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Abstract

Plug-in electric vehicles and distributed generation are expected to appear in growing numbers over the
next few decades. Large scale unregulated penetration of plug-in electric vehicles and distributed
generation can each have detrimental impact on the existing electric grid infrastructure. However,
appropriate pairing of the two technologies along with some storage could mitigate their individual
negative impacts.

This thesis develops a methodology and an optimization tool for the design of grid connected electric
vehicle chargers that integrate distributed generation and storage into a single system. The optimization
tool is based on a linear programming approach that identifies designs with the minimum system lifecycle
cost. The thesis also develops the component and system cost models needed for this optimization. The
tool can handle single and multiple charger systems with centralized or distributed generation and storage.
To verify the tool's accuracy, a search-based optimization technique that works for single chargers with
centralized generation and storage is also developed and used to validate the tool.

To demonstrate the usefulness of the optimization tool, it is used to design optimal architectures for a
single-charger residential charging case and a multi-charger public charging case. It is shown that designs
that draw the maximum available power from the grid have the lowest 20-year system lifecycle cost.
When storage is needed because the grid cannot provide full charging power, optimal designs may or may
not include solar PV based distributed generation depending on the location. For example, in locations
with solar irradiation profiles like Los Angeles, CA, electric vehicle charger designs that include solar PV
generation are optimal, while in locations like Eugene, OR, optimal designs do not include solar PV. It is
also shown that with the available technology, wind turbines are not cost effective for use in residential
chargers in locations with wind speeds similar to Los Angeles, CA and Boulder, CO. For the multi-
charger public charging case, designs with centralized storage and generation are optimal.
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Chapter 1

Introduction

Growing concern for climate change and energy security has renewed interest in Plug-in Hybrid

Electric Vehicles (PHEVs) and Electric Vehicles (EVs), collectively referred to as Plug-in Electric

Vehicles (PEVs). PEVs can offer benefits in terms of improved air quality and provide an opportunity for

economic growth to regions that take the lead in its technological development. These vehicles connect to

the electric grid in order to charge an internal battery which is later used, instead of or in addition to

burning gasoline, to propel the vehicle. A shift towards PEVs could substantially reduce the US's

dependence on foreign oil since 60% of oil is imported and 71% of the oil is consumed by the

transportation sector, including 46% by cars and light trucks [1]. In the US, 27% of greenhouse gas

(GHG) emissions due to human activities are caused by the transportation sector, and transportation is the

fastest growing source of GHG emissions [1]. Depending on the grid's generation mix, using electricity

instead of gasoline may result in substantial reductions in GHG emissions [2]. GHG emission reduction is

expected in a number of East and West coast states whose generation mix has low emissions. On the other

hand, GHG emissions reduction is not expected in states that depend heavily on coal power plants. When

compared to existing hybrid electric vehicles, which do not connect to the grid but still employ an internal

battery to make significant improvements in fuel efficiency, PEVs may have an increase in GHG

emissions depending on the generation mix [3]. The incremental electricity required to charge a PEV

should be generated from low emission sources such as nuclear or renewable generation to truly yield the

potential emissions benefits often claimed from using PEVs instead of existing vehicles.

Much effort has already been made to integrate renewable energy into the generation mix. There is

a strong legislative drive to mandate, or incentivize, large scale integration of renewable energy resources

(such as wind and solar) into the electric grid. Twenty-nine US states and the District of Columbia have

established renewable portfolio standards (RPS) that mandate, or set voluntary targets, to integrate

substantial amount of renewable energy into the grid over the next decade [4]. Some of these RPS goals

include carve-outs for distributed generation (DG). This type of generation specifically connects to the

distribution system and consists of generation units rated from a few kW to a few MW. The prominent

renewable DG that is seen today is rooftop solar photovoltaic (PV) systems although there has been some

installation of small-scale wind turbines.

It is anticipated that over the next few decades, both PEVs and renewable DG will become more

prominent. The increasing penetration level of each technology alone could present substantial



challenges to the existing electric grid infrastructure if not integrated effectively. One way to mitigate the

impact of PEV charging on the electric grid, while at the same time helping to reduce negative

consequences of connecting DG to the grid, is to combine PEV charging, renewable DG and local storage

into a single system. This solution would also help achieve RPS goals and yield the often-discussed

emissions benefits of PEVs. This is an opportunity that has not been adequately exploited from a

component size optimization standpoint, and is the subject of this thesis. The purpose of this thesis is to

develop a methodology for sizing components to meet the charging needs of a PEV. To determine the

optimal design out of all possible designs that meet the PEV requirements, a system lifecycle cost model

complements the methodology. The design that yields the lowest system lifecycle cost is considered the

optimal design in this thesis.

This chapter will first discuss the challenges of interconnecting PEVs and renewable DG to the

electric grid which will drive the motivation to pair these two technologies together. Then it will review

some of the past work done on PEV charging system optimization as well as existing PEV charging

systems with integrated renewable generation. Moving forward, this chapter will present the scope and

objectives of this thesis. Finally, it will introduce the content and organization of the chapters that follow.

1.1 Motivation

The untraditional nature of PEVs and renewable DG can present many unique benefits as well as

challenges to utility system operators. The impact of these technologies, both good and bad, will depend

heavily on their penetration level. The next two sections will discuss the expected penetration levels and

challenges of PEVs and renewable DG in order to motivate combined systems that may offer reduced

system impact.

1.1.1 Plug-in Electric Vehicle Penetration and Impact

A number of automobile manufacturers have already released or plan to release PHEVs and EVs

into the market [1], [5]. Although estimates vary, by 2020 roughly 2 million PEVs are expected to be on

the road in the US, and this number is expected to climb to 13 million by 2030, representing about 4.5%

of the light duty vehicle population [6], [7]. However, penetration is not expected to be uniform across

the country. Some west coast utilities expect PEV penetration of around 10% in their service territories

by as early as 2020 [8]. Such levels of PEV penetration will require large scale deployment of residential

and public chargers. In 2010, the Society of Automotive Engineers (SAE) released an updated standard

for PEV chargers that established recommended practices for Level 1 (up to 1.9 kW) and Level 2 (up to

19.2 kW) charging [9]. Although homegrown standards for fast (Level 3) charging are under

development, chargers with power ratings of around 60 kW that meet Japanese rapid charging standards

are already being piloted in the US [10]. Level I and Level 2 charging is expected to be used for



residential charging while Level 2 and Level 3 charging is expected to be used in developing a public

charging infrastructure [11].

Although the need for large scale deployment of PEV chargers is clear, their impact on the

electric grid is less certain. The potential impact of a deployment of PEVs on the electric grid can be seen

from the example of California shown in Fig. 1-1. As the penetration of PEVs increases, the additional

annual energy demand due to these vehicles marginally increases the total annual electrical energy

demand of the state (Fig. 1-1 (a)). Because generation asset capacity is sized to meet peak load demand,

generation units are underutilized most of the time. This means that a generation unit might only operate

for half of the year when there is enough demand and is available to operate more hours in the year if

needed to serve the extra generation requirements of PEVs. This means that the increase in annual energy

generated due to even a 100% penetration of PEVs in California is unlikely to require any additions to

generation infrastructure due to existing idle capacity. However, the peak power demand of coincident

peak PEV charging significantly increases the total peak power demand of the state (Fig. 1-1(b)). Most

increases in peak power demand are undesirable as they usually result in costly investments in upgrading

the capacity of existing transmission and generation infrastructure that would be used only a few hours

each year. Even small, but geographically concentrated, PEV penetration could have substantial

disruptive impact on local distribution systems, depending on the power rating of the chargers and the

time of day when the vehicles are charged [15]-[17]. Note that a 7.2 kW Level 2 charger draws as much

peak power as an entire house or two [18]. This sudden increase in power requirements at the distribution

level could easily overload the existing infrastructure, primarily the components closest to the point of

interconnection such as pole-mounted transformers.

400 160

300 g 120

200 a 80

100 0 40

: 0 A 0

Wo0% 10% 20% 100% 0% 10% 20% 100%
PEV Penetration PEV Penetration

(a) (b)

Figure 1-1: Impact on California's (a) annual electrical energy demand and (b) peak power demand for
varying levels of PEV penetration out of the state's 30 million light duty vehicles. In (a), a 30 mile
average daily commute at 4 miles/kWh vehicle efficiency is assumed. In (b), it is assumed that 50% of the
vehicles are charging at the same time as the system peak at an average rate of 6 kW. Electricity and
vehicle data for 2008 obtained from [12]-[14].



1.1.2 Renewable Distributed Generation Penetration and Impact

Sixteen states and the District of Columbia have an RPS with specific DG and/or solar

provisions; compliance can be achieved by both large merchant DG and small residential DG facilities

[3]. A few examples of these provisions are listed in Table 1-1. RPS goals and other financial incentives

have the potential to greatly influence increasing numbers of DG connected to the distribution system.

While an increased penetration of renewable DG may increase societal benefits, especially with respect to

emissions, integrating large levels of renewable DG into the grid is challenging as the variable and

unpredictable nature of wind and solar make grid operations more difficult [19].

Many of the challenges presented by DG relate to the fluctuation in feeder voltage. For example,

this can result from a mismatch in voltage regulation coordination or from variable output power from the

DG that occurs with a sudden cloud or a drop in wind speed [19], [20]. When this happens, the feeder

voltage level may not comply with industry standards. These challenges can be mitigated through the use

of storage at the DG location or along the feeder to buffer the fluctuation in voltage and properly regulate

the voltage through appropriate power absorption or injection.

There are also complications associated with the disconnection protocol in use. This protocol was

originally motivated by protection of worker safety during system outages [21]. DG is required to

disconnect when there is a 12% drop in voltage and reconnection can only occur after five minutes of

voltage levels returning to normal. The idea was that the DG will cease to supply power to what should be

a deenergized line. This presents two problems: (1) any energy that could have been generated is lost and

(2) the disconnection of several DG can occur even if there is no sustained fault on the local system. The

first problem is detrimental to the investment made in DG technologies as well as decreases reliability

benefits that could have been achieved. The second problem can result in a cascade of disconnecting DG

leading to a severe sustained fault throughout a large region [22].

1.2 Past Work

On the commercial front, PEV chargers with renewable DG exist [23]-[26] but there is little

indication that the power rating of the DG was optimized to charge a particular PEV. There are

publications pertaining to sizing stand-alone renewable DG and/or storage systems to meet general load

Table 1-1: State RPS solar or DG generation requirements as a percentage of annual electricity sales [3].
Year Arizona (DG) Colorado (DG) Illinois (Solar) Nevada (Solar)
2011 .75% 1.00% N/A N/A
2015 1.5% 1.75% 0.27% 1.2%
2020 3.0% 3.00% 0.96% 1.5%
2025 4.5% 3.00% 1.41% 1.5%



requirements [27]-[30] but a lack of publications related to sizing grid-interfaced systems to meet PEV

charging requirements. Likewise, there are publications describing the use of PEVs to mitigate impacts of

variable renewable DG through the use of its internal battery as a storage unit [31], [32], but the

renewable DG is not sized to specifically meet the needs of PEVs. The next two sections discuss the

findings of past work and solutions and points out their limitations with respect to component

interconnection and/or lack of component size optimization.

1.2.1 Existing PEV Charging Systems with Integrated Renewable Generation

Manufacturers and ecofriendly enthusiasts alike have begun installing charging stations with

parking space shading provided by canopies mounted with solar PV panels. The vast majority of these

systems are most likely meant to be statements about a particular company's efforts to generate low

emission electricity. Often there is no storage associated with these charging stations, meaning that any

renewable energy that is generated will only be supplied to a vehicle if it is plugged in. Also, the main

purpose for the rooftop on which the solar PV panels are mounted is to provide shading for vehicles, so

its dimensions may limit the use of an optimal number of solar PV panels needed to charge a PEV.

In the case of the National Renewable Energy Laboratory's prototype SolarTree TM [23], the

canopy provides shade for parked cars and a surface for solar PV panels to be mounted. The expected

1,520 kilowatt-hours (kWh) per year generated for the two charging stations could fully recharge one

Chevrolet Volt's 16 kWh battery [33] from 20% state-of-charge (SOC) up to 118 times. If a Chevrolet

Volt needs to be recharged every day, only one third of the total required energy each year will come

from the solar PV panels if the vehicle is plugged in every minute that the solar PV panel is generating

power. Keep in mind that these solar PV panels sit above two charging stations which makes solar energy

utilization per vehicle even lower. It is unclear if the chosen number of solar panels is based on a

predetermined canopy space or the type and frequency of PEVs that are expected to be charged.

The Solar EV Dock is another solution for charging PEVs using solar PV generated energy [24].

In this case, the integrated storage within the charger allows flexibility in time of charging. The PEV

does not need to charge exactly coincident with solar PV power production. The two-vehicle charging

station with associated canopy is claimed to produce between 4,000 kWh and 6,000 kWh a year. They

further claim that this is enough to supply a 20-mile work commute each way for both cars each year.

Using the Chevrolet Volt example again, 4,000 kWh will recharge it from 20% SOC up to 312.5 times.

This is just under half the year if both of the chargers are used every day. 6,000 kWh will recharge a

Chevrolet Volt 468 times - approximately 64% of the year if both chargers are used each day. This is

close to the claim of supplying enough energy for two vehicles that have a work commute of 20 miles

each way. The storage unit power rating and capacity are not listed.



PEV charging using renewable DG is not limited to parking lot canopies, as seen with the 40 kW

solar PV installation on top of Nissan's headquarters in Japan [25]. It is claimed that this installation can

charge 1,800 Nissan Leaf EVs per year with its three 50 kW chargers, four 3.3 kW chargers and 96 kWh

lithium-ion storage. This comes out to charging just under five Nissan Leafs each day. For continued

comparison, if it is assumed that 1,800 of the 24 kWh Nissan Leafs [34] are being charged from 20%

SOC to 100% SOC each year, then this would translate to charging 2,700 of the 16 kWh Chevrolet Volt

PHEVs from 20% SOC to 100% SOC each year. If there are seven chargers, each one could sufficiently

recharge a Chevrolet Volt each day. In fact, each charger could recharge two Chevrolet Volts 21 days of

the year if used every day.

Wind turbines, an alternative to solar PV panels, are also being explored. The Sanya Skypump

will be a combination street light, GE WattstationTM and 4 kW wind turbine that can either charge a PEV

with renewable energy or send it to the grid when there is no vehicle charging [26]. There is no additional

storage unit. At an average wind speed of 5 m/s, the wind turbine is estimated to produce 4,700 kWh

which energy-wise could fully recharge a Chevrolet Volt from 20% SOC every day of the year assuming

the vehicle is plugged in whenever the wind turbine is producing power.

Table 1-2 summarizes these commercially available products that pair renewable DG and PEV

charging stations together. Here, the Chevrolet Volt is used as a comparison metric for each solution. If a

PEV with a much larger battery was used instead, then the renewable DG might be insufficient to provide

all the energy needs of the PEV. It is also unclear from each solution if any of the components were

optimized on either an economic or energy basis.

1.2.2 Past Work on PEV Charging System Optimization

Each investment into a generation technology often takes careful calculation and analysis to

sufficiently and adequately meet given load requirements. When the perfect balance between load and

generation cannot be met in every instance of time, often storage is used to absorb or supply excess

power. This storage becomes more crucial for generation sources, like wind and solar PV, where the

Table 1-2: Existing renewable energy based PEV Charging Solutions
Product/Charging Renewable Storage? Number of Times a Chevrolet Source

Solution DG Source Volt can be Recharged per
Charger per Year'

Solar TreeTM  Solar PV No 59 [23]
Solar EV Dock Solar PV Yes 156-234 [24]
Rooftop Solar (Nissan Solar PV Yes 386 [25]
Headquarters)
Sanya Skypump Wind Turbine No 367 [26]
Assuming that the Chevrolet Volt's 16 kWh battery will be recharged from 20% to 100% state-of-

charge (SOC)



relatively uncontrollable output power is dependent on the wind and sun. At the same time, these systems

must often make economic sense when compared to electricity that could be bought from the grid.

Standalone systems that are often found in remote locations require a DG unit that will supply all

of the energy needs of the load. A storage unit is definitely necessary to buffer any mismatch between

generation and load. Load control and curtailment are often necessary tools even when storage is present

in the system. The optimal sizing of the DG and the storage unit indeed poses a complex problem [27]-

[29]. IEEE has even established recommended practices for sizing lead-acid batteries for stand-alone solar

PV systems [30]. However, because standalone systems are not grid-connected, these systems compose

different architectures than the ones envisioned for this thesis.

Alternative publications on systems that do combine renewable DG, PEVs, and the grid often use

PEVs instead of a separate storage unit to provide ancillary services in response to power fluctuations

from the renewable DG. The use of PEVs in this manner often requires bi-directional power flow, in

which case it is called Vehicle-to-Grid (V2G). Some systems do not interconnect the PEVs to the grid

directly [31]. Systems that do interconnect PEVs to the grid are discussed with respect to power flow

control but not component size optimization [32]. While power flow optimization is an important

component in system sizing, previous work has assumed a fixed, predetermined amount of renewable

DG. The main goal of these publications was to describe control schemes that adjust power flow between

components to optimize utilization of each component rather than size components to optimize economic

utilization.

The next section will explain the scope of this thesis and how it differs from past work and the

commercial solutions available today primarily from a component size optimization standpoint but also

with respect to flexibility in interconnecting components (e.g., multiple chargers can have centralized or

distributed renewable DG) and power flow control options (e.g., the grid can charge the storage unit).

1.3 Thesis Scope and Objectives

There are a number of different ways to configure and control a system consisting of PEV chargers,

renewable DG, energy storage and electric grid interface. The system might not include storage and/or

renewable DG. Alternatively, it might be a self-sufficient, stand-alone system with substantial renewable

DG and storage, but no grid interface. If renewable DG, storage and grid interface are all present, their

relative ratings can be quite different depending on how power flow is managed. For example, the system

may or may not prefer to draw power from storage and/or renewable DG before drawing power from the

grid; and it may impose different limits on the power that can be drawn from or delivered to the grid. If

there are multiple chargers in the same geographical vicinity, alternative configurations can also be

conceived depending on whether the renewable DG and/or storage is centralized or distributed. Some



possible configurations based on centralized versus distributed renewable generation sources and/or

storage are shown in Fig. 1-2. Different designs can also be developed using alternate technologies for

renewable DG (e.g., solar PV versus wind turbine) or storage (e.g., electrochemical battery versus

flywheel).

Without a quantitative comparison of these possible designs in terms of system attributes of

interest, it is not clear which design is the most appropriate. The system attributes that are of importance

for a PEV charging system are cost, efficiency and reliability. This thesis will compare alternative designs

in terms of system lifecycle cost, which includes initial capital costs and operating costs (consisting of

energy and maintenance costs). By including energy and maintenance costs in system lifecycle cost, the

impact of system efficiency and reliability is incorporated in the results of the comparative analysis.

The main objective of this thesis is to develop a methodology paired with a system lifecycle model

to find the optimal cost design for a given architecture and configuration. In its development, the

methodology will be flexible enough to incorporate different inputs including PEV charging

Renewable Renewable Renewable
DG DG DG

Grid- Charger PEV Grid- Charger PEV Grid Charger PEV

Storage Storage
Unit Unit

Renewable Renewable
DG DG

Charger PEV Charger PEV Charger PEV

Storage Storage
Unit Unit

Renewable Renewable
DG DG

Charger PEV Charger PEV Charger PEV

Storage Storage Storage
Unit Unit Unit

(a) (b) (c)
Figure 1-2: Sample alternative configurations for integrating PEV chargers, renewable sources of energy

and storage into the electric grid: (a) fully distributed renewable sources and storage, (b) distributed
renewable sources but centralized storage, and (c) distributed storage but centralized renewable sources.



requirements, renewable DG output power profiles, component cost models, and design constraints.

While this methodology is helpful in understanding the sensitivity of the various inputs, its usefulness

would be disregarded if the optimal designs did not make practical sense. Therefore, the second objective

of this thesis is to develop realistic, data-based models for the inputs including detailed incremental cost

analysis of the various components and historical output power profiles for the renewable DG. The third

and final objective is to analyze the results from applying the methodology and models to both residential

and public charging cases.

This thesis represents a major step in assisting the industry to develop cost optimized PEV charging

solutions that directly use low emission energy generated from renewable sources. These solutions can be

optimized for various PEV types, applications (residential and public), and geographic locations.

1.4 Thesis Organization

There are six chapters in this thesis. Following this introductory chapter, Chapter 2 develops a

system lifecycle cost model that is used to compare alternative designs. It also investigates various

component costs necessary for the system lifecycle cost model. Vendor data is gathered and modeled for

solar PV and wind turbine generation units; lead-acid battery, lithium-ion battery and flywheel storage

units; and grid energy and connection charges.

Chapter 3 presents a methodology for determining an optimal design for a grid-interfaced PEV

charging system with integrated generation and storage. Two approaches are formulated for implementing

this methodology. The first approach is based on linear programming, while the second is based off a

limited search approach.

The two approaches are used to determine and explore optimal designs for a residential charger

case in Chapter 4. In developing this case, solar irradiation and wind speed data for two US locations is

obtained and used to create realistic models for solar PV and wind turbine output power profiles. Chapter

4 also presents a sensitivity analysis for lithium-ion batteries.

The linear programming formulation developed in Chapter 3 is expanded and applied to a multi-

charger case in Chapter 5. The multi-charger formulation includes two PEV chargers, a single grid

connection, and a combination of centralized or distributed generation and storage. In total, four

configurations involving two PEV chargers are analyzed in this chapter using solar irradiation data from

one US location.

Chapter 6 presents a summary, conclusions and directions for future work.

Included in this thesis are two Appendices. A PLECS simulation model developed to validate the

resulting design is presented in Appendix A. The MATLAB code for the linear programming and search-

based optimization approaches developed in Chapter 3 and Chapter 5 are included in Appendix B.
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Chapter 2

System Lifecycle Cost Model

As various PEV charger designs are generated, it is important to be able to understand how one

design compares to another. In this thesis, system lifecycle cost is chosen as the comparison metric.

When comparing a design with a large solar PV system to a design with a small solar PV system or to a

design that only uses the electric grid, cost is a predominant factor in that decision. Most renewable DG

systems have high initial capital costs but low operating costs. On the other hand, purchasing energy from

the grid has low initial connection cost but the cumulative energy costs over a given time period can be

substantial. This is why total cost over the system life is used.

2.1 Development of System Lifecycle Cost Model

The system lifecycle cost, C, used in this thesis includes both the initial capital costs and the

operating costs of the system:

C = CDG + CS + CG + CM (2.1)

where CDG and Cs are the initial capital costs for the renewable DG and the storage unit, respectively,

including any costs associated with their power electronic interface; CG is the cost associated with getting

energy from the grid, and Cm is the maintenance cost of the system. Collectively CG and CM represent

the operating costs of the system over its lifetime.

The initial capital costs of the renewable DG and storage unit are modeled as:

CDG = CDG,O + C'DGPDG,r , (2.2)

Cs = Cs,o + C'sPs,r + Cs'Es,r , (2.3)

where PDGr, and PS,r are the power ratings of the renewable DG and storage unit, respectively, and Es, is

the energy storage capacity of the storage unit. The cost parameters are defined in Table 2-1.

The cost associated with getting energy from the grid is modeled as:

CG TG0life sys Tlife,sys EGr life sysGr> .4CG = CG,o Tp + CG T EG,-r +C pPG,r ,(2.4)

where T is the time period over which the battery state-of-charge (SOC) has to be maintained; EG,r is the

energy drawn from the grid over time period T; and PG,r is the peak power drawn from the grid. The

remaining cost and time parameters are defined in Table 2-1. The first two terms of (2.4) capture the

consumption charge (consisting of distribution and energy charges) and the third term represents the

demand charge.



The maintenance cost is modeled as a cost associated primarily with the cost of replacing the

renewable DG and the storage unit at the end of their respective lives. It is given by:

CM = CDG ' int fe,s C t fe,s , (2.5)

where into is the floor function which rounds its argument down to the nearest integer. The time

parameters used in (2.5) are defined in Table 2-1.

