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Abstract

In this thesis, we investigate the birational geometry of the space of rational curves
in various homogeneous spaces, with a focus on the quasi-map compactification in-
duced by the Quot and Hyperquot functors. We first study the birational geometry
of the Quot scheme of sheaves on P1 via techniques from the Mori program, explicitly
describing its associated cones of ample and effective divisors as well as the various
Mori chambers within the latter. We compute the base loci of all effective divisors,
and give a conjectural description of the induced birational models. We then par-
tially extend our results to the Hyperquot scheme of sheaves on P', which gives the
analogous compactification for rational curves in flag varieties. We fully describe the
cone of ample divisors in all cases and the cone of effective divisors in certain ones,
but only claim a partial description of the latter in general.
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Chapter 1

Rational Curves in P"-1

Describing the behavior of curves in projective space, and particularly counting curves
satisfying certain incidence conditions, is one of the most studied topics in algebraic
geometry. The simplest case is that of smooth rational curves, i.e. nonsingular
subvarieties C c P"~1 abstractly isomorphic to P1. These curves have an associated
degree d (its intersection number with a generic hyperplane, or its class in H1 (P-1) =&
Z), and the locus of curves with a given degree is finite-dimensional. Indeed, such
curves are the images of morphisms P1 --+ P"-1: parameterizing these maps and
quotienting by automorphisms gives

Theorem 1. The space of smooth rational curves of degree d is quasi-projective of
dimension nd + n - 4.

Of course, this space is not closed, an impediment to applying many of the tools
of algebraic geometry (which require compactness) to compute curve counts. Thus,
we would like to compactify the space of smooth curves, and do it in such a way that
the overall space still classifies curves, albeit not just smooth ones.

1.1 Moduli spaces

The formal notion for such a classification problem is a moduli functor and its as-
sociated moduli space [14]. Roughly speaking, a moduli space is one whose points
correspond to algebro-geometric objects of a predetermined nature, and whose local
geometry is given by the behavior of those objects in families:

* A moduli functor is a functor 9 from schemes to sets which associates to a
scheme T the set of families over T whose fibers are the objects being classified,
modulo some notion of equivalence.

* 9 has an associated fine moduli space if it is representable, i.e. if there is a
scheme F and an isomorphism of functors hF := {T - Hom(T, F)} .

* q has an associated coarse moduli space if there is a scheme F whose points cor-
respond to isomorphism classes of the desired objects, equipped with a natural
transformation 9 -+ hF universal among all possible F.



If 9 has a fine moduli space F, there also exists a universal family U = hF(F) =
Hom(F, F) over F, i.e. a family with the property that any family of the given type of
object over a scheme T is pulled back from U along some morphism T -> F. However,
if $ has only a coarse moduli space, such a family may not exist.

Remark. One often expands the category of objects from schemes to something more
general, in order to allow for the existence of a fine (or at least finer) moduli space.
The equivalence relation in the moduli functor is often an obstruction to being repre-
sentable, as individual objects may have automorphisms: extending to the category
of algebraic spaces or stacks often alleviates this particular problem.

1.2 Chow varieties

Returning to the question of compactifying curves of degree d, the simplest approach

(and first historically) is to take the associated Chow variety.

Definition-Theorem 1 ([4]). There exists a variety parametrizing cycles in P"-1 of
dimension r and degree d, called the Chow variety. Explicitly, it is a closed subvariety
en,r,, C PN (N depending on n,r, and d) representing the functor which sends a

variety T to the set of families of dimension r, degree d cycles in Pr 1, modulo
isomorphism. Moreover, for any subvariety X C P", those cycles contained in X
form a subvariety Cr,d(X) C en,r,d, also called a Chow variety.

Remark. As defined, the Chow variety is typically not normal, so in practice one often
passes to the normalization (losing some functorial properties).

If r = 1, the Chow variety can be constructed by intersecting a cycle with a pair of
hyperplanes H, H' in general position, giving a finite set of d distinct points on each:
these points induce a homogenous polynomial called the Chow form, whose possible
coefficients form a closed subvariety of some projective space.

Example. The first interesting Chow varieties are given by curves of degree d in P3.

d = 1: the Chow variety parameterizes lines in P3 , and is isomorphic to the Plucker
embedding of G(1, 3) C P (a quadric hypersurface).

d = 2: the Chow variety has two components of dimension 8 corresponding to smooth
conics and pairs of lines.

d = 3: the Chow variety has four components of dimension 12 corresponding to twisted
cubics, planar cubics, pairs of a line and a conic, and triplets of lines [2].

Observe that, even for d = 2, the Chow variety does not simply compactify smooth
curves, but rather adds a whole component of disconnected subvarieties. For d = 3,
we also get components of higher genus. Even restricting to a single component of the
Chow variety, the local geometry is often too coarse to compute nice intersections.
Thus, we look for a more refined moduli problem.



1.3 Hilbert schemes

Recall that the Hilbert polynomial of a degree d curve of genus g is

X(m) := x(0c(mH)) = dm + 1 - g. (1.1)

Since Hilbert polynomials are constant in flat families, the Hilbert scheme is another
potential compactification.

Definition-Theorem 2 ([25]). There exists a scheme parameterizing closed sub-
schemes in P"-' with Hilbert polynomial D(m) (presumably, x(X, (x(m)) for some
subvariety X C P" ), called the Hilbert scheme. Explicitly, it is a closed subscheme
', c PN (N depending on D and n) representing the functor which sends a scheme

T to the set of families of subschemes of P-l with Hilbert polynomial Q, modulo iso-
morphism. As before, one can extend this to closed subschemes of a given projective
variety.

Remark. For subschemes V of dimension > 1, one can use the formula

X(OvnH(mH)) = x((9v(mH)) - X(Ov((m - 1)H) (1.2)

to see that the Hilbert polynomial precisely specifies the arithmetic genera of V and
its intersections with general hyperplanes of varying codimension (up to dim V).

Example. For rational curves (i.e. g = 0) in Ps:

d = 1: the Hilbert scheme is G(1, 3), the same as the Chow variety.

d = 2: the Hilbert scheme has a single component parameterizing conics, and is iso-
morphic to a P' bundle over P3v, the space of planes in P3.

d = 3: the Hilbert scheme has two components of dimension 12 and 15 which respec-
tively parameterize twisted cubics and plane cubics with a point [2].

In the latter case, there is a canonical morphism from the first component to the
corresponding one of the Chow variety: it forgets the scheme structure and contracts
the locus of curves that have a nonreduced component (dimension 9 in the Hilbert
scheme).

For higher degrees, the Hilbert scheme does not give a particularly nice compact-
ification of the locus of smooth curves, as the singularities present become arbitrarily
bad.

Theorem 2 (Murphy's Law). Hilbert schemes and Chow varieties of nonsingular
curves exhibit (up to smooth product) every class of singularity of finite type over Z.

Indeed, limits of many different families of smooth curves may be identified by
the Hilbert and Chow compactifications: we would thus like to further rigidify our
curves, with the aim of separating these limits.



1.4 Kontsevich spaces

As noted in the opening, we can study embedded rational curves via images of explicit
morphisms P' -+ P", i.e. as parameterized curves: after quotienting by automor-
phisms of P', we obtain a compactification of the original space. This is the basis
for Kontsevich's construction [12] of the space of stable maps, which imports the sta-
bility condition from the Deligne-Mumford space of curves to give us a nicer moduli
functor.

Definition 1. A stable curve is one which is complete and connected, with nodal
singularities and a finite group of automorphisms. A stable map is a map f : C -* X
is a map whose source is a complete, connected, nodal curve, whose target is projective,
and whose group of automorphisms is finite.

Eliminating infinite automorphisms forces the (relative) canonical divisor (possibly
twisted by marked points) to be ample, a key part of the construction of the associated
moduli space.

Remark. In each case, one can also consider marked curves (C,pi,.. . ,p), curves
together with fixed markings pi E C: this allows one to stabilize curves with infinite
automorphisms, e.g. rational curves. Indeed, an unmarked curve of genus zero is
never stable, as some component must have automorphisms.

Definition-Theorem 3 ([12]). There exists a projective coarse moduli space Mg
(resp. Mg,n), called the Deligne-Mumford space of stable curves, for the functor
which sends a scheme T to the set of families of stable curves (resp. stable curves
with n marked points) over T: it is equipped with a universal family Cg (resp. eg,n).
Similarly, there exists a projective coarse moduli space Mg,o(X, 3) (resp. Mg,n(X, 3)),
called the Kontsevich space of stable maps, for the functor which sends a scheme T
to the set of families of stable maps f : C -+ X (resp. stable maps with n marked
points) such that [f (C)] = 3 E H2 (X, Z). Mg,1 (X, /) (resp. Mg,n+1 (X, 3)) is itself
the universal family for Mg,o(X, 3) (resp. Mg,n(X, /)).

Remark. If X is P"-1 (or any Grassmannian), H2(X, Z) 2 Z, and we use the degree
d= [P] in place of 3.

For studying rational curves, there are two interesting relevant cases:

" MO,n, the moduli space of stable rational curves with n > 3 marked points, and

" Mo,o(P- 1 , d), the moduli space of stable degree d maps P1 --+ Pn-1

The former object is a smooth variety birational to P", and can be constructed
explicitly as a sequence of blow-ups of projective space: its birational geometry is

(conjecturally) described by combinatorics are the subject of much study. The latter
object, which compactifies our space of rational curves in projective space, behaves
much better than either the Chow variety or the Hilbert scheme, as it is irreducible
with finite quotient singularities [16]. Indeed, the analogous space with marked points
(which is similarly nice) has been used with great success to compute previously
unknown counts of curves satisfying various incidence conditions.



Example. Returning to our study of rational curves of degree d in P3

d = 1: stable maps are smooth, and we obtain the same compactification as in the
Chow and Hilbert cases.

d = 2: the boundary (non-smooth locus) of the Kontsevich space is a divisor consisting
of maps from a reducible curve C1 U C2 (two P's intersecting at a node) with
degree one on each: its image is thus a pair of intersecting lines, i.e. a degen-
eration of a conic. There is a morphism to the Hilbert scheme with contracts
this locus down to that of double lines (the image of p2 _R P under the degree
two Veronese embedding), which exhibits the Kontsevich space as a blowup of
a projective bundle.

d = 3: the boundary generically consists of maps from C, U C2 with degrees 1 and 2
on the two components. There is a further substratum given by maps from
reducible curves with three components, each mapping in with degree 1.

For higher d, the boundary will have [] components Ai, generically consisting of
maps from C1 U C2 with degree i on one component and d - i on the other. This
boundary is refined by strata of maps from reducible curves with more components.

We can use the techniques of the Mori program to study the geometry of this
space in more detail, and understand the relationship between it and the Hilbert and
Chow compactifications for small values of d more concretely: to do this, we need
to have a more detailed understanding of the Neron-Severi space of divisors N' (the
torsion-free part of the Picard group).

Theorem 3 ([22]). N'(Mo,o(IP"-1, d)) is generated by the Ai and H, the divisor of
maps whose image intersects a fixed codimension two subspace.

Within this space, we are interested in two closed cones: the cone of nef divisors

(called the ample cone), and the larger cone of pseudo-effective divisors (called the
effective cone). By the fundamental results of Mori theory, if we can understand
these two cones, and further decompose the latter cone into Mori chambers, we can
determine the birational geometry of M0 ,0 (P"-1, d) completely.

Remark. A Mori chamber is, roughly speaking, a cone in N' such that divisors in
the interior behave similarly: after taking sufficiently high multiples, their linear
systems have the same base loci and induce equivalent maps. For instance, the cone
of ample divisors A on a projective variety X is a Mori chamber, as Bs(ImAl) = 0 and
O : X -> Proj (() H0 (X, mA)) is an embedding. In nice cases, one can completely
decompose the effective cone into such chambers: the birational geometry of the
variety can be described in terms of the facets between adjacent cones, which induce
so-called wall-crossing formulas.

For the first cone, let T be the divisor of maps whose image is tangent to a fixed
hyperplane.



Theorem 4 ([10]). The nef cone of Mo,o(P4- 1, d) is generated by H, T, and the

pullback of the nef cone of Mo,d/Sd under the morphism

Mo,o(Pr, d) -+ MO,d/Sd (1.3)

which sends a stable map to its stabilized image curve plus d unordered points obtained
by intersecting the original image with a fixed hyperplane.

For the second, we assume that n -1 > d, and let Ddeg be the divisor of degenerate
maps, i.e. those whose image lies in a (d - 1)-plane Pd-1 c P"- 1.

Theorem 5 ([9]). If n - 1 > d, the effective cone of Mo,o(P"- 1 , d) is generated by
Ddeg and the boundary divisors Aj,1 i < .

Example. On P 3:

d = 1: there is no boundary divisor, and thus the Picard rank of the Kontsevich space
is one (so the ample and effective cones are both the trivial ray).

d = 2: the Picard rank is two, the ample cone is spanned by H and T, and the ef-
fective cone by Ddeg and the sole boundary divisor A 1-1. Furthermore, for
D E (H, Ddeg), #D maps the Kontsevich space to the Hilbert scheme by con-
tracting the locus of degenerate (i.e. two-to-one) maps, while for D E (T, A),
it contracts the boundary and produces the space of 1-stable maps, in which
conics degenerate to lines with a base point, instead of pairs of lines.

d = 3: the Picard rank is still two, but the cone between H and Ddg is divided into
two chambers. The map induced by divisors in (Ddeg, S) maps the Kontsevich
space to the closure of locus of twisted cubics in G(2, 9) (the space of planes in
P9) by contracting the degenerate maps, while divisors in (S, H) induce a flip
on the locus of maps which are many-to-one on some component. The base of
the flip is the component of twisted cubics in the Chow variety, and its image
is the analogous component in the Hilbert scheme. [2]

H T

S
ample cone

Ddeg A

Figure 1-1: Mori chamber decomposition of the Kontsevich spaces Mo,O(P3, 2) (with-
out the dotted ray) and Moo(P 3, 3) (including it).



