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Abstract

Near-Infrared Spectroscopy (NIRS) allows the recovery of the hemodynamic response
associated with evoked brain activity. The signal is contaminated with systemic phys-
iological interference which occurs in the superficial layers of the head as well as in the
brain tissue. The back-reflection geometry of the measurement makes the DOI signal
strongly contaminated by systemic interference occurring in the superficial layers. A
recent development has been the use of signals from small source-detector separa-
tion (1 cm) optodes as regressors. Since those additional measurements are mainly
sensitive to superficial layers in adult humans, they help in removing the systemic
interference present in longer separation measurements (3 cm). Encouraged by those
findings, we developed a dynamic estimation procedure to remove global interference
using small optode separations and to estimate simultaneously the hemodynamic re-
sponse. The algorithm was tested by recovering a simulated synthetic hemodynamic
response added over baseline DOI data acquired from 6 human subjects at rest. The
performance of the algorithm was quantified by the Pearson R2 coefficient and the
mean square error (MSE) between the recovered and the simulated hemodynamic
responses. Our dynamic estimator was also compared with a static estimator and
the traditional adaptive filtering method. We observed a significant improvement
(two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman
filter dynamic estimator compared to the traditional adaptive filter, the static estima-
tor and the standard GLM technique. We then show that the systemic interference
occurring in the superficial layers of the human head is inhomogeneous across the sur-
face of the scalp. As a result, the improvement obtained by using a short separation
optode decreases as the relative distance between the short and the long measurement



is increased. NIRS data was acquired on 6 human subjects both at rest and during a
motor task consisting of finger tapping. The effect of distance between the short and
the long channel was first quantified by recovering a synthetic hemodynamic response
added over the resting-state data. The effect was also observed in the functional data
collected during the finger tapping task. Together, these results suggest that the short
separation measurement must be located as close as 1.5 cm from the standard NIRS
channel in order to provide an improvement which is of practical use. In this case,
the improvement in Contrast-to-Noise Ratio (CNR) compared to a standard GLM
procedure without using any small separation optode reached 50% for HbO and 100%
for HbR. Using small separations located farther than 2 cm away resulted in mild or
negligible improvements only.

Thesis Supervisor: David A. Boas
Title: Associate Professor of Radiology
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Chapter 1

Introduction

Diffuse optical imaging (DOI) is an experimental technique that uses near-infrared

spectroscopy (NIRS) to image biological tissue [48, 37, 13, 19, 20]. The dominant chro-

mophores in this spectrum are the two forms of hemoglobin: oxygenated hemoglobin

(HbO) and reduced hemoglobin (HbR). In the past 15 years, this technique has been

used for the noninvasive measurement of the hemodynamic changes associated with

evoked brain activity [48, 20].

Compared with other existing functional imaging methods e.g., functional Mag-

netic Resonance Imaging (fMRI), Positron Emission Tomography (PET), Electroen-

cephalography (EEG), and Magnetoencephalography (MEG), the advantages of DOI

for studying brain function include good temporal resolution of the hemodynamic re-

sponse, measurement of both HbO and HbR, nonionizing radiation, portability, and

low cost. Disadvantages include modest spatial resolution and limited penetration

depth.

The sensitivity of NIRS to evoked brain activity is also reduced by systemic physio-

logical interference arising from cardiac activity, respiration, and other homeostatic

processes [36, 46, 38, 8]. These sources of interference are called global interference or

systemic interference. Part of the interference occurs both in the superficial layers of



the head (scalp and skull) and in the brain tissue itself. However, the back-reflection

geometry of the measurement makes NIRS significantly more sensitive to the super-

ficial layers as illustrated in Fig. 1-1. As such, the NIRS signal is often dominated by

systemic interference occurring in the skin and the skull.

Figure 1-1: Sensitivity profile of a given source-detector pair in NIRS.

Different methods have been used in the literature to remove the systemic interference

from DOI measurements. Low pass filtering is widely used in the literature, as it is

highly effective at removing cardiac oscillations [9, 29]. However, there is a signifi-

cant overlap between the frequency spectrum of the hemodynamic response to brain

activity and the spectrum of other physiological variations such as respiration, sponta-

neous low frequency oscillations and very low frequency oscillations. Frequency-based

removal of these sources of interference can therefore result in large distortion and

inaccurate timing for the recovered brain activity signal. As such, more powerful

methods for global noise reduction have been developed. These include adaptive av-

erage waveform subtraction [15], subtraction of another NIRS source-detector (SD)

channel performed over a non-activated region of the brain [9], principal component

analysis [50, 10] and finally wavelet filtering [33, 35, 28, 34].

A recent development for removing global interference from NIRS measurements is

to use additional optodes in the activated region with small SD separations that are



sensitive to superficial layers only [42, 52, 53, 51, 47, 49, 16]. This method is illustrated

in Fig. 1-2. Making the assumption that the signal collected in the superficial layers is

Figure 1-2: Illustration of the short separation regression method in NIRS. (Figure
taken from Zhang et al [52].)

dominated by systemic physiology which is also dominant in the longer SD separation

NIRS channel, those additional measurements can be used as regressors to filter

systemic interference from the longer SD separations. Saager et al [41] used additional

optodes and a linear minimum mean square estimator (LMMSE) to partially remove

the systemic interference in the signal. In a second step, the evoked hemodynamic

response was estimated using a traditional block-average method over the different

trials. The algorithm was further refined by Zhang et al [52, 53, 51] to consider

the non-stationary behavior of the systemic interference. They used an adaptive

filtering technique together with additional small separation measurements to filter

the systemic interference from the raw signal and then performed the block-average

technique to estimate the hemodynamic response in a second step.

Although these methods greatly reduced global interference in NIRS data, the filtering

of the systemic interference and the estimation of the hemodynamic response were

performed in two steps, which might not be optimal. Previous studies have shown

that the simultaneous estimation of the hemodynamic response and removal of the

systemic interference using temporal basis functions [32, 39] or auxiliary systemic

measurements [7] was possible using state-space modeling. Moreover, Diamond et



al proposed a way to quantify the accuracy of such filtering methods. Real NIRS

data collected over the head of human subjects at rest were used to generate realistic

noise. A synthetic hemodynamic response was added over the real NIRS baseline time

course and the response was then recovered from this noisy data set. The recovered

response was then compared with the synthetic one used to generate the time course.

This method for evaluating reconstruction algorithms has been reproduced by other

groups [33, 35, 34].

The main objectives of this work were:

1. To integrate the short separation regression method in a state-space framework.

2. To test the accuracy of the short separation regression for different short optode

placements.
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Chapter 2

State-space modeling for NIRS

This section was publisehd in:

Gagnon, L., Perdue, K., Greve, D.N., Goldenholz, D., Kaskhedikar, G. and Boas, D.A.

(2011). "Improved recovery of the hemodynamic response in diffuse optical imaging

using short optode separations and state-space modeling." Neurolmage 56(3): 1362-

1371.

In the present study, we combined small separation measurements and state-space

modeling for the estimation of the hemodynamic response and simultaneous global

interference cancellation. We developed both a static and a dynamic estimator. We

evaluated the performance of our algorithms using baseline data taken from 6 human

subjects at rest and by adding a synthetic hemodynamic response over the baseline

measurements. We finally compared our new methods with the adaptive filter [52]

and the standard method using no small SD separation measurement.



2.1 Methods

2.1.1 Experimental data

For this study, 6 healthy adult subjects were recruited. The Massachusetts General

Hospital Institutional Review Board approved the study and all subjects gave written

informed consent. Subjects were instructed to rest while simultaneous BOLD-fMRI

and NIRS data were collected. Three 6-minute long runs were collected for each

subject. Only the NIRS data was used in this study. The localization and the

geometry of the NIRS probe used are shown in Fig. 3-1 a) and b) respectively. Only

the two 1 cm SD separation channels and the 8 closest neighbor (3 cm SD separation)

channels were used in the analysis.

a) b) Front

2 cm

1 cm
1 CM

3 cm Back

source
0detector

Figure 2-1: a) Position of the probe over the head of the subjects b) Geometry of the
optical probe. Two different SD separations were used: 1 cm and 3 cm. The NIRS
channels used for the analysis are shown in red.

Changes in optical density for each SD pair were converted to changes in hemoglobin

concentrations using the Beer-Lambert relationship [4, 6, 2] and the SD distances

illustrated in Fig. 3-1 b). A pathlength correction factor of 6 and a partial volume

correction factor of 50 were used for all SD pairs [26, 27].



