOC_min) at
$Es_rating to compare and scale
$appropriately to Es value

end

¥create A
7Z = zeros(dt,dt+1l);

A= [Al, Z , Z , Z , zeros(dt,1l);
Z , A2, Z2 , Z , zeros(dt,l);

Z , zeros(dt,l);

zZ , Z , 2 , B4, zeros(dt,1l)];

% create b which is just zero
b = zeros(size(A,1),1);
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%% Develop D and g to solve D*x = g

This relationship is used to make sure that the charger power
requirements are met. Namely it makes sure that for every instance in
time, Pc = Pdg + Ps + Pg.

It will also be used to develop the shape of the panel power output and
calculate Eb and Egrating.

o0 o P o o

%$create D1
D1 = zeros(dt, dt+1);
for i=1:dt
D1(i,i) = 1; $fill in 1
end

$create D2
D2 = zeros(dt, dt+1l);

for i=1:dt
D2(i,i) = 1; $fill in 1 for Pdg
D2(i, dt+1l) = -fdg(i); %£fill in corresponding -fdg in
¥Pdgrating position
end

$create D3
D3 = zeros(dt, dt+1l):

for i=1:dt
if Pc(i) > 0 %¥Vehicle is charging
D3(i,i) = d*h/dt/sqgrt(n); $Battery supplies less energy
%¥than what was stored
else
D3(i,i) = d*h/dt*sqrt (n); $¥Battery stores less energy than
%what was supplied
end
end

¥create D4

D4 = zeros(dt, dt+1);

D4(1,1) = 1;

D4 (1,dt) = -1;

for i=2:dt
Da(i,i) = 1;
D4(i,i-1) =

end

-1;

¥create db5
d5 = [d*h/dt*ones(1,dt),0];

¥create D

z = zeros(l, dt+l);

D = [D1, D1, D1, Z , zeros(dt,1l);
z , D2, 2, Z2 , zeros(dt,1);
Z , Z , D3, D4, zeros(dt,1l);
dB,. 2 ;3 ; 2 5 =L 1:;

% create g
% we derive beq from the charging profile of the vehicle which is given
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$ £ill in g
g = [Pc; zeros(size(D,1)-dt,1)];

$% Develop lmin and lmax for 1lmin < x < lmax

% the last relation to fulfill for the linearization toocl is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

% Establish upper bounds based on maximum limits
lmax = [Pg _max*ones(dt+l,1); Pdg max*ones(dt+1l,1); Ps_max*ones(dt+1,1);
Es_max*SOC_max*ones(dt+l,1); Eg_max];

% Establish lower bounds
lmin = [-Pg min*ones(dt+1l,1); Pdg min*ones(dt+l,1); Ps_min*ones(dt+1,1);
Es_min*SOC_min*ones(dt+1,1); Eg min];

%% Solve using MATLAB's linear programming tool
% options = optimset ('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,g,lmin,lmax);%, [],options);
if y(2*dt+2)>10"-6

Cmin = C dg 0*floor (1+T lifesys/T lifedg) + ..

C s 0*floor(1+T lifesys/T lifes) + C_ g 0*T_lifesys/T bp + c'*y;

else

Cmin = C s 0*floor (1+T lifesys/T lifes) + C g 0*T lifesys/T bp + c'*y;
end

%% Display results

display(['The power rating of the DG is ', num2str (y(2*dt+2)),' kW'])
display(['The power rating of the storage is ', num2str(y(3*dt+3)),' kW'])
display(['The energy capacity of the storage is ',num2str(y(4*dt+4)),' kwWh'])
display(['The maximum power drawn from the grid is ',num2str(y(dt+1)),' kWw'])
display(['The total energy drawn from the grid is ', num2str(y(4*dt+5)),' kWh

per period'l])

display(['The minimum lifetime cost is $', num2str (Cmin),'.'])
if y(2*dt+2)>10"-6
display(['The DG cost is $',...
num2str (C_dg_O*floor (1+T_lifesys/T lifedg)+...
Cp dg*floor (1+T_lifesys/T lifedg)*y(2*dt+2)),'.'])
else
display(['The DG cost is $', ...
num2str (Cp_dg*floor (1+T_lifesys/T lifedg) *y(2*dt+2)),'.'])
end
display(['The storage cost is $',...
num2str (C_s 0*floor (14T lifesys/T lifes)+...
Cp_s*floor (1+T_lifesys/T lifes)*y(3*dt+3)+...
Cpp_s*floor (1+T lifesys/T lifes)*y(4*dt+4)),'.'])
display(['The grid cost is $',...
num2str (C_g 0*T lifesys/T bp+Cp g*T lifesys/T bp*y(dt+1)+...
Cpp_g*365/d*T lifesys*y(4*dt+5)),'.'])

t=1:dt;

89



Pg =[y(1:dt)];
Pdg =[y(dt+2:2*dt+1)];
Ps =[y(2*dt+3:3*dt+2)];

figure

plot(t,Pc, t, Pdg, t, Pg, t, Ps)
legend('Charger', 'DG', 'Grid', 'Storage Unit', 'location', 'best!')
title(['Power Outputs'])

set (gca, 'XTick', [0:dt/24:dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel('time of day (hours)')

ylabel ('Power drawn (kW) ')

Es = [y(3*dt+4:4*%dt+3)]1+y(4*dt+4)*SOC_min;

figure

plot (t, Es)

title(['Energy Stored in the Storage Unit'])
axis ([0 dt 0 y(4*dt+4)*1.2])

set (gca, 'XTick', [0:dt/24:dt])

set(gca, 'XTickLabel', [0:1:24])

xlabel ('time of day (hours)')

ylabel ('Energy capacity (kWh) ')
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$ 55 FFEFFEEIEIETFEFTFTFTFTFTFTTFFTFTYTEFTTFTFTFTYYYFEGY N
% Search-Based Tool - Single Charger

% There is a limitation on the maximum power drawn from the grid

% we have assumed that the power flow in our system is controlled in such
% a way that the charger first takes power from the distributed renewable
% generation source. When the distributed renewable generation source

% cannot meet the full power needs of the charger, the remaining power is
% first drawn from the grid. Only when the grid power hits its limit do
% we draw power from the storage unit.

% No power from the DG will go into the grid

%

%

%

%

%

To change between solar, wind, or no DG, you will have to vary which
‘profile’ to load. Also, the prices will have to be adjusted. To vary
which architecture is displayed at the end, vary the Pg_rating vector.

$ %% % %Y FTYTEFFFTFFTHFYFFIETTFFETEFTTTTIIYIIFFTYHFYTHFFFGN

clc
close all
clear all

%$Cost Parameters

T lifesys = 20; $system life (years)
T lifedg = 25; $DG life (years)
T lifes = 6; $storage unit life (years)

%6 for lead-acid
%12 for Li-ion
T bp = 1/12; $billing period (years)

C dg 0 = 200; $fixed cost of DG independent of rating ($)
$5200 for solar PV
%$%$3,750 for wind

C_s_ 0 = 110; $fixed cost of storage unit independent of...
$rating (8)
%5110 for lead-acid
%580 for Li-ion

C g0 =9; $fixed cost of grid connection applied to each...
¥bill (8)
%59 for residential
%515 for general, no demand
%560 for general, demand
Cp_dg = 4400; $variable cost of DG ($/kW)
%$54400 for solar PV (includes inverter cost)
%$55500 for wind (includes power conditioning)
Cp_s = 200; $variable power cost of storage unit ($/kWw)
%5200 for charge controller
Cpp_s = 220; $variable energy cost of storage unit ($/kwh)

%$$220 for lead-acid
%5800 for Li-ion

Cp g = 0; $variable power cost of the grid ($/kw)
%50 when no demand charge
$$10 when demand charge

Cpp_ g = 0.14; $variable energy cost of the grid ($/kwWh)
$50.14
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%

Establish constraints

Pc_max = 7.2;
Pg max = 5; %5 for residential

%20 for general, demand
%50 for general, demand

Pdg max = 10; %10 for residential
%50 for general
Ps_max = 10 %10 for residential
%50 for general
Es_max = 100; $100 for residential
%¥500 for general
Eg max = 1000; %arbitrarily high value, no constraint
Pdg min = 0; %¥power cannot go into the DG
Ps_min = -Ps_max; $high enough to charge
Pg min = 0; ¥no power into the grid
Es min = 0; $battery cannot reach zero state of charge
Eg_min = 0; %¥no energy into the grid
n = 0.85; Yefficiency of the storage unit
SOC max = 1; %set maximum state of charge for the storage unit
SOC _min = 0.80; $set minimum state of charge for the storage unit
d =1; ¥days in time period
h = 24; $hours in time period
m = 60; $60/m is the resolution of the time vector
dt = d*h*m; $time period in intervals
£t = 1:1:d¢; ¥time vector in minutes for one full day
% Unknown variables
% Pdg_rating = Max power rating of the DG (kW)
% Ps_rating = Max power rating of the storage unit (kW)
% Pg_rating = Max power drawn from the electric grid (kW)
% Es_rating = Max energy capacity of the storage unit (kwh)
% Eg_rating = Max energy drawn from the electric grid (kWh)