Table 2-1: Cost and time duration parameters used in the system lifecycle cost model.

Parameter Description Value Unit

CDG,0 Fixed capital cost of the renewable DG 200 (solar)$
3,750 (wind) -

C'DG Variable capital cost of the renewable DG 4,400 (solar)$/kW
5,500 (wind)

Cs,0 Fixed capital cost of the storage unit 110 (lead-acid) $
80 (Li-ion)

Variable capital cost of the storage unit

C---------- depending on the power rating 200- - - -W

,, Variable capital cost of the storage unit 220 (lead-acid) $/kWh
depending on the energy capacity rating 800 (Li-ion)

9 (residential)Fixed distribution charge from the grid per 1 ( eidean'
CG,0 billing period, Tb 15 (commercial/no demand) $

--- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- --60 (com m ercial/dem and)'

Demand charge from the grid per billing 0 (no demand) $--

period, Tp 10 (demand)'
Variable distribution and energy charge from

C"G th rd0.14 $/kWh
the grid

Tsys Expected life of the system 20 years
Tf,,DG Expected life of the renewable DG 25 years

Tif S Expected life of the storage unit 6 (lead-acid) years
12 (Li-ion)

Tb- Length of billing period 1/12 years
T Time period over which the storage unit 1/365 years

SOC is to be maintained

Note: The values of these cost and time duration parameters are discussed in Section 2.2 and Section 2.3,
respectively.

'Depending on the peak power drawn during the billing period, a commercial customer may incur a
demand charge. The values of CG,0 and C'G will depend on the presence of a demand charge.



By combining (2.1)-(2.5), the system lifecycle cost in terms of the system ratings is given by:

C = CDGO t + +fy S,0 + c nt 1+ Tlife,sys ) , +f eGys

k Tlife,DG /)\ Tlife,s / TbPbGp

+ CDG ' DG,r + C S H ,s S,r + 0 H e yG,r (2'6)

+ Cs' - int 1 + Tl Es r + CIr Tlife,sys EG,r\ T1 ~s / T Gr

The cost and time duration parameters used in (2.2)-(2.6) are defined in Table 2-1, which also lists the

values for these parameters as used in this thesis. These cost and time duration parameter values are

developed in the next two sections.

2.2 Development of the Cost Parameters

The cost data used in the development of the cost parameters is in 2011 US dollars (USD) unless

otherwise stated. When cost data is not available in 2011 USD, it is adjusted for inflation using a GDP

deflator [35]. Because the GDP deflator only has data up through 2010, any values adjusted for inflation

will be reflected in 2010 USD. It is not expected that the difference between 2010 USD and 2011 USD

will be significant.

2.2.1 Renewable Generation

Renewable sources of generation connecting to the grid have become more prevalent over the

past decade through various government incentive programs. As a result, the cost of such systems has

fallen as the market for said technology grows making it difficult to determine a value for the cost

parameters. This analysis will present data to support the values listed in Table 2-1 for renewable DG. It

will present data that reflects realistic, current component and system costs. Subsidies and financial

incentives are not taken into account even though the cost reductions provided by these programs could

amount to significant savings.

Solar PV

This section will present a number of sources that aggregate past and current cost data on solar PV

systems [36]-[39]. The difficulty of an aggregation of past data is that it usually entails total system

installation costs but it does not necessarily reflect present costs, as the average installed cost of

residential and small commercial solar PV systems has dropped from about $1 1/W in 1998 to about $8/W

in 2007 [36]. On the other hand, aggregation of current cost data usually does not include installation or



balance of system (BOS) costs, as they use mainly module and inverter cost data available from retail

manufacturers. In this sense, both types of data are relevant and useful.

To understand the installed cost of solar PV systems, it is insightful to understand the breakdown

of these costs based on system components. In 2006, the US Department of Energy (DOE) published cost

information for residential and commercial solar PV installations [37]. The residential installation cost

data was based on 5200 residential PV systems installed between 2000 and 2005 while the commercial

installation cost data was based on 330 installations. The installed system cost is broken down into 5

categories: (1) module, (2) inverter, (3) BOS, (4) installation, and (5) other/indirect. BOS includes all

hardware other than modules and inverters including mounting frames, fuses, disconnects, cables and

combiner boxes. Installation cost includes the cost of labor and equipment needed to perform on-site

installation. The other/indirect category contains additional costs such as design, engineering, site

preparations, permitting and profits. The breakdown of these costs for both residential and commercial

units is given in Table 2-2. Also according to the DOE report, the annual operation and maintenance cost

of these systems in 2005 was 0.5% and 0.45% of the installed cost for residential and commercial

systems, respectively. However, the DOE report projected that these operation and maintenance costs

would drop to 0.3% for the year 2011 which is relatively small. For this reason, the maintenance cost

term of the system lifecycle cost model ignores it and only considers the replacement cost at the end of

the solar PV system's life.

A slightly more recent report by the US DOE utilizes a much larger dataset for installed solar PV

system costs [38]. This dataset includes 52,000 installations between 1998 and 2008 representing 71% of

all grid-connected solar PV capacity through 2008. Using information in the report that was provided by

installers, Table 2-3 shows the breakdown of system element costs by percent for residential, small

commercial and large commercial systems.

As can be seen in both reports, the cost of the module composes around 50% of the total installed

system cost. This percentage is also agreed upon by a Rocky Mountain institute study [40]. Due to the

Table 2-2: Installed costs for residential and commercial solar PV systems installed between 2000 and
2005 based on data from [37].

System Element Unit Residential System Commercial System
Module $/W 4.44 3.89
Inverter $/W 1.00 0.67
BOS $/W 0.68 0.60
Installation $/W 1.84 0.61
Other/Indirect $/W 1.44 1.22
Total $/W 9.40 6.99



Table 2-3: Breakdown of average installed costs for residential, small commercial and large commercial
solar PV systems based on percentage data from [40].

System Element Residential System Small Commercial System Large Commercial System

Module 48 52 52
Inverter 7 7 6
Other Materials 7 12 11
Installation Labor 9 9 10
Other/Indirect 29 20 21

Total 100 100 100

age of the installations, the actual values of the cost data are already outdated. Instead, current cost data

for modules will be used to calculate present installed solar PV system costs.

Aggregate industry data suggests that as of August 2011, module costs are $2.84/W [39]. The

lowest prices seen are around $1.50/W but only 42.4% of module prices are under $3/W depending on the

retailer. The aggregate industry data is not broken down into fixed and variable costs. Therefore, one solar

manufacturer was chosen for further investigation in this thesis to pinpoint fixed and variable costs of

modules. Due to the range of module sizes available and the accessibility of web-based price, BP Solar

modules were chosen [41]. Many other solar module manufacturers exist but the information needed to

conduct this analysis was more readily available for BP Solar. Price data was collected from a number of

retail sites [42]-[47] and each module price was plotted against the module output power rating. Once this

was done, linear trendlines for each retailer were fitted against the data to calculate the fixed and variable

cost components. Using this method, the fixed cost is the intercept of the linear trendline and the variable

cost is the slope of the linear trendline. The resulting plot is shown in Fig. 2-1 and the costs are listed in

Table 2-4. The trendlines produce fixed costs between $55 and $165 and most of variable costs are

between $2/W and $2.25/W. The variable costs from the retailers are slightly lower than the aggregate

industry dataset but there is also a nonzero fixed cost. Considering this, the data presented in Table 2-4

corresponds well to the aggregate industry data if the fixed costs were absorbed into the variable costs.

The same analysis can be done for inverters. The source of aggregate industry data presented

earlier prices inverter variable costs at $0.714/W [39]. Repeating the same procedure done for calculating

module fixed and variable costs, one inverter manufacturer, Enphase, was selected for a detailed

investigation [48]. The same retailers were used to find cost data [42], [44]-[47]. Enphase grid-tied solar

microinverters are sized to convert power from a single PV module rather than from a group of modules.

Due to the close proximity of rated intput power, most trendlines do not have a positive slope resulting in

a fixed cost that is higher than the actual price of the microinverter. The datapoints that did have a
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Figure 2-1: BP Solar module cost and corresponding fitted linear trendlines as a function of module rated
output power based on data from six retailers [42]-[47].

Table 2-4: Fixed and variable module costs based on the linear trendlines in Fig. 2-1.

Retailer Fixed Cost Variable Cost R2 Value
($) ($/W)

EcoDirect 135.65 2.1580 0.9077
BD Batteries 164.08 5.9836 0.9509
Affordable Solar 132.31 2.0993 0.9505
Solar Home 55.194 2.2533 0.8841
Mr. Solar 117.59 2.1822 0.9607
altE Store 71.707 4.7506 0.9452

positive slope between them resulted in a negative fixed cost. Therefore, the best determination of fixed

and variable costs is to simply assume a zero fixed cost and attribute all of the cost into the variable cost.

To calculate this, the price was divided by the input power rating for each microinverter sold by each

retailer. All of the calculated costs were then averaged. The average cost was $0.76/W which matches

relatively well to the aggregate manufacturer data.

To conduct a similar analysis for the remaining components of a solar PV system would require

data that is not readily available. However, since it is generally accepted that the module cost is roughly

50% of the total installed cost of a solar PV system, a reasonable estimate can be made using the module

cost [37], [38], [40]. As can be seen from Table 2-4, the fixed cost of the module is roughly $100.

Doubling this yields a fixed installed cost for solar PV systems (in the power range of interest in this

thesis) of $200. Also, the variable cost of the module is approximately $2.2/W. Hence, the variable cost of

the installed solar PV system would be roughly $4.4/W which includes the inverter, BOS, installation and

other costs. Therefore, in this thesis, the variable cost of an installed solar PV system is chosen to be

$4.4/W, or equivalently $4,400/kW as presented in Table 2-1.



Wind Turbine

Wind turbines that can be used at the residential or small commercial level are less common than

small solar PV systems. Many MW level wind turbines are available, but these are not appropriate for

individual residential or small commercial applications. Also, cost data for small wind turbines is not

readily available. According to the American Wind Energy Association, the cost of distributed wind

turbines is between $3/W and $6/W for the period 2007 to 2009 [49]-[51]. However, it is not clear

whether this is just the cost of the wind turbine or the total installed wind turbine system cost.

A reasonable way to determine fixed and variable costs is through the compilation of

manufacturer data as was done for solar modules. This task is made complex by the variety of products

offered by retailers. Some retailers sell the wind turbine itself while others offer a package that includes

an inverter, a tower, or both. Some wind turbines even have the power conditioning modules already

integrated into the turbine hub. The process to determine fixed and variable installed costs is made even

more complicated by the fact that the cost of towers is dependent on both the power rating of the turbine

and the desired tower height. The following data is presented as coherently as possible given the broad

range of data and possible system combinations.

Installed system costs are generally difficult to obtain. However, SoleVento, LLC has publically

listed costs for installing a number of wind turbines from different manufacturers [52]. The installed

system costs are plotted against turbine power rating in Fig. 2-2. The installed fixed and variable costs

according to the fitted trendline are $15,984 and $5.67/W, respectively. While the variable cost is within

the expected range, the fixed cost is too high to be reasonable. It happens to be higher than some of the

installed costs within the set itself. It is possible that the dataset would be better fit with two linear

trendlines; one trendline for lower output power and one trendline for higher output power. That analysis
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Figure 2-2: Small wind system installation costs and corresponding fitted linear trendline as a function of
turbine rated output power based on data from one installer [52].



will not be done here in order to remain consistent with the cost model and the analysis done with solar

PV systems. Instead, a closer look at the individual cost components is in order.

As mentioned previously, some retailers [42], [53]-[58] list only wind turbines without any

towers or power conditioning units (i.e., inverters). Those prices are shown in Fig. 2-3. As before, the

wind turbine cost is plotted against its rated output power and a linear trendline is fitted. The fixed and

variable costs come out to $1,092 and $2.82/W, respectively. Both these values seem reasonable. These

units will also require an inverter for grid-connected systems. The SMA Windy Boy inverter series is

mentioned often and is the basis for the inverter cost analysis [59]. Due to a slight difference in price

between vendors [45], [56], [57], [60], the R-squared value of the linear trendline in Fig. 2-4 is low

however, the fixed and variable costs of $803 and $0.38/W, respectively, do not appear unreasonable.
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Figure 2-3: Small wind turbine costs and corresponding fitted linear trendline as a function of turbine

rated output power based on data from seven retailers [42], [53]-[58].
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Figure 2-4: SMA Windy Boy inverter costs and corresponding fitted linear trendline as a function of

inverter rated input power based on data from four retailers [45], [56], [57], [60].



When individual linear trendlines are fitted for data from each retailer separately, the fixed and variable

costs have very similar values. After summing the turbine and inverter costs, the values for fixed and

variable costs are $1,895 and $3.20/W, respectively.

Some wind turbine manufacturers [61]-[65] offer the power conditioning units packaged with the

turbine itself thereby eliminating the need to purchase a separate inverter. The cost data from retailers

[42], [47], [53], [54], [58], [60], [66], [67] for these power conditioned wind turbines is used to compare

against the sum of the wind turbine and inverter costs that was just presented. The fitted linear trendline

results in a positive variable cost of $4.18/W but a negative fixed cost of -$870.93. Instead, separate linear

trendlines for each retailer is presented in Fig. 2-5 and the resulting fixed and variable costs are listed in

Table 2-5. The average values of these costs are $2,592 and $3.45/W which are not the same as the values

calculated for separate turbine and inverter components but they are relatively close.

Taking the middle ground between the two cost points for wind turbine and inverter costs, it is

reasonable to assign fixed and variable costs of $2,250 and $3.30/W, respectively. The remaining

installation costs would be attributed to the towers, installation labor, fees, etc. Due to lack of such

information, it would be very difficult to do a similar analysis with any accuracy. If wind turbine systems
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Figure 2-5: Power conditioned wind turbine costs and corresponding fitted linear trendlines as a function
of turbine rated output power based on data from eight retailers [42], [47], [53], [54], [58], [60], [66],

[67].
Table 2-5: Fixed and variable power conditioned turbine costs based on various data presented in Fig. 2-5.

Manufacturer Fixed Cost Variable Cost R2 Value

($) ($/W)
Southwest Windpower 90.9 2.7880 0.9427
Bergey Windpower - 78.4 3.0588 0.9957
Hummer Wind 8,011.6 4.0131 0.9772
WE Power 3,000.9 3.7663 0.9915
Kestrel 1,932.5 3.6020 0.9943



followed the same cost trends as solar PV systems, then the wind turbine and inverter would compose

about 60% of the total installation cost based on percentage breakdown in Table 2-3. Using this

percentage, the overall system installation fixed and variable costs are approximately $3,750 and $5.5/W,

respectively. This assigns a variable cost that is consistent with the values stated by the American Wind

Energy Association and the variable cost calculated from the trendline in Fig. 2-2. While the fixed cost is

much lower than calculated earlier, it is more reasonable. Therefore, $3,750 and $5.5/W are used in this

thesis for wind DG systems.

2.2.2 Storage Unit

There are three different types of storage units that will be investigated in this thesis. The first

type is lead-acid batteries, the standard storage unit often seen in renewable energy projects. The second

type is lithium-ion (Li-ion) batteries, an emerging alternative to lead-acid batteries. These have gained

increased use in consumer electronics and now EVs. While still a relatively new technology for

renewable energy projects, it is useful to understand how it compares to lead-acid batteries both in terms

of cost and in life. The last storage technology explored is flywheel energy storage. This kinetic energy

based technology is not new, but has recently been promoted as a grid-scale energy storage technology

for frequency regulation [68]. Therefore, it is worthwhile to do a brief cost analysis for this alternative.

Lead-Acid Battery

The lead-acid battery is the most common deep-cycle battery technology available for renewable

energy projects. Although it is not always operated in such a way, a deep-cycle battery is capable of

discharging down to 20% SOC without significant damage to the battery. This is a beneficial feature for

a renewable energy application. For example, on a rainy day, the solar PV system may not supply

sufficient energy and the storage unit would have to be safely drained below normal. As of August 2011,

a survey of battery pricing indicates that batteries cost around $213/kWh while the most common

batteries used average between $239/kWh and $260/kWh [39]. One important note on these calculations

pertains to the kWh basis. Battery manufacturers list a voltage for the battery and a few amp-hour (Ah)

ratings. Each Ah rating is based on how quickly the battery is discharged. In order to calculate the energy

a particular battery can deliver, one would follow:

E( - VB xAhB (2.7)
1000

where EB is the energy delivered by the battery in kWh, VB is the voltage supplied by the battery in volts

(V), and AhB is the manufacturer provided Ah value in Ah. Ah ratings are typically given for 5-hour, 20-

hour, and 100-hour discharging rates. Batteries are more efficient when they are charged and discharged

slowly. Therefore Ah ratings for a 100-hour discharge will be higher than Ah ratings for a 20-hour or 5-



hour discharge. The kWh values provided by [39] are based on a 20-hour discharge rate. While the data

from [39] is useful, it would be beneficial to know the fixed and variable costs of lead-acid batteries.

Cost data for lead-acid batteries is available from most retailers that sell solar modules and/or

wind turbines [42], [44], [46], [47], [69]. Among these retailers, there are batteries from five common

battery manufacturers [70]-[74] and these batteries will be the basis for this cost analysis. The values

used in Fig. 2-6 are based on a 100-hour discharge rate which is typically the highest capacity that is

stated on manufacturer specification sheets. This means the anticipated variable cost should be lower than

the $239/kWh and $260/kWh values presented earlier. As seen in Fig. 2-6, the calculated fixed cost is

$24 and the variable cost is $169/kWh. When the same analysis is done at the 20-hour rated energy

capacity, the fixed and variable costs are $36 and $242/kWh. This matches well with the values from

[39]. For this thesis, an averaged fixed cost of $30 and variable cost of $220/kWh for lead-acid batteries

is used based on data from all three datasets analyzed because the practical capacity of the battery can

vary between the values given in the specification sheets.

Lithium-Ion (Li-ion) Battery

The market for Li-ion batteries has increased due to use in personal electronics and now in

electric vehicles. However, it is still a new storage technology and fairly expensive. It is expected that the

price of Li-ion batteries will continue to drop as their market increases. Today, there are few retailers

supplying Li-ion batteries for large energy storage systems. The analysis done for lead-acid batteries

cannot be duplicated for Li-ion batteries due to a lack of data. Fortunately, the Electric Power Research

Institute recently released a report analyzing the costs for various storage technologies that can be used

for grid-scale storage [75]. In general, they conclude that Li-ion battery systems are a relatively new
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Figure 2-6: Lead-acid battery costs and corresponding fitted linear trendline as a function of lead-acid
battery 100-hour rated energy capacity based on data from five retailers [42], [44], [46], [47], [69].



option that is only in the demonstration stage. They are only somewhat confident about their cost

estimates which are based on vendor quotes and system installation estimates. Table 2-6 summarizes their

cost findings for each application. Disregarding the very large energy storage systems presented in Table

2-6, it appears that the average cost of Li-ion energy storage systems are between $800/kWh and

$3,600/kWh. The very high energy and power applications exhibit much higher variable costs. Because

the variation in cost is so great, it is very difficult to estimate a single variable cost for Li-ion batteries.

While using Li-ion batteries for a slightly different application, a report by Deutsche Bank

estimates that Li-ion batteries used in EVs cost $650/kWh in 2010 and this will drop to $315/kWh in

2015 and $250/kWh in 2020 [75]. These are much lower than the costs listed in Table 2-6. This is

because the Electric Power Research Institute cost estimates include installation, interconnection and grid

integration costs which include power electronic interfaces, transformers, communication and controls.

They note that significantly lower costs may be possible if combined with renewable DG systems.

Therefore, the battery-only costs are lower than cost data presented in Table 2-6. Also, installation and

power conditioning components were already incorporated into the fixed and variable costs for the

renewable DG. Therefore, this thesis will use battery-only cost data. It will be chosen as $800/kWh for

Li-ion batteries which is slightly higher than the EV battery cost but on the low end of the grid storage

system costs. Fixed cost, due to lack of data, is assumed to be zero.

Table 2-6: Li-ion energy storage averaged system cost estimates by application [75].

Application Capacity Power Duration Cost
(kWh) (kW) (hours) ($/kWh)

Frequency Regulation 4,340-
Power Quality 250-25,000 0.25-1
Defer Capital Cost

-Utility T&D Substation Grid Support4,0- 10-
Peak Shaving, Reliability 4,000 1,000 2-4 900-1,700
Frequency Regulation
Commercial and Industrial Energy Management 100-800 50-200 2-4 950-1,900
Power Quality, Reliability

-Distributed Energy Storage
Distribution Deferral, Peak Shaving 25-50 25-50 1-4 950-3,600
Reliability
Frequency Regulation
Residential Energy Storage
Back-up Power, Reliability 7-40 1-10 1-7 800-2,250
Home PV Time Shifting

Note: A large part of these costs may be due to power electronics, BOS and installation.



Flywheel Storage

Flywheel energy storage technology is attractive because it has very fast response (less than 4

ms), high power density (5 to 10 times that of batteries), high round-trip energy efficiency (- 93%), and

long lifetime (20 years) [75]. It has not had widespread use in grid energy storage systems because of its

low energy density. For example, although exact density is unpublished, a 1 MW flywheel system will

take several hundred square feet to store 250 kWh.

The market for flywheels is even smaller than the market for Li-ion batteries. Fortunately, the

same Electric Power Research Institute report also analyzes flywheel energy storage technologies.

Unfortunately, there is only one current application for flywheel energy storage systems - frequency

regulation. (The time scale for energy buffering in frequency regulation is relatively short - on the order

of minutes and below, but not hours.) From the capacity and power data given, it can be assumed that the

cost data is based on a single flywheel frequency regulation project. The cost presented is $7,800/kWh to

$8,800/kWh which will include any costs due to power electronics, BOS and installation [75]. This is an

order of magnitude higher than the cost of battery technologies. It is not likely that this is a viable

technology option for EV charging energy storage systems. Therefore, flywheel technology is not

explored any further in this thesis.

Charge Controller

The last component necessary for storage units, particularly of the battery variety, is a charge

controller which prevents damage to the storage unit as it charges or discharges. Aggregate industry data

indicates that charge controllers cost $5.93/A [39]. However, the cost model developed does not have

output current from the charge controller as a variable. Instead, the power rating of the storage unit is

used. Therefore, the output current must be translated into power. Most batteries offered are 12V although

2V and 6V batteries are occasionally used. Batteries can be placed in series for larger voltage drops (such

as 24V or 48V) however balancing circuits would be required to ensure the voltage across each battery in

the series is safe. If 12V is assumed to be the standard battery voltage and subsequently the required

output voltage of the charge controller, then dividing $5.93/A by 12V will yield a cost of $0.494/W or

equivalently, $494/kW.

The cost of charge controllers provided by retailers is not simply based on output current alone.

As can be seen graphically in Fig. 2-7, charge controllers with the same output current can have a spread

of prices. As with other components, it is reasonable to believe that the variation of cost in Fig. 2-7 is due

to the difference between manufacturers [77]-[84] and retailers [42], [44], [46], [47], [69]. But even when

cost data is plotted for one manufacturer [82] as sold by one retailer [42], there are multiple cost points for

a given output current (see Fig. 2-8). A single manufacturer can produce several charge controllers that



have the same output current. The differences between charge controllers are the input voltage, the output

voltage, number of input phases and other characteristics such as meters or type of control methodology

used. A single charge controller unit is even capable of several output voltages ranging from 12V to 72V.

This is why there is a cost spread for a given output current. For each fitted linear trendline in Fig. 2-7 and

Fig. 2-8, the fixed cost of $18 and $12 is quite low and the variable cost of $6.83/A and $5.1 1/A are about

a dollar off from the aggregate industry cost.