2.1.2 Synthetic hemodynamic response

To compare the performance of our two algorithms with existing algorithms, a syn-

thetic hemodynamic response was generated using a modified version of a three com-

partment biomechanical model [25, 23, 22]. Each parameter of the model was set

to the middle of its physiological range [25] which results in an HbO increase of 15

pM and an HbR decrease of 7 pM. The amplitude of this synthetic response was

of the same order as real motor responses on humans using NIRS and those spe-

cific pathlength and partial volume correction factors [27]. These synthetic HbO

and HbR responses were then added to the unfiltered concentration data with an

inter-stimulus interval taken randomly from a uniform distribution (10-35 s) for each

individual trial. Over the six-minute data series, we added either 10, 30 or 60 individ-

ual evoked responses. The resulting HbO and HbR time courses were then highpass

filtered at 0.01 Hz to remove any drifts and lowpass filtered at 1.25 Hz to remove the

instrument noise. The filter used was a 3 rd order Butterworth-type filter.

Four different methods were then used to recover the simulated hemodynamic re-

sponse added to our baseline data. The first two were taken directly from literature

and consisted of the standard General Linear Model (GLM) without using a small SD

separation measurement and the adaptive filtering (AF) method developed by Zhang

et al [52]. The third one was a simultaneous static deconvolution and regression and

will be called the static estimator (SE) here for simplicity. The last one was a dynamic

Kalman filter estimator (KF).

2.1.3 Signal modeling

For all the methods used in this study, the discrete-time hemodynamic response h at

sample time n was reconstructed with a set of temporal basis functions

Nw

h [n] =Z wibi [n] (2.1)
i=1



where bi [n] are normalized Gaussian functions with a standard deviation of 0.5 s and

their means separated by 0.5 s over the regression time as shown in Fig. 2-2 a). N,

is the number of Gaussian functions used to model the hemodynamic response and

was set to 15 in our work. Using this set, the noise-free simulated HbO response

was fit with a Pearson R2 of 1.00 and a mean square error (MSE) of 9.2 x 10-5 and

the noise-free simulated HbR response was fit with an R2 of 1.00 and an MSE of

2.1 x 10-5. The MSE was lower for HbR only because the amplitude of the simulated

HbR response was lower. These fits are shown in Fig. 2-2 b). The weights for the

temporal bases wi were estimated using the four different methods described in the

following sections.

1 20

0 6)

0.9 )V b) 2 HbO: 1.0000
0 .515 0.8 MSE HbO: 9.2236e-05

0 2
MSE HbR: 2.0542e-05

0.6

0.5-5

0.4 26

0.3-

0.2

0.1- /- b iuae

020

0S 1 6 80 R2 HbR 1.000

FIR time (sec) time (s)

Figure 2-2: a) Temporal basis set used in the analysis. The finite impulse response
(FIR) of the temporal basis functions ranged from 0 to 8 s after the onset of the
simulated response. b) Noise-free simulated responses (dotted lines) overlapped with
the responses recovered with a least-square fit (continuous lines) using the temporal
basis set. The RM2 and the MSE of the fit are indicated for both HbO and HbR.

For the standard block average estimator, we modeled the concentration signal in the

3 cm separation channel Y3 [n] by

00

Y3[ Z h-[k] u[- - k]. (2.2)
k--oo

F [n] is called the onset vector and is a binary vector taking the value 1 when s

corresponds to a time where the stimulation starts and 0 otherwise.



For our static simultaneous estimator and our dynamic Kalman filter simultaneous

estimator, we modeled the signal in the 3 cm separation channel y3 [n] by a linear

combination of the 1 cm separation signal yi [n] and the hemodynamic response h [n]

by
00 Na

ya [n] = :h [k]u[n -k]+) aiyi[n +1 -i]. (2.3)
k=-oo i=1

Na is the number of time points taken from the 1 cm separation channel to model

the superficial signal in the 3 cm separation channel. This value was set to 1 in our

work for all three estimators using short SD separation measurements but could be

any integer in principle. The ai's are the weights used to model the superficial signal

in the 3 cm separation channel from the linear combination of the 1 cm separation

signal. The states to be estimated by the static and the Kalman filter estimators were

the weights for the superficial contribution ai and the weights for the temporal bases

wi. All those weights were assumed stationary in the case of the static estimator, and

time-varying in the case of the Kalman filter estimator.

The motivation for Eq. 3.2 is that the residual between the 3 cm channel and the

1 cm channel corresponds to the hemodynamic response of the brain. This is well

justified when the brain activation is detected only in the 3 cm separation channel

and when the systemic physiology pollutes both the 1 cm and the 3 cm separation

channels. It is a reasonable assumption for cognitive NIRS measurements performed

on an adult head. In this case, the hemodynamic response is expected to occur

only in the brain tissue and the 1 cm separation channel does not reach the cerebral

cortex, making the 1 cm measurement sensitive to scalp and skull fluctuations only.

This would also be justified for cognitive measurements on babies by reducing the

separation of the 1 cm signal to ensure that this channel remains insensitive to brain

hemodynamics. However, our assumption would be violated for specific stimuli (e.g.

the Valsalva maneuver) for which the hemodynamic response occurs more globally

across the head. Other scenarios that could be troublesome would be if the systemic

physiology occurs only in the brain tissue (e.g. an activation-like oscillation a few

seconds after the true stimulus response) or if the interference is phase-locked with



the stimulus. In this case, the systemic physiology could potentially be modeled by

our temporal basis set (overfitting).

2.1.4 Standard General Linear Model

For this first method, and only for this one, the 1 cm SD separation channels were

not used. The pre-filtered concentrations from the 3 cm SD separation were further

lowpass filtered at 0.5 Hz using a 3 rd order Butterworth filter. Re-expressing Eq. 2.2

in matrix form, we get

Y3 = Uw (2.4)

where y3 is simply the length Nt time course vector y3 [n]

y3 = [ Y3 [1]
-T

- Y 3 [Nt] . (2.5)

The columns of U are the linear convolution of the onset vector u [n] with each

temporal basis function bi [n]

U = u * b1 [n] -.. u * bN [n] (2.6)

and w is the vector containing the weights for the temporal basis wi

-[T

w = W1 ... wN, I
(2-7)

The estimates of the weights ' are found by inverting Eq.

Penrose pseudoinverse

n = (UTU)l UTy 3

2.4 using the Moore-

(2.8)

and the hemodynamic response is finally reconstructed with the estimates of the

temporal basis weights Ci obtained from *.

When the GLM was used without any other estimator (i.e. not as the last step of



the adaptive filter or the Kalman filter), we included a 3 rd order polynomial drift as a

regressor. This procedure is used regularly in fMRI analysis. In this case, the matrix

U is expanded

G= [U D (2.9)

where D is an Nt by 4 drift matrix given in the 2.5. The estimates of the weights n'

are found by inverting

* = (G T G)- GT Y3. (2.10)

2.1.5 Adaptive filtering

The adaptive filtering technique was taken directly from [52]. Only the salient points

are outlined here. The HbO and the HbR responses were recovered independently

and the adaptive filter was used for both. The two pre-filtered concentration signals

at 1 cm (yi) and 3 cm (y3) were first normalized with respect to their respective

standard deviation. This was to ensure that the standard deviation of the two signals

used in the computation were close 1 to accelerate the convergence of the algorithm

[52]. The output of the filter, e [In], is then given by

Na

e [n] = y3 [n] )- wk,n yi [n - k] (2.11)
k=0

where the coefficient of the filter, Wk,n, is updated via the Widrow-Hoff least mean

square algorithm [17]:

Wk,n = Wk,n-1 + 2Ae [In - 1]1 Y[In - k]. (2.12)

In our study, w was initialized at Wk,1 = [1 0 0 ... ]T and p was set to 1x10- 4 as in [52].

After trying different values for Na, we identified Na = 1 as the value minimizing the

MSE between our simulated and recovered hemodynamic responses. The output e [in]

was then multiplied by the original standard deviation of y3 to rescale it back to its



original scale. The output of the filter was then further lowpass filtered at 0.5 Hz and

the hemodynamic response was finally estimated using the standard GLM method

(with no drift) by substituting Y3 by e in Eq. 2.8

W = (UTU) UTe (2.13)

where e is simply the length Nt time course vector e [n]

e = [e [1] ... e [Nt] ] (2.14)

and again the hemodynamic response is finally reconstructed with the estimates of

the temporal basis weights i obtained from w.

2.1.6 Static estimator

Our static estimator is an improved version of the linear minimum mean square

estimator (LMMSE) developed by Saager et al [41, 42]. In their work, they used the

small separation signal and an LMMSE to estimate the contribution of the superficial

signal in the large separation signal. This superficial contamination was then removed

from the large separation signal and the hemodynamic response was then estimated

from the residual (large separation signal without the superficial contamination). In

our study, we simultaneously removed the contribution of the superficial signal in the

3 cm separation signal and estimated the hemodynamic response.

Eqs. 3.2 and 3.1 can be re-expressed in matrix form

Y3 = Ax (2.15)

where ya is the vector representing the signal in the 3 cm channel and is given by Eq.



