
Synthesis of Multi-cycle Circuits from Guarded

Atomic Actions

Michal Karczmarek

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES
MASSAHU8JFrr S NSTITUT:

OF TECH NLCY

SEP 2 7 2011

LIBSRARIES

September 2011

o Massachusetts Institute of Technology 2011. All rights reserved.

Author ...
Department of Electrical Engineering and Computer Science

p1')

September 2011KC

Certified by..
Arvind

Charles W. and Jennifer C. Johnson Professor
Thesis Supervisor

Accepted by.......I o od e s.......
L Aie olodziejski

Chairman, Department Committee on Graduate Students

2

Synthesis of Multi-cycle Circuits from Guarded Atomic

Actions

by

Michal Karczmarek

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

One solution to the timing closure problem is to perform infrequent operations in more
than one clock cycle. Despite the apparent simplicity of the solution statement, it is
not easily considered because it requires changes in RTL, which in turn exacerbates
the verification problem. Another approach to the problem is to avoid it altogether,
by using a high-level design methodology and allow the synthesis tool to generate
the design that matches design requirements. This approach hinges on the ability
of the tool to be able to generate satisfactory RTL from the high-level description,
an ability which often cannot be tested until late in the project. Failure to meet the
requirements can result in costly delays as an alternative way of expressing the design
intent is sought and experimented with.

We offer a timing closure solution that does not suffer from these problems. We
have selected atomic actions as the high-level design methodology. We exploit the fact
that semantics of atomic actions are untimed, that is, the time to execute an action
does not change its outcome. The current hardware synthesis technique from atomic
actions assumes that each action takes one clock cycle to complete its computation.
Consequently, the action with the longest combinational path determines the clock
cycle of the entire design, often leading to needlessly slow circuits. By augmenting the
description of the actions with desired timing information, we allow the designer to
split long paths over multiple clock cycles without giving up the semantics of atomic-
ity. We also introduce loops with dynamic bounds into the atomic action description.
These loops are not unrolled for synthesis, but the guards are evaluated for each it-
eration. Our synthesis results show that the clock speed and performance of circuits
can be improved substantially with our technique, without having to substantially
change the design.

Thesis Supervisor: Arvind
Title: Charles W. and Jennifer C. Johnson Professor

4

Acknowledgments

This thesis will be completed nearly 11 years after I first arrived at MIT. I have met

and parted with countless friends, and had many great experiences, many of which

were enabled by the wonderful community at MIT.

Arvind has been a wonderful adviser, especially given our differences in personali-

ties. He has been nearly infinitely patient as I searched for a good method to present

this work, and much earlier, when my the efforts to come up with an efficient synthesis

method for asynchronous circuits were not bearing fruit. His help and guidance have

been invaluable, and I will be forever grateful for his faith in me eventually finishing

my thesis.

I also must thank my committee, Krste Asanovid and Steve Ward, who have also

patiently waited for me to finish, and accommodated my graduation deadline from

California and Maine respectively.

Muralidaran Vijayaraghavan has been of invaluable help in the latter stages of

work on this thesis, while I was working in California, and after I've come back to

Boston. He has helped me come up with clean explanations of the synthesis scheme

and with discussions of some low-level details when I most needed them.

Michael Pellauer and Nirav Dave have been of immense help whenever I had

questions about or problems with the Bluespec compiler. Without them I would

never have gained enough insight into the inner workings of the current synthesis

technique to be able to improve on it significantly.

My wife, Anne, has put up with the uncertainty of whether I will graduate and

the imminent "I have to work on my thesis" for far longer than she should have. She

has been my pillar of moral support and my greatest cheerleader. My parents have

also always been supportive of my finishing, even when it was not clear that I had a

path forward.

This research has been supported by National Science Foundation (grant #CCF-

0541164 "Complex Digital Systems") and Nokia.

6

Contents

1 Introduction 17

1.1 The Case for Multi-cycle Atomic Action Design 17

1.1.1 Summary of Contributions . 20

1.2 Prior W ork . 21

1.3 Thesis Organization . 25

2 Bluespec and Semantics of Multi-cycle Guarded Atomic Action Ma-

chines 27

2.1 BMC: The Essence of Bluespec . 27

2.2 BMC Example: GCD . 28

2.3 Standard Bluespec Flat Model Circuit 30

2.4 Standard Hierarchical Bluespec Interfaces 31

2.5 M ulti-cycle Syntax . 34

2.6 Multi-cycle Operational Semantics . 36

2.7 Preview of Guarded Atomic Action Scheduling Concepts 38

2.8 Rule Lifting Procedure . 39

3 Flat, Fixed, Multi-Cycle Rule Scheduling 41

3.1 Two-clock-cycle GCD . 41

3.2 A Reference Scheduler for Multi-cycle Rules 44

3.3 Read-Write Policy for Concurrent Scheduling of Rules 45

3.4 Opportunistic-Commit Scheduler . 46

3.5 Greedy-Reservation Opportunistic-Commit (GROC) Scheduler 47

3.6

3.7

3.8

3.9

3.10

Greedy Rsv Scheduler and Cmt Scheduler for the GROC Scheduler

Scheduling Invariants .

Scheduling Algorithm

Correctness of GROC Scheduler .

The GROC Scheduler for GCD .

4 Flat, Flexible, Multi-Cycle Scheduling

4.1 Loop-based GCD Example......

4.2 (Valid, Changed, Data) 3-tuples .

4.3 Architectural Registers.......

4.4 Syntax-directed Translation of Multi-

4.4.1 Expression Interface .

4.4.2 Register, Constant and Varia

4.4.3 Let Expression........

4.4.4 Primitive Operator.....

4.4.5 Conditional Expression

4.4.6 Delay Expression......

4.4.7 While Expression......

4.5 Syntax-directed Translation of Multi-

4.5.1 Action Interface

4.5.2 Register Assignment .

4.5.3 Conditional Action.....

4.5.4 Parallel Action

4.5.5 Let Action

4.6 Syntax-directed Translation of Rules

4.6.1 Rule Interface

4.6.2 Rule Circuit

4.6.3 Combining Rules for Register

-cycle

)le .

cycle

Write

4.7 Module Model

4.7.1 Single-cycle Equivalency

. 6 0

. 62

Expressions 63

.Epressin.............. 63

. 6 3

. 64

.......... 65

. 65

. 66

. 67

Actions 68

. 68

. 69

. 70

. 70

. 7 1

. 7 1

. 7 1

. 7 1

s 72

. 73

. 73

59

. 59

5 Flat Scheduling In Presence of Guards 75

5.1 Speculative Scheduler . 75

5.2 Speculative Expressions . 78

5.2.1 Speculative Expression Interface 78

5.2.2 Register and Constant Expressions 79

5.2.3 Speculative Let Expression . 79

5.2.4 Primitive Operator Expression 79

5.2.5 Speculative Conditional Expression...... 81

5.2.6 Speculative Guarded (When) Expression 81

5.2.7 Delay Expression . 81

5.2.8 Loop Expression . 83

5.3 Speculative Actions . 84

5.3.1 Speculative Action Interface 84

5.3.2 Speculative Let Action . 84

5.3.3 Speculative Register Assignment Action 85

5.3.4 Speculative Conditional Action 85

5.3.5 Speculative Guarded (When) Action 85

5.3.6 Speculative Parallel Action Composition 87

5.4 Speculative Rules... 87

5.5 Speculative Module Model . 88

6 Hierarchical Multi-cycle Synthesis 89

6.1 Reservation Required . 89

6.2 Hierarchical Speculative Scheduling 91

6.3 Hierarchical Speculative Method Interfaces 94

6.4 Speculative Method Call Protocol . 95

6.5 Method Port Sharing and Multiplexing 98

6.6 Hierarchical Expressions . 104

6.6.1 Hierarchical Expression Interface 104

6.6.2 Hierarchical Value Expressions 104

9

6.6.3 Hierarchical Let Expression 105

6.6.4 Hierarchical Primitive Operator Expression 105

6.6.5 Hierarchical Conditional Expressions 107

6.6.6 Hierarchical Guarded (When) Expression 107

6.6.7 Hierarchical Delay Expression 107

6.6.8 Value Method Call Expression 109

6.6.9 Loop Expression . 109

6.7 Hierarchical Actions .111

6.7.1 Hierarchical Action Interface111

6.7.2 Hierarchical Let Action . 112

6.7.3 Hierarchical Register Assignment Action 112

6.7.4 Hierarchical Conditional Action 112

6.7.5 Hierarchical Guarded (When) Action 114

6.7.6 Hierarchical Parallel Action Composition 114

6.7.7 Action Method Call . 114

6.8 Module Integration . 116

6.9 Summary of Scheduling Restrictions 116

7 Results and Analysis 119

7.1 Modulo in GCD. 119

7.2 CPU with Division . 122

7.3 F F T . 124

7.4 V iterbi . 128

7.5 A nalysis . 130

7.5.1 Area Overhead due to Added Flip-Flops 131

7.5.2 Long Combinational Paths in Control Logic 132

8 Conclusion and Future Work 135

8.1 C onclusion . 135

8.2 Future Work . 137

8.2.1 Pipelining . 137

8.2.2 Modular Scheduling... 138

8.2.3 Multi-cycle Control Signals . 138

8.2.4 Combine with Ephemeral History Registers 138

8.2.5 Synthesis of Asynchronous Logic...... 139

12

List of Figures

2-1 Single-clock-cycle BMC Language .

2-2 G CD exam ple .

2-3 GCD circuit with single clock cycle GCD rule

2-4 Standard Bluespec Model. Thin wires represent boolean values, while

thick wires represent data of any format

Single Clock Cycle Call Protocol Transition Diagram . .

GCD Parent Module .

Multi-cycle Language.....

Multi-cycle Operational Semantics

GCD example with a 2 clock cycle GCD rule

2 clock cycle GCD circuit

One Rule-At-a-Time Multi-cycle model

Opportunistic Scheduler

The GROC Fixed Delay Scheduler. The green box contains

of the GROC scheduler.

GROC Scheduler Invariants

Sequentially Composable Rules

Rule Stretching (Delayed Commit)

Livelock avoidance .

RsvScheduler Procedure

CmtScheduler Procedure

33

34

35

37

. 42

. 43

. 44

. 47

the essence

. 48

. 50

. 51

. 52

. 53

. 54

. 55

3-12 Complete GCD Example

2-5

2-6

2-7

2-8

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

................ 30

. 57

3-13 Complete GCD Control and Scheduling Equations .

4-1 Loop-based GCD example.....

4-2 Loop-based GCD Circuit

4-3 Architectural Register

4-4 Expression Interface.........

4-5 Register, Constant and Variable

4-6 Let Expression

4-7 Primitive Operator

4-8 Conditional Expression

4-9 Delay Register

4-10 Loop Expression

4-11 Action Interface

4-12 Register Write Action

4-13 Conditional Action

4-14 Parallel Action

4-15 Let Action

4-16 Rule Interface

4-17 Rule Circuit

4-18 Register Enable Circuit

4-19 Full Module with GROC Scheduler.

uler is indicated by the green box. .

The essence of the GROC sched-

5-1 Fully Speculative Scheduler. The modified essence of the GROC sched-

uler is indicated by the green box.

5-2 Speculative Expression Interface ..

5-3 Speculative Value Read Expressions

5-4 Speculative Let Expression ..

5-5 Speculative Primitive Operation Expression

5-6 Speculative Conditional Expression

5-7 Speculative Guarded Expression .

5-8

5-9

5-10

5-11

5-12

5-13

5-14

5-15

5-16

5-17

as shortcut for notRdy.

Speculative Delay Expression: delay(e) .

Speculative Loop Expression. We use nR

Speculative Action Interface

Speculative Let Action

Speculative Register Assignment Action

Speculative Conditional Action

Speculative Guarded Action

Speculative Parallel Actions

Speculative Rule Circuit.....

Speculative Rule Circuit

6-1 Fully Speculative Scheduler. Note: RRA = NO, R

modified essence of the GROC scheduler is indicated

6-2 Multi-cycle Method Interfaces

6-3 Multi-cycle Speculative Method Call Protocol . . .

6-4 One-Hot MUX with 3-tuple selectors

6-5

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

3-tuple M UX

Argument MUX

Commit MUX

Hierarchical Expression Interface

Hierarchical Value Read Expressions

Hierarchical Let Expression

Hierarchical Primitive Operation Expression

Hierarchical Conditional Expression

Hierarchical Guarded Expression

Hierarchical Delay Expression

Value Method Call Expression: m.f(e)

Hierarchical Loop Expression

Hierarchical Action Interface

Hierarchical Let Action

RB= YES. The

by the green box. 93

. 95

. 97

. 100

. 101

. 102

. 103

. 104

. 105

. 106

. 106

. 107

. 108

. 108

. 109

. 110

1. 11

. 112

. 8 4

. 8 4

. 8 5

. . . 86

. 8 6

. 8 7

. 87

. 8 8

6-19

6-20

6-21

6-22

6-23

6-24

6-25

Hierarchical Register Assignment Action . .

Hierarchical Conditional Action

Hierarchical Guarded Action

Hierarchical Parallel Actions

Hierarchical Action Method Call.

Value method caller and callee composition .

Action method caller and callee composition

7-1 Different Remainder Versions .

7-2 Multi-cycle GCD results. Using loop-based remainder significantly re-

duces the area.

7-3 Simple 4-stage pipelined processor .

7-4 Partial Listing of ALU implementation. The DIV instruction takes

17 clock cycles to complete, while other instructions take only 1 clock

cycle. The non-strict if operator selects the correct result and returns

it as soon as it is available. .

7-5 CPU Synthesis Results .

7-6 FFT D esign .

7-7 FFT Synthesis Results. *Pareto points. **3.53ns was obtained by

synthesizing with a test harness. 1.17ns is anomalous and was obtained

by synthesizing without a test harness. Likely cause of the anomaly is

that without a testing harness the circuit has exactly one register and

no register-to-register path. ..

7-8 Viterbi Algorithm .

7-9 Viterbi Synthesis Results. FS means forward step. TB means trace-

back. *Pareto points. .

7-10 Adding delay to condition of if .

. 113

. 113

. 114

. 115

. 115

. 117

. 118

120

121

122

124

124

126

127

130

131

134

Chapter 1

Introduction

1.1 The Case for Multi-cycle Atomic Action Design

As the technology for manufacturing silicon chips allows for ever larger designs, the

complexity of new designs increases, and with it the effort put into building them.

A designer must worry about many problems: the design must perform well, use

little power and fit in a small area. Above all, the design must perform its function

correctly when presented with valid inputs. Assessing components of the design for

these requirements is difficult enough, but nothing less than simultaneously satisfying

all of them is tolerated. Design of a modern microprocessor takes many years from first

concept and specification to first silicon. Only the largest companies with products

which will sell in many millions of units can afford this kind of effort.

Most designs today are expressed in RTL, in a language like Verilog or VHDL.

Some custom designs are synthesized using high-level synthesis, to reduce the effort

necessary to produce the design. High-level synthesis allows for a description of the

solution to be presented in a way that designers find more expressive and natural. The

most common form of high-level synthesis is C to RTL synthesis. The premise of this

form of synthesis is that writing software is widely recognized as a much easier task

than writing RTL. If a design can be synthesized from a software description, then

the final result will be arrived at much faster and the correctness will be transferred

automatically from the simpler software description to the more complicated RTL

description.

The problem with this premise is that designing RTL requires many tradeoffs to

meet the three basic goals beyond correctness. High-level synthesis from C does not

allow for making such trade-offs easily. The designer is given knobs, but not real

low-level control of the final RTL. Design exploration can change from expressing the

design in a different way, to playing with these knobs. Sometimes this will lead to a

design meeting specifications, but sometimes it will not.

Another approach to high-level synthesis is to use a language that is more amenable

to hardware design. Much as hardware designers specialize their designs for particular

purpose, language designers specialize their languages for particular use and domain.

One such language is Bluespec [12]. Bluespec is designed around the idea of guarded

atomic actions: a program is described as a combination of state and atomic actions.

Guards are assigned to atomic actions to prevent chaotic functionality and guard

against actions performing invalid updates. An atomic action can fire and update the

state at any time, provided its guard evaluates to true.

The atomicity of actions and updates provides a certain comfort to the designer.

The designer can think about one action at a time. The abstraction of atomic actions

breaks away from the always-update-everything approach of low-level RTL design.

The compiler will ensure that execution of conflicting actions does not overlap. The

compiler also provides feedback on which actions are and are not composable, making

thinking about composability of updates simpler.

Bluespec language has no concept of clock cycles. As such, Bluespec compiler

is free to generate rules that take multiple clock cycles. For simplicity reasons, the

current Bluespec compiler only generates actions that complete in a single clock cycle.

This provides predictability to the designer: the final clock speed is dependent only

on how complex the atomic actions are. Similarly, the size and power of the design

is also in the hands of the designer.

Bluespec also lends itself well to various forms of design exploration. From simple

modifications such as changing the size of an ROB 117] to more complex exploration

such as many approaches to folding an FFT computation block 119], Bluespec makes

it easy to substitute different implementations of parts of a design without having to

change the entire design.

The low-level control available to the designer in Bluespec can however prove itself

to be an Achilles's heel. If the clock speed of a design is found to be unsatisfactory,

that action can be split into two. This is the approach taken while folding an FFT

design. The problem (low clock speed) is solved by abandoning the language-provided

comfort of atomic actions. Now a single computation or update must use multiple

actions to complete. The designer again has to worry about the concurrency of the

design. The concern can be isolated to a single design block (ex. FFT) but the peace

of mind provided by atomic action abstraction is diminished.

The approach of action splitting or other slow-path optimizations in hardware

design are similar in some ways to other specialization present in various computer

design fields. For instance, parallel programming requires intense optimization of

usually a small portion of the program. The remainder of the design takes very little

time thus it can, and often does, run on a single thread. The effort of optimization

is best spent on improving "hot" code. In hardware design, the effort often goes to

optimizing the "hot" path as well. The FFT optimization effort is an example of that.

Unfortunately, hardware design suffers from a complication that does not exist in

software design. In software, code that is used only 1% of the time has only a 1%

impact on performance of the overall design. In hardware, a slow path that is used

only 1% of the time can cause the clock of the entire design to be slow at all times.

Thus hardware designers cannot simply disregard the marginal portions of their design

and concentrate on the hot paths. The entire design must be carefully balanced to

provide good performance on all paths. There are many situations where designers

would like to insert a slow path in a design to simplify it (ex: exception handling),

but they must build pipelines or other structures to maintain good performance for

the entire chip. In Bluespec, even very rarely used actions must be split if they are

too slow for the overall design.

In this thesis we present solutions that completely solve this timing problem in

Bluespec. Instead of splitting slow actions we allow the designer to build multi-cycle

actions which provide predictable improvements in clock cycle time. This allows the

designer to concentrate on expressing the design with the comfort of guarded atomic

actions. The designer retains very close control over the synthesized results. Flip-

flops are inserted only where requested, but can be easily inserted on any slow path.

Our compiler guarantees atomic completion of computation and updates.

The RTL produced by our compiler is not pipelined. That is, there is only one

instance of each action active during any clock cycle. We leave automatic pipelining

of designs for future work. Our techniques do allow for solving real timing closure

problems, while making the solutions much easier to understand the implement than

prior state of the art. Furthermore, designers can utilize our techniques to gauge the

impact pipelining would have on the performance of their designs.

We also introduce new semantics to Bluespec. Our if-expressions only wait for the

used result, so rarely used paths can take many clock cycles without penalty to hot

paths. We also introduce dynamic loops which are not automatically unrolled. Our

loops are simple and effective, leaving all control in the hands of the designer without

having to rely on awkward knobs for optimization, as is often the case in synthesis

from C. These improvements increase expressiveness of the language and the design,

and are natural to designers used to high-level languages.

Finally, we provide interfaces for Bluespec methods which are inherently delay-

agnostic. This allows for simple substitution of different implementations of IP blocks

without concern about the time taken internally to complete a computation. In

today's market, where companies differentiate different chips in their product lines

by the performance or count of individual components, having an ability to plug in

differently performing IP blocks without modifying the remainder of the design can

prove very useful.

1.1.1 Summary of Contributions

This thesis makes the following contributions:

e Extension of Bluespec language to include multi-cycle concepts without chang-

ing atomic action semantics.

" Improvement of power of Bluespec language by expressing combinational loops

that do not unroll.