If instead, the cost data was plotted against maximum output power, the spread of data points

does not see significant improvement (see Fig. 2-9). In this case, the maximum output power is the

output current times the maximum output voltage for each unit, which varies from 12V to 72V. The fixed

and variable costs in this case are roughly correlated to $110 and $123/kW, respectively. This is lower

than the $494/kW calculated from the aggregate industry data almost exactly by a factor of four indicating

that the average designed output voltage that should be used is 48V, not 12V. If only charge controllers

with a maximum output of 12V are used in the cost analysis, the fixed cost comes out to $50 and the

variable cost is $284/kW. The 12V charge controllers have less than a 1.2 kW maximum output power.

As seen in Fig. 2-9, it is very plausible that the cost points for output powers less than 1.2 kW have a

steeper linear variation than the cost points for output powers greater than 1.2 kW.

Because the output voltage of the charge controller will depend on the system setup and specific

battery bank that is used, the 12V only charge controller data cannot be used exclusively. On the other

hand, because most batteries are 12V, it is reasonable to believe that most systems may only require a

12V output charge controller. To remedy this, the fixed cost that is used is $80 which is halfway between

$50 and $110 and the variable cost that is used is $200/kW which is halfway between $123/kW and

$284/kW.

Summary of Storage Unit Costs

In summary, only lead-acid and Li-ion batteries will be used for the storage units. Flywheel

energy storage systems are not cost competitive for this storage application. Lead-acid battery costs are

$30 fixed and $220/kWh. Li-ion battery cost is $800/kWh. Each system with a battery will require a

charge controller to ensure that the battery is not damaged when charged. The charge controller costs are

$80 fixed and $200/kW. The lead-acid storage unit will have a fixed capital cost (Cso) of $110, which is

the summation of $30 and $80. The Li-ion storage unit will have a fixed capital cost (Cso) of $80. The

variable cost of the entire storage unit that depends on the rated power (C's) will be $200/kW for either

battery technology used. The variable cost that depends on the energy capacity (C'"s) will be $220/kWh

for lead-acid battery systems and $800/kWh for Li-ion battery systems.
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Figure 2-7: Charge controller cost and corresponding fitted linear trendline as a function of output current
based on data from five retailers [42] [44] [46] [47] [69].
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output power based on data from five retailers [42] [44] [46] [47] [69].
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2.2.3 Electric Grid

When purchasing electricity from the grid, there are three typical charges that appear on utility

bills. The most familiar charge is the retail price of electricity that customers pay for each kWh they

consume. Lesser known are the fixed distribution charge that can appear on each bill for connecting to the

grid and the demand charge based on the peak power consumed within the billing cycle.

The fixed distribution charge allows distribution utilities to recover fixed costs associated with

the delivery of electricity. These costs do not depend on how many kWh are delivered in a particular

billing period. For example, depending on the utility, an employee may have to go to each individual

consumer and read their meter to report back how many kWh were delivered that month to that customer.

This meter reader visits the meter whether the consumer used only a few kWh or many kWh and his

salary is considered a fixed cost. The fixed distribution charge varies by utility. Some utilities may not

have a fixed monthly charge on top of their energy charge for their residential customers, although they

may still have a minimum charge if no energy was sold that month to that customer. Other utilities may

have charges in excess of $15. It would be a very daunting task to seek out all of the various monthly

charges for the thousands of utilities in the US. Instead, the fixed distribution charges for the top five

utilities (by consumers) are listed in Table 2-7 along with the average for each consumer type [85]-[89].

Using the average values, CG,O is taken to be $9 for residential consumers, $15 for commercial customers

who do not incur a peak monthly demand charge and $60 for commercial customers who do incur a peak

monthly demand charge.

Also shown in Table 2-7 are the peak demand charges. These charges are based on the

consumer's peak demand over a 15 minute interval for the entire month. This charge is in place to

Table 2-7: Monthly fixed distribution charges and demand charges for the top five distribution utilities by
number of consumers [85-89].

Residential Commercial Commercial Peak

Utility Monthly (no Demand) (with Demand) Demand
Charge Monthly Charge Monthly Charge Charge

($) ($) ($) ($/kW)
Pacific Gas & Electric Company 0 3.94 3.94 18.05
Southern California Edison 0.88 22.30 134.17 12.15
Florida Power & Light Company 5.90 6.89 16.44 6.5
Commonwealth Edison Company 16.50 10.95 19.37 5.14
Consolidated Edison Company of New York 15.76 24.06 117.14 17.22
Average 8.71 13.63 58.21 10.01

Note: Commercial (no Demand) is typically retail customers whose peak monthly demand is less than
10kW or 20kW depending on the utility. Commercial (with Demand) is typically customers whose
peak monthly demand is greater than 10 kW or 20kW depending on the utility.



incentivize lowering the overall system peak for better capacity utilization. Since demand charge is

typically applicable only to industrial and large commercial customers, C'G is assumed to be zero for the

residential charging case. The public charging case will depend on the charging system setup. Some

commercial customers will not incur a demand charge if their peak monthly demand is less than 10 kW or

20 kW depending on the utility. If a single public charging station is only rated at 7.2 kW, then it is likely

that this charging station will not incur a demand charge. If there are several charging stations together or

if the charging rate of a single charger is above 20 kW, then this charging scenario will incur a demand

charge. Therefore, C'G is assumed to be zero for charging stations which are not expected to incur a

demand charge and $1 0/kW for charging stations that are expected to incur a demand charge.

The last cost parameter for using the grid is the variable distribution and energy charge which is

based on the kWh consumed by the customer. This cost is derived from the electricity that the

distribution utility purchases from the generation units and also the cost of the infrastructure of wires to

deliver this electricity. In 2010, the average residential and commercial retail price of electricity was

$0.112/kWh and $0.0997/kWh, respectively [90]. Table 2-8 breaks up the average price for residential

and commercial customers by state (and region). The New England, Middle Atlantic, and Pacific

Noncontiguous regions have average retail prices that are much higher than the nationwide average, while

the East South Central and the West North Central regions have retail prices that are much lower than the

nationwide average. The areas that are more prone to see large penetration of electric vehicles and

renewable DG are going to be those with strong incentives and history for alternative vehicles, charging

infrastructure, and/or renewable DG. California is a prime example of a state that is expected to have a

high penetration of both technologies based on existing number of hybrid electric vehicles, EV charging

stations, and incentives or laws promoting EVs [91], [92]. Likewise, using renewable DG instead of the

grid is more cost competitive in areas where retail electricity prices are high. Therefore, an average retail

price of $0.14/kWh is chosen which is higher than the nationwide average but lower than the average

retail price in the state of California and the regions of New England, Middle Atlantic, and Pacific

Noncontiguous. The difference between residential and commercial sectors is small and $0.14/kWh will

be used for C''G independent of residential or public charging scenarios.

2.3 Time Duration Parameters

This section describes how the values to the time duration parameters listed in Table 2-1 were

determined. The system lifecycle cost will be calculated over the system life, Tgesy. The system life is

chosen to be close to but less than the life of the renewable DG so that the DG does not have to be

replaced. For this thesis, a value of 20 years is chosen. Also of great importance within this thesis is the

period, T, over which the storage unit will return to its initial SOC. For this thesis, it is assumed that the



Table 2-8: Average retail price of electricity to ultimate customers for 2010 [90].
Census Division Residential Commercial Census Division Residential Commercial

and State (0/kWh) (C/kWh) and State (C/kWh) ((/kWh)

Connecticut
Maine
Massachusetts
New Hampshire
Rhode Island
Vermont

19.42
15.62
15.44
15.97
8.71
15.34

New Jersey 15.93
New York 18.12
Pennsylvania 12.45

Delaware 13.37
District of Columbia 13.25
Florida 11.09
Georgia 9.64
Maryland 14.39
North Carolina 10.05
South Carolina 10.22
Virginia 10.33
West Virginia 8.47

16.61
12.49
15.23
13.98
13.63
13.32

13.42
15.31
10.12

Iowa
Kansas
Minnesota
Missouri
Nebraska
North Dakota
South Dakota

West, 'South Central
Arkansas
Louisiana
Oklahoma
Texas

99 Mounotain
11.37 Arizona
13.8 Colorado
9.57 Idaho
9.01 Montana
11.61 Nevada
8.08 New Mexico
8.62 Utah
7.7 Wyoming
7.51

9.65
9.43
9.92
8.02
8.01
7.35
8.28

7.32
7.87
7.91
6.67
7.27
6.68
7.22

8.74 7.51
8.72 8.61
8.56 6.87
11.59 9.41

10.29 8.94
10.78 8.78
7.79 6.7
8.74 8.23
12.71 10.35

10 8.36
8.35 6.9
8.37 7.36

Illinois 10.9 8.67
Indiana 9.22 8.22
Michigan 12.01 9.98
Ohio 10.8 9.74
Wisconsin 12.29 9.74

California
Oregon
Washington

15.09
8.67
7.76

12.54
7.64
7.24

Alabama 10.47 10.17 Alaska 16.26 13.83
Kentucky 8.12 7.48 Hawaii 27.46 25.43
Mississippi 9.61 9.32
Tennessee 8.64 9.13

0 b 41



EV charger will be used daily. Therefore, T is chosen to be one day in order to minimize the battery size.

2.3.1 Renewable Generation

To determine the expected life of renewable DG, the warranty is generally a good indicator

although the life of the unit can easily go past the warranty timeframe. For solar PV modules, many

manufacturers have a product and parts warranty of 5 years [41], [93]-[100]. What is more useful is the

performance warranty which typically guarantees at least a 90% of rated power output for 10 years and

80% of rated power output for 25 years. This indicates a reasonable life for solar PV modules that is

greater than or equal to the system life. The Enphase microinverter is also backed by a 25-year limited

warranty [48].

Wind turbines also typically come with a 5-year product warranty [61]-[64]. They do not come

standard with the same performance warranty as solar PV modules. Most of the manufacturers used in the

cost analysis above claim a design life of 20 years but it is reasonable for the life to extend beyond 20

years [61], [62], [65]. The SMA Windy Boy inverters come with a 10-year warranty and it can be

extended for another 10 years [59].

In this thesis, 25 years is used for Tlife,DG, although the analysis could use anything above 20 years

and system lifecycle cost would remain the same.

2.3.2 Storage Unit

The life of the storage unit depends on the number of times it has been charged and discharged.

One charge and discharge is called a cycle. Battery manufacturers sometimes provide graphs that present

the number of cycles a battery can sustain based upon the depth of discharge (DOD) of the battery. A

graph for SunXtender lead-acid batteries is used in the cost analysis above and is shown in Fig. 2-10 [71].

The lower the DOD, the more cycles the battery can provide. If a battery is drained all the way and

recharged, it can only survive few cycles. If the battery is drained halfway and recharged, it can sustain

more cycles. For each case just presented, the amount of energy provided from each cycle is different.

The following equation is used to determine the life of the battery:

Tuife,s = Ncycles 2.8)
TI 1 e, -365(28

where Nyces is the number of cycles expected out of a given battery and 365 indicates that the battery will

go through 365 cycles a year or one cycle per day.

The energy that will be required out of the storage unit is fixed. The rated energy capacity of the

storage unit will have to be adjusted to ensure that the required amount of energy is delivered when the

DOD is varied:



Es r oC Edelivered (2.9)
'O DOD

where Edelivered is the fixed energy that must be delivered and DOD is the depth of discharge that the

battery will incur. The system lifecycle cost from (2.6) is proportionate to the number of cycles and the

depth of discharge for each battery:

C ry

int 1 + Tuie,sys x 365)
Ncycles / (2.10)
DOD - E,factor

where CEfactor is defined as a comparative factor between various pairs of DOD and Ncyczes. This is used to

generate the values seen in Table 2-9 from the data presented in Fig. 2-10. These values do not represent

the actual system lifecycle cost but rather the relative cost of the energy portion of the storage system for

comparison. The higher the value, the higher the overall system lifecycle cost will be. It can be seen that

the lowest cost factor occurs when the DOD is limited to 20%. The battery life that this corresponds to is

just under 8 years. However, there will be days when the clouds may cover the sun or the wind may not
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Figure 2-10: SunXtender lead-acid battery cycle life versus depth of discharge [71].

Table 2-9: Relative system lifecycle energy cost factors for SunXtender lead-acid batteries [71].
% DOD Approximate Cycles CEfactor

100 380 20
80 520 18.75
50 1000 16
30 1800 16.67
20 2900 15
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blow. In these cases, the battery may be drained past 20% DOD. Likewise, over time, it is expected that

the battery capacity may decrease. Toward the end of the battery life, Edelivered will comprise a much

higher percentage of the current battery capacity. The battery would be regularly drained past 20% DOD.

For these reasons, the expected life, Tyfs, of the lead-acid battery is chosen to be 6 years rather than 8

years because the DOD will likely go beyond 20%.

It is difficult to duplicate the analysis for Li-ion batteries because there is a lack of cycles versus

depth of discharge graphs. Instead, EV battery lifetimes will be used. EV manufacturers desire batteries

that can last many years for warranty purposes but at the same time do not want a very oversized battery

for space and weight purposes. Discharging to 80% DOD has become a standard among auto

manufacturers [101]. Both Nissan and GM expect their Li-ion batteries will experience a capacity

degradation of about 30% over their life and they will warranty the battery for 8 years although the

degradation will not be covered [33], [34]. For the same reliability and capacity degradation reasons

stated for lead-acid batteries, it would be preferred if the Li-ion batteries also only had a 20% DOD. It is

assumed that Li-ion batteries will have similar DOD and cycle life characteristics as lead-acid batteries.

If this is true, it would be reasonable for Li-ion batteries to have at least a 10 year life for 20% DOD. For

the 20 year system life used in this thesis, any Li-ion battery lifespan above 10 years and below 20 years

would not affect the system lifecycle cost because the battery would still need to be replaced once.

Assuming a 20-year Li-ion battery life would be too far of a jump based on the current data. In this thesis,

the expected life, Tes, of the Li-ion battery is chosen to be 12 years.

For both battery technologies, a designed maximum DOD is chosen to be 20% but it is assumed

that the battery will go through instances of increased discharge in actual system use.

2.3.3 Electric Grid

The last time parameter to consider is Tp, the length of the billing period associated with

connecting to the electric grid. Most consumers receive a utility bill once a month and the fixed and

demand charge cost data that was gathered was based on monthly intervals. Therefore, in this thesis, T,

is taken to be one month.
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Chapter 3

Optimization Methodology for a Single Charger

In this thesis, an optimal architecture is one with the lowest system lifecycle cost, as modeled by

(2.1). Hence, a method is needed to size the individual elements of the system so as to yield designs with

minimum lifecycle cost that meet all system requirements. The system elements that need to be sized are

the distributed renewable generation source and the storage unit. The renewable DG's power rating,

PDGr, needs to be determined and the storage unit's power and energy capacity ratings, Psr and Esr,

respectively, also need to be determined. In order to calculate system lifecycle cost, the peak power, PG,r,

and the energy drawn from the grid over period T, EGr, are needed. These ratings depend upon Pc(t), the

power drawn by the PEV charger as a function of time t, as well as the design constraints and the power

flow control methodology.

3.1 Development of Optimization Methodology

Design constraints arise from the maximum power that can be drawn from and delivered to the

grid, PG,max(p) and PG,m,(n), respectively; limits on the maximum rating of the renewable DG, PDG,max; the

maximum power and energy rating of the storage unit, Ps,,,x and Esma, respectively; and the maximum

and minimum state-of-charge allowed for the storage unit, SOCa and SOCmin, respectively. These

constraints can be expressed as follows:

-PG,max(n) ! PGt < PG,r ! PG,max(p) (3.1)

0 < PDG (t) PDG,r - PDG,max , (3.2)

-Ps,max -Ps,r Ps(t) ! Ps,r Ps,max , (3.3)

Es,r -SOCmin Es(t) < Es,r -SOCmax Es,max -SOCmax , (3.4)

where PG(t), PDG(t), and Ps(t) are the instantaneous powers delivered by the grid, the renewable DG, and

the storage unit, respectively; and Es(t) is the instantaneous energy stored in the storage unit. The

maximum power available from the grid could be limited due to the limited rating of a distribution

transformer or a feeder line. The limits on the DG and storage could be due to space constraints. These

design constraints along with their assumed values for the purpose of analyzing example cases in this

thesis are summarized in Table 3-.

Additional constraints are imposed by physical laws and the connections between the

components; including the following from energy conservation:



Table 3-1: Design constraints.

Design Description Unit Value
Constraint

PG,max(p) Maximum power allowed from the grid kW 5
PG,max(n) Maximum power allowed into the grid kW 0
PDGmax Maximum power rating of the renewable distributed generation source kW 10
PSmax Maximum power rating of the storage unit kW 10
Esmax Maximum energy capacity of the storage unit kWh 100
SOCmax Maximum fractional SOC of the storage unit (between 0 and 1) - 1
SOCmin Minimum fractional SOC of the storage unit (between 0 and 1) - 0.80

PG(t) + PDG(t) + PS(t) = PC(t). (3.5)

An additional constraint is on the instantaneous power from the renewable DG:

PDG() = PDGrfDG(t) , (3.6)

where fDG(t) is the normalized output power profile of the renewable distributed generation source, and

varies between 0 and 1 due to variation in solar irradiation or wind speed.

Also, the energy in the storage unit is related to the power drawn from it by:
t

ES(t) - Es(t - At) = - J s(t')dt' , (3.7)
t-st

where Ps(t) is given by:

(PS(t Ps(t) > 0
s(t= 5 , (3.8)

(AftiPs(t), Ps(t) ; 0

and incorporates the effect of the round-trip efficiency of the storage unit, q. It is assumed that the round-

trip energy loss is divided equally between discharging and charging of the storage unit. When the storage

unit is discharging, it will supply less energy than what was stored. To account for this, when Ps(t) is

positive, Ps(t) becomes greater than Ps(t) since / is less than one. There will be more energy drawn

internally from the storage unit, but due to the losses, the output power P(t) is smaller than s (t) and the

output energy is less than what is drawn internally. When the storage unit is charging, it will store less

energy than is supplied to it. This is why when Ps(t) is negative, s(t) becomes less than Ps(t) since J
is less than one. The lower Ps(t) effectively accounts for the energy losses and therefore the actually

energy that is stored is less than the energy that was supplied.

Additionally, the system must return the storage unit to its original SOC over some time period,
T, i.e.,



T

E(T) - E() = - (t)dt = 0. (3.9)
0

As mentioned in chapter 2, T is taken to be one day, unless otherwise specified.

Finally, the energy and instantaneous power drawn from the grid are related as follows:

EG,r = f PG(t')dt' -(3.10)

3.2 Linear Programming Formulation

In order to find the minimum lifecycle cost architecture the optimization problem described in the

previous section is framed as a linear programming one. First it is framed for the case of one PEV

charger, one renewable DG, one storage unit, and one connection with the grid. This setup is shown in

Fig. 3-2.

A linear programming problem can be expressed in conical form as:

A-x b
min ( cTx) subject to D-x=g , (3.11)

of t dis vi X !e max

where cx is the cost function to be minimized, c is the cost vector and x is the feasible vector consisting

of the decision variables [102]. In this case the cost function c x is equal to the variable part of the

system lifecycle cost expression developed in Chapter 2. The vectors b, g, 1mni and inax and the matrices A

and D model the constraints of the system, in our case given by (3.1)-(3.10). Based on the system

lifecycle cost model of (2.1), the decision variables in x could simply be PG,,, PDGr, PSr, Esr, and EGr

However, since some of the constraints are on the instantaneous values of PG(, PDG(t), Ps(t) and Es(t),

these must also be represented in x. Hence, x can be expressed as:

PG
PG,r

PDG
PDG,r

x= Ps , (3.12)
PS,r
Aes
ES,r

EG,r

Figure 3-1: Residential PEV charging configuration.



where PG, PDG, and ps are vectors representing the discrete time output power profiles of the grid,
renewable DG and storage unit, respectively; and Aes represents the delta in Es(t), the energy stored in the

storage unit, i.e.:

rPG11
PG2

PG = PG3 , (3.13)

[PGN-

rPDG1
PDG2

PDG= PDG3 (3.14)

tPDGN-

-Psi-
Ps2

Ps= Ps3 , (3.15)

-PSN-

-Aes1
Aes2

es= Aes3 . (3.16)

.AeSN-

These four vectors are of length N, where N equals the time period, T, divided by the desired time step,
At. Hence, x is of length 4N+5. To match the variable part of (2.1) to cTx, c is expressed as:

0

Ti ife,sys
C bp

0

C'DG int(1 + Tlife,sys
( Tlife,DG/

0C'U int 1 +( Tife,s

C it 1 ife,sys

G T

where each zero vector is of length N.

3.2.1 Development of the Constraint A -x b

This inequality will be used to model the constraints given by (3.1)-(3.4). These constraints can



be expressed in such a way that b is a zero vector. Its length is the same as the number of rows in A. In

our formulation A is a matrix with 4N+5 columns and 4N rows. It takes the form:

-A 0 0 0 0-
A 0 A2  0 0 0(

0 0 A3  0 0 '
[0 0 0 A 4  0]

where each submatrix, A1, A2, A3, A 4 has N rows and N+l columns.

A, and A 2 model the constraint on the output power of the grid and the renewable DG,

respectively. At each time instant the output power from the grid must be less than or equal to PG,r, ie.:

PGn G,r 0 for all 1 n N. (3.19)

Similarly, the output power from the renewable DG must be less than or equal to PDG,r at each time

instant, i.e.:

PDGn DG,r 5 0 for all 1 n N. (3.20)

Due to its location, A, is multiplied against the portion of x that contains PG, and PG,,. A 2 is multiplied

against the portion of x that contains PDG, and PDG,r. Hence, A] and A2 can be expressed as:

1 0 0 --- 0 0 -1-

A1 = A2 .0-0(3.21)

0 0 0 -- 0 1 -1.

When formulated this way, the first row of A, multiplied againstpG, and PG,r will yield:

pG1 0 +''' O O - G,r! , 0 (3.22)

where the zero on the right hand side of the inequality comes from b, a zero vector. Repeating this process

for every row will ensure that (3.19) is upheld. The same process is true for A2 multiplied against PDG,

and PDG,r to uphold (3.20).

Development of A3 is a little more involved. The storage unit can either supply power or draw

power. Ps, is determined by the magnitude of the maximum power supplied or magnitude of the

maximum power drawn. In any given situation, it is not clear which magnitude is greater. This means that

Psr is equal to the absolute value of the largest magnitude element of ps. Hence, the structure of A3

depends on the sign (positive or negative) of each element ofps. If the storage unit is charging, then psn is

negative or if the storage unit is discharging, then psn is negative. The power drawn by the charger pc,

where:

-Pci-
Pc2

Pc = Pc3 , (3.23)

[PCNJ

is used to determine if the storage unit is charging or discharging. It is assumed that there will not be

excess generation to supply both the charger and the storage. If the PEV is charging, then the storage unit



will not also be charging, it can only be discharging. When the vehicle is charging, pcn and ps are non-

negative. The power rating, Psr, has to be greater than the value ofpsn:

Psn ~ Ps,r 5 0 if Pcn > 0 . (3.24)

If there is no PEV charging, the storage unit should not be discharging. This relates to the power

flow control. The optimal storage unit size is to supply the PEV with sufficient energy when the grid or

the renewable DG cannot. Therefore, if Pcn is zero or negative, then the storage unit should only be

capable of charging and ps will be negative. The power rating, Psr, has to be greater than the negative of

the value ofps,:

-Psn - Ps,r 0 if Pcn 0 - (3.25)

In order to ensure (3.24) and (3.25) are satisfied, A2 has to incorporate pcn in its development:

al 0 0 --- 0 0 -1

A3 0 a22 0 --- 0 0 - 1 whr -1, Pcn :5 0 (.6A3aN..N where an= , (3.26)
:n:n 1, Pcn > 0

0 0 0 -- 0 aNN ~1
where n is the row of A3. Due to its location, A3 is multiplied against the portion of x that contains ps, and

PS,r-

Lastly, A4 relates to the energy capacity of the storage. There are constraints on the minimum and

maximum SOC for the storage unit. These constraints were established in chapter 2 in order to extend the

life of the storage unit and to increase reliability for contingencies. Under designed operation, the storage

unit should not go below the minimum SOC or above the maximum SOC. The minimum SOC is

determined by multiplying Es, by SOC,,, and the maximum SOC is determined by multiplying Es, by

SOC,. The storage unit will charge and discharge such that the stored energy will remain between the

minimum SOC and the maximum SOC. When the storage unit is charging, Aes will increase. When the

storage unit is discharging, Aes will decrease. The energy capacity of the storage unit, Es,,, will be

determined by the maximum of Aes, the minimum SOC and maximum SOC. The maximum of Aes is:

max(Aes) = (SO Cmax - SO Cmin)Es,r - (3.27)

This is used to determine Esr as follows:

Aesn - (SOCmax - SOCmin)Es,r 5 0 . (3.28)

In this way, Es, is compared to every value in Aes because it is unknown which element of Aes is the

maximum. To implement this, A 4 is:



0 0 --- 0

0 -(SOCmax - SOCmin)1

0 -(SOCmax - SOCmin)]

1 -(SOCmax - SOCmin)

A 4 is multiplied against the portion of x that contains Aes and Es.