2.5, x is the concatenation of the wi's and ai's

X = wi ... wN a, ... aN a (2.16)

and A is the concatenation of the Nt by N, matrix U given by Eq. 3.6 and the Nt

by Na matrix Y

A= [U Y (2.17)

where

Y1 [1] 0 .. .

Syji [2] y1 [1] 0 (2.18)

The first Nw columns of A are the linear convolution of the onset vector u [n] with

each temporal basis function bi [n] and the last Na columns of A are simply the signal

from the 1 cm separation channel yi [n] delayed by one more sample in each column.

In order to compare the different estimators on the same footing, Na was set to 1 for

all three estimators using short SD separations. A more explicit expression for A is

given in 2.5. The estimates of the weights i are found by inverting Eq. 2.15 using

the Moore-Penrose pseudoinverse

k = (ATA) lATy 3  (2.19)

and the hemodynamic response is finally reconstructed with the estimates of the

temporal basis weights Cvi obtained from i. This reconstructed response was further

lowpass filtered at 0.5 Hz.

2.1.7 Kalman filter estimator

For our dynamic Kalman filter estimator, Eqs. 3.2 and 3.1 need to be re-express in

state-space form:

x [n + 1] = Ix [n] + w [n] (2.20)



y3 [n] = C [n] x [n] + v [n]

where w [n] and v [n] are the process and the measurement noise respectively. x [n]

is the sample n of x given by Eq. 3.5, I is an N, + Na by N, + Na identity matrix

and C [n] is an N, + Na by 1 vector whose entries correspond to the nth row of A in

Eq. 2.17. The estimate i [n] at each sample n is then computed using the Kalman

filter [31] followed by the Rauch-Tung-Striebel smoother [40]. The Kalman filter

recursions require initialization of the state vector estimate i [0] and estimated state

covariance P [0]. In our study, the initial state vector estimate x [0] was set to the

values obtained using our static estimator and the initial state covariance estimate

P [0] was set to an identity matrix with diagonal entries of 1x10' for the temporal

basis states and 5x10- 4 for the superficial contribution state. The Kalman filter

algorithm was run a first time to estimate the initial state covariance and then run a

second time. The initial covariance estimate for the second run was set to the final

covariance estimate of the first run. Running the filter twice makes the method less

sensitive to the initial guess P [0]. Statistical covariance priors must also be specified

for the state process noise cov (w) = Q and the measurement noise cov (v) = R.

The process noise determines how big the states are allowed to vary at each time

step. If this value is small, the estimator will approach the static estimator. If

it is large, the state will be allowed to vary significantly over time. In this work,

the process noise covariance only contained nonzero terms on the diagonal elements.

Those diagonal terms were set to 2.5x10-6 for the temporal basis state and 5x10-6

for the superficial contribution states. This imbalance in state update noise was also

used by Diamond et al [7] and caused the functional response model to evolve more

slowly than the superficial contribution model. Practically, the measurement noise

determine how well we trust the measurements during the recovery procedure. In

our study, the measurement noise covariance was set to an identity matrix scaled by

5x102 Different values have been tried for the process noise and the measurement

noise covariances. Changing the value of Q and R over two orders of magnitude

did not result in notable performance changes and we could have drawn all the same

(2.21)



conclusions presented in this paper using these alternative Q and R values. The

values for Q and R presented above were empirically determined to minimize the

MSE between the recovered and the simulated hemodynamic response. The algorithm

was then processed with the following prediction-correction recursion [12].

Since the state update matrix is the identity matrix in Eq. 3.3, the state vector x

and state covariance P are predicted with

[nn - 1] =i [n - in - 1] (2.22)

P [nmn - 1] = P [n - 1|n - 1] + Q. (2.23)

The Kalman gain K is then computed

K [n] = P [nIn - 1] C [n]T (C [n] P [nIn - 1] C [n]T + R) (2.24)

and the state vector x and state covariance P predictions are corrected with the most

recent measurements y3 [n]

i[nn] =:i [nn - 1] + K, (y3 [n] - C [n] i [nIn - 1]) (2.25)

P [nln] = (I - K [n] C [n]) P [nn - 1]. (2.26)

After the Kalman algorithm was applied twice, the Rauch-Tung-Striebel smoother

was applied in the backward direction. With the identity matrix as the state-update

matrix in Eq. 3.3, the algorithm is given by [18]:

5- [n|Nt] = r [nln] + N [nln] N [n + 1|n]- (i, [n + 1|N,] -:k [n + 1|n]) . (2.27)

The complete time course of the estimated hemodynamic response h [n] was then

reconstructed for each sample time n using the final state estimates :ki[n|Nt] and the



temporal basis set contained in C [n]

h [n] = C [n]:x [nlNt] . (2.28)

This reconstructed hemodynamic response time course h [n] was further lowpass fil-

tered at 0.5 Hz and the standard GLM estimator (with no polynomial drift) was then

applied

(UTU) UTi (2.29)

where U is the matrix defined in Eq. 3.6 and

h = [N [1] ... h [N,] (2.30)

to obtain the final weights tiv used to reconstructed the final estimate of the hemo-

dynamic response. We observed that these last filtering and averaging steps further

improved the estimate of the hemodynamic response compared to reconstructing the

hemodynamic response from the final state estimates of the smoother.

2.1.8 Statistical analysis

Only specific channels based on the following criteria were kept in the analysis. The

raw hemoglobin concentrations were bandpass filtered with a 3rd order Butterworth-

type filter between 0.01 Hz and 1.25 Hz [53]. The Pearson correlation coefficient

R2 between each 1 cm HbO channel and its 4 closest neighbor 3 cm HbO channels

(before adding the synthetic hemodynamic response) were then computed and the

SD pairs for which R2 < 0.1 were discarded for the analysis. The mean R2 across

the selected channels was 0.47 for HbO and 0.22 for HbR. We also computed the

Pearson correlation coefficient after adding the synthetic hemodynamic response and

similar results were obtained. The mean differences between the R2 's computed be-

fore and after adding the synthetic response was 0.01 for HbO and 0.003 for HbR,

with the highest value obtained before adding the synthetic response to the real data.



Those small differences emphasize the fact that the signals were dominated by sys-

temic physiology in our simulations. This result also suggests that no resting state

measurement is required to select the channels which would benefit from the small

separation measurement since the correlation can be estimated from the time course

containing brain activation. Zhang et al [51] showed that the adaptive filter method

was working well when the correlation between the short and the long separation

channel for HbO was greater than 0.6. We used 0.1 in this work to include more

channels in the analysis and to show that our state-space method was working well

when the initial correlation was lower than 0.5. Using this criterion, 94 out of the

144 possible channels (6 subjects x 3 runs x 8 channels) were kept for further anal-

ysis. This represented 65 % of the original data set. The numbers of channels kept

for each of the subjects were 16, 14, 13, 17, 19 and 15 respectively. The signal to

noise ratio (SNR) for each channel was computed as the amplitude of the simulated

hemodynamic response divided by the standard deviation of the time course of the

signal. The mean SNR across the selected channels was 0.45 for HbO and 0.38 for

HbR.

We used two different metrics to compare the performance of the different algorithms.

The first one was the Pearson correlation coefficient R2 between the true synthetic

hemodynamic response and the recovered response given by each algorithm. This

metric was used to access the level of oscillation in the recovered hemodynamic re-

sponse created by the global interference not removed by the algorithms and still

contaminating the signal. Since the R2 coefficient is scale invariant, it could not give

any information about the accuracy of the amplitude of the recovered hemodynamic

response. To overcome this problem, we also used the mean square error (MSE) as a

metric to compare the performance of the different algorithms.

Since the random position of the trials across the same time course can greatly affect

the accuracy of the recovered hemodynamic response, we repeated the procedure 30

times with 30 different random onset time instances for each of the 94 selected chan-

nels. The mean and the standard deviation of the 2820 R2 coefficients (94 channels



x 30 instances) for each algorithm were then computed after applying the Fisher

transformation

z = tanh- 1 (R 2 ) (2.31)

and the results were then inverse transformed. The mean and the standard deviation

of the 2820 MSEs were also computed. This procedure was repeated independently

for 10, 30 and 60 trials in each six-minute data series. The different algorithms were

compared together by computing two-tailed paired t-tests on their MSEs and Fisher

transformed R2 coefficients.

2.2 Results

Typical time courses of the recovered hemodynamic response overlapped with the

true simulated response are shown in Fig. 2-3 a) to d) for the four algorithms tested.

The SNR for this particular simulation was 0.33 for HbO and 0.81 for HbR. The R2 's

and the MSEs for HbO and HbR are shown in the legend of each individual panel.

Those individual results were obtained from a single simulation with 10 trials. The

time courses for this specific simulation are shown in panel e) for HbO and f) for HbR.

