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Abstract

In this thesis, I first generalize Kisin's theory of finite slope subspaces to arbitrary
p-adic fields, and then apply it to the generic fibers of Galois deformation spaces. I
study the finite slope deformation rings in details by computing the dimensions of
their Zariski cotangent spaces via Galois cohomologies. It turns out that the Galois
cohomologies tell us not only the formal smoothness of finite slope deformation rings,
but also the behavior of the Sen operator near a generic de Rham representation.
Applying these results to the finite slope subspace of two dimensional Galois repre-
sentations of the absolute Galois group of a p-adic field, we are able to show that a
generic (indecomposible) de Rham representation lies in the finite slope subspace.

It follows from the construction of the finite slope subspace that the complete
local ring of a point in the finite slope subspace is closely related to the finite slope
deformation ring at the same point. As a consequence, we manage to show the flatness
of the weight map near generic de Rham points, and accumulation and smoothness
of generic de Rham points. In particular, we have a precise dimension formula for
the finite slope subspace. Taking into account twists by characters, we define the
nearly finite slope subspace, which is believed to serve as the local eigenvariety, as
is suggested by Colmez's theory of trianguline representation. Following Gouv~a-
Mazur and Kisin, we construct an infinite fern in the local Galois deformation space.
Moreover, we define the global eigenvariety for GL2 over any number field, and give
a lower bound of its dimension.
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Title: Gerhard Gade University Professor, Harvard University



4



Acknowledgments

The author is grateful to Barry Mazur and Mark Kisin for their advisement and

encouragement. The article would not exist without their guidance and patience.

He thanks Kiran Kedlaya heartily for his enthusiastic teaching, numerous valuable

discussions, encouragement, and constant support. He is also grateful to Jean-Marc

Fontaine, not only for the profound mathematics he created, but also for his encour-

agement and consideration.



6



Contents

1 Introduction

1.1 Hecke operator on modular forms and p-operator on Fontaine's modules

1.2 The Coleman-Mazur eigencurve.......... . . . . . . . . ...

1.3 Kisin's Galois theoretic eigencurve . . . . . . . . . . . . . . . . . . . .

1.3.1 Theory of finite slope subspaces: continuity of s-operator . . .

1.3.2 Construction of the Kisin eigencurve . . . . .

1.3.3 Local rings via Galois deformations . . . . . .

1.4 Mazur's idea of refinements . . . . ..........

1.5 M ain results . . . . . . . . . . . . . . . . . . . . . . .

1.5.1 Modification of theory of finite slope subspace

1.5.2 Refinements in general.. . . . . . . . . ..

1.5.3 Eigenvariety of GL 2 over p-adic fields. . ..

1.5.4 Eigenvariety of GL 2 over number fields .

1.5.5 Infinite fern in local Galois deformation space

plication......... . . . . . . . . . . ..

1.6 Outline of the paper . . . . . . . . . . . . . . . . . .

. . . . . . . . . 19

. . . . . . . . . 2 1

. . . . . . . . . 23

. . . . . . 23

. . . . . 24

. . . . . . . . . 25

. . . . . . . 27

of GL 2 : an ap-

. . . . . . . . . 29

. . . . . . . . . 30

2 Preliminaries in p-adic Hodge theory

2.1 Fontaine's construction of Weil-Deligne representations . . . . . . . .

2.2 Weak admissibility of a filtered (o, N)-module... . . . . . . . . . .

3 Refinements of a Galois representation

3.1 D efinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



3.2 Criticality of refinements... . . . . . . . . . . . . . . . . . . . . . 45

4 Finite slope subspace: the general theory 47

4.1 Sen theory on p-adic Hodge structures in families . . . . . . . . . . . 47

4.2 Periods on families of Galois representations . . . . . . . . . . . . . . 49

4.3 Construction of finite slope subspace..... . . . . . . . . . . . . . 51

5 Finite slope deformations 59

5.1 Galois deformations in characteristic p and in characteristic 0 . . . . . 60

5.2 Smoothness and representability of finite slope deformation functors . 61

5.2.1 Smoothness of p-adic period deformation functors . . . . . . . 61

5.2.2 Finite slope deformations...... . . . . . . . . . . . . . . 63

6 Deformations of a Galois representation with refinement 67

6.1 Obstruction for deforming a de Rham representation . . . . . . . . . 67

6.2 Selm er groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Deforming a Galois representation equipped with p-adic periods . . . 71

6.4 Finite slope deformations of 2-dimensional Galois representations 81

7 Local and global eigenvarieties of GL 2  91

7.1 Local Galois eigenvarieties of GL 2 . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Flatness of weight map on the local eigenvariety . . . . . . . . 100

7.1.2 Dimension of the local eigenvariety . . . . . . . . . . . . . . . 100

7.1.3 Smoothness of de Rham points in the local eigenvariety . . . . 104

7.2 Global Galois Eigenvariety of GL 2 . . . . . . . . . . . . . . . . . . .. 104

8 Infinite fern in a local Galois deformation space 109

9 Trianguline representations: another point of view 113

9.1 (cp, f)-modules over Fontaine's rings and overconvergence . . . . . . . 113

9.2 (o, F)-modules over the Robba ring and slope filtration . . . . . . . . 115

9.2.1 Refinements and triangulations of Gq,-representations . . . . 116



9.2.2 Trianguline deformations of GQ,-representations of Bellaiche-

Chenevier................. . . . . . . . . . . .. 119



10



Chapter 1

Introduction

Throughout the paper, p is a fixed prime number. We fix the p-adic valuation v,(.)

with vp(p) = 1 on Qp, which extends uniquely to any finite extension K/Q, (which

we call a p-adic field), where it is written as VK(.). The valuation then extends

to the algebraic closure QP, whose p-adic completion is denoted as C,. We write

GK = Gal(Qp/K) for the absolute Galois group of K for K a p-adic field, and write

GF for the absolute Galois group of a number field F similarly.

For K a p-adic field, let wJK be a fixed uniformizer of K. We let Ko denote the

maximal unramified extension of Q, inside K, and let f = [Ko : Q,] be the residue

degree. Denote by XK: GK -+ O the cyclotomic character. We choose an element

Frob, E GQP, a lifting of the map on FP raising an element to its p-th power, such

that Frobf := FrobK E GK is mapped to =K via the cyclotomic character. We call

it (and its powers) the arithmetic Frobenius, whose inverse is called the geometric

Frobenius.

Our convention is that XK has Hodge-Tate weight -1, as a 1-dimensional contin-

uous representation of GK-

Let X be a rigid analytic space (in the sense of Tate) over a p-adic field E. We

say that a subset S C X is a closed subset of X if there exists an admissible covering

{Uj}ie of X such that for each i c I, Sn U is the zero-locus of some ideal Ii C O(Uj).

We say that a subset S is Zariski-dense if the only closed subset of X containing S is

X itself. For a point x E X(E') with E' a finite extension of Q,, let X be the image



of x in X, and Ox,.t the complete local ring at this closed point. We denote by 0 x,x

the extension of scalars to E' of OX,x from the residue field of X. We identify closed

points in X with residue field E' and E'-valued points of X.

1.1 Hecke operator on modular forms and o-operator

on Fontaine's modules

Let f be a (classical) cuspidal modular eigenform on F1 (N) with N - Z>1, and let

k > 2 and e be its weight and nebentypus character. Denote by a,(f) the n-th

coefficient of the q-expansion of f. By the well-known theorem of Deligne, there is a

(unique) Galois representation

GQ -- GL 2 (Q)

which, after extension by scalars via an embedding Q "( Qp that we will fix, gives

rise to the p-adic representation

pf : Go GL 2(Q,)

for (any) prime p. The representation pg is characterized by the condition that for

any prime f { Np the Hecke polynomial of pj (Frobf) is

X2 - af(f)X + E(Frobf)yk-1.

At the prime p, we have the following results of Falthings, Tsuji and Saito about

Vf P: pGQ,. First of all, Vf is de Rham with Hodge-Tate weights 0, k - 1. Moreover,

" If p { N, then Vf is crystalline.

* If p N and ap(f) $ 0, then Vf is semi-stable but not crystalline.

" If p I N and ap(f) = 0, then Vf is potentially crystalline.



More precisely, we have the following result.

Theorem 1.1.1 (T. Saito, [31]). Let Up denote the Atkin-Lehner operator on f. Let

A = ap(f) be the (only) Up-eigenvalue if p | N and ap(f) # 0, and be one of the two

roots of X 2 - ap(f)X + c(Frob)pk-1 if p{ N.

If A $ 0, then it is an eigenvalue of the <p operator on Fontaine's module Dcris(p*| GQ,)-

In particular, for any prime p { N, if the two roots of X2 - ap(f)X + e(Frobp)pk-1

are non-zero and distinct, then they are the <p-eigenvalues on Dcris(p* |G,). We refer

the reader to Section 2.1 for more details about Fontaine's mudules.

In the following, we will see that an analogue of Theorem 1.1.1 holds for families

of (overconvergent) modular forms.

1.2 The Coleman-Mazur eigencurve

Let p be an odd prime . For f a (classical elliptic) cuspidal eigenform of weight k > 2

and level l1 (pnN), where p { N and n > 1, the slope of f is by definition the p-adic

valuation of the Up-eigenvalue on f. Let

AN - p[(Z/p"NZ)"] ~_ Z,[(Z/pNZ)] &z Z,[i + pZp.

Denote by VV the Q,-analytic space associated to AN-

Assume the tame level N = 1 in the rest of this subSection for simplicity. The

construction of eigencurve has been generalized to arbitrary tame level by Kevin

Buzzard [6].

Let p: GQs - IF be a two dimensional odd representation, where S is a finite set

of primes containing the infinite place and all the primes dividing pN. We assume that

p has only scalar endomorphisms. Denote by pun'v the universal representation, Runivp

the associated universal deformation ring, and Z the rigid analytic space associated

to Ru"iv. As is explained in Section 4 of [12] (in the case N = 1) the ring Runiv has a



natural A1-algebra structure, which gives rise to a weight map

w : Z - W.

Set N to be the commutative polynomial (topological) A1-algebra generated by

the formal variables Xq for all prime numbers q E Z and let N' be the sub-ring

generated by the formal variables Xq for q V S. We have a well-defined action of N

on the space MNoo (r) of r-overconvergent modular forms of tame level N by letting

Xq act as the Hecke operator T for each q V S and as U for q E S. We refer

the reader to [12] for the definition of overconvergent modular forms and the Hecke

algebras.