" New syntax-directed compiling procedure which subsumes the current single-

cycle state of the art without compromising quality. 1

" Modification of hierarchical synthesis interfaces, which must change to adapt

to multi-cycle actions. Our new interfaces are such that it should be possible

to generate wrappers for the old interfaces to include legacy IP blocks in our

designs.

1.2 Prior Work

This thesis is largely based on the Bluespec and guarded atomic actions work done

in the past. James Hoe developed the efficient scheduling techniques for synthesis

of flat modules[29, 28]. The basic design of the scheduler in this thesis draws from

the Esposito scheduler [23]. Rosenband developed a modular, hierarchical scheduling

method, together with method interfaces, both of which were a starting point for our

modular synthesis 1341.

While this thesis is concerned with synthesizing guarded atomic actions to take

multiple clock cycles, Rosenband has proposed the opposite approach of allowing

multiple not-necessarily sequentially composable actions to complete in a single clock

cycle through the use of Ephemeral History Registers [6, 7].

Dave at al., have introduced a concept of a sequential composition within an

atomic action, which can be used to describe multi-cycle designs [18]. Their approach

is far more powerful than our delay operator, and full implementation in hardware

requires introduction of shadow state. Aside from that, the operational semantics of

their BTRS is largely identical to our BMC.

'We do not address or consider the problem of RWire construct. Our intuition suggests that the
straight-forward implementation of RWire is relatively simple, though its semantics are complicated
by multi-cycle nature of our scheme.

There are many commercial and free tools for high-level synthesis. One of the

most-popular approaches is to extend and/or restrict C or C++ to allow expression

of various desired or undesired constructs. Common restrictions include disallowing

pointers, virtual functions, etc. Common extensions include explicit parallelism con-

structs and channel-based blocking communication constructs. With many different

features from different approaches, lack of standardization impedes wide-adoption.

Using C or C++ without any language extensions can help in creation of a first

draft of a design. Standard software development tools can be used to write and

debug the first draft. Once the design is bug-free, a high level synthesis tool takes

over and allows for design exploration and synthesis.

Perhaps the first attempt at synthesis of C to RTL was the Cones project by

Stroud et al [40]. Cones was capable of only synthesizing combinatorial portion of

the design and the memories had to be explicitly defined. As such, it only needed to

work with a subset of C. The results of the synthesis were used for production chips

from AT&T. The designers using Cones found that they were able to create their

designs in half the time, compared to then standard techniques.

One of the early unmodified C to RTL compiling schemes that attempted to

include more advanced features of C was SpC[35]. SpC allowed use of pointers to

arrays. The implementation used SUIF[441, and the compiler applied pointer analysis

to replace pointer loads and stores with references to appropriate arrays. Curiously,

SpC controlled the timing of the computation by incrementing a clk variable.

A more automated approach to C synthesis was taken by Babb at al[9]. Their

compiler concentrates on partitioning the program data into small memories, which

are accessed by independent FSMs. FSMs communicate with each other through

virtual wires.

Another early successful method for synthesis from C was used in C2Verilog

[38, 39]. In this system the designer explores the design through selecting synthe-

sis parameters. One of the new optimization techniques was to give the compiler the

ability to share logic between different parts of the design, if synthesis parameters

required it.

DEFACTO was another early system in which the compiler iterates over different

solutions, searching for a balanced design[37].

CASH [14] converts the input program into hyperblocks, which are synthesized

separately. Each hyperblock is converted into a data-flow graph. The generated

circuits can be synchronous or asynchronous, as the communication between hyper-

blocks uses the Two-Phase Bundled Data protocol commonly used in asynchronous

hardware. This approach is notable, as this thesis was born from a desire to synthesize

asynchronous circuits from guarded atomic actions.

Today, major EDA vendors offer tools for synthesis of unmodified C to RTL with

various knobs for meeting design criteria [16, 1, 41.

When it comes to synthesis from C-like languages, it is important to note that for

the most part they are C-like in their syntax only. These languages were created to

make synthesis easier and give the designer more control over the synthesized results.

They usually add very non-C-like features, such as explicit parallelism, message pass-

ing through some sort of channels and timing semantics. These are domain-specific

language specializations, which render the code thoroughly incompatible with ANSI

C. Many of these features have appeared in other languages, such as Esterel[13]. In

fact, Esterel has been used for high-level synthesis before 111, 31, 221.

From the approaches that significantly extended C for synthesis, Handel-C 12] is

notable for this thesis, because both it and we use a delay operator to indicate a clock

cycle delay. Assignments in Handel-C also require a clock cycle to propagate, just

as register writes in Bluespec. Communication between statements is done through

assignment to variables or through blocking channels. Availability of data on the

channels becomes a scheduling constraint, similarly to data flow. There is an explicit

parallel construct and loops, but no pointers. Since Handel-C does not have a concept

of atomic actions, it does not require the same scheduling effort that Bluespec does.

HardwareC was an early attempt at a C-derrived language for hardware synthesis

[30]. HardwareC uses concepts of ports and input/output communication, message

passing, various degrees of parallelism. HardwareC was used in the Olympus synthesis

system [211 which was a complete synthesis suite including tools to constraint-driven

synthesis, user-driven synthesis, synthesis feedback and technology mapping tools.

Transmogrifier C 125] was another C-derrived language, targeted at FPGAs. It

added the concept of ports and parallelism. The timing model was simple and pre-

dictable: loops and function calls start new clock cycles, all other logic is combina-

tional.

SpecC is another HDL derived from C [3]. It adds the concepts of events for

synchronization, signals and channels for communication, behaviors, interfaces and

ports for building containers for computation, buffers for storage, and time. There

are ways to explicitly build pipelines, FSMs, and concurrent computation.

SystemC 141] is a C++ library that enables event-driven simulation of concurrent

processes. A subset of SystemC constructs is synthesizable. SystemC enjoys wide

industry support.

SystemVerilog [5] brings Verilog features to a C++-like syntax and is used for

verification, replacing a more traditional C++/Verilog mix. Again, a subset of Sys-

temVerilog is synthesizable, but adoption for synthesis is not as wide as for verification.

The GARP scheduler [15] uses techniques borrowed from software pipelining to

generate efficient schedules for a CPU attached to a rapidly reconfigurable coprocessor

. The scheduler creates hyperblocks which are executed on the programmable array,

but it excludes paths which do not show promise for this optimization because they

are exercised too infrequently, and would not provide a net benefit considering the

cost of reconfiguring the programmable array. Those paths are executed on the slower

CPU. Our approach is similar, in that we enable isolation of infrequent paths and

executing them over many clock cycles, to focus designer's energy on frequently used

paths.

There are also many projects which used a more specialized approach. For in-

stance, early on, Cathedral II project 1321 targeted synthesis for DSP algorithms.

Cathedral II used Silage for their HDL 1271. Being rooted in DSP domain, Silage

operated on infinite data streams. A more modern approach for DSP synthesis is to

start with MATLAB, which is commonly used for prototyping in the DSP domain

110, 8].

Our scheduling approach has some similarities to the scoreboard scheduling tech-

nique, originally used in the CDC 6600 [421, or more modern processors with branch

mispredicts. The traditional scoreboard deals with a dynamic stream of instructions

which share physical resources and which have some sequentiality constraints based

on data dependencies. The rules with their atomicity and resource constraints can be

thought of as a fixed set of instructions that need to be scheduled (dispatched) each

clock cycle because the execution of a rule potentially affects the availability of rules

for scheduling in the next cycle.

Transactional Memories [26, 36] deal with atomic updates and are conceptually

close to the problems discussed in this thesis. However, the current TM systems

assume that the read set and write set (the domain and range) of a transaction

cannot be statically estimated by a compiler. Thus, the TM systems deal with a

much more difficult problem which requires shadow state and difficult computation

involving intersection and union of read sets and write sets. However, our work can

be viewed as an implementation for small, statically analyzed transactions.

Our work also has some similarities to automatic pipelining 133]. Pipelining con-

centrates on creating a bypass network such that the pipeline can consume new data

as often as possible, without having to wait for the previous data to be fully pro-

cessed. This thesis proposes to split computation across multiple clock cycles, but

not to pipeline it. As such we do not generate a bypass network or any pipeline

control logic. We leave pipelining for future work.

This thesis began with an idea of synthesizing asynchronous circuits from guarded

atomic actions. The association of a valid wire with a data value and the complex

port handshake were partially inspired by handshaking methods learned from asyn-

chronous circuits [20].

1.3 Thesis Organization

In Chapter 2, we begin with the discussion of the current state of synthesis from

guarded atomic actions. We continue with description of BMC, our source language,

including operational semantics. In Chapter 3 we present the basic principles of multi-

cycle scheduling in flat modules with fixed computational delays. We update our

synthesis scheme to allow dynamic computational delays, including loops, in Chapter

4. Chapter 5 introduces speculative scheduling which helps with fairness. Chapter

6 extends our synthesis to hierarchical modules. We discuss synthesis results and

provide some analysis in Chapter 7. Our conclusion and future work are presented in

Chapter 8.

Chapter 2

Bluespec and Semantics of

Multi-cycle Guarded Atomic Action

Machines

In this chapter we will present some essential Bluespec and multi-cycle concepts.

We will begin by introducing single-cycle BMC, a language which we use to describe

guarded atomic-action machines. We will illustrate the principles of how such guarded

atomic-action machines function with an example using GCD. We will present the

general structure of circuits generated by the current Bluespec compiler. Finally, we

will introduce multi-cycle BMC and present its operational semantics.

2.1 BMC: The Essence of Bluespec

Figure 2-1 presents BMC, a language used to describe guarded atomic action ma-

chines. This language was described by Dave et al[18].

In this language, every machine consists of multiple modules, arranged in a tree hi-

erarchy. Every module holds some registers which represent the state of the machine.

Modules contain rules which represent guarded atomic actions. Each rule consists

of exactly one action and a guard. Modules also contain value methods and action

methods, which are used to communicate with the module. A value method computes

Figure 2-1: Single-clock-cycle BMC Language

a result based on module state and returns it as a result. An action method executes

an action that is triggered using an external interface. Only the direct parent of a

child module can call its methods. Ultimately all method calls are initiated by a rule.

Actions consist of register assignments, conditional actions, parallel composition

of actions and action method calls. Expressions consist of reading a value (register,

constant or variable), basic operators on expressions, let expressions and guarded

expressions.

2.2 BMC Example: GCD

Consider the example in Figure 2-2, which describes a module to compute the GCD

of two numbers using the Euclidean method. The module has two registers x and

y, one rule called GCD, and two interface methods called Seed and Result. The

Seed method stores the initial numbers in registers x and y, the GCD rule computes

successive remainders of the inputs until the remainder becomes 0, and the Result

method returns the computed answer. The rule has the guard when y # 0 which

m: Module name
Register r v
[t =e]
[Rule R a when e
[ActMeth G a when e]
[ValMeth F e when e]

a a a

rf :=e
Hif e then a

e r || c || t
op (e, e)
(t = e in e)
if e then e else e

Module doGcd
Register x 0, y = 0
Rule GCD (x:= y I y:= x % y) when y # 0
ActMeth Seed(a, b) :: (x := a y := b) when y = 0
ValMeth Result :: return x when y = 0

Note: % operator represents remainder computation

Figure 2-2: GCD example

must be true for the rule to execute. Similarly, the methods have guards which must

be true before the method can be applied. The guards for the Seed and Result

methods indicate that they can be activated only when the module is not already

busy computing, (i.e. when y = 0). "%" represents the remainder operator while "I"

represents parallel composition of two actions and is a commutative operator. Thus,

if we write (x := y I y := x) the values of x and y would be swapped at the end of

the action. Also parallel assignments to a state variable in an action are illegal. The

source language allows conditional assignments to a register but provides no ability

to sequence actions in a rule.

rdySeed

RenSeed Rsl

- EN -rdyResult
b -- X y%

EN

Note: startGCD and rdyGCD hold the same value. We have abbreviated enable with just
en.

Figure 2-3: GCD circuit with single clock cycle GCD rule

In Figure 2-3 we provide a circuit implementation of the GCD example. The x

and y registers are updated when either the GCD rule is active or the Seed method is

started. In this example, the conditions for these two actions are mutually exclusive

because of the guards. The compiler must make sure that it never asserts the enable

wire for a rule unless its rdy signal is asserted. If Seed's enable signal is asserted,

the input values a and b are copied into x and y, respectively. When Result's guard

(rdyResult) is true, the user can read the output, which is simply the value of register

x. Since Result does not modify any of the registers in the module, the user can

read the output without further communication. Rule GCD is enabled whenever its

guard evaluates to true. When GCD is executed, it will copy y to x, and write the

remainder, x%y, to y. GCD rule completes in a single clock cycle, but computing the

final result requires firing it many times.

2.3 Standard Bluespec Flat Model Circuit

In previous section we presented a simple BMC module and a circuit it produces.

Since the module is very simple, compiling it to a circuit was also fairly simple. More

complicated modules require a rigorous methodology for compiling.

Figure 2-4: Standard Bluespec Model. Thin wires represent boolean values, while
thick wires represent data of any format.

Figure 2-4 presents the Bluespec flat module template circuit. Every clock cycle

the state (defined in registers) is read, and passed to guard expressions and action

circuits. The guards for all rules evaluate independently, and produce rdy signals.

These signals are all inspected by a Rule Selector (scheduler) which selects a non-

conflicting set of ready rules to be executed on that particular clock cycle. This set is

signaled using the enable signals. (A set of rules is non conflicting if there exists an

ordering of all rules in the set which does not produce a read-after-write ordering of

data.) The state update MUX uses the updates produced by all the rules and the start

signals to produce updates to machine state. The next clock cycle the whole process

begins from scratch with reading of the now updated state.

In order to make the process of selecting rules for execution efficient, the scheduler

circuit imposes a total ordering of the rules to express their priorities. Rules with

higher priority are considered earlier for execution. We call this ordering an urgency

list or urgency ordering.

The template described here is used for compiling flat modules, that is modules

which expose no methods and contain no child modules. We refer to this as the

Hoe-Arvind scheduler. 129]

2.4 Standard Hierarchical Bluespec Interfaces

In the previous section we presented the template for synthesizing circuits for flat

Bluespec modules. In this section we will present the approach to hierarchical syn-

thesis described in [34]. We call this the Rosenband-Arvind scheduler.

A quick glance at the grammar in Figure 2-1 tells us that it is easy to write a

program in which multiple rules call a single method in a particular child module.

However, physically, we can only generate circuits for a limited number of instances of

such a method. For our purposes we will assume that each method will have exactly

one instance of its circuit present. As a result, methods are now considered to be

scarce resources, and we must manage them carefully. Any two rules which require

access to the same method are now considered to be conflicting, with some exceptions.

This extends our definition of conflicting rules from section 2.3.

Each module independently decides which rules it should activate in a particular

clock cycle independently of other modules. The only communication between the

schedulers is through rdy and enable signals for method calls. Each scheduler selects

a non-conflicting set of rules to activate, taking into account the possibility of conflicts

through method calls.

The prior modular synthesis method has been described in 134]. Just as prior flat

module synthesis, this prior method assumes that all rules complete their computation

in a single clock cycle.

The basic approach is to define a standard interface for methods to communicate

with their callers. Modules with methods expose an instance of this interface for

every method. The interfaces facilitate coordination of execution between the caller

module and the child module, and passing data between them.

The interfaces of methods consist of the following wires:

" rdy - this is the result of evaluating the method guard. rdy is an output from

the method.

" enable - asserting enable indicates that the method is being called in that clock

cycle. At the end of the clock cycle, the action method will commit its updates

to the architectural state if its enable wire is asserted. Only action methods

have enable wires.

" parameter - any method may accept inputs from the caller. Those inputs must

be valid in the clock cycle in which the method is called.

" result - value methods must return the computed value in the result wire.

The method call protocol is listed below:

1. The method evaluates its guard, and outputs it to rdy. If the guard evaluates

to false, the method is unavailable for calling in this clock cycle.

2. If the method's guard evaluates to true, the parent module considers the method

for calling. This requires scheduling all the rules and methods for this clock

cycle, and evaluating any predicates in actions or expressions calling the method.

If a method is called, the enable signal is asserted.

3. The parent module evaluates any parameters to the method and asserts their

values on the parameter wire.

4. (Value method) The method evaluates its result and eventually puts it on the

result wire

5. (Action method) The method evaluates its updates and updates the architec-

tural state at the end of the clock cycle.

The transition diagram of the single clock cycle call protocol can be found in Figure

2-5.

The example in Figures 2-2 and 2-3 describes a doGCD module with one rule and

two methods. In Figure 2-6 we present a parent module which calls the methods in

doGCD.

is called

Figure 2-5: Single Clock Cycle Call Protocol Transition Diagram

Module callGcd
Register x1, y=l
doGCD gcd
Rule go $display(gcd.Result() I gcd.Seed(x, y)

| (X := x ± y | y := x) when y # 0
(a) Code

$display

gcd
EN

X 4. rdySeed
- - enSeed

- - a
b

EN -rdyResult
Y 00? - Result

(b) Circuit

Figure 2-6: GCD Parent Module

2.5 Multi-cycle Syntax

Figure 2-7 presents the syntax of our multi-cycle language. The language is quite

similar to that in Figure 2-1. Notice that for the most part, the syntax of the language

does not deal with the concept of computation over multiple clock cycles. The only

sign of multi-cycle computation is the presence of the delay expression operator.

The delay expression operator functionally acts as an identity, but indicates to the

compiler that a clock cycle delay is requested on the expression path.

We have also created a separate expression type, flat expressions. The only differ-

ence between regular expressions and flat expressions is that flat expressions cannot

call value methods. This is necessary because our circuits cannot handle value method

calls from inside loops.

This thesis will present four schemes for compiling to multi-cycle circuits, each

m Module name /7 Module definition

[Register r := v / Register with initial value

Rule R a when e] /7 Rule (3, 4)
Module - type m] 77 Child module (6)
Rule R a] //Rule (5, 6)

[ActMeth G a] 7/ Action method (6)
ValMeth F e] /7 Value method (6)

(a) Module Syntax

a :: r := e / Register assignment
a I a /7 parallel action composition
if e then a 7/ conditional action

t = e in a //let action
a when e /7 when action (5, 6)
m.g(e) /7 action method call (6)

(b) Action Syntax

e: r 11 c 7/ register, variable read, constant

op (e, e)primitive operator
t = e in e let expression

if e then e else e conditional expression
e when e when expression (5, 6)
delay (e) delay expression

m.f (e) value method call (6)
(while el do [t = el] return t) 7/while loop expression (4,5, 6)

(c) Expression Syntax

ef rI t c /7 register, variable read, constant

Op (e, ef) / primitive operator
t =/ef in ef /let expression

if ef then e else ef / conditional expression

delay (e) / delay expression

(while ef do [t = ef] return t) /7 while loop expression (4,5, 6)
(d) Flat Expression Syntax

Figure 2-7: Multi-cycle Language

scheme with the ability to compile more language features. The syntax in Figure 2-7

includes all the language features we can compile with our most advanced scheme.

We have annotated the features that can only be compiled with more advanced com-

pilation schemes using the chapter in which those features will be supported. Chapter

3 will serve as an introduction to multi-cycle compilation. The scheme presented in

Chapter 3 will use a rigid counter-based scheduler. Loops will not be an available

language feature. Method calls also will not be available, thus making the compila-

tion scheme flat. Chapter 4 will build on Chapter 3 by using a more flexible data

validity tracking mechanism, and introducing loops. Chapter 5 will introduce a specu-

lative scheduling approach and allow each action and expression their own individual

guards. Finally 6 will introduce hierarchical compilation, allowing communication

between modules through method calls. We will present results, analysis and future

work in Chapter 7, and conclusions in Chapter 8.

2.6 Multi-cycle Operational Semantics

Figure 2-8 presents the operational semantics for the syntax presented in Section 2.5.

The triplet (S, U, B) represents the current register state, planned updates and local

variable bindings. NR represents the "not-ready" value, which can be stored in the

bindings but cannot be assigned to a register. If we cannot find a rule in operational

semantics to proceed forward, the encompassing action can not be completed. For

example, we cannot pass NR to a method, and trying to do so prevents the method

call from happening.

In our language method's guards are implicitly obeyed by the caller. That is if the

guard of a method evaluates to false, then the method cannot return a value or per-

form its updates and the encompassing expression or action do not have operational

semantics for such cases.

The feature distinguishing our language from that of [18] is the delay operator.