1.5 Quot schemes and quasi-map spaces

Prior to quotienting by automorphisms, there is an alternate way to compactify maps
from P to P"-' of degree d, first explored in [15] and [5]. Such maps are induced
by line bundles Z on P of degree d, or more precisely by projections ("v -+ Z via
projectivisation. Thus, a morphism P --+ P"- corresponds to an exact sequence
0 -+ v -+ " -, -+ 0 modulo automorphisms of Zv, where 3 is locally free of rank
n - 1. By construction 3 has Hilbert polynomial

x(m) = x(P', 3 0 0(m)) = (m + 1)(n - 1) + d (1.4)

As with subschemes, there is a natural way to compactify subsheaves of a fixed sheaf

(or exact sequences with fixed central term) and specified Hilbert polynomial, called
the Quot scheme. Although Quot schemes are generally as inscrutable as Hilbert
schemes, for rank one subsheaves of the trivial bundle on P', they are the projective
spaces

P(Symd(C 2 ) 0 C") e pn(d+1)-1. (1.5)

parameterizing those n-tuples of d-forms which determine the inclusion 0(-d) a
'v _ 0". This space has an open locus U C P(Symd(C2 ) 0 C") of forms whose
associated cokernel 3 is locally free: these correspond to honest morphisms P -+ P-1.
We thus obtain the space of smooth rational curves in P"-1 by quotienting U by the
action of SL(2) on Symd(C 2), as well as a compactification by extending this action
to the whole Quot scheme. Although the action will no longer be free, we can use
geometric invariant theory (GIT) to produce a global quotient.

Definition 2. The quasi-map space of degree d rational curves in P"-1 is

P(Symd(C 2 ) 0 C")//SL(2) (1.6)

Unlike our previous compactifications, the quasi-map space is not a moduli space
for curves. However, being a simple quotient of projective space makes many other
attributes (e.g. its cohomology ring, Chow ring, and K-theory) easy to determine
via using equivariant torus actions. Furthermore, there is a natural birational map
P(Symd(C 2 ) 0 C")//SL(2) -- + Mo,o(P-1, d) which maps an n-tuple of d-forms to
the associated morphism P' -+ P'. On the quasi-map side, the exceptional locus
corresponds to points where 3 has torsion: these are given by n-tuples of forms with
common zeroes. On the Kontsevich side, the exceptional locus is the boundary, i.e.
the maps with reducible source.

Example. On P3:

d = 1: The Kontsevich and quasi-map (and Chow and Hilbert) spaces agree.

d = 2: The Kontsevich space is the blow-up of the quasi-map space along the locus
where the defining forms have two common zeroes, and conversely produces the
quasi-map space by blowing down the boundary divisor.



d = 3: the Kontsevich space is obtained from the quasi-map space by

(a) blowing up along the (n - 1)-dimensional locus of three common zeroes,

(b) blowing up along the (2n - 2)-dimensional locus of two common zeroes,

(c) blowing up along of the (3n - 3)-dimensional locus of one common zero,

(d) blowing down the exceptional divisor of the second blow-up, and

(e) blowing down the exceptional divisor of the first blow-up,

where, in the last four steps, we take the strict transform of the specified locus:
see [KM] for full details. Conversely, one can start with Moo(P" 1 , d) and

(a') Blow up the locus of four irreducible components (a central P with degree
0, attached to three P's with degree 1): it is an S 3 quotient of a (Pn-2) 3

bundle over MO,3(P" 1, 0) e ]Pn-1.

(b') Blow up the strict transform of the locus of three irreducible components

(a central P' with degree 1, attached to two P's with degree 1): it is an S2
quotient of a (Pn-2) 2 bundle over Mo,2 (P-,1) -

(c') Blow down the strict transform of the locus of two irreducible components

(a central P1 with degree 2, attached to a P1 with degree 1): it is a Pn-2

bundle over Mo,1 (pn-1, 2) blown up at the locus of three irreducible como-
nents.

(d') Blow down the strict transform of the locus of three irreducible components.

(e') Blow down the strict transform of the locus of four irreducible components.

This construction, due to Kiem and Moon [15], allows for the recomputation
of the cohomology ring of the Kontsevich space and a new calculation of its
integral Picard group.

In general, of course, the process of blowing up and blowing down may lead to an arbi-
trarily complicated space, and thus one cannot infer many results about the birational
geometry of Kontsevich space from that of the quasi-map space.

In [5], this study is extended to the space of rational curves in more general
homogeneous spaces, with similar results obtained up to d = 3. However, the Quot
schemes that arise are rather more complex objects: the goal of this work is to
understand their birational geometry more thoroughly, towards the aim of getting a
better grasp of the structure of the Kontsevich space.



Chapter 2

Rational Curves in Grassmannians

2.1 Background on Grassmannians

We begin by briefly recalling some basic facts about the Grassmannian G(k, n) over
C: see e.g. [19] for more details.

" There is a smooth variety G(k, n) of dimension k(n - k) parametrizing k-
dimensional subspaces of V C" (or projective (k - 1)-planes in P"-).

* G(k, n) embeds in P;)~ via the top exterior power map, which sends A E
G(k, n) to Ak A C Ak V embeds G(k, n) , whose image is called the Plucker
embedding Moreover, this image is the intersection of a set of quadrics defined
by the Plicker relations, giving an explicit construction.

" G(k, n) can also be realized as a homogeneous space: it is the quotient of
GL(n) by the group of matrices stabilizing the span of the first k basis vectors,
i.e. matrices with trivial top right k x (n - k) entries. This simplifies to the
quotient U(n)/U(k) x U(n - k) where U(m) is the space of unitary m x m
matrices.

" G(k, n) is a fine moduli space for the functor which sends a scheme T to the set
of rank k subbundles of the trivial bundle of rank n, or equivalently to the set
of exact sequences 0 -+ ST --- or --+ QT -> 0 where ST is locally free of rank
k, O"r O (& ® V, and QT is locally free of rank n - k, modulo isomorphism.
It has a universal exact sequence 0 -+ S -+ (k,n) --+ Q --+ 0, i.e. for any
locally free S' --+ on of rank k (with locally free cokernel Q'), there is a map
f : T -> G(k,n) such that S'= f*S (and Q' = f*Q).

" Let F = {F'} be a fixed complete flag of hyperplanes in C" (with codim F = i):
given a partition A = {Ai} satisfying n - k > Al > ... Ak > 0, there is an
associated Schubert variety

E = {A E G(k, n) I dim An Fk-i+Ai > iVi} (2.1)



of codimension E Ai, and a corresponding Schubert cycle a = E. Note that,
for generic A, dim A nF Fk-i = i, so only the terms Ai > 0 matter.

- There is one divisorial Schubert cycle o-, dual to the space of k-planes that
intersect a fixed codimension k-plane in a line.

- There are two codimension two Schubert cycles o,2 and a1, 1, dual to the
spaces of k-planes that intersect Fk+1 in a line and those that intersect
Fk-1 in a 2-plane.

e The cohomology of the Grassmannian is generated by either the Chern classes
of S and Q (modulo the relation c(S) -c(Q) = 1), or the Schubert cycles, which

are related by the formulas ci(S) = (-1)io-1 1, ci(Q) = 0'.

2.2 Rational Scrolls

Given a smooth rational curve C -_ P1 C G(k, n), the universal property of the
Grassmannian gives an associated sequence of vector bundles

0--+ K -- 9n -+ J -_+ 0 (2.2)

on P 1. By a theorem due to Grothendieck, K and J each decompose as a direct
sum of line bundles: the given injection and surjection imply that K is a sum of line
bundles of degree < 0, J is a sum of line bundles of degree > 0, and the total degree
of K is the negative of the total degree of J (say d). We can associate to this sequence
a geometric object, called a rational scroll [13].

Definition 3. Let a1 < ... < ak be a sequence of non-negative integers, not all zero,
and let d = E ai. A k-dimensional rational scroll of type a1,...,ak in pd+k-1 is the

join S. of k rational normal curves of degrees a1,..., ak. If Jai - aj| < 1 for all

i, j, the scroll is called balanced: if ai = aj for all i, j, it is perfectly balanced [81.

More precisely, choosing rational normal curves fi : P1 -> P' and general linear
subspaces Pi c pd+k-1, our scroll will be the union of the (k - 1)-planes spanned
by the points fi(z),... , fk(z) for z E Pl. Note that, if one (or more) of the degrees
ai is zero, the corresponding "curve" is a point, and our scroll will be a cone over a
lower dimensional scroll. Otherwise, because our spaces are chosen generically, the
(k - 1)-planes will not intersect, and our scroll will fiber over P1.

The association between rational scrolls and rational curves in G(k, n) arises via
the subbundle K given above.

Proposition 1. If K ® k 0 (ai), then PK = P (0(ai) 0 - - 9 (ak)) is abstractly
isomorphic to the scroll constructed above.

Now, a rational curve in G(k, n) will actually correspond to a scroll in P"-4, via
the map PK <-> P'. If n = d + k, it is the embedding of the projective bundle in
the above theorem via (PK(1). If n > d + k, we compose this with an embedding
Pd+k-1 _, pn-1, while if n < d + k, we compose with a projection.



Proposition 2. The space of isomorphism classes of scrolls in on of type a1 , .. ,a

has dimension EZ n(ai + 1) - Aut(Sa., ) = n(d+ k) - Z _k max(0, a3 - ai +1).

Note that for a balanced scroll, the latter term is k2.

Corollary 1. dim Mord(Pl, G(k, n))/Aut(Pl) = nd + k(n - k) - 3.

Example. Consider rational curves in G(2, 4), i.e. degree d families of lines in P3:

1. If d = 1, the induced scroll is simply a plane in P3, and the space of curves is
the space of planes with a choice of covering family of lines.

2. If d = 2,

* a general family will induce a scroll isomorphic to a smooth quadric S C P3

determined by two skew lines, and the corresponding exact sequence is

0 -+ _(-1) E 0(-1) -+ 4i -> 0(1) E 0(1) -+ 0 (2.3)

* a family such that every line passes through a fixed point will induce a
scroll isomorphic to a quadric cone F2 C P3, and the corresponding exact
sequence is

0 -- 0 D 0(-2) -+ j1 -+ 0(1) E 0(1) -+ 0 (2.4)

* a family such that every line is contained in a given plane will induce a
scroll isomorphic to P2 c P3, and the corresponding exact sequence is

0 -+ 0(-1) ED 0(-1) -+ 41 --+ 0(2) ( 0 -+ 0 (2.5)

3. Similarly, for d = 3, Kv and J both generically decompose as 0(1) D 0(2),
with Kv - 0 ( 0(3) the conical case (the scroll is the cone over a cubic) and
J 0 9 0 (-3) the degenerate case (the scroll is IP2).

For general d, the induced scroll will be a ruled surface in P3 associated to an exact
sequence of the form

0-- (9(-a) ED 0(a - d) -+ (9 -+ O(b) D O(d - b) -+ 0 (2.6)

for some a, b < [fj. The subscroll induced by Pif -w ((a) is a minimal directrix
of the scroll (unique if a < d - a): P1f --> 0(b) has the same property for the dual
scroll. The space of rational curves in G(2, 4) is stratified by these two parameters.
In particular, the locus with directrix of degree a is locally closed, irreducible, and
has codimension d - 2a - 1, and similarly for dual directrix of degree b.



2.3 Chow, Hilbert, and Kontsevich Spaces

Using the Plucker embedding of the Grassmannian, we can define the Chow variety
of degree d cycles and the Hilbert scheme of subschemes with Hilbert polynomial
dm + 1 just as before. These spaces will generally have the same advantages and
disadvantages of the analogous varieties for projective space.

Example. The first interesting case is curves with d = 2, i.e. conics in G(2, 4), which
form a space of dimension 9. There is a natural morphism from the space of conics to
G(3, 6) via the Pl6cker embedding, which presents G(2, 4) as a quadric hypersurface
in P5: this morphism takes a conic to its spanning plane P2 C Ps, and extends
naturally to the Hilbert scheme. Moreover, it is an isomorphism outside the locus
o C G(3,6) where the spanning plane is contained within the P15cker embedding,
and exhibits the Hilbert scheme X as the blowup of G(3,6) along this locus. The

(normalized) component C of the Chow variety of connected cycles of degree 2 arises
as a small contraction on the boundary of the Hilbert scheme, with the locus of double
lines (codimension 3 in the Hilbert scheme) forming a P1-bundle over its image in the
Chow variety. See [3] for more details.

We include an additional observation of Chen and Coskun for future reference: as
points in the locus 0 give planes in the Plucker embedding of G(2, 4) and have class
01,1 or o-2 as Chow cycles on G(2, 4). This partitions 0 c G(3, 6) and the exceptional
loci in the Chow and Hilbert schemes into two irreducible components, and provide
alternate Chow and Hilbert "compactifications" C1,1, e2, J1,1 and H2 by only blowing
up the corresponding component of 0.

The Kontsevich space Mo,o(G(k, n), d) gives a somewhat nicer compactification.
As before, it is irreducible with finite quotient singularities, and has a divisor theory
similar to that for P".-. Explicitly, letting

" H 1,1 be the locus of maps whose images intersect a fixed codimension (k - 1)-
plane in a 2-plane, i.e. the divisor associated to the 2-cocycle -1,1, and

" H2 be the locus of maps whose images intersect a fixed codimension (k+ 1)-plane
in a line, i.e. the divisor associated to the 2-cocycle o-2,

one finds that

Theorem 6 ([22]). The Picard group of Mo,o(G(k,n), d) is generated by H1,1, H 2,
and Ai,i < .

Next, letting T be the locus of maps whose image is tangent to a fixed hyperplane,
and using the morphism to Mo,d/Sd as before,

Theorem 7 ([11]). The nef cone of Mo,o(G(k, n), d) is the product of the cone gen-
erated by H1,1, H2, and T with the image of the nef cone of Mo,d/Sd.

Example. For Mo,o(G(2, 4), 2), the nef cone is a triangular cone 2-1 spanned by the
three divisors H1,1, H2,, T, and divisors on its boundary gives rise to interesting
birational morphisms (as demonstrated in [3]):



H1,1  H2

Figure 2-1: Ample cone of the Kontsevich space Mo,o(G(2, 4), 2).

" For D E (H1 ,1 , H2), #D contracts the locus of double covers of a line (forgetting
the map and remembering the double line only), giving the Chow component
C. OH1,1 itself further contracts the locus of maps whose image is in 0-2, giving
the contracted Chow component E2 (and similarly for OH).

" For D E (11,1, T), OD identifies all pairs of lines contained in a given pair of
planes in E1,1, and similarly for (H 2, T). #r contracts the entire boundary by
identifying all reducible curves whose node is the same point in G(2,4).

As noted above, the structure of rational scrolls (and thus of rational curves in
Grassmannians) is more complicated if n < k + d, as it does in the projective case for
n < d + 1. However, if n > k + d, we again define Ddeg to be the set of degenerate
maps (whose image spans a space of lower than expected dimension) and Dnb to be
either

" the locus of maps such that the pullback of the universal subbundle on G(k, n)
is not perfectly balanced, if kjd, or

" the locus of maps such that the span of the minimal subscroll of the image
intersects a fixed codimension qr plane, if k { d, where q = [ and r = qk - d.