3.2.2 Development of the Constraint D -x = g

This equality ensures that the constraints given by (3.5)-(3.10) are met. D is a matrix with 4N+5

columns and 3N+1 rows; g will be a vector whose length is 3N+1, based on the number of rows in D. D

takes the following form:

rD D, Di 0 0-
10 D2  0 0 01

D = 0 0 D3  D4  0], (3.30)

ds 0 0 0 -1.

where each submatrix DI, D2, D3 and D4 has N rows and N+ I columns and the row vector d5 has N+1

columns.

D, is used to model the conservation of energy established by (3.5), i.e.:

PDGn + Psn + PGn = Pcn ,

where n is the row of DI. The vectors PDG, Ps and PG are contained in the vecto

by DI. Therefore, D, has the following form to satisfy (3.31):

1 0 0 0 0

D, 0 1 0 -- 0 0 0

(3.31)

r x and will by multiplied

(3.32)

[0 0 0 -.. 0 1 0]

Since pc is not within x, it has to be represented in g:

-PC
0

g= 0 .(3.33)

-0

Here, the remainder of the vector g is zero as the remaining equality constraints can be satisfied with D2,

D3, D4 and d5 similarly to what was done in the previous section with b as a zero vector.

D2 is used to model (3.6) in order to scale the output power of the renewable DG tofDG(t), i.e.:

PDGn - PDG,r fDGn = 0 , (3.34)

wherefDGn is the nth element offDG , the discrete time version offDG():

(3.29)
A - 0

.0



fDG1fDG2 (fDG fDG3I (3.35)

fDGN-

D2 will have the following form which incorporates thefDG factor:

1 0 0 0 0 -fDG1
0 1 0 0 0 -fDG2 (3.36)D2 = ... .(.6

0 0 0 -- 0 1 -fDGN-

Next, es is calculated using D3 and D4. To calculate the nth element of Aes, both the previous

element of Aes and nth element of ps are required. Inefficiency is incorporated depending on whether the

storage unit is charging or discharging as seen in equation (3.8). Using the same assumption as before,

the storage unit should only be discharging when the vehicle is charging because it is assumed that the

storage unit and the vehicle will not be charging simultaneously. When the vehicle is charging, the

relationship between the delta of the stored energy and the power drawn from the storage unit is:

Aesn - Aesn- 1 + .At = 0 when Pcn > 0, (3.37)

where At is the time step. When the vehicle is not charging, the delta of the stored energy and power

drawn are related as:

esn - es n-1 + psn '- - At = 0 for Pcn 5 0 . (3.38)

D3 is multiplied against the portion of x which contains ps. By doing so, the elements ofps will be

scaled based off ofpc to account for the third term in (3.37) and (3.38):

-dul 0 0 - 0 0 0-f t c
0 d22 0 ... 0 0 0 /??A, pcn O

D30. . where dan = 1 (3.39)
: :At, Pcn > 0

0 0 0 --- 0 dNN 0-

D4 is multiplied with the portion of x that contains es. In doing so, the necessary elements of es

will be summed together according to the first two terms in (3.37) and (3.38):

1 0 0 --- 0 -1 0-

D4 [ 1 0 0 0 (3.40)

.0 0 0 --- 1 1 0-

In D 4, the first row shows that the last element in es is subtracted from the first element in es. In doing so,
(3.9) is satisfied because it ensures that the difference between the final SOC and the initial SOC is

attributed to the storage power and not from a mismatch in energy balance.

Lastly, EG,r is simply a scaled summation of all of the elements in PG based on (3.10):

(PG1 + PG2 + -- + PGN) - At - EG,r = - (3.41)



This is implemented by the row vector d5 . Due to its location, d5 is multiplied with the portion of x that

contains PG. d is simply given by the scalar coefficient for all but the last term in (3.41)

d5 = [At ... At 0]. (3.42)

The EG,r term in (3.41) is accounted for directly in D where the last element of the matrix is a negative

one.

3.2.3 Development of the Constraint 1min < X Imax

The last part of developing the linear programming framework is the maximum and minimum

constraints on the decision variables as defined by (3.1)-(3.4). The 1,ij vector represents the minimum

constraints and the Imax vector represents the minimum constraints. These constraints apply to the vectors,

PDG, Ps, PG and es, as well as the scalar ratings, PDG,r, PSr, PGr, Es , and Es,. The two vectors are quite

simply:

-PG,max(n) -

PDG,min

1min = PS,min , (3.43)
SOCminesmin

. EG,min

~ PG,max(p) '

PDG,max

Imax = PS,max (3.44)
SOCmaxes,max

- EG,max -

where each vector, PG,max(n), PDG,min, Psmin, es min, PG,max(p), PDG,max, Ps max, and es,max, is of length N+1. The

value of each element within each vector is equal to corresponding minimum or maximum constraint

listed in Table III. For example:

PG,max(n)

PG,max(n)

PG,max(n) = PG,max(n) . (3.45)

-PG,max(n)-

Minimum constraints that are not listed in Table III are taken to be zero. Maximum constraints not listed

in Table III are taken to be large enough in order to not limit the design space with respect to that

constraint.

This linear programming formulation is implemented in MATLAB.

3.3 Search based Formulation

To validate the results of the linear programming based optimization, and to investigate its design

decisions, a search based optimization technique is also developed and implemented in MATLAB. In this



approach the renewable DG and storage unit are sized for different design options. That is to say, one

design may be generated with a very large renewable DG system and one design may be generated with a

very small renewable DG system. The alternate designs are compared in terms of their system lifecycle

cost. To keep the search manageable the search is performed across only a limited set of feasible designs.

Hence, the success of this approach requires ensuring that the feasible designs considered include the

optimal design. For the cases consider in chapter 4, a feasible design must include storage, however,

designs with and without renewable DG are feasible.

The sizing algorithm depends upon whether or not the renewable DG is present. In architectures

where a renewable distributed generator is present, the algorithm takes an iterative approach. It starts

with PDG,r equal to zero, computes the change in the SOC of the storage unit over the time period T using

(3.9), and keeps increasing the size of the renewable DG until the change in the state-of-charge is zero.

For this SOC calculation, Ps(t) must be known and is computed using (3.5), where PDG(t) is given by (3.6)

and PG(0) is calculated from:

PG(t) =mi (PG,r, max (-PG,max(n) PC( PDG (t))) (3.46)

In developing (3.46) it is assumed that the power flow in the system is controlled in such a way that the

PEV charger first takes power from the renewable DG. When the renewable DG cannot meet the full

power needs of the charger, the remaining power is first drawn from the grid. Only when the grid power

hits its limit is power drawn from the storage unit. This power flow control assumption limits the

architectures that are searched. However, since this control methodology minimizes the amount of

storage needed, this approach will search through the space of potential least cost architectures that

contain renewable DG. This sizing algorithm is parameterized in terms of PG,,, and used to generate

multiple designs by sweeping across different values Of PG,r in the range of 0 through PG,max(p)-

In architectures where no renewable DG is present, a slightly different approach is followed.

This is necessary because now instead of the renewable DG, the grid will have to charge the storage unit.

It will do so when the electric vehicle is not charging. To incorporate this change in the control

methodology, the energy that has to be supplied to the charger from the storage unit when the electric

vehicle is charging must be calculated by:

T

Es2c = fPs2c(t)dt (3.47)

where Ps2c(t) is the power supplied to the charger from the storage unit according to:

( 0, Pc (t) 5 0
Ps2c(t) = Pc(t) - PG,r> 1 C(t) > 0 8

The energy taken from the storage unit must be returned to it from the grid when the electric vehicle is not

charging. Hence, the output power flowing from the storage unit at all times can be expressed as:



e 1 S2C PCW:0-- , Pc(t) 0Ps(t) = ,off (3.49)

c W) - PG,r' PC ( > 0

Here it is assumed that the system controller recharges the battery evenly across the time period when the

PEV is not charging, Tc,off. Now that the output power profile of the storage unit is known, the

instantaneous power drawn from the grid is:

PG(t) = min (PG,r, max (-PG,max(n), PC (t)- PS(t)) . (3.50)

For either case (with or without DG), once PG(t), PDG(t) and Ps(t) that satisfy the state-of-charge

requirement have been determined, the sizing algorithm proceeds to calculate the remaining three system

ratings needed for system lifecycle cost calculation. Of these EG,r is calculated using (3.10); and the other

two are calculated using:

Ps,r = max(IPs(t)|) (3.51)

max(AE,(t)) - min(AE,(t))
ES,r t t (3.52)

SOCmax - SOCmin

where maxto and mint() return the maximum and minimum value of their argument over 0 5 t T, and

AEs(t) is given by:
t

AEs(t) = Es(t) - Es(O) = - fs(t)dt (3.53)

Once the system has been designed the algorithm also checks to make sure that the following

design constraints are satisfied:

PDG,r PDG,max (3.54)

PS,r PS,max (3.55)

Es,r Es,max . (3.56)

If these are not satisfied the design is discarded. This search based formulation is represented graphically

in Fig. 3-2.
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Figure 3-2: Search based process for sizing a single design given EV charging requirements and other
system constraints.



Chapter 4

Optimal Design Results and Discussion for a Single Charger

The optimization methodology developed in the previous chapter is applied to the design of a

residential PEV charging case. The two formulations of the optimization methodology developed in

Chapter 3 are used and their results compared. The analysis uses the cost parameters developed in

Chapter 2. It also uses solar irradiation and wind speed profile data for various locations in the US.

4.1 Residential Charging Case Study Overview

The first case analyzed using the optimization methodology is that of a residential charging

system. It is assumed that an electric vehicle with a 30 kWh battery has to be fully recharged every

evening from 20% state-of-charge. It is also assumed that the owner desires to charge the vehicle within 4

hours using a 6 kW Level 2 charger starting at 7 pm each day. However, the neighborhood in which the

house is located is serviced by a 25 kVA transformer and the typical load between 7 pm and 11 pm of all

the houses serviced by this transformer is 20 kW, excluding the charging needs of the EV. Hence, the

maximum power that can be drawn from the grid, PG,max(p), without overloading the transformer is 5 kW.

Clearly the system requirements cannot be met with a grid-only charging solution, as the charging

rate (6 kW) exceeds the maximum allowable power draw from the grid. Hence, a storage unit and/or

renewable DG will be needed. The storage unit will be necessary with solar PV systems as the solar panel

cannot produce any power in the late evening hours when the vehicle is to be charged. In this thesis,

designs with a solar PV distributed generator and a lead-acid electrochemical storage unit (battery system)

are considered for two locations in the US: Eugene, OR and Los Angeles, CA. Then, designs with a solar

PV distributed generator and a Li-ion electrochemical storage unit are compared with the designs using a

lead-acid electrochemical storage unit. Finally, designs with a small wind turbine system and a lead-acid

electrochemical storage unit are considered for two locations as well: Los Angeles, CA and Boulder, CO.

For each location, an optimal design is determined based on a 20-year system lifecycle cost using

the linear programming formulation of Chapter 3. The parameters and design constraints given in Table

2-1 and Table 3-1 are used and the round-trip efficiency of the storage unit, r, is assumed to be 85%. The

results are validated using the search-based optimization approach. The linear programming approach is

an order of magnitude faster than the search-based one (3.88 s versus 41.14 s for the residential case).

However, it requires large memory resources to store matrices A and D. For the residential charging case,

it takes four times more memory to run the linear programming tool than it does to run the search-based

one (~800 MB versus -200 MB).



4.2 Dependence on Solar Irradiation Profile

An important parameter in the optimization methodology is the normalized output power profile

of the renewable DG, fx. Figure 4-2 shows the variation in fDG over a day for high (9 5*th percentile),

median (50* percentile) and low (5 h percentile) output power profile cases using 5-minute interval

irradiation data for Eugene, OR from 1995-2011 [103]. The 9 5 h, 50*, and 5*11 percentile fx represent

profiles that are above 95%, 50% and 5% of the data at a particular time of the day, respectively. The 95*

percentile fx has a flat top because typical solar module name-plate output power ratings are based on

1000 W/m2 solar irradiation, while the 95t percentile irradiation for Eugene goes above 1000 W/m2

around 12 noon.

When the 95* percentilefw is used in the design of the charging system, the lowest lifecycle cost

solution is one that includes a solar PV DG. The ratings of the individual components for this optimal

design are given in Table 4-1. The power flow and stored energy as a function of time for this optimal

design are shown in Fig. 4-2 (a). As expected the stored energy returns to its initial value after 24 hours.

Note that the optimal design uses the maximum available power from the grid when the vehicle is

charging. This is expected since without a high demand charge, the grid is the lowest cost alternative for

peak power. However, notice that the battery is charged using the DG instead of the grid. This is because

the cost of solar PV is lower than the cost of energy from the grid over the 20-year system life.

When the medianfx is used in the design of the system, the lowest lifecycle cost solution is one

that does not include a solar PV generator. Instead, the system relies on the grid to charge the battery for

use when the vehicle is charging. This is because the lower normalized energy under the median fx;

profile necessitates the need for a DG with roughly twice the rating compared to the DG needed for the

95t' percentile case. As a result the cost of the DG is more than the cost of energy from the grid over the

system life. The power flow and stored energy for this optimal design are shown in Fig. 4-2(b).

------- 95th Percentile - Median - - - 5th Percentile
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0.8
0.6
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Figure 4-1: Normalized output power profile for solar PV generation at different levels of solar

irradiation. Irradiation data is for Eugene, OR from 1995 to 2011 [103].

56



Table 4-1: Optimal design ratings and lifecycle costs for designs with solar PV systems.

fDG PDG,r Ps,r PG,r Es,r EG,r C
(percentile) (kW) (kW) (kW) (kWh) (kWh) ($)

95t 0.578 1 5 21.64 20 45,631
50t 0 1 5 21.69 24.1 47,739

- Charger
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Figure 4-2: Power and energy profile for the optimal design of a residential EV charger with integrated
solar PV system and lead-acid battery, assuming (a) 9 5 h percentile and (b) median (50* percentile)

normalized output power profiles of Fig. 4-1.



Clearly, whether or not the DG based design is optimal depends on the solar irradiance profile.

Fig. 4-3 presents the system lifecycle cost of the optimal design for differentfDG profiles, ranging from 5th

percentile to 95* percentile using Eugene, OR data. Up to the 50', percentile the optimal design does not

utilize a solar PV. However, once the solar irradiance is at or above the 53 rd percentile level,

corresponding to a noon-time irradiance of about 720 W/m 2, the design with solar PV is optimal. The

median irradiance of Eugene, OR is just below this threshold. Fig. 4-3 also displays that the linear

programming and search based approaches both identify the same optimal design.

4.3 Optimization Across Non-identical Days

The analysis so far has implicitly assumed that all days have identical solar irradiation profiles. In

order to investigate optimal designs for systems operating over dissimilar irradiance days, an fDG profile

was created that models the variation in irradiance over a full year using 6 day-length irradiance profiles,

where each day's irradiance represents the median values at each time point for the days of two

consecutive months. This 6-day fDG profile is shown for Eugene, OR and Los Angeles, CA in Fig. 4-4.

The Los AngelesfDG profile is based on 1-minute interval irradiation data from 2010-2011 [104]. Notice

that Eugene has lower average irradiation than Los Angeles.

When the fDG profiles of Fig. 4-4 are used in the design of the charging system with T set to 6

days, the optimal design for Eugene does not have a solar PV generation source, while the optimal design

- Linear Programming Approach + Search-Based Approach
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Figure 4-3: (a) System lifecycle cost and (b) components costs as the solar PV system's normalized output
power profile is varied from the 5b percentile to the 95h percentile using Eugene, OR data.
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Figure 4-4: Two-month median normalized output power profiles across a year for (a) Eugene, OR and

(b) Los Angeles, CA [103,104].

for Los Angeles does. The power flow and stored energy waveforms for Eugene and Los Angeles optimal

designs are shown in Fig. 4-5 a) and (b), respectively. As before, the lowest cost design uses the

maximum available power from the grid when the vehicle is charging. Notice also that the optimal design

returns the stored energy to its initial level after each day, even though the imposed constraint is over 6

days. This is because the battery cost is a very large fraction of the total lifecycle cost, and by bringing

the battery SOC to its original position after each 24-hour period, the size of the battery can be

minimized.

4.4 Exploration of Li-ion Electrochemical Batteries

As can be seen from Fig. 4-3, the cost of storage is nearly 50% of the system lifecycle cost. One

reason this cost is so large is that the lead-acid batteries have a life of only six years. Hence in the 20-

year life of the system, four lead-acid batteries have to be purchased. Because lead-acid batteries are a

very mature technology, major advancements in increasing their life or reducing their cost seems unlikely.

On the other hand, Li-ion batteries are a relatively new technology with longer life than lead-acid units

and with the potential for significant cost reductions over the next decade. Assuming 12-year life Li-ion

batteries, the price, C"s, at which Li-ion battery technology becomes cost competitive with lead-acid

batteries is investigated. It is further examined whether or not this price for Li-ion is reasonable to expect

over the next decade.
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Figure 4-5: Power and energy profiles for the optimal design of a residential PEV charger with integrated
solar PV generation and lead-acid storage, assuming the normalized output power profile of (a) Eugene,

OR and (b) Los Angeles, CA as depicted in Fig.4-4.

When the median solar irradiation profile for Los Angeles, CA is used to find the optimal design

for a PEV charging system with a solar PV generation source and a lead-acid battery, the resulting system

lifecycle cost is $46,793 of which $20,330 is the storage cost. The lifecycle cost of systems with Li-ion

storage technology depends on the specific cost, C''s (in $/kWh), of Li-ion batteries. The system

lifecycle costs for designs with Li-ion storage technology are plotted as a function of Li-ion specific cost

in Fig. 4-6. Also plotted for reference in Fig. 4-6 is the lifecycle cost of the system with a lead-acid
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Figure 4-6: System lifecycle cost as a function of specific cost of Li-ion batteries. The triangle indicates
the specific cost below which Li-ion storage technology is cost competitive with lead-acid storage

technology, when it is assumed that the Li-Ion battery achieves a 12-year life while the lead-acid battery
has a 6-year life.

battery. The breakeven point between Li-ion and lead-acid is marked by a triangle. When the specific cost

of Li-ion storage drops below $455/kWh, Li-ion storage becomes more attractive than lead-acid storage.

The current cost of Li-ion batteries as used in this thesis is $800/kWh. However, some industry analysts

expect this cost to reduce by 60% over the next decade [76]. Hence, these are battery only prices and do

not include other costs associated with a complete storage unit. Given these costs, it is quite feasible for

Li-ion storage technology to become cost competitive with lead-acid storage technology for PEV

charging applications over the next decade. However, with the current cost of Li-ion technology, designs

with Li-ion batteries result in system lifecycle costs that are almost 33% higher than designs with lead-

acid batteries. Therefore, all the remaining designs explored in this thesis use lead-acid battery storage.

4.5 Dependence on Wind Speed Profile

Another option for distributed renewable generation is a wind turbine. This option may offer a

more cost effective solution for charging systems at locations that have reasonable wind, since the wind

blows even at night when the PEV is to be charged and could reduce the required battery size. The output

power of a wind turbine is a highly nonlinear function of wind speed. A normalized output power versus

wind speed model for wind turbines is developed using the averaged output power data of five wind

turbines from three manufacturers [35], [62], [63]. This normalized output power versus wind speed is

shown in Fig. 4-7 and given by the following polynomial expression:

fDG,windO(w) = -0.000000136v6 + 0.000015661vw - 0.000513088v4

+ 0.005882602 vw3 - 0.013104647 v3, - 0.015410784vw (457)
+ 0.058081524

for 2.5 m/s v, 20 m/s
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Figure 4-7: Normalized output power versus to wind speed of wind turbines used in this thesis.

As in the case of solar PV, fDG,wnd was clipped at its maximum value of 1, even if (4.1) gave a higher

value. Wind turbines have a cut-in wind speed below which they produce no power. Wind turbines also

have a cut-out wind speed beyond which they produce no power in order to protect themselves from

damage. In this model, the cut-in wind speed is 2.5 meters per second (m/s) and the cut-out wind speed is

20 m/s. Using this model, the output power from wind turbines installed in Los Angeles, CA and in

Boulder, CO is calculated and plotted in Fig. 4-8 using actual wind speed data for 2010-2011 [104].

Figure 4-8 shows the high (9 5 h percentile), median (5 0 h percentile), and low (5* percentile) output power

profiles for these two locations.

As can be seen from Fig. 4-8(a), in Los Angeles, even the 95* percentile wind profile utilizes less
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Figure 4-8: Normalized output power profile for wind turbine generation at different percentiles of wind

speed for (a) Los Angeles, CA and (b) Boulder, CO [104].
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than 15% of the rated output power capability of the wind turbine. This is extremely poor utilization of

the wind turbine and leads to optimal designs that do not use a wind turbine. Hence solar PV is a better

option than small wind turbines for Los Angeles, CA.

In the case of Boulder, CO, the median output power profile is also quite poor and not favorable

for a wind turbine in an optimal PEV charger design. On the other hand, the 95* percentile profile favors

a wind turbine. These results are summarized in Table 4-2. The power flow for the 95 h percentile case is

shown in Fig. 4-9. As seen in Fig. 4-9, the output of the wind turbine is fairly flat across the day. This

means that the storage unit is slowly charged during the day when the PEV is not charging, and when the

PEV is charging, the wind turbine directly supplies it part of its required power. However, it is not

reasonable to design the PEV charging system based on the 95*h percentile output. Also, the wind data

used in this analysis is for 50 meters height which may be on the high side for a residential application.

Therefore, while wind can be an attractive resource as it can be available at night (as well as

when solar is not an option) and therefore reduce the need for storage, the available wind technology is

Table 4-2: Ratings and lifecycle costs for optimal PEV charger
renewable generation option.

designs with wind turbine as the

fDG PDG,r PS,r PG,r Es,r EG,r C
(percentile) (kW) (kW) (kW) (kWh) (kWh) ($)

95t 0.200 0.840 5 17.62 20 44,065
50t 0 1 5 21.69 24.1 47,739
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Figure 4-9: Power and energy profile for the optimal design of a residential PEV charger with integrated
wind turbine and lead-acid battery, assuming the 95* percentile normalized output power profile for

Boulder, CO as shown in Fig. 4-8(b).
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not suitable for capturing energy from low wind speeds. It is possible that if the cut-in wind speed was

lower and if the wind turbine could reach its rated turbine output power at lower wind speeds, then the

utilization factor of wind turbines would be much greater. However, with the available technology, wind

turbines are not cost effective for use in PEV chargers at least in locations with wind speeds similar to

Los Angeles, CA and Boulder, CO.