Pg_rating = 4.9:0.1:Pg max; $defines the range of architectures to explore
Pdg_rating = zeros(1l, length(Pg rating));

Ps_rating = zeros(l,length(Pg rating));

Es_rating = zeros(1l,length(Pg rating));

Pg_minrating = zeros(l,length(Pg rating));

Eg_rating = zeros(l,length(Pg rating));

d° o of o O° o° o o° o of

Time-based vectors

Pdg = Output power output of the DG. It will depend on the maximum power
output of the DG as well as the time of day (as defined by £
Output power output of the grid. It will depend on the power output
of the DG and the input power required by the electric vehicle and
possibly storage
Ps = Power output or input of the storage unit. It will depend on the

power output of the DG, the grid and the input power required by

the electric vehicle
Es = Energy delivered or absorbed by the storage unit

Pg

Pdg = zeros(1l,dt);
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Ps = zeros(l,dt);
Pg = zeros(1l,dt);
Es = zeros(l,dt);

%% EV Model

Simple EV model
Pc_rating = Power rating of the charger (kW)
Eevb = Energy capacity of the electric vehicle (kWh)

SOCi = Initial state of charge of the electric vehicle when it plugs in
somewhere between 0 and 1
SOCf = Final state of charge of the electric vehicle

no more than 1
Nev = Number of electric vehicles charging per day
Pc = Charge profile of the electric vehicle

O O o I° O° I o o I

%$Well-defined variables

Pc_rating = 6; $fixed, defined charge rating: 6 kW
S0Ci = 0.20; %Start from a 20% SOC

S0Cf = 1; $Fully charged

Eevb = 30; $battery capacity is 30 kWh

Nev = 1; $flexible

% load Pc from a csv file.

% Right now, there is no time indicator in the file. Data begins at 12:01
% am and there is data for every minute for 24 hours.

c = load('Cprofile.csv');

Pc = Pc_rating*c*Nev;

%% DG Model

% Simple DG model

% £ = The profile of the DG power output. Varies from 0 to 1.

% load £ from a csv file.

% Right now, there is no time indicator in the file. Data begins at 12:01
% am and there is data for every minute for 24 hours.

f = load('DGprofile.csv');
%% Grid Model

% Simple Grid model

% Delta Es = The energy that has to be supplied to the charger from the
% storage unit (kwh)

% Tc_off = the time period when the electric vehicle is not charging (h)

% Develop Pg
for j=1l:length(Pg_rating)
% need to solve for maximum grid power draw iteratively

% initial guess
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Delta Es = 1;
Pdg_rating(j) = -0.001;
Pg rating(j)

E_S2C = 0;
Tc_off = 0;
if norm(f) < 1l0e-6 ¥No DG unit
for i=1:dt
if Pc(i) > 0 $There is a vehicle charging
E_S2C = E_S2C + (Pc(i) - Pg rating(j))*d*h/dt; %Track kWh
$that goes from the storage unit to the charger
else $There is no vehicle charging
Tc_off = Tc_off + drh/dt; %keep track of the hours
end
end
for i=1:dt $¥Now calculate Ps
if Pc(i) > 0
Ps(i) = Pc(i) - Pg_rating(j);
else
Ps(i) = -E_S2C/Tc_off/n;
end
end
else $DG unit present
Ps = zeros(l,dt);
end

%check if there was enough energy supplied to the charger

% if not, guess a new Pdg_rating

while Delta Es > 0
Es(1l) = 0;
Pdg rating(j) = Pdg rating(j)+0.001; $increment by 10 W
Pdg = Pdg_rating(j)*f;

%calculate power from the grid
for i=1:4t
Pg(i) = min(max(Pg_min, Pc(i) - Pdg(i) - Ps(i)), Pg rating(j));
end

%¥calculate storage unit energy profile
for i=1l:dt-1
if sign(Pc(i)-Pdg(i)-Pg(i)) > 0
Es(i+l) = Es(i) - (Pc(i) - Pdg(i) - Pg(i))*d*h/dt/sqgrt(n);
else
Es(i+1)
end
end

Es(i) - (Pc(i) - Pdg(i) - Pg(i))*d*h/dt*sqrt (n);

tcalculate storage unit change in state-of-charge
if sign(Pc(dt)-Pdg(dt)-Pg(dt)) > 0
Delta_Es = -(Es(dt) - (Pc(dt) - Pdg(dt) -

Pg(dt)) *d*h/dt/sqgrt (n)) ;

else

94



Delta Es = -(Es(dt) - (Pc(dt) - Pdg(dt) -
Pg(dt) ) *d*h/dt*sgrt(n));
end
if Pdg rating(j) > Pdg max %In case there is an infinite loop
break $break the loop once constraint is
$reached and move on
end
end
Pg minrating(j) = min(Pg);

%$find the average daily power from the grid
Eg rating(j) = trapz(t,Pg)*d*h/dt;

%% Storage Model

% Develop Ps
Ps = Pc - Pdg - Pg;

%calculate the power rating of the storage unit
Ps_rating(j) = max(abs(min(Ps)),max(Ps));

%¥calculate the energy rating of the storage unit
Es rating(j) = (max(Es)-min(Es))/(SOC_max-SOC min) ;

end
%% Discard values that violate maximum constraints

Pdg_rating trunc =
Ps_rating trunc =
Pg rating trunc =
Es_rating trunc =
Eg rating trunc =

L] ;
[1;
[1;
L1 ;
[1;

for i=1:length(Pdg_rating)

if ((Pdg_rating(i) <= Pdg max) && (Ps_rating(i) <= Ps_max) && ...
(Pg_rating (i) <= Pg max) && (Es_rating(i) <= Es_max) && ..
(Eg_rating (i) <= Eg max) && (Pg _minrating(i) >=Pg min))
Pdg_rating_trunc = [Pdg _rating trunc Pdg rating(i)];
Ps_rating trunc = [Ps_rating trunc Ps_rating(i)];
Pg rating trunc = [Pg_rating trunc Pg rating(i)];
Es_rating_trunc = [Es_rating trunc Es_rating(i)];
Eg rating trunc = [Eg_rating trunc Eg rating(i)];
end
end
Clength = length(Pdg_rating trunc);
Cdg = zeros(l, Clength);
Cs = zeros(l, Clength);
Cml = zeros(l, Clength);
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Cm2 zeros (1, Clength);
Cm zeros (1, Clength) ;
Cg = zeros(l, Clength);
Ctotal = zeros(l, Clength);

for j=1:Clength
%% Cost Calculation

$DG cost
Cdg(j) = C_dg 0+Cp_dg*Pdg_rating trunc(j);

¥Storage unit cost
Cs(j) = C_s_0 + Cpp_s*Es_rating trunc(j) + Cp_s*Ps_rating trunc(j);

$Maintenance cost

Cml(j) = floor(T lifesys/T lifedg)*Cdg(j); $for DG

Cm2(j) = floor(T_lifesys/T lifes)*Cs(j); $for storage unit

Cm(j) = Cml(j)+Cm2(7j);

%Grid cost

Cg(j) = C_g _0*T_lifesys/T bp + Cp_g*Pg_rating trunc(j)*T lifesys*12 +

Cpp_g*Eg_rating trunc(j)*T lifesys*365/d;

¥Total cost
Ctotal(j) = round((Cdg(j)+Cs(j)+Cm(j)+Cg(j))*100)/100;

end

$Find the lowest cost point
[Ctotal min J]= min(Ctotal)

%% Display Results

display(['The power rating of the distributed generation is ',

num2str (Pdg _rating trunc(J)),' kwWw'])

display (['The power rating of the storage is ', num2str(Ps_rating trunc(J)), "
kw'l)

display(['The energy capacity of the storage is ',

num2str (Es_rating trunc(J)),' kwWh'])

display(['The maximum power drawn from the grid is ',

num2str (Pg_rating trunc(J)),' kw'])

display(['The total energy drawn from the grid is ',

num2str (Eg_rating trunc(J)),' kWh per day'])

display(['The minimum lifetime cost is &', num2str (Ctotal min),'.'])

if norm(f)>10"-6

display(['The DG cost is $', num2str(Cdg(J)+Cml(J)),'."'])
else

display(['The DG cost is $', num2str(Cdg(J)+Cml(J)-C dg 0),"'."'])
end
display(['The storage cost is $', num2str(Cs(J)+Cm2(J)),"'.'])
display(['The grid cost is $', num2str(Cg(J)),'.'])
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%% Plots

figure (1)

plot (Pg_rating trunc, Cdg,Pg_rating trunc, Cs, Pg_rating trunc, Cm,

Pg_rating trunc, Cg, Pg_rating trunc, Ctotal)

legend ('DG Cost', 'Storage Cost', 'Maintenance Cost', 'Grid Cost', 'Total System
Lifecycle Cost!')

xlabel ('Power Drawn from Grid')

ylabel('Cost ($)')

title('EV charging costs for 1 EV, 24 kwh, 6 kW each day for 20 years')