Remark. Explicitly, if kid and q = (, D,,b will be the image of

Mo,o(F(k - 1, k, n), (d - q - 1, d)) -+ Mo,o(G(k, n), d) (2.7)

where F(k-1, k, n) is the flag variety of (k-1)-dimensional subspaces of k-dimensional
subspaces of C", and the morphism to Mo,o(G(k, n), d) forgets the first flag. Note
that maps from Pl to F(k - 1, k, n) have two degrees, as H2(F(k - 1, k, n)) a Z E Z:
these are the degrees of the induced maps to G(k - 1, n) and G(k, n). Restricting
to the open locus of maps with irreducible source, Dunb is the sublocus of maps such
that the pullback K of the universal subbundle has a subbundle of rank k - 1 and
degree -d + q + 1. Equivalently, K has a component of degree -q - 1, which cannot
happen if it splits evenly.

If k { d, K never splits evenly, but does generically have a perfectly balanced sub-
bundle of rank r and degree (q - 1)r, corresponding to the directrix of the associated



scroll. Requiring the span of this subscroll to intersect a fixed space of codimension
qr gives a divisor D on Mo,o(G(r, n), r(q -1)). We then define Dunb = 7r2 *wtD, where
7i and 7r2 are the projections in the diagram

Mo,o(F(r, k, n), (r(q - 1), d))

I2(2.8)
Mo,o (G(r, n), r(q - 1)) M0,0(G(k, n), d)

Again, F(r, k, n) denotes the flag variety of r-dimensional subspaces of k-dimensional
subspaces of V, and the two morphisms forget the first and second flag respectively.
Note that, on the open locus of maps with irreducible source, Dunb is precisely as
described above.

Example. For Mo,O(G(2,4),2), Ddeg is the set of maps whose associated scroll is a
plane in P, while Dunb is the set of maps whose associated scroll is a quadric cone. For
Mo,o (G(2, 5), 3), Ddeg is the set of maps whose associated scroll spans a p3 rather than
a P4, while Dunb is generically the set of maps where the directrix of the associated
scroll (the join of a line and a conic) intersects a given codimension 2 subspace.

Theorem 8 ([11]). If n > k + d, the effective cone is generated by Ddeg, Dn, and

Example. For Mo,o(G(2, 4), 2), the effective cone 2-2 is also triangular, spanned by
Ddeg, Dunb, and A. In [3], the region between the effective cone and the ample cone
is decomposed into seven chambers generated by the given divisors and one non-
extremal effective divisor P = H 1,1 + H2 - -T. Geometrically, P is (the closure of)
the locus of maps whose associated conic in P' (via the Plucker embedding) spans a
plane intersecting a fixed P2 c P'. One such chamber is the triangular cone spanned
by P, H 1,1, and H2:

" Divisors in the interior induce rational maps which flip the Kontsevich space to
X over the Chow component C.

" For D E (P, H1,1), #D flips the space to X 2 over C2, and analogously for (P, H2).

" #p itself contracts the Hilbert scheme to G(3, 6).

For the remaining chambers, the stable base loci of divisors in the interior will match
those of the adjacent extremal rays of the effective cone, although Chen and Coskun
do not construct the associated models explicitly.

Remark. As d increases, the complexity grows rapidly: for Mo,o(G(2, 5), 3), Chen
and Coskun [3] find fifteen chambers generated by four additional effective divisors,
while for Mo, 0(G(3, 6), 3), they find twenty-two chambers generated by another four
divisors. Although the cone decomposition stabilizes for higher k and n > k + d, the
increasing number of extremal rays makes an explicit description intractable.



Dunb Ddeg

Figure 2-2: Mori chamber decomposition of the Kontsevich space Moo(G(2, 4),2).

2.4 Quot Schemes

The Quot scheme compactification of maps to a Grassmannian is not as straightfor-
ward as for maps the projective case, so we recall the general definition.

Definition 4. Given a Noetherian scheme S, a projective scheme X over S, and a
coherent sheaf T on X, the Quot functor Quot(Y/X/S) : S - ec --+ ets assigns to
any S-scheme T the set of quotients TT -* OT (,T the pullback of T to T) which are
quasi-coherent and flat over T, with two quotients T - Or and T -w 3 equivalent
if there is an isomorphism 3T ~ ' commuting with the quotient maps.

Equivalently, one can define the functor to assign to T the set of short exact
sequences 0 -+ XT --+ T -+ OT -+ 0, with equivalence based on isomorphisms
making the following diagram commute:

0 > XT > J3r 3 0

I =1 I
0 Xr TTi 3'r 0

Theorem 9. The functor Quot(3T/X/S) is representable by a locally Noetherian
scheme Quot(Y/X/S), which is a countable union of projective schemes Quot(|T/X/S)
parametrizing quotients with fixed Hilbert polynomial (b.

Let Q denote the Quot scheme of sheaf quotients on, -- J over IP'1 with Hilbert
polynomial X(J(m)) = (m + 1)j + d, modulo automorphism of kernels: again, Q



equivalently parametrizes short exact sequences 0 -+ K -+ 0' -+ J -+ 0, with
equivalence based on isomorphisms making the following diagram commute:

0 > K > ("1 > J - 0

(2.9)
0 >K' >n ----- ), J'y 0

The Quot scheme Q is a fine moduli space, equipped with a universal sequence

0 -+' -_+ o" __-> -+ 0 (2.10)

over P' x Q such that the restriction to a point in Q is the associated sequence.
Moreover, Homd(P', G(k, n)) is an open subscheme of Q, and the largest such that
this restriction is a sequence of vector bundles. On its boundary, K remains locally
free (with rank k = n - j and degree -d), but the inclusion into o" becomes one of
sheaves: that is, the induced map on vector spaces drops rank at certain points of
Pi, on which the cokernel J acquires torsion. As K is always locally free, we often
consider Q to parameterize sheaf inclusions K --+ on rather than quotients. Since
K decomposes as a sum of line bundles, this allows us to describe points of the Quot
scheme explicitly in terms of matrices of polynomials.

Example. For k = j = 2, n = 4 (i.e. G(2, 4)), we find that:

d = 1 the map K = 0 D 0(-1) -> 0,4 is determined by a 4 by 2 matrix with one
column of constants (the inclusion 0 _- 0*4) and one column of homogeneous
linear forms (the inclusion 0(-1) --+ 019). The rank of such a matrix is at a
general point in P1 is 2: however, if all the 2 by 2 minors (homogeneous linear
forms) have a common zero, the rank of the matrix drops at the associated point
p E P'. In turn, one finds that J ( D 0 D O , where O, is the skyscraper
sheaf at p.

d = 2 and K = 0(-1) D 0(-1) or 0 ED 0(-2), the 2 by 2 minors of the inclusion are
homogeneous quadratic polynomials which may have a single common zero at p
and separate zeroes elsewhere, two common zeroes at p and q, or double common
zeroes at p. The associated quotient sheaves J would then be (9 ED 0(1) E 9,,
(9 ED (9 p 9q, and 0 ( (9 @ (9.

In general, one will obtain quotient sheaves J 0 (b) D 0 (b') ED E where b < a, b' <
d - a, and E is a sum of d - b - b' skyscraper sheaves Op. See [21] for a more detailed
exposition.



2.4.1 Construction of the Quot Scheme

Although the global construction of the Quot scheme is complicated in general, in our
case (following [24]) we describe Q as a smooth quotient of an open subset of affine
space. Let 7rpi, ro be the two projections of P1 x Q, and set

am = rQ*(a 0 7r1 0(m - 1)) (2.11)

Since am is locally free of rank mj + d for m > 0, there is an associated principal
GL(mj + d)-bundle Xm equipped with a projection pm : Xm -* Q (via free quotient
by GL(mj + d)) such that there is a unique isomorphism p mam S 0 mj+d on Xm.
Remark. Xm is analogous to the topological frame bundle associated to a vector
bundle. More generally, for E a rank r locally free sheaf over a scheme S, let
X = P(Hom(Or, E)) -+ S be the projective bundle associated to the sheaf of
homomorphisms from or. It is universal with respect to the induced morphism

(r -+ r* (E), and there is an open locus X C X over which ( is an isomorphism.
X is a principal GL(r)-bundle over S, and 7rlx is smooth with connected fibers of
dimension r2 . If S is nonsingular, the induced morphism of Chow rings is surjective,
with kernel generated by the Chern classes of E (roughly speaking, because the Chern
classes measure the failure of E to be already trivial on S).

Set X = X 0 xQ X 1, and let p: X -- Q be the associated projection:

Theorem 10 ([24]). X is an open subvariety of affine space.

Proof. Let Y be the subvariety of the space of pairs of maps

Hom(O(91(-1), Ojd) x Hom(O 1 , (id) (2.12)

(where (9i ( 0 Cd (fd 1 Civ') such that first map is injective and the
second is surjective onto the cokernel of the first map (both closed conditions). As
this cokernel is flat with rank j and degree d, we obtain an induced map Y -+ Q such
that the pullback of 30 and 31 are trivial. Thus, Y -> Q factors uniquely through X.

Now, the diagonal embedding P1 x X - (P 1 x X) xx (P 1 x X) has an associated
short exact sequence

0 -+ r*OPixx(-1) *0 ir~opixx(-1) -+ 9 (PxX)xx(P'xX) OPIXX -* 0 (2.13)

where ri, 7r2 are the two projections. If T is a coherent sheaf on P1 x X with
R17rx,(,(-1)) = 0, tensoring by r* and applying r2, gives

0 -+ 7r2,(7r*,(-1)) (-1) -- > r2,7r*, -> T -> 0 (2.14)

By the projection formula, 7r2 ,7r*T = 7rwx7rxT (and similarly for Y(-1)). Applying
this to T = (1 x p)*a and noting that 'rx*,7 p*a1 (j Jrx, p,
we obtain a diagram

0 -+k7r* (-1) -+r*0i - (1 x p)*a -+ 0 (2.15)



Of course, there is a natural map 0',x ir_ 0" -** (1 x p)*a, which lifts to a unique

map to Ir* o+j: thus, X -+ Q factors uniquely through Y. The maps constructed
are clearly inverses, implying the claim. l

Corollary 2 ([24]). Q is a unirational, smooth, projective variety of dimension nd +
jk, with Chow ring generated by the Chern classes of 0_1 and 30.

Proof. Since X has dimension

2d(d + j) + n(d + j) = nd + jk + 2d2 +j 2 + 2dj (2.16)

and the projection X -- Q has relative dimension d2 + (j + d) 2, we obtain the given
dimension calculation. As noted in the above remark, there is a surjection A*(Q) -
A* (X) ' Z with kernel given by the Chern classes of a0 and 0_1, giving the desired
statement about the Chow ring. E

Remark. We can extend the action of GL(d) x GL(j + d) to all of Y, and thus regard
Q as a GIT quotient of Y directly. Indeed, the (semi-)stable locus of the action with
equal weighting is precisely X: for (f, g) E Y and (#, P) E GL(d) x GL(j + d), the
action is given by

(f, g) i-+ (V- 1 o f o0 #,- 1 o g). (2.17)

This precisely preserves the induced quotient 0" -+ Coker (f) up to automorphism
of the kernel. One-parameter subgroups of this action have fixed points when f is
not injective (via an automorphism of Ker (f) C 096) and when g is not surjective

onto the cokernel of f (via an automorphism of Coker (f) n Coker (g) c 0 ).

Corollary 3. Pic(Q) is generated by c1 (&) and c1(am+1) for any integer m > 0.

Proof. The statement for m = 0 follows from the theorem (c1 (a0) and c1 (01) are the
only Chern classes in degree one), while the general version follows from the pullback
of the sequence 0 -+ (9(-2) -+ (92(-1) -> 0 -* 0 from P1 to Q x P1. El

Remark. There are two cases in which these divisors are actually proportional, i.e.
Q has Picard number 1. If j = n - 1, Q compactifies maps into P"- 1, giving us
the projective space p(d+1)"-1 discussed in the last chapter. If d = 0, we obtain the
ordinary Grassmannian G(k, n). Note that, unlike with the Grassmannian, there is a
lack of symmetry between j and k. Specifically, if j = 1 and k = n - 1, the associated
Quot scheme is not a projective space: the generic quotient ( _-+ J 2 0(d) does
give a point in p(d+1)n-1 by duality, but (as we will see below) there will be a locus
of codimension one on which J has torsion. Contracting this locus produces the
aforementioned projective space, exhibiting the Quot scheme as a blowup.

Going forward, we assume 2 < j, k < n - 2.



2.4.2 Stratification of the Boundary

We now give a stratification of the boundary locus of the Quot scheme, i.e. the
points for which the corresponding quotient J has torsion. Let Q(e) denote the Quot
scheme parametrizing quotients of Oi with Hilbert polynomial (m + 1)j + d - e
(thus compactifying Homa-e(P', G(k, n))). Observe that, on the locus in Q where the
corresponding J has rank e-torsion at some point p, there is a projection to Q(e) which
quotients out this torsion (leaving J to have degree d - e). Our goal is to construct
the specified locus as a bundle over Qe.

Now, as with Q, Q(e) possess an universal family

0 -+ X(e) _ (9n g(e) - 0 (2.18)

Let 9 = G(X(e), e) denote the Grassmann bundle of e-dimensional quotients of X(e).
9 is equipped with a structure map p to P1 x Q(e) as well as a universal quotient
p*X(e) - Y. On P1 x 9, define R to be the kernel of the composition

(1 x p)*X(e) -_ p*x(e)| ->rg7| (2.19)

where 5 = (1 x p)*(A x Q(e)) is the preimage of the diagonal in P1 x P1 x Q(e) and
7rg : P1 x 9 -+ 9 is the second projection. Since A intersects each fiber of ?r at a
single point, X is a vector bundle of rank k and degree -d, with an inclusion in On9g
induced by the one in (1 x p)*X(e). Thus, we obtain a map a .9 -+ .

Remark. Pointwise, this map works as follows: x E 9 corresponds to the pair of a
p E P1 and a rank e quotient F , Ce of E, for E a subsheaf of (9n with rank k and
degree -d + e. That is, E, -** F is a fiber of the tautological quotient on 9. The
kernel constructed above is that of the induced map E -E - * F.

Theorem 11 ([1]). a surjects onto the locus of points whose associated J has rank
at least j + e (i.e. rank e-torsion) at a point p E P1, and is an embedding on the open
locus p-1(P1 x Homdae(P, G(k, n))).

Proof. For the first assertion, given a point x E Q whose associated quotient J has
e-torsion at some p E P1, let K be the associated subsheaf. Then 0" -- Kv is not
surjective, and its cokernel T is torsion of rank at least e at p. Let Ev be the cokernel
of Kv -, T(p) e Ce: x is the image of the induced point (p, Coker (K -+ E)) E P1 x 9.