The delay operator is only present in expressions. Functionally, the delay operator

behaves as an identity. In practice we will convert each use of a delay operator to

introduce a one clock cycle delay in computation of the expression, thus giving the

programmer control over multi-cycle computations. Our conjecture is that the delay

operator and an identity are functionally the same. The simple argument for this

to be true is that the atomic action model executes one action at a time, and all

(S, U, B) k e -v, v # NR
reg-update (S, U, B) H r e -* {}[v/r]

(S, U, B) H e -* true, (S, U, B) H a - U'

(S, U, B) H if e then a -* U'

if-false (S, U, B) H e -+> false
(S, U, B) H if e then a -- {}

a-when-true (S, U, B) H e -* true, (S, U, B) H a - U'
(S, U, B) H a when e - U'

(S, U, B) Hai - U1,

(S, U, B) H a2 -* U2

par (S, U, B) H ai Ia 2 -*(U1 ± U2)
(S, U, B) H e -v, (S, U, B[v/t]) H a- U'

(S, U, B) H t e in a -* U'
(S, U, B) H e -+ v, ,v # NR,
m.g = (At.a), (S, U, B[v/t]) H a -* U'

a-meth-call (S, U, B) H m.g(e) -- U'

reg-read (S, U, B) H r --* S(r)

const (S, U, B) c - c

variable (S, U, B) F t -w B(t)

(S, U, B) Hei - vi, vi # NR,
(S, U. B) He2 - v 2, v 4 NR

op (S, U, B) ei op e2 -* v 1 op v 2

(S, U, B) Hei - true, (S, U, B) H e2 -* v
S(S,U, B) H ei ? e2 : C3 -* V

(S, U, B) H ei - false, (S, U, B) e3 -*v
(S, U, B) H ei ? e2 : 63 -* v

(S, U, B) H ei -* vi, (S, U, B[v/tJ) H e 2 -V2

(S, U, B) H t = ei in e2 -V2

(S, U, B) H e-a v, v # NR,
m.f = (At.eb), (S, U, B[v/t]) H eb -V'

e-meth-call (S, U, B) H m.f(e) -* o'

delay-expr (S, U, B) H e - v

(S, U, B) H delay(e) - v
(S, U, B) H ei -* false, (S, U, B) H t - B(t)

e-while-loop-done (S, U, B) H while ei do [t - e2 return t -* B(t)
(S, U, B) ei - true, (S, U, B) F e 2 -* Vi,

(S, U, B[vi/t]) H while ei do [t = e2] return t - V2

e-while-loop-next (S, U, B) H while el do [t = e2] return t -* V2

Figure 2-8: Multi-cycle Operational Semantics

register updates happen at the end of action execution. Thus slowing computation

down must not change the behavior of the design. This feature is essential to ensure

that the semantics of BMC is the same as semantics of Bluespec.

Since we have not yet specified the method of implementing the delay operator, we

are free to experiment. One valid implementation is to insert flip-flops for all instances

of delay operators, thus forcing the paths from expression inputs to final outputs

to explicitly take multiple clock cycles. Another valid implementation would be to

create multi-cycle combinational paths. Such a solution would prevent pipelining of

the design but save on power and area. We could also implement a hybrid approach.

Also, since the delay operator is local to the expression which contains it, the

value held by any flip-flops generated to hold its state not explicitly accessible to the

designer. In fact, the delay operator may be introduced by a tool asked to improve

clock cycle time on a design with slow paths.

2.7 Preview of Guarded Atomic Action Scheduling

Concepts

This thesis presents a method for scheduling multi-cycle guarded atomic action de-

signs. In each successive chapter we will add new features to our scheduling technique:

multi-cycle scheduling with fixed computation times; scheduling with loops; schedul-

ing with embedded guards; and finally modular scheduling.

It is important to consider what it means to schedule a rule in a circuit. Since

circuits are physical devices, we are really concerned about the observable side-effects

of scheduling the rule. We also notice that at a high level, circuits can be thought of as

always on: all registers are read on every clock cycle and all data is always computed.

The updates for all actions are always being computed. So scheduling an action is

really about finding a good clock cycle to commit the updates that have already been

computed, rather than finding a good clock cycle to compute the updates.

We will use two different methods for keeping track of when the updates are fully

computed. The first method, used in Chapter 3, will simply count the number of

clock cycles from the last update to the domain of an action. The method used in

later chapters will keep track of validity of data using two extra signals: valid and

changed. The valid signal will tell us that a particular data wire holds data that has

been fully propagated from the current architectural state. The changed wire will

tell us that the architectural registers used to compute the data on a particular wire

have just changed. We will use the changed wire to reset the value of the valid wire

after an update. We need these two wires because our scheme does not propagate

data as tokens, but rather waits for the multi-cycle circuits between the domain and

range of a rule to fully propagate the data. This allows us to perform incremental

updates to our computation. In either case, if we used the approach of treating data

as tokens, we would have to have a method to kill tokens when they are invalidated

by an update. This would require a mechanism similar to our changed wire.

The exception to the reasoning about actions always computing their updates is

when multiple actions share a scarce resource. If that is the case, we must pick which

action should have access to such a resource, to the detriment of other actions. This

is the case when we introduce modularity, and rules and methods may share scarce

method ports. This scarcity of method ports will become particularly troublesome

when a scarce port is needed to evaluate a guard. We will need a mechanism for

giving the access to the port to the guard.

Throughout this thesis, we generally use term "cycle" to mean "clock cycle". When-

ever we refer to multi-cycle, we always mean multiple clock cycles. Single-cycle always

means single clock cycle. We always use "iteration" to refer to a "loop cycle".

2.8 Rule Lifting Procedure

Our circuits will utilize a central scheduler, unlike those described in 134], . That

is, only the top-level module will contain a scheduler. To accomplish this, we need

to make sure that only the top-level module contains any rules. We will utilize the

following procedure to accomplish this:

Procedure RuleLift:

1. For each module m in design, traversed in post-order:

1.1 If m is top-level module, finish

1.2 For every rule r in m:

1.2.1 Convert Rule r a into ActMeth g, a

1.2.2 Add the following rule r' to parent of m: Rule r' : m.gr(

Chapter 3

Flat, Fixed, Multi-Cycle Rule

Scheduling

In this chapter we will present a technique for scheduling multi-cycle rules in a flat

module. We will begin with a motivational example based on the GCD design from the

previous chapter. We will then present a simple reference scheduler design. We will

follow that with an exploration of atomic consistency in presence of multi-cycle rules,

and finish with a formal algorithm for building circuits which correctly implement an

efficient multi-cycle rule scheduler. We will end this chapter with a simple example

scheduler.

This chapter assumes that the number of clock cycles required to complete a

particular rule is known statically, i.e., known at compilation time. This assumption is

enforced by not accepting the loop construct of the language and by always assuming

worst-case scenario propagation delays. We also assume that rule guards are single-

cycle, that is they are not allowed to contain the delay operator.

3.1 Two-clock-cycle GCD

Consider the GCD design shown in Figure 3-1. The design is identical to the design

from Figure 2-2, except that the modulo computation is performed by a %2 function,

indicating that the result takes two clock cycles to produce the final result. The new

Module doGcd2
Register x = 0, y = 0, t
Rule GCD (X:= y I y %2(x, y)) when y 4 0
ActMeth Seed(a, b) :: (x a I y:= b) when y = 0
ValMeth Result :: return x when y = 0

Figure 3-1: GCD example with a 2 clock cycle GCD rule

GCD rule is now a multi-cycle rule. Assuming that the remainder operation was

the critical path in our circuit, the new implementation may improve the clock cycle

time by up to a factor of 2. This cycle time reduction does not come for free. We

have introduced extra state, and will have to address the problem of maintaining rule

atomicity. Producing the final result still requires many firings of the GCD rule.

Figure 3-2 provides a circuit implementation of the code from Figure 3-1. There

are two notable differences between this circuit and one in Figure 2-3. The first

difference is that we have split the computation of the remainder into two clock

cycles (represented by the clock waveform below %2 operator circuit). The second

is that we have changed the signal indicating the completion of the GCD rule. The

new signal is called commitGCD and is asserted one clock cycle after the rule becomes

active because the computation of the remainder now takes 2 clock cycles.

Assuming that the implementation of %2 is efficient, we may have reduced the

clock cycle of this module by as much as half. Of course this clock cycle reduction

is unlikely to speed up the computation of GCD itself because GCD computation

will require twice as many clock cycles as before. However, it should speed up the

encompassing design if computing the remainder in GCD was the critical path of the

whole design. Note that this example is exceedingly simple, because it only deals

with scheduling a single rule. Real designs require scheduling multiple rules.

Also note, that the specifics of how %2 circuit is generated are not important here.

%2 can decompose the remainder computation into two parts and insert a register to

store an intermediate result. Alternatively %2 can be a 2 clock cycle combinational

circuit. All that matters for correctness here is that after two clock cycles of stable

enSeed EN Result
a

rdyResuli

EN

Y

The remainder calculation takes 2 clock cycles. Output of wait(2) circuit is true once its
input is true for 2 cycles.

Figure 3-2: 2 clock cycle GCD circuit

I Select Rule I
)Cycle Delay I

Rule Selector is a pure function and can assert only one start in any clock cycle.

Figure 3-3: One Rule-At-a-Time Multi-cycle model

inputs to %2, the output should be fully propagated and stable.

3.2 A Reference Scheduler for Multi-cycle Rules

Consider a reference schedule for multi-cycle execution of rules, shown in Figure 3-3.

The reference scheduler allows only a single rule to be active in any clock cycle, which

is selected by the Rule Selector. The fundamental difference between the models

in Figures 2-4 and 3-3 comes from separating the enable and commit signals and

having a counter (CyclesLeft) which counts down as the data propagates through

the currently active rule. When all rules take one clock cycle, as in Figure 2-4, the

enable and commit signals are one and the same. In our new model, asserting enableA

indicates that rule A is firing and commitA indicates that rule A is committing its

updates. Once enableA is asserted it remains active until commitA is asserted.

The first clock cycle in which enableA is asserted, CyclesLeft is set to LA, the

computation delay of rule A. When CyclesLeft reaches 0, the commitA signal for

rule A is asserted and the computed data is stored in the target state registers. The

CyclesLeft counter is loaded with a new value only when its present value is zero,

and is decremented by 1 otherwise. Thus, the effect of the scheduler is felt only on

those clock cycles when a scheduled rule has just completed or when the whole system

is idling. This implementation guarantees rule atomicity because inputs to an active

rule cannot change as no other rule is active.

The circuits to compute the next state can be built using multi-cycle combinational

paths or using flip-flops for temporary variables. These flip-flops are not globally

visible. All guards are still evaluated in a single clock cycle.

3.3 Read-Write Policy for Concurrent Scheduling of

Rules

When multiple multi-cycle rules are active concurrently, we have to make sure that an

active rule cannot destroy the input registers of another active rule. The procedure to

guarantee this condition has to know exactly when a rule reads and writes its various

registers. For example, we could assume that a rule reads all its input registers in

the first clock cycle it becomes active and after that those input registers can be

changed without affecting the behavior of the rule. This will potentially introduce a

lot of "shadow state". On the writing side, one can imagine writing the various output

registers of a rule in any clock cycle whenever the associated data become available.

These read-write policies can get complicated and their effect on the final results can

be quite difficult to analyze. Therefore, we use a simple read-throughout - write-last

policy.

Read throughout policy means that a rule can read its input registers in any clock

cycle the rule is active, and consequently, the register must hold its value during that

time. Write-last policy means that a rule does not commit any new values to its

output registers until the very last clock cycle in which the rule is active. This read-

write policy simplifies the scheduling problem and helps implementing if-statements

correctly.

In order to define the interaction between rules in reading and writing each others

input and output registers we need the following definitions for rules A and B:

Definition (Range and Domain): Range of rule A is the set of all registers A can

update and is written as R[A]. Domain of rule A is the set of all registers which A

can read potentially and is written as D[A].

Definition (Conflict Free Rules): Two rules A and B are Conflict Free (A CF B) if

(D [A] n R[B) = 0) A (D[B] n R[A] = 0) A (R[A) n R[B] = 0).

Definition (Sequentially Composable Rules): Two rules A and B are Sequentially

Composable (A < B) if (R[A] n (D[B] U R[B]) = 0) A (D[A] n R[B] # 0).

Note: this definition is slightly different from 129] by precluding Conflict Free rules

from being treated as Sequentially Composable Rules.

Definition (Conflicting Rules): Two rules A and B are Conflicting (A <> B) if

,((A CF B) v (A< B) V (B< A)).

We will use these definitions to decide which rules can be scheduled to execute

concurrently.

3.4 Opportunistic-Commit Scheduler

In Figure 3-4 we present an improvement over the scheduler in Figure 3-3. Notice that

the circuits in the scheduler in Figure 3-3 compute updates for all the rules all the

time even though they commit at most one rule in a clock cycle. The new scheduler

opportunistically commits a non-conflicting subset of rules among those rules whose

guards are true, and who have completed their next state computations. In order to

keep track of which rules are ready to commit we have created a separate CyclesLeft

counter for each rule. The counter for rule A is reset whenever a commit affects any

of the registers that A reads. In order to determine when some register in R[A] has

changed, we watch all commit commands and compute all the inCh (input change)

signals as follows:

Figure 3-4: Opportunistic Scheduler

inChA(t) = VBn s ((A <> B V A < B) A commitB(t))

CyclesLef tA(t) = inChA(t - 1) ? (LA - 1) : max(cycLeftA(t - 1) - 1, 0)

rdyCommitA(t) = (cycLeftA(t) = 0)

where LAiS the propagation delay of rule A , which is the maximum number of clock cycles

it takes for data from D[A] to propagate through A's computational logic.
One interesting feature of the scheduler in Figure 3-4 is that it can use the same

the Rule Selector circuit to generate commit signals that is used in the current

Bluespec (BSV) compiler to generate enable signals. The Rule Selector requires

no new static analysis because we have removed the rules which are not ready to

commit from the set of rules for consideration for scheduling; among these rules the

Hoe-Arvind scheduler 129] is guaranteed to pick only those rules for committing that

will not destroy the rule atomicity property.

3.5 Greedy-Reservation Opportunistic-Commit (GROC)

Scheduler

The opportunistic scheduler in previous section suffers from the problem of unfairness.

A rule that completes its computation quickly will be ready to commit early. A slow

rule which depends on the output of a fast rule will never complete its computation,

Figure 3-5: The GROC Fixed Delay Scheduler. The green box contains the essence

of the GROC scheduler.

because its CyclesLeft counter will continually be reset before it counts down to 0.

In order to overcome the problem of unfairness we will use a system where the

scheduler uses a rsv (reserve) command to reserve a turn for a rule to commit its

updates. Once a rsv command has been issued, the rule is considered active and only

an active rule is allowed to commit its update. The scheduler will continue issuing

the rsv command for the rule as long as the rule is active. In order to keep track of

which rules are active from clock cycle to clock cycle we need to introduce an extra

bit of state per rule, sAA (still active A). It represents whether the particular rule

was active in the previous clock cycle and did not commit, thus is still active in the

current clock cycle.

sAA(t) = rsVA(t - 1) A -cmtA(t - 1)

sAA(O) = false

Once activated, the only way to deactivate a rule is by issuing its cmt command.

The ability to reserve a commit slot in the future ensures that no rule can be blocked

IV may RSV

SaA Rsv. rsvmt

saB SChe . sa, Sched. cmt

mayRsva mayRsv, rc, c

rdyA rdyB " ' cmtA cmtS

permanently from committing by another conflicting rule. The new scheduler is shown

in Figure 3-5. It uses the same definitions for inChA, CyclesLeftA and rdyCommitA

as in Section 3.4. We will design RsvScheduler and CmtScheduler to generate rsv

and cmt signals which will reserve and commit as many rules as possible while main-

taining correctness.

Note: we are using a short hand of rsv for "reserve", cmt for "commit" and rc for

"ready to commit".

3.6 Greedy Rsv Scheduler and Cmt Scheduler for the

GROC Scheduler

Consider a scheduler that initially issues rsv commands for a non-conflicting set of

rules and simultaneously resets the CyclesLeft counter for these rules. Whenever a

rule commits, the scheduler can issue additional reservations for some rules such that

the new rules do not conflict with the rules still holding reservations. This scheduler

can be improved by resetting the CyclesLeft counter only when some commit affects

the input of the rule and not at the time of reservation. As we will show, the GROC

scheduler will allow opportunistic commits, that is, rcA may be asserted even before

the rule ever becomes active. However, the Rsv Scheduler of the GROC scheduler

will not issue a cmtA command unless rule A holds a reservation. The computation

of the rsv and cmt signals is a bit complicated but we will ensure that each execution

of a rule A corresponds to the state of the input registers during a precisely defined

clock cycle: the cycle in which the rsvA signal is asserted. Earlier we have called this

clock cycle the rule activation cycle. The results of an active rule are committed to

the global state in the clock cycle when cmtA signal is asserted. The subtlety is that

the time duration between cmtA and rsvA may be less than LA.

3.7 Scheduling Invariants

The GROC scheduler preserves the three invariants in Figure 3-6 in order to guarantee

atomic execution of the rules. We will now provide the motivation behind these

invariants.

Invariant 1. if A <> B, a reservation for A cannot be issued if B already holds a
reservation;
Invariant 2. if A < B, B cannot commit while A holds a reservation, i.e., is active;
Invariant 3. if A < B, a reservation for A cannot be issued if B holds a reservation,
i.e., is already active;

Figure 3-6: GROC Scheduler Invariants

Execution of Conflicting Rules: Invariant 1 is obvious - concurrent scheduling

of conflicting rules is guaranteed to lead to atomicity violation. Conflicting rules must

be executed one after another.

Rule Stretching: Sequentially composable rules are characterized by having one

rule read the output of the other, but not vice versa. Consider the example of two

sequentially composable rules shown in Figure 3-7. Figure 3-7 demonstrates that it is

possible for two SC rules to be active concurrently and still produce results consistent

with atomic execution. In our example, the schedule of firing is A, B, A, B. Notice

that even though A and B start in the same clock cycle, this is the only schedule

which produces the final state in Figure 3-7.

When executing SC rules it is sometimes necessary to keep a rule active longer

(delay its commit) than the expected number of clock cycles. We call this rule stretch-

ing. An example of rule stretching is demonstrated in Figure 3-8. The Figure demon-

strates that committing rule B too early can lead to atomically inconsistent results

of computation. This is the motivation underlying Invariant 2.

Livelock Avoidance: Consider the example shown in Figure 3-9. If all three

rules are activated in the same clock cycle it will lead to a livelock, because Invariant

2 would not allow any of the three rules to commit. The issue here is that rules A, B

and C form a dependency cycle. The Hoe-Arvind scheduler 1291 avoided this problem

by disallowing the concurrent scheduling of such cyclically dependent rules. Their

Figure 3-7: Sequentially Composable Rules

scheduler permitted scheduling of only a subset of dependency-cycle-forming rules.

Though such subsets are not unique, finding one is easy, especially given the Urgency

List. One can simply delete the least urgent rule that breaks the dependency cycle

and schedule the rest.

In the multi-cycle execution model, the problem is slightly harder because such

cyclically dependent rules may not all begin at the same time. For example, as shown

in 3-9b) the rules B and C may already be executing when one has to decide whether

to activate rule A. If A is activated it will lead to a livelock. This is the motivation

underlying Invariant 3 which prohibits such an activation of rule A. It is worth noting

that Invariants 1 and 3 guarantee that active rules at any time form a partial order

with respect to the sequential composability (<) relation. Consequently, it is always

possible to pick an active rule which can be committed before all others without

violating atomicity.

Our Invariant 3 is not the most permissive invariant because it may prevent some

legal schedules. For example, in Figure 3-7 it is possible to fire rule A in clock cycles 2

Module sequentially_ composable
Register x, y
Rule A : := f (x, y)
Rule B :: (tB ~ 91(z) in y := 92(z, delay(tB)))

Urgency List: A -+ B

Module rulestretching
Register x, y, z

Rule A :: (tA fi(Y)
Rule B y := g(z)

Urgency List: A -+ B

in x := f2(y, delay(tA)))

cycle:

Inconsistent
Computation!