$recalculations of the time-based vectors for plotting purposes
E S2C = 0;
Tc_off = 0;

for: 1=1:dt
if Pc(i) > 0
E_S2C = E _S2C + (Pc(i) - Pg_rating trunc(J))*d*h/dt;

else
Tc_off = Tc_off + d*h/dt;
end
end
if norm(f) > 1l0e-6; $There is a DG unit
Ps = zeros(l,dt);
else $There is no DG unit

for i=l:dt
if Pc(i) > O
Ps(i) = Pc(i) - Pg_rating trunc(J);
else
Ps(i) = -E_S2C/Tc_off/n;
end
end
end

Pdg = Pdg rating trunc(J)*f;
for i=1:dt
Pg(i) = min(max(0, Pc(i) - Pdg(i)-Ps(i)), Pg rating trunc(J));

end

Ps = Pc - Pdg - Pg;

Es(1l) = 0;
for d=ladie=1
if sign(Ps(i)) < O $Storage is being charged
Es(i+l) = Es(i) - sgrt(n)*Ps(i)*d*h/dt;
else $Storage is supplying power
Es(i+1) = Es(i) - Ps(i)/sqrt(n)*d*h/dt;
end
end
min Es = min(Es) ;
Es = (abs(min_Es) + Es + SOC_min*Es rating trunc(J));
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figure
plot(t,Pc, t, Pdg, t, Pg, t, Ps)

legend('Charger', 'DG', 'Grid', 'Storage Unit', 'location', 'best')

title(['Power Profiles'])

set (gca, 'XTick', [0:120:dt])
set (gca, 'XTickLabel', [0:2:24])
xlabel('time of day (hours)')
ylabel ('Power (kW)')

figure
plot(t,Es)

title(['Energy stored in the ', num2str(Ps_rating trunc(J)),’'

,num2str (Es_rating_ trunc(J)),' kWh Storage Unit'])
axis([0 dt 0 Es_rating trunc(J)*1.2])
set (gca, 'XTick', [0:120:dt])
set(gca, 'XTickLabel', [0:2:24])
xlabel ('time of day (hours)')
ylabel ('Energy capacity (kWh)')

hold on
plot(t, SOC_min*Es_rating trunc(J)*ones(l,length(t)),'--1)
plot(t, Es_rating trunc(J)*ones(1l,length(t)),'--')
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% Linear Programming Tool - Configuration A
% Develop the variables to use matlab's linear optimization tool

% General equation to be solved: C =
% Variables to solve for:

% x =[Pgl' Pgl _rating

% Pg2' Pg2_rating

% Pg' Pg _rating

% Pdgl' Pdgl rating
% Pdg2' ©Pdg2 rating
% Psl' Psl_rating

% Ps2' Ps2_rating

% Es2' Es_rating

% Es2' Es_rating

% Eg_rating]'

$ %%

clear all

clc

close all

%$Cost Parameters

T lifesys =
T lifedg =

T lifes = 6;

T bp = 1/12
C_dg 0 = 20
C_s 0 = 110;
C g 0 = 15;
Cp_dg = 440
Cp_s = 200;
Cpp_s = 220
Cp g = 0;

Cpp_g = 0.1

20;
25;

'

’

03

l

0;

’

4;

c! %

Pdg, Ps, Pg, Es, Eg, each of length dt

FF Y YYYYTIETFTYETFTFTFTFTFFTFTFEEEEFTFFTFEEEY SR

$system life (years)
$DG life (years)
%¥storage unit life (years)
%6 for lead-acid
%12 for Li-ion
$billing period (years)

$fixed cost of DG independent of rating ($)
%$$200 for solar PV
%$$3,750 for wind

$fixed cost of storage unit independent of...
$rating (%)
%5110 for lead-acid
%580 for Li-ion

$fixed cost of grid connection applied to each...

%$bill ($)
%59 for residential
$$15 for general, no demand
%560 for general, demand
$variable cost of DG ($/kW)
%$$4400 for solar PV (includes inverter cost)
%$$5500 for wind (includes power conditioning)
$variable power cost of storage unit ($/kW)
%5200 for charge controller
%$variable energy cost of storage unit ($/kWh)
$5220 for lead-acid
$5$800 for Li-ion
$¥variable power cost of the grid ($/kW)
%$$0 when no demand charge
%510 when demand charge
$variable energy cost of the grid ($/kwh)
%$50.14
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% Establish constraints
Pc_max = 7.2;

Pg max = 10; %5 for residential
%10 for general, no demand
%50 for general, demand
Pdg max = 50; %$10 for residential
%50 for general
Ps max = 50 %10 for residential
%50 for general
Es max = 500; $100 for residential
$¥500 for general
Eg max = 1000; $arbitrarily high value, no constraint
Pdg min = 0; $power cannot go into the DG
Ps _min = -Ps_max; %$high enough to charge
Pg min = 0; %$no power into the grid
Es min = 0; $battery cannot reach zero state of charge
Eg min = 0; %$no energy into the grid
n = 0.85; $efficiency of the storage unit
SOC _max = 1; %set maximum state of charge for the storage unit
SOC min = 0.80; %$set minimum state of charge for the storage unit
d. = A %$days in time period
h = 24; %hours in time period
m = 60; %$60/m is the resolution of the time vector
dt = d*h*m; $time period in intervals
t = 1:1:d¢t; $time vector in minutes for one full day

% EV charge profile
Pc_rating = 7.2; $fixed, defined charge rating

Cprofilel = load('Cprofile publicl.csv');
Cprofile2 = load('Cprofile public2.csv');
Pcl = Pc_rating*Cprofilel';

Pc2

Pc_rating*Cprofile2';

% DG power profile
fdgl = load('DGprofile.csv');
fdg2 = load('DGprofile.csv');

%% Develop c
%¥fill in c¢ where appropriate

¢ = [zeros(l,dt), 0, ... $Pgl
zeros(1l,dt), 0, ... ¥Pg2
zeros(1,dt), Cp g*T lifesys/T bp, ... %Pg
zeros(1l,dt), Cp dg*floor(1+T lifesys/T lifedg), ... ¥Pdgl
zeros(1l,dt), Cp dg*floor(1+T lifesys/T lifedg), ... $Pdg2
zeros(1l,dt), Cp s*floor(1+T lifesys/T lifes), ... %¥Psl
zeros(1l,dt), Cp s*floor(1+T lifesys/T lifes), ... ¥Ps2
zeros(1,dt), Cpp_s*floor(1+T lifesys/T lifes), ... $Esl
zeros(1l,dt), Cpp_s*floor (1+T lifesys/T lifes), ... $Es2
Cpp_g*365/d*T_lifesys]'; %Eg
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%% Develop A and b to solve A*x <= b

% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg_rating, every value in Ps' is less than or equal to

% Pdg_rating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

¥create Al
Al = zeros(dt, dt+l);
for ad=1wdt
Al(i,i) = 1; $£fill in 1 to compare a Pg value to Pg rating
Al(i,dt+1) = -1; %fill in -1 at Pg rating to compare with Pg value
end

$create A2
A2=A1;

%¥create A3
A3l = zeros(dt, dt+1);
for di=1:4dt
%¥this is a trick to make Ps rating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pcl(i) > 0 %vehicle is charging, storage will be discharging
%$meaning Ps will be positive, Ps <= Ps_rating

A31(i,i) = 1; $fill in 1 at Ps value to compare to Ps_rating
else %vehicle is not charging, storage can only charge
$meaning Ps will be negative, -Ps <= Ps_rating
A31(i,i) = -1; $fill in 1 at Psrating to compare with Ps value
end
A31(i,dt+1) = -1; %¥fill in -1 at Psrating to compare with Ps wvalue

end

¥create A3
A32 = zeros(dt, dt+l);
for d=l:dt
%this is a trick to make Ps_rating equal the to absolute value of
%¥the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 %vehicle is charging, storage will be discharging
%¥meaning Ps will be positive, Ps <= Ps rating

A32(i,i) = 1; %$fill in 1 at Ps value to compare to Ps_rating
else %$vehicle is not charging, storage can only charge
$meaning Ps will be negative, -Ps <= Ps_rating
A32(i,1) = -1; $fill in 1 at Psrating to compare with Ps value
end
A32(i,dt+1l) = -1; $£fill in -1 at Psrating to compare with Ps value
end
¥create A4
A4 = zeros(dt, dt+l);
for i=1:dt
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A4 (i,i) = 1; $fill in 1 at Es value to compare to Es_rating
A4 (i,dt+1) = - (SOC_max-SOC_min) ; $fill in - (SOC_max-SOC_min) at
%¥Es_rating to compare and scale
%appropriately to Es value
end

%$create A
Z = zeros(dt,dt+1);

A=([pnl, 2, 2, 2,2 ,2,2, 2, Z, zeros(dt,1);
Z , A, Z2 ., 2,2, 2, %, 2, %, zeros(dt,1);
Z , 2, A1, 2,2 ,2,2, 2, 2, zeros(dt,1);
Z, %2, 2, A2, 2, 2,2, 2, %2, zeros(dt,1);
zZ , 2,2, 2, A, 2 ,2,2, 2, zeros(dt,1);
zZ, %, %2, %2, 2 ,A31, 2, Z , Z , zeros(dt,l1);
zZ2 ., 2, 2,2 ,2, 2 ,A32, 2 , Z , zeros(dt,l);
Z; Z2 ., 2 ,%2 ,%2, 2, %2, 24, Z , zeros(dt,l);
Z Z Z Z Z Z Z , Z , A4, zeros(dt,l)];

% create b which is just zero
b = zeros(size(A,1l),1);

%% Develop D and g to solve D*x = g

This relationship is used to make sure that the charger power
requirements are met. Namely it makes sure that for every instance in
time, Pc = Pdg + Ps + Pg.