For the second assertion, let Z be the image of p-'(Pl x Homde(P', G(k, n)))
under a: the restriction on, --+ X' to Z has torsion cokernel 7 with rank e on its
support. Letting EV be the kernel of Xv -+ 7, E together with the cokernel of X -* E

(a rank e quotient of E) gives our global inverse by the universal property of 9. E

Corollary 4. The locus in Q whose associated J has torsion is codimension n - k.

Proof. Q) has dimension n(d - 1) + k(n - k), while G(X(l), 1) has k - 1-dimensional
fibers over P' x Q(d-1): thus, its total space has dimension nd + k(n - k) - n + k. O



2.4.3 Generators for the Ample Cone

We denote the complement of this locus by Q0 c Q: by the corollary, we can perform
our divisor constructions on this locus so long as k, n - k > 2. The universal property
of the Grassmannian (as the classifying space for vector bundles) gives an evaluation
morphism ev : P' x Q' -+ G(k, n), which gives an alternate identification of Q0 as
Homd(P', G(k, n)). Moveover, the universal short exact sequence 0 -+ S -+ C"

Q -+ 0 on the Grassmannian pulls back to 2.10 on P x Q0.
Motivated by the construction of Schubert cycles on the Grassmannian, we define

the following divisors on the locus Q0:

" D1 is set of maps f E Q0 such that, for a fixed point pt E PI, f(p) (as a k-plane
in V) intersects Fk nontrivially.

" D2 is set of maps f E Q0 such that, for some point p E P', f(p) intersects Fk+1
nontrivially.

" D1,1 is set of maps f E Q0 such that, for some point p E P', f(p) intersects
Fk-1 in dimension at least 2.

Using the identification of Schubert cells and Chern classes on the Grassmannian, we
obtain:

Theorem 12. [D1] = -ro,(c1(0)-h)|Io, where h = 7r;,c1(0 (1)), while [D2] = 7o,(C2(3))|O
and [D,1] = 7r,(c2(X))IQo.

We thus can complete our divisors to all of Q as Chern classes (see [20]).
Now, A*(Pl x Q) c A*(Q)[h]/h 2. Writing a = #3+7-h E Ai(P 1 x Q) for 3 E Ai(Q)

and 7 E A'- 1 (Q), one sees that

FQ*(a) = ,7rQ*(a - h) = 3 (2.20)

In particular, c,(a) = [D1]+dh (3 generically has degree d on Pl) and c2(3) = 3+[D 2]h
for some 3 E A2 (Q). Applying Grothendieck-Riemann-Roch, we find that

ch(3m) = 7ro,(ch(3 & 0 (m - 1))Td(7rQ)) = 7rw,(ch(3)ch(0 (m - 1))(1 + h))

= 7ro, rk (3) + c1(8) + 1 (3)2 - C2(3) + --- (1 + mh)

= wrQ, + mjh + ci(3) + mci() - h + c1(3)2 C2(0) ±) (2.21)

= [mj + d]+ [m[D1] + d[D1] - [D2]]+

degree 0 degree 1

Thus, Om has rank mj + d and first Chern class

(m + d)[D1 ] - [D2] = [D,1] - (d - m)[Di], (2.22)



since

1 1
0 = c1(X)2 - c2(X) + Ic1(0)2 - C2(0)

(2 2 (.3
= C1(a)2 - c 2 (X) - C2 (3) (2.23)

0 = 2d[D1] - [D 1,1] - [D 2]

Next, returning to our sequence 2.10, twisting by 0(m - 1), and pushing forward,
we obtain the exact sequence

0 -+ roQ,(X r*1 0(m - 1)) -+ (9(m - 1) (2.24)
R'ra,(X 97r*1 0(m - 1)) - 0

For m > d, the latter term is zero (on P1, the degree is > -1 everywhere), and we
obtain a morphism ym from Q to the Grassmannian G(mk - d, mn) by taking global
sections.

Proposition 3. For m > d + 1, y : Q -+ G(mk - d, mn) is an embedding.

Proof. 7y'm maps a closed point in Q corresponding to a sequence

0 --+ K P 0, -+- J -+ 0, H'(Q, K(m - 1)) = 0 (2.25)

to the point in the Grassmannian given by

H0 (Q, K(m - 1)) c H0 (Q, o"(m - 1)) (2.26)

For m > d, H 1 (Q, K(m - 1)) = 0 everywhere, and K(m - 1) is generated by global
sections and the map is defined globally. Furthermore, for m > d, K(m - 1) itself is
the image of the map

H0 (Q, K(m - 1)) 0 (9,1 -+ O9 (M - 1) (2.27)

Thus, we can reconstruct K from its image in the Grassmannian, and Yn is injective
on points. Finally, the differential of ym is given by

Hom1(K, J) -+ Hom(H(Q, K(m - 1)), H(Q, J(m - 1))) (2.28)

which is injective for the same reason. 5

Note that, for m = d, K(m - 1) still has vanishing H 1 , so -y, will define a
morphism: it contracts the locus on which K splits as 0 (-d) E 0*k-1 (the "most
unbalanced locus"), so that

K(m - 1) c 0(-1) E (9(d - 1)*k-1 (2.29)



for m = d. Moreover, pulling back the ample class on the Grassmannian (the first
Chern class of the universal quotient), gives the class

c1(3m) = [D 1,1] - (d - m)[Di] (2.30)

Thus, c1 (0d) = [D1,1 ] is a semi-ample divisor, while cl(ad+1) = [D1] + [D1,1] is ample

(as are c1(0m) for all m > d).

Proposition 4. [D1] is a semi-ample divisor.

Proof. We generalize the construction of the Plucker embedding to the Quot scheme
(specializing [231): taking the kth exterior power of X --+ VoQ twisting by d, and
pushing forward under 7r gives an inclusion

k

A k " H0 (Oi (d)) -' d+1) (2.31)

This induces a morphism - P(d+l-1 such that the pullback of the hyperplane
class is c1 (L): it is an isomorphism on the open locus Q0, but a contraction on the
boundary (thus, L is not ample). Since

1 + c1(Z ) = ch(Z) = 7ra,(ch(A kX(d))Td(7rQ)) = ircj,((1 + cC(X))(1 + dh)(1 + h))

= wr,(1 + cC(X) + (d + 1)h + (d + 1)c(X)h)

degree one degree two

(2.32)

c1 (Z) is proportional to [Di] and thus [D1 ] is semi-ample. 0

Since the Quot scheme in question has Picard number two, these two semi-ample
divisors must generate the ample cone.

There is one more natural operation on the Grassmannian that can be extended
to the Quot scheme, namely the duality between G(k, n) and G(n - k, n). Unlike in

the degree zero case, given an exact sequence of sheaves

0 --> K -- o - j -+ 0 (2.33)

over Pl with J not necessarily locally free, taking duals gives

0 -+ Jv - nv -+ Kv -+ 3 = Ext1 (J, 0) (2.34)

where Jv and Kv are now both locally free but the latter object is (non-canonically)
isomorphic to the torsion part of J. Thus, we find that dualizing gives a birational
map which is an isomorphism on Q0 , and flips the boundary Q -. Q0 to that of the dual
Quot scheme. This gives the fundamental asymmetry of the quasi-map compactifica-
tion: for instance, the divisor [D2] will be semi-ample on the dual Quot scheme, but
has the boundary as its base locus on the original one.



2.4.4 Generators for the Effective Cone

Following the construction of generators for the effective cone in the Kontsevich space,
we separate the cases where kId and k t d:

Proposition 5. If kid, there is an open locus Q* c Q where K is perfectly balanced,
i.e. K 2 0(-q)k for q = f: its complement, where K is unbalanced, is a divisor E.

Proof. This follows directly from our stated formula for the dimension of the space
of associated scrolls, but we give the proof explicitly. First, regardless of the decom-
position of K, dim Hom (K, 0") = n(d + k): if K _ ((-aj) where E ai = d,

dim Hom (K, o") = dim Hom (0(-ai), (") = n(ai + 1) = n(d + k). (2.35)

Q0 is realized as the open locus of injective homomorphisms modulo automorphisms of
K: if K is balanced, Aut(K) has dimension k 2 (End(0(-q)k' (-q)k) = Hom(k0, 9 k)
is the space of nonsingular k x k matrices). However, the generic unbalanced K
decomposes as 0(-q - 1) (D 0(-q)k- 2 E 0(-q + 1), whose space of automorphisms is

dim Aut(K) = dim Aut(((-q - 1)) + dim Aut(((-q)k-2 )

± dim Aut(0(-q + 1)) + dim Hom(0(-q - 1), (D(-q)k- 2 )

± dim Hom(0 (-q - 1), 0(-q + 1)) + dim Hom((9(-q)k-2, (-q + 1))

since dim Hom((0(a), 0(b)) = 0 if b < a

= 1+ (k - 2)2 + 1 + 2(k - 2) + 3 + 2(k - 2) = k2 + 1
(2.36)

Making K more unbalanced will only increase the dimension of the space of auto-
morphisms, and thus the codimension of the locus in Q. Thus, the locus where K is
balanced is open, and its complement has codimension one. 0

We can obtain an alternate description of E by generalizing the morphisms Y,
defined above. Although 7.m is not a morphism on Q for m < d, it will be one on Q'
for m > q: if K is balanced, K(q - 1) = 0(-1)k has vanishing H' (and H'). E is
precisely the indeterminacy locus of yq, and thus has class cI(3q) = [D1,1]-(d-q)[D1].

On the other hand, if k { d, K generically splits as

K c (9(-q)k-r E ((-q + I)' (2.37)

where q = 1 and r = kq - d. We call this locus the balanced locus, following
our notation for scrolls, and denote it Q' as well. Again, the map yq is a morphism
on the balanced locus, giving a fiber contraction to the locus of the Grassmannian
G(r, nq) parametrizing maps (T c' (9'(q - 1). As in the alternate construction
of [D1,1], pulling back the ample divisor o-1 on the Grassmannian gives a divisor
cI(8q) = [D1,1] - (d - q)[D1], which we again denote E.



Remark. This divisor is related to the Dnb defined by Coskun and Starr when k { d.
Indeed, the map 0' ---+ 0(q - 1) is defined by the same polynomials as the minimal
subscroll 0(-q + 1)' --> 0', although the former realizes it as a plane in a larger
projective space. Thus, the intersection condition on the subscroll induces a divisor
which is a multiple of our divisor E.

Next, repeating this construction on the dual Quot scheme gives an analogous

divisor E = c1(X') = [D2] - (d - p) [D1], p = [41: this is the divisor of unbalanced

0v if kId, and the pullback of the ample divisor on G(s, np) if k { d (s = kp - d).

Theorem 13. E and E are the extremal rays of the effective cone of divisors.

Proof. Note that if C, 0 are moving curves in Q (i.e. numerically equivalent curves
pass through general points) such that

C -E = 0,C -5 >0, E > 0, C - E= 0 (2.38)

then both E and E must be extremal rays of the effective cone: since Q has Picard
number two, they are the only ones. By our computation of the classes of E and E,
it suffices to find curves C and C such that

C - [D1 ] = C - [D1 ] = 1, C - [D1,1] = d - q, O - [D2] = d - p (2.39)

as such curves will satisfy C - E = C - E = 0 and

C - = C - ([D2] - (d - p)[Di]) = C - (2d[D 1] - [D1,1] - (d - p)[Di)

=p+d-q>0 p + q(2.40)
O E = C- ([D1,1 ] - (d - q)[Di]) = C (2d[Di] - [D2] - (d - q)[Di])

=q+d-p>0

We sketch the construction C (C is obtained similarly): see the following sub-
section for a more explicit description. A general morphism f E Q00 corresponds to
an inclusion K 2 0(-q) D M C 0" with M balanced. A directrix of the associated
scroll (WLOG, induced by the restriction 0(-q) -- + 04) is a degree q rational curve
P -+ P"1. We then extend this curve to a general degree one pencil of degree q
rational curves. Adding the subscroll corresponding to M at each fiber gives a one-
parameter family of balanced scrolls of degree d (i.e. a curve in Q) such that one
directrix moves and the rest of the scroll (which has degree d - q) remains fixed.

Now, intersecting a curve with [D1] counts the number of fibers of the associated
family of scrolls such that, in each such scroll, the preimage of a fixed p E P1 intersects
a fixed codimension k-plane. In our case, this is the intersection of a general degree
one family of (k - 1)-planes and a codimension k-plane, which is one. Intersection
with [D1,1] counts the number of fibers of the family of scrolls such that the preimage
of some point p E PI intersects a codimension (k + 1)-plane: in our case, this depends
only on the fixed subscroll, which has degree d - q. 5



2.4.5 Stable Base Locus Decomposition of the Effective Cone

Recall that the stable base locus of a divisor D is the set-theoretic intersection of
the base (i.e. indeterminacy) loci of the linear systems JmDj for m > 0. We would
like to decompose our effective cone into chambers such that every divisor within a
chamber has the same stable base locus. We begin by constructing more effective
divisors between our ample and effective cones. Repeating the construction above,
we obtain a morphism 7m from Q" to the Grassmannian G(mk - d, mn) for m > q,
which is an embedding for m > q. Thus, we can similarly pull back the ample class
from the Grassmannian to obtain an effective divisor Em = c1 (3m) for q < m < d,
and compute its class to be [D1,1 ] - (d - m)[D1 ] on Q'. We further define Bm C Q
to the closure of the locus where K r (9(-m)E terms of degree > -m.

Example. For n = 4 and k = j = 2 (compactifying maps to G(2, 4)), the locally free
sheaf K associated to a general closed point splits as (9(-9) e ( (-D) if d is even,
and 0 (-d) E 0 (-4-1) otherwise.

" In the former case, twisting K --> 04 by d and taking global sections gives an
open embedding Q --+ G (2,4 (4 + 1)) (a space of dimension 2 (4 (A + 1) - 2) =

4d + 4 = dim Q): this extends to the locus of points with corresponding
K r 0 (- - 1) E C (-4 + 1), which gets mapped to a locus of dimension
4 - 1 = 2d - 1. Twisting by d - 1, however, leaves one with K (j - 1) 2
0((-1) D 0(-1), which induces the trivial map.

" In the latter case, twisting by d. and taking global sections gives a embedding
0O '-+ G (3,4 (4+1 + 1)), a space of dimension 6d + 3, which again extends to
the locus of points with K 0 (- d - 1) (DO (-9d + 1): this "unbalanced"
locus is contracted to a space of dimension 2d - 3. Twisting by one less gives a
projection down to P2d+'.

For higher m, one obtains maps from larger domains into other Grassmanians.

Proposition 6. For m > q, Bm has codimension km - k - d + 1.