Let

R' -+ R unlv

be the map sending Xq to trace(pu"iv(Frobq)) for q outside S, which is well-defined

by a theorem of Gouv~a-Hida (cf. Section 5.2 [12]).

For r sufficiently close to 1, by Theorem 4.3.1 of [12], the Atkin-Lehner operator UP

acts on MpooN(r) completely continuously. By Sec.4 of [12], we can, for each a E N',

form a Fredholm series with coefficients in A1

Pau,(Y) = det(1 - aUpY|MNpo (r))

which is independent of the choice of r (for r sufficiently close to 1). For each a E N'

such that t(a) is a unit, define a natural map

rT : Z x Gm + W X Gm, (z,y) - (w(z), )
t(a)(z)

where t(a)(z) means the residue of t(a) in Rg"iv/z, z C Z being identified with the

corresponding maximal ideal in RJ" .



Define the Coleman-Mazur eigencurve (of tame level N = 1) to be

C - 0 rj(Zau,), Va E '' such that t(a) E (R "') ,

where ZcU, is the spectral curve defined as the zero locus of the Fredholm series

P,u (Y) which we regard as function on M x Gm. We refer the reader to Chapter 4

of [12] for the details about spectral curves.

We may and do assume C to be reduced, by taking its nilreduction. It is proved

by Coleman and Mazur in their seminal paper [12] (for N = 1) that

Theorem 1.2.1. (1)The points in C(Cp) are in one-to-one correspondence with nor-

malized overconvergent eigenforms of finite slope of tame level 1, such that the image

under the weight map of a point in C(Cp) coincides with the weight of the correspond-

ing overconvergent modular form.

(2) The (reduced) curve C is the rigid Zariski-closure of the classical points, i.e.

the points corresponding to the classical eigenforms.

(3) The image of the restriction to any irreducible component of the curve C of

the weight map consists of (at least) all but finitely many weights.

(4) There is an admissible affinoid covering {U}of C such that the image under

the weight map of (each) U is an affinoid subdomain in the weight space WN and the

weight map is finite flat over U.

1.3 Kisin's Galois theoretic eigencurve

It is asked by Coleman and Mazur in [12] how to construct a version of their eigencurve

in terms of Fontaine's modules, which are purely local. They also ask if the eigencurve

is smooth, among other questions. The first question is answered by Kisin in his paper

[26] and [23], and the second is answered (for most classical points) in [26], combined

with his main result in [25].

In the following, we will use the notation introduced in Chapter 2.



1.3.1 Theory of finite slope subspaces: continuity of <p-operator

In the paper [26], Kisin shows the following:

For a Q,-rigid analytic space X, a finite free Ox-module M with a continuous

Ox-linear GQ,-action and an invertible function Y on X, the existence of a non-zero

Gq,-equivariant R-linear map

O*M(Sp R) - (Biis$ R)"

for certain maps of rigid spaces 0 : Sp R -> X characterizes a Zariski closed subspace

Xf, c X.

It is rather important to specify the word "certain", i.e. to what kind of maps

Kisin's theorem applies. We explain the idea below and refer the reader to Theorem

4.3.3 for a detailed construction, as well as the generalization to the case where GQ, is

replaced by GK for any finite extension K of Qp, among other technical improvements.

To cut a rigid subspace Xf, out of the given rigid space X, one would like to show

that existence of crystalline periods on any affinoid admissible open subset in X is

a closed condition. This is quite hard and is answered by Kisin for certain affinoids,

namely the ones that satisfy the so called Y-small condition, on which one of the

Hodge-Tate weights is fixed and all the others are not constant. Here the Hodge-Tate

weights are given by Sen theory on affinoids, as is recalled in Section 4.1. We explain

the three conditions.

(1) On a Y-small affinoid R, there is a non zero constant in A C Q, such that (on

each connected component) YA - 1 is topologically nilpotent.

(2) It is a technical point in this theory that one needs to fix one Hodge-Tate

weight on M. =: 0*M(SpR).

(3) Then one assumes further that all the other Hodge-Tate weights on MR are

not constant.

The condition (3) guarantees that the Hodge-Tate period obtained in (2) lifts to a

(non-zero) de Rham period on MR, i. e., a Galois-equivariant R-linear map hR from

MR. into the p-adic Banach space B+R/tJBja$QR for any j large enough.



Then condition (1) of Y-smallness will give that the Y-eigen subspace of crystalline

periods (Bc+~ r is closed in B dR/tB R QPR. We denote the quotient by UR.

Finally, one could ask that this de Rham period factor through (Bc+

which turns out to be a closed condition. More precisely, we can write, for any element

m E MIZ, the image of hR(m) in U-R in terms of an orthonormal basis in UR, whose

coefficients form an ideal Ix, that essentially gives rise to Xf,.

1.3.2 Construction of the Kisin eigencurve

It is a general expectation that the Weil-Deligne representations via the local Lang-

lands correspondence are compatible with those via p-adic Hodge theory, namely that

the Hecke eigenvaues of a classical automorphic form coincide with the eigenvalues

of the Frobenius operator p on Fontaine's module of the Galois representation as-

sociated to the automorphic form (which is expected to exist). For instance, such

compatibility is known in the GL 2/Q case, thanks to Theorem 1.1.1.

Combining this with the fact that the Atkin-Lehner operator Up is (locally) com-

pletely continuous on the Coleman-Mazur eigencurve, one would expect the analogue

holds for families of (p-adic) automorphic forms (resp. Galois representations). For

this, one needs an analogue of the Coleman-Mazur eigencurve whose points corre-

spond to p-adic Galois representations on the Fontaine modules on which the p op-

erator acts (locally) continuously.

Instead of o-eigenvalues, it would be convenient to consider the p-eigenvectors

in Fontaine's modules. Each of these is a nonzero Galois equivariant map from the

representation to the period ring Bcris of Fontaine, i.e. a crystalline period, as in the

theory of finite slope subspaces in the previous subsection .

Kisin then applies the general theory of finite slope subspaces to the rigid analytifi-

cation Zp of the generic fibre of a (versal) local Galois deformation space associated to

a (fixed) 2-dimensional mod p representation of GQ,. Namely, he takes X = Zp x Gm,

M the pull-back to X of the (fixed) versal representation, and Y the canonical co-

ordinate on Gm. The finite slope subspace associated to (X, M, Y) is denoted by

XS,(G L2/(,) . This should be regarded as a p-adic eigenvariety for GL 2 /Q,, which



turns out to be a 3-dimensional rigid analytic space. When it is clear that we are in

a local situation, we may simply write Xf,, as Xf,.

Now go back to the global picture. Suppose that we are given the rigid analytifica-

tion Z of the generic fibre of a Galois deformation space associated to a 2-dimensional

mod p representation P of GQ. We write Z, for the rigid space associated to plGQ, as

before. Then we have a map Z -± Z, induced by the restriction of a GQ-representation

to the decomposition group GQ, at p, via the (fixed) embedding of Q Q,. Kisin

takes the fibre product

Xfs(GL 2/Q) = (Z X Gm) X(ZX ) Xs,p,

which is a Zariski closed subspace of Z x Gm. We call XfS(GL 2/Q) the Kisin eigen-

curve.

Using Saito's result and Theorem 1.2.1, Kisin manages to show that there exists

a crystalline period

h : pg|Gq, a (B+s oU, E) =ap(f)

for any cuspidal overconvergent finite slope eigenform f of a fixed tame level. Here

E/Q, is the p-adic field where f is defined.

It is expected that the local finite slope subspace Xf s,(GL 2 /Q,) (hence Xf,(GL 2/Q))

is exactly characterized by the existence of a crystalline period on any 2-dimensional

p-adic GQ,-representation (with the same mod p representation). By the general the-

ory of finite slope subspace, the above condition is necessary. However, it is difficult

to prove that the condition is also sufficient. Kisin is able to prove the sufficiency

for 2-dimensional p-adic GQ,-representations V with Hodge-Tate weights (0, k) in the

following two cases:

(1) k is a negative integer or is non-integral.

(2) k > 0, V is de Rham with only scalar endomorphisms, and if V is crystalline

then the two <p-eigenvalues on Dcris(V*) are distinct and they are ordered by increasing

p-adic valuations in the case Dcris(V 0 V*(1))P=l $ 0.

Using the result for case (1) above and the Zariski density of non-classical points in



the Coleman-Mazur eigencurve C, one sees that C is inside XfS(GL 2/Q) (cf. Theorem

11.6(2) [26]). Years later, Kisin proves that the two subspaces C and XfS(GL 2/Q)

of Z x Gm coincide (at the same residual part), as a consequence of his modularity

theorem (for trianguline representations) in his remarkable paper [22]. This gives the

complete answer to the first question raised by Coleman and Mazur mentioned at the

beginning of this Section .

It is thus reasonable to expect that the eigencurve (both in the Coleman-Mazur

language and Kisin language) is characterized by the condition that each point in

the eigencurve (regarded as a representation) is, up to twist by a character, equipped

with one crystalline period. Such an expectation is supported by Colmez's study

of trianguline representations [8], where he (cf. Proposition 9.2.5) proves that a 2-

dimensional GQ,-representation is trianguline if and only if some twist of it carries

a crystalline period. It is hoped that trianguline is the right property characterizing

eigenvarieties p-adic locally.

1.3.3 Local rings via Galois deformations

To show that a de Rham point x = (z, A) in case (2) of the previous subSection

lies in the local eigenvariety X1., one has to study its local ring Rx in X as well as

the condition that this point carries a crystalline period. Let's assume the residual

representation for V has only scalar endomorphisms in this Section , for simplicity.

Then the local ring N& is given by the Galois deformation ring Ru"v (which we assume

to exist, again for simplicity). Thus one may expect that the existence of a crystalline

period will cut out a quotient ring of RVZ", which is supposed to be closely related

to the (potential) local ring of x in Xf,.

In fact, Kisin develops what we call finite slope deformation theory (cf. Section

5). He proves that lifting a crystalline period on a fixed characteristic 0 representa-

tion gives rise to a deformation functor, which is representable in the situations we

consider. Furthermore, for the de Rham point x above the finite slope deformation

ring R is formally smooth of dimension 3, which one can see by computing the

Galois cohomologies related to the cotangent space of R . Let , be the ideal of



R"iv corresponding to the quotient ring R>'. One may then expect that the quotient

R,/i2 provides the local ring of x in Xf,.