Both the initial 1 cm channel and the 3 cm channel containing the added synthetic

hemodynamic responses are shown as well as the position of the 10 individual onset

times. The R2 between the initial 1 cm channel and the initial 3 cm channel (no

response added) is also shown in the legend of panel e) and f) for HbO and HbR

respectively. All concentrations are expressed in micromolar (tM) units.

The summary R2 statistics over all subjects, all channels and all instances are shown

in a bar graph in Fig. 2-4 for both HbO and HbR. These values represent the Pearson

R2 coefficients computed between the recovered and the simulated hemodynamic

responses. The bars represent the mean and the error bars represent the standard

deviation. Both the mean and the standard deviation were computed on the Fisher

transformed values and then inverse transformed. Two-tailed paired t-tests on the
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Figure 2-3: a) to d) Typical time courses of the recovered hemodynamic responses
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synthetic responses added) overlapped with the 1 cm channel. The positions of the
onset time are also shown and the correlation coefficients between the 1 cm and the
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Fisher transformed values were performed between all the different estimators and

statistical significance at the level p < 0.05 is illustrated by a black line over the bars

for which a significant difference was observed. In our three simulations using 10,

30 and 60 trials respectively, the R2's for HbO and HbR obtained using our Kalman

filter dynamic estimator were significantly higher (p < 0.05) than the ones obtained

using the adaptive filter. Moreover, the R2's obtained were higher with the Kalman

filter than with the static estimator. These differences were significant (p < 0.05)

except in our 10 trial simulation for HbO.

Similarly, the summary MSE statistics over all subjects, all channels and all instances

are shown in Fig. 2-5. These values represent the mean square error computed be-

tween the recovered and the simulated hemodynamic responses. The bars represent

the mean while the error bars represent the standard deviation. Two-tailed paired

t-tests were performed between all the different estimators and statistical significance

at the level p < 0.05 is illustrated by a black line over the bars for which a significant

difference was observed. The MSEs obtained for HbO and HbR in our three simu-

lations (10, 30 and 60 trials) were significantly lower (p < 0.05) with our Kalman

filter estimator than with the adaptive filter. Futhermore, the MSEs obtained with

the Kalman filter were also lower (p < 0.05) than the ones obtained with the static

estimator for both HbO and HbR in our three simulations.

Table 2.1 summarizes the statistical analysis over all the subjects, all the channels

and all the instances for both HbO and HbR and for the simulations with 10, 30 and

60 trials. Each algorithm was compared to every other. The values shown are the

p-values obtained from a two-tailed paired t-test. Statistical differences at the level

p < 0.05 are indicated with bold script. These p-values were computed from the data

summarized in the bar graphs shown in Figs. 2-4 and 2-5.
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Table 2.1: Cross-comparison of the different algorithms. P-values for the two-tailed
paired t-tests accross all subjects, all channels and all intances are shown. For the R2

coefficients, the tests were performed on the Fisher transformed values. Bold face
indicates significant difference at the p < 0.05 level. KF: Kalman filter estimator, SE:
Static estimator, AF: Adaptive filter, GLM: Standard GLM with 3rd order drift.

10 trials 30 trials 60 trials
KF SE AF KF SE AF KF SE AF

R2 HbO
SE 6e-02 - - 3e-03 - - 2e-07 - -

AF 2e-07 6e-06 - le-03 5e-01 - 4e-04 2e-03 -

GLM 3e-15 2e-13 4e-07 8e-16 2e-12 4e-13 6e-15 le-10 5e-14

R 2 HbR
SE 5e-05 - - 2e-09 - - le-08 -

AF 2e-07 2e-03 - 3e-05 5e-03 - 4e-02 6e-10 -

GLM 5e-04 2e-01 4e-01 7e-04 3e-01 4e-02 le-04 6e-01 7e-04

MSE HbO
SE 4e-06 - - 3e-05 - - 4e-06 - -

AF 2e-05 7e-03 - le-06 7e-01 - 2e-05 6e-02 -

GLM 2e-12 2e-09 5e-05 le-13 7e-11 le-11 4e-10 3e-08 2e-09

MSE HbR
SE 2e-05 - - 4e-05 - - le-04 - -

AF 3e-05 2e-01 - 2e-04 4e-03 - 7e-03 7e-05 -

GLM 6e-08 3e-02 le-02 3e-07 9e-01 9e-02 4e-06 le+00 5e-04



2.3 Discussion

2.3.1 Simultaneous filtering and estimation

One of the salient features of our Kalman filter estimator is that it filters the global

interference and simultaneously estimates the hemodynamic response. This feature

resulted in a more accurate recovery of the hemodynamic response with our Kalman

filter estimator compared to the adaptive filter, for which the filtering and the es-

timation were performed in two distinct steps. Independent regression of the small

separation channel potentially removes contributions of the hemodynamic response in

the signal which lead to an underestimation of the hemodynamic response thereafter.

Our Kalman filter estimator avoids this pitfall. Compared to the adaptive filter, our

Kalman filter estimator showed significant improvements at the p < 0.05 level in both

HbO and HbR recoveries for our 10, 30 and 60 trial simulations. Those improvements

were observed in both Pearson R2 and MSE metrics.

2.3.2 Dynamic versus static estimation

The systemic interference present in NIRS data is non-stationary. This has been nicely

shown by Lina et al [33] who performed a detailed wavelet analysis of resting NIRS

data with blood pressure, respiratory and heart rate data acquired simultaneously

on awake human subjects. The amplitude of the systemic physiology measured by

the 1 cm and the 3 cm channel depends on the respective pathlength of the light for

each channel. Systemic physiology could alter the optical properties of the tissue over

time. As a result, a sustained change in absorption could modify the pathlength of

the light independently in the 1 cm and the 3 cm channel, modifying at the same

time the relative amplitude of the systemic physiology detected in each channel.

This feature of the systemic interference explains why our Kalman filter, which is a

dynamic estimator, performed better than the static estimator. Using our Kalman



filter estimator, improvements in the HbO and HbR recovery were observed in both

the Pearson R2 and the MSE metrics compared to the static estimator. All these

improvements were significant at the p < 0.05 level except for the HbO Pearson R2

improvement which was not significant in our 10 trial simulation.

2.3.3 HbO versus HbR

In their wavelet analysis, Lina et al [33] also showed that the HbO time courses

were more contaminated by global interference than the HbR time courses. As such,

the correlation between the 1 cm and 3 cm channel should be higher for HbO than

HbR, and filtering methods using 1 cm SD separations should work better for HbO

than for HbR. In our data, the mean initial Pearson R2 correlation between the 1

cm and 3 cm signals were higher for HbO than HbR (0.47 vs 0.22). Comparing

our Kalman filter estimator with the standard block average estimator, the p-values

obtained in the t-tests performed on the Fisher transformed Pearson R2 's and the

MSEs were at least five orders of magnitude lower for HbO than HbR. This indicates

that the improvements observed with our Kalman filter were more prominent for HbO

than HbR. This better performance in the recovery of HbO over HbR using a small

separation method was also reported by Zhang et al [51] using their adaptive filter.

2.3.4 Impact of initial correlation

In the case where the systemic physiology present in the 3 cm separation did not

correlate with the systemic physiology present in the 1 cm channel, the performance

of the Kalman filter was similar to the standard GLM. In this case, the model cannot

reproduce the data and the ai coefficients in Eq. 3.2 converge to zero. As such, the

wi's estimated by the Kalman filter are very close to the ones obtained using the

GLM. An important point is that in the case of low initial R2 coefficients (0.1 <

R2 < 0.2), taking into account the 1 cm channel with the Kalman filter did not



decrease the performance of the recovery compared to the GLM. On the other hand,

the performance of the adaptive filter for (0.1 < initial R2 < 0.2) was worst than

the GLM. This counter-performance of the adaptive filter for poor initial correlation

between the short and the long channel was also reported by Zhang et al [51]. These

findings suggest that the Kalman filter can be used even if the correlation between

the 1 cm and the 3 cm channel is low as opposed to the adaptive filter. In the worst

case, the Kalman filter will be as good as the standard GLM. However, the higher

the initial correlation between the 1 cm and the 3 cm channel is, the more significant

is the improvement using a small separation measurement. This is illustrated by

the larger improvement obtained for HbO than HbR when using a small separation

measurement together with our Kalman filter.

2.3.5 Technical notes

The MSEs obtained in our simulations and presented in Fig. 2-5 were lower for HbR

than HbO. This occurred because the amplitude of the simulated HbR response was

lower than the simulated HbO response which resulted in lower MSEs for HbR. This

is illustrated for noise-free data in Fig. 2-2b.

For all the results presented in this paper, a single time point was taken from the 1

cm channel to regress the 3 cm channel. In practice, this value could be any integer.