Chapter 5

Multiple Charger Optimization Methodology and Analysis

This chapter will present modifications to the linear programming formulation in order to model

the multiple charger case. Here only a two PEV charger case is formulated. However, the steps taken to

expand the linear programming formulation to model systems with two PEV chargers can be repeated to

expand the formulation to model more than two PEV chargers. Three configurations involving a

combination of centralized or distributed generation and storage will be implemented. The implemented

configurations are applied to a two PEV charger public charging case using solar irradiation data for Los

Angeles, CA.

5.1 Modifications for the Multiple Charger Case

Table 5-1 defines each of the vectors that will be used in the two charger case. Because two PEV

chargers are used, there will be two charging profiles for the PEVs: Pc(t) and Pc2(t). The grid connection

Table 5-1: Vectors used in the formulation of the two charger case.

Vector Description

Pc] Discrete time power profile of charger 1

Pc2 Discrete time power profile of charger 2

PG] Discrete time power drawn from the grid by charger 1

PG2 Discrete time power drawn from the grid by charger 2

PG Discrete time total power drawn from the grid

Discrete time output power profile of DG 1 or the power drawn from the centralized DG
PDG1 by charger 1 depending on the configuration

Discrete time output power profile of DG 2 or the power drawn from the centralized DG
PDG2 by charger 2 depending on the configuration

PDG Discrete time output power profile from the centralized DG
Discrete time output power profile of storage unit 1 or the power drawn from the

Psi centralized storage unit by charger 1 depending on the configuration

Discrete time output power profile of storage unit 2 or the power drawn from the
Ps2 centralized storage unit by charger 2 depending on the configuration

Ps Discrete time output power profile from the centralized storage unit
Aes, Discrete time change in energy of storage unit 1
Aes2  Discrete time change in energy of storage unit 2
Aes Discrete time change in energy of the centralized storage unit



point is shared between the two chargers. There is only one grid constraint based on the sum of power

that is drawn from the grid by both chargers but there is no constraint on how the power from the grid is

divided between the two chargers. Here, the total grid power, PG(t), will also be represented by the power

from the grid that goes into each charger, PGJAt) and PG2(t) where:

PG1(t) + PG2 (t) = PG (t). (5.1)

Each charger will also be powered by a DG and a storage unit and the associated power balance

for each one is:

PG1(t) + PDG1(t) + PC1 (t) = PC1 (t) . (5.2)

PG2 (t) + PDG2(t) + PS2 (t) = PC2(t) (5.3)
where the discrete time vector representations of each power profile listed is defined in Table 5-1. As

implemented here, a distributed DG can only supply power to the charger to which it is connected or to a

centralized storage unit. A distributed storage unit can only supply power to the charger to which it is

connected.

b will still be a zero vector in each configuration and its length is still determined by the number

of rows in A. g is the same between each configuration:

Pc1
Pc2

g= 0 (5.4)

-0-
where the length is still dependent on the number of rows in D. The remaining changes in x, c, A, and D

will depend on the configuration.

5.1.1 Configuration A: Distributed DG and Distributed Storage

In configuration A shown in Fig. 5-1, each PEV charger has its own DG and own storage unit.

The power from the renewable DG that is connected to one charger does not supply power to the other

DGI

Grid ---- ChageriPEV

Storage Unitj

DG,

StorageUnt

Figure 5-1: Configuration A for a two charger system consists of distributed renewable DG and
distributed storage units.



charger. The same is true for the storage unit. For this system, xa is:

Xa =

PG1

G1,r
PG2

PG2,r

PG

G,r

P2DG

P2s

where the subscript of x indicates the configuration and P2DG, P2s and Ae 2s are represented by:

r PDG1
I DG1,r

P2DG ~ PDG2,

LPDG2,r .

[ Psi1

PS2~

.PS2,r

rAes5 _1
Ie Esir

Aezs = AeS2

LEs 2,r .

The corresponding c, is:

Ca =

0
0
0
0
0

C- Tlife,sysTbp

CZDG

CZS

Tlife,sys

CG' T

where each zero vector is of length N and C2DG and c2s are the cost for two distributed renewable DG and

two distributed storage units, respectively:

0

C2DG = C'DG it (1 + Tlife,DG

C'DG t +life,

(5.10)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)



0

C's - int (1 + Tife,sys

0

C'S int (1 + T )ie,s
cs= Csmt(0+ ,ifss (5.11)

0

Cs' int (1 + Tiife,ss

0

Cs' int (1 + Tire,ss

where each zero vector is of length N.

Due to the new xa, Aa is in the following form:

A1  0 0 0 0 0 0 0 0 0-
0 A1  0 0 0 0 0 0 0 0
0 0 A1  0 0 0 0 0 0 0
0 0 0 A2  0 0 0 0 0 0

Aa 0 0 0 0 A 2  0 0 0 0 0. (5.12)
0 0 0 0 0 A3,1  0 0 0 0
0 0 0 0 0 0 A3,2  0 0 0
0 0 0 0 0 0 0 A4  0 0
0 0 0 0 0 0 0 0 A4  0.

The ratings are determined using the same setup as before where A, corresponds to the power rating of

the grid, A2 corresponds to the power rating of the renewable DG, A3 corresponds to the power rating of

the storage unit, and A4 corresponds to the energy capacity rating of the storage unit. The only difference

can be seen in A3 ,1 and A3,2 where the second number in the subscript indicates which discrete time vector

of the charging profile, Pci or pc2, is used to develop the matrix.

Da is also modified to incorporate (5.1)-(5.3) in the new configuration and the additional

components:

D, 0 0 Di 0 D, 0 0 0 0
0 D, 0 0 Di 0 Di 0 0 0

D, D, -D, 0 0 0 0 0 0 0

Da 0 0 0 D2,1  0 0 0 0 0 0
0 0 0 0 D2,2  0 0 0 00 (5.13)
0 0 0 0 0 D3,1  0 D4  0 0
0 0 0 0 0 0 D3,2  0 D4 0
0 0 d5  0 0 0 0 0 0 -1

The first two rows correspond to (5.2) and (5.3). The third row matches (5.1). D2,1 and D2,2 are determined

by fDGl, and fDG,2, the discrete time vectors for the output power profiles of DG1 and DG 2. D3,1 and D3 ,2
scale the output power of storage unit 1 and storage unit 2 based on pci and Pc2. D3,1 and D3 ,2 are each



paired with D4 to complete calculating the change in energy stored in each storage unit.

Finally, the constraints are established by:

-PG,ma x(n)

-PG,max(n)

-PG,max(n)

PDG,min

lmna = PDG,min (5.14)

Ps,min
SOCmines,min

SOCmineS,min

EG,min

PC,max(p)

PC,max(p)

PG,max(p)

PDG,max

lmaxa PDG,max (5.15)
Ps,max

PS,max
SOCmaxes,max

SOCmaxes,max

EG,max

As can be seen, there is almost a one to one matching between the minimum and maximum constraints

based on the component listed in xa except for the first two vectors in Imax,a which have a charger

constraint on the power drawn from the grid by each charger. This is to prevent the grid from charging

both the PEV and the storage unit simultaneously. If this were to happen, it would violate the assumptions

made earlier in the formulation with respect to the output power of the storage unit. This constraint was

not necessary in the single charger case because the limit on the grid was lower than the power drawn by

the charger.

5.1.2 Configuration B: Distributed DG and Centralized Storage

The difference between configuration B and configuration A is that the storage is now

centralized. The centralized storage can be charged from either renewable DG. Configuration B is shown

graphically in Fig. 5-2. Similar to the power from the grid, the power from the storage is divided between

the two chargers:

Ps 1 (t) + Ps2 (t) = PS(t) . (5.16)

To accommodate the change in the configuration, there is an addition of a storage unit power vector to

represent the output power of the centralized storage unit and a deletion of a storage unit energy vector

because there is only one storage unit and only one change in energy capacity of that storage unit:



I Storage Unit I
Figure 5-2: Configuration B for a two charger system consists of distributed renewable DG and a

centralized storage unit.

PG1

PG1,r

PG2

PG2,r

PG

Xb= G,r (5.17)
P2DG
P2s

Ps
Aes
EG,r

The corresponding cb is:

0
0
0
0
0

Tlife,sys

Tbp

C2DG
0
0

Cb= 0 (5.18)
0
0

C's int 1 + Tife,sys

0

Cs' int 1 + Tife,sys

0

T1 if e,sys
CG T



where each zero vector is of length N.

Due to the addition of a storage unit output power vector and the removal of an energy capacity

vector in xb, Ab takes on a slightly different form:

A1  0 0 0
0 A1  0 0
0 0 A1  0
0 0 0 A2

Ab= 0 0 0 0 A
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

where the difference is in the replacement of A 4 in

0
0
0
0
2
0
0
0
0

the

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A 3 ,1 0 0 0
0 A3,2  0 0
0 0 A3,3 0
0 0 0 A4

second to last row with

(5.19)

A3,3 . This new submatrix

will determine the rating of the centralized storage. The centralized storage is considered to discharge if

either of the chargers are charging.

D is also slightly modified due to (5.16) and the centralized energy capacity:

D, 0 0 D1  0 Di 0 0 0 0
0 Di 0 0 D1  0 Di 0 0 0

Di D, -D, 0 0 0 0 0 0 0

D 0 0 0 0 0 D, D, -Di 0 0 (5.20)
b 0 0 D2,1  0 0 0 0 0 0
0 0 0 0 D2,2  0 0 0 0 0
0 0 0 0 0 0 0 D3  D4 0
0 0 d5  0 0 0 0 0 0 -1

where (5.16) is mapped to the fourth row and there is only one row that calculates the change in the

energy stored in the storage unit.

The constraint vectors for configuration B are almost the same as the vectors for configuration A

except for the ninth subvector which relates to the storage unit power:

-PG,max(n)

-PG,ma x(n)

-PG,max(n)

PDG,min

PDG,min
'min,b = Ps,min (5.21)

PS,min

Ps,min
SOCmines,min

EG,min



Pc,ma x(p)
Pc,max(p)

PG,max(p)

PDG,max
1maxb = PDG,max (5.22)

Ps,max

Ps,max

PS,max
SOCmaxes,max

. EG,max .

5.1.3 Configuration C: Centralized DG and Distributed Storage

In this last configuration, the storage is distributed as it was in configuration A but now the

renewable DG is distributed. Configuration C is shown graphically in Fig. 5-3. Similar to the power from

the grid, the power from the renewable DG is divided between the two chargers:

PDG1(t) + PDG2(t = PDG(t). (5.23)

To accommodate the change in configuration C from configuration A, there is an addition of a renewable

DG power vector to represent the output power of the centralized renewable DG:

PG1

PG1,r

PG2

PG2,r

PG

Xc PG,r (5.24)
P2DG
PDG

P2s
Ae2s
EGr

cc will also see the addition of one more zero vector and term:

DG

Grid ' Charger ----- >cet e r PEwV

Storage Uniti

Storage Un5ia7

Figure 5-3: Configuration C for a two charger system consists of a centralized renewable DG distributed
storage units.



cc =

0
0
0
0
0

Tlife,sys
G Tbp

C2DG
0

CDG mt 1+ Tlife,DG )
C2 S

STlife,sys
T

(5.25)

where each zero vector is of length N.

Due to the addition of a renewable output power vector in xe and (5.23), Ac gains a row and a

column as compared to A,:

A 1

0
0
0
0
0
0
0
0
0

De gains a row and a column:

D, 0
0 D,

D, D,
0 0
0 0
0 0
0 0

-0 0

0
0

-D
0
0
0
0

ds5

0
0
0

-Di
D2
0
0
0

0
0
0
0
0
0

A 3,1
0
0
0

D
0
0
0
0

D3,1
0
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

A 3,2  0
0 A4
0 0

0
D
0
0
0
0

D3,2
0

0 0-
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

A 4  0.

0 0-
0 0
0 0
0 0
0 0
0 0

D4 0
0 -1.

(5.26)

(5.27)

where the fourth row incorporates (5.23) and the fifth row is the only row that calculates the output power

rating of the renewable DG.

The last part of configuration C is the constraint vectors:



-PG,max(n)

-PG,ma x(n)

~PG,max(n)

PDG,min

PDG,min

imin,c = PDG,min (5.28)
PS,min

PS,min
S0cmin es,min
S0cmin es,min

EG,min

PC,max(p)

PC,max(p)

PG,max(p)

PDG,max

PDG,max

imax,c = PDG,max (5.29)
PS,max

Ps,max
SOCmax es,max
SOCmax es,max

EG,max

This linear programming formulation for each configuration is implemented in MATLAB.

5.2 Optimal Design Results and Discussion for Multiple Chargers

It is expected that many PEV owners will charge their vehicles at home but there will also be

need for public PEV charging infrastructure for use when traveling or needing a quicker recharge than

available at home. Public chargers may be installed in office parking lots, outside coffee shops and

shopping centers or at traditional gas stations. The case study examined in this thesis is that of a public

charging station outside a restaurant. This restaurant decides to install two 7.2 kW Level 2 PEV chargers

in its parking lot. It expects heavy usage during lunch and dinner hours when customers come to eat. The

average time a customer spends at the restaurant is approximately 30 minutes during lunch time and one

hour during dinner time. At any given time, two PEVs can be charged and the restaurant expects roughly

ten PEVs to be charged during a day - 5 during lunch and 5 at dinner. The expected drawn power profiles

for the two chargers are shown in Fig. 5-4. The utility uses a separate meter for the PEV chargers. If the

chargers draw more than 10 kW, the utility will charge the restaurant a demand charge for the peak power

drawn during the month.

The restaurant is trying to decide between four possible configurations for the charging system. In

each configuration, there is only one grid connection point through the separate meter from the utility.

The first configuration is a fully distributed one. It has two individual solar PV generators above two

parking spots (which provide shade for two cars) and two storage units. One solar PV generator and
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Figure 5-4: Expected average daily charge profiles for (a) charger 1 and (b) charger 2, for the public

charging case.

battery is associated with each charger and only supply power to one PEV. The second configuration is

similar except it has only one shared storage unit. The third configuration combines the two solar PV

systems into a single renewable source but has separate storage units for each charger. The last

configuration has one solar PV source and one shared storage unit. In all four configurations, there is only

one connection with the grid and this is through the separate meter installed by the utility.

The first three configurations are the same as the three configurations developed in Section 5.1.

The last configuration will use the residential configuration with a charger profile that is the sum of the

two public charging profiles. Therefore, the three configurations are considered with PG,max(p) equal to 10

kW. The monthly connection charge is $15 and there is no demand charge applied to the power drawn

from the grid. It will be assumed that the restaurant has the same solar resource as Los Angeles, CA and

therefore the median solar irradiation profile for Los Angeles, CA is used for this analysis.

5.2.1 Configuration A

This configuration has distributed solar PV generation and distributed storage units. Because the

solar PV and storage unit are only meant to charge the PEV charger to which they are connected, their

size depends on the power drawn by their respective charger. In this example, charger 2 has a longer

period of power demand than charger 1 during lunch hours (i.e., at a time when the solar PV is generating

power). As a result, the solar PV source and storage unit connected to charger 2 are larger than those

connected to charger 1. This result can be explained by the fact that it is more cost effective over the life

of the system to install a larger solar PV source to meet the needs of the PEV charger instead of

purchasing energy from the grid. However, to prevent oversizing the storage unit, there is a limit to how



large this solar PV system can be. Therefore, some power is still drawn from the grid during lunchtime.

Fig. 5-5 shows the power and energy profiles of each charger, as well as the aggregate power profiles of

the optimal design. The ratings and costs of each component of the optimal design are given in Table 5-2
and Table 5-3, respectively.

5.2.2 Configuration B

This configuration has distributed solar PV generation and a centralized storage unit. The advantage

of this configuration is that surplus energy from one solar PV generator can be stored in the central

storage unit and later used by either charger. Another advantage is a lower fixed cost for one storage unit

than the fixed costs of two storage units. Table 5-3 shows that the cost of the storage unit for this

configuration is less than the sum of the storage unit costs for configuration A. This can be attributed, in

part, to the lower total energy capacity rating of the single storage unit than the sum of the energy

capacity of the separate storage units. As seen in Table 5-2, the solar PV sources are equal in rating

meaning that the parking lot shading canopies could have the same design (e.g., same area, same module

layout, etc.). Fig. 5-6 shows the power profiles of each charger, as well as the aggregate power and

energy profiles of the optimal design. The ratings and costs of each component of the optimal design are

given in Table 5-2 and Table 5-3, respectively.

5.2.3 Configuration C

This next configuration has a centralized solar PV source but distributed storage units. In this

configuration, the solar PV source can supply power to both of the chargers simultaneously. It can also

charge either storage unit. As seen in Table 5-2, the two storage units have similar energy storage

capacity. However, the cost of the solar PV source in this configuration is greater than it was in the

previous two configurations due to a higher power rating. The total system lifecycle cost is slightly lower

than that of configuration A but greater than that of configuration B. Fig. 5-7 shows the power profiles of

each charger, as well as the aggregate power and energy profiles of the optimal design. The ratings and

costs of each component of the optimal design are given in Table 5-2 and Table 5-3, respectively.

5.2.4 Configuration D

The last configuration has one solar PV source and one storage unit which can supply power to both

chargers simultaneously. The ratings and costs of each component of the optimal design are given in

Table 5-2 and Table 5-3, respectively. As seen in Table 5-3, this configuration yields the lowest cost

solution out of all four configurations. However, it is interesting to note that the system lifecycle costs for

configurations with separate storage units are similar and the system lifecycle costs for configurations

with a single storage unit are similar. The restaurant should choose a design that has a single storage unit



Table 5-2: Optimal design ratings for public charging designs with solar PV system and lead-acid battery.

PDGi,r PDG2,r PDG,r PS1,r PS2,r PS,r PG,r Esi,r Es2,r Es,r EG,r

Option (kW) (kW) (kW) (kW) (kW) (kW) (kW) (kWh) (kWh) (kWh) (kWh)

A 0.667 1.194 N/A 2.8 2.461 N/A 10 7.478 11.124 N/A 45.183

B 0.645 0.644 N/A N/A N/A 4.4 10 N/A N/A 17.354 47.101

C N/A N/A 2.059 2.8 2.462 N/A 10 9.163 9.439 N/A 44.067

D N/A N/A 1.92 N/A N/A 4.4 10 N/A N/A 17.347 44.336

Table 5-3: Optimal component costs for public charging designs with solar PV system and lead-acid
battery.

System
Option DG1  DG2  DG Storage1  Storage2  Storage Grid Lifecycle

A $3,135 $5,454 N/A $9,261 $12,199 N/A $49,777 $79,826
B $3,039 $3,035 N/A N/A N/A $19,232 $51,738 $77,044

C N/A N/A $9,259 $10,743 $10,715 N/A $48,636 $79,354
D N/A N/A $8,648 N/A N/A $19,224 $48,912 $76,785

but there is marginal difference between a design that employs separate solar PV sources or one that has a

single solar PV source.
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Figure 5-5: Power and energy profiles for the optimal design of a public charging system with distributed
solar PV and distributed lead-acid battery as described in configuration A. The power and energy profiles

are shown for (a) Charger 1 and (b) Charger2 as well as (c) the aggregate power profiles of each
component. Grid 1 and Grid2 represent the power drawn from the grid by charger 1 and charger 2,

respectively.
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Figure 5-6: Power and energy profiles for the optimal design of a public charging system with distributed
solar PV and centralized lead-acid battery as described in configuration B. The power profiles are shown

for (a) Charger1 and (b) Charger2 as well as (c) the aggregate power and energy profiles of each
component. Grid 1 and Grid2 represent the power drawn from the grid by charger 1 and charger 2,

respectively. Storage 1 and Storage 2 represent the power drawn by the storage unit from charger 1 and
charger 2, respectively.
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Figure 5-7: Power and energy profiles for the optimal design of a public charging system with centralized
solar PV and distributed lead-acid battery as described in configuration C. The power and energy profiles

are shown for (a) Charger1 and (b) Charger2 as well as (c) the aggregate power profiles of each
component. Grid 1 and Grid2 represent the power drawn from the grid by charger 1 and charger 2,
respectively. DG 1 and DG2 represent the power drawn from the DG from charger 1 and charger 2,

respectively.
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Chapter 6

Summary and Conclusions

Plug-in electric vehicles (PEVs) and renewable distributed generation (DG) are expected to have

increasing penetration levels over the next few decades as they promise many societal benefits. The

penetration density of these technologies in some geographic areas may be high enough to cause

problems for the electric distribution system. This presents an opportunity to optimize the design of

charging solutions that integrate renewable DG and/or storage with PEV chargers in order to mitigate

their negative electric grid impacts.

6.1 Summary

This thesis presents a methodology and an optimization tool for the design of grid-interfaced PEV

charging systems that integrate renewable generation and storage. The optimization tool is based on a

linear programming approach which selects designs with minimum system lifecycle cost. A search-based

optimization technique is also developed to validate the results.

A system lifecycle cost model is developed in Chapter 2 in order to compare alternate designs.

The design with the lowest system lifecycle cost is considered optimal. Vendor data for renewable DG

and storage is presented and used to determine the values of the cost and time duration parameters that are

used in this thesis. Utility cost data is also compiled to determine appropriate values for electric grid

related cost parameters. With this system lifecycle cost model (based on real data), a realistic analysis can

be performed using the optimization tools.

Chapter 3 develops of the optimization methodology for a single charger system with centralized

DG and storage. The methodology is formulated using two approaches. The first approach is based on

linear programming, while the second is based on a limited search approach. In Chapter 4, these

approaches are applied to a residential charging case in which the peak power drawn by the charger is

greater than what can be supplied from the grid. Optimal designs are found for systems that included a

lead-acid battery and a solar PV source or a wind turbine for two locations in the US. A sensitivity

analysis is also performed to determine the cost competitiveness of lithium-ion battery technology relative

to lead-acid batteries.

The linear programming formulation developed in Chapter 3 for a single charger is extended for

multi-charger cases in Chapter 5. Four possible configurations of a two-PEV charger system are analyzed

in this chapter using solar irradiation data from one US location. The configurations considered include



combinations of centralized and distributed solar PV generation and lead-acid storage. The system is

analyzed using the developed tool to find the optimal design configuration for a specified case study.

6.2 Conclusions

A number of conclusions have been drawn from this thesis. These include:

1) The proposed linear programming technique is an effective means to optimize charger

systems with integrated distributed generation and/or storage.

2) Designs that draw the maximum available power from the grid have the lowest 20-year

system lifecycle cost.

3) On a lifecycle basis, designs with a solar PV distributed source are better than those without

one if the median noon-time irradiation of the location is greater than about 720 W/m 2.

4) Li-ion storage technology is not yet cost competitive with lead-acid storage technology but

may become more attractive as its cost decreases over the next decade.

5) Available wind turbine technology is not cost effective for PEV chargers at least in locations

with wind speeds similar to those of Los Angeles, CA and Boulder, CO.

6) When comparing configurations for a multiple PEV charging case, the one with centralized

storage and generation has the lowest system lifecycle cost.

6.3 Directions for Future Work

In the future, the optimization tool can be further developed to make the analysis of multi-charger

systems easier. For one, it needs to be extended to handle systems with more than two chargers,
generation sources and storage units. Also, it would be valuable to reformulate it in such a way that it can

handle the various configurations in a unified manner.

The system lifecycle cost model used in the optimization can also be improved. One aspect would

be to gather additional cost data and come up with more accurate parameter values. Also, the lifecycle

cost model could incorporate time-of-use electricity prices, so that designs that try to derive economic

benefit from storing electricity when it is cheaper (e.g., during the night) and selling it back when it is

more expensive can be evaluated.

In terms of analysis, it would be valuable to consider optimal designs for a residential

neighborhood where renewable generation and storage resources are used in a cooperative manner by

multiple houses.

Finally, the results of this work can be used to guide the development of the actual power

electronic hardware needed for a grid-connected PEV charging system that integrates renewable

generation and storage.