1

a tai=f1(yo/ ta,1

Delay committing B's
Results until A finishes

Figure 3-8: Rule Stretching (Delayed Commit)

Module deadlock
Register x, y, z
Rule A x := f(y)
Rule B :: y:= g(z)
Rule C :: z := h(x)

Urgency List: A -+ B -* C

cycle: 1 2 3 cycle: 1 2 3
A A
B B

C C

x x0 xo x0 x x0 x0 xo

Y YO Yo Yo Y Yo Yo Yo
z Zo Zo zo z zo zo zo

a) b)

Since A < B, B < C and C < A, Invariant 2 stops any rule from committing.

Figure 3-9: Livelock avoidance

and 4, resulting in the execution A, A, B, A, A, B. We will not explore such aggressive

schedules in this thesis.

3.8 Scheduling Algorithm

We now present the procedures to generate the rsvA and cmtA signals based on the

invariants we have discussed in Section 3.7. Both procedures rely on the compiler-

computed conflict properties for each pair of rules. The RsvScheduler procedure

generates the rsv signals and requires the sA and mayRsv input signals while the

CmtScheduler procedure generates the cmt signals and requires the rsv generated

by RsvScheduler and rc signals. In the current version of the scheduler, mayRsv

signal is equivalent to rsv, as shown in Figure 3-5, but that will change in Chapter 5.

In order to set rSVA at time t we need to make sure that mayRsvA(t) is true and

that A does not conflict with the rules that have already been reserved. Furthermore,

if sAA is asserted, we must assert rsvA. The rules are examined in the decreasing

order of urgency. The algorithm in Figure 3-10 builds the set of active rules AR and a

set of non-active rules NA. Step 3.2 of the algorithm above preserves Invariants 1 and

3. As a consequence the rules in AR will form a partial order over the sequentially

composable (<) relation.

Procedure RsvScheduler:
1. Initially AR = {A | sAA(t)} and NA = R - AR
2. VA E AR : rsvA(t)= true
3. repeat while NA # 0
3.1 Let A be the most urgent rule in NA: B E NA : B -± A
3.2 rsvA(t) = mayRsvA(t) A (AB E AR : ((A <> B) V (A < B)))
3.3 NA = NA - {A}
3.4 if rsVA(t) then AR= AR U {A}

Figure 3-10: RsvScheduler Procedure

In order to compute cmtA(t) we need to make sure that 1. rsvA(t) is true; 2.

rcA(t) is true and 3. committing A would not violate Invariant 2. The algorithm in

Figure 3-11 uses the set AR computed in Figure 3-10 and the set CR which is the

set of rules which are active and ready to commit. It examines the rules in CR in

an order defined by sequential composability (<) and decides for each rule whether

it should be allowed to commit:

It is important to note that this algorithm is well defined (deadlock free) only if

the (<) relation is a partial order on CR. This is not true in general but is true for

active rules because of Invariants 1 and 2 and because CR is a subset of AR.

These algorithms can be turned into pure combinational logic for a given set of

rules because (<>) and (<) relation among rules are known at compile time. We will

illustrate this in Section 3.10 using the GCD example.

We will like to note one point about the efficiency of CmtScheduler procedure.

Even though the CmtScheduler procedure is efficient - it generates its output in a

single pass over the set CR - it can potentially generate a lot of combinational logic

because of step 3.1. This step essentially requires a topological sort of any subset

of rules based on the (<) relation. This inefficiency can be overcome by a version

of the algorithm that sometimes may not commit as many rules every clock cycle as

theoretically possible.

The simplification of the algorithm is based on the fact that the rules in step 3.1

can be examined in any order, that is, we can ignore the (B < A) check without the

loss of correctness. So instead of checking rules according to the (<) relation, we can

check the rules in the urgency order, which is very efficient to implement in hardware.

Procedure CmtScheduler:
1. Initially CR = { A | activeA(t) A rcA(t)}; AR = { A | rsVA(t)}
2. VA C R - CR : cmtA(t) = false
3. Repeat while CR # 0
3.1 Select A E CR such that B E CR : B < A
3.2 cmtA(t) =B c AR : (B < A)
3.3 CR =CR -{ A}
3.4 if cmtA(t) then AR = AR - { A}

Figure 3-11: CmtScheduler Procedure

3.9 Correctness of GROC Scheduler

It is fairly easy to show that the behavior of circuits scheduled using the GROC sched-

uler can be duplicated by a one rule at-a-time scheduler as described in Section 3.2.

Since one rule at-a-time scheduler is the model for guarded atomic action execution,

this would verify correctness of GROC.

We observe that step 3.2 of RsvScheduler procedure guarantees that we only

activate rules which do not read the result of any already active rule. Next we observe

that step 3.2 of CmtScheduler procedure commits only active rules, and commits

them in an order such that there are no other active rules which read the input of the

rule being committed. Together these two observations mean that the domain of an

active rule cannot change after it has been reserved and before it has been committed.

Thus if we start both schedulers with the same state, and look at a single clock

cycle of execution of the GROC scheduler, we can schedule rules one at-a-time in the

order in which they are committed in step 3.2 of CmtScheduler procedure and we

must arrive to the exact same state as we would if we committed all these rules in a

single clock cycle using the GROC scheduler.

Thus, by induction, it must be the case that if we start with the same initial

state, we will be able to duplicate the behavior of the GROC schedule with a one rule

at-a-time scheduler.

3.10 The GROC Scheduler for GCD

The GCD example in Section 3 uses Bluespec methods, which our scheduler does not

accommodate. In order to use this example here, we modified the module to produce

test data and print results. We present the complete example in Figure 3-12. The

complete module consists of three rules: GCD, Seed, and Print (abbreviated to G,

S and P). Those three rules have the following interactions: G <> S, P < G and

P < S. Of course, the two rules which update their data are also self-conflicting:

G <> G and S <> S.

During creation of the rsv and cmt signals for the module, we have to take care

to respect the Invariants, as described in Section 3.8. rsv signals for G and S have to

respect Invariant 1 (G <> S), while P has to respect Invariant 3 (P < S and P < G).

cmt signals for G and S rules have to respect Invariant 2 (P < S and P < G).

The complete set of control and scheduling equations for our GCD example is in

Figure 3-13.

Module doGcd2
Registerx=1, y=,a=1,b=1,t
Rule GCD :: (:y I(t:= %1(x,y) ; y:= %2(X,y,t))) when y $ O
Rule Seed (x :=a y :=b |a :a b b :=a) when y =0
Rule Print :: $display(a + "%" + b +" =" + x) when y = 0

Urgency List: Print -- GCD -4 Seed

Figure 3-12: Complete GCD Example

rsvG(t) = sAG(t) A (rdyG(t) A -,sAS(t))
rsvs(t) := sAs(t) A (rdys(t) A -rsvG(t))
rsvp(t) : sAp(t) A (rdyp(t) A ,sAG(t) A ,sAS(t))

cmtG(t) := rsvG(t) A TCG(t) A -,(rsvp(t) A ,cmtp(t))

cmts(t) := rsvs(t) A rcs(t) A -(rsup(t) A -cmtp(t))
cmtp(t) := rsvp(t) A rcp(t)

Figure 3-13: Complete GCD Control and Scheduling Equations

58

Chapter 4

Flat, Flexible, Multi-Cycle Scheduling

In this chapter we will relax the requirement that every rule complete its computation

in a constant, statically-known number of clock cycles. This will allow us to develop

circuits for operators such as a dynamic conditional (non-strict if) and a while-loop.

Guards of our new circuits will be permitted to be multi-cycle, something which we

did not permit before. We will begin with motivating our work by modifying our old

GCD example to use a loop to perform its computation. We will then introduce a

three-wire data format, which is used for dynamically tracking propagation of data,

followed by a presentation of circuits for compilation of all actions and operators

available in flat BMC using syntax-directed translation. Finally, we will show how

this new compilation scheme fits with the GROC scheduler from the previous chapter.

This chapter still only deals with flat modules.

4.1 Loop-based GCD Example

Consider the GCD design presented in Figure 4-1. We have eliminated the split-phase

request-response design from Figures 2-2 and 3-1 and replaced it with an imperative

function. The user can simply perform a single value method call to the GCD method,

passing in the parameters to the computation, and the answer will be provided in the

same atomic action. This style of computation can lead to simpler high-level design,

as the synchronization of the computation is implicit rather than explicit. The power

of the request-response design is not always necessary.

Note that the number of clock cycles the computation takes is unbounded. While

it is possible to compute the absolute maximum number of clock cycles for particular

sized inputs, this would be almost certainly unduly pessimistic for many input vectors.

Our goal is to create a methodology to synthesize circuits which will adjust their

computation time according to dynamic data, rather than statically computed worst-

case scenarios, as in the previous chapter.

Figure 4-2 shows a circuit that implements the loop-based version of the GCD.

The computation is started by asserting enGCD for one clock cycle at which point the

inputs are captured. Completion of the computation is signaled by asserting doneGCD

signal and the result is presented on reS'nitGCD wire. The inputs are first captured

in the X and Y flip-flops, and the next clock cycle the computation begins. The

computation is finished when value stored in the Y flip-flop is 0.

Aside from the doneGCD wire, the interface is similar to that used by "regular"

Bluespec. This additional wire is similar to the rdyCommit wire from previous chap-

ter, but signals the completion of computation of a value method rather than an

action.

Module doGcd3
ValMeth GCD(x, y) while (y / 0) do

(X, y) = (if (x > y) then (x - y, y) else (y - x, x))
return x

Figure 4-1: Loop-based GCD example

4.2 (Valid, Changed, Data) 3-tuples

In the previous chapter we have introduced the CyclesLeft counter which we used to

keep track of propagation of data through bodies of rules. Our counters had a static

reset value and would count down to 0, at which point we were guaranteed that the

rule has processed all its data and is ready to commit.

else~ 0 Y Thf doneGCLXresult...

Figure 4-2: Loop-based GCD Circuit

In this chapter we want to extend our approach to allow us to generate rules

with dynamically determined completion times. That is we would like to create rules

which can incorporate loops, such as the GCD in Figure 4-1 and conditionals which

take advantage of unbalanced paths. A simple counter cannot provide the required

flexibility.

One approach to solving this problem is to generate a valid signal that travels

along with the data. The valid signals indicate that the data observed on the wire

matches the data currently stored in the architectural state. For every clock cycle

delay on the data path, the valid signal is also delayed. When two data signals are

being combined by an operator, the output's valid signal cannot be asserted until

both inputs have their valid signals asserted.

This is a good approach, but is not sufficient for our purposes. In order to truly tell

us whether the data on the wire represents the architectural state, the valid signals

must be immediately reset when the architectural state changes. To accomplish that,

we also generate a changed signal. We will assert the changed signal for one clock

cycle immediately after the architectural state has been changed. We will use this

signal to reset our valid signals.

In other words, there are really three states that the data on a wire can be in: not

valid, newly valid with new data (first clock cycle with this data), valid with old data

(not changed from last cycle). We need to distinguish between the two different valid

states because the consumer of the data needs to know if it should be recalculating

its result based on new values. To communicate these three states, we also generate

a changed signal.

Our notation will be to associate a 3-tuple (X, Xch, Xd) with every variable x that

represents an expression. Xd represents the actual value computed by the expression.

The valid signal xo indicates that the expression has finished computing, and that the

results are consistent with the current architectural state of the system. The changed

signal Xch indicates that the architectural state has just changed in the previous clock

cycle and the expression has to be recomputed.

One important invariant that comes from the description of the 3-tuple is that

once the data becomes valid, meaning xo is asserted, both the data wire (Xd) and the

valid signal (xe) must remain constant until the changed signal (Xch) is asserted.

In our figures, we draw a single blue wire for these 3-tuples. We continue the

scheme of drawing boolean values with thin lines and other values with thick lines.

4.3 Architectural Registers

Values of architectural registers are used in expressions and are written with the

result of evaluation of an expression. Since expressions consume and produce 3-

tuples described in the last section, we must create circuits that will do the same. In

addition, architectural registers are only updated on selected clock cycles, so we must

also take care to incorporate the register write enable signal (ren).

On the input side, we can simply drop non-data part of the 3-tuple. We will build

circuits which will guarantee that we write only valid data to architectural registers.

A value being read from an architectural register is always valid. That means for

any register r, rv is necessarily 1 at all times.

By definition, the data read from an architectural register is updated in the clock

cycle after it has been written. Thus r(t)ch- ren(t - 1).

Figure 4-3 shows the hardware circuit generated by an architectural register.

4.4 Syntax-directed Translation of Multi-cycle Ex-

pressions

In this section we will present our syntax-directed scheme for generating circuits for

multi-cycle expressions.

4.4.1 Expression Interface

input T[e] Y
variables[

Figure 4-4: Expression Interface

Every expression has the interface as shown in Figure 4-4. The inputs and outputs

are all 3-tuples (Xd, X,, xch). In the this and following figures, T[e] represents the

hardware circuit generated for expression e.

4.4.2 Register, Constant and Variable

Figure 4-5 shows the hardware circuit generated by references to registers, constants

or variables. The circuit simply returns the 3-tuple represented the constant c or the

ren

Figure 4-3: Architectural Register

variable t. Note that for a constant c,

changed signal always remains false.

The register reference gets all of its

tectural register, which we will present

the valid signal always remains true and the

signals directly from the circuit for the archi-

in Section 4.3.

4.4.3 Let Expression

Figure 4-6: Let Expression

Figure 4-6 shows the hardware circuit generated by a let expression. The expres-

sion el is bound to variable t and is sent as input to expression e2.

Y

V=1
ch=O

C

t

Figure 4-5: Register, Constant and Variable

Figure 4-7: Primitive Operator

4.4.4 Primitive Operator

Figure 4-7 shows the hardware circuit generated by a primitive operator. The output

can be computed only when both the expressions have been computed (conjunction of

the valid signals in Figure 4-7). Any expression depending on this primitive operator

must be recomputed whenever either of the expressions in the primitive operator are

recomputed (disjunction of the changed signals in Figure 4-7).

4.4.5 Conditional Expression

Figure 4-8: Conditional Expression

Figure 4-8 shows the hardware circuit generated by a conditional expression. The

circuit waits for the predicate p to become valid. Then, depending on the value of the

predicate, it waits for the either the true or the false expression to become valid. The

circuit thus waits only for one of the two branches of the conditional to become valid,

depending on the predicate. Thus this condition expression is a non-strict if. Any

expression that depends on this conditional expression must be recomputed whenever

p is recomputed or, depending on the value of the predicate, either the true or the

false expression is recomputed.

4.4.6 Delay Expression

V
V

-- T[e] chh_
id

Figure 4-9: Delay Register

Figure 4-9 shows the hardware circuit generated by a delay expression. The value

of expression e along with its valid signal gets registered. Whenever e is recomputed,

the changed signal for e is set and hence the value produced by delay(e) becomes

invalid. The changed signal is passed on without being registered because it has to

invalidate the values produced by all the expressions that use the value produced by

delay(e). Once e is recomputed, delay(e) produces a valid value, which gets passed

on to further expressions.

As explained earlier, the use of a flip-flop to register the data portion of the

expression is optional. We could just as well declare the path to be a multi-cycle

combinational path and skip the flip-flop.

It is possible that converting a complex expression to execute over many clock

cycles using the delay operator would create a long combinational path on the changed

signal. We discuss this possibility in Section 7.5.2.

4.4.7 While Expression

Figure 4-10 shows the hardware circuit generated by a while expression. The

while expression introduces a micro-architectural register to store the values produced

in each successive iteration of the loop as shown in the figure. xlnit is the loop-

dependent input to the loop, while xLC is the loop constant input. x is the internal

loop variable.

In the first iteration of the loop, the value of xInit is taken from the input to the

while expression; during the subsequent iterations, the value is taken from the loop

iteration register (nextData). The firstIter signal denotes if the loop is executing

the first iteration or not. The loop repeats its computation as long as the predicate

p for the loop evaluates to false. Since the predicate itself can take x as input,

the number of iterations of the loop will not be known at compile time. The signal

nextIter behaves like a pulse in the sense that it is asserted for one clock cycle only

after every iteration, thus denoting whether the loop is starting the next iteration.

nextIter, xLCeh and xInitch are combined to generate the inputChanged signal

which indicates the restart the computation in the predicate p and function f for

every iteration of the loop. This is done by asserting Xch signal. The loop iterations

continue till the predicate becomes false, after which the loop produces the valid

result.

If at any time either of the inputs to the loop changes by asserting their changed

signals, we immediately reset the execution of the loop. As long as the inputs' changed

signals remain low, the loop will continue its computation until it comes to a com-

pletion.

Once the predicate evaluates to true, we stop iterating by preventing the micro-

architectural register from capturing next value of the loop variable.

4.5 Syntax-directed Translation of Multi-cycle Ac-

tions

In this section we will describe our scheme for generating circuits for multi-cycle

actions, given that all expressions have already been generated using the technique

described in previous section.

4.5.1 Action Interface

The Rule Selector circuit described in Chapter 3 uses rdyCommit signals to indicate

that the body of a rule (the rule's action) is finished performing its computation and

is ready to commit. We would like to use the same interface as the Rule Selector,

so we will need to also generate the rdyCommit signals from our actions. In this

chapter we will rename rdyCommit signals to just rc for simplicity.

While our language has a variety of different actions available for creating designs,

there is only one action that directly changes the architectural state of the machine:

register updates. Thus every action needs to generate signals containing the new

values being written to the registers. We will call these signals rd. rd signals do not

need to be 3-tuple, because no further computation is being done on them. The data

they carry will simply be written to a register.

Our language also contains the conditional action, which allows us to perform the

underlying action conditionally. This means that the same action can skip a register

write, depending on the result of an execution-check. Thus we will marry the register

update data signals with a register write predicate, rp, which will tell us if the write

needs to actually take place. rp wires also do not need to be 3-tuple, because they

will only participate in muxing of the correct register data.

Together rp and rd form a tuple (rp, rd).

The interface for multi-cycle actions is presented in Figure 4-11. In the this and

following figures, T[a] represents the hardware circuit generated for action a.

x1 ready-to-commit
T[a] Lrp, rd,

predicated
Xn register writes

rpm, rd,

Figure 4-11: Action Interface

4.5.2 Register Assignment

v rc
X T[e] - ch

1 rp, rd

Figure 4-12: Register Write Action

Figure 4-12 shows the hardware circuit generated by a primitive register write

action. The ready-to-commit signal (rc) is generated whenever the expression which

produces the value for the register becomes valid. Since this action is not predicated,

rp is set to true.

4.5.3 Conditional Action

Figure 4-13 shows a conditional action. This action must wait for the predicate

p to become valid. Then, if the predicate is false, the action is ready to commit

irrespective of whether the action a is ready to commit. But if the predicate is true,

then this action must wait for a to become ready to commit. The ready-to-commit

(rc) signal shown in the figure reflects this. All the register updates of action a must

happen only if the predicate p of this action has been computed and it is true.

4.5.4 Parallel Action

rcl rcx - - -T[a1] 'D - r
r13 rd1

rp, rd
r c 70

T[a2]r2 I2

Figure 4-14: Parallel Action

Figure 4-14 shows a parallel action which is the parallel composition of two actions.

The whole action is ready to commit only when both the actions are ready to cormmit.

The MUX shown in the figure composes the register updates of the two actions. If

both the actions are writing to the same register, then it is an error if the predicates

Figure 4-13: Conditional Action

for that register in both the actions are true. For each register, the MUX passes

on the predicate and the update-expression from the action where the predicate to

update that register is true. The MUX is a simple one-hot-MUX with rp as the

selectors.

4.5.5 Let Action

Figure 4-15 shows the hardware circuit generated by

e is bound to variable t and is sent as input to action a.

a let action. The expression

4.6 Syntax-directed Translation of Rules

4.6.1 Rule Interface

A rule in our language consists of an expression guard and an action. Thus the

interface for a rule must read architectural state (for both the guard and the action),

produce a rdy signal from the guard, rc signal from the action, and a set of (rp, rd)

tuples also from the rule. Figure 4-16 presents the interface of a rule.

4.6.2 Rule Circuit

Most of the signals for a rule are generated directly from the guard and the action.

The only exception is the rdy signal. The rdy signal is produced from the result of

Figure 4-15: Let Action

r 0- rule ready
ready-to-commit

T[r] rp, rdi
xn predicated

register writes
rp, rde

Figure 4-16: Rule Interface

evaluating the guard but is is a single wire, not a 3-tuple. rdy should be asserted

when the guard evaluates to true. Thus it must be equal to the conjunction of the

data and valid signals from the guard evaluation circuit.

The rule circuit is presented in Figure 4-17.