It will also be used to develop the shape of the panel power output and
calculate Eb and Egrating.

of o o o of

$create D1
D1 = zeros(dt, dt+l);
for i=1:dt
D1(i,i) = 1; $£ill in 1
end

%$create D2
D21 = zeros(dt, dt+l);

for i=1l:dt
D21(i,1) = I; $£ill in 1 for Pdg
D21 (i, dt+l1l) = -fdgl(i); %£fill in corresponding -fdg in
%$Pdgrating position
end

%¥create D2
D22 = zeros(dt, dt+l);

for i=1:dt
D22(i,1i) = 1; $fill in 1 for Pdg
D22 (i, dt+l) = -fdg2(i); %fill in corresponding -fdg in
$Pdgrating position
end

%$create D3
D31 = zeros(dt, dt+l);
for i=1:dt
if Pcl(i) > 0 $Vehicle is charging
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D32i(d ,4) d*h/dt/sqgrt(n);
else

P3q(d,4) d*h/dt*sqgrt(n);

end
end

%$create D3
D32 = zeros(dt, dt+1);
for i=1:dt
if Pc2(i) > 0
D32(i,i) = d*h/dt/sqgrt(n);

else
D32(i,i) = d*h/dt*sqgrt(n);

end
end

$¥create D4

D4 = zeros(dt, dt+1l);

D4(1,1) = 1;

D4(1,dt) = -1;

for i=2:dt
D4(i,1) =
D4 (i,i-1)

end

1;
= =-1;

$create ds
d5 = [d*h/dt*ones(1,dt),0];

%¥create D
z = zeros(l, dt+l);

D= [P1l, Z 4 2 ; Di; 2 , DL, Z » Z
4 Dl & 4 B 4 Pl ‘& ; Dl &
D1, D1,-D1, Z , 2 , 2 , 2, Z
o 4 . & P21, A ;, B , Z 4 &
42 , 2,4, 42 ,D22, 2 , Z2 , 2
zZ , 2,2, 2 , Z2 ,D31, Z , D4
zZ ., 2,2, 2,2, 2 ,D32, Z
zZ ., Z , 45, 2., 2,2, 2 082

% create g

%

% fill in g

$Battery supplies less energy
$than what was stored

%¥Battery stores less energy than
$what was supplied

$Vehicle is charging
$Battery supplies less energy
%$than what was stored

%$Battery stores less energy than
$what was supplied

, zeros(dt,1);
, zeros(dt,1l);
zeros (dt,1) ;
, zeros(dt,1l);
, zeros(dt,1);
, zeros(dt,1l);
D4, zeros(dt,l);
z , -1 1.

N NNNNDN

we derive beq from the charging profile of the vehicle which is given

g = [Pcl; Pc2; zeros(size(D,1)-2*dt,1)];

%% Develop lmin and lmax for lmin < x < lmax
%¥ the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for

% all values within x

% Establish upper bounds based on maximum limits
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lmax = [Pc_max*ones(dt+1l,1);...
Pc_max*ones (dt+1,1) ;...
Pg _max*ones(dt+1,1);...
Pdg_max*ones(dt+1,1);...
Pdg max*ones(dt+1,1);...
Ps_max*ones(dt+1,1);
Ps_max*ones (dt+1,1) ;
Es_max*SOC_max*ones(dt+1,1) ;...
Es_max*SOC_max*ones(dt+1,1) ;...
Eg_max] ;

% Establish lower bounds

lmin = [-Pg_min*ones(dt+1,1);...
-Pg_min*ones(dt+1,1) ;...
-Pg_min*ones(dt+1,1);...
Pdg_min*ones (dt+1,1);...
Pdg_min*ones (dt+1,1);...
Ps_min*ones (dt+1,1) ;
Ps_min*ones (dt+1,1) ;
Es_min*SOC_min*ones (dt+1,1) ;...
Es_min*SOC_min*ones (dt+1,1) ;...
Eg min] ;

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,qg,lmin,lmax);%, [],options) ;
if y(4*dt+4)>10"-6 && y(5*dt+5)>10"-6
if y(7*dt+7)>10"-6 && y(9*dt+9)>10"-6
Cmin = 2*C_dg O*floor (1+T lifesys/T lifedg) +
2*C_s_0O*floor (1+T_lifesys/T lifes) + C_g 0*T lifesys/T bp + c'*y;
elseif y(7*dt+7)<10%-6 && y(9*dt+9)<10"-6
Cmin = 2*C_dg O*floor (1+T lifesys/T lifedg) +
C_g_0*T_lifesys/T bp + c'*y;
else
Cmin = 2*C_dg_O0*floor (1+T_lifesys/T lifedg) +
C_s 0*floor(1+T_ lifesys/T lifes) + C_g 0*T lifesys/T bp + c'*y;
end
elseif y(4*dt+4)<10"-6 && y(5*%dt+5)<10"-6
if y(7*dt+7)>10"-6 && y(9*dt+9)>10"-6
Cmin = 2*C_s O*floor (1+T_lifesys/T lifes) +...
C g 0*T lifesys/T bp + c'*y;
elseif y(7*dt+7)<10"-6 && y(9*dt+9)<10™-6
Cmin = C g 0*T lifesys/T bp + c'*y;
else
Cmin = C s 0*floor(1+T lifesys/T lifes) +...
C g 0*T lifesys/T bp + c'*y;
end
else
if y(7*dt+7)>10"-6 && y(9*dt+9)>10"-6
Cmin = C_dg_O*floor(1+T lifesys/T lifedg) +
2*C_s_0*floor (1+T_lifesys/T_lifes) + C_g 0*T lifesys/T bp + c'*y;
elseif y(7*dt+7)<10"-6 && y(9*dt+9)<10”-6
Cmin = C_dg_O*floor (1+T_lifesys/T lifedg) +
C_g 0*T_lifesys/T bp + c'*y;
else
Cmin = C_dg_0*floor (1+T lifesys/T lifedg) +
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C_s_0*floor (1+T_ lifesys/T lifes) + C g 0*T lifesys/T bp + c'*y;
end
end

$% Display results

display(['The power rating of DGl is ', num2str(y(4*dt+4)),' kW'])
display(['The power rating of storagel is ', num2str(y(6*dt+6)),' kW'])
display(['The energy capacity of storagel is ', num2str(y(8*dt+8)),' kWwh'])

display(['The power rating of DG2 is ', num2str(y(5*dt+5)),' kW'])
display(['The power rating of storage2 is ', num2str(y(7*dt+7)),' kWw'])
display(['The energy capacity of storage2 is ', num2str(y(9*dt+9)),' kwWwh'])

display(['The maximum power drawn from the grid is ', num2str (y(3*dt+3)),'
kw'l)

display(['The total energy drawn from the grid is ', num2str(y(9*dt+10)),"
kWh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(4*dt+4)>10"-6
display(['The DGl cost is $',...
num2str (C_dg O0*floor (1+T lifesys/T lifedg)+...
Cp_dg*floor (1+T_lifesys/T lifedg) *y(4*dt+4)),'.'])
else
display(['The DGl cost is $',...
num2str (Cp_dg*floor (1+T_lifesys/T lifedg)*y(4*dt+4)),"'.'])
end

if y(5*dt+5)>10"-6
display(['The DG2 cost is $',...
num2str (C_dg_O*floor (1+T_lifesys/T lifedg)+...

Cp_dg*floor (1+T_lifesys/T lifedg)*y(5*dt+5)),'.'])
else
display(['The DG2 cost is $',...
num2str (Cp_dg*floor (14T _lifesys/T lifedg)*y (5*dt+5)),'.'])
end

if y(8*dt+8)>10"-6
display(['The storagel cost is $', ...
num2str (C_s_0*floor (1+T_lifesys/T lifes)+...
Cp_s*floor (14T _lifesys/T lifes) *y(6*dt+6)+. ..
Cpp_s*floor (1+T_lifesys/T lifes)*y(8*dt+8)),'."'])
else
display(['The storagel cost is $',...
num2str (Cp_s*floor (1+T_lifesys/T lifes)*y(6*dt+6)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(8*dt+8)),'.'])
end

if y(9*dt+9)>10"-6
display(['The storage2 cost is §',...
num2str (C_s_0*floor (1+T_ lifesys/T lifes)+...
Cp_s*floor (1+T_lifesys/T lifes)*y (7*dt+7)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(9*dt+9)),'.'])
else
display(['The storage2 cost is $',...
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num2str (Cp_s*floor (1+T_lifesys/T lifes)*y(7*dt+7)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(9*dt+9)),'.'])
end

display(['The grid cost is §', ...
num2str(C_g 0*%T lifesys/T bp+Cp g*T lifesys/T bp*y (3*dt+3)+...
Cpp_g*365/d*T_lifesys*y(9*dt+10)),'.'])

t=1:dt;

Pgl =[y(1:dt)];

Pg2 =[y(dt+2:2*dt+1)];