It is not hard to see that the natural map N - R/i2 factors through Nh, which

is by definition the quotient of R on which the Sen polynomial has a constant weight

0. This corresponds to the condition (2) in Section 1.3.1. One can find the details in

Proposition 6.4.5.

It turns out that the Galois cohomology computations also imply that the weight

map at such a point is not constant! (see Proposition 6.4.5 for a proof.) This corre-

sponds to the condition (3) in Section 1.3.1.

Notice that the universal property of R provides a compatible system of crys-

talline periods

hr : M + (Bcris @Q, N/(K2 + m'))r, r > 1

where mx C N& is the maximal ideal and A,'s are determined by A. Moreover,

R/(X2 + m;)Ar are Y-small affinoids in the sense of theory of finite slope subspace.

This, together with the previous two results, enables one to show that the point x E X

lies in Xf . We refer the reader to the proof of Theorem 7.1.1 for details (in a more

general situation).

Meanwhile, the similar proof (cf. Proposition 7.1.3) gives a Galois theoretical

description of the local ring Oxf,x. Concretely, at a point x = (z, A) E Xfs(GL 2/Qp)

as in case (2), the complete local ring OXfS(GL2 /Qp),(Z,A) is canonically isomorphic to

the finite slope deformation ring R, ,which is formally smooth of dimension 3. As

a consequence, the weight map on the local Galois eigenvariety Xfs,,(GL 2/Q,) is flat

at the de Rham points in case (2). This is analogous to the global result Theorem

1.2.1(4) about flatness of the weight map on the Coleman-Mazur eigencurve.

Taking into account the main result in [25] about smoothness of modular points in

(the generic fibre of ) the universal deformation space for GL 2/Q, Kisin shows that the

geometric points with local properties as in case (2) on C = Xfs(GL 2/Q) are smooth.

Here by geometric we mean being unramified at most places and de Rham at p, which

is in most cases equivalent to modular, by Kisin's proof [23] of the Fontaine-Mazur



conjecture in this case.

1.4 Mazur's idea of refinements

In Kisin's theory, as well as its generalization (cf. Theorem 7.1.1), one reduces to

the computations of Galois cohomologies for de Rham E-representations (E is the

coefficient field). More precisely, we want to show that the map induced by the

crystalline period h : V -+ (Bcris O®, E)f=A

H1(G,, h ® 1) : Hl(GoQ,, VOE V*) -± H 1 (GQ,, Bcris OQ V*)f =A

is surjective. This being the case, one obtains the formal smoothness of the finite slope

deformation ring R h,,, (Cf. Section 5 for the reason). In fact, one is able to prove (2)

and (3) in Section 1.3.1 at the same time: see Theorem 6.4.4 and Proposition 6.4.5.

As we have mentioned in the previous subsection, they play essential roles in the

proof of the general theorem, Theorem 7.1.1.

The surjectivity holds for the points in case (2) of Section 1.3.2, because the

assumption that HO(GQ,, V OE V*)= E (essentially made for the use of deformation

theory) turns out to imply that h : V -+ (Bcris OQp E)? A, considered as a map hcris

V -+ Bcris Og, E, does not factor through Fill Bcris OQ, E. The choice of a crystalline

period h and the key assumption that hcris does not factor through FillBcris O®, E in

fact coincide with Mazur's consideration of refinement and its property which is called

non-critical, respectively, which are originally made for modular forms but apply to

Galois representations in a natural way as we will explain in Section 3 in details.

As is emphasized in Mazur's paper [27], although one can find a family of p-adic

modular forms such that the Hecke eigenvalues at any good prime p vary p-adically,

one has to specify which one of the two Hecke eigenvalues is varying. This leads to

the concept of refinement. For an elliptic newform f of level N, the choice of one of

the Hecke eigenvalues at a good prime is called a refinement for f at this prime, by

Mazur originally.



At such a good prime p we may also apply p-adic Hodge theory to the p-adic

representation Vf of GQ associated to f to make sense of the meaning of refinement. In

this case, V is a two dimensional crystalline GQ,-representation over a finite extension

E/Q,, we call a choice of one of the two p-eigenvectors in Dcris(V*) a refinement of

V. This coincides with Mazur's definition, thanks to Theorem 1.1.1 and the general

expectation that the two Hecke eigenvalues are always distinct.

Furthermore, one has to consider non-crystalline representations (for example,

those coming from classical eigenforms at bad primes and from non-classical points

on the eigencurve) as well. The definition of a refinement of any 2-dimensional Go,-

representation is given by Emerton [13], inspired by Colmez's study of trianguline

representations (cf. Proposition 9.2.5).

The picture is clearer if one thinks of refinements in term of families of (p-adic)

modular forms (resp. Galois representations). Here we keep in mind that for a point

on the eigencurve corresponding to an overconvergent finite slope cusp form f, the Up-

eigenvalue ap(f) is equal to the p-eigenvalue on Dcris(P* |GQ), or rather, the analytic

function ap on the Coleman-Mazur eigencurve interpolating Up-eigenvalues coincides

with the analytic function o on the Kisin eigencurve interpolating the p-eigenvalues

on Fontaine's modules Dcris(*).

In the language of Coleman-Mazur eigencurve, for a classical modular eigenform

f, if p { N, then there are two oldforms fi, f2 on I(pN) corresponding to f such

that (fi, A,) and (f2, A2), with A,, A2 roots of the Hecke polynomial at p, both lie

on the eigencurve. By Theorem 1.2.1, in a sufficiently small affinoid neighborhood

in C of such a point, say (fi, A,), the weights vary in an infinite set, while the slope

vp(ap) is constant. It is thus impossible that the two Hecke eigenvalues vary p-adically

continuously simultaneously, because the two slopes add up to be the weight at each

point in the neighborhood. We remark that, as p is a bad prime for fi and f2, there

is only one point on the eigencurve corresponding to each old form, since the Hecke

polynomial is of degree 1.

In the language of Kisin eigencurve, for a classical modular eigenform f both of

the o-eigenvalues on Dcris(p*I GQ,) can vary p-adically continuously, but separately, at



p { N, while for a classical form at p N or an overconvergent finite slope cusp form, the

vector space (over the p-adic field E where f is defined) Dcris(p* GQ,) has dimension

1, since it is nonzero by the result of Saito and Kisin and since the representation

Pf lGQ, is not crystalline.

The most important property of a refinement is criticality, which is also posed by

Mazur in [27]. The motivation is the Coleman inequality:

Let N be a positive integer such that p { N and let r be a positive integer. An

overconvergent elliptic eigenform f of level prN, and weight k E Z>2 is classical if

vu(A) < k - 1.

This implies, by Lemma 2.2.2, that the crystalline period determined by A on

V IGQ does not factor through FillBcriswQCp, as observed by Kisin. We may regard

Lemma 2.2.2 as a p-adic analogue of the Coleman inequality.

1.5 Main results

1.5.1 Modification of theory of finite slope subspace

Kisin's theorem on finite slope subspace does not (obviously) hold for GK-representations,

if K/Q, has residue degree f strictly bigger than one. The reason is that in the case

f > 1, the p action is not linear on the Ko-vector space Dcris( ).

The substitute of p is just jl which is a Ko-linear operator, as is suggested by the

compatibility of Weil-Deligne representations via classical Langlands correspondence

and those via p-adic Hodge theory, which is explained in details in Section 2.1.

Then one realizes that Kisin's original proof of Proposition 5.4 [26] is so general

that one needs only to transfer the Bcris-picture to the Bcris,K := Bcris OKo K-picture.

The basic properties of Bcris,K we need were already obtained by Colmez [9]. Such

kind of generalization is obtained also in [30]. See Theorem 4.3.3 for the general

statement and proof.

We remark that one can generalize the theory in other ways, depending on the



purpose. For example, we can require the existence of multiple crystalline periods

on Xf, in which case the invertible function Y on X will be replaced by an ordered

set of invertible functions {Y})iEI. This is why we need to define refinement and

criticality in general.

1.5.2 Refinements in general

It is natural to ask for the generalization of the concept of refinement to higher

dimensions, which is at least necessary for the study of finite slope deformations in

general, i.e., in the case that one lifts more than one crystalline period. Inspired by

the works of Kisin, Colmez, Emerton and Bellaiche-Chenevier, we give the general

definition of refinement.

Let V be an N-dimensional GK-representation over E with K, E finite extensions

of Qp. A refinement of V is nothing but an ordered set y = {hi}o<j<j of nonzero

E-linear GK-equivariant K 0&, E-linearly independent maps

hi : V S&, ii q (Bcris,K ®Q, E) -- , 0 < i j,

where A C E and

-jj {7i : GK - E^}ojsy

is an ordered set of continuous characters. Here the appearance of the ordered set of

characters is due to the consideration of trianguline representations. See Proposition

9.2.5 of Colmez for the GL 2/Q,-case.

A refinement for a global Galois representation will be the collection of refinements

at all finite places.

Suppose that the set Tj consists of trivial characters. A refinement is non-critical

if the ordered crystalline periods are in the general position compared to the Hodge-

Tate filtration of Fontaine's module. The precise definition is in Section 3.2.

Refinements and criticality are closely related to the geometry of finite slope sub-

space, as will be seen below.



1.5.3 Eigenvariety of GL 2 over p-adic fields

Let p: GK -+ GL 2(F) be a (fixed) residual representation with K/Q, and F/F, finite

extensions. Fix a versal deformation ring Rver associated to p.

Denote by Z = Sp(Rver[1/p]) the rigid analytic space over Q, associated to Rer,

and Mz the universal GK-representation on Z. We have the characteristic polynomial

PO (T) C Oz(Z)[T] of the Sen operator # on Mz. Let Z 0 c Z be the closed subspace

of Z cut out by PO (0). Set

X 0 = Z 0 x Gm.

Let MO denote the pullback to X 0 of Mzlzo. Write Y for the canonical coordinate

on G.

Applying the theory of finite slope subspace (Theorem 4.3.3) to X 0 , we obtain a

closed subspace

Xf : XfS,o(X 0 , MO, Y) C ZO x Gm.

Theorem 1.5.1. Let E be a finite extension of Q,, and Ao E Ex.

(i) If (z, Ao) c Xfs(E) then there is a crystalline period

ho : V- + (B+s, ®QP E) =A 0 ,

and 0 is a Hodge- Tate weight of Vz.