4.6.3 Combining Rules for Register Writes

In our compilation scheme, each rule is compiled separately. All the signals consumed

are always available to all rules. The rdy and rc signals are passed to the scheduler

without modification, and never shared between rules. But the register write signals

(rp, rd) need to be explicitly combined in the case that two rules may update the

same state.

rc

rc
rp, rd

Figure 4-17: Rule Circuit

Our scheduler will guarantee that for any architectural register, only one rule will

try to update it in a single clock cycle. Figure 4-18 presents our circuit for generating

the final ren and rd signals which will be fed directly to the architectural register

circuit from Section 4.3. First, we filter out the rp signals to only take into account

those which belong to committing rules. We then pass the register data through a

one-hot MUX.

4.7 Module Model

We have now introduced all the major components of our multi-cycle modules and can

present the top-level model in Figure 4-19. It is important to note that the essence

of the GROC scheduler from Figure 4-19 has not been modified. This means that we

are using the same RsvScheduler and CmtScheduler algorithms from Section 3.8.

4.7.1 Single-cycle Equivalency

In the case where the design contains no delay registers or loops in the design, our

circuits can be optimized easily to generate the same hardware as the single-cycle

Rule 1 updates:

Rule m updates: generated only for
rpi, rdihs eisesta

p pairs shuleb
mutualltedeonlysfor

the rule may update

ren,
rpn' rdn rd

p
x

pF, .. , p must be

Figure 4-18: Register Enable Circuit

Figure 4-19: Full Module with GROC Scheduler. The essence of the GROC scheduler
is indicated by the green box.

Bluespec designs. In the absence of delays, all values communicated through our

3-tuples are always valid. This is because even when an architectural register is

updated, the updated value is visible throughout the circuit the very next clock

cycle. That means that all the logic for computing valid signals can be optimized

out. Similarly, because the only use of changed signals is to compute multi-cycle

valid signal, those can also be optimized out, together with the one-bit registers

that accompany architectural registers. Finally, actions are always ready to commit,

because all expressions are always providing valid outputs. Thus all the sa bits from

the scheduler will always hold 0, and are also subject to elimination. Without sa bits,

the scheduler becomes the standard Bluespec scheduler [291.

-- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - a- -

IRsv. Cmt.
s2 Sche . FVSched. Cmt,

Chapter 5

Flat Scheduling In Presence of

Guards

In this chapter we will enhance the syntax directed synthesis scheme from Chapter

4 to include guards for all expressions and actions. As before, the guards can be

multi-cycle. In order to accommodate slow guards while still giving the user effective

control over the urgency list, we will turn make the scheduler speculative.

5.1 Speculative Scheduler

In the previous chapters we have presented a GROC scheduler based on two-phase

scheduling: scheduling reservations and commits separately (RsvScheduler and

CmtScheduler algorithms). As described, the approach relies on the ability to

evaluate the rdy signal accurately before reserving a rule in the first step. How-

ever, with the introduction of multi-cycle guards, we can no longer guarantee that all

guards will ever complete their evaluation. In this chapter we are also transforming

the construction of actions and expressions to allow for explicit guards, rather than

force the lifting of the guards to the overall guard for the encompassing rule. This

means that it will be easier for the designer to construct designs with complex guard

expressions, which may require multi-cycle implementations to perform well.

Consider a module with two rules: one has a slow multi-cycle guard, and the

other rule is has a single-cycle guard, is always ready and updates a register used in

computation of the guard for the first rule. In such a scenario, the second rule will

continually be reserved, commit and be reserved the very next clock cycle. The guard

for the first rule will never be given a chance to fully evaluate, so the rule will never

receive a reservation. This situation can be a serious problem if the first rule should

receive higher urgency than the second rule.

In order to overcome this problem, we have designed a variation on the GROC

scheduler. In the previous chapter we assumed an unevaluated guard to be false.

Starting with this chapter we will consider an unevaluated guard to be false. This

allows us to reserve rules speculatively, that is before we have fully evaluated the

guard. During the evaluation of the rule, we will fully evaluate the guard before

committing. If the guard evaluates to false, we release the reservation, and take care

not to reserve the rule again until its guard has been updated by another rule.

Since guards can now evaluate over multiple clock cycles, we must also consider

how we can tell that a guard has been fully evaluated. After all, with multi-cycle

guards, a boolean guard can now really have three states: true, false and unknown.

In the previous chapter, we used the rdy signal, which was asserted when the guard

was evaluated to true but remained unasserted for both false and unknown states.

The speculative reservation scheme described above requires that we be able to tell

when the guard has evaluated to false (so we can release existing reservation and

block future reservations until the guard changes) and when it hasn't (thus is true

or unknown). In order to facilitate this distinction we will propagate the value of

the guard using a notRdy signal (as opposed to a rdy signal before). notRdy will

be asserted when the guard evaluates to false, and remain unasserted otherwise. If

notRdy is asserted, we must release the reservation on the corresponding rule (if we

have issued one) and avoid reserving the rule until the guard has been changed.

While we can simply use notRdy to determine when we must release the reser-

vation for a rule due to its guard evaluating to false, we also need some way to

determine when the guard has actually evaluated to true. This is because we cannot

commit a rule that has not fully evaluated its guard to true. This is where we will

utilize the rc signal we have used in previous chapters. Our circuits will guarantee

that if rc is asserted then the guard is fully evaluated, and if notRdy is not asserted

then the guard is true. As a divergence from previous chapters, we will allow rc to

assert even if the guard evaluates to false. The scheduler will not commit a rule in

such a state, because notRdy will be asserted, and it will take the precedence over rc.

As a result of the speculative scheme above, our new scheduler will allow a rule to

be reserved and released without ever being committed. The schedulers in previous

chapters guaranteed that once reserved, a rule must be committed.

It is noteworthy that the use of notRdy matches the NR status of an expression

or action in the Operational Semantics presented in Section 2.6.

Figure 6-1 presents the new speculative scheduler, which is very similar to the

scheduler presented in Section 4.7. The big difference is that we are using notRdy

rather than rdy signals. To accommodate this change we have to invert notRdy

before passing it to RsvScheduler as mayRsv. We also have to remove an existing

reservation for a rule that has a guard evaluating to false. This requires that we

change the essence of the GROC scheduler, which dates back to Figure 3-5. We do

this by guarding the stillActive bit with a corresponding notRdy. With those two

changes, the scheduler will now reserve rules before they have evaluated their guards

and release their reservations when the guard turns out to be false.

Once a guard evaluates to false, it will remain false until some data needed for

its computation changes. At that point the guard will re-evaluate, and the rule's

notRdy signal will be released. All this will happen automatically.

We do not have to make any changes to the setup of CmtScheduler because

we took care of all the differences before the rsv signals are generated. Neither

RsvScheduler nor CmtScheduler procedures have changed since they were first

described in Section 3.8.

notRdyA notRdyB

Figure 5-1: Fully Speculative Scheduler. The modified essence of the GROC scheduler
is indicated by the green box.

I values,
including: X1 -
registers notRdy1 - ---- y

parameters . notRdy,
free variables
method results

Figure 5-2: Speculative Expression Interface

5.2 Speculative Expressions

5.2.1 Speculative Expression Interface

The addition of guarded expressions requires that we change the interface for our

expressions. Guarded expressions can now produce results which are not ready. Those

results can be assigned to a variable and used in another expression. This second

expression must know if it is consuming values that are ready. This means that every

value read in an expression must be accompanied by a corresponding notRdy signal.

Figure 5-2

The implementation of expressions in this section will generally be similar to that

from Section 4.4.

sa Rsv. rsv cmtA

saB- Sche rsv Sched. cmt

mayRsvA mayRsv sa
--------- --------------- ---------------------- I

r y
0 -notRdy

(a) Speculative Register Read Expression

V=1
ch=O Y

C 0 - notRdy

(b) Speculative Constant Expression

Figure 5-3: Speculative Value Read Expressions

5.2.2 Register and Constant Expressions

Figure 5-3 presents our circuits for a basic expressions for reading the value of a

register and referencing a constant. These are basically the same as those in Section

4.4.2, except that they now also output a notRdy signal. Registers ad constant are

always ready so the notRdy are always set to 0 here.

5.2.3 Speculative Let Expression

Figure 5-4 presents our circuit for speculative let expressions. This circuit is basi-

cally the same as that in Section 4.4.3, but also carries the notRdy signals between

expressions.

5.2.4 Primitive Operator Expression

Figure 5-5 shows the circuit for a speculative primitive operator expression. This

circuit is virtually identical to one from Figure 4-7, but includes notRdy signals,

which are OR-ed between the two expression inputs.

Figure 5-5: Speculative Primitive Operation Expression

X,
notRdy1

y

notRdy

Figure 5-4: Speculative Let Expression

x,

notRdy1

Figure 5-6: Speculative Conditional Expression

5.2.5 Speculative Conditional Expression

Figure 5-6 presents our new speculative conditional expression. We select the correct

notRdy signal from el and e2 using result from p. The selection is only valid when

Palid is true. The result is also combined with notRdy from p. The selection of the

correct result is done the same as in Figure 4-8.

5.2.6 Speculative Guarded (When) Expression

Figure 5-7 presents our circuit for a guarded expression. The expression is ready only

if both the g and e sub-expressions are ready and the guard evaluates to true.

5.2.7 Delay Expression

Figure 5-8 presents a speculative delay operator. It is virtually identical to that from

Section 4.4.6. We delay the data and valid, but not notRdy.

X,

notRdy

Y

notRdy

Figure 5-8: Speculative Delay Expression: delay(e)

X,
notRdy1

-y

notRdy

Figure 5-7: Speculative Guarded Expression

X,

notRdy1

5.2.8 Loop Expression

As usual, the only difference between speculative loops and non-speculative loops is

that speculative loops have to carefully process the notRdy signals. Here the loop can

be forced to stop iterating when one of the expressions (condition or body) becomes

not ready. We accomplish this by including the notRdy signals from the loop body

and condition in generation of the nextlter signal. If the body becomes not ready

but the guard evaluates to 0, the overall expression is still ready. Figure 5-9 presents

the circuit.

Y

-nR

Figure 5-9: Speculative Loop Expression. We use nR as shortcut for notRdy.

values, rc
Including: notRdy

registers notRdy1 -.

parameters T[a] rd predicated
free variables register
method results writes

Figure 5-10: Speculative Action Interface

t
x1_

notRdy1 T[e]

rc
notRdy

.T[a]
rpirdi

Figure 5-11: Speculative Let Action

5.3 Speculative Actions

5.3.1 Speculative Action Interface

Figure 5-10 presents the interface for fully speculative actions. Aside from addition

of the notRdy signals for input values, the interface is identical to that from Section

4.5.1.

5.3.2 Speculative Let Action

Figure 5-11 presents the circuit for a speculative let action. The setup is very similar

to that for a speculative let expression: the output of the expression is passed into

the action.

... -....

x1
notRdy, -+ notRdy

r rd

Figure 5-12: Speculative Register Assignment Action

5.3.3 Speculative Register Assignment Action

The speculative register assignment action is presented in Figure 5-12. The control

wires are simply shuffled in and out of the expression. Register assignment logic is

same as in Figure 4-12.

5.3.4 Speculative Conditional Action

Figure 5-13 presents our speculative conditional action circuit. The action is ready

to commit when the condition is fully evaluated, and either turns out to be false,

or the child action is ready to commit. Similarly, the conditional action is notRdy

when the condition is notRdy or condition is true and the child action is notRdy.

We also must guard the method and register predicates to only be asserted when the

condition evaluates to true.

5.3.5 Speculative Guarded (When) Action

Figure 5-13 presents our guarded action circuit. The difference between the guarded

and conditional actions is that when the guard evaluates to false, the whole action

cannot be committed and we must assert the notRdy signal. This allows us to slightly

simplify the generation of the rc signal by taking advantage of the fact that notRdy

always overwrites rc, thus rc can be asserted spuriously, as long as notRdy is asserted

as well.

Figure 5-14: Speculative Guarded Action

X,
notRdy1

notRdy

Figure 5-13: Speculative Conditional Action

Xl
notRdy1

.notRdy

x_-
rc

notRdy ----

T[a1] Tr notRdy

rd

T[a2]

Figure 5-15: Speculative Parallel Actions

rc
notRdy

notRdy va
9

rd ,

Figure 5-16: Speculative Rule Circuit

5.3.6 Speculative Parallel Action Composition

Figure 5-15 presents our parallel composition circuit. We simply combine all the

control signals and select the data for method calls and register writes from the two

actions.

5.4 Speculative Rules

A speculative rule is just an action. The guard for the rule has been internalized. As

a result a rule has the same interface as an action (Figure 5-10). Figure 5-16 presents

the trivial circuit for a speculative rule.

rsv cmt s
:sal Rsv. rsvi Cmt. cmt

sa2 Sche . rsv Sched. cmt
m s maye C~2svj"mayRsvA mayRsvB ,'L.2

Figure 5-17: Speculative Rule Circuit

5.5 Speculative Module Model

Figure 5-17 presents the whole speculative module put together. The circuit is iden-

tical to that from Section 4.7, except that rules produce notRdy instead of rdy, and

we handle it as described in Section 5.1.

Chapter 6

Hierarchical Multi-cycle Synthesis

In this chapter we will present our method for syntax-directed translation of hier-

archical BMC, as described in Section 2.5. We will begin with computation of a

ReservationRequired property for guard and data computation. We will follow this

up with changes to the speculative GROC scheduler from previous chapter to take

advantage of the ReservationRequired property. We will follow with a presenta-

tion of method interfaces, hierarchical expressions and actions and full module circuit

construction. We will finish the chapter with a brief discussion of limitations of our

method.

6.1 Reservation Required

Consider the method interfaces used by the Bluespec compiler described in Section

2.4. What happens when a guard needs to call a method? Bluespec compiler allows

only limited access to methods from guards: only value methods allowed are those

which do not accept any parameters or those which have only one caller - the guard.

This means that a number of designs which are syntactically correct and logically

sound cannot be compiled due to semantic restrictions. We would like to eliminate

this restriction.

The reason that the Bluespec compiler cannot allow multiple calls from guards

to methods with parameters is that in the Bluespec synthesis model all guards are

fully evaluated every clock cycle. Since a method port is a physical resource and can

only accept one version of its parameters in any given clock cycle, only one of the

guards can pass the parameters. This is a basic example of resource scarcity. Bluespec

synthesis has no protocol for choosing which guard will evaluate. We would like to

introduce such a protocol: in the event that a guard cannot easily complete due to

resource scarcity, we will require that any rule or method accessing a scarce resource

obtain a reservation before accessing the said resource. In addition to managing

atomic consistency, our scheduler will become a resource arbiter as well. The Bluespec

scheduler already performs this function for ports accessed in bodies of rules and

methods, and avoids the need to do it for guards by restricting allowable designs. Our

scheduler will remove all such restrictions and extend the arbitration to all methods

accessed in rules and methods.

As we explained in Section 2.8, our hierarchical designs will only have a single,

top-level scheduler. This scheduler will be responsible for scheduling rules. In order

to allow all method calls in guards, we will have to determine which rules require

reservation before being able to completely compute their guard. We will treat this

as a static property of the rule's guard. (That is, even if dynamically a particular

rule can fully compute its guard without making a reservation in a particular clock

cycle, we will still force the rule to obtain a reservation before considering the guard

to be valid.) We call this property ReservationRequired, or RR. If a rule's guard

has RR = true, the rule must obtain a reservation before its guard is fully computed.

If a rule's guard has RR = false, then the rule's guard can be fully evaluated even

without reserving it.

We will assign the RR property not only to top-level rules' guards, but to guards

of all methods. This is because all guards can have calls which cannot be evaluated

without a reservation. Furthermore, it is possible that a guard makes a call to a

method which indirectly requires reservation. This means that in addition to com-

puting RR for method's guard, we also have to compute a separate RR for value

method's result.

Below we provide a procedure ComputeRR which computes the value of RR

property for guards of all methods and results of value methods.

Procedure ComputeRR(Module m):

1. For each module c E { children of m } perform ComputeRR(c)

2. Create n' from m by separating guards from methods and rules and converting

them to value methods. The new guard method will consist of a conjunction of all

guard expressions. The new method will consist of the old method with all guards

removed. m' consists of value methods and either rules or action methods.

3. Define shared(m) = { set of methods in m which are called from more than one

rule or method in parent of m}

4. For each value method f in m':

4.1 Define adepends(f) = result of f depends on its arguments

4.2 Define mdepends(f) { set of methods which f uses }

4.3 RR(f E m') = (3g E mdepends(f) A RR(g)) V (f c shared(m) A adepends(f))

5. For every rule r in m: RR(r) = (method f E m' corresonds to guard of r) A RR(f)

Procedure ComputeRR depends on a procedure which converts our designs to

equivalent designs with guards separated from bodies of rules and methods. These

guards are converted to separate value methods. It then computes the RR property

for all value methods in the new design, starting at the bottom of the module hier-

archy. At the top-level module, the RR property of value methods generated out of

rule's guards is reintegrated into the rules of the original module.

The procedure is deterministic and generates only one assignment of RR for a

particular design.

6.2 Hierarchical Speculative Scheduling

In the previous chapter we have presented a speculative scheduling approach based

on use of notRdy signals generated by the rules. Our motivation was that guards can

take a long time to evaluate and we could introduce scheduling unfairness against

rules with such guards if we did not provide a mechanism to evaluate the guards.

As described in the previous section, hierarchical modules provide another chal-

lenge for the GROC scheduling approach, because evaluating the guard may require

calling a method, and calling a method may require using a scarce resource. We use

reservations for managing such resources, which means that we may not be able to

evaluate the guard before we reserve the rule. Rather than forbid certain features

outright we would prefer to degrade them performance-wise and leave the decision to

use them in the hands of the designer.

In typical designs, the guard can be fully evaluated without reserving any scarce

resources. Bluespec language requires that guards not use any scarce resources. Fur-

thermore, it is recommended that guards be simple computations that can be com-

puted very quickly. For many rules, guards are merely implicit combinations of guards

for all the methods that are called by the rule, directly and indirectly. It would be

grossly inefficient to require that rules with such guards obtain a reservation before

the guards are considered evaluated. Our design for hierarchical speculative schedul-

ing avoids this problem by utilizing the RR property of signals described in previous

section. If the rule's RR = true, then we must not consider the evaluation of the

guard valid until we have reserved the corresponding rule. If the rule's RR = false,

we can consider the guard's value before its rule has been reserved.

Figure 6-1 presents the new scheduler, which is a modified version of the specula-

tive scheduler from Section 5.1. Neither RsvScheduler nor CmtScheduler proce-

dures have changed since they were first described in Section 3.8.

notRdyA is the signal representing the evaluation of the guard for rule A. Its RR is

false, meaning that the guard evaluates without requiring a reservation. It is handled

exactly the same way as for a flat module. Rule B does require a reservation in order

to compute its guard fully, because its RR is true. notRdyB is only valid when rSVB

is asserted. We cannot pass its value directly to the RsvScheduler, because doing

so would result in a combinational loop. Instead, we remember that the guard has

evaluated to false in blockRsvB flip-flop, and pass the inverse of that value to the

RsrScheduler.

The status of reservations is passed on to the CmtScheduler. If Rule B evaluates

its guard to false, we remove the reservation before considering whether to commit

s Rsv. rsv ' Cmnt. cmt, a

sa ' Sche . rsva Sched. cmnt

mayRsvA _ay sv,

rcA
ogc

noRsvA noRsv" Unblck
unblkRsv, chd

notRdyA<RR=NO> notRdy,<RR=YES>

Figure 6-1: Fully Speculative Scheduler. Note: RRA = NO, RRB YES. The
modified essence of the GROC scheduler is indicated by the green box.

the rule. The updating and storing of the sA bits is the same as before.

The big divergence from the previous scheduler designs is that we have added

a third phase to our scheduler. Once we know which rules are committing we use

that information to determine the guards whose values may change as a result of

the commits. Any rule which has its guard updated is unblocked from receiving

reservations. In our example below that would be rule B. Rule A does not need to

be unblocked because it never becomes blocked, because its guard does not need a

reservation to be fully evaluated.

Note that the unblocking mechanism used here is rather optimistic. If the guard

expression is x A m.f (), with x = false and we update data contributing to compu-

tation of m.f(), we will reconsider the encompassing rule for scheduling. This is even

though the guard is guaranteed to continue evaluating to false. A more fine-grained

approach would result in fewer spurious reservations of rules. In interest of clarity,

our system skips this optimization. In either case, the general guidelines for guard

writing is that they should be easy and fast to evaluate, so the optimization above

may not be necessary, and in fact it may negatively affect the performance of the

generated circuits due to additional circuitry and associated delays.