Appendix A

PLECS Simulation Model

In order to verify that the designs generated by the two formulations meet the system requirement

of returning the storage unit to its original SOC at the end of the time period T, a simulation model for the

PEV charging system was developed in PLECS - a switched-mode circuit and system simulation

platform. A simulation model for the PEV charging system built in PLECS is shown in Figure A-1. In

this simulation model, controllable current sources are used to model the power drawn from the grid, the

renewable DG and the PEV charger. The energy stored in the storage unit is modeled using the voltage

across a capacitor. The storage unit and renewable DG used in this simulation model are sized using the

developed formulations. The simulation model also includes the control logic for controlling the power

flow in the system. The power drawn by the PEV charger and the power available from the renewable

DG are system inputs, while the power drawn from the storage and the grid are determined by the control

logic. A switch in series with the storage unit is used to stop the flow of power from or to the storage unit

when the energy stored in the storage unit goes below or above its minimum or maximum limits,

respectively.
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Figure A-1: Simulation model for the PEV charging system in PLECS.



84



Appendix B

MATLAB Code

This Appendix contains the MATLAB code that was used to generate the results that were presented in
this thesis. There are a total of five files. The first file is the linear optimization tool for the single charger
case. The second file is the search-based optimization tool for the single charger case. The third, fourth
and fifth files are the multi-charger optimization tools for configurations A, B and C, respectively. Each
file will require the necessary .csv input files for the charger and DG profiles. The remaining parameters
and constraints can be manually set.

% % % % % % % % % % % % % %96 %%%%%%%%%

% Linear Programming - Single Charger %
% General equation to be solved: C = c' x %
% Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt %
% x =[Pg' Pg rating Pdg' Pdgrating Ps' Psrating Es' Esrating Egrating]' %
% length of x is 4*dt +5 
% %
% To change between solar, wind, or no DG, you will have to vary which %
% 'profile' to load. Also, the prices will have to be adjusted. To vary %
% which architecture is displayed at the end, vary the Pcmax. %

clear all
clc
close all

%Cost Parameters
T_lifesys = 20;
T_lifedg = 25;
T lifes = 6;

T_bp = 1/12;

C_dg0 = 200;

Cs_0 = 110;

C_g_O = 15;

Cpdg = 4400;

%system life (years)
%DG life (years)
%storage unit life (years)

%6 for lead-acid
%12 for Li-ion

%billing period (years)

%fixed cost of DG independent of rating ($)
%$200 for solar PV
%$3,750 for wind

%fixed cost of storage unit independent of...
%rating ($)
%$110 for lead-acid
%$80 for Li-ion

%fixed cost of grid connection applied to each...
%bill ($)
%$9 for residential
%$15 for general, no demand
%$60 for general, demand

%variable cost of DG ($/kW)
%$4400 for solar PV (includes inverter cost)
%$5500 for wind (includes power conditioning)



Cp_s = 200;

Cpp_s = 220;

Cp-g = 0;

Cppg = 0.14;

% Establish constraints
Pc max = 7.2;
Pg max = 10;

Pdg_max = 50;

Ps max = 10;

Esmax = 500;

Eg-max = 1000;

Pdg_min = 0;
Ps_min = -Ps max;
Pgmin = 0;
Es min = 0;
Egmin = 0;

n = 0.85;
SOCmax = 1;
SOC_min = 0.80;

d = 1;
h = 24;
m = 60;
dt = d*h*m;
t = 1:1:dt;

Wvariable power cost of storage unit ($/kW)
%$200 for charge controller

%variable energy cost of storage unit ($/kWh)
%$220 for lead-acid
%$800 for Li-ion

%variable power cost of the grid ($/kW)
%$0 when no demand charge
%$10 when demand charge

%variable energy cost of the grid ($/kWh)
%$0.14

%5 for residential
%10 for general, demand
%10 for residential
%50 for general
%10 for residential
%50 for general
%100 for residential
%500 for general
%arbitrarily high value, no constraint

%power cannot go into the DG
%high enough to charge
%no power into the grid
%battery cannot reach zero state of charge
%no energy into the grid

%efficiency of the storage unit
%set maximum state of charge for the storage unit
%set minimum state of charge for the storage unit

%days in time period
%hours in time period
%60/m is the resolution of the time vector
%time period in intervals
%time vector in minutes for one full day

% EV charge profile
Pcrating = 6; %fixed, defined charge rating
Cprofile = load('Cprofile.csv');

Pc = Pcrating*Cprofile';

% DG power profile
fdg = load('DGprofile.csv');

%% Develop c
%fill in c where appropriate
c = [zeros(l,dt), Cpg*T_lifesys/Tbp, zeros(1,dt), ...

Cpdg*floor(l+TIlifesys/Tlifedg), zeros(l,dt), ...
Cps*floor(l+T lifesys/Tlifes), zeros(l,dt), ...
Cpps*floor(l+T-lifesys/Tlifes), Cpp_g*365/d*T lifesys]';



%% Develop A and b to solve A*x <= b
% This is used to make sure that every value in Pdg' is less than or
% equal to Pdgrating, every value in Ps' is less than or equal to
% Pdgrating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%create Al
Al = zeros(dt, dt+1);
for i=l:dt

Al(i,i) = 1; %fill in 1 to compare a Pg value to Pgrating
Al(i,dt+l) = -1; %fill in -1 at Pgrating to compare with Pg value

end

%create A2
A2=Al;

%create A3
A3 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Ps rating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pc(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Psrating
A3(i,i) = 1; %fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Ps rating

A3(i,i) = -1; %fill in 1 at Psrating to compare with Ps value
end

A3(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A4
A4 = zeros(dt, dt+1);
for i=l:dt

A4(i,i) = 1; %fill in 1 at Es value to compare to Esrating
A4(i,dt+l) = -(SOC max-SOC min); %fill in -(SOC max-SOC min) at

%Esrating to compare and scale
tappropriately to Es value

end

%create A
Z = zeros(dt,dt+1);

A = [Al, Z , Z , Z , zeros(dt,1);
Z , A2, Z , Z , zeros(dt,l);
Z , Z , A3, Z , zeros(dt,1);
Z , Z , Z , A4, zeros(dt,1)];

% create b which is just zero
b = zeros(size(A,1),1);



%% Develop D and g to solve D*x = g
% This relationship is used to make sure that the charger power
% requirements are met. Namely it makes sure that for every instance in
% time, Pc = Pdg + Ps + Pg.
% It will also be used to develop the shape of the panel power output and
% calculate Eb and Egrating.

%create D1
D1 = zeros(dt, dt+1);
for i=l:dt

D1(i,i) = 1;
end

%create D2
D2 = zeros(dt, dt+1);
for i=l:dt

D2(i,i) = 1;
D2(i, dt+1) = -fdg(i);

end

%create D3
D3 = zeros(dt, dt+1);
for i=1:dt

if Pc(i) > 0
D3(i,i) = d*h/dt/sq

else
D3(i,i) = d*h/dt*sqrt(n);

end
end

%create D4
D4 = zeros(dt, dt+1);
D4(1,1) = 1;
D4(l,dt) = -1;
for i=2:dt

D4(i,i) = 1;
D4(i,i-1)

end

%fill in 1

%fill in 1 for Pdg
%fill in corresponding -fdg in

%Pdgrating position

%Vehicle is charging
rt(n); %Battery supplies less energy

%than what was stored

%Battery stores less energy than
%what was supplied

Wcreate d5
d5 = [d*h/dt*ones(1,dt),0];

%create D
z = zeros(1, dt+1);
D = [D1, Dl, D1, Z , zeros(dt,l);

Z , D2, Z , Z , zeros(dt,l);
Z , Z , D3, D4, zeros(dt,l);
d5, z, z , z , -1 ]

W create g
% we derive beq from the charging profile of the vehicle which is given



% fill in g
g = [Pc; zeros(size(D,1)-dt,1)];

%% Develop lmin and lmax for imin < x < lmax
% the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

% Establish upper bounds based on maximum limits
lmax = [Pg max*ones(dt+1,1); Pdglmax*ones(dt+1,1); Psmax*ones(dt+1,1); ...

Esmax*SOCmax*ones(dt+1,1); Egmax];

% Establish lower bounds
lmin = [-Pg min*ones(dt+1,1); Pdg-min*ones(dt+1,1); Ps min*ones(dt+1,1); ...

Esmin*SOCmin*ones(dt+1,1); Egmin];

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,g,lmin,lmax);%, [I,options);
if y(2*dt+2)>10A-6

Cmin = Cdg_0*floor(l+Tlifesys/Tlifedg) + ...

C_s_0*floor(l+Tlifesys/T-lifes) + C_g_0*T lifesys/T-bp + c'*y;
else

Cmin = C s_0*floor(l+T_lifesys/Tlifes) + C_g_O*Tlifesys/Tbp + c'*y;
end

%% Display results
display(['The power rating of the DG is ', num2str(y(2*dt+2)),' kW'])
display(['The power rating of the storage is ', num2str(y(3*dt+3)),' kW'])
display(['The energy capacity of the storage is ',num2str(y(4*dt+4)),' kWh'])

display(['The maximum power drawn from the grid is ',num2str(y(dt+1)),' kW'])
display(['The total energy drawn from the grid is ',num2str(y(4*dt+5)),' kWh
per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(2*dt+2)>10A-6

display(['The DG cost is $',...
num2str(Cdg_0*floor(l+T lifesys/T-lifedg)+...

Cpdg*floor(l+Tlifesys/Tlifedg)*y(2*dt+2)),'.'])
else

display(['The DG cost is $',...
num2str(Cpdg*floor(l+Tlifesys/T lifedg)*y(2*dt+2)),'.'])

end
display(['The storage cost is $',...

num2str(C s_0*floor(l+Tlifesys/T_lifes)+...
Cp-s*floor(l+Tlifesys/T lifes)*y(3*dt+3)+...
Cpps*floor(l+Tlifesys/Tlifes)*y(4*dt+4)),'.'])

display(['The grid cost is $',...
num2str(C-gO*Tlifesys/T bp+Cpg*Tlifesys/Tbp*y(dt+1)+...
Cppg*365/d*Tlifesys*y(4*dt+5)), '.])

t=1:dt;



Pg =[y(l:dt)];
Pdg =[y(dt+2:2*dt+l)];
Ps =[y(2*dt+3:3*dt+2)];

figure
plot(t,Pc, t, Pdg, t, Pg, t, Ps)
legend('Charger','DG','Grid', 'Storage Unit','location', 'best')
title(['Power Outputs'])
set(gca, 'XTick', [O:dt/24:dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')
ylabel('Power drawn (kW)')

Es = [y(3*dt+4:4*dt+3)]+y(4*dt+4)*SOC min;

figure
plot(t,Es)
title(['Energy Stored in the Storage Unit'])
axis([0 dt 0 y(4*dt+4)*1.2])
set(gca, 'XTick', [0:dt/24:dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')
ylabel('Energy capacity (kWh)')



% % % * % % % % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % %
% Search-Based Tool - Single Charger
% There is a limitation on the maximum power drawn from the grid
% we have assumed that the power flow in our system is controlled in such %
% a way that the charger first takes power from the distributed renewable %
% generation source. When the distributed renewable generation source %
% cannot meet the full power needs of the charger, the remaining power is %
% first drawn from the grid. Only when the grid power hits its limit do %
% we draw power from the storage unit. I
% No power from the DG will go into the grid %

% To change between solar, wind, or no DG, you will have to vary which
% 'profile' to load. Also, the prices will have to be adjusted. To vary %
% which architecture is displayed at the end, vary the Pgrating vector. %
% % % % % % % % % % % % % % % % % % %% % % % % % % % % % % 11% % % %% %1

clc
close all
clear all

%Cost Parameters
T_lifesys = 20;
T_lifedg = 25;
T lifes = 6;

T_bp = 1/12;

C_dg0 = 200;

C_s_0 = 110;

C_g_0 = 9;

Cpdg = 4400;

Cps = 200;

Cpps = 220;

Cpg = 0;

Cppg = 0.14;

%system life (years)
%DG life (years)
%storage unit life (years)

%6 for lead-acid
%12 for Li-ion

%billing period (years)

%fixed cost of DG independent of rating ($)
%$200 for solar PV
%$3,750 for wind

%fixed cost of storage unit independent of...
%rating ($)
%$110 for lead-acid
W$80 for Li-ion

%fixed cost of grid connection applied to each...
Wbill ($)
%$9 for residential
%$15 for general, no demand
%$60 for general, demand

%variable cost of DG ($/kW)
%$4400 for solar PV (includes inverter cost)
%$5500 for wind (includes power conditioning)

%variable power cost of storage unit ($/kW)
%$200 for charge controller

%variable energy cost of storage unit ($/kWh)
%$220 for lead-acid
%$800 for Li-ion

%variable power cost of the grid ($/kW)
%$0 when no demand charge
%$10 when demand charge

%variable energy cost of the grid ($/kWh)
%$0.14



% Establish constraints
Pcmax = 7.2;
Pg-max = 5;

Pdg_max = 10;

Ps max = 10

Es max = 100;

Eg-max = 1000;

Pdgmin = 0;
Ps_min = -Psmax;
Pgmin = 0;
Es min = 0;
Egmin = 0;

n = 0.85;
SOC max = 1;
SOC_min = 0.80;

d = 1;

h = 24;

m = 60;

dt = d*h*m;
t = 1:1:dt;

%5 for residential
%20 for general, demand
%50 for general, demand
%10 for residential
%50 for general
%10 for residential
%50 for general
%100 for residential
%500 for general
%arbitrarily high value, no constraint

%power cannot go into the DG
%high enough to charge
%no power into the grid
%battery cannot reach zero state of charge
%no energy into the grid

%efficiency of the storage unit
%set maximum state of charge for the storage unit
%set minimum state of charge for the storage unit

*days in time period
thours in time period
%60/m is the resolution of the time vector
%time period in intervals
%time vector in minutes for one full day

Unknown variables
% Pdgrating = Max power rating of the DG (kW)
% Ps rating = Max power rating of the storage unit (kW)
% Pg rating = Max power drawn from the electric grid (kW)
% Es rating = Max energy capacity of the storage unit (kWh)
% Eg rating = Max energy drawn from the electric grid (kWh)

Pgrating = 4.9:0.1:Pg_max; %defines the range of architectures to explore
Pdg-rating = zeros(1,length(Pg rating));
Psrating = zeros(l,length(Pgrating));
Esrating = zeros(1,length(Pgrating));
Pgminrating = zeros(1,length(Pg rating));
Eg-rating = zeros(1,length(Pg rating));

% Time-based vectors
% Pdg = Output power output of the DG. It will depend on the maximum power
% output of the DG as well as the time of day (as defined by f
% Pg = Output power output of the grid. It will depend on the power output
% of the DG and the input power required by the electric vehicle and
% possibly storage
% Ps = Power output or input of the storage unit. It will depend on the
% power output of the DG, the grid and the input power required by
% the electric vehicle
% Es = Energy delivered or absorbed by the storage unit

Pdg = zeros(l,dt);



Ps = zeros(1,dt);
Pg = zeros(l,dt);
Es = zeros(1,dt);

%% EV Model

% Simple EV model
% Pcrating = Power rating of the charger (kW)
% Eevb = Energy capacity of the electric vehicle (kWh)
% SOCi = Initial state of charge of the electric vehicle when it plugs in
% somewhere between 0 and 1
% SOCf = Final state of charge of the electric vehicle
I no more than 1
I Nev = Number of electric vehicles charging per day
I Pc = Charge profile of the electric vehicle

%Well-defined variables
Pcrating = 6; %fixed, defined charge rating: 6 kW
SOCi = 0.20; %Start from a 20% SOC
SOCf = 1; %Fully charged
Eevb = 30; %battery capacity is 30 kWh
Nev = 1; %flexible

% load Pc from a csv file.
% Right now, there is no time indicator in the file. Data begins at 12:01
% am and there is data for every minute for 24 hours.

c = load('Cprofile.csv');

Pc = Pcrating*c*Nev;

%% DG Model

% Simple DG model
% f = The profile of the DG power output. Varies from 0 to 1.

% load f from a csv file.
% Right now, there is no time indicator in the file. Data begins at 12:01
% am and there is data for every minute for 24 hours.

f = load('DGprofile.csv');

%% Grid Model

% Simple Grid model
I DeltaEs = The energy that has to be supplied to the charger from the

storage unit (kWh)
% Tcoff = the time period when the electric vehicle is not charging (h)

I Develop Pg

for j=1:length(Pgrating)
I need to solve for maximum grid power draw iteratively
I initial guess



DeltaEs = 1;
Pdgrating(j) = -0.001;
Pgrating(j)

E S2C = 0;
Tc off = 0;

if norm(f) < 10e-6 No DG unit
for i=l:dt

if Pc(i) > 0 WThere is a vehicle charging
ES2C = ES2C + (Pc(i) - Pgrating(j))*d*h/dt; %Track kWh

%that goes from the storage unit to the charger
else %There is no vehicle charging

Tcoff = Tcoff + d*h/dt; %keep track of the hours
end

end

for i=l:dt %Now calculate Ps
if Pc(i) > 0

Ps(i) = Pc(i) - Pg-rating(j);
else

Ps(i) = -ES2C/Tcoff/n;
end

end
else %DG unit present

Ps = zeros(1,dt);
end

%check if there was enough energy supplied to the charger
% if not, guess a new Pdgrating
while Delta Es > 0

Es(l) = 0;
Pdgrating(j) = Pdgrating(j)+0.001; %increment by 10 W
Pdg = Pdg-rating(j)*f;

%calculate power from the grid
for i=l:dt

Pg(i) = min(max(Pg_min, Pc(i) - Pdg(i) - Ps(i)), Pgrating(j));
end

%calculate storage unit energy profile
for i=l:dt-1

if sign(Pc(i)-Pdg(i)-Pg(i)) > 0
Es(i+1) = Es(i) - (Pc(i) - Pdg(i) - Pg(i))*d*h/dt/sqrt(n);

else
Es(i+l) = Es(i) - (Pc(i) - Pdg(i) - Pg(i))*d*h/dt*sqrt(n);

end
end

%calculate storage unit change in state-of-charge
if sign(Pc(dt)-Pdg(dt)-Pg(dt)) > 0

DeltaEs = -(Es(dt) - (Pc(dt) - Pdg(dt) -
Pg(dt))*d*h/dt/sqrt(n));

else



DeltaEs = -(Es(dt) - (Pc(dt) - Pdg(dt) -
Pg(dt))*d*h/dt*sqrt(n));

end

if Pdgrating(j) > Pdg-max
break

end
end

Pg-minrating(j) = min(Pg);

%In case there is an infinite loop
%break the loop once constraint is
%reached and move on

%find the average daily power from the grid
Egrating(j) = trapz(t,Pg)*d*h/dt;

%% Storage Model

% Develop Ps
Ps = Pc - Pdg - Pg;

%calculate the power rating of the storage unit
Ps-rating(j) = max(abs(min(Ps)),max(Ps));

%calculate the energy rating of the storage unit
Es-rating(j) = (max(Es)-min(Es))/(SOC max-SOC min);

end

%% Discard values that violate maximum constraints

Pdgratingtrunc
Psratingtrunc
Pgratingtrunc
Esratingtrunc
Egratingtrunc

= [];
= [] ;
= [];
= [];
= [];

for i=l:length(Pdgrating)

if ((Pdgrating(i) <= Pdgmax) && (Psrating(i) <= Psmax) &&
(Pgrating(i) <= Pgmax) && (Es_rating(i) <= Esmax) && ...
(Egrating(i) <= Egmax) && (Pgminrating(i) >=Pg_min))

Pdgratingtrunc
Psratingtrunc
Pgratingtrunc
Esratingtrunc
Egratingtrunc

= [Pdgratingtrunc Pdg-rating(i)];
= [Ps rating_trunc Ps-rating(i)];
= [Pgrating_trunc Pgrating(i)];
= [Es rating_trunc Es-rating(i)];
= [Egrating_trunc Egrating(i)];

end

Clength = length(Pdgratingtrunc);
Cdg = zeros(l, Clength);
Cs = zeros(1, Clength);
Cml = zeros(l, Clength);

end



Cm2 = zeros(l, Clength);
Cm = zeros(1, Clength);
Cg = zeros(l, Clength);
Ctotal = zeros(1, Clength);

for j=1:Clength
%% Cost Calculation

%DG cost
Cdg(j) = CdgO+Cpdg*Pdgratingtrunc(j);

%Storage unit cost
Cs(j) = C_s_0 + Cpps*Es-ratingtrunc(j) + Cps*Psratingtrunc(j);

%Maintenance cost
Cm1(j) = floor(T lifesys/T_lifedg)*Cdg(j);
Cm2(j) = floor(T lifesys/T_lifes)*Cs(j);
Cm(j) = Cm1(j)+Cm2(j);

%for DG
%for storage unit

%Grid cost
Cg(j) = C_gO*T lifesys/T-bp + Cpg*Pgratingtrunc (j) *T-lifesys*12 +...

Cppg*Egratingtrunc(j)*T-lifesys*365/d;

%Total cost
Ctotal(j) = round((Cdg(j)+Cs(j)+Cm(j)+Cg(j))*100)/100;

end

%Find the lowest cost point
[Ctotal min J]= min(Ctotal)

%% Display Results

display(['The power rating of the distributed generation is ',
num2str(Pdgratingtrunc(J)),' kW'])
display(['The power rating of the storage is ', num2str(Psratingtrunc(J)),'
kW'])
display(['The energy capacity of the storage is ',
num2str(Es_ratingtrunc(J)),' kWh'])

display(['The maximum power drawn from the grid is ',
num2str(Pg ratingtrunc(J)),' kW'])
display(['The total energy drawn from the grid is ',
num2str(Egratingtrunc(J)),' kWh per day'])

display(['The minimum lifetime cost is $', num2str(Ctotal min),'.'])

if norm(f)>10A-6
display(['The DG cost is $',num2str(Cdg(J)+Cm1(J)),'.'])

else
display(['The DG cost is $', num2str(Cdg(J)+Cm1(J)-Cdg_0),'.'])

end
display(['The storage cost is $', num2str(Cs(J)+Cm2(J)),'.'])
display(['The grid cost is $', num2str(Cg(J)),'.'])