(ii) Suppose that an element (z, Ao) C Z x G,(E) is equipped with a crystalline

period ho as above. Then

(1) If the Hodge-Tate weights of V are 0, k1 with k1 C QP - Z>O, then (z, AO) lies

in Xf, (E).

(2) Suppose that V, is de Rham of Hodge- Tate weights 0 = ko < k1 such that

HO(GK,Vz E z*) = E,

and the p!-eigenvalue AO is of multiplicity one. Then (z, Ao) lies in Xf,(E).

The proof follows the same line as Kisin's (when K = Q T).iThe point is to



analyze the finite slope deformation rings by computing certain Galois cohomologies.

The results are summarized as Theorem 6.4.4 and Proposition 6.4.5, which correspond

to the conditions (2) and (3) of Section 1.3.1. In fact, we do the computations for

Galois representations of higher dimensions as well, which we hope to be useful for

the study of families of Galois representations in higher dimensions.

Write K, = U>o K(E(")) with 5(n) a primitive pn-th root of unity, and let FK,1

be the maximal pro-p quotient of FK = Gal(Km/K). Denote So as the rigid space

parametrizing the deformations of the trivial representation 1]F K,1 - F

Set

Xnf5 = Xf 5 X SO.

This definition is related to our dimension counting and Colmez's theory of trianguline

representations (cf. Proposition 9.2.5). Both Xfs and Xyf are the local Galois

eigenvariety in our mind, since they contain the same information. Sometimes we call

Xf, the finite slope subspace and Xngf the nearly finite slope subspace in order to

avoid ambiguity.

Denote by OXfs,(zAo,no) the complete local ring at a point (z, Ao , 1o) C Xnfs(E)

for qo E So.

Combining Theorem 1.5.1 with Theorem 6.4.4 and Proposition 6.4.5 (again), we

have the following results.

Corollary 1.5.2. For (z, Ao, o) G Xf 5s(E) with (z, Ao) as in Theorem 1.5.1(ii)(2)

and having distinct Hodge-Tate weights, the complete local ring Oxf,,(z,Aooo) is for-

mally smooth of dimension 1 + 3n.

Corollary 1.5.3. Let (z, A0 , T/o) G Xf 5, (E) be as in Corollary 1.5.2. Then the weight

map on Xnfs given by Sen theory is flat at this point.

Denote by F0 the subset of Z0 x Gm consisting of crystalline points which satisfies

the conditions in Theorem 1.5.1(ii)(2). Thus F0 is a subset of Xfs.

Denote by X.8 (resp. X fs) the union of irreducible components of Xfs (resp.

Xnfs) each of which contains a point in FO (resp. a point (z, A0 , TIo) with (z, AO) E FO).



As a p-adic analogue of the accumulation of classical points in the Coleman-Mazur

eigencurve (Theorem 1.2.1), we have

Proposition 1.5.4. (1) The subset F0 consisting of the points (z, A0 ,rqo), with (z,A 0) A

F0 and rIo = xk (k E Z), is accumulation in X0 5 .

(2) Suppose p admits a universal deformation ring. Any irreducible component of

XO5 has dimension 1 + 3n.

Combining these results above, we obtain

Theorem 1.5.5. Suppose that p admits a universal deformation ring. Let (z,A 0, io) E

Xf 5 (E) with E a finite extension of Qp.

If (z, A) is as in Theorem 1.5.1 (ii) (2), then (z, Ao) is smooth in Xf,. If in addition

the Hodge-Tate weights of V are distinct, then (z, Ao, rjo) is smooth in Xf,.

At last, we remark that the GL1 case fits into our picture, as the GK-characters

with a crystalline period are nothing but Tate twists of unramified characters, and

the weight space on Xf, is a point since we normalize the weight of a character to be

zero.

1.5.4 Eigenvariety of GL 2 over number fields

Let F be a number field of degree n, and S a finite set of places containing p and all

the archimedean places. Let p : GF,S - GL 2(F) be a residual representation with F

a finite field of characteristic p. Assume that p admits a universal deformation ring

Runiv. Set Z = Sp Rni"[1/p].

We define

X = Z x H GM, X, = Z, x Gm, Xp := 7X..

We have the nearly finite slope subspaces

Xv,n5s = X 5 (XV, MV, Y)



for each place v p in F.

By the versal property of the local deformation rings of PIGFv, we get a map

between analytic spaces T : X -± Xp. On the other hand, we have the natural

inclusion Hv1, Xv,nf s - XP.

We define X = X(GL 2 /F) to be the fibre product of X and B , Xvny over X,

via the natural maps above, which we call the Galois eigenvariety of GL 2/F-

Define n, = [Fv : QJ and fv := [Fv,o : Q,] for v | p a place in F, where F,o is the

maximal unramified extension of Q, inside Fv. By Theorem 1.5.1 and the definition

of global Galois eigenvariety, we have

Theorem 1.5.6. Let z e Z(E) with E a finite extension of Qp. Let A = (Av )v, with

A C E' , and q = (ijv,)v, with 71 C So,..

(i) If (z, A, TI) E X(E), then for any place v above p, there exists a crystalline

period

hv : V|GFv ®Qp /v -+ (Bcris ®c, E)?"-Av.

(ii) Suppose that for any v~p, the element (zr, Av) G Zv x Gm(E) is equipped with

a crystalline period as above. If for any embedding F, <± Q, the data above satisfy

either Theorem 1.5.1(i) or (ii), then (z, A, rI) lies in X.

We note that, in Theorem 1.5.6(ii) whether (z, A, r1) E X lies in X is independent

of the choice of map aver -Rniv, as the existence of the crystalline periods is
PIGFI,

defined globally.

Let X0 c X be the union of irreducible components of X containing a closed point

as in Theorem 1.5.6(ii).

Theorem 1.5.7. If p is odd, then an irreducible component of X0 has dimension at

least 1 + n.

By a consideration along the line of the Bloch-Kato conjecture, we expect the

lower bound above to be the true dimension of the global Galois eigenvariety.



1.5.5 Infinite fern in local Galois deformation space of GL 2:

an application

For a modular newform which is unramified at p, one has to specify one of the two

Hecke eigenvalues in order to relate f to a point on the eigencurve, which motivates

the concept of refinement. On the other hand, given such a modular form, we have two

different points on the eigencurve related to it, corresponding to different refinements.

In another word, the image of the natural projection from the eigencurve C to (the

analytification of) the generic fibre of universal deformation space contains infinitely

many double points, which is the "infinite fern" in the language of Mazur.

Originally, Gouvda and Mazur [18] prove that cusp forms on F (N) with N running

over integers not divisible by p give a Zariski dense set of points in (the generic fibre)

of a global universal deformation space. The local analogue of infinite fern is given

by Kisin [21], aimed at the study of p-adic Langlands correspondence. Kisin's proof

is based on his construction of the finite slope subspace Xf,(GL 2/'Q). We will apply

Kisin's method to obtain an infinite fern for GL 2 /K, with K a finite extension of Q,.
A similar result is also obtained in [30] via the deformations of B-pairs in the sense

of Berger.

Theorem 1.5.8. For a representation p : GK - GL 2(F,) such that the framed uni-

versal deformation space is irreducible and smooth, the crystalline points are Zariski

dense in the generic fibre Z of the Galois deformation space.

We pick the set F c Z x Gm of all 2-dimensional crystalline GK-representations

with distinct Hodge-Tate weights satisfying the conditions in Theorem 1.5.1(ii)(2)

and the condition

v,(A 0) < k,

as well as their Tate twists. The last condition implies, by Lemma 2.2.2 and Theorem

7.1.1 , that F c Xnfs. The point is, the same representation with the other <pf-

eigenvalue, is also an element in F.

We can show that F is non-empty, thanks to the crystalline deformation theory



of Kisin [22] and the Fontaine-Laffaille theory.

Then the flatness of weight map we proved before implies that the points in F

are Zariski dense in any irreducible component of Xyf whose interSection with F is

non-empty.

Finally, we use the natural projection from Xsf, to Z to get an infinite fern. As-

suming the irreducibility and smoothness of Z, we reduce to counting the dimensions

of complete local rings of points in the Zariski closure Y C Z of the crystalline points

z coming from F, via the projections. It turns out that dim SpfOy,z = dim SpfOz,2.

Then we are forced to have dim Y = dim Z since the regular locus is open in an

affinoid.

1.6 Outline of the paper

In @2, we first describe the construction of Weil-Deligne representations via Fontaine's

module, which leads to the definition of refinements of Galois representations. It sug-

gests how to generalize Kisin's theory of finite slope subspace, as is carried out in

@3. We recall the necessary Galois deformation theory from [26] in @4, which, com-

bined with the computations of Galois cohomology in 55, gives a precise description

of the Galois deformation ring of a representation equipped with a refinement. The

main results about local and global Galois eigenvarieties are in §6. Using the con-

struction of local eigenvariety, we get the local infinite fern for GL 2 in @7. Finally,

in the last Section we recall the results on trianguline representations of Colmez and

Bellaiche-Chenevier, which provide a parallel way for the study of families of Galois

representations.



Chapter

Preliminaries in p-adic Hodge

theory

We recall some basic facts about p-adic Hodge theory, and refer the reader to [17],

[16] and [9] for more details.

Denote by Oc, the ring of integers of Cp. Let R = 1 m Oc /p be Fontaine's

ring, which is equipped with a (continuous) GQ,-action. Set x( limko ., k for

x = (xi)>o E- R, where zk E OC, is a lifting of Xk. Then

R = {x = (z'));>O EX Oc, (X(+),) = 

with the addition and multiplication

(x + y) = lim (x(i+k) + y(i+k)),
k-4++C

The ring R is perfect of characteristic p and is equipped with a valuation

VR(X) :- VP(X( 0 )).