6.3 Hierarchical Speculative Method Interfaces

The method interfaces described in Section 2.4 work well for single-cycle scheduling.

Multi-cycle scheduling presents some challenges that are not present in the single-

cycle case:

" data on wires may not be valid or may be changing,

" a call may last multiple clock cycles, so we must introduce the concept of call

reservation and call completion, and

* an action method call may be guarded by an expression which cannot be fully

evaluated before starting the call (evaluation needs reservation), which means we

must be able to reserve an action method and release it without ever committing

its updates.

We have solved the first problem in previous chapters. We introduced 3-wire logic in

order to deal with exactly these types of problems. We will extend the interface data

wires to consist of 3-wire logic. This will also lead to an interface more consistent

with the data usage we have inside our actions and expressions.

Similarly, we have already solved the problems with the last two challenges as

well. Our schedulers have more than just the rdy and enable signals provided by the

single-cycle scheduler. Our control signals are:

" notRdy (not ready)

* rsv (reserve)

* rc (ready to commit)

" cmt (commit)

We will use exactly these signals to construct our method interfaces. Figure 6-2

presents the interfaces used by multi-cycle methods. We will discuss the protocol of

calling a method in the next section.

Figure 6-2: Multi-cycle Method Interfaces

6.4 Speculative Method Call Protocol

The signaling observed at the method interface is as follows:

" A method is reserved (called) by asserting its rsv signal. The rsv signal must

remain asserted throughout the entire call. The caller indicates the end of the

reservation by deasserting the rsv signal.

" Parameters are computed and passed to the method.

" An action method can signal that it is ready to commit by asserting the rc

signal. Once rc is asserted it must remain asserted until the reservation is

released, possibly after also being committed.

" If the method indicates that it is ready to commit, the caller may commit it by

asserting the cmt signal, and removing the rsv signal in the next clock cycle.

This applies for action methods only.

" The method can signal that its guard evaluates to false by asserting the notRdy

signal. The caller must eventually end the call by removing the rsv signal. It is

possible and allowed that a method assert notRdy and rc at the same time. In

Parameterless
Value method

Value method
with params.

Action method

notRdy

rsv
result

notRdy
rsv

arg

result

,notRdy --
rsv

acm
cmt

such an event, the notRdy signal takes precedence. Thus we must ensure that

notRdy is computed no later than rc.

e The caller can release the reservation at any time without committing an action

method or waiting for the result of a value method.

Figure 6-3 presents the above call protocol for our speculative method interface. We

separated out the protocol for calling a value method and an action method. This is

to draw a distinction between methods that need to be committed (action methods)

and those that do not (value methods).

The common thread between the two protocols is the need to reserve a method,

possibly speculatively, and the method's ability to inform the caller that the method

cannot successfully complete its computation. There can be two reasons for a method

to be unable to complete its computation: the method has a guard (from a guarded

action or expression) which evaluates to false. Alternatively another method, lower

in the call hierarchy, has a guard that evaluates to false. Neither of these situations

can be always detected without a reservation, because the evaluation of these guards

may require reserving a shared value method with parameters. Reservation decisions

are made at the top-level module for rules and propagated downwards, so a method

may not be able to evaluate its guard without the encompassing rule receiving a

reservation.

It is vital that as soon as a method call begins, the method being called immedi-

ately reserves all the resources it needs to complete its computation. Once reserved

(with a rsv signal), the method immediately (in the same clock cycle) reserves all

the resources it needs to complete, and keeps them reserved until the method is re-

leased. This will include other methods called by this method. Methods release their

resources immediately once their rsv signal is removed (also in the same clock cycle).

Action methods commit their updates when their cmt signal is asserted (in the same

clock cycle).

Once a method indicates that it its guard evaluates to false, that information

bubbles up to the top-level rule. An action method with a false guard cannot be

is called

(a) Value Method Call Protocol

(b) Action Method Call Protocol

Figure 6-3: Multi-cycle Speculative Method Call Protocol

committed. It is possible that the top-level rule can still commit, because the guard

is obscured by a conditional which will prevent the method from being committed.

If it turns out that the top-level rule cannot commit, it will remove the reservation

signal without committing, and the scheduler will mark the rule as blocked.

Note that the immediate reservation of the entire method call tree requires that

if two rules or methods use a single method port with parameters, we cannot reserve

the second rule or method if the first one is active, unless we can guarantee that

at most one of them will need that method port. If it cannot be safely determined

dynamically we must statically mark the two rules or methods as conflicting.

6.5 Method Port Sharing and Multiplexing

Method ports are considered to be scarce because each method exposes only one port.

In our execution scheme, it is possible, in a single clock cycle, to activate two rules

or methods that both contain calls to the same method, as long as we can statically

prove that dynamically only one of them will actually call it. If the compiler is unable

to prove that only one of the calls can be active during any clock cycle, it returns a

compilation error. We call this single-cycle sharing, to distinguish with sharing the

port on different cycles. We can always allow two rules or methods to share a port

by declaring them to be conflicting and only reserving one of them at a time.

It is also possible for a single method or rule to internally have multiple uses (call

sites) of a single scarce resource method port, as long as we can prove that only one

of those uses will need to be active in a particular activation of the encompassing

rule. We call this "multiplexing".

In the case of flat modules, we did not have to explicitly consider resource sharing

as part of the scheduling process. The only scarce resources rules were competing for

were register write ports. Since we were explicitly searching for an equivalent of a

sequential schedule, we were able to resolve that resource contention fairly easily by

committing only the logically latest register updates. Now that we have introduced

hierarchy, we must treat method ports as resources which may be scarce.

There are three types of method ports we will consider:

" value method ports without parameters,

" value method ports with parameters, and

" action method ports.

Ports of value methods without parameters can be shared and multiplexed freely by

callers (rules and methods) without concern for resource contention. This is because

at any point in time all callers to a value method without parameters must observe

the exact same result.

Ports of value methods with parameters can not be shared in a single clock cycle.

This is because the parameters may have an influence on the result of the call, and a

single port can only accept a single set of parameters and return a single value.

Ports of action methods cannot be shared in a single clock cycle either. An action

method must commit its updates, and it is difficult to create an interface that will

allow an action method to reliably commit its updates twice in a single clock cycle.

While it is possible that for some action methods it is legal to only pass on the last

call (similar to the case of register writes), we consider this an optimization requiring

little more than additional book keeping, and leave for future work.

Ports of value methods with parameters and action methods can always be multi-

plexed, provided that we can guarantee that only a single call site within the caller is

actually using the port. We must be able to verify this guarantee statically. Failure

of such verification means that the design may be invalid.

We enforce the rules about method port sharing by adding them to our computa-

tion of conflicts between rules and methods: in addition to the rules given previously,

we will also consider any two rules or methods accessing the same scarce method port

as conflicting.

In order to support port sharing and multiplexing, we will have to pair method

parameters with a method predicate (mp)to create a (mp, md) tuple. This method

predicate holds a similar function to the register predicate we used in Section 4.5.1.

Figure 6-4: One-Hot MUX with 3-tuple selectors

The method predicates are 3-tuple logic, because we need to correctly compute the

changed signal of the method parameters. We will use the method predicate wires

to merge method calls for multiplexing because we need to merge calls that are "far

away" from each other but are statically provable to be disjoint (ex. (x > 0 ? m.f(y) :

y) + (x < 0 ?m.f(z) : z)). Port sharing by definition has the calls "far away" from

each other (different rules or methods) so it also requires method predicates. In order

to support use of these method predicates we introduce a one-hot MUX with 3-tuple

selectors in Figure 6-4. Also, in order to support port multiplexing across conditional

expressions, we introduce a 3-tuple MUX in Figure 6-5. 3-tuple MUX will allow allow

us to take the wire selecting a branch of a conditional action or expression and chose

which value of the parameter we chose to pass on. 3-tuple MUX is basically the

conditional expression circuit from Figure 4-8.

We must also consider how the method predicates interact with reservation signals

100

mpi
md1

mp
2

md,

mp
md

Figure 6-5: 3-tuple MUX

of the caller methods or rules. The problem here is that it is possible for the reser-

vation signals to reserve a different method or rule to use a particular port without

the underlying data from any method or rule changing. But such a change in the

reservation signal does mean that the parameter will change and we must assert the

changed wire in the 3-tuple parameter. We must also combine the reservation signal

with method predicates. To accomplish all this, we introduce rsvBox and argBox

circuits in Figure 6-6, which together will assert the changed wire correctly.

The first component (rsvBox) of the solution is duplicated for every user of a

shared port. rsvBox remembers if that caller was active in the previous clock cycle.

When the caller is reserved in current clock cycle but has not been reserved in previous

clock cycle, rsvBox asserts the changed wire of the argument. The second component

(argBox) combines the corrected arguments and passes them through a regular one-

hot MUX. The selector of the MUX (and input to the rsvBox) is the rsv signal

combined with the method predicate. The result can now be passed on to the method

port.

Note that we only need to use argBox circuits when a method with parameters has

more than one caller rule or method. If a method has only one caller, the parameter

is passed directly from the caller to the method without the need for selecting the

value. Thus we do not need to modify the changed wire of the parameter.

101

(a) rsvBox - asserts argeh in first clock cycle rsv is asserted

rsv1 rv

mp

hmp -

m rs Box
arg

md- rsvBox

(b) argBox - uses rsvBox'es and MUXes the corrected data

Figure 6-6: Argument MUX

102

cmtm -.. cmt1

As we mentioned above, an action method can occasionally be called but not

committed. To implement this, we must prevent the cmt signal on the method port

from being asserted when the caller is committed. We have already developed a

mechanism to achieve this: the method predicate (mp) wires can be used to determine

whether a particular caller needs to commit the action method. We will combine the

method predicate with the commit signal for all potential callers to generate the final

commit for the method. This means that we must propagate the method predicates

for all action method calls, not just those with parameters.

The circuit for this computation, cmtMux, is presented in Figure 6-7. The cmtMux

will only assert the output cmt in clock cycle t, if there is a caller to the method which

is being committed in clock cycle t, and which has evaluated its method predicate to

true. We must insert a cmtMux for every action method port, regardless of whether

it is shared or not.

103

mp 1 cmt

mpm

Figure 6-7: Commit MUX

i values,
including:
registers

parameters
free variables

method results

Xn -t-d--
notRdy1 -

Tile]

Y
- notRdy,

mpi

md1

Figure 6-8: Hierarchical Expression Interface

6.6 Hierarchical Expressions

6.6.1 Hierarchical Expression Interface

The change to our language to be hierarchical requires a change to the smallest of

our circuits. One of the expressions available is a value method call, which produces

a (mp, md) tuple. We will have to compose those signals in addition to managing all

the signals for speculative expressions introduced in Section 5.2.

The expression interface is presented in Figure 6-8.

6.6.2 Hierarchical Value Expressions

Figure 6-9 presents our circuits for expressions reading the value of a register and

a value of an argument. Both of these are always ready. While this seems obvious

for reading registers, it is less so for reading arguments, because if the method is not

reserved then the argument may not be valid. We do not have to worry about the

situation where the argument is not valid, because in such a situation, the output of

the expression will have the RR property set to true, meaning that we will not make

any decisions based on this value until we obtain a reservation for the parent rule.

104

predicated
method

a rgu men ts

r
0 notRdy

(a) Hierarchical Register Read Expression

a rg notRdy

(b) Hierarchical Argument Read Expression

Figure 6-9: Hierarchical Value Read Expressions

6.6.3 Hierarchical Let Expression

Figure 6-10 presents our circuit for let expressions. For the most part, we simply

evaluate the two expressions, using the result of the first one in the evaluation of

the second one. Since both expressions may have calls to the same value methods

with parameters, we must pass those matching pairs through a one-hot MUX. As

mentioned before, our compiler must be able to verify that the two calls are exclusive.

If not, the program may be invalid.

6.6.4 Hierarchical Primitive Operator Expression

Figure 6-11 shows the circuit for a hierarchical primitive operator expression. This

circuit is virtually identical to one from Figure 5-5, but includes method parameters

which pass through the one-hot MUX.

105

106

notRdy- T[el]

y

notRdy

mpi,mdi

Figure 6-10: Hierarchical Let Expression

Xl

notRdy1
y

,notRdy

:mPi,md,

Figure 6-11: Hierarchical Primitive Operation Expression

Figure 6-12: Hierarchical Conditional Expression

6.6.5 Hierarchical Conditional Expressions

Figure 6-12 presents our hierarchical conditional expression which is very similar to

that from Figure 5.2.5. We select the correct method data and predicates from el

and e2 using p, and combine them with method data and predicates from p. The

computation of the result and notRdy is done the same as in Figure 5-6.

6.6.6 Hierarchical Guarded (When) Expression

Figure 6-13 presents our circuit for a guarded expression. The expression is the same

that in Figure 5-7, but also includes the method predicate and data signals.

6.6.7 Hierarchical Delay Expression

Figure 6-14 presents a hierarchical delay operator. It is virtually identical to that

from Section 5-8. We delay the data and valid, but not any other signals.

107

X,
notRdy1

notRdy

MP 1md 1

108

X,

notRdy 1

0.y

notRdy

mp1md1

Figure 6-13: Hierarchical Guarded Expression

v v 1

xch ch

notRdyi d d
:T[e]

-notRdy

mpi, md 1 mp1
F - r l mdi

Figure 6-14: Hierarchical Delay Expression

Xl

notRdy notRdy

T[e]
mpi, md, mpf, md,

mpi , mdi

notRdyf

resultf

Figure 6-15: Value Method Call Expression: m.f(e)

6.6.8 Value Method Call Expression

Figure 6-15 presents the circuit for a value method call expression. We separated

out the result and notRdy from the value method from the inputs to the expression

computing the arguments to the method. The notRdy signals from the method and

from the arguments are combined together, because we cannot make the method call

without being able to compute the arguments. Note that the operational semantics

of a method call specifically disallow passing arguments which are NR.

6.6.9 Loop Expression

The syntax for loops in our language specifically excludes any hierarchical constructs

from the loop expression or condition. This means that syntactically and semantically

loops in our hierarchical language do not differ in any way from the loops in our

speculative language. The description and figure in Section 5.2.8 applies to loops in

hierarchical compilation as well.

The reason that we must keep our loops flat is that hierarchical loops provide

an additional challenge, which has not been observed in other expressions: as part

109

of performing the computation, the loop expression must assert the changed wires

in the middle of computation. We discussed this in Section 4.4.7. The issue is

that if the loop expression contains a call to a value method, it is possible that this

method's result will also change in the middle of computation due to a change to the

underlying architectural state (before the loop has been reserved), and this change

it will be impossible to distinguish between the two changes. If we cannot tell when

the underlying values for a method changed due to another action committing, then

we cannot rely on these values, and we must wait until the loop has been reserved.

Thus in order to be able to trust the results of loops that call methods we would have

to add some kind of a loop reset signal to all our interfaces to inform callers when

data used for evaluation of value methods has changed. This is different from our

current changed signal in data 3-tuples which also incorporates the changes in the

arguments.

110

Y

nR

Figure 6-16: Hierarchical Loop Expression

i values,
including:
registers

parameters
free variables
method results

j action
method
signals

T[a]

- -- 1 M
- md

Srp1
--- rd1

orc
-o notRdy

xi --

notRdy, 10

rcf 1
notRdyfl

predicated
mthod

arguments

predicated
register
writes

Figure 6-17: Hierarchical Action Interface

6.7 Hierarchical Actions

6.7.1 Hierarchical Action Interface

Figure 6-17 presents the interface for hierarchical actions. The inputs to actions now

include rc and notRdy signals from action methods. Even though these are circuits

for actions, they do not perform any actual updates, so they do not need the rsv

signal.

The output of actions consists of:

" rc - asserted when the action is ready to commit

" notRdy - asserted when the action evaluates its guard to false; when both rc

and notRdy are asserted, notRdy takes precedence.

" mp, md - method predicate to indicate that a particular method call is active

from the action and method data which carries the argument to the method

call

" rp, rd - register predicate to indicate that a particular register should be written

when the action commits and the data that should be written

111

6.7.2 Hierarchical Let Action

Figure 6-18 presents the circuit for a hierarchical let action. The setup is very similar

to that for a hierarchical let expression: the output of the expression is passed into the

action, and parameters to value methods called from both blocks are passed through

a one-hot MUX.

6.7.3 Hierarchical Register Assignment Action

The hierarchical register assignment action is presented in Figure 6-19. The control

and method call wires are simply shuffled in and out of the expression. Register

assignment logic is same as in Figure 4-12.

6.7.4 Hierarchical Conditional Action

Figure 6-20 presents our hierarchical conditional action circuit. It is similar to the

circuit from Figure 5-13, but also includes method predicate and data wires. We

protect the predicate wires from being asserted without the condition evaluating to

true.

112

xi -
notRdy 1-

rc
notRdy

mpimd,

rplrd,

Figure 6-18: Hierarchical Let Action

x1-

notRdy--

rc1 -

notRdy,-

c +rc

T~p] ----- 2 -no

T[a] m

-- +rp

tRdy

Pi
d,

Figure 6-20: Hierarchical Conditional Action

113

v
t rc

ch

x, d
notRdy-

:T[e]

+mp

r rd

Figure 6-19: Hierarchical Register Assignment Action

6.7.5 Hierarchical Guarded (When) Action

Figure 6-21 presents our guarded action circuit. It is similar to Figure 5-14, but also

includes method predicate and data, which are handled similarly as in Figure 5-13.

6.7.6 Hierarchical Parallel Action Composition

Figure 6-22 presents our parallel composition circuit. We simply combine all the

control signals and select the data for method calls and register writes from the two

actions.

6.7.7 Action Method Call

Figure 6-23 presents our circuit for action method calls. The method is always called,

and we combine the notRdy signals from the expression and method call.

114

x,
notRdy1

rc,
notRdy m

rc

--notRdy

-omd 1

rp1
~rd 1

Figure 6-21: Hierarchical Guarded Action

115

X, I %-

notRdy

not
: T[a1]no

notRdyi.

I~ mpT[a2].. . md

rpi

Rdy

Figure 6-22: Hierarchical Parallel Actions

xI,
notRdy,

rc,
notRdy,

Figure 6-23: Hierarchical Action Method Call

i

6.8 Module Integration

In previous sections we have described how to build speculative circuits for actions

and expressions. We can easily integrate those circuits with our top-level scheduler

(simply connect matching wires) and create flat modules. In this section we present

circuits for composition of method interfaces from the caller and callee sides.

Figures 6-24 and 6-25 present the circuits for composing callers and callees to value

and action methods. For the most part the composition involves connecting matching

wires from the method's action or method. In the case when multiple methods or rules

can access the same method in a child module, we must combine the rsv signals. We

use the method predicate wires produces by bodies of rules or methods to select which

argument and cmt signal to pass on to the method called. All the other signals are

simply distributed to the appropriate interfaces. The register-update logic is identical

to the flat-module case.

6.9 Summary of Scheduling Restrictions

We end this chapter with a summary of restrictions we must place on modules gen-

erated with our technique. These have been discussed before, in this and previous

chapters. It is, however, useful to summarize this information in one place, as it

provides a single reference for the "rules of the road". Each restriction is accompanied

with a very short explanation of the reason for it.

1. Cannot share calls to action methods in a single clock cycle. Reasons: we cannot

compute multiple sequential commits or generate multiple reserve signals.

2. Cannot share calls to methods with parameters in a single clock cycle. Reasons:

we cannot pass multiple sets of parameters or compute multiple results.

3. An action can have calls to conflicting methods only if the calls are mutually

exclusive. Reason: There is no way to legally complete both calls in a single

atomic action.

116

Figure 6-24: Value method caller and callee composition

117

Figure 6-25: Action method caller and callee composition

118

Chapter 7

Results and Analysis

In this section we discuss some results we have gathered about the performance of

circuits generated using our techniques. We have created several designs and compiled

them with our compiler in various configurations. We then synthesized them with

Synopsys Design Compiler using TSMC 130nm cell libraries.

7.1 Modulo in GCD

Our first example is the GCD circuit originally from Figure 2-2. We have fixed

the size of operands to 16 bits. The remainder computation is implemented with a

simple divider using 16 compare-subtract-shift stages. We used this basic template

to generate different versions of this circuit to allow the remainder to take 1, 2, 4, 8

and 16 clock cycles using delay operators. We also factored the remainder operation

out into a loop to save area. The different versions of computing the remainder are

depicted in Figure 7-1. Our language only allows for construction of while - do loops,

which test the condition one time more than they compute the body. Thus using the

loop construct requires 17 clock cycles to compute the remainder. Adding and using

a do - while loop construct would remove the spurious clock cycle from our design.