Proof. This follows directly from our formula for the dimension of the space of asso-
ciated scrolls, but we again give the proof for bundles explicitly. The codimension of
Bm is determined by the minimal dimension of the automorphisms of the associated
K. The generic locus on which the lowest degree term of K is 0(-m) is that where
the remaining terms (which form a locally free sheaf of rank k - 1 and degree m - d)
are as balanced as possible. If k - 1|d - m, the remaining terms all have the same
degree qm = d , and the space of automorphisms is

dim Aut (K) = dim Aut (0(-m)) + dim Aut (0(-q,)k-1)

+ dim Hom (((-m), ((-qm)-1)

=1 + (k - 1)2 + (k - 1)(-qm + m + 1) (2.41)

=k 2 - (k - 1)q + (k - 1)(m - 1)
=k 2- d+km- k+1I



dim B, = n(d + k) - k2 +d-km+k- 1 =dim Q- (km- k-d+1) (2.42)

as desired. If k - 1 { d - m, set

qm= [ , rm = (k - 1)qm - d+m. (2.43)k - 1

Then

K 0 (-m) D 0(-qm) ® 0(-q) @ 0(-qm + 1) D 0 (-qm + 1) (2.44)

k-rm-1 rm

and the space of automorphisms is

dim Aut (K) =dim Aut (0 (-m))

+ dim Aut (0(-qm)k-rm-1 D O(-qm + 1)r)

+ dim Hom (0(-m), (9(-qm)k-rm-1)

+ dim Hom (0(-m), 0((-qm + 1)rm) (2.45)
=1 + (k - 1)2 + (k - rm - 1)(-qm +m± 1) (

+ rm(-qm + m + 2)

=k2 - q(k -1)+rm+km -m- k+1

= k2 - d + km - k + 1

giving the same dimension count.

Theorem 14. The stable base locus of Em is Bm+1 (where Bd+1 = 0), and defines a

morphism on its complement in Q. Furthermore, this morphism is a contraction on
Bm - Bm_1, and an embedding on the complement of Bm.

Proof. Per the construction above, the map associated to Em takes a point in the
Quot scheme associated to a sequence 0 -+ K -+ (0% -, J -+ 0, twists by m - 1, and

takes global sections to get a point in G(mk - d, mn). Given a general point in Bm+1,
the associated sequence will have K '- 0(-m - 1) o K': thus, twisting by m - 1 and

taking global sections will not give a short exact sequence since

HG((-2) D K'(m - 1)) # 0 (2.46)

Outside this locus, no line bundle in the decomposition of K will have degree < -m,
so H 1(K) vanishes, implying that the morphism is well-defined. Next, given a general
point in Bm, the associated sequence will have K c 0(-m)@K': twisting by m-I and
taking global sections will ignore the contribution of 0(-m) - (9n, i.e. identifying
all inclusions K -( 0' with the same restriction K' -- + 0". Finally, outside Bm, K

has no components of degree < -m +1, so the associated twist is globally generated
and we get the desired embedding. E



We can demonstrate the same result numerically by constructing curves Cm whose
class covers the loci Bin: these curves will allow us to extend this result to the whole
effective cone. Let # : P' -+ G(k - 1, n) be a fixed generic morphism of degree d - m,
with M - 0' the pullback of the universal subbundle, and let ?P1, #2 : P1 -> G(1, n)
be fixed generic morphisms of degree m. Interpolating between the maps V#, and V)2

induces a morphism 4': P1 x PI' -> G(1, n) ~ P"-1 of bi-degree (1, m) such that

0((a: b), (c: d)) = a#1(c: d) + b/ 2 (c : d) (2.47)

Finally, joining with # via the product map G(1,n) x G(k - 1,n) -+ G(k,n), we
obtain a morphism P1 x PI' -- G(k, n) of bi-degree (d, 1), thus giving a curve Cm C
Mord(Pl, G(k, n)) = Q0.

Remark. Note that the pullback of the universal subbundle restricted to {(a : b)} x P1
is 0 (-m) D M, with the inclusion in on varying over (a : b) only in the map from the
first term. Since the morphisms were chosen generically, the class of Cm will cover an
open locus of Bm and thus all of it.

Proposition 7. Cm - [D1,1] = d - m and Cm - [D1] = 1, implying that Cm - [Em] = 0.

Proof. Recalling our construction of geometric divisor classes (and changing to pro-
jective language), [D1] |o is the space of maps such that the image of a fixed point in
P1 (as a (k - 1)-plane in pn1) intersects a fixed codimenison k-plane Fk. By universal
property, the curve Cm induces a family Um C P"- 1 over P1 x P1 such that the fiber
over (a : b) x {(c : d)} is the projective (k - 1)-plane Span{#'(a : b, c : d), 0(c : d)}.
Fixing (c : d) and allowing (a : b) to vary gives a degree 1 family of (k - 1)-planes,
which generically intersects a codimension k plane once. Thus Cm - [D1] = 1.

Similarly, [D1,1] o is the space of maps such that the image of some point p
intersects a fixed codimension (k + 1)-plane Fk+1 nontrivially. We need to show that

{(a: b) E P1 I Span(4'(a : b, c: d),#(c : d)) n Fk+1 # 0 for some (c: d) E P1} (2.48)

(finite by dimension count) is generically of size d - m. Because the subscroll induced
by # is fixed over (a : b) E P1, we can perform our intersection computations on the
degeneration where the subscroll becomes a union of d - m general k - 1-planes (i.e.
scrolls of degree 1). Restricting to each such (k - 1)-plane (WLOG, the interpolation
of two (k - 2)-planes A1, A2), we thus reduce to showing that generically

{(a: b) E P1 I Span(V'(a: b, c: d), cA1 + dA2) n Fk+1 5 0 for some (c: d) E P 1}
(2.49)

is generically of size one. But this family has degree 1 over (a : b), and since we
are only counting values of (a, b) over which intersections exist (not the number of
intersection points when varying (c : d)), we have the result. 0

Theorem 15. The stable base locus of any divisor in the chamber between Em and
Em+1 is Bm+1.



Proof. Since any divisor in that chamber is a positive linear combination of Em and
the semi-ample divisor [D1,1], its stable base locus must be contained within that of
Em, i.e. Bm+1. Now, write such a divisor as Em + e[Di] for e E (0, 1): intersecting
with the class of the curve Cm+1 gives -1+e < 0, so Cm+1 must be contained within
the base locus of the divisor. But Cm+1 covers Bm+1, so we are done. 0

We can repeat our construction of divisors on the dual Quot scheme: O( _,
X' is now a map to a locally free rank k, degree d bundle, and we can define twisted
projections XJ = r,, (XV 0 irg 0(m - 1)) of rank mk + d. We compute their first
Chern classes just as before, using the fact that

ch(Xv) = 2k - ch(X) ==> c1(Xv) = -c1(X) = c()(250)

c2 (XV) = c2(X) - C2 (7C) = C2(0)

to obtain precisely symmetric divisors Em = c1(Xv) = [D2]-(d-m)[D1] for p < m <
d, where p = F1. However, none of these divisors are semi-ample, as they all have

the boundary Q --, Q0 in their base locus. Beyond that, we can again construct loci

5m C Q0 corresponding to increasingly unbalanced Jv (or equivalently, J), as well as
curves Cm that sweep out these loci. The dimension computations are identical, as
are the intersections with the corresponding divisors.

Corollary 5. The divisors Em for q < m < d and Em for p < m < d form the
boundaries of Mori chambers in the effective cone of divisors of Q.

2.4.6 Mori Chamber Decomposition of the Effective Cone

Roughly speaking, a smooth variety is an Mori dream space if:

1. Its ample and effective cones of divisors are finitely generated.

2. The effective cone can be decomposed into a finite set of subcones (called Mori
chambers) such that, for any effective divisor D, the birational map

a

#D: X -- + XD := Proj R(X, D) = Proj ( H(X, aD) (2.51)

depends only on the Mori chamber to which it belongs.

3. Each chamber representing a small modification (rather than a divisorial or
fiber contraction) is the pre-image of the ample cone of XD under OD-

For a more explicit definition and various associated properties, see [181.

Remark. Since a small modification only changes the positivity properties of the
divisors with regards to certain curves, it does not change the combinatorial structure
of the effective cone: thus, the models XD arising from small modifications will have
the same Mori chamber decomposition, save that the ample cone will be "moved" to
a different chamber.



By the proof of the minimal model program, Fano (and log Fano) varieties are
always Mori dream spaces, so we verify when this is the case.

Proposition 8. The tangent bundle TQ to Q is 7roHom(X, J), and the anticanonical
divisor of Q has class

(n + d(2 + n))[Di] - n[D 21 = n[D1,1] - (d(n - 2) - n)[Di]. (2.52)

Proof. We first determine the tangent bundle via the diagonal embedding A : Q -
Q x Q. Let N = 7rQxQHom(7r*', 7r*8) where 7ri, 7r2 are the two projections from
Q x Q x P1 to Q x P', and 7rQxQ is the projection to Q x Q. N is locally free of rank
dim Q, and has a global section induced by the diagram

1 2 riK,2 XP2, 71*

(2.53)

0 - I' 
0 Qx-xP1 * - 0

Furthermore, the image of the diagonal embedding is the intersection of this section
with the zero section, and thus the tangent bundle on Q is A*N = rHom(X, 0).

We use Grothendieck-Riemann-Roch to compute the canonical class -c1(T):

ch(roHom(X, 0)) = 7ro,(ch(3 0 X')td(ro))

=7ro rk a + c1(a) + 1c1()2 c 2 (0) +--)

rk X + c1(O) + Ic1(3)2 c2 () + - (1 + h)
2 (2.54)

= 7FQr Jk+jkh+nc1(3)

degree one

+ nc1(O)h + (1 + n) c1(3) 2 - nc2(d)+

degree two

Thus, rk To = jk + nd and cl(TQ) = (n + d(2 + n))[Di] - n[D2]. 5

Dividing by n, we obtain the Q-divisor [D 1,1] - (d - 2 - 1)[D 1 ]. Thus:

Corollary 6. Q is Fano if (n-2)(d- 1) 2, i.e. ifd= 1 ord=2 andn=4, and
log Fano if i > q- 1.

Remark. If j = kid, then 2 = q and the canonical divisor is Eq+1: as shown above, itn
gives the first (and only) divisorial contraction, and thus Q is log Fano. Similarly, if
j = k { d, 2 = q - L E (q, q - 1), and the anticanonical divisor lives in (E,+1, E.). In
this case, there are no divisorial contractions, and again Q is log Fano. These extend
to whenever q < p, as nq - n = kq - k + jq - j < kq - k + jp - j <2d.



We have already determined a few Mori chambers explicitly for general parameters
k, n, and d.

" If D is in the interior of the ample cone, #D is an embedding.

" At the boundary of the ample cone, #[Di, 1 ] a morphism which contracts the
locus where K is maximally unbalanced (a flipping contraction unless d = 2).

" Opposingly, #[Di] contracts the J-torsion locus Q - Q0 (always a flipping con-
traction).

" Crossing the wall [D1] gives a flip #D, D E (D 2, D1 ) over torsion locus (duality
on the open locus Q0, with J-torsion replaced by Kv-torsion)

" Finally, [D2] contracts the locus on the flip where Jv is maximally unbalanced.

We explore the other chambers explicitly for n = 4, k = j = 2: we only describe the
chambers defined by the Ej, as those defined by E will be similar.

d = 1: There are no additional chambers in the effective cone, as [D1,1] itself is a fiber
contraction to P3.

d = 2: There is one additional chamber between Ei = E and E2 = [D1 ,1 ]. #E2 is a
divisorial contraction Q -+ G(2,8), as is #D for any D E (E1, E2), while #E 1

contracts Q to a point.

d = 3: There are no additional chambers, although subscripts of divisors are incre-
mented by one. #E 3 is now a flipping contraction Q -+ G(3, 12) whose image
is a P9 bundle over P': the base projectivises inclusions 1(0(1)) -+ F(4(2)),
while the fibers are inclusions r'(0) '-- F(4O(2)) modulo a PGL(2) action. This
map contracts the unbalanced locus, which appears as a P 1' bundle over p3
in the Quot scheme, onto its base. For D E (E2, E3), OD is the flip of the
unbalanced locus over this base P3, and #E 2 contracts the space (outside the
unbalanced locus) down to the base P'.

d = 4: There is one additional chamber, and the subscripts are incremented again.
OE4 = #[Di,] is a flipping contraction into G(4, 16): the balanced locus is an open
subvariety of G(2,12) via the "Veronese" embedding {F(0 2 ) _ F(04(2))} -4

{F(0 2 (1)) -- + r (04(3))}. Similarly, the locus where K r- 0(-1) ED 0(-3) is an
open subvariety of a P12 bundle over P', and is embedded by #E4 via 1P(O (D
0(2)) _+] F(04(3)). The locus where K 2( 0 E( 0(-4), a P1 bundle over p3,
is contracted to its base. This locus in the indeterminacy locus of #E 3 , which
maps the Quot scheme into G(2, 12) (isomorphically on the balanced locus,
contracting the unbalanced locus E2 to its base P). For divisors D in the
chamber (E2, E 3), #D is this same contraction, while for D E (E3, E 4 ), #D is
the flip of the most unbalanced locus. Finally, #E 2 contracts the space to a
point.



One can do a similar procedure for higher degrees d, and thereby obtain the Quot
scheme itself as a transformation of either projective space (if kid) or a projective
bundle over projective space (if k f d) in general. Constructing the flips in question
is work in progress.
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Figure 2-3: The Mori Chamber decomposition of the Quot scheme.



Chapter 3

Rational Curves in Flag Varieties

3.1 Background on Flag Varieties

A (generalized) flag variety is one whose points parametrize flags (increasing se-
quences of subspaces) in a given finite-dimensional vector space V - C". More
precisely, given a natural number n and an increasing sequence of natural numbers

k = {0 = ko < ki < - - - < kj < k,+1 = n}, (3.1)

" There is a smooth variety F(k, n) of dimension ZE=l ki(k+ 1 - ki) parametrizing
sequences of inclusions

A* =A1 c .-- c A, c V (3.2)

where Ai is a subspace of dimension ki. If ki = i for each i, this is called the
complete flag variety, and otherwise a partial flag variety.

" There is a natural map from F(k, n) to the Grassmannian G(ki, n) given by
forgetting all but the i-th piece of the flag. This induces an embedding of the
flag variety as the subvariety of the product of Grassmannians H G(ki, n) given

by the obvious incidence conditions, and thus an embedding in H Pi c
P i via the Plucker embedding.

" Like the Grassmannian, F(k, n) is a homogeneous space: it arises as the quotient
of GL(n) by a parabolic subgroup given by nonsingular block upper triangular
matrices, whose blocks have size ki - ki. 1. This simplifies to the quotient
U(n)/ H U(ki - ki_ 1) over the complex numbers: in the complete flag case, this
is the quotient of U(n) by the maximal torus T" = H U(1).