The projection

R -* Oc,1p, (zi)i>o X0

(xy)(i) - Y



lifts uniquely to a projection 0 : W(R) - Oc, by the universal property of the Witt

ring W(R). Define

Bn -- m W(R)[1/p]/(Ker(0))"

as the Ker(O)-adic completion of W(R)[1/p]. The topology in B{a which is induced

from the inverse limit and the canonical topology in W(R) is called the weak topol-

ogy. On the other hand, as an abstract ring B+a is a discrete valuation ring with

uniformizer
oo

t=log[E] = )7(-1)"n--([_] - 1)" /n,
n=1

whose residue field is C,, where E = (1, E(1),- ) E R with E(n) a primitive p"-th root

of unity. Set BdR = B'a[1/t], the ring of de Rham periods. It comes with a decreasing

filtration {Fil'BdR~iEz with

Fil2BdR = tBa-

Let Acris be the p-adic completion of the divided power envelope of W(R) with

respect to the ideal Ker(O). We have t E Acris. The Frobenius map on W(R) extends

to a map o on Acris, which acts on t by

bo(t) - pt,

because the action of GQP on E is via the cyclotomic character. Set

Bcis = Acris(1/p], Bcris = Acris[l/t].

The P operator on Acris extends to Bc and Bcris The natural map W(R) - Bfa

extends to an embedding Acris " BXa, whence embeddings Bc Bcris + B{R'

Let p C R be with p(O) - p. Define an element in Bja

U = (1 )"

n>1

1([pi]/p - 1)n"/n,



which is transcendental over the fraction field of Bcris and gives an embedding of

Bst := Bcris[U]

into BdR. Then Bst is equipped with the monodromy operator N : Eiyo buiu

- E> ib>nu- , the unique Bcris-derivation such that N(u) -1.

The filtration on BdR induces filtrations on Bcris and Bst. Namely

Fil'Bcris := Filt BdR n Bcris,

We define

Fil'B+ := Fil2Benis Fi 1 dR, nBc Vi C Z>o.

Write BHT

B GKHT

eff-ZCp(i). For K/Q, a finite extension, we have that

BGK =GK = BGK BGK
-R dR -r (Bcri-es -

For * = st, cris, we define

BK = B+OKO K, B*,K = B* OK 0 K

which are equipped with the induced filtration. One may choose (cf. Prop.8.10 [9])

an element tK e Bcris,K such that

<p'(tK) = VIKtK

and

9 - tK = XK(9)tK

for g E GK-

Remark 2.0.1. Note that although B+ C Fil"Bris, we have for any <o-module D

Fil'Bst := Fil'BdR nBst.

K0.



(i.e. a finite dimensional Ko-vector space equipped with a Ko-semi-linear <o-action)

HomKo[ ] (D, Fil7Bcris) = HomKo[] (D, FilBcis)I Vi > 0

by (5.3.7) [16], whence

HomK [,f (DK, FilBcrisK) = HomKo [f](DK, Fil'Bcris,K) V > 0

for DK= DOKo K, keeping in mind that multiplication by t' induces an isomorphism

Fil0 Bcris,K ~ Fil'Bcris,K

Let E be a p-adic field. Let V be a (continuous) E-representation of GK.

* = HT, dR, st, cris denote

For

D* (V) = (B* 09, V)GK

and for * = st, cris, we denote

D*,K(V) = (B*,K ®Q, V)GK

Definition 2.0.2. Let * = HT, dR or * = st, cris. We say V is Hodge-Tate, de Rham

(resp. semi-stable, crystalline) if dimE D,(V) = dimE V (resp. dimE D*,K(V) =

dimE V).

We say V is potentially semi-stable (resp. potentially crystalline) if V|Gi is semi-

stable (resp. crystalline) for some finite extension K'/K.

It follows from the construction of the period rings that potential semi-stability

implies de Rhamness. Conversely, de Rhamness implies potential semi-stability by

the main result of [2].

Let R be an affinoid algebra over E. Let V be a locally free R-module of finite

rank with a continuous GK-action. For * = HT, dR, st, cris denote

D,(V) = (B* og, V)GK,



and for * = st, cris, we denote

D*,K(V) = (B*,K Q, V)GK

By the results of [3], they are locally free K &g, R-module of finite rank. Similarly, for

* = HT, dR, st, cris. We say V is Hodge- Tate, de Rham (resp. semi-stable, crystalline)

if rankK®QRjD*,K(V) = rankRV.

2.1 Fontaine's construction of Weil-Deligne repre-

sentations

Let V be an E-representation of GK with E a finite extension of Q,. Suppose V is

de Rham. Then its E-dual V* is also de Rham. Define

Dpst-(V*) = 
1 L(Bst oQ, V*)GL

with L runs over finite extensions of K. Note DPSt(V*) is a finite free Q"r ft E-

module with a Q"r-semi-linear action of GK, which is linear for the action of the inertia

subgroup IK. It is also equipped with the monodromy operator N induced from that

on Bst, and the Frobenius-semi-linear operator p, i.e. o acts on -Q, = W()Fp) by

Frob, the arithmetic Frobenious.

Let deg : WK - Z be the canonical map such that w E WK acts on Qurs

Frob -deg(w). Write o- E Gal(Q"r/Ko) for the inverse of the relative Frobenius of Q"r

over K 0 . Then deg(-) = f.
Note that J = DPSt(V*)N=0,IK is a discrete Qur o&, E-module with semi-linear

GK/IK-action, which is generated by its Gal(Q}"r/Ko)-invariants J' = JGal(QgY/Ko)

On the other hand, we observe that

Dst(V*)N=0,IK,Ga1(Qgr/Ko)

(Bst (&E V*) 0N=,GK = Dt (V*)N=O = Dcris(V*).



Then

J ~ J' OKo Qur = Dcris(V*) OKo Qur.

Note that w E WK acts trivially on Dcris(V*) and acts as Frob -deg(w) on Qur, and

p acts on Q, as Frob,. Therefore we can define a new Q"r-linear action of WK on

Dyst(V*) by twisting Odeg(w) to the semi-linear action of w c WK.

The new (linear) action of WK, together with the operator N, defines a represen-

tation of the Weil-Deligne group WDK on Dyst(V*). In particular, the or-action on

J' = Dcris(V*) is Id - odeg(a) f

Noting Dcris(V*) = HomE[GK](V, Bcris 9q, E), we get

Proposition 2.1.1. Keep the notation above. Assume A C E is an eigenvalue of o-

on Dpst(V*). There exists a non-zero GK-equivariant E-linear map

V -+ (BcrisK &Q, E).

In particular, if the Hodge- Tate weights of V are all non-negative, the map above

factors as

V + (Fil0 Bcris,K OQP E)O f,

hence as

V -+ (Bcris,K OQP E)"f=.

Proof. This follows from the above discussion, with the last assertion following from

Remark 2.0.1.

Example 2.1.2. We know the compatibility between Weil-Deligne representations

via Fontaine's construction and those via the classical local Langlands correspondence

in GL2 /Q case (see the main result of Saito [31]).

Let N be a positive integer prime to p. Let f be a classical elliptic modular

eigenform of level p'N, r > 0, and of weight k > 2. Denote by A the Up-eigenvalue of

f if r / 0, and one of the roots of the Hecke polynomial of f at p if r = 0. Let Vf be



the E-representation of GQ associated to f, for some finite extension E/Qp. By the

compatibility between the Weil-Deligne representation Dyst(V*| G,) and that via the

classical local Langlands correspondence, the local L-factor

det(1 - o-p-S|(Dpst(V C|,p) ®E9QPQur K)N=oIK)1

coincides with the local L-factor attached to the modular form f. This implies A is an

eigenvalue of o- on DpSt (V I )oEQ, Qur K, hence is an eigenvalue of (o on Dcris(Vf |GQ)

by Prop. 2.1.1.

We thus have, keeping in mind that the Hodge-Tate weights of Vf |GQ are non-

negative, a non-zero GQ,-equivariant E-linear map

V5|IGo, -- ( B|is &U, E) p=A.

2.2 Weak admissibility of a filtered ( p, N)-module

Recall that E and K are finite extensions of Qp, and f = [K0 : Q,] with Ko the

maximal unramified extension of Q, inside K.

Lemma 2.2.1. Let R? be a Banach algebra over Qp. We extend the ! -action on

(Qur)X to (Ourg QP)x by R-linearity. For any unit a E RX such that a - 1 is

topologically nilpotent, there exists a unit u C (QPr'QgR)x such that ,/(u) = u.

Proof. We just need to apply the proof of Lemma 3.6 [26] to of. E

Corollary 2.2.2. For any A C C, and k E Z>1 such that vK(A) < k, we have

Filk (Be+s~ g, E) f=A = 0.

Proof. Let x E Filk(B K O®, E)? =A. Pick an integer q so that qvK(A) is an integer,

which we denote by n. Thus yf(X) = AqXq = wnazq for some a E Ox. By Lemma

2.2.1 we may choose an element u E (Qur o9, E)X so that pf(u) = an. Replacing zq

by z we have pf(z4) - wz. Note that c E Fil k(B+ E)' =



We claim that the assumption n = qvK(A) < qk implies that FilqkB+ ,= = 0.

For this we just need to show that Bcf=P-3 = 0 for any s E Z;>. Let y c Bj=

then we see y = pskok(y) for any k E Z>1. Thus y c Okez>1p'kBcris = 0 with the last

equality being seen by definition of Bcis. This proves the claim.

Hence

F (Bis,K Q, E)P'-- = Fil "l"" oq, K ®Q, E = 0.

D

Lemma 2.2.3. Let V be an E-representation of GK which is equipped with nonzero

GK-equivariant E-linear maps

h' : V -+ Filk BdR Q, E, k E Z> 1

and

h : V - (BeIK &3Q, E)f =A, A c E.

If vK(A) < k, then the E 00, K-module DdR(V*) is of rank at least 2.

Proof. We denote by hdR the composition of h with the natural inclusion (B+isK Q,

E)pf=A - BdROQp E. By Lemma 2.2.2, (FilkB+is,KQP E)'f=A = 0. This implies that

hdR does not factor through FilkBdR OQ, E, hence is E O®, K-linearly independent

of h'. This concludes the proof.

Proposition 2.2.4. Let V be an N-dimensional E-representation of GK. Suppose

there is a non-zero E-linear GK-equivariant map

h : V -± (B g E)S p F =A

with A c E.

If h induces, via the inclusion (B+sK 0, F)Pf= -+ BdR , F, a non-zero

E-linear GK-equivariant map hHT pV -± C(k) O, E, then vK(A) > k. Moreover,



(1) If VK(A) = k, then there is an element a c (Q, Q, E)x such that V has a

one dimensional quotient representation urx k, where urQ is the unramified character

sending the relative geometric Frobenius FrobKI to a.

(2) If V is de Rham with Hodge-Tate weights 0 < ko < ... kN-1 and k =kN-1,

then V has a one dimensional quotient as in (1).