%% Plots

figure (1)
plot(Pgratingtrunc, Cdg,Pg_ratingtrunc, Cs, Pg_ratingtrunc, Cm,
Pgratingtrunc, Cg, Pgratingtrunc, Ctotal)
legend('DG Cost','Storage Cost','Maintenance Cost','Grid Cost', 'Total System
Lifecycle Cost')
xlabel('Power Drawn from Grid')
ylabel('Cost ($)')
title('EV charging costs for 1 EV, 24 kwh, 6 kW each day for 20 years')

%recalculations of the time-based vectors for plotting purposes
E S2C = 0;
Tc off = 0;

for i=l:dt
if Pc(i) > 0

E S2C = ES2C + (Pc(i) - Pgratingtrunc(J))*d*h/dt;
else

Tc off = Tc off + d*h/dt;
end

end

if norm(f) > 10e-6; %There is a DG unit
Ps = zeros(1,dt);

else %There is no DG unit
for i=l:dt

if Pc(i) > 0
Ps(i) = Pc(i) - Pg rating_trunc(J);

else
Ps(i) = -ES2C/Tc off/n;

end
end

end

Pdg = Pdgratingtrunc(J)*f;

for i=l:dt
Pg(i) = min(max(0, Pc(i) - Pdg(i)-Ps(i)), Pgrating trunc(J));

end

Ps = Pc - Pdg - Pg;

Es(l) = 0;
for i=l:dt-1

if sign(Ps(i)) < 0 WStorage is being charged
Es(i+l) = Es(i) - sqrt(n)*Ps(i)*d*h/dt;

else %Storage is supplying power
Es(i+l) = Es(i) - Ps(i)/sqrt(n)*d*h/dt;

end
end
min Es = min(Es);
Es = (abs(minEs) + Es + SOCmin*Es ratingtrunc(J));



figure
plot(t,Pc, t, Pdg, t, Pg, t, Ps)
legend('Charger','DG','Grid', 'Storage Unit','location','best')
title(['Power Profiles'])
set(gca, 'XTick', [0:120:dt])
set(gca, 'XTickLabel', [0:2:24])
xlabel('time of day (hours)')
ylabel('Power (kW)')

figure
plot(t,Es)
title(['Energy stored in the ',num2str(Psratingtrunc(J)),' kW,

,num2str(Esratingtrunc(J)),' kWh Storage Unit'])
axis([0 dt 0 Esratingtrunc(J)*1.2])
set(gca, 'XTick', [0:120:dt])
set(gca, 'XTickLabel', [0:2:24])
xlabel('time of day (hours)')
ylabel('Energy capacity (kWh)')

hold on
plot(t, SOCmin*Esratingtrunc(J)*ones(l,length(t)),'--')
plot(t, Esrating-trunc(J)*ones(l,length(t)),'--')



% % % % % % % % % W% % % % % *% % %% % % % % % % % % % % % % % % % %
Linear Programming Tool - Configuration A
Develop the variables to use matlab's linear optimization tool
General equation to be solved: C = c' x
Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt
x =[Pgl' Pglrating

Pg2' Pg2_rating
Pg'. Pg rating
Pdgl' Pdglrating
Pdg2' Pdg2_rating
Ps1' Psl rating
Ps2' Ps2 rating
Es2' Es rating
Es2' Es rating
Egrating]'

%% %%%%% %% % % % %% %%%%% % % % % % % %% %%% % %I%%

clear
clc
close

all

all

%Cost Parameters
T_lifesys = 20;
T_lifedg = 25;
T lifes = 6;

T_bp = 1/12;

C_dg0 = 200;

Cs_0 = 110;

C_g_O = 15;

Cpdg = 4400;

Cps = 200;

Cpps = 220;

Cpg = 0;

Cppg = 0.14;

*system life (years)
%DG life (years)
%storage unit life (years)

%6 for lead-acid
%12 for Li-ion

%billing period (years)

%fixed cost of DG independent of rating ($)
%$200 for solar PV
%$3,750 for wind

%fixed cost of storage unit independent of...
%rating ($)
%$110 for lead-acid
%$80 for Li-ion

%fixed cost of grid connection applied to each...
%bill ($)
%$9 for residential
%$15 for general, no demand
%$60 for general, demand

%variable cost of DG ($/kW)
%$4400 for solar PV (includes inverter cost)
%$5500 for wind (includes power conditioning)

%variable power cost of storage unit ($/kW)
%$200 for charge controller

%variable energy cost of storage unit ($/kWh)
%$220 for lead-acid
%$800 for Li-ion

%variable power cost of the grid ($/kW)
%$0 when no demand charge
%$10 when demand charge

%variable energy cost of the grid ($/kWh)
%$0.14



% Establish constraints
Pc max = 7.2;
Pgmax = 10;

Pdgmax = 50;

Ps max = 50

Es max = 500;

Egmax = 1000;

Pdg_min = 0;
Ps min = -Ps max;
Pg-min = 0;
Es min = 0;
Eg-min = 0;

n = 0.85;
SOCmax = 1;
SOC min = 0.80;

d = 1;

h = 24;

m = 60;

dt = d*h*m;
t = 1:1:dt;

%5 for residential
%10 for general, no demand
%50 for general, demand
%10 for residential
%50 for general
%10 for residential
%50 for general
%100 for residential
%500 for general
%arbitrarily high value, no constraint

%power cannot go into the DG
%high enough to charge
%no power into the grid
%battery cannot reach zero state of charge
%no energy into the grid

%efficiency of the storage unit
%set maximum state of charge for the storage unit
%set minimum state of charge for the storage unit

%days in time period
%hours in time period
%60/m is the resolution of the time vector
%time period in intervals
%time vector in minutes for one full day

% EV charge profile
Pcrating = 7.2; %fixed, defined charge rating
Cprofilel = load('Cprofilepublicl.csv');
Cprofile2 = load('Cprofilepublic2.csv');

Pcl = Pcrating*Cprofilel';
Pc2 = Pc rating*Cprofile2';

% DG power profile
fdgl = load('DGprofile.csv');
fdg2 = load('DGprofile.csv');

%% Develop c
%fill in c where appropriate
c = [zeros(l,dt), 0, ... %Pgl

zeros(l,dt), 0, ... %Pg2
zeros(1,dt), Cpg*TIlifesys/T-bp, ... %Pg
zeros(l,dt), Cpdg*floor(l+T_lifesys/Tlifedg),
zeros(1,dt), Cpdg*floor(l+T_lifesys/Tlifedg),
zeros(l,dt), Cps*floor(l+Tlifesys/T-lifes),
zeros(1,dt), Cps*floor(l+Tlifesys/T-lifes),
zeros(1,dt), Cpps*floor(l+Tlifesys/Tlifes),
zeros(1,dt), Cpps*floor(l+Tlifesys/Tlifes),
Cppg*365/d*Tlifesys]';
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%Pdgl
%Pdg2
%Psl
%Ps2
%Esl
%Es2
%Eg



%% Develop A and b to solve A*x <= b
% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg rating, every value in Ps' is less than or equal to
% Pdg_rating, etc.

W create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%create Al
Al = zeros(dt, dt+1);
for i=l:dt

Al(i,i) = 1; %fill in 1 to compare a Pg value to Pgrating
Al(i,dt+l) = -1; %fill in -1 at Pgrating to compare with Pg value

end

%create A2
A2=Al;

%create A3
A31 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Ps rating equal the to absolute value of
Ithe maximum charge or discharge power for the storage unit
if Pcl(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Ps rating
A31(i,i) = 1; %fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Ps rating

A31(i,i) = -1; %fill in 1 at Psrating to compare with Ps value
end

A31(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A3
A32 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 %vehicle is charging, storage will be discharging

*meaning Ps will be positive, Ps <= Ps rating
A32(i,i) = 1; %fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Psrating

A32(i,i) = -1; %fill in 1 at Psrating to compare with Ps value
end

A32(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A4
A4 = zeros(dt, dt+1);
for i=l:dt
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A4(i,i) = 1; %fill in 1 at Es value to compare to Esrating
A4(i,dt+l) = -(SOC max-SOC min); %fill in -(SOC max-SOC min) at

WEs rating to compare and scale
%appropriately to Es value

end

%create A
Z = zeros(dt,dt+1);

Z, Z ,Z
Z ,Z Z
Z ,Z ,Z,
Z ,Z ,Z,
A2, Z , Z
Z ,A31, Z
Z , Z ,A32,
Z ,Z ,Z,
Z ,Z ,Z,

Z
Z
Z ,

Z ,

Z ,

ZA,
Z ,

A4,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

ZA,
Z ,

A4,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros(dt,l);
zeros(dt,l);
zeros (dt,1);
zeros (dt,1);
zeros(dt,l);
zeros(dt,l)];

% create b which is just zero
b = zeros(size(A,1),l);

%% Develop D and g to solve D*x = g
% This relationship is used to make sure that the charger power
% requirements are met. Namely it makes sure that for every instance in
I time, Pc = Pdg + Ps + Pg.
I It will also be used to develop the shape of the panel power output and
% calculate Eb and Egrating.

%create D1
D1 = zeros(dt, dt+1);
for i=l:dt

D1(i,i) = 1;
end

%f ill in 1

%create D2
D21 = zeros(dt, dt+1);
for i=l:dt

D21(i,i) = 1; %fill in 1 for Pdg
D21(i, dt+1) = -fdg1(i); %fill in corresponding -fdg in

%Pdgrating position
end

%create D2
D22 = zeros(dt, dt+1);
for i=l:dt

D22(i,i) = 1; %fill in 1 for Pdg
D22(i, dt+1) = -fdg2(i); %fill in corresponding -fdg in

%Pdgrating position
end

Icreate D3
D31 = zeros(dt, dt+1);
for i=l:dt

if Pc1(i) > 0 %Vehicle is charging
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ZA,
A1,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A = [Al,

Z ,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,
Al,
Z
Z
Z
Z
Z
Z
Z

Z
Z
Z ,
A2,
Z
Z ,

Z ,

Z ,

Z ,



D31(i,i) = d*h/dt/sqrt(n);

else
D31(i,i) = d*h/dt*sqrt(n);

%Battery supplies less energy
%than what was stored

%Battery stores less energy than
%what was supplied

end
end

%create D3
D32 = zeros(dt, dt+1);
for i=l:dt

if Pc2(i) > 0
D32(i,i) = d*h/dt/sqrt(n);

else
D32(i,i) = d*h/dt*sqrt(n);

%Vehicle is charging
%Battery supplies less energy

%than what was stored

%Battery stores less energy than
%what was supplied

end
end

%create D4
D4 = zeros(dt, dt+1);
D4(1,1) = 1;
D4(l,dt) = -1;
for i=2:dt

D4(i,i) = 1;
D4(i,i-1) = -1;

end

%create d5
d5 = [d*h/dt*ones(1,dt),O];

%create D
z = zeros(l, dt+1);
D = [D1, Z , Z , D1, Z , D1, Z

Z , D1, Z , Z , D1, Z , D1,
D1, D1,-D1, Z , Z , Z , Z
Z , Z , Z ,D21, Z , Z , Z
Z , Z , Z , Z ,D22, Z , Z
Z , Z , Z , Z , Z ,D31, Z
Z , Z , Z , Z , Z , Z ,D32,
z , z , d5, z , z , z , z ,

Z
ZD,
Z ,

Z ,

Z ,

D4,

Z ,
z ,

Z
ZD,
Z ,

Z ,

Z ,

Z ,

D4,

z ,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros(dt,l);
zeros (dt,1);
-1l

% create g
% we derive beq from the charging profile of the vehicle which is given

% fill in g
g = [Pc1; Pc2; zeros(size(D,1)-2*dt,l)];

%% Develop lmin and lmax for lmin < x < lmax
% the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

% Establish upper bounds based on maximum limits
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lmax = [Pc max*ones(dt+1,1);...
Pc max*ones(dt+1,1);...
Pg-max*ones(dt+1,1);...
Pdg_max*ones(dt+1,1);...
Pdg_max*ones(dt+1,1);...
Ps max*ones(dt+1,1); ...
Ps max*ones(dt+1,1); ...
Es max*SOC max*ones(dt+1,1);...
Es max*SOC max*ones(dt+1,1);...
Eg-max];

% Establish lower bounds
lmin = [-Pg_min*ones(dt+1,1);...

-Pgmin*ones(dt+1,1);...
-Pg-min*ones(dt+1,1);...
Pdgmin*ones(dt+1,1);...
Pdgmin*ones(dt+1,1);...
Ps min*ones(dt+1,1); ...
Ps min*ones(dt+1,1); ...
Esmin*SOCmin*ones(dt+1,1);...
Es min*SOC min*ones(dt+1,1);...
Eg-min];

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,glmin,lmax);%, []options);

if y(4*dt+4)>10^-6 && y(5*dt+5)>10A-6
if y(7*dt+7)>10A-6 && y(9*dt+9)>10A-6
Cmin = 2*C-dgO*floor(l+T-lifesys/T-lifedg) + ...

2*C_s_O*floor(l+T_lifesys/T_lifes) + C_g_0*Tlifesys/T-bp + c'*y;
elseif y(7*dt+7)<10^-6 && y(9*dt+9)<10^A6
Cmin = 2*C-dgO*floor(l+Tlifesys/T-lifedg) + ...

C_gO*T lifesys/Tbp + c'*y;
else

Cmin = 2*CdgO*floor(l+Tlifesys/T-lifedg) + ...

C_sO*floor(1+T-lifesys/T-lifes) + C_gO*T lifesys/T-bp + c'*y;
end

elseif y(4*dt+4)<10^-6 && y(5*dt+5)<10A-6
if y(7*dt+7)>10A-6 && y(9*dt+9)>10A-6

Cmin = 2*CsO*floor(l+Tlifesys/T-lifes) +...
C_g_O*T lifesys/Tbp + c'*y;

elseif y(7*dt+7)<10A6 && y(9*dt+9)<10A-6
Cmin = C-gO*Tlifesys/T-bp + c'*y;

else
Cmin = C_s_O*floor(l+Tlifesys/T-lifes) +...

C_g_O*T-lifesys/T-bp + c'*y;
end

else
if y(7*dt+7)>10-6 && y(9*dt+9)>10A-6
Cmin = C-dgO*floor(l+T lifesys/Tlifedg) + ...

2*C_s_O*floor(l+Tlifesys/Tlifes) + C-g_O*T lifesys/Tbp + c'*y;
elseif y(7*dt+7) <10^A6 && y(9*dt+9)<10A-6

Cmin = C dg_O*floor(l+Tlifesys/T-lifedg) + ...

C g_O*Tlifesys/T-bp + c'*y;
else

Cmin = C-dg_O*floor(l+Tlifesys/T-lifedg) + ...
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C_s_Q*floor(l+Tlifesys/Tlifes) + C_gO*T lifesys/Tbp + c'*y;
end

end

*%% Display results
display(['The power rating of DG1 is ', num2str(y(4*dt+4)),' kW'])
display(['The power rating of storagel is ', num2str(y(6*dt+6)),' kW'])
display(['The energy capacity of storagel is ', num2str(y(8*dt+8)),' kWh'])

display(['The power rating of DG2 is ', num2str(y(5*dt+5)'),' kW'])
display(['The power rating of storage2 is ', num2str(y(7*dt+7)),' kW'])
display(['The energy capacity of storage2 is ', num2str(y(9*dt+9)),' kWh'])

display(['The maximum power drawn from the grid is ', num2str(y(3*dt+3)),'
kW'])
display(['The total energy drawn from the grid is ', num2str(y(9*dt+10)),'
kWh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(4*dt+4)>10A-6

display(['The DG1 cost is $',...
num2str(C-dg_0*floor(l+Tlifesys/T lifedg)+...
Cpdg*floor(l+Tlifesys/T-lifedg)*y(4*dt+4)),'.'])

else
display(['The DG1 cost is $',...

num2str(Cpdg*floor(l+T lifesys/T lifedg)*y(4*dt+4)),'.'])
end

if y(5*dt+5)>10^A -6
display(['The DG2 cost is $',...

num2str(C-dgo*floor(l+Tlifesys/T lifedg)+...
Cpdg*floor(l+Tlifesys/T lifedg)*y(5*dt+5)),'.'])

else
display(['The DG2 cost is $',...

num2str(Cpdg*floor(l+T lifesys/T lifedg)*y(5*dt+5)),'.'])
end

if y(8*dt+8)>10A-6
display(['The storagel cost is $',...

num2str(C_s_0*floor(l+Tlifesys/T lifes)+...
Cp-s*floor(l+T lifesys/T_lifes)*y(6*dt+6)+...
Cpp-s*floor(l+Tlifesys/Tlifes)*y(8*dt+8)),'.'])

else
display(['The storagel cost is $',...

num2str(Cps*floor(l+T lifesys/T_lifes)*y(6*dt+6)+...
Cpp-s*floor(l+Tlifesys/Tlifes)*y(8*dt+8)),'.'])

end

if y(9*dt+9)>10A-6
display(['The storage2 cost is $',...

num2str(C_s_0*floor(l+Tlifesys/T lifes)+...
Cp-s*floor(l+T lifesys/T_ifes)*y(7*dt+7)+...
Cpps*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

else
display(['The storage2 cost is $',...

105



num2str(Cp-s*floor(l+Tlifesys/T lifes)*y(7*dt+7)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

end

display(['The grid cost is $',...

num2str(C-gO*TIlifesys/Tbp+Cpg*Tlifesys/Tbp*y(3*dt+3)+...
Cppg*365/d*Tlifesys*y(9*dt+lo)),'.'])

t=l:dt;

Pgl =[y(1:dt)];
Pg2 =[y(dt+2:2*dt+l)];
Pg =[y(2*dt+3:3*dt+2)]
Pdgl =[y(3*dt+4:4*dt+3)];
Psl =[y(5*dt+6:6*dt+5)];
Pdg2 =[y(4*dt+5:5*dt+4)];
Ps2 =[y(6*dt+7:7*dt+6)];

figure
plot(t,Pcl, t, Pdgl, t, Pgl, t, Psl)
legend('Chargerl','DGl','Gridl','Storage Unitl','location','best')
title(['Charger 1 Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel('Day')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2, t, Pdg2, t, Pg2, t, Ps2)
legend('Charger2','DG2','Grid2','Storage Unit2','location', 'best')
title(['Charger 2 Power Outputs'])
set(gca, 'XTick', [O:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2+Pcl, t, Pdg2+Pdgl, t, Pg, t, Psl+Ps2)
legend('Charger','DG','Grid','Storage Unit','location','best')
title(['Sum of Each Component Power Outputs'])
set(gca, 'XTick', [0:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot(t,Pcl, t, Pc2, t, Pdgl,t,Pdg2, t, Pg, t, Psl,t,Ps2)
legend('Chargerl','Charger2','DGl','DG2','Grid','Storage Unitl',...

'Storage Unit2','location','best')
title(['Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel('Day')
ylabel('Power drawn (kW)')
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Esl = [y(7*dt+8:8*dt+7)]+y(8*dt+8)*SOC_min;
Es2 = [y(8*dt+9:9*dt+8)]+y(9*dt+9)*SOC_min;

figure (5)
plot(t,Esl, t, Es2)
title(['Energy Stored in the Storage Units'])
axis([O dt 0 max(y(8*dt+8),y(9*dt+9))*1.2])
set(gca, 'XTick', [0:dt/24:dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')
ylabel('Energy capacity (kWh)')
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% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %9%
% Linear Programming Tool - Configuration B %
% Develop the variables to use matlab's linear optimization tool %
% General equation to be solved: C = c' x %
% Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt W
% x =[Pgl' Pglrating %
%9 Pg2' Pg2_rating %
% Pg1  Pg rating
% Pdgl' Pdglrating
% Pdg2' Pdg2_rating %
% Psl' Psl_rating %
% Ps2' Ps2_rating %
% Ps' Psrating %

Es' Es rating %
% Eg-rating] ' %
% % % % % % % % %W%9 % % % %9%9 %%% % % %% % % % % % % %

clear
clc
close

all

all

%Cost Parameters
T_lifesys = 20;
T_lifedg = 25;
T lifes = 6;

T_bp = 1/12;

C_dgo = 200;

C_s_0 = 110;

C_g_0 = 15;

Cpdg = 4400;

Cp-s = 200;

Cpp_s = 220;

Cpg = 10;

Cppg = 0.14;

%system life (years)
%DG life (years)
%storage unit life (years)

%6 for lead-acid
%12 for Li-ion

%billing period (years)

%fixed cost of DG independent of rating ($)
%$200 for solar PV
%$3,750 for wind

%fixed cost of storage unit independent of...
%rating ($)
%$110 for lead-acid
%$80 for Li-ion

%fixed cost of grid connection applied to each...
%bill ($)
%$9 for residential
%$15 for general, no demand
%$60 for general, demand

%variable cost of DG ($/kW)
%$4400 for solar PV (includes inverter cost)
%$5500 for wind (includes power conditioning)

%variable power cost of storage unit ($/kW)
%$200 for charge controller

*variable energy cost of storage unit ($/kWh)
%$220 for lead-acid
%$800 for Li-ion

%variable power cost of the grid ($/kW)
%$0 when no demand charge
%$10 when demand charge

%variable energy cost of the grid ($/kWh)
%$0.14
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* Establish constraints
Pc max = 7.2;
Pgmax = 10;

Pdg-max = 50;

Ps max = 10;

Es max = 500;

Eg-max = 1000;

Pdgmin = 0;
Ps min = -Ps max;
Pg min = 0;
Es min = 0;
Eg-min = 0;

n = 0.85;
SOCmax = 1;
SOC min = 0.80;

d = 1;

h = 24;

m = 60;
dt = d*h*m;
t = 1:1:dt;

%5 for residential
%10 for general, no demand
%50 for general, demand
W10 for residential
%50 for general
%10 for residential
%50 for general
%100 for residential
%500 for general
%arbitrarily high value, no constraint

%power cannot go into the DG
%high enough to charge
%no power into the grid
%battery cannot reach zero state of charge
%no energy into the grid

%efficiency of the storage unit
%set maximum state of charge for the storage unit
%set minimum state of charge for the storage unit

%days in time period
%hours in time period
%60/m is the resolution of the time vector
%time period in intervals
%time vector in minutes for one full day

% EV charge profile
Pcrating = 7.2; %fixed, defined charge rating
Cprofilel = load('Cprofilepublicl.csv');
Cprofile2 = load( 'Cprofilepublic2 .csv');

Pcl = Pcrating*Cprofilel;
Pc2 = Pc rating*Cprofile2';

% DG power profile
fdgl = load('Dgprofile.csv');
fdg2 = load('DGprofile.csv');

%% Develop c
Ifill in c where appropriate
c = [zeros(1,dt), 0, ... %Pgl

zeros(1,dt), 0, ... %Pg2
zeros(1,dt), Cp_g*Tlifesys/T bp, ... %Pg
zeros(l,dt), Cp_dg*floor(l+Tlifesys/Tlifedg),
zeros(l,dt), Cp_dg*floor(l+Tlifesys/T-lifedg),
zeros(l,dt), 0, ... %Psl
zeros(l,dt), 0, ... %Ps2
zeros(l,dt), Cp_s*floor(l+Tlifesys/T-lifes),
zeros(l,dt), Cpp_s*floor(l+T_lifesys/T-lifes),
Cppg*365/d*Tlifesys] ';

%% Develop A and b to solve A*x <= b
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W This is used to make sure that every value in Pdg' is less than or
% equal to Pdg rating, every value in Ps' is less than or equal to
% Pdg rating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%create Al
Al = zeros(dt, dt+1);
for i=l:dt

Al(i,i) = 1; %fill in 1 to compare a Pg value to Pgrating
Al(i,dt+l) = -1; %fill in -1 at Pgrating to compare with Pg value

end

%create A2
A2=Al;

%create A3
A31 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pcl(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Psrating
A31(i,i) = 1; Ifill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
*meaning Ps will be negative, -Ps <= Ps rating

A31(i,i) = -1; Ifill in 1 at Psrating to compare with Ps value
end

A31(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A3
A32 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Psrating
A32(i,i) = 1; *fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Psrating

A32(i,i) = -1; Ifill in 1 at Psrating to compare with Ps value
end

A32(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A3
A33 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
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%the maximum charge or discharge power for the storage unit
if (Pcl(i)+Pc2(i)) > 0 %vehicle is charging, storage will be

discharging

A33(i,i) = 1;

else

A33(i,i) = -1;
end

A33(i,dt+l) = -1;
end

%create A4
A4 = zeros(dt, dt+1);
for i=l:dt

A4(i,i) = 1;
A4(i,dt+1) = -(SOC

end

%create A
Z = zeros(dt,dt+1);

%meaning Ps will be positive, Ps <= Ps rating
%fill in 1 at Ps value to compare to Psrating

%vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Psrating
%fill in 1 at Psrating to compare with Ps value

%fill in -1 at Psrating to compare with Ps value

%fill in 1 at Es value to compare to Esrating
max-SOC min); %fill in -(SOC max-SOC min) at

%Es_rating to compare and scale
%appropriately to Es value

Z ,Z ,Z ,Z,
Z ,Z ,Z ,Z,
Z ,Z ,Z ,Z,
Z ,Z ,Z ,Z,
A2, Z , Z , Z
Z ,A31, Z , Z ,
Z , Z ,A32, Z ,
Z , Z , Z ,A33,
Z , Z ,Z , Z ,

Z
Z4,
Z ,
Z ,
Z ,
Z ,
Z ,
Z ,
A4,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros(dt,l);
zeros(dt,l);
zeros(dt,l);
zeros(dt,l)];

% create b which is just zero
b = zeros(size(A,1),l);

%% Develop D and g to solve D*x = g
% This relationship is used to make sure that the charger power
I requirements are met. Namely it makes sure that for every instance in
I time, Pc = Pdg + Ps + Pg.
I It will also be used to develop the shape of the panel power output and
% calculate Eb and Egrating.