" F(k, n) is a fine moduli space for the functor which sends a scheme T to the set
of increasing sequences of the form

OcSi c--c Sic " (3.3)



where Si is a rank ki subbundle of Si+1 and 0' OT 09 V. Equivalently, it
sends T to the set of diagrams of exact sequences

0 >0 >0 - (9n- 0

0 > T---- >) >Q1 >0

(3.4)

0 >n ----- 2I 0 > 0

o -p n9 ---- (9n - 0 - ~ 0

where the Si and Qj are subbundles and quotient bundles of on of ranks ki and
n - ki respectively. It has a universal sequence of the form

0--+ 1 S F(k,) 10 (3.5)

which gives the flag variety the obvious universal property. This gives an al-
ternate construction of the morphisms to G(ki, n) for each i via the universal
property of the Grassmannian.

* Let F = {F} be a fixed complete flag of hyperplanes in C" (with codim F = i).
Given a permutation w E Sn such that w(i) < w(i+1) if i is not one of ki,..., kn,
there is an associated Schubert variety

EW = {A, E F(k, n) I dim Ai n F > #{i' < ki, w(i') > j} Vi, j}. (3.6)

EL has codimension equal to the length

#{i < j, w(i) > W(j)} (3.7)

i.e. the number of inversions. As before, there is a corresponding Schubert
cycle o-, = E'. In the case of a complete flag variety, we obtain one Schubert
variety/cycle for every permutation on n letters.

Remark. To relate this description to our earlier one for the Grassmannian, set

A = (w(k) - k, -. - , w(1) - 1). (3.8)

Since w(i) < w(i +1) for i < k, this is a decreasing sequence of integers between



n - k and 0. Furthermore,

#{i' < kw(i') > j} = #{i' < ki'+ Ak+1-i' > j} (39)
= #{i' k, k - i'+ A > j}

which equals a given value i when k - i + Ai = j, as desired.

Example. Consider the complete flag variety F((1, 2, 3), 4):

- The codimension one Schubert varieties are given by single transpositions
si = (i, i+1) for 1 < i < 3: E, is the locus of flags where dim AinF' = 1.

- The codimension two Schubert varieties are given by pairs of transpositions
W = sisj. If the pair is disjoint, i.e. Ii - j > 1, E, = E.,, n E, (the locus
of flags where dim Ai nf F = dim A, n F3 > 1) is irreducible. Otherwise,
we have either j = i - 1 or j = i +1, and E,, is the locus of flags such that
dim Aj n F+1 > 1 or dim Aj n Fi-1 > 2 respectively. These give the two
components of the proper intersection E,,n E. .

* The cohomology of the flag variety is freely generated by the Schubert cycles
defined above, as well as by the Chern classes of the Si and Qi. More precisely,
let Li be dual of the cokernel of Si - Si+1 (equivalently, the kernel of Qi --

Qi+1) for 0 < i < f, where

So = Q1+1 = 0, Se+1 = Qo = (n (3.10)

Next, let xi, i = ki + 1,... , ki+ 1 be the set of Chern roots of Li: that is, the
total Chern class of Li is c(Li) = ] i +1 (1 + xi). In particular, cj (Li) will be
the j-th symmetric polynomial in Xki+1,-.. , Xki-

Theorem 16. The cohomology of the flag variety is generated by the Chern
classes cj(Li) modulo the n symmetric polynomials in {X1, ... , Xn}, i.e. modulo

E c1 (Li),7 c1(Li c1 (Lj) - : C2 (Li), ... , cks(Li).- (3.11)
i=O osisijs i=O i=O

Schubert cycles correspond to polynomials of Chern roots as follows: given a
valid permutation w, decompose wow (where wo : i -4 n - i + 1 is the order
reversing permutation) as a minimal sequence of transpositions sil ... sik; then

n-1
Em= 3,o- -o8n -(k (3.12)

(k=1

where

P(Xi, - - - z) - P(zi,..., zi_1, Xi+1, - - -, Xn). (13
aip = X~i - xi+1 (.3



Example. For the complete flag variety, the Li are line bundles and x. =

c1(Li_.1), so the cohomology ring of F is the polynomial ring Z[x1,..., x,] mod-
ulo the symmetric functions in x1, ... , x. Using the exact sequences

0-> Li -+ Q --+ Qj+1 -+ 0, 0 -+ Si -+ Si+1 -> L' -+ 0 (3.14)

one finds by induction that the codimension one Schubert variety is

E= x = -c 1 (S) = c1(Qi) (3.15)
j~i

while the codimension two Schubert varieties are

SXaXb = c(Qi) -ci(Qj) i - jI > 1
a<i,b<j

E Xab = C2 (S) ji+ 1 (3.16)
a<b<j

SXaXb=c2(Qj) ji1
a<b<j

For a general flag variety,

ESki = c1(Qi) = -ci(S) = Zxi (3.17)
j<ki

are the codimension one Schubert varieties, while for codimension 2, we have

Esksk = Xax- = ci (Qi) - c1(Q 3 ) (3.18)
a<ki,b<k,

whenever Iki - kj I > 1, as well as

Skiki = E Xaxb = c2 ( S)
a<b<k=

Sk+xSk== c2 (Qi
a<b<ki

Note that, as in the case of the Quot scheme, c2(Si) = c1 (Qi)2 - c2(Qi).

3.2 Flags of Subscrolls

Just as curves in the Grassmannian are given by rational scrolls in P"4 , curves in
flag varieties will be chains of subscrolls.

Definition 5. A subscroll of Sai,...,ak is a scroll Sb.,...m. C Sa1,...,ak which dominates
the base P 1.



That is, over P', the inclusion is given fiberwise as an (m - 1)-plane in a (k - 1)-
plane. Alternatively, if the containing scroll is given abstractly as PK for some bundle
K, the contained scroll will be PK' for some subbundle K' C K.

Remark. Recall that the inclusion K C 0' forced the associated decomposition to
be K ~ 0 (-aj) for ak > - - - > ai > 0. If there is a subbundle K' c K with
decomposition K' ~ ( (9(-bi) for bm 2 - - b, > 0, we must further have ai 5 bi,
thereby restricting the set of possible decompositions of K. For instance, if K and
K' have ranks 2 and 1 and total degrees 4 and 1 respectively, K can never decompose
as 0(-2) 0(-2).

Proposition 9. The dimension of the space of subscrolls of the form Sb1 ,...,b. C
Sa1,..,Ik (with m < k,b i > a) is

k mm

Z max(0,bi -a+ 1) - max(0,by - b, + 1) (3.20)
i=1 j=1 j,j'=1

Now, given a map P? -> F(k, n), pulling back the universal diagram gives a
diagram of sequences

0 >---K-- >0" >9 J, 0

(3.21)
0 2 Ki+1 (9n" J+1 > 0

Let di be the degree of Ji (so deg Ki = -d): then Ki decomposes as D (9 (- ai) with
Ej ai5 = di and aij > ai+1, for 1 < i < e, 1 < j < ki. We thus obtain a nested
sequence of scrolls

3. ,...al,kj C ... C a ,,...,,,,, C P- 1  (3.22)

via the inclusions of projectivizations PK1 c - - - c PKe c P?".

Corollary 7. dim Mord(Pl, F(k, n)) = dim F(k, n) + _ di(ki+1 - ki_ 1).

In particular, if F is the complete flag variety, the space of curves has dimension

+() ± 2 E di - 3 (after modding by automorphisms of I?).

Example. Consider rational curves in F((1, 2), 4) with multidegree di, d2:

" If d, = d2 = 1, a rational curve corresponds to a plane in p3 (swept out by a
family of Pis) containing a line (with parametrization induced by that of the
former family). We thus obtain a bundle over the flag variety F((2, 3), 4) (just
as Mori(Pl, G(2, 4)) was a bundle over G(3,4) ~ P3v).

" If d, = 1, d2 = 2, a general rational curve is a smooth quadric surface P1 x P
together with a linear section of the PI which forms the base of the scroll. That
is, this space of rational curves is a P' bundle over that of degree 2 rational
curves in G(2,4).



* If di = 2, d2 = 2, a general rational curve is a smooth quadric surface together
with a degree 2 section of the base. Since the resulting conic is necessarily
planar, it generically arises as the intersection of the quadric with a plane.

Remark. Note that, if any di = 0, the space of maps (and thus any compactification)
degenerates to a simpler space or product thereof. In particular, if either di or d, are
zero, we can respectively quotient by or restrict the corresponding fixed flag and obtain
a map to a flag variety of lower dimension. If some intermediate di is zero, we obtain a
map to a product of flag varieties F((ki, ... , ki_ 1), ki) x F((ki+1 -ki, ... , ke-ki), n-ki).
Thus, we assume going forward that all degrees are strictly positive.

3.3 Chow, Hilbert, and Kontsevich Spaces

Combining the embedding of the flag variety into a product of Grassmannians and the
Plucker embedding of the Grassmannian, we can define the Chow variety of dimension
one cycles and the Hilbert scheme of dimension one subschemes as before. Since

H2 (F(k, n), Z) _ Jl H2 (G(ki, n), Z) 2 Z' (3.23)

(each piece of the flag has its own degree), these moduli spaces decompose in terms of
the multi-degree d = (di,. . . , de) of the associated cycle or subscheme. Each of these
provide a compactification of the space of maps P1 - F(k, n) with multidegree d.

Furthermore, we can construct the Kontsevich compactification Mo,o(F(k, n), d),
which will again be irreducible with finite quotient singularities. Much of the divisor
theory carries over from the Grassmannian case: we replace

" {H1 ,1, H2} with {H 1I i E {ki,..., ke},j E {ki,...,i,..., ke} U {i - 1, i + 1}},
where Hij is the divisor of maps whose image intersects E,, nontrivially; and

" {A;} with {Aj 1,...,j, I i < -}}, where Aj1,...,j, is the divisor of maps whose im-
age has one component of multidegree i1 ,... , it and one of multidegree di -
i1,7...,7 dt - it.

Theorem 17 ([22]). The Picard group of Mo,o(F(k, n), d) is generated by the Hij
and the A 1 .

Next, let T be pullback of the tangency divisor from Mo,o(G(ki, n), di) (nontrivial

if d, > 0), and Mo,o(F(k, n)d) -+ MO,di;...;d, = MO,d+---+d,//Sd1 X ... x Sd, the map
which intersects each flag with a fixed plane of opposing codimension.

Theorem 18 ([11]). The nef cone of Mo,o(F(k, n), d) is the product of the cone

generated by the 'ij and 'Ti with the image of the nef cone of MO,di; ...;d'.

Note that the dimension of the Picard group and the complexity of the nef cone
both grow quite rapidly.



3.4 Hyperquot Schemes

Unlike the Chow, Hilbert, and Kontsevich compactifications, which immediately gen-
eralized from projective space to Grassmannians to flag varieties, the Quot scheme
compactification used in the previous two chapters needs to be fundamentally mod-
ified. Recall that this latter compactification relied on the fact that maps to Grass-
mannians classify individual vector bundles with certain properties: as mentioned
above, maps to flag varieties classify increasing sequences of such bundles. Thus, we
need to modify the definition of the Quot scheme (the fundamental tool for forming
the quasi-map compactification) to allow for such sequences.

Definition 6. Given a Noetherian scheme S, a projective scheme X over S, and a
coherent sheaf T on X, the hyperquot functor

9iQuot(7/X/S) : S - &cy -+ eets (3.24)

assigns to any S-scheme T the set of flagged quotient sheaves YT -" 31 -w--- -1
(T the pullback of Y to T) which are quasi-coherent and flat over T, with two flags
of quotients TT--w 31 -w - - - -w at and TT -w 3'-* - . - --* 3' equivalent if there is are

isomorphisms 3j ~ ' commuting with the quotient maps.

Equivalently, one can define the functor to assign to T the set of sequences

0 - X1 --+ -- - --+' X Y7 --* a1 --* --- --* at -* 0 (3.25)

where Xi = Ker (T -* 3i), or diagrams of short exact sequences

0 0
f1 (3.26)

0 a---- +1- >_ 3 i3+1 >0

Equivalence in either case is based on isomorphisms Xi A X', 1 A 3' making the
obvious diagram commute.

Theorem 19 ([7]). The functor 3nuot(/X/S) is representable by a locally Noethe-
rian scheme HQuot(3|X/S), which is a countable union of projective schemes

HQuot*','(7/X/S) (3.27)

parametrizing flags of quotients with the i-th flag having fixed Hilbert polynomial Pi.



We refer to these projective schemes as hyperquot schemes: again, although they
are very complicated in general, in our case they will behave quite nicely. Specifically,
let -Q denote the hyperquot scheme of flags of sheaf quotients On -ji ... - Je
over P1 with Hilbert polynomial X(Ji(m)) = (m + 1)ji + di, modulo automorphism
of kernels: again, XQ equivalently parametrizes diagrams of short exact sequences of
the form 0 -+ Ki -+ ( -+ Ji -+ 0 up to isomorphism. As before:

" JQ is a fine moduli space, with a universal sequence

0 -+ 'K1 --- ', -+ 0, -- 0 (3.28)

over P1 x J-CQ such that the restriction to a point in YQ is the associated
sequence over P1.

" Homd(P1, F(k, n)) c -Q is the largest subscheme over which this sequence
is one of vector bundles: on the boundary, the Ki remain locally free of rank
ki = n - ji and degree -di, but their inclusions becomes ones of sheaves, and
the quotients Ji acquire torsion.

Again, the subsheaves Ki decompose as sums of line bundles ( ((-aDj) (WLOG,
aij < ai,j+1, so that aij > ai+ij), and we can describe points in the hyperquot scheme
as collections of matrices.

Example. We return to our study of rational curves in F((1, 2),4). The hyperquot
scheme is parameterized by inclusions K1 <-> K2 -+ W4: since K, ' 0(-di) and

K2 (9(-a) D ((a - d2) for some a < min([-'j, di), we find that

" K, - K2 is given by a 2 x 1 vector A with the first entry a (d, - a)-form and
the second a min(0, di - d2 + a)-form.

" K2 --+ 0' is given by a 4 x 2 matrix B with one column of a-forms and one of
(d2 - a)-forms.

As in the Grassmannian case, J2 will have torsion when B drops rank at certain
points, and can acquire torsion up to order d2. Moreover, J1 has torsion when the
vector of di-forms BA drops in rank, i.e. when the forms have a common zero. Note
that this does requires either A or B to do so as well, as either the torsion of J,
surjects onto a torsion component of J2, or it is in the kernel of J, -* J2 and thus the
cokernel of K, -> K2. Moreover, the condition that A drops rank (i.e. the two forms
sharing a common factor) occurs in codimension one on the hyperquot scheme: such
boundary divisors will occur whenever Ki has rank one less than Ki+1.