A simple phase shift (delay) between the 3 cm and 1 cm channel would be taken into

account by using multiple time points from the 1 cm. In this case, all the a's in Eq.

3.2 would converge to zero except for one a at the value of i corresponding to the

shift between the two signals in terms of number of sample points. Different values

for Na were tested during our simulations. With the adaptive filter, we obtained

better results using a single point than using 100 points as in Zhang et al [52]. Using

100 points results in overfitting the signal which removes more of the hemodynamic

response contribution than using a single point. This is another pitfall of the non-

simultaneous recovery and filtering feature of the adaptive filter which is avoided with



our Kalman filter. Finally, we did not observe any improvement when using multiple

points with our Kalman filter, suggesting that no delays were present in our data

between the 1 cm and the 3 cm channel.

The Gaussian temporal basis functions used in this work allow us to model different

hemodynamic responses with different shapes and components. This includes a po-

tential initial dip and post-stimulus undershoot, responses with a double bump and

negative responses. It is also easy to use additional Gaussian functions to extend this

method for longer stimuli, making the temporal basis set used in the present work

very general and less restrictive. However, as stated in section 2.1.3, the drawback

for using a more general set is the potential overfitting of phase-locked systemic phys-

iology. This could be avoided using a more restrictive temporal basis set such as a

gamma-variant function and its derivatives [24, 1, 21, 14], and at the same time could

potentially reduce the number of parameters to estimate.

We tested different values for the separation between the basis and also different values

for the width of the Gaussians. The values of 0.5 second for both the separation and

the width presented in this paper resulted in the lowest MSEs between the recovered

and the simulated responses and highest R2 's. The separation between our temporal

basis Gaussians and their widths was three times lower than the values used by

Diamond et al [7].

In order to compare the four methods used in this work on the same footing, we used

temporal basis functions for each estimator. For the standard GLM estimator, the

adaptive filter and the Kalman filter, we have also tried to replace the final step of

using the GLM with a temporal basis set by a simple block average without using

any temporal prior. For all these three estimators, using temporal basis functions

in the final step further improved the recovery of both HbO and HbR. The MSEs

between the recovered and the simulated hemodynamic response were lower when

temporal basis were used than when a simple block average without temporal basis

was applied. Similarly, the R2 's computed between the recovered and the simulated



responses were higher when temporal basis were used in the final block average step.

This result raises the importance of using temporal priors to reduce the dimensionality

of the estimation problem.

As stated in section 2.1.7, changing the state process noise and the measurement noise

priors over two orders of magnitude did not affect the performance of our Kalman esti-

mator. For HbO, no differences could be observed (two-tailed paired t-test, p < 0.05)

between the MSEs recovered using values for the process noise or the measurement

noise ten times lower or higher than the ones presented in section 2.1.7. For HbR,

small differences in the MSEs were observed but these results did not change any

conclusions drawn in this paper. The MSEs recovered with our Kalman filter in this

case were still the lowest of the four estimators.

2.3.6 Future directions

As mentioned in Zhang et al [51], an important question is whether an additional

short separation optode is required for each longer separation optode or whether a

single one is sufficient. Although the systemic interference is thought to be global in

the brain, it might be reflected differently in the NIRS data collected over different

regions of the head. Sources of variation include blood vessel size which might affect

the amplitude of the recovered response but also blood vessel length and geometry

which might give rise to phase mismatches between different NIRS channels. Studies

using multiple small SD separation optodes at different locations over the head should

be performed in the future to address this question.

2.4 Summary

In summary, we filtered the global interference present in NIRS data by using addi-

tional small separation optodes and we simultaneously estimated the hemodynamic



response using a dynamic algorithm. Our dynamic Kalman filter performed bet-

ter than the traditional adaptive filter, the static estimator and the standard block

average estimator for both HbO and HbR recovery. These results were consistent

with the fact that dynamic estimation better captures the non-stationary behavior

of the systemic interferences in NIRS and that the simultaneous filtering and estima-

tion prevents underestimation of the hemodynamic response. The algorithm is easily

implementable and suitable for a wide range of NIRS studies.

2.5 Appendix: Design matrix

The explicit expression for D in Eq. 2.9 is given by

1 1/Nt 12/N 13/N?

1 2/Nt 22 /Ne 23 /Nt

D 1 3/Nt 32 /Ne 33 /Nte

1 Nt/Nt N/N 2 N/N|

The dimension of the matrix D is N, by 4. Each column is normalized by its highest

value to keep the matrix G well conditioned and to avoid numerical errors during the

inversion in Eq.2.10.



The explicit expression for A in Eq. 2.17 is given by

b1 [1]

b1 [2]

b1 [Nb]

0

0

b1 [1]

b1 [2]

b1 [Nb]

0

b2 [1]

b2 [2]

b2 [Nb]

0

0

b2 [1]

b2 [2]

b2 [Nb]

0

... bN. [1]

... bN. [2]

... bN. [Nb]

0

0

... bN. [1]

... bN. [2]

... bN [Nb]

0

y1 1N

Y1 [2]

yj [Nt]

Nb is the length of each temporal basis function and was 80 in our work due to the

10 Hz temporal resolution and 8 s FIR for our temporal basis functions. The vertical

dimension of matrix A corresponds to Nt, the total number of time points in the

entire time course. The number of copies of the temporal basis functions corresponds

to the number of trials (or stimuli) in the specific time course (i.e. if the run contained

10 trials, then 10 copies of the temporal basis set will appear in the corresponding A

matrix).

0

Y1 [Nt -

0

0

Y1~l

1] ... y1[Nt - Na + 1]



Chapter 3

Impact of the short channel

location

This section was submitted for publication:

Gagnon, L., Cooper, R. J., Yucel, M. A., Perdue, K., Greve, D. N., and Boas, D. A.

(2011). "Short separation channel location impacts the performance of short channel

regression in NIRS." submitted

The main contribution of this chapter is to quantify the performance of the short

separation method as a function of the relative distance between 3 cm NIRS channels

containing the brain signal and 1 cm channels used as a regressors. We investigated

this relationship with both simulations and real functional data. NIRS measurements

including several short separation channels spread across the probe were acquired on

6 human subjects. The simulations were performed by adding a synthetic hemo-

dynamic response to the resting-state NIRS data. NIRS signals were also collected

during a series of finger tapping blocks for each of the 6 subjects. In both cases, the

performance of the short separation regression was characterized for different short

SD regressors located at different distances from the standard 3 cm channel.



3.1 Methods

3.1.1 Experimental data

For this study, 6 healthy adult subjects were recruited. The Massachusetts General

Hospital Institutional Review Board approved the study and all subjects gave written

informed consent. Data were collected using a TechEn CW6 system operating at 690

and 830 nm. The NIRS probe contained 5 sources and 12 detectors as shown in Fig.

3-la. This source-detector geometry resulted in 14 long SD measurements (3 cm)

and 7 short SD measurements (1 cm). A set of 200 pm-core fibers was used for the

short separation detector optodes to avoid saturation of the photodiode. These fibers

are illustrated in orange in Fig. 3-1. An alternative to avoid photodiode saturation

could be the use of standard NIRS fibers with optical filters at the tip of the probe

to attenuate light intensity. The probe was secured over the left motor region of each

subject as illustrated in Fig. 3-1b. One of the 1 cm measurements was acquired

over the forehead. In this probe, the relative distances center-to-center between the

short and the long channels could take the values 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or 6.2

cm. Examples are given for each case in Fig. 3-1c. The forehead short channel was

located more than 10 cm away from any 3 cm channel.
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Figure 3-1: (A) Geometry of the optical probe. Two different SD separations were
used: 1 cm and 3 cm. (B) Location of the probe on the subjects. The probe was
secured over the motor region. (C) Examples of short and long channel pairs. With
this probe arrangement, the possible relative distances between the short and the
long SD channels were 1.4, 1.7, 2.5, 3.3, 4.2, 5.2 and 6.2 cm.



During the experiment, subjects were sitting in a comfortable chair in front of a

computer screen with a black background. The functional runs were divided as shown

in Fig. 3-2. Each run lasted 390 seconds and contained six blocks of 30 s finger

tapping interleaved with 30 s resting blocks. Three functional runs were acquired for

each subject. During the resting blocks, a small 0.5-by-0.5 cm white square located at

the middle of the screen appeared and the subjects were asked to fixate on this square.

During the finger tapping blocks, the instruction "tap your fingers" was displayed in

white characters on the computer screen using the Psychophysics toolbox in Matlab

[3]. At that time, the subjects were asked to touch their right thumb with each of the

fingers of their right hand alternately at a rate of 3 Hz. Following the three functional

runs, three baseline runs of 5 minutes each were acquired. During the baseline runs,

the subjects were asked to simply close their eyes and remain still.