Proof. Twisting h by XKk, we get a non-zero E-linear GK-equivariant map V(-k) -±

(B+isK p E)P'=m k. Since the target lies in Fil0 BdR®QpE, we must have vK>(V ) k

0. The first assertion follows.

For (1), since AmKk is by assumption a unit, we must have

(B+is',K (9 E) " = EV AwiKk - a

for some a E (Qur E)x such that p 1 (a) = Aw'ka, by Lemma 2.2.1. This gives

rise to a non-zero E-linear GK-equivariant surjective map

V(-k) -+ E- a,

hence the desired quotient after twisting by X. This proves (1).

For (2), we just need to show VK(A) N-1 , by (1). As V is de Rham, that

VK(A) K kN-1 follows from the weak admissibility of Dst(VIGK, ), for some K' which

is a finite extension of K so that VIGK/ is semi-stable.

Lemma 2.2.5. Let i < j C Z U {±oo}. Let B* = BdR or Bcris,K. For any finite

extension K/Qp, we have for r = 0, 1 that

H r( {0, i > 1 or j < 0;
Hr(GK, Fil'B*/FiF B*) ~

K, i < 0 andj > 1.

and

Hr (GK, Fil'B*/FiFjB*) = 0, Vr > 2.



Proof. We just need to show the Lemma for * = dR, since gr(BdR) gr(Bris,K)-

Recall by Theorem 1, 2 of Tate ([34]) we have for r 0, 1

Hr(GK, Cp)= K, H'r(GK, Cp(k)) = 0, Vk E Z\{0}.

and Hr(GK, Cp(k)) = 0 for any integers k and r > 2.

Consider the short exact sequence

0 -+ Cp(j) - FilBdR/Filj+1 BdR + FilBdR/Fil3 BdR 0 0

and the long exact sequence it induces. Then an induction on j - i gives the lemma

for i, j finite. The rest are obtained by taking limit.

Proposition 2.2.6. Let V be a de Rham (resp. crystalline) E-representation of GK

with Hodge-Tate weights ko < ... < kN-1- Then a nonzero E-linear GK-equivariant

map

h: V -+ Cp(kN-1)®Qp E

induces a nonzero E-linear GK-equivariant map

h : V - FilkN- 1B, Q, E,

where * - dR or cris, K.

Proof. We show the case * dR, as the other case goes over verbatim.

For any 0 < j N - 1, we have a short exact sequence

0 -± Filki+1BdR -- + FilkJ BdR --- Filk iBdR/Filkj+1BdR 9 0.

It induces the exact sequence

HO(GK, Filk JBdR &Q, V*) e H (GK, Filk JBdR/Filk.+1BdR OQp V*)



-- H (GK, Filk+1BdR OQp V*)-

The obstruction class for lifting h : V -- C,(kg) Q, E = FilkJ BdR/Filk +1BdR 0 Qp

E to Filkj BdR &Qp E is the image of h under the natural map by.

On the other hand, we have

H'(GK, Filkj +1BdR OQp V*) ~ H'(GK, Filkj+1 (BdR OQ, DdR(V*)))

as V* is de Rham. As the latter is a successive extension of H 1 (GK, Filkj+1-kiBdR 0Qp

E) for i = 0, ... , N - 1, each of which is trivial when j = N - I by Prop. 2.2.5, the

result follows.

Corollary 2.2.7. Let V be a 2-dimensional F-representation of GK with Hodge-Tate

weights 0, k, k > 1. Suppose there is a non-zero E-linear GK-equivariant map

h: V -(B + QE) --A

for some A E E.

(1) If vp(A) = 0, then V is de Rham and we have an extension of representations

o E --> V -> ur, -+ 0

with ura the unramified character sending the relative geometric Frobenius FrobK to

some a c (Q,"y g, E ) and e a character such that E(IK) is finite. The extension

above may not split.

(2) If vp(A) = k, then we have an extension of representations

0 -e - V -+ urx)K k 0

with ur, and E as in (1). If V is in addition de Rham, then the above extension splits.

Proof. In (1), we get, by Prop. 2.2.4, a non-zero E-linear GK-equivariant surjective



map

V -> E - a

for some a E (Opur E)x. The kernel of the above map is a character of Hodge-Tate

weight k, hence of the form EX k with E a character under which the inertia has finite

image.

Then V is de Rham by Prop. 2.2.6 and Cor. 2.2.3. The obstruction for the

extension to split lies in H2(GK', Qp(k - 1)) by Hochschild-Serre, with K'/K a finite

extension such that VIGK, is semi-stable. On the other hand,

dim H'(GK, Qp(k) nI k 1
9 n' + 1,k > 1.

with n' = [K' : Qp], by (3.9) of [4] (see also Prop. 6.2.1). Therefore the extension is

not necessarily split.

In (2), we get the extension similarly, again by the use of Prop. 2.2.4.

When V is de Rham, the obstruction for the extension to split lies in H'(GKI, Qp(-k))

(for some finite extension K'/K so that VIGK, is semi-stable) by Hochschild-Serre

again. In this case, however,

H'(GK', Qp(-k)) -0 Vk> 1

by (3.9) of [4].

M



Chapter 3

Refinements of a Galois

representation

3.1 Definition

Let V be a (continuous) N-dimensional E-representation of GK. For a crystalline

period (resp. de Rham period, Hodge-Tate period) of V we mean a nonzero E-linear

GK-equivariant map V -± Bcris,K &Q, E (resp. V -+ BdR &Qp E, V -± BHT 3Qp E).

Note that pl is a Ko-linear operator on the Ko[o]-module Dcris,K(V*). Given

A - E, a nonzero E-linear GK-equivariant map

h : V -+ (Bcris,K OQP E) -A

induces a crystalline period via the natural Galois-equivariant embedding

(Bcris,K 9Qp E)If=> A Bcris,K Qp E,

which we denote by

hcris : V -+ Bcris,K Q, E.

When we say some crystalline periods factoring through different Of-eigenspaces

are E-linearly independent (or simply distinct), we always mean they are E-linearly



independent as elements in Dcris,K (V*)- We use similar conventions for de Rham

periods and Hodge-Tate periods.

Definition 3.1.1. Let V be an N-dimensional E-representation of GK- For 0 <

j K N - 2 a positive integer, write J = {0,--- ,j}. A J-refinement of V is a triple

R = (r,,jj Aj) with

j = j{j: GK a Ex}osisj

an ordered set of continuous characters,

AJ = (Ai)o<i<j E E 4

and

oj {h : V OQ, T1 - (Bcris,K Q, E)"f=-A} 0<i<j

an ordered set of E 00, Ko-linearly independent crystalline periods.

We will simply call a J-refinement of V a refinement when it is obvious what J

is.

Let R = (rjj, Oj, Aj) and R' = (',, A') be two J-refinements of V. We say

they are equivalent if for any hi E j, h' E [', there is a unit a, C Ox and a non-zero

element Pi E (O ,r E) ='=, such that h' = hi -pi. Note that, this being the case,

we have that rI equals to the product of qj and the unramified character sending the

relative geometric Frobenius to ai, and that vp(Ai) = vp(A').

A J-refinement is called ordinary if there exist integers {kilici such that each

hi (E j factors through Filk, (Bcris,K 9Q, E)P' Ai, and the natural composition

V of, qi ± Filki(Bris,K 9Q, E)< '=i " FilkIBdR ®Qp E -* Cp(kj) O, E

is non-zero. This being the case, we have, for any i E J,

Filki(Bcris,K ®Qp E) f-Al E -u

for some ui E KO Og, O such that of(uj) = Ajuj, by Lemma 2.2.1. As the above



composition is GK-equivariant, the twist by 71; 1 of the unramified character sending

the relative geometric Frobenius to ui is a quotient representation of V. In particular,

a GK-representation (of dimension at least two) which can be equipped with an

ordinary refinement has to be reducible.

3.2 Criticality of refinements

Assume further that V is with integral Hodge-Tate weights ko < ... kN-1. If the

characters T]j in R are all trivial, let Dj,crjs(V*) denote the Ko O, E-submodule of

Dcris,K(V*) generated by the crystalline periods {h,}O<,<i. Then a J-refinement R

being non-critical means

Dcris,K(V*) = Dicris(V*) G Filki+1Deris,K(V*) - 01

for all i such that ki -f ki+1. This is used in [1] for GQ -representations with distinct

Hodge-Tate weights.

In particular, in the case that V is of dimension 2 with 0 = ko < ki, the refinement

R = (1E, {ho}, {A0 }) is non-critical if ho does not factor through Fil1 Bcris,K ®Q,

E. Notice that the refinement is always non-critical when V has equal Hodge-Tate

weights.

Example 3.2.1. For V a 2-dimensional crystalline GQ,-representation with Hodge-

Tate weights 0, k > 0, such that the p-adic valuation of any <p-eigenvalue on Dcris(V*)

is strictly smaller that k , there are always two non-equivalent non-critical refinements

of V.

(2) The restriction to GQ, of the p-adic Galois representation associated to an

elliptic modular form of weight 1 has Hodge-Tate weights (0, 0), hence admits only

ordinary refinements, which have to be non-critical.

In GL2 /Q case, the following results of Coleman and Breuil-Emerton explain the

meaning of criticality on the automorphic side.



Theorem 3.2.2 (Coleman inequality). Let N be a positive integer such that p { N.

An overconvergent elliptic eigenform f of level prN, r > 0, and integral weight k > 2

is classical if

vp(A) < k - 1, or f is not in the image of the map )k-1.

Here A is the Up-eigenvalue of f if r # 0, and either of the roots of the Hecke

polynomial of f at p if r = 0, and E is the operator acting as q d on q-expansions.

(We remark that in Thm. 3.2.2, the condition has to be checked for both of the

Hecke eigenvalues in the case r = 0.)

In the first case of Thm. 3.2.2, the refinement of Vf GQp given by the crystalline

period corresponding to A (cf. Example 2.1.2) is non-critical, by Lemma 2.2.2. In the

second case, vp(A) = k - 1 and it is not easy to see if the refinement is non-critical.

Theorem 3.2.3 (Thm.1.1.3, [5]). Let f be as in Thm. 3.2.2. The refinement of

V5|GQ, given by the crystalline period corresponding to A is critical if and only if f is

in the image of the operator Ek-1.