Pg =[y(2*dt+3:3*dt+2)];
Pdgl =[y(3*dt+4:4*dt+3)];
Psl =[y(5*dt+6:6*dt+5)];
Pdg2 =[y(4*dt+5:5%dt+4)];
Ps2 =[y(6*dt+7:7*dt+6)];

figure

plotit, Pecl,; t, -Pdgl, L, Pgl, t, Psl)
legend('Chargerl', 'DG1l', 'Gridl', 'Storage Unitl', 'location', 'best')
title(['Charger 1 Power Outputs'])

set (gca, 'XTick', [0:dt/(2*6):dt])

set (gca, 'XTickLabel', [0:.5:6])

xlabel ('Day')

ylabel ('Power drawn (kW)')

figure

plot(t,Pc2, t, Pdg2, t, Pg2, t, Ps2)
legend('Charger2', 'DG2', 'Grid2', 'Storage Unit2', 'location’', 'best')
title(['Charger 2 Power Outputs'])

set (gca, 'XTick', [0:dt/(24):dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel ('Power drawn (kw) ')

figure

plot(t,Pc2+Pcl, t, Pdg2+Pdgl, t, Pg, t, Psl+Ps2)

legend ('Charger', 'DG', 'Grid', 'Storage Unit', 'location', 'best')
title(['Sum of Each Component Power Outputs'])

set (gca, 'XTick', [0:dt/(24):dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel ('Power drawn (kW)')

figure

plot(t,Pcl, t, Pc2, t, Pdgl,t,Pdg2, t, Pg, t, Psl,t,Ps2)

legend ('Chargerl', 'Charger2',6 'DG1', 'DG2', 'Grid', 'Storage Unitl', ...
'Storage Unit2', 'location’', 'best')

title(['Power Outputs'])

set(gca, 'XTick',6 [0:dt/(2*6):dt])

set (gca, 'XTickLabel', [0:.5:6])

xlabel ('Day')

ylabel (' Power drawn (kWwW)')
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Esl
Es2

[y (7*dt+8:8*dt+7) ] +y (8*dt+8) *SOC_min;
[y (8*dt+9:9*dt+8)]1+y (9*dt+9) *SOC_min;

figure(5)

plot(t,Esl, t, Es2)

title(['Energy Stored in the Storage Units'])
axis ([0 dt 0 max(y(8*dt+8),y(9*dt+9))*1.2])
set (gca, 'XTick', [0:dt/24:dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('time of day (hours)')

ylabel ('Energy capacity (kWh)')
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% Linear Programming Tool - Configuration B

% Develop the variables to use matlab's linear optimization tool

% General equation to be solved: C = c¢' x

% Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt

% x =[Pgl' Pgl_rating

Pg2' Pg2_rating

Pg' Pg_rating

Pdgl' Pdgl_rating

Pdg2' Pdg2_rating

Psl' Psl_rating

Ps2' Ps2_rating

Ps' Ps_rating

Es' Es_rating

Eg_rating]'

FE T Y EFETTFEFT TN FEEFLT YT YEYEEEEETFTEGS

o° O° of of d° o° of of of oP

o0
o0

clear all
clc
close all

%$Cost Parameters

T lifesys = 20; %$system life (years)
T lifedg = 25; $DG life (years)
T lifes = 6; $storage unit life (years)

%6 for lead-acid
%12 for Li-ion
T bp = 1/12; $billing period (years)

C dg 0 = 200; $fixed cost of DG independent of rating ($)
$$200 for solar PV
%$$3,750 for wind

Cs 0 = 110; %$fixed cost of storage unit independent of...
$rating ($)
$$110 for lead-acid
%580 for Li-ion

C g0 = 15; $fixed cost of grid connection applied to each...
$bill (%)
%$$9 for residential
%¥$15 for general, no demand
%560 for general, demand

Cp dg = 4400; $variable cost of DG ($/kW)
%$$4400 for solar PV (includes inverter cost)
$$5500 for wind (includes power conditioning)

Cp s = 200; %$variable power cost of storage unit ($/kW)
%¥$200 for charge controller

Cpp_s = 220; $variable energy cost of storage unit ($/kWh)

%5220 for lead-acid
%5800 for Li-ion

Cp g = 10; $variable power cost of the grid ($/kW)
%$0 when no demand charge
%$$10 when demand charge

Cpp_g = 0.14; $variable energy cost of the grid ($/kWh)
$50.14
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% Establish constraints
Pc_max = 7.2;

Pg_max = 10; %5 for residential
%10 for general, no demand
%50 for general, demand
Pdg max = 50; %10 for residential
%50 for general
Ps_max = 10; %10 for residential
%50 for general
Es_max = 500; %100 for residential
%¥500 for general
Eg max = 1000; %arbitrarily high value, no constraint
Pdg min = 0; %¥power cannot go into the DG
Ps min = -Ps_max; $¥high enough to charge
Pg min = 0; $no power into the grid
Es min = 0; %¥battery cannot reach zero state of charge
Eg min = 0; %¥no energy into the grid
n = 0.85; ¥efficiency of the storage unit
SOC_max = 1; ¥set maximum state of charge for the storage unit
SOC_min = 0.80; ¥set minimum state of charge for the storage unit
d = 1; ¥days in time period
h = 24; $hours in time period
m = 60; $60/m is the resolution of the time vector
dt = d*h*m; $time period in intervals
€ = 1:1:dE; $time vector in minutes for one full day

% EV charge profile

Pc_rating = 7.2; %¥fixed, defined charge rating
Cprofilel = load('Cprofile publicl.csv');
Cprofile2 load('Cprofile public2.csv');

Pcl
Pc2

Pc_rating*Cprofilel’;
Pc_rating*Cprofile2’;

% DG power profile
fdgl = load('Dgprofile.csv');
fdg2 = load('DGprofile.csv');

%% Develop c
$fill in ¢ where appropriate

¢ = [zeros(l1,dt), 0, ... $Pgl
zeros(l,dt), 0, ... $Pg2
zeros(1l,dt), Cp_g*T lifesys/T bp, ... %Pg
zeros(1,dt), Cp_dg*floor(1+T lifesys/T lifedg), ... $Pdgl
zeros(1l,dt), Cp_dg*floor(1+T lifesys/T lifedg), ... $Pdg2
zeros(1l,dt), 0, ... $Psl
zeros(1l,dt), 0, ... $Ps2
zeros(1,dt), Cp_s*floor (1+T_lifesys/T lifes), ... %Ps
zeros(1l,dt), Cpp_s*floor(1+T lifesys/T lifes), ... $Es
Cpp_g*365/d*T lifesys]'; $Eg

%% Develop A and b to solve A*x <= b
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% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg_rating, every value in Ps' is less than or equal to
% Pdg_rating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%$create Al
Al = zeros(dt, dt+1l);

for i=1:dt
Al(i,i) = 1; %¥fill in 1 to compare a Pg value to Pg_rating
Al(i,dt+1) = -1; %fill in -1 at Pg_rating to compare with Pg value
end

%create A2
A2=A1;

¥create A3
A3l = zeros(dt, dt+l);
for i=1:dt
%this is a trick to make Ps_rating equal the to absclute value of
$the maximum charge or discharge power for the storage unit
if Pcl(i) > O $vehicle is charging, storage will be discharging
$meaning Ps will be positive, Ps <= Ps_rating

A31(i,1i) = 1; $fill in 1 at Ps value to compare to Ps_rating
else $vehicle is not charging, storage can only charge
$meaning Ps will be negative, -Ps <= Ps_rating
A31(i,i) = -1; $fill in 1 at Psrating to compare with Ps value
end
A31(i,dt+1l) = -1; %$fill in -1 at Psrating to compare with Ps value

end

%¥create A3
A32 = zeros(dt, dt+l);
for i=1:dt
%this is a trick to make Ps rating equal the to absolute value of
$the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 $vehicle is charging, storage will be discharging
%meaning Ps will be positive, Ps <= Ps rating

A32(i,i) = 1; $fill in 1 at Ps value to compare to Ps_rating
else %¥vehicle is not charging, storage can only charge
%$meaning Ps will be negative, -Ps <= Ps_rating
A32(i,i) = -1; $fill in 1 at Psrating to compare with Ps value
end
A32(i,dt+l) = -1; %$fill in -1 at Psrating to compare with Ps value

end

%create A3
A33 = zeros(dt, dt+l);
for i=1:dt
%this is a trick to make Ps_rating equal the to absolute value of
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$the maximum charge or discharge power for the storage unit
$vehicle is charging, storage will be

if (Pcl(i)+Pc2(1i))

discharging
A33(i,i) = 1;
else
A33(i,i) = -1;
end
A33(i,dt+1) = -1;
end

%$create A4
A4 = zeros(dt, dt+l);
for i=1:dt

Ad(i,i) =1

A4 (i,dt+1l) = -(SOC_ma

end

%$create A
Z = zeros(dt,dt+1);

A= ([A1, 2, 2,
. Al, 2,

21
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> 0

$meaning Ps will be positive, Ps <= Ps_rating
$fill in 1 at Ps value to compare to Ps_rating

$vehicle is not charging, storage can only charge
$meaning Ps will be negative, -Ps <= Ps_rating
$fill in 1 at Psrating to compare with Ps wvalue

$£fill in -1 at

ol
NNWNNNNNN

% create b which is just zero

b = zeros(size(A,1),1);

-

~

~

-~

%% Develop D and g to solve D*x

d° of o o of

%$create D1
D1 = zeros(dt, dt+1l);
for i=1:dt
D1(i,; 1) = 13
end

$create D2
D21 = zeros(dt, dt+1l);
for i=1:dt

$fill in 1

o
MW NNNNNNN

$fill in 1 at
%x-80C_min) ;

w

-

g
This relationship is used to make sure that the charger power

requirements are met. Namely it makes sure that for every instance in
time, Pc = Pdg + Ps + Pg.
It will also be used to develop the shape of the panel power output and
calculate Eb and Egrating.