3.4.1 Construction of the Hyperquot Scheme

Theorem 20 ([17]). XQ is an irreducible, unirational, nonsingular, projective variety
of dimension dim F(k, n) + E di(ki+ 1 - ki_1).

Proof. As in the case of the regular Quot scheme, we let rpi ,7roQ be the two projec-
tions of P1 x XQ, and set

3M= 7ro,(3i 97r1(m - 1)) (3.29)

For each i, 3' is locally free of rank mji + di for m > 0, and there is an associated
principal GL(mji + di)-bundle Xm equipped with a projection

pi :Xm -*KQ (3.30)

(via free quotient by GL(mj+d)) and a unique isomorphism pg8O O mji+di on Xm.
Construct the product

X : J(Xi X 1j) (3.31)
XQ

with the induced projection p to 'Q. We again seek to express this as a subvariety
of an abstract space of maps.

Towards this, consider the affine space of 3e-tuples (Ai, pi, vi) of maps in

t
J Hom((0' (-1), ( 4j'd) x Hom ((i-1+di-1 (ji+di) x Hom(c4-', Od) (3.32)
i=1

where jo = n and do = 0, so that the last term is trivial for i = 1. Let Y be the
open subspace such that each A is injective, each p is surjective onto Coker (Ai), and
Coker (7r Ai) (i.e. the desired 3i) is flat with rank ji and degree di. Finally, we obtain
a closed subvariety Z c Y of maps such that the following diagram commutes:

i-1 
0 +i-41

Vi It (3.33)

Explicitly, Z is a smooth intersection of Ef 2di(ji+1 + di+,) quadric hypersurfaces
defined by the commuting relations Ai o pi = vi o Ai+,. Furthermore, the induced



sequence of cokernels gives a morphism to XQ such that the pullback of a' becomes
trivial: by the universal property of the X,, Z -+ J-CQ factors through X. To invert
this map, using the projection formula

rwx7rx*(1 x p)*Oi = 7rx.xp*oi , 7r y0 +i (3.34)

we obtain a diagram

o :- 7rc0j(-1) r* i ,(1 X

0 2 7r~.cJ+1(1) dr + '+I+'i+1 >~. (1 x p)*-i+1 0

There exist an induced maps

Xr Oi+i' -+ r 0 +

(3.35)

(3.36)

making the diagram commute, and giving the desired inverse by the universal property
of Y.

Finally, we obtain the dimension count as

dim X - dim J7 GL(di) x GL(di + ri) = dim X - d + (ji + di) 2 (3.37)

Since

dim X = [ [2di(ji + di) + (ji-1 + di_ 1)(ji + di) + di-idi] - E 2di(ji+1 + di+ 1)

= [d + (d, + j,) 2 - j2 + j-iji + di(ji_ 1 - ji+1)]
(3.38)

and dim F(k, n) = E ki(ki+1 - ki) = E(ji-i - ji)ji we are done.

Corollary 8. Pic(XQ) is generated by the set of Chern classes

(3.39)

for any integer a > 0.

7r~o0i -_+ lr~odi+i

{c1(O')1 i i , m = a, a + 1}



3.4.2 Stratification of the Boundary

As with the Quot scheme, we would like to stratify the boundary of the hyperquot
scheme by loci arising from other hyperquot schemes. Given a sequence of sheaves

0 " K1 - - - - -+ K --+ 0' -+ Ji -+> - - - - J -* 0 (3.40)

on P' with the Ji possibly containing torsion, we have rk J = ji + ei where

1. ei + ji < n (J is a quotient of (9"),

2. ei < di (the non-torsion part of Ji must have nonnegative degree), and

3. ji + ei > ji+1 + ei+1 (Ji surjects onto Ji+1).

Let e = (ei, ... , ee) E Zto be an f-tuple of integers satisfying these, and let

* XQ(e) denote the hyperquot scheme parametrizing flags of quotients with re-
spective Hilbert polynomials (m + 1)ji + di - ei,

. Xe) denote its i-th universal subbundle,

a 9i denote the Grassmann bundle of ei-dimensional quotients of X e), with struc-
ture map pi, and

* 9 = ~1p,', -) 9i denote their fiber product, with structure map p.

On 9, there is a universal diagram

0 > 1 ap*C " >7e) 0
(3.41)

0 -*X-e) - 0>++

where Ji, Ti are respectively the universal subbundle and quotient of 9i pulled back
to 9. Let V c 9 be the open subscheme over which the induced maps Si -+ (9, are
injections. Next, let U C V be the closed subscheme over which the maps Si --+ 7+1
are trivial. U can be reconstructed inductively as nested sequences of bundles:

91 = Gr(XS") , ei), with structure map p1 and universal subbundle 31.

* 92 = Gr(p*X~)/1J, e2 ), now with structure map P2 : 92 -+ 91 and universal
subbundle £2: 32 is the natural extension of p*i1 by £2.

9i = Gr(p*_1 ... P*Xe)/iJ1), with structure map pi : -+ 9 _1 and universal
subbundle Ci: J3 is the natural extension of p31_1 by Ci.



Since PI x X Q(e) has dimension dim {Q - 1 e (ki+ 1 - ki_ 1 ) + 1 and 9i has dimension
ei(ki - ei - ki- 1 + ei-1), we find that

Theorem 21. U is smooth and irreducible of dimension

I

dim -Q - e (ki+1 - ki + ei - ei-1) + 1 (3.42)
i=1

On P1 x U, define Xi to be the kernel of the composition

(1 x p)*xe) - p*Xe)I + -r*'Ti d (3.43)

where A = (1 x p)*(A x KJCe)) is the preimage of the diagonal in P 1 x P1 x XQ(e)

and 7rg : P1 x 9 -+ 9 is the second projection. Since A intersects each fiber of 7rg at

a single point, Xi is a vector bundle of rank k and degree -d. By the construction of

U, we further have inclusions Xi C->+ Xi+1 commuting with the inclusions

(1 x P)*Xe), (1 x P)*XCe) _-> (1 x p)*X) (3.44)

By the universal property of XQ, there is a map a : U -+ Q.

Theorem 22 ([6]). The maps a (1) surjects onto the locus of points (p, x) E P1 x XQ
whose associated Jis have rank at least ji + ei at p and (2) is an embedding when
restricted to p-1 (P1 x Homd-e(P', F(k, n))) preimage of the locus where each 3i has
precisely rank ji + ei at p and rank ji elsewhere.

Proof. For the first assertion, given a point x E XQ whose associated quotients Ji
have ei-torsion at some p E P1, let Ki be the associated subsheaves, T the cokernel
of 0" -+ Ki' (torsion of rank at least ei at p), El the kernel of Ki' --* T(p) ~= Cei.

Moreover, there are maps inducing a commutative diagram:

0 >Ei > Ki : Tip > 0
4 4 } (3.45)

0 :Ei_1 > Ki'_1 >Ti_ 1(p) >0

1 ~ 4

Then x will be the image of the induced point (p, {Coker (Ki --+ E)}).
For the second assertion, let Z be the image of p- 1(P1 x Homad-e(P 1,G(k,n)))

under a: the restriction of 0" --+ XY to Z has torsion cokernel T with rank e on

its support. Letting EY be the kernel of XSY -+ T, the Ei together with the cokernels
Ti of Xi -+ Ei (a rank ei quotient by construction) and the kernels J3 of Ei --+ T give



a global commutative diagram

0 - -1- >i yi 3 0

1 1 4 (3.46)
0 2 i1 i+1 3 Ti+1 0

'1 4 4

and thus global inverse (by the universal property of U).

Remark. Note that, if e is the jth-coordinate vector (i.e. ej = 6j), U has dimension
dim YQ - kj+1 + kg. As spaces U of this form cover the boundary of the hyperquot
scheme, it will have dimension min{kj+1 - k3}. In particular, if there is some j such
that kj+1 - kj = 1, the boundary will contain a divisor Dj C JQ, the closure of the
image of some U. In the case of the complete flag variety (i.e. k = (1, ... ,n - 1)), we
obtain n - 1 such divisors, which cover the entire boundary locus.

3.4.3 Generators for the Ample Cone

Just as codimension one and two Schubert cycles on the Grassmannian induced di-
visors on the Quot scheme, so will the analogous cycles on the flag variety give us
divisors on the hyperquot scheme. Because our boundary may have divisorial compo-
nents, however, we give a somewhat more explicit construction. Recall that, in the flag
variety F(k, n), we have f codimension one Schubert cycles E,, = c1(Q) = -c 1 (S)
and

+ 2) - #{j E [0, ] | kj+1 - kg = 1} (3.47)

codimension two Schubert cycles: in the latter case, this counts the classes

eJ W = skiskil , ski+1ski, ski-1ski (3.48)

discounting the overlaps where skjskj = skj,+1sk (whenever kj+1 - kj = 1) and the
boundary cases ski+1Ski if ki = n - 1 and Ski-1ski if ki = 1. As discussed above, each
of these is represented as a Chern class (or product thereof), and thus we can define
the corresponding divisors

[Di] = 7rjc,(c 1(3j) - h)

[D'''] = irxc,(c1(3j) - c1(3j))
(3.49)

[D'] = graW,(c2(3i))

[Di,1] = 7r9o,(c2(-Xi))



As before, we can write

c1(i) = ai + dih E H 2 (FP1 x XJQ, Z) e H2 (Q, Z)[h]/h 2  (3.50)

and thus find that

[D''] = ro, (de ai h + di ah) = di[Dz] + di[D''] (3.51)

For the other classes, we can more explicitly define them by transporting an alter-
native form of the degeneracy condition defining the Schubert classes over to the
hyperquot scheme. Specifically, take a fixed flag V c ... c V- 1 c C', and let
{Vi = V1 0 (9p } be the induced flag of trivial subbundles. We now define the follow-
ing loci of points in P1 x -CQ:

* ~1 is the locus of points whose corresponding Ki satisfies

rk {Vkj -+ Kj'} ki - 1 (3.52)

e* ' = Di nDi, (for |k - ki| > 1),

" 2 is the locus of points whose corresponding Ki satisfies

rk {Vkj+1 -+ Kj'} < ki - 1 (3.53)

" D,1 is the locus of points whose corresponding Ki satisfies

rk {Vkj_1 -+ Kj'} < ki - 2 (3.54)

Then DI = Di n ({p} x XQ) for a fixed p E P1 (its Chow class will be independent
of choice), while D2 = U, Di n ({p} x J-cQ) (and similarly for the D, 1 ).

Remark. This latter definition gives us a more concrete understanding of the intersec-
tions of these divisors with the boundary of the hyperquot scheme. On a boundary
stratum U given by an 0-tuple e, these degeneracy conditions give identical ones on
the base variety Pi X j .Q(e) In particular, if e is the j-th coordinate vector, we obtain
a transverse intersection with the boundary if i, i' # j and containment otherwise: if
our boundary loci are divisorial, the containment becomes an equality. For instance,
in the case of the ordinary Quot scheme with k = n - 1, 0 has rank one but is
not locally free, and iro (c2 (0)) gives the locus on which it acquires torsion (i.e. the
boundary divisor).

Observe that the conditions defining the loci Dij, Di2, and Di, 1 are equivalent to
the conditions defining [D1 ], [D2], and [D1,1] on the Quot scheme corresponding to the
Grassmannian G(ki,n). This implies that each of the divisors is the pullback of its
analogous class, and we obtain the induced relation D1, 1 + D = 2dD'. Furthermore,



Grothendieck-Riemann-Roch behaves identically on the hyperquot scheme, and we
find that

c1(ai) = 7rJQ, mc1(0) - h + c1(8i)2 - c 2 (3i)
2 (3.55)

= (m + di)[D'] - [D 2] = [D, 1 ] + (m - di)[D']

Finally, since the classes [Di] and [Di,1 ] are simply lifted from the divisors [D1 ] and
[D1,1] on the i-th Quot scheme (via a P -fibration), they have the same global sections,
and the morphism induced on the hyperquot scheme is simply the composition of the
projection to that Quot scheme with the morphisms described in the previous chapter.
Thus we obtain:

Theorem 23. [D', 1] and [DI] are semi-ample divisors for each i.

Assuming each di > 0, these divisors will be distinct save for i = 1 when ki = 1.
In this case, c2 (0 1) = ci(3 1)2 , so [Dl] = 7rXQ(c1(g1) 2 ) = 2d[Df], while [Dj,1] = 0.
Thus, we obtain a collection of 2 - ok,,1 semi-ample divisors, a number equal to the
Picard number p(XQ) (as c1 (0') will also be distinct for consecutive m unless i = 1
and ki = 1).

Theorem 24. {[D',1]} and {[DI]} generate the ample cone of divisors on Q.

Proof. Unlike in the case of the Quot scheme, the ample cone will be a cone in a
vector space of dimension > 2, and thus can have an arbitrary number of extremal
rays. Thus, simply showing that these divisors give extremal rays (which follows from
the case of the Quot scheme) is insufficient: we need to construct a facet (codimension
one face) corresponding to every subcollection formed by removing one of our divisors.
That is, there must be an effective curve which is positive on (i.e. intersects) one of
the divisors and is zero on all the remaining ones. To construct this curve, we first
give a more explicit realization of the defining curves for the ample cone of the Quot
scheme.

Recall first that the locus of the Quot scheme contracted by [D1,1] consisted of
points whose corresponding subbundle K decomposed as 0(-d) D 0-k: more pre-
cisely, it identifies inclusions K -- (9n, where K has the stated form, which differ
only by the choice of degree d rational curve 0(-d) - n". Let C E Q be the curve
given by the matrix

Xd + tY 0 -- 0

0 1 -- 0
d . . .)(3.56)
0 0 --- 1

That is, over each point t, we obtain an inclusion K 0 ((-d) @ 0 k-1 _- Ok, which
we compose with the trivial inclusion 9k + on". By inspection, C - [D1 ,1 ] = 0 while
C ... [D1] > 0 (in the latter case, because the top k x k minor varies with (s, t)).



Opposingly, we construct a maximally degenerate curve which intersects [D1,1 ] but
not [D1j]. Specifically, let K have the same decomposition, and let C' be the curve
defined by extending

/Xd t -- 0

(. . . (3.57)

0 0 --- 1

As the only nontrivial minor is independent of t, it is contracted by the Plucker map
and thus trivial on [Di]: however, the induced maps (9 k-1 -+ 0" do vary with t, and
C' - [D1,1 ] > 0. Thus, these curves define the ample cone of the Quot scheme.