%create D1
D1 = zeros(dt, dt+1);
for i=l:dt

D1(i,i) = 1; %fill in 1
end

%create D2
D21 = zeros(dt, dt+1);
for i=l:dt
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Z ,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A1,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,
Al,
Z ,

Z ,

Z ,

Z ,
Z ,
Z,
Z,



D21(i,i) = 1; %fill in 1 for Pdg
D21(i, dt+1) = -fdgl(i); %fill in corresponding -fdg in

%Pdgrating position
end

%create D2
D22 = zeros(dt, dt+1);
for i=l:dt

D22(i,i) = 1; %fill in 1 for Pdg
D22(i, dt+1) = -fdg2(i); %fill in corresponding -fdg in

%Pdgrating position
end

%create D3
D3 = zeros(dt, dt+1);
for i=l:dt

if (Pcl(i)+Pc2(i))> 0
D3(i,i) = d*h/dt/sqrt(n);

%Vehicle is charging
%Battery supplies less energy

%than what was stored
else

D3(i,i) = d*h/dt*sqrt(n); %Battery stores less energy than
%what was supplied

end
end

%create D4
D4 = zeros(dt, dt+1);
D4(1,1) = 1;
D4(1,dt) = -1;
for i=2:dt

D4(i,i) = 1;
D4(i,i-1)

end

%create d5
d5 = [d*h/dt*ones(1,dt),0];

%create D
z = zeros(l, dt+1);
D = [D1, Z , Z , D1, Z

Z , D1, Z , Z , D1,
D1, D1,-D1, Z , Z
Z ,Z ,Z , Z ,Z ,
Z , Z , Z ,D21, Z
Z , Z , Z , Z ,D22,

Z , Z ,Z ,Z ,Z ,
z , z , d5, z , z

% create g
% we derive beq from the

D1,
Z ,

Z ,
D1,
Z,
Z ,

Z ,

z ,

Z ,
D1,
Z ,
D1,
Z ,

Z ,

Z ,

z ,

Z
Z
Z

-D1,
Z
Z
D3,
z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

D4,

z ,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);

charging profile of the vehicle which is given

% f ill in g
g = [Pc1; Pc2; zeros(size(D,1)-2*dt,l)];

%% Develop lmin and lmax for lmin < x < lmax
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% the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
% all values within x

% Establish upper bounds based on maximum limits
lmax = [Pc max*ones(dt+1,1);...

Pc max*ones(dt+1,1); ...
Pg-max*ones(dt+1,1);...
Pdg-max*ones(dt+1,1);...
Pdg-max*ones(dt+1,1);...
Ps max*ones(dt+1,1); ...
Ps max*ones(dt+1,1); ...
Psmax*SOCmax*ones(dt+1,1);...
Es max*SOC max*ones(dt+1,1);...
Eg-max];

% Establish lower bounds
lmin = [-Pg min*ones(dt+1,1);...

-Pg-min*ones(dt+1,1);...
-Pg_mnin*ones(dt+1,1); ...

Pdg-min*ones(dt+1,1);...
Pdg-min*ones(dt+1,1); ...
Ps min*ones(dt+1,1); ...
Ps min*ones(dt+1,1); ...
Psmin*SOCmin*ones(dt+1,1);...
Esmin*SOCmin*ones(dt+1,1);...
Eg-min];

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,g,lmin,lmax);%, [],options);
if y(4*dt+4)>10A-6 && y(5*dt+5)>10^A-6

if y(9*dt+9)>1A^6

Cmin = 2*Cdg_O*floor(l+Tlifesys/T-lifedg) + ...

C_s_O*floor(l+Tlifesys/Tlifes) + C_g_O*Tlifesys/T-bp + c'*y;
else

Cmin = 2*Cdg_O*floor(l+T-lifesys/T-lifedg) + ...

C_g_O*Tlifesys/Tbp + c'*y;
end

elseif y(4*dt+4)<10A-6 && y(5*dt+5)<10A-6
if y(9*dt+9)>1A6

Cmin = C sO*floor(l+T-lifesys/T_lifes) +...
C_gO*T-lifesys/Tbp + c'*y;

else
Cmin = C-gO*T-lifesys/Tbp + c'*y;

end
else

if y(9*dt+9)
Cmin = CdgO*floor(l+Tlifesys/T-lifedg) + ...

C_sO*floor(l+Tlifesys/Tlifes) + C_g_O*T lifesys/T-bp + c'*y;
else

Cmin = C-dgO*floor(+Tlifesys/T-lifedg) + ...
C_g_O*Tlifesys/T-bp + c'*y;

end
end
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%% Display results
display(['The power rating of DG1 is ', num2str(y(4*dt+4)),' kW'])
display(['The power rating of DG2 is ', num2str(y(5*dt+5)),' kW'])

display(['The power rating of the storage unit is ', num2str(y(8*dt+8)),'
kW'])
display(['The energy capacity of storage unit is ', num2str(y(9*dt+9)),'
kWh'])

display(['The maximum power drawn from the grid is ', num2str(y(3*dt+3)),'
kW'])
display(['The total energy drawn from the grid is ', num2str(y(9*dt+10)),'
kWh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(4*dt+4)>10A-6

display(['The DG1 cost is $',...
num2str(Cdg_0*floor(l+Tlifesys/T lifedg)+...
Cpdg*floor(l+Tlifesys/T lifedg)*y(4*dt+4)),'.'])

else
display(['The DG1 cost is $',...

num2str(Cpdg*floor(l+Tlifesys/T lifedg)*y(4*dt+4)),'. ')
end

if y(5*dt+5)>10A-6
display(['The DG2 cost is $',...

num2str(Cdg_0*floor(l+Tlifesys/T lifedg)+...
Cpdg*floor(l+Tlifesys/T lifedg)*y(5*dt+5)),'.'])

else
display(['The DG2 cost is $',...

num2str(Cpdg*floor(l+Tlifesys/T lifedg)*y(5*dt+5)),'.'])
end

if y(8*dt+8)>10A-6
display(['The storage cost is $',...

num2str(C_s_0*floor(l+Tlifesys/T lifes)+...
Cp s*floor(l+T-lifesys/T-lifes)*y(8*dt+8)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

else
display(['The storage cost is $',...

num2str(Cps*floor(l+Tlifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

end

display(['The grid cost is $',...
num2str(C-gO*TIlifesys/T_bp+Cpg*Tlifesys/Tbp*y(3*dt+3)+...
Cppg*365/d*Tlifesys*y(9*dt+l0)),'.'])

t=l:dt;

Pgl =[y(l:dt)];
Pg2 =[y(dt+2:2*dt+l)]
Pg =[y(2*dt+3:3*dt+2)];
Pdgl =[y(3*dt+4:4*dt+3)]
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Psl =[y(5*dt+6:6*dt+5)];
Pdg2 =[y(4*dt+5:5*dt+4)]
Ps2 =[y(6*dt+7:7*dt+6)]
Ps =[y(7*dt+8:8*dt+7)];

figure
plot(t,Pcl, t, Pdgl, t, Pgl, t, Psl)
legend('Chargerl','DGl','Gridl','Storage Unitl','location','best')
title(['Charger 1 Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel ('Day')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2, t, Pdg2, t, Pg2, t, Ps2)
legend('Charger2', 'DG2','Grid2','Storage Unit2','location', 'best')
title(['Charger 2 Power Outputs'])
set(gca, 'XTick', [0:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2+Pcl, t, Pdg2+Pdgl, t, Pg, t, Ps)
legend('Charger','DG','Grid','Storage Unit','location','best')
title(['Sum of Component Power Outputs'])
set(gca, 'XTick', [0:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot(t,Pcl, t, Pc2, t, Pdgl,t,Pdg2, t, Pg, t, Psl,t,Ps2)
legend('Chargerl','Charger2','DGl','DG2','Grid','Storage Unitl',...

'Storage Unit2','location','best')
title(['Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel('Day')
ylabel('Power drawn (kW)')

Es = [y(8*dt+9:9*dt+8)]+y(9*dt+9)*SOC min;

figure(5)
plot(t,Es)
title(['Energy Stored in the Storage Unit'])
axis([0 dt 0 y(9*dt+9)*l.2])
set(gca, 'XTick', [0:dt/24:dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')
ylabel('Energy capacity (kWh)')
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% % % % % % % % % % % % % % %% % % % % % % % % % % W % W % % W %
Linear Programming Tool - Configuration C
Develop the variables to use matlab's linear optimization tool
General equation to be solved: C = c' x
Variables to solve for: Pdg, Ps, Pg, Es, Eg, each of length dt
x =[Pgl' Pglrating

Pg2' Pg2_rating
Pg' Pgrating
Pdg1' Pdglrating
Pdg2' Pdg2_rating
Pdg' Pdgrating
Psl' Pslrating
Ps2' Ps2_rating
Es2' Es rating
Es2' Esrating
Egrating]'

% % % % % % % % % I%%%%% %%% II I % % %% % % % % %I % 1%%

clear
clc

all

close all

%Cost Parameters
T_lifesys = 20;
T_lifedg = 25;
T lifes = 6;

T_bp = 1/12;

C_dgo = 200;

C_s_0 = 110;

C_g_0 = 15;

Cpdg = 4400;

Cp-s = 200;

Cpp_s = 220;

Cpg = 0;

Cpp_g = 0.14;

%system life (years)
%DG life (years)
%storage unit life (years)

%6 for lead-acid
%12 for Li-ion

%billing period (years)

%fixed cost of DG independent of rating ($)
%$200 for solar PV
%$3,750 for wind

%fixed cost of storage unit independent of...
%rating ($)
%$110 for lead-acid
%$80 for Li-ion

%fixed cost of grid connection applied to each...
%bill ($)
%$9 for residential
%$15 for general, no demand
%$60 for general, demand

%variable cost of DG ($/kW)
%$4400 for solar PV (includes inverter cost)
%$5500 for wind (includes power conditioning)

%variable power cost of storage unit ($/kW)
%$200 for charge controller

*variable energy cost of storage unit ($/kWh)
%$220 for lead-acid
%$800 for Li-ion

%variable power cost of the grid ($/kW)
%$0 when no demand charge
%$10 when demand charge

%variable energy cost of the grid ($/kWh)
%$0.14
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% Establish constraints
Pc max = 7.2;
Pgmax = 10;

Pdgmax = 50;

Ps max = 50;

Es max = 500;

Eg-max = 1000;

Pdg min = 0;
Ps min = -Ps max;
Pgmin = 0;
Es min = 0;
Egmin = 0;

n = 0.85;
SOCmax = 1;
SOC_min = 0.80;

d = 1;

h = 24;

m = 60;

dt = d*h*m;
t = 1:1:dt;

%5 for residential
%10 for general, no demand
%50 for general, demand
%10 for residential
%50 for general
%10 for residential
%50 for general
%100 for residential
%500 for general
%arbitrarily high value, no constraint

%power cannot go into the DG
%high enough to charge
%no power into the grid
%battery cannot reach zero state of charge
%no energy into the grid

%efficiency of the storage unit
%set maximum state of charge for the storage unit
%set minimum state of charge for the storage unit

%days in time period
%hours in time period
%60/m is the resolution of the time vector
%time period in intervals
%time vector in minutes for one full day

% EV charge profile
Pcrating = 7.2; %fixed, defined charge rating
Cprofilel = load('Cprofilepublicl.csv');
Cprofile2 = load('Cprofilepublic2.csv');

Pcl = Pcrating*Cprofilel';
Pc2 = Pc-rating*Cprofile2l;

% DG power profile
fdg = load('DGprofile.csv');

%% Develop c
%fill in c where appropriate
c = [zeros(1,dt), 0, ... %Pgl

zeros(1,dt), 0, ... %Pg2
zeros(1,dt), Cp_g*Tlifesys/T-bp, ... %Pg
zeros(l,dt), 0, ... %Pdgl
zeros(1,dt), 0, ... %Pdg2
zeros(1,dt), Cp_dg*floor(l+Tlifesys/T-lifedg),
zeros(l,dt), Cp_s*floor(l+T lifesys/T lifes),
zeros(1,dt), Cp_s*floor(l+Tlifesys/T-lifes),
zeros(l,dt), Cpp_s*floor(l+T_lifesys/T-lifes),
zeros(1,dt), Cpp_s*floor(l+Tlifesys/T-lifes),
Cppg*365/d*Tlifesys] ';
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%% Develop A and b to solve A*x <= b
% This is used to make sure that every value in Pdg' is less than or
% equal to Pdg rating, every value in Ps' is less than or equal to
% Pdg rating, etc.

% create A, start with zero because it will be a sparse matrix
A = zeros(length(c));

%create Al
Al = zeros(dt, dt+1);
for i=l:dt

Al(i,i) = 1; %fill in 1 to compare a Pg value to Pgrating
Al(i,dt+l) = -1; %fill in -l at Pgrating to compare with Pg value

end

%create A2
A2=Al;

%create A3
A31 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pcl(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Psrating
A31(i,i) = 1; %fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Ps rating

A31(i,i) = -1; %fill in 1 at Psrating to compare with Ps value
end

A31(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A3
A32 = zeros(dt, dt+1);
for i=l:dt

%this is a trick to make Psrating equal the to absolute value of
%the maximum charge or discharge power for the storage unit
if Pc2(i) > 0 %vehicle is charging, storage will be discharging

%meaning Ps will be positive, Ps <= Psrating
A32(i,i) = 1; %fill in 1 at Ps value to compare to Psrating

else %vehicle is not charging, storage can only charge
%meaning Ps will be negative, -Ps <= Psrating

A32(i,i) = -1; %fill in 1 at Psrating to compare with Ps value
end

A32(i,dt+l) = -1; %fill in -1 at Psrating to compare with Ps value
end

%create A4
A4 = zeros(dt, dt+1);
for i=l:dt
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A4(i,i) = 1; %fill in 1 at Es value to compare to Es_rating
A4(i,dt+l) = -(SOC max-SOC min); %fill in -(SOC max-SOC min) at

%Es_rating to compare and scale
%appropriately to Es value

end

%create A
Z = zeros(dt,dt+1);

Z ,Z ,Z,
Z ,Z ,Z,
Z ,Z ,Z,
Z ,Z ,Z,
Z ,Z Z
A2, Z , Z
Z ,A31, Z
Z , Z ,A32,
Z ,Z ,Z,
Z Z ,Z

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A4,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A4,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1)];

% create b which is just zero
b = zeros(size(A,1),1);

%% Develop D and g to solve D*x = g
% This relationship is used to make sure that the charger power
% requirements are met. Namely it makes sure that for every instance in
% time, Pc = Pdg + Ps + Pg.
% It will also be used to develop the shape of the panel power output and
% calculate Eb and Egrating.

Wcreate D1
D1 = zeros(dt, dt+1);
for i=l:dt

D1(i,i) = 1;
end

%create D2
D2 = zeros(dt, dt+1);
for i=l:dt

D2(i,i) = 1;
D2(i, dt+1) = -fdg(i);

end

%create D3
D31 = zeros(dt, dt+1);
for i=l:dt

if Pcl(i)> 0
D31(i,i) = d*h/dt/sqrt(n);

%fill in 1

%fill in 1 for Pdg
%fill in corresponding -fdg in

%Pdgrating position

%Vehicle is charging
%Battery supplies less energy

%than what was stored
else

D31(i,i) = d*h/dt*sqrt(n); %Battery stores less energy than
%what was supplied

end
end
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Z ,

A1,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,
Al,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A2,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A = [Al,
Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

Z ,

A2,
Z ,

Z ,

Z ,

Z ,

Z ,



%create D3
D32 = zeros(dt, dt+1);
for i=l:dt

if Pc2(i)> 0
D32(i,i) = d*h/dt/sqrt(n);

else
D32(i,i) = d*h/dt*sqrt(n);

%Vehicle is charging
%Battery supplies less energy

%than what was stored

%Battery stores less energy than
%what was supplied

end
end

%create D4
D4 = zeros(dt, dt+1);
D4(1,1) = 1;
D4(l,dt) = -1;
for i=2:dt

D4(i,i) = 1;
D4(i,i-1) = -1;

end

%create d5
d5 = [d*h/dt*ones(1,dt),0];

%create D
z = zeros(1, dt+1);
D = [D1, Z , Z , D1,

Z , D1, Z , Z

D1, D1,-D1, Z
Z , Z , Z , D1,
Z Z ,Z Z
Z ,Z ,Z ,Z,
Z ,Z ,Z ,Z,
z , z , d5, z

% create g
W we derive beq from

Z , Z , D1, Z ,
D1, Z , Z , D1,
Z , Z ,Z ,Z,
D1,-D1, Z , Z
Z , D2, Z , Z
Z , Z ,D31, Z
Z , Z , Z ,D32,
z, z, z , z ,

Z ,

Z ,

Z ,

Z ,

Z ,

D4,

Z ,

z ,

Z
Z ,

Z ,

Z ,

Z ,

Z ,

D4,
z ,

zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
zeros (dt,1);
-1 1;

the charging profile of the vehicle which is given

% fill in g
g = [Pcd; Pc2; zeros(size(D,1)-2*dt,l)];

%% Develop lmin and lmax for lmin < x < lmax
% the last relation to fulfill for the linearization tool is to define the
% upper and lower bounds for x such that lower bound < x < upper bound for
t all values within x

% Establish upper bounds based on maximum limits
lmax = [Pc max*ones(dt+1,1);...

Pcmax*ones(dt+1,1);...
Pg-max*ones(dt+1,1);...
Pc max*ones(dt+1,1); ...
Pc max*ones(dt+1,1);...
Pdgmax*ones(dt+1,1); ...
Ps max*ones(dt+1,1); ...
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Ps max*ones(dt+1,1);...
Es max*SOC max*ones(dt+1,1);...
Es max*SOC max*ones(dt+1,1);...
Eg-max];

% Establish lower bounds
lmin = [-Pg-min*ones(dt+1,1);...

-Pg-min*ones(dt+1,1);...
-Pg-min*ones(dt+1,1);...
Pdg-min*ones(dt+1,1); ...
Pdg--min*ones(dt+1,1); ...

Pdg-min*ones(dt+1,1); ...
Ps min*ones(dt+1,1); ...
Ps min*ones(dt+1,1);...
Es min*SOC min*ones(dt+1,1);...
Es min*SOC min*ones(dt+1,1);...
Egmin];

%% Solve using MATLAB's linear programming tool
% options = optimset('MaxIter',300);
[y, fval, exitflag, output] = linprog(c,A,b,D,g,lmin,lmax);%, [],options);
if y(6*dt+6)>10A-6

if y(9*dt+9)>10^-66 && y(10*dt+10)>10A-6
Cmin = CdgO*floor(l+Tlifesys/T-lifedg) + ...

2*C_s_O*floor(l+T-lifesys/T_lifes) + C_g_O*T lifesys/T-bp + c'*y;
elseif y(9*dt+9)<1A-66 && y(10*dt+10) <10A -6

Cmin = CdgO*floor(l+Tlifesys/T-lifedg) + ...

C_g_O*Tlifesys/T-bp + c'*y;
else

Cmin = C-dgO*floor(l+Tlifesys/T-lifedg) + ...

C_s_0*floor(l+T_lifesys/T_lifes) + C_g_O*Tlifesys/T-bp + c'*y;
end

else
if y(9*dt+9)>10A-66 && y(10*dt+10)>10A-6

Cmin = 2*C-sO*floor(l+T-lifesys/T-lifes) +...
C_g_O*Tlifesys/Tbp + c'*y;

elseif y(9*dt+9)<10A-66 && y(10*dt+10)<10^-6
Cmin = C_gO*Tlifesys/T-bp + c'*y;

else
Cmin = C_s_0*floor(l+Tlifesys/Tlifes) +...

C_g_o*Tlifesys/T-bp + c'*y;
end

end

% Display results
display(['The power rating of the DG is ', num2str(y(6*dt+6)),' kW'])

display(['The power rating of storage unitl is ', num2str(y(7*dt+7)),' kW'])
display(['The energy capacity of storage unitl is ', num2str(y(9*dt+9)),'
kWh'])

display(['The power rating of storage unit2 is ', num2str(y(8*dt+8)),' kW'])
display(['The energy capacity of storage unit2 is ', num2str(y(10*dt+10)),'
kWh'])
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display(['The maximum power drawn from the grid is ', num2str(y(3*dt+3)),'
kW'])
display(['The total energy drawn from the grid is ', num2str(y(10*dt+ll)),'
kWh per period'])

display(['The minimum lifetime cost is $', num2str(Cmin),'.'])
if y(6*dt+6)>10A6

display(['The DG cost is $',...
num2str(C_dgO*floor(l+Tlifesys/T lifedg)+...

Cpdg*floor(1+T_lifesys/T lifedg)*y(6*dt+6)),'.'])
else

display(['The DG cost is $',...
num2str(Cpdg*floor(l+Tlifesys/T lifedg)*y(6*dt+6)),'.'])

end

if y(8*dt+8)>10A-6
display(['The storagel cost is $',...

num2str(C_s_O*floor(l+Tlifesys/T lifes)+...
Cp-s*floor(l+Tlifesys/T lifes)*y(7*dt+7)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

else
display(['The storagel cost is $',...

num2str(Cp-s*floor(l+Tlifesys/T lifes)*y(7*dt+7)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(9*dt+9)),'.'])

end

if y(9*dt+9)>10A-6

display(['The storage2 cost is $',...
num2str(C_s_O*floor(l+Tlifesys/T lifes)+...
Cp-s*floor(l+Tlifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(10*dt+10)),'.'])

else
display(['The storage2 cost is $',...

num2str(Cps*floor(l+Tlifesys/T lifes)*y(8*dt+8)+...
Cpp_s*floor(l+Tlifesys/T lifes)*y(10*dt+10)),'.'])

end

display(['The grid cost is $',...
num2str(C-gO*TIlifesys/Tbp+Cp_g*Tlifesys/T-bp*y(3*dt+3)+...
Cppg*365/d*Tlifesys*y(lo*dt+l1)),'.'])

t=l:dt;

Pgl =[y(l:dt)];
Pg2 =[y(dt+2:2*dt+l)];
Pg = [y(2*dt+3:3*dt+2)]
Pdgl =[y(3*dt+4:4*dt+3)]
Pdg2 =[y(4*dt+5:5*dt+4)];
Pdg =[y(5*dt+6:6*dt+5)];
Ps1 =[y(6*dt+7:7*dt+6)]
Ps2 =[y(7*dt+8:8*dt+7)];

figure
plot(t,Pcl, t, Pdgl, t, Pgl, t, Psl)
legend('Chargerl', 'DG1', 'Gridl', 'Storage Unitl','location', 'best')
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title(['Charger 1 Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel('Day')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2, t, Pdg2, t, Pg2, t, Ps2)
legend('Charger2','DG2','Grid2','Storage Unit2','location','best')
title(['Charger 2 Power Outputs'])
set(gca, 'XTick', [0:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot(t,Pc2+Pcl, t, Pdg, t, Pg, t, (Psl+Ps2))
legend('Charger','DG','Grid','Storage Unit','location','best')
title(['Sum of Component Power Outputs'])
set(gca, 'XTick', [0:dt/(24):dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('Time of Day (hours)')
ylabel('Power drawn (kW)')

figure
plot (t, Pcl, t, Pc2, t, Pdg, t, Pg, t, Psl, t, Ps2)
legend('Chargerl','Charger2','DG',' Grid','Storage Unitl',...

'Storage Unit2','location','best')
title(['Power Outputs'])
set(gca, 'XTick', [0:dt/(2*6):dt])
set(gca, 'XTickLabel', [0:.5:6])
xlabel('Day')
ylabel('Power drawn (kW)')

Esl = [y(8*dt+9:9*dt+8)]+y(9*dt+9)*SOC min;
Es2 = [y(9*dt+10:10*dt+9)]+y(10*dt+10)*SOC_min;

figure(5)
plot(t,Esl, t, Es2)
title(['Energy Stored in the Storage Unit'])
axis([0 dt 0 y(9*dt+9)*1.2])
set(gca, 'XTick', [0:dt/24:dt])
set(gca, 'XTickLabel', [0:1:24])
xlabel('time of day (hours)')
ylabel('Energy capacity (kWh)')
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