Psrating to compare with Ps value

Es value to compare to Es_rating

$£ill in - (SOC_max-SOC_min) at

N NNNNNNDWN
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$Es_rating to compare and scale
%appropriately to Es value

zeros(dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros(dt,1)];



D21:(1,1) = 1; $fill in 1 for Pdg
D21(i, dt+l) = -fdgl(i); %£fill in corresponding -fdg in
%$Pdgrating position
end

%$create D2
D22 = zeros(dt, dt+1);

for i=1:dt
D22(i,1i) = 1; $fill in 1 for Pdg
D22 (i, dt+l) = -fdg2(i); %fill in corresponding -fdg in
$Pdgrating position
end

¥create D3
D3 = zeros(dt, dt+1);

for i=1:dt
if (Pcl(i)+Pc2(i))> 0 ¥Vehicle is charging
D3(1i,1i) = d*h/dt/sqgrt(n); ¥Battery supplies less energy
$than what was stored
else

D3(i,i) = d*h/dt*sqgrt(n); %Battery stores less energy than
$what was supplied
end
end

%¥create D4
D4 = zeros(dt, dt+1l);
Da(l,1) = 13

D4(1,dt) = -1;
for i=2:dt
D4a(i,i) = 1;
D4(i,i-1) = -1;
end

$create dS
d5 = [d*h/dt*ones(1,dt),0];

%$create D
z = zeros(l, dt+l);
D=[Dl, 2, 2, D1, Z, D1, Z ,

Z , D1, z , 2 , D1, Z

pDi, D1,-D1, Z2 , Z , Z

, 2 , 2,2, 2 ,D
, 4 ,D21, Z2 , 2 , 2 , 2 ,

pA

Z

z

Z , zeros(dt,l);
Z , zeros(dt,1l);
, Z , zeros(dt,1l);
Z , zeros(dt,1l);
Z , zeros(dt,l);
4 Z ;D22, Z
i B 5 & i .8 ;
i G5 2 ; Z

Z , zeros(dt,1);
, Z , D3, D4, zeros(dt,l);
z , 2, 2z, -1 ] H

N NNNN
N NNN

% create g
% we derive beq from the charging profile of the vehicle which is given

% fill in g
g = [Pcl; Pc2; zeros(size(D,1l)-2*dt,1)];

%% Develop lmin and lmax for 1lmin < x < lmax

112



o°

the last relation to fulfill for the linearization tool is to define the
upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

oP

% Establish upper bounds based on maximum limits

lmax = [Pc_max*ones(dt+1,1);...
Pc_max*ones (dt+1,1) ;...
Pg_max*ones(dt+1,1);...
Pdg_max*ones (dt+1,1) ;...
Pdg_max*ones(dt+1l,1);...
Ps_max*ones (dt+1,1) ;
Ps_max*ones (dt+1,1);
Ps_max*SOC_max*ones (dt+1,1);...
Es_max*SOC_max*ones (dt+1,1) ;...
Eg max] ;

% Establish lower bounds

lmin = [-Pg_min*ones(dt+1,1);...
-Pg_min*ones(dt+1,1);...
-Pg_min*ones(dt+1,1);...
Pdg min*ones(dt+1,1);...
Pdg_min*ones(dt+1,1);...
Ps_min*ones (dt+1,1);
Ps_min*ones(dt+1,1);
Ps_min*SOC_min*ones (dt+1,1) ;...
Es_min*SOC _min*ones (dt+1,1) ;...
Eg min];

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,qg,lmin,lmax);%, [],options);
if y(4*dt+4)>10"-6 && y(5*dt+5)>10"-6
if y(9*dt+9)>10"-6
Cmin = 2*C_dg O*floor (1+T lifesys/T lifedg) +
C_ s _0*floor (1+T_lifesys/T lifes) + C_g 0*T lifesys/T bp + c'*y;
else
Cmin = 2*C_dg_0*floor (1+T lifesys/T lifedg) + ...
C_g 0*T lifesys/T bp + c'*y;
end
elseif y(4*dt+4)<10"-6 && y(5*dt+5)<10"-6
if y(9*dt+9)>10"-6
Cmin = C_s_0O*floor (1+T_lifesys/T lifes) +...
C g 0*T lifesys/T bp + c'*y;
else
Cmin = C_g_0*T lifesys/T bp + c'*y;
end
else
if y(9*dt+9)
Cmin = C_dg_0*floor (1+T_lifesys/T lifedg) + ...
C_s_0*floor(1+T_lifesys/T lifes) + C_ g 0*T lifesys/T bp + c'*y;
else
Cmin = C _dg O*floor (1+T_lifesys/T lifedg) +
C_g 0*T_lifesys/T bp + c'*y;
end
end
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%% Display results

display(['The power rating of DGl is ', num2str(y(4*dt+4)),' kWw'])
display(['The power rating of DG2 is ', num2str(y(5*dt+5)),' kW'])
display(['The power rating of the storage unit is ', num2str(y(8*dt+8)),"
kw'l)

display(['The energy capacity of storage unit is ', num2str(y(9*dt+9)),"'
kWwh'])

display(['The maximum power drawn from the grid is ', num2str(y(3*dt+3)),’'
kw'])

display(['The total energy drawn from the grid is ', num2str (y(9*dt+10)),'

kWh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(4*dt+4)>10"-6
display(['The DGl cost is $', ...
num2str (C_dg_0*floor (1+T_lifesys/T lifedg)+...

Cp_dg*floor (1+T_lifesys/T lifedg)*y(4*dt+4)),'.'])
else
display(['The DGl cost is §', ...
num2str (Cp_dg*floor (1+T_lifesys/T lifedg) *y(4*dt+4)),'.'])
end

if y(5*dt+5)>10"-6
display(['The DG2 cost is $',...
num2str (C_dg_O*floor (1+T lifesys/T lifedg)+...
Cp_dg*floor (1+T lifesys/T lifedg)*y(5*dt+5)),'."'])
else
display(['The DG2 cost is $',...
num2str (Cp_dg*floor (1+T lifesys/T lifedg)*y(5*dt+5)),'."'])
end

if y(8*dt+8)>10"-6
display(['The storage cost is §',...
num2str (C_s 0*floor (1+T lifesys/T lifes)+...
Cp_s*floor (1+T_lifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor (1+T_lifesys/T_lifes) *y(9*dt+9)),'.'])
else
display(['The storage cost is $',...
num2str (Cp_s*floor (1+T lifesys/T lifes) *y(8*dt+8)+. ..
Cpp_s*floor (1+T_lifesys/T lifes)*y(9*dt+9)),'.'])
end

display(['The grid cost is $', ...
num2str(C_g 0*T_lifesys/T bp+Cp_g*T lifesys/T bp*y (3*dt+3)+...
Cpp _g*365/d*T lifesys*y(9*dt+10)),'.'])

E=lsdt;

Pgl =[y(l:dt)];

Pg2 =[y(dt+2:2*dt+1)];
Pg =[y(2*dt+3:3*dt+2)];

Pdgl =[y(3*dt+4:4*dt+3)];
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Psl =[y(5*dt+6:6*dt+5)];
Pdg2 =[y(4*dt+5:5*dt+4)];
Ps2 =[y(6*dt+7:7*dt+6)];
Ps =[y(7*dt+8:8*dt+7)];

figure

plot(t,Pcl, t, Pdgl, t, Pgl, t, Psl)
legend('Chargerl', 'DG1', 'Gridl"', 'Storage Unitl', 'location', 'best')
title(['Charger 1 Power Outputs'])

set (gca, 'XTick', [0:dt/(2*6):dt])

set (gca, 'XTickLabel', [0:.5:6])

xlabel ('Day')

yvlabel ('Power drawn (kW)')

figure

plot(t,Pc2, t, Pdg2, t, Pg2, t, Ps2)
legend('Charger2',6 'DG2', 'Grid2', 'Storage Unit2', 'location’', 'best')
title(['Charger 2 Power Outputs'])

set (gca, 'XTick', [0:dt/(24):dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel ('Power drawn (kW) ')

figure

plot(t,Pc2+Pcl, t, Pdg2+Pdgl, t, Pg, t, Ps)
legend('Charger', 'DG', 'Grid', 'Storage Unit', 'location', 'best')
title(['Sum of Component Power Outputs'])

set(gca, 'XTick', [0:dt/(24):dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel ('Power drawn (kw)')

figure

plot(t,Pcl, t, Pc2, t, Pdgl,t,Pdg2, t, Pg, t, Psl,t,Ps2)

legend('Chargerl', 'Charger2', 'DG1', 'DG2', 'Grid', 'Storage Unitl', ...
'Storage Unit2', 'location’, 'best')

title(['Power Outputs'])

set(gca, 'XTick', [0:dt/(2%*6):dt])

set (gca, 'XTickLabel',6 [0:.5:6])

xlabel ('Day"')

ylabel (' Power drawn (kW)')