Returning to the hyperquot scheme, we consider the maximally unbalanced locus,
i.e. the points where each corresponding Ki decomposes as 0(-d.) E 0k 1 . Now, let
Ci be the curve such that the inclusion of Ki -+ Ki+1 is given by 3.56 composed with
the trivial inclusions (9ki c ( 9kj+-1 C K i +1, while Kj - Kj+1 is similarly constructed

using the matrix

/Xd 0 --- 0

0 1 --- 0
(.d ... o) (3.58)

0 0 -- 1

By observation, the induced maps Kj - 0" are independent of (s, t) for all j = i: for
j < i, this inclusion factors through the trivial subsheaf of Ki, while for j > i, it does
not factor though Ki at all. Thus, Ci is positive on [Di] and zero on the remaining
divisors, defining a facet of the ample cone.

If ki 5 1, we can construct Cj similarly: it will again live in the maximally
unbalanced locus, and the inclusion of K - Kj+ 1 will be the same save for j = i,
where it will be given by the matrix 3.57 defining C' above, and for j = i - 1 if
ki_1 = ki - 1, in which case it will be constructed from

t-lXd 0 --- 0

0 1 --- 0
(r .x. . (3.59)

0 0 --- 1

This means that Ki_1 - 0' will again be independent of t, and the rest follows as
before. This gives the remaining facets of the ample cone. 5

Remark. This construction relies on the fact that the maximally unbalanced locus
is nontrivial. The existence of intermediate unbalanced loci, which was necessary to
determine the chambers of the effective cone, will depend on the parameters.



3.4.4 Generators for the Effective Cone

We begin by determining the choice of ranks ki and degrees di that allow the sub-
sheaves Ki to be balanced. Let qi = [l], ri = qiki - di as before.

Proposition 10. The locus where each Ki is balanced is nonempty if, for each i,

qi+1 + 1 ri > ri+1

qi > qi+1 - 1 ri = 0, ri+1  ki (3.60)

qi+1 otherwise.

Proof. Ki is balanced if it decomposes as 0(-q + I)ri E 0(-qi)ki-ri. If ri > ri+1, we
must have some inclusion (9(-qi +1) '-> 0(-qi+1). If ri = 0 and ri+1 ki, we can all
of Ki = 0(-qi )ki in the subbundle 0(-qi+1 + 1)ri+1 C Ki+1 . In all remaining cases,
we must have an inclusion 0 (-qi) -> 0(-qi+1 ). 0

Note that this alone does not imply that the projection onto each of the Quot
schemes is surjective onto the balanced locus: for instance, if n = 4, k = (1, 2) and
d = (3, 1), the hyperquot scheme compactifies planar cubic rational curves (i.e. nodal
cubics) in P3, which clearly does not surject onto the space of twisted cubics. Indeed,
in this case Ji cannot be the balanced bundle 0((1)3, as it must surject onto 0 ( 0(1).
We thus must do a similar procedure on the quotient side: if pi = [] , si = piji - di,
we have

Proposition 11. The locus where each J is balanced is nonempty if, for each i,

Pi+1 - 1 si < Si+1
Pi < Pi+1 + si+1 = 0, si 2 ki+1 (3.61)

Pi+1 otherwise.

This permits the case of the hyperquot scheme with n = 4, k = (1, 2) and d =
(3,2), i.e. rational cubics inside a quadric surface in P: since every rational cubic
lies in a quadric surface (and every quadric surface contains a rational cubic), this
scheme surjects onto both the space of twisted cubics and that of quadric surfaces.

Remark. Combining these two, we obtain bounds on the growth of the degrees di
given by

3i+1 34+1 <di+1 <ki,+1 I ki+1 (3.62)
ji di )- d - ki di

where the factors in parentheses are contributed by the special cases above. One can
see readily that this is satisfied if di is some constant d for all i: for any inclusion of
sheaves f : Ki - o",

* For i' < i, we obtain possible subsheaves by cutting the scroll given by f by
general hyperplanes, which produces subscrolls of the same degree.



* For i' > i, we set Kg = Ki (oki-ki, and let each inclusion K_1 -- Ki' be the
trivial one on the Ki piece and Ke = Ki 0 ke O-ki - 0" be any extension of f.

Thus, we obtain surjections onto each intermediate Quot scheme. Passing to the
extreme values of the bounds, given fixed de, we may take

di = di+1 - gi+1(ki+1 - ki) + max(O, ri+1 - ki) (3.63)

for i < f, while for fixed di, we may take

di = di_ 1 - pi-(ji-1 - ji) ++ max(O, si_1 - ji) (3.64)

for i > 1. These sequences give the most increasing and most decreasing possible
sequences for d.

Example. For n = 6 and k = (1, 2, 3,4, 5) (i.e. the complete flag variety), maps from
P1 with uniform degree di = d = 8 generically give flags of bundles of the form

0((-8)c-> 0 (-4)->. 0 (-2)c>- 0 (-2)c,, 0(-1)C- 0 >- 0((1) >- 0(2) 0(2) - 0 (4)- 0(8)

0(-4) 0(-3) 0(-2) (9(-1) 0 ((1) 0(2) 0(3) 0(4)

(9(-3) 0(-2) (9(-2) 0 0(2) 0(2) 0(3)

0(-2) 0(-2) 0 0(2) 0(2)

0(-2) 0 0(2)

(9

(3.65)

Note that K2, K 4 , J2 and J4 are perfectly balanced (as are K1 and J5 trivially), while
the remaining sheaves are simply balanced. Fixing d5 = 8 and allowing the degrees
to maximally increase, we obtain the vector d = (1, 2, 4,6,8) and a new generic flag
of bundles

0(-1)C* 0 (- 1) > 0 (- 1) C> 0 (- 1)% C- (- 1) C' 0 -- 0 --- 0 -- (1) >- 0 (3) >- 0 (8)
ED (D E e E e (D E E

0 (- 1) 0 (- 1) 0 (- 1) (9 (- 1) C9 C9 9 0(1) 0(3)

0 (-2) 0((-2) C (-2) (9 0(1) 0(2)
E e E e ED

0(-2) (9(-2) 9 0(1)
e e e

C9(-2) 0 0(1)

(9
(3.66)



That is, Ki is the rank i subbundle of Ki+1 of minimal degree, obtained by removing
a piece of maximal degree. Conversely, fixing di = 8 and allowing the degrees to
maximally decrease, we find that d = (8,6, 4, 2,1) and the flag is

0 (-8)r-- 0 (-3)c- -1)- 0C o2 Gr_ 0 , C9 (1) >, 0 (1) >0 0 (1) 0 (1) >> 0 (1)

0(-3) 0(-1) 0 0 0 0 (1) 0 (1) 0(1) 0 (1)

0(-2) 0(-1) 0 0 0(2) 0(2) 0(2)

0(-1) 0 0 0(2) 0(2)

(9(-1) 0 (9(2)

0
(3.67)

We concentrate our study of the effective cone on the first two cases for complete
flags in 0' (the third follows from the second by duality). General results for partial
flags as well as intermediate sequences d can be extrapolated from these, but require
overly tedious combinatorics.

Uniform di = d

The simplest case is where ild for all i E [1, n - 1], i.e. d is a multiple of lcm[n - 1], so
that the generic Ki and J are perfectly balanced. The associated hyperquot scheme
will have dimension (n) + 2d(n - 1). For i > 1, let E' be the locus where the sheaf
Ki is unbalanced: generically,

K, 2 0(-q, - 1) E 0(-q, + 1) D C9(-qi)i-2. (3.68)

Since qi+1 = d = qi, the remaining Kg are generically perfectly balanced.
Furthermore, a simple computation shows that the dimension of the space of maps
K i -* Ki+1 and Ki_1 -- * Ki do not change when Ki has this form, but the dimension
of Aut(Ki) increases by one. Thus, E' will be a divisor. Similarly, there is a divisor
E* where the sheaf Ji is unbalanced, and the general point in this divisor will have
all other Je, perfectly balanced.

Theorem 25. [E'] and [P'] are extremal rays of the effective cone of divisors.

Proof. Recall that, for the Quot scheme, we demonstrated extremality by constructing
a curve C through a general point which had trivial intersection with E and positive
intersection with E. Our goal is to obtain a similar curve C' for E and E. First, if
i = n -1, we can accomplish this directly by lifting via the projection of the hyperquot
scheme to the (n - 1)-st Quot scheme: on the base, the curve C parametrizes a
family of inclusions 0(-qn_1 )"- --+ 0, which lifts immediately to a curve C"-1.

For i < n - 1, we consider the locus where Ki+1 is perfectly balanced, and construct a



truncated hyperquot scheme OQ' by taking the subsequences 0 - K 1 - - - - - Ki+1,
tensoring by qi+1, and forming all induced cokernels Ki+1(qi+1)/Kg(gi+1) for i' < i.
We can perform the same action globally to obtain a projection morphism from the
original hyperquot scheme. We can now do our previous procedure on rQ*, obtaining
a nontrivial family of inclusions

(-qi)' 0 (qi+1 2 ( (qi+1 - qi) +1 = C (-qi+1 )+1 0 (9 (qi+1) (3.69)

on the Quot scheme where n = i + 1, k = i, d = i(qi - qi+1). Lifting this sequence

to XC' and then to J-, we obtain a curve C' in which Ki (and all other Kgi) are
balanced. o

As with the ample cone, we need to construct a collection of at least 2f - 61, ki =
2n - 3 extremal rays to describe the cone completely. The above theorem and its dual
give 2n - 4 rays generated by [E] for i > 1 and [5] for Ii < n - 1: for i = n - 1,
we replace E with the boundary divisor (as one does for the Quot scheme with
k = n - 1).

Theorem 26. The effective cone is generated by the [E'], the [P], and the (n - 1)-st
boundary divisor.

Sketch. The construction given above almost gives this immediately, save that the
variation of the inclusion of Ki '-- Ki+1 may affect the inclusion of K _ (9" for
i' < i and thus whether or not the associated family of cokernels remains balanced.
However, since qi_1 > qi > qi+1, by dimension count one can always choose a defor-
mation of Ki - Ki+1 such that Ki_1 -+ Ki+1 is fixed: that is, the space of perfectly
balanced scrolls of dimension i and degree d which

" contain a fixed, perfectly balanced subscroll of dimension i - 1 and degree d,
and

" are contained in a fixed superscroll of dimension i + 1 and degree d

is positive dimensional. Choosing each of our families in this manner guarantees that
our curves C' do not intersect E' for i' = i (as well as the (n - 1)-st boundary
divisor).

Remark. One can seemingly do virtually the identical construction in the case where
d is arbitrary: the Ki will no longer be generally perfectly balanced, but rather just
balanced. However, the incidence condition on the directrix (as used for the Quot
scheme) will remain independent from other such conditions across the various Ki
and Ji. For instance, if ild but i + 1 { d, qi+1 - 1 < qi, so Ki can become unbalanced
while Ki+1 keeps the same decomposition. Conversely, any incidence condition on
the directrix of Ki+1 cannot force Ki to become unbalanced. Performing an explicit
construction of the curves C' is the subject of ongoing study.



Maximally increasing di

We again begin with the case of perfectly balanced splittings: if the degrees di increase
maximally to some value d = d,_-1 , this implies that Ki 2 0(-q)i for q = nd, and
the hyperquot scheme has dimension (2q + 1) (n).

Proposition 12. If Ki is unbalanced, so is Kg, for i' > i.

Proof. Since ildi for each i, Ki is unbalanced precisely when it acquires a component
of higher (less negative) degree -q + 1. However, one cannot have an inclusion
0(-q + 1) -+ 0(-q)i+1, so Ki+1 must also have a component of degree at least
-q + 1. Continuing in this fashion, one finds that Kg has a component of degree at
least -q + 1 for all i' > i, and they are all unbalanced. 0

Proposition 13. For each i, the locus where Kg is unbalanced for i' > i has codi-
mension one.

Proof. Note first that, as with the Quot scheme for k = n - 1, the locus where only
Kn_ 1 is unbalanced has codimension one: the spaces of maps Hom(Kn_, 9 "O) and
Hom(Kn- 2, Kn_ 1) for general (i.e. perfectly balanced) Kn- 2 have the same dimension,
while that of Aut(Kn_1) increases by one. Working inductively, we now assume that
the locus where Kg, is unbalanced for i' > i has codimension one. The generic
unbalanced Ki+1 decomposes as 0(-q + 1) D 0(-q)i- (D 0(-q - 1): if Ki 2 0(-q)',
dim Aut(Ki) = i 2 while dim Hom(Ki, Ki+1 ) = 2i + i(i - 1) + 0 = i 2 + i. However, if
Ki is unbalanced as well, and decomposes as 0((-q + 1) @ 0(-q)i- 2 ( 0(-q - 1), we
find that

Hom(Ki, Ki+1 ) =End((9(-q + 1)) ® Hom( (-q)i-2, (9(-q)-' 1 D 0(-q + 1)) (3.70)
D Hom(O(-q - 1), (9(-q - 1) E 0(-q)'- 1 @ 0(-q + 1))

which has dimension 1+[(i - 2)(i -1)+2(i -2)+ [1+2(i -1)+3] = i2 +i+1. Since
Aut(Ki) now has dimension i 2 + 1, the loci where Ki are balanced and unbalanced
have the same dimension, and the latter remains divisorial. 0

Remark. This reflects the fact that, in the Quot scheme, the irreducibility of the the
unbalanced locus requires the central term to be balanced. If one considers quotients
of a fixed unbalanced vector bundle, one finds that the unbalanced loci of subbundles
and quotient bundles similarly decompose.

We now set E* to be the closure of the locus where Kg is unbalanced for i' > i
and balanced for i' < i. On the dual side, since the degrees will be decreasing,
the condition on Ji (balanced if n - ildi, the incidence condition otherwise) will be
independent of that on Je, for i' # i, following the case of uniform degree d. Thus,
we can define E just as above. Following an identical procedure, we find that

Theorem 27. [E'] and [Bi] are extremal rays of the effective cone of divisors.

Theorem 28. The effective cone is generated by the [Es|, the [P], and the (n - 1)-st
boundary divisor.



Remark. For arbitrary d = d,_ 1 , if the di are maximally increasing, the generic Ki is
balanced if it decomposes as

q-1 i< sKi 0 (- ail), ai =. (3.71)
q z > s

where q = [;;-], s = (n - 1)q - d. Thus, it will be perfectly balanced for i < s
and split unevenly otherwise. In the former case, we use the same unbalanced locus
above. If i > s, so i f di, the incidence condition on 0(-q + 1)' C Ki gives the same
condition on 0(-q + 1)" C Ki+1. That is, the directrix of the scroll associated to Ki
maps isomorphically onto that of Ki+1, and inductively for Kg', i' > i. One can thus
similarly define the divisors Ej, and the same result follows.
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