30 sec
30 sec -*" 30 sec
+ Block 1+ Block 2 . Bock 6 30 sec

t=0 s t=390s

Figure 3-2: Overview of the finger tapping protocol. A run consisted of 6 blocks of
30 seconds of finger tapping interleaved with 30 seconds of rest. Each runs started
and ended with a 30 second resting period. 3 functional runs were acquired for each
of the 6 subjects.

3.1.2 Data processing

An overview of the procedure is shown in Fig. 3-3. Both the short and long SD

measurements were bandpass filtered at 0.01-1.25 Hz. For both the simulations and

the real functional data analysis, our Kalman filter algorithm was used to regress the

short separation measurement and recover the hemodynamic response simultaneously.

This algorithm was described in detail previously [11] and only the salient points are

reviewed here.
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(HbO and HbR)
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NIRS data
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functions
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Figure 3-3: Schematic of the NIRS data analysis. The NIRS data from both the
1 cm and the 3 cm separation channels were first converted to HbO and HbR time
courses and bandpass filtered. HbO and HbR were analyzed separately. The 1 cm
and 3 cm bandpass time courses were passed to the Kalman algorithm [11] and then
further lowpass filtered. The HRF was finally estimated using the GLM or a standard
block-average.



The hemodynamic response was modeled by

N.

h [n] = (wibi [n]. (3.1)
i=1

where bi [n] are normalized Gaussian functions with a standard deviation of 0.5 s

and their means separated by 0.5 s. N, is the number of Gaussian functions used

to model the hemodynamic response and was set to 15 for our simulations (section

3.1.3) and 79 for our finger tapping data to recover the HRF over 0-8 sec and 0-40

sec respectively. The signal in the 3 cm separation channel ya [n] was modelled by a

linear combination of the 1 cm separation signal yi [n] and the hemodynamic response

h [n]. The expression for the 3 cm signal is given by

00

y3 [n]]= h[k]u[n-k]+ay1[n]. (3.2)
k=-oo

The variable a is the dynamic weight used to model the superficial signal in the 3 cm

separation channel from the linear combination of the 1 cm separation signal. Only

a single time delay was taken from the 1 cm channel to model the superficial signal

in the 3 cm channel since this has been shown to result in a better performance in

our previous paper [11]. The states to be estimated by the Kalman filter were the

weight of the superficial contribution a and the weights of the temporal bases wi. All

these weights were assumed to be time-varying. Eqs. 3.1 and 3.2 can be re-written

in state-space form:

x [n + 1] = Ix [n] + w [n] (3.3)

Y3 [n] = C [n] x [n] + v [n] (3.4)

where w [n] and v [n] are the process and the measurement noise respectively. x [n]

is the nth instance of x given by

-T
x= w, ... wN, a . (3.5)



The quantity I is an N, + 1 by N, + 1 identity matrix and C [n] is a 1 by N" + 1

vector given by

C [n] = * bi [n] ... u * bNe [n] y1[] 1 (3.6)

with u [n] the onset vector which is a binary vector taking the value 1 when n cor-

responds to a time when the stimulus was presented and 0 otherwise. The estimate

x [n] at each sample n is then computed using the Kalman filter [31] followed by the

Rauch-Tung-Striebel smoother [40].

The initial state vector estimate fi [0] was set to the values obtained using a static

estimator as in [11] and the initial state covariance estimate P [0] was set to an identity

matrix with diagonal entries of 1x1O-1 for the temporal basis states and 5x10 4 for

the superficial contribution state. The Kalman filter algorithm was run twice and the

initial covariance estimate for the second run was set to the final covariance estimate

of the first run. The process noise covariance Q only contained nonzero terms on

the diagonal elements. Those diagonal terms were set to 2.5x10- 6 for the temporal

basis states and 5x10-6 for the superficial contribution state. The measurement noise

covariance R was set to an identity matrix scaled by 5x10-2. The Kalman filter

algorithm was then processed with the following prediction-correction recursion [12]:

ft[nn - 1] =i [n - 1|n - 1] (3.7)

P [nn - 1] = P [n - 1|n - 1] + Q. (3.8)

K [n] =N[n~n - 1] C [n]T (C [n] P [n~n - 1] C [n]T + R) (3.9)

i: [nln] = : [n~n - 1] + K, (Y3 [n] - C [n] i [n~n - 1]) (3.10)



P [nln] = (I - K [n] C [n]) P [nn - 1]. (3.11)

After the Kalman algorithm was applied twice, the Rauch-Tung-Striebel smoother

was applied in the backward direction [18]:

i [nlNt] =k [nln] + P [nn] N [n + 1In]1 ( [n + 1|Nt] - [n + 11n]) (3.12)

with Nt the number of time points in the data. The complete time course of the

estimated hemodynamic response h [n] was then reconstructed for each sample time

n using the final state estimates x [n|Nt] and the temporal basis set contained in C [n]

h [n] = C [n] : [n|Nt] .(3.13)

This reconstructed hemodynamic response time course h [n] was further lowpass fil-

tered at 0.5 Hz and the final estimate of the hemodynamic response was obtained by

applying the standard GLM as in [11].

3.1.3 Simulations

For each baseline measurement, the changes in optical density were converted to

changes in hemoglobin concentrations using the modified Beer-Lambert relationship

[4, 6, 2]. A pathlength correction factor of 6 and a partial volume correction factor

of 50 were applied [26, 27]. The variance in all 252 (6 subjects x 3 runs x 14 pairs)

baseline HbO and HbR time courses from the 3 cm measurements were then com-

puted. To ensure a uniform distribution of the noise in our simulations, only the time

courses showing a variance below 25 tM2 were kept in the analysis, corresponding to

28.2 % of the data (71 of the 252 baseline time courses).

Ten individual evoked responses were added over all 71 selected 3 cm baseline mea-

surements at random onset times with an inter-stimulus interval taken randomly from



a uniform distribution (10-30 sec). This procedure was repeated 30 times for each

baseline measurement to create 30 simulated time courses with 30 different onset

times and ensure reproducible averaged results. The duration of the synthetic re-

sponse was 8 seconds. The HbO time course increased by 15 pM at the peak while

the HbR time course decreased by 7 pM. The synthetic hemodynamic response was

the same used in our previous paper [11]. The resulting 2130 time courses (71 time

courses x 30 simulated runs) were then bandpass filtered (0.01-1.25 Hz) and passed

to the Kalman filter algorithm (Fig. 3-3) using each of the seven 1 cm measurements

available as a regressor. The HRF was also recovered using a standard GLM with a

3 rd order polynomial drift for comparison (no short separation used). This resulted

in 17,040 estimated HRFs (2130 time courses x 8 regressors (7 short separations + 1

standard GLM with 3rd order polynomial drift)). The HbO and HbR responses were

recovered independently. For each 1 cm-3 cm combination, the baseline R2 coefficient

before adding the synthetic HRF to the 3 cm channel was computed.

For each short separation used, the relative center-to-center distance between the

3 cm and the 1 cm channel was computed. With the probe shown in Fig. 3-la, the

possible relative distances are 1.4, 1.7, 2.4, 3.3, 4.2, 5.2 or 6.2 cm as well as > 10 cm

for the forehead channel (label "forehead" in our results) and are illustrated in Fig.

3-1c.

The quality of each recovered HRF was quantified by three different metrics: (1) the

Pearson correlation coefficient R2 between the true synthetic HRF (tHRF) and the

recovered HRF (rHRF), (2) the mean square error (MSE) between tHRF and rHRF

and (3) the Contrast-to-noise ratio (CNR) defined as the amplitude of rHRF divided

by the standard deviation of the residual of tHRF and rHRF

CNR max (rHRF)
std (rHRF - tHRF)(

The average for each of these three metrics across all the recovered HRFs for each

specific relative distance was computed and the results were compared to the cor-



responding averaged metrics obtained from the HRFs recovered with the standard

GLM (no short separation) using a two-tailed paired t-test. As in our previous paper

[11], we used a paired t-test to resolve for small systematic differences. For the Pear-

son R2 metric, the average was taken after applying a Fisher transformation and the

resulting average was then back transformed. This comparison was performed for all

8 relative distances (1.4, 1.7, 2.4, 3.3, 4.2, 5.2, 6.2 cm and forehead),

This entire procedure was then repeated after introducing a time-lag in the short

separation channel. For each 1 cm-3 cm combination, the cross-correlation function

between the two channels before adding the synthetic HRF was also computed and a

time-lag corresponding to the maximum of the cross-correlation function was applied

to the short separation measurement. This time-lag could be any number in the

interval {-Nt, NtJ with Nt the number of time point in the NIRS time course but

typical values obtained from our data ranged from -4 to 4 seconds for both HbO and

HbR. The values for R2, MSE and CNR obtained by introducing a time-lag were also

compared with the zero-lag values with a two-tailed paired t-test.