Es = [y(8*dt+9:9*dt+8)]+y(9*dt+9)*SOC min;

figure(5)

plot(t,Es)

title(['Energy Stored in the Storage Unit'])
axis ([0 dt 0 y(9*dt+9)*1.2])

set (gca, 'XTick', [0:dt/24:dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('time of day (hours)')

ylabel ('Energy capacity (kwh)')
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% Linear Programming Tool - Configuration C

% Develop the variables to use matlab's linear optimization tool

% General equation to be solved: C = ¢' x

% Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt

% x =[Pgl' Pgl_rating

Pg2' Pg2_rating

Pg' Pg_rating

Pdgl' Pdgl_rating

Pdg2' Pdg2 rating

Pdg' Pdg _rating

Psl' Psl_rating

Ps2' Ps2_rating

Es2' Es_rating

Es2' Es_rating

Eg_rating]'

F¥PF T FEFTFTITTFTFTFTFTEFETFTFFTFTTFTETFTFETETFTFTFTHFEFT YN

o o d° o of o Id° I° Of of o
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clear all
cle
close all

%$Cost Parameters

T lifesys = 20; ¥system life (years)
T lifedg = 25; $DG life (years)
T lifes = 6; $storage unit life (years)

%6 for lead-acid
%12 for Li-ion
T_bipy = 4125 $billing period (years)

C dg 0 = 200; $fixed cost of DG independent of rating ($)
$5$200 for solar PV
%$$3,750 for wind

C_s_0 = 110; $fixed cost of storage unit independent of...
$rating ($)
%$$110 for lead-acid
%580 for Li-ion

C g 0 = 15; $fixed cost of grid connection applied to each...
¥bill (%)
%59 for residential
%515 for general, no demand
%$$60 for general, demand

Cp_dg = 4400; $variable cost of DG ($/kW)
%$54400 for solar PV (includes inverter cost)
$55500 for wind (includes power conditioning)

Cp s = 200; $variable power cost of storage unit ($/kW)
%$$200 for charge controller

Cpp_s = 220; %$variable energy cost of storage unit ($/kWh)

%$$220 for lead-acid
%$$800 for Li-ion

Cp g = 0; %variable power cost of the grid ($/kW)
%50 when no demand charge
%$$10 when demand charge

Cpp_g = 0.14; $variable energy cost of the grid ($/kwh)
$50.14
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% Establish constraints

Pc_ max = 7.2;

Pg_max = 10; $5 for residential
%10 for general, no demand
%50 for general, demand

Pdg_max = 50; $10 for residential
%50 for general
Ps max = 50; %10 for residential
%50 for general
Es_max = 500; %100 for residential
%500 for general
Eg max = 1000; $arbitrarily high value, no constraint
Pdg min = 0; $power cannot go into the DG
Ps_min = -Ps max; $thigh enough to charge
Pg min = 0; $no power into the grid
Es_min = 0; ¥battery cannot reach zero state of charge

Eg min = 0; $no energy into the grid

n = 0.85; $efficiency of the storage unit

SOC max = 1; ¥set maximum state of charge for the storage unit
SOC_min = 0.80; ¥set minimum state of charge for the storage unit
d = 1; %¥days in time period

h = 24; $hours in time period

m = 60; $60/m is the resolution of the time vector

dt = d*h*m; $time period in intervals

t = Ll:ledt; %$time vector in minutes for one full day

% EV charge profile
Pc_rating = 7.2; $fixed, defined charge rating

Cprofilel = load('Cprofile publicl.csv');
Cprofile2 = load('Cprofile public2.csv');
Pcl =

Pc _rating*Cprofilel’;

Pc2 Pc_rating*Cprofile2!

% DG power profile
fdg = load('DGprofile.csv');

%% Develop c
$fill in ¢ where appropriate

¢ = [zeros(l,dt), 0, ... %Pgl
zeros(1l,dt), 0, ... %$Pg2
zeros(1,dt), Cp_g*T lifesys/T bp, ... %Pg
zeros(1l,dt), 0, ... $Pdgl
zeros(l1l,dt), 0, ... %¥Pdg2
zeros(1l,dt), Cp_dg*floor(1+T_lifesys/T lifedg), ... %Pdg
zeros(l,dt), Cp_s*floor(1+T_lifesys/T lifes), ... %Psl
zeros(1l,dt), Cp_s*floor(1+T lifesys/T lifes), ... %$Ps2
zeros(l,dt), Cpp_s*floor (1+T_lifesys/T lifes), ... $Esl
zeros(1l,dt), Cpp_s*floor (1+T lifesys/T lifes), ... %Es2

Cpp_g*365/d*T_lifesys]'; $Eg
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%% Develop A and b to solve A*x <= b

% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg_rating, every value in Ps' is less than or equal to

% Pdg_rating, etc.

%¥ create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%create Al
Al = zeros(dt, dt+l);
for i=1:dt
Al(i,i) = 1; $fill in 1 to compare a Pg value to Pg rating
Al(i,dt+1) = -1; %fill in -1 at Pg_rating to compare with Pg value
end

%$create A2
A2=A1;

%create A3
A3l = zeros(dt, dt+l);
for i=1:dt
%this is a trick to make Ps_rating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pcl(i) > 0 %vehicle is charging, storage will be discharging
%meaning Ps will be positive, Ps <= Ps_rating

A31(i,i) = 1; $fill in 1 at Ps value to compare to Ps_rating

else $vehicle is not charging, storage can only charge

$meaning Ps will be negative, -Ps <= Ps rating
A31(4i,i)
end

]
I
=

$fill in 1 at Psrating to compare with Ps value

A31(i,dt+1) = -1; %$fill in -1 at Psrating to compare with Ps value

end

$create A3
A32 = zeros(dt, dt+l);
for i=1:dt
¥this is a trick to make Ps_rating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 $vehicle is charging, storage will be discharging
$meaning Ps will be positive, Ps <= Ps_rating

A32(i,i) = 1; $fill in 1 at Ps value to compare to Ps_rating
else $vehicle is not charging, storage can only charge
%¥meaning Ps will be negative, -Ps <= Ps_rating
A32(i,i) = -1; $fill in 1 at Psrating to compare with Ps value
end
A32(i,dt+1) = -1; $fill in -1 at Psrating to compare with Ps value
end
$create A4

A4 = zeros(dt, dt+1l);
for i=1:dt
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Ad(i,i) = 1; $fill in 1 at Es value to compare to Es_rating
A4 (i,dt+1l) = -(SOC_max-SOC_min) ; $£fill in - (SOC_max-SOC_min) at
$Es_rating to compare and scale
$appropriately to Es wvalue
end

$create A
Z = zeros(dt,dt+1);

A=1([Al, 2,2, %22 ,%2, 2,2 ,2,2, 2, zeros(dt,1);
Z ,Al, 2, 2,2, 2 ,%2,2, 2, 2, zeros(dt,1);
Z ., 2 ,A1, 2,2, 2,2 ,2 ,2, 2, zeros(dt,1);
zZ ., 2,2 ,A2,2,2,2,2,2, 2, zeros(dt,l);
Z 5 %, %% ; 82, ;0% ;%2 ; 24 % ; zeros({dti;1);:
Z ., %2, %2, %2 ,%2 , A2, 2, 2,2, 2, zeros(dt,1);
Z 2 Z 3 ;2 - 2 A3, % ; % o & ; zeros(dt;l):
Z, % ,%2,%2,%2, %2, % ,A32, Z, 2, zeros(dt,1);
%+ 2 , 2 ;2 ; 2 4 2 ;2,2 , 8, &, zeros(dt,l):
zZ2 ., 2 ., 2,2 ,%2,%2,;2,%2, 2, A1, zeros(dt,1)]:;

% create b which is just zero
b = zeros(size(A,1),1);

%% Develop D and g to solve D*x = g

This relationship is used to make sure that the charger power
requirements are met. Namely it makes sure that for every instance in
time, Pc = Pdg + Ps + Pg.