We have elected to use a constant-latency looped divider for the remainder com-

putation, because of its simplicity. We could have just as easily designed one that

finished early if possible, but that would require either adding a shifter or storing

119

CSS

|CSSO

C CSS|

t1 = GCDCSS(x,{y,15'bO});

t2 = GCDCSS(t1,{y,14'bo});

t3 = GCD_CSS(t2,{y,13'bO});

t4 = GCD_CSS(t3,{y,12'bOI);

|CSS |

CSS

(a) 1-clock-cycle remainder

t1 = GCD_CSS(x,{y,15'b0});

t2 = GCD_CSS(tl,{y,14'bO);

t2_delayed = delay(t2);

t3 = GCD_CSS(t2_delayed,{y,13'bO));

t4 = GCDCSS(t3,(y,12'bOj);

t4_delayed = delay(t4);

(c) 8-clock-cycles remainder

t1 = GCD CSS(x,{y,15'bO});

t1_delayed = delay(tl);

t2 = GCDCSS(tl delayed, {y,14'bOj);

t2_delayed = delay(t2);

t3 = GCDCSS(t2_delayed,{y,13'bO));

t3_delayed = delay(t3);

t4 = GCDCSS(t3_delayed,{y,12'bO});

t4_delayed = delay(t4);

(b) 16-clock-cycles remainder

count = 0;
top = x; bottom = {y,15'bO);

while (count<16) {
top = GCDCSS(top, bottom);
bottom = bottom >> 1;

count++;

(d) Looped remainder (17-clock-cycles). while - do
loops evaluate the condition one time more than the
body, so they require an extra cycle to produce their
final output. CSS: compare-subtract-shift

Figure 7-1: Different Remainder Versions

120

CSS |I

ICSS |

CSS

css

cs*s

design description clock cycles per remainder critical path (ns) area (Pm2)
GCD - no delays 1 8.92 41,448

GCD - 1 delay 2 5.21 39,807
GCD - 3 delays 4 2.75 44,886

GCD - 7 delays 8 1.63 44,328

GCD - 15 delays 16 0.98 52,372

loop 17 - loop 1.2 10,414

Figure 7-2: Multi-cycle GCD results. Using loop-based remainder significantly re-
duces the area.

more data on the back edge of the loop, both of which would cost additional area.

Figure 7-2 presents the results of synthesis. Through adding additional delay

operators to the computation of a remainder, we were able to reduce the clock period

from 8.92ns to 0.98ns, a factor of 9.1. This reduction in clock period cost an increase

in area from 39,807jim 2 to 52,372pm 2 , a factor of 1.3. This area is taken up by

the additional registers and overhead logic we inserted for the intermediate data and

could be avoided by using a multi-cycle combinational path to represent the delay

operators. The overall time to compute a remainder has also increased by a factor of

16*0.98
8.92

The loop version of the remainder has further decreased the area to 10,414pm 2,

a total reduction by factor of 5. This is because we no longer need to replicate the

compare-subtract-shift logic for 16 stages of the divider. The clock period is 1.2ns,

and the overall time to compute a remainder increased by a factor of 17*1.2 - 2.3.

The significant area savings and relatively fast clock show that introducing a loop can

be more desirable than unrolling the computation. That balance may shift towards

unrolling the computation with development of pipelining, which is subject of future

work, assuming the underlying expression is heavily utilized, or with utilization of

multi-cycle combinational paths which would eliminate most of the delay registers.

It is worth noting that our approach allows us to easily select the best design-

specific trade-off between the clock period, area and throughput.

121

newPc

7.2 CPU with Division

We have developed a simple 4-stage pipelined RISC processor and compiled it with

our compiler. Figure 7-3 shows a high-level pipeline diagram for the processor. We

used FIFOs to facilitate communication between pipeline stages. This allowed us

to express each stage of the pipeline as a separate rule in BMC, decoupled from all

other rules, without having to worry about processing the same data multiple times

or overwriting not-yet consumed data between pipeline stages. The IMem and DMem

blocks in the diagram are not included in the synthesized circuits, and can take an

indeterminate number of clock cycles to respond. Our processor uses 16-bit operands.

On seeing a branch instruction, the instruction fetch stage and the decode stage stall

till the branch is resolved in the execute stage.

The Execute stage has an expression for executing each instruction. The result

from the appropriate expression is selected in the Execute stage using a conditional

expression. Various branches of the conditional can take different number of clock

cycles - our completion logic correctly determines when the instruction results are

ready (see Figure 7-4 for an example).

To illustrate our compiling technique, we initially implemented only simple RISC

122

Figure 7-3: Simple 4-stage pipelined processor

instructions: ADD, SUB, BRANCH, LD and ST - their expressions in the execute stage

take only one clock cycle to execute. We then added a DIV instruction. The division

operation is implemented using a naive shift-compare-subtract divider. There are

three versions of this divider. The first one implements a fully unrolled single-cycle

divider. The second one implements a fully unrolled divider with 15 delay registers

between every operation (the Delayed Divider in the table). This unit performs the

division in 16 clock cycles. The third one (the While-loop Divider in the table) imple-

ments the compare-subtract-shift operation inside a while loop, thus not duplicating

any logic, but adding an implicit delay register for loop data. This divider performs

the division in 17 clock cycles, as explained in Section 7.1. No special code had to be

added to implement a multi-cycle divider vs single-cycle divider or other single-cycle

instructions.

Figure 7-5 shows the synthesis results of our processor. In all the designs, we

synthesized for fastest clock period. We used the CPU without a divider as a basis

for comparison.

As can be expected, a single-cycle division circuit created a very long combina-

tional path which slowed down the clock by a factor of 6.3. The area of the circuit

increased by a factor of 2.1, as the added unrolled logic now constitutes a large por-

tion of our very simple design. By inserting 15 delay registers, one between each

step of division, the clock cycle recovered to just 6% slower than the speed of the

original design with no divider. But the area increased by another 13%. The divider

implemented using a while-loop fixes that flaw as well. The area is now only 24%

larger than the original design while the clock is only 4% slower.

We have succeeded in adding a new multi-cycle instruction without increasing the

area significantly and without slowing down the clock. We have also demonstrated

that using our loop construct results in a significant reduction in area because we no

longer duplicate the same circuit just to avoid rule-splitting. Furthermore, our loop

implementation is efficient: it does not introduce long critical paths.

It is worth noting that division instructions are often omitted from simple RISC

architectures, in part because they would introduce non-uniformity in the implemen-

123

if (instr == ADD) {
// 1 clock cycle
result = arg1 + arg2;

} elseif (instr == DIV) {
// 17 clock cycles
count = 0; result = 0; top = arg1; bottom = { arg2, 15'bO };
while (count < 16) {

result = result << 1;
if (top >= bottom) { top -= bottom ; result 1= 1; }
bottom = bottom >> 1; count++;

}
} elseif ...

Figure 7-4: Partial Listing of ALU implementation. The DIV instruction takes 17
clock cycles to complete, while other instructions take only 1 clock cycle. The non-
strict if operator selects the correct result and returns it as soon as it is available.

CPU Design Divide Latency critical path (ns) area (pum2)
No Divider - 1.04 38,222

Unrolled Divider 1 6.59 81,535
Delayed Divider 16 1.1 92,352

While-loop Divider 17 1.085 47,369

Figure 7-5: CPU Synthesis Results

tation due to their multi-cycle nature. Our methodology allowed us to completely

bypass these problems, and allowed us to add the division instruction without signif-

icantly modifying any other part of the design.

7.3 FFT

We have built a simple 16-point FFT design. The data is represented in 16-bit fixed

point format (8 bits of integer and 8 bits of fraction). We folded the FFT using

nested loops (one for each level of butterflies and one for each row) to generate only

a single butterfly circuit inside a nested loop. See Figure 7-6 for details of the design.

A similar folding in Bluespec is also described in 119]. We then manually unrolled

the inner loop by a factor of 2, 4 and 8. The 8-butterfly design results in having an

124

entire level of FFT done in a single clock cycle and eliminates the inner loop. We

then unrolled the outer loop 2 and 4 times, resulting in 16- and 32-butterfly designs.

The last version resulted in a purely combinational circuit. We then inserted 1 and 3

delay registers between butterfly levels of the combinational version to compare it to

the looped versions. Finally, we collapsed the nested loops of the original 1-butterfly

design into a single loop which keeps track of both the current level of FFT being

computed and the butterfly in that level. Results are in Figure 7-7.

The property of while - do loops requiring an extra clock cycle is particularly

inefficient in nested loops, where the inner loop requires an extra cycle for every

iteration of the outer loop. The nested-loop 1-butterfly design requires 37 clock cycles

to complete its computation, even though the butterfly logic is being utilized in only

32 of those cycles . This means that during 13% of clock cycles the butterfly logic sits

idle, a significant drain on throughput. Collapsing the nested loops into a single-nest

loop results in latency of 33 clock cycles, which means that the butterfly logic sits

idle only 3% of clock cycles. We also get a reduction in area size of 25%, because only

need one set of registers on the back edge of the loop. This transformation is similar

in its goal to loop merging in parallelizing compilers.

For the most part, the results are exactly what we expected them to be. Using

a loop to express a computation allows us to significantly reduce the area, compared

to a fully-unrolled computation. Building designs using a loop is extremely easy - no

more difficult than a building a fully-unrolled version.

We have explored trading area for throughput by adding more butterflies in a

single row in the inner loop. As expected this expanded the size of the circuit, but

had a small effect on the clock period. This is because the butterfly computation is

all done in parallel. We were able to vary the critical path from 1.96ns to 8.26ns and

the area from 68,673pim 2 to 335,730pim 2 by unrolling the outer loop.

The designer can select the most appropriate implementation from the variety of

offerings, depending on design parameters.

Adding enough logic to complete a full level of butterflies in a single clock cycle

removes a loop level, which removes loop registers and MUXes. The additional com-

125

BIT REVERSE
4

SHUFFLEB BB B B! BB B

SHUFFLE

BB B B B B B

SHUFFLE

B B B BB:B B

(a) 16-point FFT

(c) Folding FFT: Inner loop

BUTTERFLY

B B B B BB B B

SHUFFLE

(b) Folding FFT: Outer loop

data = FFTbitreverse(input);
level = 0;

while (level ! 4)

{
bfly = 0;

while (bfly ! 8)

data[bfly] = FFT-bfly(data[bfly],
level, bfly);

bfly++;

level ++;
data = FFTshuffle(data);

return data;

(d) FFT Pseudo-code

Figure 7-6: FFT Design

126

FFT Design FFT critical area (pm2) throughput throughput

Latency path (ns) (FFT/s) (FFT/s/pm2)

1 butterfly 37 2.70 91,622 10,010,010 109.3
2 butterflies* 21 2.75 124,032 17,316,017 139.6
4 butterflies 13 2.91 196,331 26,434,047 134.6
8 butterflies* 5 2.59 190,156 77,220,077 406.1
16 butterflies 3 4.40 335,730 75,757,575 225.7

32 butterflies* 1 8.26 150,325 121,065,375 805.4

32 butterflies* 2 (3.5) 217,217 141,643,060 652.1

32 butterflies* 4 1.96 237,776 127,551,020 536.4
1 butterfly 33 2.67 68,673 11,349,450 165.2

single loop*

Figure 7-7: FFT Synthesis Results. *Pareto points. **3.53ns was obtained by syn-
thesizing with a test harness. 1.17ns is anomalous and was obtained by synthesizing
without a test harness. Likely cause of the anomaly is that without a testing harness
the circuit has exactly one register and no register-to-register path.

putational logic is offset by removal of loop logic, but the critical path is reduced.

The 8-butterfly version is preferred to the 4-butterfly version in every way.

Unrolling the outer loop and adding full levels of butterflies results in longer

critical paths. The reduction in area when going from 16-butterflies to 32-butterflies

is surprising at a first glance. Closer inspection shows that full elaboration was able

to remove more than half of the multipliers in the butterflies because of multiplying

by 1 or i. Furthermore, full expansion of the algorithm resulted in elimination of all

loops which reduced amount of MUXes and registers. A similar observation has been

made in 119]. Despite all these optimizations, the critical path remains quite long.

When synthesizing the 2-clock-cycle 32-butterfly design, we have obtained an

anomalous critical path result of 1.17ns. We re-synthesized the design together with

the testing harness and the critical path increased to a more expected 3.53ns. The

problem appears to have been that the synthesis tool was confused about the critical

path with no register-to-register path. The area provided (217,217pim 2) is from the

original synthesis without a testing harness.

127

Our compilation scheme does suffer from a potential problem. We would like

to use a register file for storing intermediate results in the loop, but our synthesis

method only allows us to use flat registers on the back-edge of loops. In general we

cannot complete actions inside a loop, or we risk losing atomicity. Thus generating

the loops necessary for computation of the FFT required that we update the state

of the entire FFT in each loop iteration. This results in very large loop registers

and MUXes which waste area and power. The desired solution of using a register

file for storing intermediate results would address both these problems, but requires

a significant additional compiler analysis. In some cases, it may even be possible to

reuse existing architectural register files.

This FFT design also shows that the while-do loops of our language can waste

significant number of clock cycles. Converting the nested loops into single loops

would eliminate 4 clock cycles from the 1-butterfly version. The real solution to the

problem of wasted cycles, though would be to introduce do - while loops to the

language. This should be a fairly straight-forward exercise, given the work in this

thesis.

7.4 Viterbi

Viterbi algorithm is well studied and known to be an interesting case for circuit

design[43, 24]. The standard design for Viterbi is to split the computation into two

steps: the path metric, or forward, computation step and the trace-back step. We

have selected a design with a 4-bit encoder (8 states, k = 3), and a 20-step trace-back

path (using rule of thumb of n = 5 * (k + 1) = 20).

The key to building an efficient Viterbi design is to match the rates at which the

path metric unit (PMU) consumes inputs and the trace-back unit (TBU) produces

outputs. Our exploration attempts to match these rates as closely as possible. We

have the following levers at our disposal: adding add-compare-select (ACS) units to

the PMU, increasing the number of bits the TBU is able to process in a single clock

cycle, and increasing the number of trace-back steps performed beyond the minimum

128

of 20 (thus increasing the number of bits produced by the TBU for each full trace).

We store the trace-back data in a register file. Each invocation of the path metric

computation writes a single entry in the register file, corresponding to a number of

radixes computed. Performing each full trace-back reads every entry in the register

file. Technically this is not allowed in the work presented in this thesis, because the

register file is represented as a module. The reason we do not allow calls to methods

in child modules from loops is that we have not presented a circuit for resetting loops

when data in the child module is updated, as has been described in Section 6.6.9.

Such an enhancement is fairly simple, but not even necessary in this case: we are

able to trivially prove that each time the register file is updated by the PMU, the

loop in the TBU resets automatically. The PMU writes the index of the register

with youngest data and the loop in the TBU consumes this index. Adding necessary

analysis and loop-reset logic to permit use of child modules in loops is subject of

future work.

Our designs exploit an interesting feature of circuits generated by our design

methodology: we can perform computation for methods and rules which are not yet

ready to fire. This means that we can overlap the execution of the PMU and the

TBU, even though the PMU cannot update the trace-back memory until the TBU

has completed its work. This means that if the TBU is faster than the PMU, its

computation will be completely hidden by the PMU. If the PMU is faster than the

TBU, TBU's computation will be hidden (with an additional clock cycle required for

synchronization).

Figure 7-8 presents the top-level flow of the Viterbi Algorithm. Figure 7-9 presents

our results.

We have explored a total of 6 different designs. Each of our designs decreased

the average number of clock cycles needed to produce a bit of output while operating

in steady state. To produce each successive iteration we selected the part of the

design that was a bottleneck (PMU or TBU) and improved its throughput. All

designs, but the second last one match one iteration of the forward step with one

iteration of the trace-back algorithms. The 8-ACS, 2-radix design needs to perform

129

Trace Back Memory

Figure 7-8: Viterbi Algorithm

the forward step twice in order to supply enough data for the trace-back algorithm.

While this approach slightly decreases the average number of clock cycles to produce

a bit of output, it also increases the clock cycle by enough to offset the per-clock-cycle

throughput gains.

Overall, we were able to vary the critical path from 1.61ns to 3.13ns, while in-

creasing the throughput from 28,232,637bps to 91,282,519bps. Once the design has

been explored, it is up to the designer to select the most appropriate version.

All the designs of Viterbi were written with our while - do loops and would

increase throughput by using do - while loops. The PMU uses nested loops and

we could reduce area and improve critical path by reducing the nested loops into a

single-nest loop.

It is worth noting that the design time for Viterbi from the first line of code to

the last result collected was 4 days, including fixing a subtle bug in the compiler.

7.5 Analysis

Our approach to design exploration and finding best-fitting tradeoff for the needs of

the overall design seems to be effective. We are able to rapidly modify the design

of various computational components to shorten the critical path, reduce area or

130

LLL3
Trace Back Unit

TB output cycles ..
of cycles critical

cycles steps bits per area throughputof FS per pt
ACS radixes for FS per per TB output (ns) (pm2) (bps)

cycle TB bit
1* 1 21 1 1 21 22.0 1.61 22,088 28,232,637
2 2 27 1 2 22 13.5 2.05 28,905 36,133,695
4* 2 11 2 2 12 6.5 2.52 27,806 61,050,061
4* 2 11 4 2 7 5.5 2.45 31,882 74,211,503
8 2 7 2 4 13 5.25 3.14 34,907 60,661,207

8* 4 13 2 4 13 3.5 3.13 37,108 91,282,519

Figure 7-9: Viterbi Synthesis Results. FS means forward step. TB means trace-back. *Pareto
points.

improve throughput. All that exploration was done without changing the semantics

of the operation or giving a second thought to how the particular component would

be used in the greater design.

While analyzing the results, we have identified two potential concerns with our

synthesis approach:

" area overhead due to added flip-flops

" possibility of long combinational paths in control logic

We analyze these two concerns below.

7.5.1 Area Overhead due to Added Flip-Flops

Our synthesis scheme required addition of some storage bits which are used to main-

tain the state of the computation. Most of these storage bits are related to keeping

track of validity of data propagated through the design. A much smaller amount

of storage is used to keep track of status of computation in loops. We do not con-

sider registers inserted to keep the actual data being computed to be overhead: those

registers are being inserted at a specific request of the designer. Our tool generates

registers for data in delay operators, but a smarter tool can also generate multi-

131

cycle combinational paths. The registers generated on the back-edge of loops are

unavoidable, so they are also not considered overhead.

The overhead registers fall into three categories:

" flip-flops storing the write-enable signal to architectural registers

" flip-flops storing the valid signal in delay registers

" flip-flops tracking firstlter and nextIter state in loops

The first two categories of overhead flip-flops are related. First, it is important to

note that each requires only one bit of storage, no matter how wide the data is. This

means that the overhead is at most 50% (when data is also one bit) but would be just

3% when the data is 32 bits. Second, for each of these categories, some of the overhead

bits can be optimized out. In our GCD example, both x and y are always written

at the same time. This means that we only need one bit to keep track of the write-

enable signal for both of them. In practice this can lead to a significant reduction

in overhead. Synthesis tools can perform this optimization without changing our

synthesis methodology.

The last category turns out to be a fairly small contributor. Practical designs have

a limited number of loops, and each loop has just two bits of extra storage introduced

as overhead.

Overall, we have found that storage overhead was not a big issue in our designs.

The worst-case overhead for our CPU had 23 bits of overhead out of 1173 bits total

(2.0%) in the 16 clock cycle division version. The worst-case overhead for the FFT

design was 4 bits of overhead out of 1031 total (0.4%) in the 4-clock-cycle version.

And the worst-case overhead for the Viterbi algorithm was 8 bits of overhead storage

out of 422 bits total (1.9%) in the 1 ACS version.

7.5.2 Long Combinational Paths in Control Logic

Our design methodology and synthesis approach has focused on controlling the crit-

ical path for the fundamental computation being performed. This is the logic that

132

is fundamental to the design, no matter how it is compiled. But we have not done

any explicit work to reduce the critical paths in control logic. Under extreme circum-

stances, it is possible that the control logic will come to dominate the critical path of

synthesized circuits. It is important to note that we have not observed this problem

(critical paths in our circuits have not included control signals).