The cross-correlation function used to identify the optimal time-lag was normalized

such that the zero-lag value corresponded to the Pearson R2 coefficient

RY1 Y3 [n] = Ryss [in] (3.15)

with oY3 the standard deviation of y3 [n]. The maximum of this normalized cross-

correlation function is the equivalent to shifting one of the channels by the optimal

time-lag before computing the standard correlation and thus we will refer to this value

as the optimal time-lag correlation for the rest of the text. To avoid any confusion,

we will refer to the standard R2 correlation as the zero-lag correlation. The zero-lag

and the optimal time-lag correlations were also compared using a two-tailed paired

t-test of their Fisher transformed values.



3.1.4 Functional data

The functional data were analysed in the same way as above with the Kalman filter,

but the HRFs were recovered from 0 to 40 seconds after the stimulus onsets. Each

3 cm channel was analyzed using each of the seven short separation channels available

and also with a standard block-average for comparison.

3.2 Results

3.2.1 Baseline correlation

The correlation (Pearson R2) between the baseline NIRS time courses are shown in

Fig. 3-4. In the top panels, the correlation between the 3 cm separation and the 1 cm

separation channels are plotted as a function of their relative distance on the probe.

These values are identified by the label "no time-lag" in the legends. The optimal

time-lag correlation values are also plotted and identified by the label "optimum

time-lag" in the legends. We observed a decay of both the zero-lag and the optimal

time-lag correlations as the distance between the two channels was increased. This

decay was observed for both HbO and HbR. The optimal time-lag correlation values

obtained were significantly higher (p < 0.05, two-tailed paired t-test) than the zero-

lag correlation for all relative distances on the probe and for both HbO and HbR.

However, the increases in correlation obtained by introducing time-lag were more

prominent for HbR than HbO.

In the bottom panel of Fig. 3-4, both the zero-lag and the optimal time-lag correla-

tions between two 1 cm separation channels are plotted as a function of their relative

distance on the probe. A similar decay was observed as the relative distance between

the two channels increased on the probe. The values for the optimal-time lag corre-

lations in this case were also significantly higher (p < 0.05, two-tailed paired t-test)
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Figure 3-4: Effect of the relative distance on the initial baseline correlation between
the channels. The baseline data were bandpass filtered between 0.01 and 1.25 Hz
before the R2 correlation was computed. The values labeled "optimal time-lag" were
computed by taking the maximum of the normalized cross-correlation function (Eq.
3.15) while the "no time-lag" values are the standard Pearson R2 coefficient. Statis-
tical differences at the p < 0.05 level are indicate with horizontal black lines (two-tail
paired t-test). (Top) Initial baseline R2 between the long and the short channels as a
function of the relative distance between them. (Bottom) Initial baseline R2 between
two short separation channels as a function of the relative distance between them.
(left) HbO. (right) HbR.



compared to the zero-lag correlations.

3.2.2 Simulation results

The results for the synthetic HRF simulations are shown in Figs. 3-5, 3-6 and 3-

7 for the R2, MSE and CNR metric respectively. On the top panels of all three

figures, the three metrics are plotted as a function of the relative distance between

the 3 cm separation and the 1 cm separation channel used as a regressor. Values

obtained by introducing a time-lag in the 1 cm separation channel are also shown

as well as the corresponding values obtained using a standard GLM for each data

subset. We observed a decrease of the improvement obtained by the Kalman filter as

the relative distance between the 3 cm and the 1 cm channel was increased. Both the

R2 (Fig. 3-5) and the CNR (Fig. 3-7) decreased as the relative distance between the

long and short channels was increased, while the MSE (Fig. 3-6) increased. Using a

short separation located 1.4 cm away from the channel containing the synthetic HRF

resulted in a mean increase in CNR of 50 % for HbO and 100 % for HbR relative

to the GLM method. Using a short separation located farther than 2 cm away from

the channel containing the synthetic HRF resulted in significant (p < 0.05, two-tailed

paired t-test) but negligible improvements of the order of a few percent compared to

the standard GLM procedure.

On the bottom panels of Figs. 3-5, 3-6 and 3-7, the same R2 , MSE and CNR results

are plotted as a function of the baseline zero-lag correlation (Pearson R2) between the

3 cm and the 1 cm separation channels. Results obtained by introducing a time-lag in

the short separation channel are also plotted as a function of the baseline optimal time-

lag correlation. We observed a linear relationship between the improvement obtained

with the Kalman filter and both the baseline zero-lag correlations and optimal time-

lag correlations between the two channels. A baseline correlation greater than 0.8

resulted in a mean improvement in CNR of 50 % and 100 % compared to the standard

GLM for HbO and HbR respectively.
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Figure 3-5: Effect of the relative distance on the correlation between the recovered
HRF and the true HRF. The top panels show the recovered R 2 as a function of the
distance between the short and the long NIRS channel. The bottom panels show the
recovered R 2 as a function of the baseline e2 between the short and the long IRS
channel. The left panels show results for HbO while the right panels show results for
HbR. Statistical differences at the p < 0.05 level are indicate with horizontal black
lines (two-tail paired t-test).
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the short and the long NIRS channel. The bottom panels show the MSE as a function
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results for HbO while the right panels show results for HbR. Statistical differences at
the p < 0.05 level are indicate with horizontal black lines (two-tail paired t-test).

MSE vs distance HbR



CNR vs distance HbO

13

12

11 - ---- --

10 - - -

9 -. -- -. .-. .- ..

8

7

1.4 1.7 2.4 3.3 4.2 5.2 6.2 forehead
Distance between long and short channel (cm)

no time-lag optimum time-lag GLM

CNR vs baseline R2 HbO

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Initial R2 between the long and the short channel

CNR vs distance HbR
13 _

12 -- --

11

10

9

8 --- - - - -

6

1.4 1.7 2.4 3.3 4.2 5.2 6.2 forehead
Distance between long and short channel (cm)

no time-lag optimum time-lag GLM

CNR vs baseline R2 HbR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Initial R2 between the long and the short channel

Figure 3-7: Effect of the relative distance on the Contrast-to-noise ratio (CNR) de-
fined in Eq. 3.14. The top panels show the CNR as a function of the distance between
the short and the long NIRS channel. The bottom panels show the CNR as a function
of the baseline R2 between the short and the long NIRS channel. The left panels show
results for HbO while the right panels show results for HbR. Statistical differences at
the p < 0.05 level are indicate with horizontal black lines (two-tail paired t-test).



3.2.3 Functional data results

Each run of finger tapping was analysed independently for each subject. The SD pair

showing the strongest functional response was selected manually for each subject. The

criteria for selecting the responses were a sustained increase in HbO and a sustained

decrease in HbR [5] on the HRFs recovered using the Kalman filter with the closest

small separation as the regressor. These selected HRFs for the first run are shown

in column 4 of Fig. 3-8 for two individual subjects (rows A and B) and for the

group average over the 6 subjects (row C). Results from a single run are presented to

illustrate the power of our method and the high CNR achieved with only 6 individual

finger tapping blocks. Results from the second and the third run were very similar.

Columns 1-3 illustrate the corresponding HRFs (same 3 cm channels) recovered using:

(1) a block-average with no small separation, (2) the Kalman filter with the small

separation located in the forehead as a regressor and (3) the Kalman filter with the

short separation located 2.4 cm away as a regressor. Row A illustrates an individual

subject for which no clear activation could be observed without using the closest

short separation. However, the activation became clear on the same channel using

the Kalman filter together with the closest short separation. Row B illustrates another

individual subject for which a clear activation was present whether the Kalman filter

was used or not. For the group average, the activation was not clear in panels C1-C3

but became very clear using the closest short separation as illustrated in panel C-4.

3.3 Discussion

3.3.1 Systemic interference measured by NIRS is inhomoge-

neous across the scalp

Systemic interference measured in NIRS has been termed "global" interference previ-

ously in the literature [41, 52, 53, 47, 43]. In contradiction, our present results indicate
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that systemic interference is actually inhomogeneous across the surface of the scalp,

that is, the correlation between systemic interference measured at two different loca-

tions decreases with the increasing relative distance between the two measurements.

The bottom panels of Fig. 3-4 indicate that the origin of this decorrelation is lo-

cated in the superficial layers of the head and therefore, is not due to autoregulation

mechanisms occurring in the brain tissue [38].