Chapter 4

Finite slope subspace: the general

theory

4.1 Sen theory on p-adic Hodge structures in fam-

ilies

We recall Sen theory from the summary (2.2)-(2.6) of [26].

For L a finite extension of Qp, we denote L, := UN L(,(n)) with E(n) a primitive

p"-th root of unity, and write FL = Gal(L0 0/L). Let FL, be the free (quotient)

part of FL and let L,0 be the subfield of L,0 corresponding to FL,i.

HL = Gal(Q,/L 0 ) and L. the completion of L0,. Recall that

CHLLpC" =0L

by Ax-Sen-Tate.

Let E and K be two finite extensions of Q, such that E c K. Let X be an

E-analytic space and M a locally free Ox-module of rank n, with a continuous GK-

action.

Let Sp R c X be an affinoid admissible open subset. Again denote by M the

:= c teKEZ. We may choose (by Prop.6 of

Denote by

restriction to Sp R and write 7No



[33]) K' a Galois extension of K which is big enough so that the k' ER -module

(CpEMK')HK' is free of rank n, and we have a natural isomorphism

(CpEMK' )HK +kCp MK OE Cp.

The 6tale descent shows (CpEM)HK is a finite flat R-module, and we have a

natural isomorphism

(Cp(EM)HK C C M OE Cp-

Then Prop.6 of [33] allows us to choose a finite extension K'/K so that (CpEMK' )HK

is free over K' OE R1, and to find a basis of (CpEMK' )HK' such that the K' OE R-

module W, generated by the basis is FK',1-stable. Let -y be a topological generator of

FK',1 'p- Let r C N be big enough and define an element # E EndK'®ElZW, by

log (7P'|IW. )
logXK' (7)

One checks that # is well-defined and is independent of the choice of r for r big enough.

By extension of scalars to K' og R, we get an operator on (CpEMK')HK', which

is again denoted by #. By P. 659 of [33], the characteristic polynomial PO(T) of # lies

in (KOER -[T.

We will globalize Sen's operator # to get a polynomial P0(T) E 0(X) [T] attached

to the Ox-module M, once we check the compatibility with change of coefficients of

the above construction. That is, we need that for any map of E-Banach algebras

R R', the natural map

(CpEMK' )HK, /9'JZ'_+ (MK' /ZJZ') HK,

is an isomorphism. This is seen easily by using the previous isomorphism

(CpEMK' H 0 ~ MK' OE CP-

Remark 4.1.1. To an E-representation V of GK, we can attach Sen's polynomial



PO (T) E (E 09, K)[T] by the discussion above. For a given embedding t : E " K,

the zeros of the specialization PO,L(T) E K[T] via t ®Q, 1 : E ®9, K " K are called

the Hodge-Tate weights of V with respect to t. As t runs over all the embeddings

E " K, we get a collection of numbers in K, which are the Hodge- Tate weights of V

regarded as a Qp-representation of GK. When K = Qp and p E Qp, the multiplicity

with which p appears as a Hodge-Tate weight is independent of the embedding t.

4.2 Periods on families of Galois representations

We summarize and modify some results in Sec. 2, Sec. 3 and Sec. 4 of [26].

Let k < i be non-negative integers. Keep the notation in the previous subsection.

Proposition 4.2.1. Suppose PO(T) = (T - k)"Qk(T) for some r E Z>1 and some

polynomial Qk(T) E Ox(X)[T].

(1) The 'R (9E K-module HO(GK, Cp(k) EM*) is finitely generated and is killed

by det($ + k), which is finite flat of rank r if Qk(k) is a unit.

For any map 0 : R - R' between noetherian Banach E-algebras such that

0(Qk(k)) is a unit, we have a natural isomorphism

H 0 (GK, Cp(k)>EM*) o7 R' ~HO(GK, Cp(k)E(M* 07 RI)).

(2) Let i > k + 1 be an integer. HO(GK, FilkBdR/t'Bd R$EM*) is a finitely gener-

ated 1R E K-module. If Qk(v) is a unit for any k < u < i - 1, then

H 0 (GK, FilkBdR/tiBdR®EM*) ~ H 0 (GK, Cp(k> EM*)-

If Qk(v) is a unit for all v ;> k, then

H 0 (GK, FilkBdR EM*) ~ HO(GK, FilkBdR/tiBdREM*) ~ H(GK, Cp(k)bEM*)-

Proof. These are easily seen by the proofs of Prop. 2.4 and Prop. 2.5 [26].

Dl



Let f = [Ko : Q,] and k > 0 be integers.

Proposition 4.2.2. For any A E Qx, there exists a finite extension E/K and a

positive integer io depending only on vp(A) and k, such that for any i > io, the

natural map

(Filk B+isK OK E)= FilkBdR/FiliBdR OK E

is an injection with closed image.

Proof. One deduces this by the use of the argument (3.3)-(3.5) [26], replacing Bcris, S0

loc.cit with Bcris,K, O E

Corollary 4.2.3. Let R be a K-Banach algebra and Y G R'. If there exists an

element A E E with E a finite extension of K contained in R such that YA-1 - 1 is

topologically nilpotent, then for i > 0 we have an injection

(FilkBciSK ®KRR)f FilBdR/FiliBdR$KR

with closed image.

Proof. Using Lemma 2.2.1, we have lu E (QP"NQoZ)X such that S0I(u) = (Y 1 A)u.

Then by multiplying u on both sides of the above map we reduce to the case Y = A.

Applying OSERZ to the map

(FilkBcisK o F)= " FilkBdR/FiliBdR 9Qp E

obtained in Prop. 4.2.2, we are done. EZ

Let x = (xi);>o C R, Fontaine's ring. Suppose vR(x) > 0 and define the power

series

P(x, T)K

where [y] c W(R) denotes the Teichmiiller lifting of an element y E R. Note that

one has the identity

S0f (P(x, T))K T 1P(x, T)K-



Proposition 4.2.4. Let R be a Banach algebra over K and az E R such that az - 1 is

topologically nilpotent. Then the R-submodule of (Filk B' is, KKR spanned

by

{t Pk xw -)K I (0)

is dense.

Proof. One notices that in the case k = 0 the Proposition follows from the same proof

as that of Cor. 4.6 [26]. For any k, the result follows since we have an isomorphism

of Q,-topological spaces

B+ f-=K ~ ilk B+ =w?
cris,K (F cris,K /

given by multiplication by tk.

4.3 Construction of finite slope subspace

Let E be a finite extension of Qp. Write XE' X OE E' for X a rigid analytic space

over E and E'/E a finite extension. For a map X' -* X of rigid spaces and Y an

analytic function on X, we denote by Y' the pullback to X' of Y. For Q an analytic

function on a rigid space X, we denote by XQ the complementary of the vanishing

locus of Q.

Definition 4.3.1. Let X be a K-analytic space and M a locally free Ox-module of

finite rank, equipped with a continuous GK-action. For a given invertible function

Y E Oj(X), we say a map 0 : X' -* X between two analytic spaces over K is Y-

small if there is a finite extension K' of K, and an element A E Ox , (X',) such that

K'(A) is a product of finite extensions of K and Y'A-1 - 1 is topologically nilpotent

on X,.

We say a rigid space X is Y-small if the identity map on X is Y-small.

For example, in the proof of Thm. 4.3.3, we consider the case that X' = Sp R' is

a connected affinoid over K and A E K' C R', so that we will be able to apply Cor.



4.2.3.

Remark 4.3.2. One sees that in the following two cases we have Y-small maps,

which will be the situations we work in.

* For a point x E X and a positive integer k the inclusion

Sp(Ox,x/mi)aX

is Y-small for any invertible function Y on X, where one can take K' = K and

A = Y(x). Here mx is the maximal ideal of the local ring Ox,x.

* If x C X is a closed point and Sp R is a sufficiently small affinoid neighborhood

of x, then the inclusion Sp R -- X is Y-small for any invertible function Y on

X, where one can take A =Y(x) and take K' to be the residue field of x.

Let X be a separated K-analytic space and M a finite free Ox-module with

a continuous Ox-linear GK-action. We have Sen operator # and Sen polynomial

PO(T) C Ox(X)[T] attached to M.

Theorem 4.3.3. Let k > 0 be an integer, and let Xk C X be the closed subspace

on which PO(T) = (T - k)Qk(T) for some polynomial Qk(T) E Ox(X)[T]. Let

Y C Ox(X)x be an invertible function on X.

There exists a rigid Zariski closed subspace Xfs,k - XJs,k(X, M, Y) of Xk which

is characterized by the following two conditions:

(i) For any v E Z>k, Qk(v) is not a zero-divisor on Xfs,k.

(ii) For 0 : SpR' -+ X any Y-small map of K-analytic spaces factoring through

Xk for every integer v > k, it factors through Xfs,k if and only if any '-linear

GK-equivariant map

hez, :*M(SpR') -+ Filk BdRj KR

factors through (Filk B+is, K -I) fY/

Moreover, the formation of Xf5 ,k commutes with base change by flat maps.



Remark 4.3.4. In the setting of Thm. 4.3.3, we fix the p-adic field K and take X

to be an rigid analytic space over K, which does not lose any generality. Precisely,

suppose that X is defined over a p-adic field E and M a finite free ox-module with

a continuous Ox-linear GK-action. In the case E C K, we may apply Thm. 4.3.3 to

the base change XK to K of XE and regard the resulting subspace as an E-analytic

space via the natural morphism Sp K -+ Sp E. In the case K C E, we may apply

Thm. 4.3.3 to X,(K) (and the Sen polynomial on it) for each embedding T : K " E

and obtain the finite slope subspace Xf,,k C XT(K) which depends on the embedding

T. Alternatively, we could obtain an analogous subspace independent of the choice of

embedding T, by simply requiring the conditions (1) and (2) of Thm. 4.3.3 hold for

any T(K). We choose to state the theorem as in Thm. 4.3.3 in order to simplify the

notations hereafter.

Proof of Theorem 4.3.3. The uniqueness and that the formation of Xf,,k commutes

with base change by flat maps are formality, as are shown in (5.7), (5.8) and (5.9) of

[26].

For the existence of Xf,,k, we may assume X = Sp R is an affinoid. This can be

seen by replacing Bcris, p in (5.9) [26] by Bcris,K, -

Furthermore one can assume SpR to be small enough, so that IY||Y'| < IL.