From prior work we know that rule scheduling logic is efficient [23]. We use the

same approach to creating our Reservation Scheduler and Commit Scheduler, so we

expect that logic to also be efficient. valid signals are passed through flip-flops in

delay operators, so their critical path is controllable.

It is possible, however, for the generation of the changed signal to create a long

combinational path. This is because the changed signals are expected to propagate

completely throughout the entire circuit in a single clock cycle. Most operators do

very little to the changed signals: they simply combine the changed signals from all

the inputs and output a disjunction of them. This has the potential to create long

critical paths, but those paths can be optimized using associativity and indempotency

of disjunction. An expression computing an answer based on n separate inputs only

needs log(n) gate delays to combine all the changed signals. Synthesis tools can

perform this optimization without changing our synthesis methodology.

The non-strict if operator, however, presents a more serious challenge. In our

context, a non-strict if does not assert output changed signal if the unselected input's

changed signal is asserted. This means that the non-strict if must use the condition

in computation of the output changed signal, which leads the output changed signal

to potentially arrive late in the cycle.

One solution to this problem would be to convert the non-strict if into a strict

if. A strict if would assert the output changed signal even if only the non-selected

input asserted its changed signal. Thus the output changed signal of a strict if is not

dependent on condition value, and should arrive earlier in the cycle. Implementing a

strict if is easy: a strict if is simply a 3-input primitive operator. While simple, this

approach may not always be appropriate: strict if operators have useful properties

that the design depends on: it could essentially revert the circuit to always produce

133

C C
late condition .late condition

late changed --. early data
---------+ ,early changed

(a) Original if (b) if with delayed condition

Figure 7-10: Adding delay to condition of if

results with worst-case delays, just like in Chapter 3.

Another approach to solving such a problem can be to wrap the conditional express

in a delay operator. That is convert if c then el else e2 into if delay(c) then el else e2,

as depicted in Figure 7-10. This solution may cause a delay of the output by an ad-

ditional clock cycle, but would still take advantage of the non-strict if operator.

If neither of the approaches above is acceptable for the design, then the design may

need to be changed in a more substantial way. The potential for long combinational

paths on the changed signals can be a real problem, even if we have not seen it in

our experiments. A better approach to tracking validity of partially computed results

would is desirable.

134

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we have extended the guarded atomic action design methodology with

new constructs to enable easy creation of designs utilizing rules which require many

clock cycles to complete. We have introduced the multi-cycle delay operator and dy-

namically controlled loops. Unlike previous attempts at multi-cycle design method-

ology, these new constructs introduce user invisible, micro-architectural state, rather

than utilize the user-visible architectural state. This distinction was key to our suc-

cess, as it eliminated the need to keeping track of shadow state, and enabled concur-

rent computation of updates for multiple rules.

The introduction of dynamically-counted loops makes it possible to express designs

in a more succinct faction that takes less area than previous attempts. We have

demonstrated this by factoring out the logic of several designs such as remainder

computation and FFT. While our examples may be quite simple, they demonstrate

an ability to solve a common and tedious problem: paths which are inherently slow

but not worth optimizing aggressively because they are not common.

We have combined these enhancements with non-strict if operator. Using non-

strict if enables the designer to easily exploit the power of unbalanced paths on

different branches of the if, demonstrating the power of multi-cycle design. We

utilized the non-strict if to add a multi-cycle instruction to a CPU without having

135

to introduce any new control or synchronization logic.

We were careful to ensure that circuits generated with our technique compute all

updates .optimistically. That is a rule will continuously compute its updates without

necessarily being reserved. Those updates can be utilized when the rule is reserved

to improve performance. This is an extension of the Hoe-Arvind approach, where

all rules always compute their updates irregardless of which ones are enabled by

the scheduler. In order to accommodate multi-cycle rules, our approach is more

complicated than Hoe-Arvind.

Finally, we have presented an efficient synthesis technique which generates circuits

from designs utilizing our new construct as well as the basic guarded atomic action

constructs. Our technique is able to handle modular, hierarchical designs, which

enables design with basic libraries, such as FIFOs, register files, etc.

We have demonstrated that our extensions and synthesis approach allow for opti-

mization of the critical path without changing the semantics of the underlying design.

We were able to explore the latency and throughput of different implementations of

algorithms in a design, all without changing the interfaces for those algorithms. Fur-

thermore, our language extensions significantly improved the expressiveness of the

language, enabling rapid design exploration, even for algorithms widely considered to

be complicated and difficult to optimize, such as the Viterbi algorithm. Because of

the close correlation between the design language and the hardware generated by our

compiler, design exploration gives us predictable results after synthesis - a feature

critical to enable designers to utilize their creativity in a productive manner.

We have identified several avenues of improvement, which are presented next.

Overall, it appears clear to us that the greater guarded atomic action community, and

Bluespec community in particular, would benefit from multi-cycle language extensions

and synthesis.

136

8.2 Future Work

Throughout the work on this thesis, many ideas for improving the current methodol-

ogy were identified. Some of the ideas have already been discussed above, including

flattening of nested loops, introducing do - while loops, allowing method calls from

inside loops and automatic generation of multi-cycle combinational paths out of ex-

pressions with delay operators. Below is a discussion of other ideas for enhancements

and new directions for the work presented in this thesis.

8.2.1 Pipelining

One of the common methods of increasing throughput of a circuit is to pipeline it.

The principle of pipelining is to allow computation on multiple data to be performed

at the same time, each at a different stage of a circuit. One of the methods we use for

critical path reduction - inserting delay operators - can produce circuits that have as

much area as fully pipelined logic, but lack the control logic to perform computation

on multiple data. The remainder computation in our GCD example has this property,

as does the division instruction in the CPU. It would be quite desirable to enable the

ability to fully pipeline logic with long critical paths and exploit the ability to process

multiple data concurrently. There exist several challenges to enabling such an ability.

We will illustrate the general problem by using the GCD computation as an example.

In the GCD example, each remainder computation (invocation of GCD rule)

requires the full result of the previous remainder computation to be present. Thus,

in order to process multiple data in the remainder computation, we would need to

enable the entire module to accept multiple input data, keep track of which inputs

have been fully processed and are ready to output, and output them in the first-in

first-out order. One way to do do this would be to introduce an operator which

pipelines an expression automatically, and force the designer to implement the logic

of keeping track of multiple data. A more desirable way to do this would be to

allow the designer to annotate the doGCD module with information on the flow of

data in it, and enable the compiler to perform analysis and produce a circuit which

137

automatically keeps track of all the data being processed concurrently.

8.2.2 Modular Scheduling

The current Bluespec solution to hierarchical synthesis is to enable every module

to contain a separate scheduler for the rules in the module[23, 34]. The schedulers

work together to make sure that evaluation of all rules maintains atomic consistency.

The solution presented in this thesis applies a rule lifting procedure, puts all the

rules in a single top-level module and uses a single scheduler to schedule all rules.

Both approaches have their advantages. In particular, the Bluespec approach can

fail to schedule some combinations of rules and method call trees as efficiently as

the approach presented in this thesis. On the other hand, the approach presented

in this thesis can generate more scheduling logic and increase the time to producing

a schedule. It would be desirable to port the Bluespec approach to our synthesis

approach to allow the designer a selection of choices.

8.2.3 Multi-cycle Control Signals

We have discussed previously the potential problem with generating long combina-

tional paths for changed signals. We would like to develop a solution to this problem,

presumably by allowing the changed signals, or some version of them, to propagate

over multiple clock cycles.

8.2.4 Combine with Ephemeral History Registers

Ephemeral History Registers [61 (EHRs) are the conceptual opposite of our work. The

idea of EHRs is to allow multiple rules to perform their computation in a single clock

cycle, in an order that forces introduction of bypassing of data written by the earlier

rule to the later rule. That is if rules A and B have a relationship of A < B, we want

to compute B then A in a single clock cycle.

The result of using EHRs is that the critical path of the circuit can increase due

to chaining of computation. This is not always the result, though. Sometimes the

138

conflicting computation being performed is quite simple (like writing a constant to a

register) so the only overhead could be the additional cost of a MUX. Furthermore,

this MUX may not even be on a critical path. In such a situation, it could be quite

beneficial to allow conflicting rules to bypass data to each other, because it could save

a clock cycle from the computation.

We encountered such a situation in our Viterbi design. The rules for PMU and

TBU are conflicting because they both manage the circular buffer formed by the

Trace Back Memory. The source of conflict is reading and writing of pointers to this

circular buffer. If we were able to bypass the data written by PMU to be read by the

TBU, we would not need a clock cycle delay between completion of TBU rule and

completion of PMU rule. The crux of of the computation of these two rules would still

proceed as it currently does. Only at the time that they are both ready to commit,

would we see the difference: they would both commit in a single clock cycle, rather

than the current one rule at a time.

8.2.5 Synthesis of Asynchronous Logic

The methodology used in this thesis exploits the fact that the semantics of atomic ac-

tions are untimed, that is, the time to execute an action does not change its outcome.

Due to this property, we were able to introduce operators which may have increased

the number of clock cycles necessary to compute an expression, but did not change

the final result in the reference one rule at a time execution model. The specific im-

plementation of the delay operator presented here is to introduce a register to store

an intermediate value. One suggested future work improvement is to instead convert

expressions using delay operators into multi-cycle combinational paths. It is, how-

ever, possible to take this suggestion much further. We could completely remove the

dependency on the clock and instead synthesize asynchronous circuits. The common

method of implementing asynchronous computation is to treat data as tokens, which

are carefully passed around the circuit with request-acknowledge logic 120]. From the

high-level point of view, this is quite similar to data flow.

Asynchronous circuits offer many potential advantages over their synchronous

139

counterparts:

" power can be reduced due to elimination of the clock tree and all related PLLs

* power can be further reduced by only performing the necessary computations.

A similar effect can be achieved with synchronous circuits by employing more

advanced techniques, like clock gating.

" many computations can be implemented more efficiently with asynchronous

circuits because they must compute their completion signals explicitly rather

than rely on an externally imposed clock. For instance an asynchronous ripple-

carry adder completes its computation in average O(log(n)) time, while a similar

adder in a synchronous circuit must assume completion in worst-case scenario

of completion in O(n) time.

" computation can be performed faster because of elimination of safety margins

imposed on propagation of clock signals due to clock skew and jitter, necessary

to ensure that chips function correctly under a variety of process and environ-

mental variations

" computation can be further sped up because the results of a computation can

be propagated as soon as they are available - there is no need to wait for the

next clock cycle to capture a result in a register

Unfortunately, there are several barriers to implementing atomic action systems effi-

ciently in a data-flow-like manner.

In order to achieve many of the promised savings of asynchronous circuits, the

circuit must be carefully designed to leverage the inherent advantages of asynchronous

design. Perhaps the biggest difficulty is in reducing the amount of wasted computation

being performed and in resetting the circuit for computing an expression when it is

deemed to be wasteful, all while exploiting as much parallelism from the design as

possible.

Consider a design comprising of two conflicting rules R1 and R2. The guard for R1

is g1 and the guard for R2 is g2. Suppose that both rules are inactive at a particular

140

time. The scheduler needs to evaluate gl and g2 and select a rule to activate. If it

attempts to evaluate both gl and g2 at the same time, and gl completes first and

evaluates to true, presumably the scheduler should activate R1. At that point we still

have g2 trying to complete its computation. We could try to reset the circuit for g2,

but that would require ensuring that all tokens active in g2 are effectively killed - a

potentially difficult and expensive operation in asynchronous circuits. We could allow

g2 to complete, but we do not know how long that may take. In our thesis, we have

chosen to allow g2 to continue its computation while also using valid and changed

signals to effectively reset computation of g2 when its inputs change. Asynchronous

design precludes a light-weight implementation of such a solution.

If we allow each guard to complete its evaluation and schedule the rules indepen-

dently, we must somehow handle a case where they both complete at the same time.

This requires an arbiter circuit, which is generally to be avoided. If the design has

more rules, we also have to consider if we want to activate one rule at a time - which

would slow down the activation of rules - or if we want to wait for multiple rules

to evaluate their guards - which would require even more complex arbitration logic.

Waiting for all rules to complete evaluation of their guards would avoid that logic,

but again would force us to wait until all guards have evaluated before scheduling -

which may be too slow.

Another problem with our example is the consideration of when to start evaluating

the bodies of RI and R2. If we start evaluating the bodies as soon as we start

evaluating the guards (which would complete the actions faster) we must again figure

out a way to kill the evaluation in progress for the rule which will not fire. If we wait

with computation of the body until the guard has been evaluated we may lose too

much performance.

Some of these problems can be overcome by utilizing some knowledge about the

inherent properties of the computations we are performing. Perhaps we could analyze

gl and g2 and determine that g1 will evaluate significantly faster. We can then

implement a scheduler which expects g1 to complete and potentially activate R1. If

we cannot activate R1, we can then wait for g2 to complete and consider R2 for

141

activation. Only g2 would need a reset mechanism. If, on the other hand, g1 and g2

are estimated to have similar delays, we could implement a scheduler which waits for

both to complete before scheduling. Neither g nor g2 would need to be reset. Such

an approach can alleviate some of the difficulty with generating efficient asynchronous

circuits, but does not address all the problems described above.

142

Bibliography

11] C-to-Silicon Compiler. http://www.cadence.com/.

12] Handel-C. http://www.mentor.com/products/fpga/handel-c/.

[3] SpecC. http://www.cecs.uci.edu/ specc/.

[41 Synphony. http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-

Compiler.aspx.

15] SystemVerilog. http://www.systemverilog.org.

16] 2nd ACM & IEEE International Conference on Formal Methods and Models for

Co-Design (MEMOCODE 2004), 23-25 June 2004, San Diego, California, USA,

Proceedings. IEEE, 2004.

17] 2nd ACM & IEEE International Conference on Formal Methods and Models for

Co-Design (MEMOCODE 2004), 23-25 June 2004, San Diego, California, USA,

Proceedings. IEEE, 2004.

18] AccelDSP. http://www.xilinx.com/tools/acceldsp.htm.

19] Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee, Matthew

Frank, Rajeev Barua, and Saman Amarasinghe. Parallelizing applications into

silicon, 1999.

110] Prithviraj Banerjee, Malay Haldar, Anshuman Nayak, Victor Kim, Vikram Sax-

ena, Steven Parkes, Debabrata Bagchi, Satrajit Pal, Nikhil Tripathi, David Zaret-

sky, R. Anderson, and J. R. Uribe. Overview of a compiler for synthesizing mat-

143

lab programs onto fpgas. IEEE Transactions on Very Large Scale Integration

Systems, 12:312-324, 2004.

111] Grard Berry. Esterel on hardware, pages 87-104. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1992.

[12] Bluespec System Verilog. http://www.bluespec.com.

113] F. Boussinot and R. de Simone. The esterel language. Proceedings of The IEEE,

79:1293-1304, 1991.

[14] Mihai Budiu and Seth Copen Goldstein. Compiling application-specific hard-

ware. In International Conference on Field Programmable Logic and Applications

(FPL), pages 853-863, Montpellier (La Grande-Motte), France, September 2-4

2002.

[15] Timothy Callahan and John Wawrzynek. Adapting software pipelining for re-

configurable computing. In In Proceedings of the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems (CASES, pages

57-64. ACM, 2000.

1161 Catapult-C. http://www.mentor.com/esl/catapult/.

[17] Nirav Dave. Designing a reorder buffer in bluespec. In MEMOCODE, pages

93-102, 2004.

118] Nirav Dave, Arvind, and Michael Pellauer. Scheduling as Rule Composition. In

MEMOCODE '07: Proceedings of the 5th IEEE/ACM International Conference

on Formal Methods and Models for Codesign, pages 51-60, Washington, DC,

USA, 2007. IEEE Computer Society.

1191 Nirav Dave, Michael Pellauer, S. Gerding, and Arvind. 802.11a transmitter:

a case study in microarchitectural exploration. In MEMOCODE, pages 59-68,

2006.

144

120] A. Davis and S.M. Nowick. An Introduction to Asynchronous Circuit Design.

Technical Report UUCS-97-013, Computer Science Department, University of

Utah, September 1997.

121] Giovanni De Micheli, David Ku, Frederic Mailhot, and Thomas Truong. The

olympus synthesis system. IEEE Des. Test, 7:37-53, September 1990.

[22] Stephen A. Edwards. High-level synthesis from the synchronous language esterel.

In IWLS, pages 401-406, 2002.

[23] Thomas Esposito, Mieszko Lis, Ravi Nanavati, Joseph Stoy, and Jacob Schwartz.

System and method for scheduling TRS rules. United States Patent US 133051-

0001, February 2005.

[24] G. Feygin and P. Gulak. Architectural tradeoffs for survivor sequence mem-

ory management in viterbi decoders. IEEE Transactions on Communications,

41:425-429, 1993.

125] David R. Galloway. The transmogrifier c hardware description language and

compiler for fpgas. In Field-Programmable Custom Computing Machines, pages

136-144, 1995.

[26] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for

lock-free data structures. In Proceedings of theTwentiethAnnual International

Symposium on Computer Architecture, 1993.

[27] P. Hilfinger. A high-level language and silicon compiler for digital signal process-

ing. In IEEE International Symposium on Circuits and Systems, 1985.

[28] James C. Hoe. Operation-Centric Hardware Description and Synthesis. PhD

thesis, MIT, Cambridge, MA, 2000.

[29] James C. Hoe and Arvind. Synthesis of Operation-Centric Hardware Descrip-

tions. In ICCAD, pages 511-518, 2000.

145

[30] David Ku and Giovanni DeMicheli. Hardwarec - a language for hardware design

(version 2.0). Technical report, Stanford, CA, USA, 1990.

[31] Sharad Malik. Analysis of cyclic combinational circuits. IEEE Trans. on CAD

of Integrated Circuits and Systems, pages 950-956, 1994.

[32] H. Man, J. Rabaey, P. Six, and L. Claesen. Cathedral-ii: A silicon compiler for

digital signal processing. IEEE Des. Test, 3:13-25, November 1986.

[33] N. Park and A. Parker. Sehwa: A program for synthesis of pipelines. In Papers

on Twenty-five years of electronic design automation, 25 years of DAC, pages

595-601, New York, NY, USA, 1988. ACM.

[34] Daniel L. Rosenband and Arvind. Modular scheduling of guarded atomic actions.

In DAC '04: Proceedings of the 41st annual conference on Design automation,

pages 55-60, New York, NY, USA, 2004. ACM.

[35] Luc S6m6ria and Giovanni De Micheli. Spc: synthesis of pointers in c: application

of pointer analysis to the behavioral synthesis from c. In Proceedings of the

1998 IEEE/ACM international conference on Computer-aided design, ICCAD

'98, pages 340-346, New York, NY, USA, 1998. ACM.

136] Nir Shavit and Dan Touitou. Software transactional memory. In Symposium on

Principles of Distributed Computing, pages 204-213, 1995.

137] Byoungro So, Mary W. Hall, and Pedro C. Diniz. A compiler approach to fast

hardware design space exploration in fpga-based systems. In In Proceedings of

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 165-176, 2002.

[38] D. Soderman and Y. Panchul. 1.5: Implementing c designs in hardware: A

full-featured ansi c to rtl verilog compiler in action. In Proceedings of the Inter-

national Verilog HDL Conference and VHDL International Users Forum, pages

22-, Washington, DC, USA, 1998. IEEE Computer Society.

146

139] D. Soderman and Y. Panchul. Implementing c algorithms in reconfigurable hard-

ware using c2verilog. In Proceedings of the IEEE Symposium on FPGAs for

Custom Computing Machines, FCCM '98, pages 339-, Washington, DC, USA,

1998. IEEE Computer Society.

[40] Charles E. Stroud, Ronald R. Munoz, and David A. Pierce. Behavioral model

synthesis with cones. IEEE Design and Test of Computers, 5:22-30, 1988.

[41] SystemC. http://www.systemc.org/home/.

[42] J. E. Thornton. Parallel Operation in the Control Data 6600. AFIPS Proc.

FJCC, Pt. II, Vol. 26:33-40, 1964.

1431 Andrew J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm. IEEE Transactions on Information Theory, IT-

13(2):260-269, April 1967.

144] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Ama-

rasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih wei Liao, Chau wen

Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. Suif: An infras-

tructure for research on parallelizing and optimizing compilers. A CM SIGPLAN

Notices, 29:31-37, 1994.

147