Although introducing a time-lag re-established one third of the correlation between

the two short SD measurements, the other two thirds of the R2 correlation was still

lost after introducing time delays. This finding indicates that only part of the corre-

lation decay can be explained by simple transit time effects across different locations

on the scalp. The systemic interferences measured in NIRS are oscillatory processes

containing three dominant components [33]. These are the cardiac pulsations around

1 Hz, respiratory oscillations around 0.4 Hz and other low frequency oscillations (in-

cluding Mayer waves [30]) around 0.1 Hz. Analyses similar to the one presented

in Fig. 3-4 were performed with the NIRS data bandpass filtered at 0.01-0.2 Hz,

0.2-0.5 Hz and at 0.5-3 Hz (see supplementary figures 3-9, 3-10 and 3-11). These

frequency bands correspond to the low frequency, respiratory and cardiac oscillations

respectively. These analyses revealed a decay in correlation with increasing relative

distances in all these three frequency bands. Although the correlation decayed, it

never reached zero even for low frequency oscillations, which is in agreement with re-

cent findings by Tong and Frederick ([45]). Up to 3/4 and 1/2 of the correlation lost

in the 0.2-0.5 Hz band and the 0.5-3 Hz band respectiveley could be re-established

by introducing a time-lag. However, introducing a time-lag in the 0.01-0.2 Hz fre-

quency band resulted in only negligible improvements in correlation. These findings

are in agreement with a recent paper from Tian et al ([44]) indicating that cardiac

fluctuations (-1 Hz) are more global while low frequency oscillations (-0.1 Hz) are

less spatially coherent.

From our results, one can conclude that (1) slow oscillations are inhomogeneous across

the surface of the scalp and (2) a significant proportion of the correlation decay in the
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Figure 3-9: Supplementary figure. Effect of the relative distance on the initial baseline
correlation between the channels. The baseline data were bandpass filtered between
0.01 and 0.2 Hz (low frequency oscillations) before the R2 correlation was computed.
The values labeled "optimal time-lag" were computed by taking the maximum of
the normalized cross-correlation function (Eq. 3.15) while the "no time-lag" values
are the standard Pearson R2 coefficient. Statistical differences at the p < 0.05 level
are indicate with horizontal black lines (two-tail paired t-test). (Top) Initial baseline
R2 between the long and the short channels as a function of the relative distance
between them. (Bottom) Initial baseline R2 between two short separation channels
as a function of the relative distance between them. (left) HbO. (right) HbR.
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Figure 3-10: Supplementary figure. Effect of the relative distance on the initial
baseline correlation between the channels. The baseline data were bandpass filtered
between 0.2 and 0.5 Hz (respiratory oscillations) before the R2 correlation was com-
puted. The values labeled "optimal time-lag" were computed by taking the maximum
of the normalized cross-correlation function (Eq. 3.15) while the "no time-lag" values
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as a function of the relative distance between them. (left) HbO. (right) HbR.
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Figure 3-11: Supplementary figure. Effect of the relative distance on the initial
baseline correlation between the channels. The baseline data were bandpass filtered
between 0.5 and 3 Hz (cardiac oscillations) before the R2 correlation was computed.
The values labeled "optimal time-lag" were computed by taking the maximum of
the normalized cross-correlation function (Eq. 3.15) while the "no time-lag" values
are the standard Pearson R2 coefficient. Statistical differences at the p < 0.05 level
are indicate with horizontal black lines (two-tail paired t-test). (Top) Initial baseline
R2 between the long and the short channels as a function of the relative distance
between them. (Bottom) Initial baseline R2 between two short separation channels
as a function of the relative distance between them. (left) HbO. (right) HbR.



higher frequency bands (cardiac and respiration) is attributed to transit time effects

across different spatial regions. These phase mismatches of the cardiac and respiratory

pulsation over different locations arise potentially from spatial heterogeneity of the

vasculature such as blood vessel length, orientation, size, depth and dilation [52, 51].

However, 1/4 and 1/2 of the correlation lost in the respiration and cardiac frequency

band respectively could not be re-established by introducing a time-lag and future

studies will be required to investigate the origin of this correlation decay.

3.3.2 Impact on the short separation method

This decrease in correlation with increasing relative distance has an important impact

on the performance of the short separation method. The bottom panels of Figs. 3-

5, 3-6 and 3-7 illustrate that all three metrics used (R2 , MSE and CNR) varied

linearly with the baseline correlation, whether a time-lag was used or not. Since the

baseline correlation decreased with the relative distance as shown in Fig. 3-4, we

expected the performance of the short separation method assessed with these three

metrics to decrease with the relative distance. This expectation was confirmed by

our simulations and are shown in the top panels of Figs. 3-5, 3-6 and 3-7. For

relative distances larger than 2 cm, only mild improvements were obtained using our

short separation approach compared to the standard GLM method. However, this

improvement was still significant (p < 0.05, two-tailed paired t-test). No decrease

in performance was observed using our Kalman filter with any of the available short

separation. This is consistent with our previous findings [11] that the Kalman filter

improves or doesn't change recovery of the hemodynamic response. At worst, the

recovered response will be the same as the one recovered with a standard GLM with

no small separation used. To obtain larger improvements that are useful in practice,

the short separation measurement must be located no more than 1.5 cm from the

3 cm SD pair from which the HRF is to be recovered.

For large NIRS probes containing several long SD measurements spread over several



centimeters, our results indicate that multiple short separation channels are required

in order to combine each long SD measurement with a short separation within a

1.5 cm radius. In this case, our simulations indicate that the improvement in CNR

using the short separation method is of the order of 50 % for HbO and 100 % for HbR,

as shown in the top panels of Fig. 3-7. As in our previous paper [11), we observed an

improvement for both HbO and HbR, in contradiction with Zhang et al [51] where no

improvement was observed for HbR using an adaptive filter method. In the simula-

tions of our previous paper [11], we also observed a decrease in performance for HbR

using an adaptive filter. As we showed, our Kalman filter approach overcomes this

pitfall by regressing the short separation measurement and simultaneously estimating

the hemodynamic response.

The necessity of using several short separations was also confirmed by our finger

tapping experiment. Using the short separation located at 2.4 cm from the 3 cm

measurement, the HRF obtained by averaging across the 6 subjects did not show a

clear activation pattern (sustained increase in HbO and sustained decrease in HbR)

as shown in Fig. 3-8 C-3. On the other hand, the activation became very clear in Fig.

3-8 C-4 using the short separation located 1.4 cm away. As shown in Fig. 3-8, the

baseline correlations between the 1 cm and the 3 cm channels were around 0.3 for the

short separation located 2.4 cm away and around 0.5 for the short separation located

1.4 cm away. This re-emphasizes the fact that the initial baseline correlation between

the 1 cm and the 3 cm channel is an important factor in determining the performance

of the Kalman filter algorithm. In practice, this baseline correlation can be computed

to predict the impact of using short optode separations. In our previous paper [11],

we showed that the presence of a hemodynamic response in the 3 cm channel does not

impact the baseline initial correlation between the 1 cm and the 3 cm channel. This

occurs because the contribution of systemic interference in NIRS largely dominates

the contribution of the hemodynamic response. This was confirmed here with our

real functional data.



3.3.3 Future studies

In this work, a single small separation channel was used for every long SD channel.

This was necessary since two small separations could not fit between the source and

the detector of the longer SD channel on our probe. In future work, it would be in-

teresting to design a small separation channel integrated in every source and detector

optode of the 3 cm measurements. Doing so would allow to use two small separations

for each long SD channel. This would maximize the overlap between the pathlength

of the small separation channels and the longer SD channel, and might result in a

further improvement of the small separation method.

3.4 Summary

In this study, we have determined that the position of the short SD separation relative

to the long SD separation impacts the performance of the short separation regression

method to improve the recovery of the hemodynamic response in NIRS. We showed

that the relative distance between the channel of interest and the regressor must be

less than 1.5 cm to have a meaningful impact on the recovery of the hemodynamic

response. In this case, improvements in CNR were of the order of 50 % for HbO and

100 % for HbR compared to the standard GLM approach. When a short separation

located farther than 2 cm was used as a regressor, only minor improvements were

obtained compared to the standard GLM method, which are of little practical use.

This decrease in performance for longer relative distances results from a decrease in

the baseline correlation between the channel of interest and the regressor. Our results

indicate that this correlation decay is due to spatially inhomogeneous hemodynamics

in the superficial layers of the head.



Chapter 4

Conclusion

The state-space model developed in this work allowed us to improve the recovery of

the hemodynamic response with NIRS, by accounting for the dynamic physiological

fluctuations present in the signal, as well as by taking advantage of the simultaneous

estimation and regression. NIRS is mostly used in a setting with low contrast-to-

noise ratio, such as newborn imaging and epilepsy monitoring, due to the difficulty of

repeating the measurement multiple times for averaging. As such, the improvement

in contrast-to-noise ratio achieved by our method will have a tremendous impact on

the NIRS community. Moreover, we were able to test in details the accuracy of the

method, identify its weakness and propose solutions to compensate for this weakness

by introducing multiple short separation optodes. The method developed in this work

is easily implementable and can be used in a vast majority of NIRS experiments.
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