It will also be used to develop the shape of the panel power output and
calculate Eb and Egrating.

o° of of of o

%create D1
D1 = zeros(dt, dt+1l);
for i=1:dt
Di1(i,1i) = 1; $fill in 1
end

¥create D2
D2 = zeros(dt, dt+l);

for d=1:dt
D2(i, 1) = 1j $fill in 1 for Pdg
D2(i, dt+1l) = -fdg(i); %fill in corresponding -fdg in
$Pdgrating position
end

%create D3
D31 = zeros(dt, dt+1l);

for i=1:d4t
if Pcl(i)> O $Vehicle is charging
D31(i,i) = d*h/dt/sqgrt(n); $Battery supplies less energy
%$than what was stored
else
D31(i,i) = d*h/dt*sqrt(n); %Battery stores less energy than
$what was supplied
end
end
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%create D3
D32 zeros (dt,
for i=1:dt
if Pc2(i)> 0
D32(i,1i)

else
D32(1,4)

end
end

%$create D4
D4 =
D4(1,1)
D4 (1,dt)
for i=2:dt

D4(i,1i) =

D4(i,i-1)
end

= 15
_l;

1;
= —1;

%¥create dS
ds =

%$create D

z = zeros(l, dt+1);

D= [Dl, 2, Z , D1,
2 DB, Z ; Z ;
Bl D1;-DY; & ;
Z , Z2, Z , D1,
Z i Z ;2 oy &
Z 2 ; 2 4 2 ;
2, Z ; B ¢ B ;
Z g &, dby 2

% create g

% we derive beq from

% fill in g
g = [Pcl; Pc2;

d*h/dt*sqgrt (n) ;

zeros (dt, dt+1l);

dt+1) ;

d*h/dt/sgrt (n) ;

$Vehicle is charging
%¥Battery supplies less energy

$than what was stored

%¥Battery stores less energy than

$what was supplied

[d*h/dt*ones (1,dt),0];

Z , 42 ,D1, 2, 2, 2,
Dl; 2 ; 4 ; Dl; 2 ; 2 ,
Z, 2,2 ,2,2,%2,
Di;-Piz; @& ; 3 4 2 ; & ;
Z,D2, 2,2, 2, 2,
Z, 2 ,D31, Z , D4, Z ,
Z, 2, Z ,D32, Z , D4,
zZ , 2, 2 2 , 2, 2 ,

-

the charging profile of

zeros (size(D,1)-2*dt,1)];

%% Develop lmin and lmax for lmin < x < lmax
% the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

zeros (dt, 1) ;
zeros(dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros (dt, 1) ;
zeros(dt, 1) ;
-1 1:

the vehicle which is given

% Establish upper bounds based on maximum limits

lmax =

[Pc_max*ones (dt+1,1) ;...

Pc_max*ones(dt+1,1) ;...
Pg_max*ones (dt+1,1);...
Pc_max*ones (dt+1,1) ;...
Pc_max*ones(dt+1,1);...
Pdg max*ones(dt+1,1);
Ps_max*ones(dt+1,1) ;
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Ps_max*ones(dt+1,1);...
Es_max*SOC_max*ones (dt+1,1) ;...
Es_max*SOC _max*ones (dt+1,1);...
Eg_max] ;

% Establish lower bounds

lmin = [-Pg_min*ones(dt+1,1);...
-Pg_min*ones (dt+1,1);...
-Pg_min*ones(dt+1,1) ;...
Pdg _min*ones (dt+1,1) ;...
Pdg_min*ones(dt+1,1);...
Pdg_min*ones (dt+1,1) ;
Ps_min*ones (dt+1,1) ;
Ps_min*ones(dt+1,1);...
Es min*SOC_min*ones(dt+1,1) ;...
Es_min*SOC min*ones(dt+1,1);...
Eg_min] ;

%% Solve using MATLAB's linear programming tool
% options = optimset ('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,qg,lmin,lmax);%, [],options);
if y(6*dt+6)>10"-6
if y(9*%dt+9)>10"-66 && y(10*dt+10)>10"-6
Cmin = C_dg 0*floor(1+T lifesys/T lifedg) +
2*C_s_O*floor (1+T_lifesys/T_lifes) + C_g 0*T lifesys/T bp + c'*y;
elseif y(9*dt+9)<10"-66 && y(10*dt+10)<10"-6
Cmin = C_dg 0*floor(1+T lifesys/T lifedg) +
C_g 0*T_lifesys/T bp + c'*y;
else
Cmin = C_dg 0*floor (1+T_ lifesys/T lifedg) +
C_s_0*floor (1+T_lifesys/T lifes) + C_g 0*T lifesys/T bp + c'*y;
end
else
if y(9*dt+9)>10"-66 && y(10*dt+10)>10"-6
Cmin = 2*C_s_O0*floor (1+T_lifesys/T_lifes) +...
C g 0*T lifesys/T bp + c'*y;
elseif y(9*%dt+9)<10"-66 && v (10*dt+10)<10"-6
Cmin = C_g 0*T_lifesys/T bp + c'*y;
else
Cmin = C_s_O*floor(l+T_lifesys/T lifes) +...
C g 0*T lifesys/T bp + c'*y;
end
end

%% Display results
display(['The power rating of the DG is ', num2str(y(6*dt+6)),' kWw'])

display(['The power rating of storage unitl is ', num2str(y(7*dt+7)),"' kWw']l)
display(['The energy capacity of storage unitl is ', num2str(y(9*dt+9)),"
kwh'])

display(['The power rating of storage unit2 is ', num2str(y(8*dt+8)),' kWw'])
display(['The energy capacity of storage unit2 is ', num2str(y(10*dt+10)),"'
kwh'])
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display(['The maximum power drawn from the grid is ', num2str(y(3*dt+3)),'
kw'l)

display(['The total energy drawn from the grid is ', num2str(y(10*dt+11)),
kWwh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(6*dt+6)>10"-6
display(['The DG cost is &', ...
num2str (C_dg O*floor (1+T lifesys/T lifedg)+...
Cp_dg*floor (1+T_lifesys/T lifedg)*y(6*dt+6)),'.'])
else
display(['The DG cost is $', ...
num2str (Cp_dg*floor (1+T_lifesys/T lifedg)*y(6*dt+6)),'."'])
end

if y(8*dt+8)>10"-6
display(['The storagel cost is §',...
num2str (C_s_O0*floor (1+T_lifesys/T lifes)+...
Cp_s*floor (1+T_lifesys/T lifes)*y(7*dt+7)+...
Cpp_s*floor (1+T lifesys/T lifes)*y(9*dt+9)),'.'])
else
display(['The storagel cost is §',...
num2str (Cp_s*floor (1+T_lifesys/T lifes) *y (7*dt+7)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(9*dt+9)),'."'])
end

if y(9*dt+9)>10"-6
display(['The storage2 cost is $',...
num2str (C_s_O0*floor (1+T lifesys/T lifes)+...
Cp_s*floor (1+T_lifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(10*dt+10)),"'."'])
else
display(['The storage2 cost is §',...
num2str (Cp_s*floor (1+T_lifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor (1+T_lifesys/T lifes)*y(10*dt+10)),"'."'])
end

display(['The grid cost is $',...
num2str (C_g 0*T lifesys/T _bp+Cp_g*T lifesys/T bp*y(3*dt+3)+...
Cpp_g*365/d*T lifesys*y(10*dt+11)),'.'])

t=1:dt;

Pgl =[y(1:dt)];

Pg2 =[y(dt+2:2*dt+1)];

Pg =[y(2*dt+3:3*dt+2)];
Pdgl =[yv(3*dt+4:4*dt+3)];
Pdg2 =[y(4*dt+5:5*dt+4)];
Pdg = [y (5*dt+6:6*dt+5)];
Psl =[y(6*dt+7:7*dt+6)];
Ps2 =[y(7*dt+8:8*dt+7)];

figure
plot (t,Pcl, t, Pdgl, t, Pgl, t, Psl)
legend('Chargerl', 'DG1l', 'Gridl', 'Storage Unitl', 'location', 'best!')
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title(['Charger 1 Power Outputs'])
set (gca, 'XTick', [0:dt/(2%6):dt])
set (gca, 'XTickLabel', [0:.5:6])
xlabel ('Day')

ylabel (' Power drawn (kw)')

figure

plot (t,Pc2, t, Pdg2, t, Pg2, t, Ps2)

legend ('Charger2', 'DG2', 'Grid2', 'Storage Unit2', 'location', 'best')
title(['Charger 2 Power Outputs'])

set(gca, 'XTick', [0:dt/(24):dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel ('Power drawn (kWw)')

figure

plot (t,Pc2+Pcl, t, Pdg, t, Pg, t, (Psl+Ps2))

legend ('Charger', 'DG', 'Grid', 'Storage Unit', 'location', 'best')
title(['Sum of Component Power Outputs'])

set (gca, 'XTick', [0:dt/(24) :dt])

set (gca, 'XTickLabel', [0:1:24])

xlabel ('Time of Day (hours)')

ylabel (' Power drawn (kW) ')

figure

plot(t,Pcl, t, Pc2, t, Pdg,t, Pg, t, Psl,t,Ps2)

legend ('Chargerl', 'Charger2', 'DG',' Grid', 'Storage Unitl', ...
'Storage Unit2', 'location', 'best')

title(['Power Outputs'])

set (gca, 'XTick', [0:dt/(2*6):dt])

set (gca, 'XTickLabel', [0:.5:6])

xlabel ('Day')

vlabel ('Power drawn (kW)')

Esl [y(8*dt+9:9%dt+8)]+y (9*dt+9) *SOC_min;
Es2 = [y(9*dt+10:10*dt+9)]+y(10*dt+10)*SOC_min;

figure(5)

plot(t,Esl, t, Es2)

title(['Energy Stored in the Storage Unit'])
axis ([0 dt 0 y(9*dt+9)*1.2])

set (gca, 'XTick', [0:dt/24:d4t])

set (gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')

ylabel ('Energy capacity (kWh) ')
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