Here I denotes a residue norm on SpR, which is a semi-multiplicative K-algebra

norm. Fix an element A E Q, such that |Y- 1 1 < |AI K |Y| and fix a finite Galois

extension E/K which contains A. Then we check easily that |wKAY4| < 1, which,

together with Cor. 4.4 of [26], implies tKfP(x, w KYA--) is a well-defined element

in (FilkBciisKSKER OK K) 4 , where x(') E 0 c, with norm strictly smaller

than 1.

First note that a map h-R in question factors through (Filk Bc+isKK

if and only if this holds for its composition with the projection from FilkBdR to

FilkBdR/FiliBdR for i big enough, by the assumption that 0 factors through XQk(v)

for every integer v > k.



Now we consider a non-zero R-linear GK-equivalent map

h: M -± FilkBdR KR- (4.1)

We further choose by Cor. 4.2.3 a sufficiently large integer i (depending on vp(A) and

k) so that the natural map

(FilkBeiiK OK ER)d-"lR <+ FilkBdR/FiliBdR OK ER

is injective with closed image. We denote its cokernel by UX, which admits an orthog-

onal basis, which in turn gives rise to an orthogonal basis of the R OK ER-module

UA9KR by a result of Coleman (A1.3, [10]).

Now consider the composition

h': M @K ER h®1  Filk BdRKR K ER -> FilkBdR/FiliBdR$KR K ER

tk P(x w1y'\-1)
Filk BdR/FilBdRbK7Z OK ER -*> UA5KR-

We define the ideal I'RKER(A, x, m, h) C kOKER to be generated by the coefficients

of h'(mo 1) (m E M) written in the orthogonal basis of the ROK ER-module UA(KR-

Here we note that EgEGal(ER/K) 'R0KEj (g -A, x, m, h) is invariant under the action of

Gal(ER/K), hence descends to an ideal Ik(A, x, m, h) C R.

We define X}S, to be the K-analytic subspace of SpR with respect to the ideal

a'- ,x,m,h IR(A, x, m, h) with A, m, x, h varying in obvious ranges.

In the following, we check X'8 , satisfies condition (ii) of the Theorem. Now

suppose we are in (ii). We first remark that for the corresponding map : R-

R' of affinoid algebras, the image in R' of Exm IR(A, x, m, h) is zero if and only

if (for any x, m as above) the extension by (AR' of the map h' factors through

(FilkBris,K ®K OK ER)?'= A.

Now suppose the map h7R in question factors through (FilkBc+isK KR')f'=Y'. We

may assume (by Prop. 4.2.1) its specialization to FilkBdR/FiliBdRKR' is induced



by the map h above, via the map O6 : -* R'.

composition

Then (for all x, A as above) the

M OR R' FilkBdROKR' - FilkBdR/FiliBdR$KR'

c FilkBdR/FiliBdRbKR! OK ER (-X- Y'A-1)

factors through (FilkBjisK$R K E) =K'A.

FilkBdR/FiliBdRKR OK ER

Hence 6 c X'(R'). Here we

have used the fact that

p P(x, KY'A-') = 'wKY' 'AP(x,-Y'A-1)).

Conversely, suppose the given Y-small map 0 : Sp R' - Sp R lies in Xs,k(R'). We

may assume that Sp R' is connected and the field K' in the definition of Y-smallness

is contained in R' and is Galois over K (see the end of (5.9), [26]). Then we have, by

Definition 4.3.1, Y'A0 1 - 1 E R' is topologically nilpotent, for some A0 C K'.

For any map hR.: M O-R R' - FilkBdR$KR' in question, the assumption that

Qk(v) (Vv > k) is a unit implies that the R'-module H0 (GK, FilkBdR/FiliBdR$Qp Mon

R') is finite flat of rank 1. Hence we my assume that the specialization to Filk BdR/FiliBdR KRI

of h-R, is the scalar extension via the map 00 : R - R' of the map h in the construction

of X sk. Thus the composition

M OR R' Fil BdR$KR' -** FilkBdR/FiliBdR®KR

- FilkBdR/FiliBdR®KR/ OK K' f * FilkBdR/FiliBdROKRI OKK'

factors through (FilkBsKR K OK K'- , by the definition of X .

On the other hand, by Lemma 2.2.1 there is an element u E (QP OK R')" such

that p/(u) Y'-Aou, as Y'A0 1 - 1 is topologically nilpotent. These together show

that

ut'K+1 e (FilkBjisKSK K K''-

Now use the multiplication map R' OK K' -a RI. For any m' = m 9 1 e M OR R'



with m c M,

utk'hR,(m') E (FilkBcrisK0K K 01A

as thKP(x, w5u-Y'AO- 1)hR,(m') lies in the right by the construction of X'S, and the ele-

ments tKP(x, wjlY'A0 -1) are dense in (FilkB KK Y by Prop. 4.2.4.

Therefore

m C M &R R'.

This concludes the proof that X'k is characterized by condition (2) in the Theorem.Now write X~for the Zarskicoueo ' nX hnX
Now write X'fs,k for the Zariski closure of X' in X'.si ss, k,c on Q (V) f sk

satisfies condition (i) of the Theorem. For integers Z' > 1 we have

Then Xj.s,k

a decreasing

sequence of closed subspaces of Xk, which is stationary since R is noetherian. We

define Xfs,k = Xgs,k for i sufficiently large, which is characterized by condition (i)

and (ii) in the Theorem, as desired. 0

Proposition 4.3.5. Keep the notation in Thm. 4.3.3.

phism

We have a natural isomor-

Xfs,k(X, M, Y) ~ XfS,o(X, M(k), Y),

where M(i) the twist by xi of M, for any i C Z.

Proof. Adopt the notation in the proof of Thm. 4.3.3. First note that the twist by XKk

of the map h' (the composition of h O9 1 and multiplication by tk P(x, wcuiYA-W)K)

is

h'(-k) : M(-k) OKEz h -+ Fil BdR$KR®KER -** Fil0 BdR/Fil'BdR KROKER

P(x,w-- YArK
L- 1)~ FilOBdR/Fil2BdR$KR K E.

Applying the construction of XX, using h'(- k), we see IR (A, x, m, h) ~- IR (A, x, m, h(-k)),

whence a' - ZAmh IR (A, x, m, h) ~ a' = Ax,m,h Iz(A, x, m, h(-k)). Hence we

have

Xfsk (X, M, Y) ~ X 8f', (X, M(k), Y).

Note that the Sen polynomial for (M(-k))* is equal to PO(T + k), with Qo(T) :=

hazr(mn') E (FilkB+sKK' f



PO(T + k)/T' = Qk(T + k). Thus Thm. 4.3.3(i) is equivalent to saying that, for any

v E Z>o, Qo(v) is not a zero-divisor on Xf,,k. Now we have that X),,O, the Zariski

closure of X' in X' 8 O(X, M(k), Y) ~ X1(X, M, Y), is isomorphic to

XSk. Therefore we have the desired isomorphism.

f

The following result is completely analogous to (5.16) [26]. We include it here for

later use.

Proposition 4.3.6. Let X, M, Y, k and Xfs,k be as in Theorem 4.3.3. Let SpR be a

Y-small affinoid subdomain of Xf5,k.

(i) For i larger enough, any R-linear GK-equivariant map

M(SpR) -> FilkBdR/tiBdR0KR

factors through (Filk BisK KR f .

(ii) Let H C R be the smallest ideal such that any map as in (i) factors through

FilkBdR/tiBdR KH. Then the complementary of the vanishing locus of H is Zariski

dense in SpR.

(iii) For E c R a closed subfield with a continuous map R -+ E, there exists a

non-zero E-linear GK-equivariant map

M 07 E -+ (FilkBisK KE)f =.

Proof. These follow from the arguments of (5.14)-(5.16) [26].

Let x E Sp R be a closed point such that Qk(V)(x) $ 0, Vv > k. Noting that for

r a positive integer the map RIZ/m; -> Sp R is Y-small (cf. Remark 4.3.2), where

Rx denotes the mx-adic completion of R. Denote I to be the index set {x, r} with x

running over SpR and r E Z;>I. Write R, = 7./m; for a = (x, r) E I. Set I,, = I

for any V E Z>k.

One checks (cf. the proof of (5.16) [26]) that



(1) For any a E IC, any R,-linear GK-equivariant map

h : M o R7Z -R FilkBdR/t'BdRSKlZa

factors through (FilkB, K R )f Y.

(2) For any a c 1, H'-' Qk(v) E Ra is a unit.

(3) The map R -± Hl, RI is an injection.

Now using (1)-(3) we can apply the proof of (5.14) [26] to deduce (i) and (ii).

More precisely, the results (3.7) and (2.6) loc. cit will be replaced by Cor. 4.2.3 and

Prop. 4.2.1. The assertion (iii) is a consequence of (ii) (cf. the proof of (5.15) [26]).

FD



Chapter 5

Finite slope deformations

Let's recall some basic concepts and results from the fundamental papers [29], [28]

and [26].

Let G be a profinite group satisfying p-finiteness condition, that is any finite

dimensional (continuous) F,-representation of G has finite dimensional cohomolo-

gies. This condition in turn implies that any finite dimensional (continuous) Qp-

representation of G has finite dimensional cohomologies.

Let F be a finite extension of F, and V an N-dimensional (continuous) F-representation

of G. Fix a basis of V. We then get a representation p: G -+ GLN(F).

We define D, to be the functor which assigns to a local Artinian W(F)-algebra A

with residue field F the set of (continuous) liftings of p to A, up to strict equivalence,

where we say two lifts are strictly equivalent if they are conjugate by an element in the

kernel of reduction map GLN(A) - GLN(F). As usual, we call a strict equivalence

class of lifts of p a deformation of V.

Similarly, we define D' to be the functor which assigns to a local Artinian W(F)-

algebra A with residue field F the set of deformations of p to A which are equipped

with a A-basis lifting the chosen basis on V.

By (1.2) of [29], p admits a versal deformation to a complete local noetherian

veri
W(F)-algebra with residue field F. The versal deformation ring Rv is universal if

(V o V*)G = F. Note that the framed deformation functor D' is always (pro-

)represented by a complete local noetherian W(F)-algebra, which we denote by R'.



We have analogues for the generic fibre of a (uni-)versal deformation ring. Let A

be a (fixed) local Artinian Qp-algebra whose residue field E is a finite extension of

Q,. Let V be a (fixed) finite free A-module with an A-linear continuous G-action,

which are equipped with a fixed A-basis. We define the deformation functor Dv

(resp. framed deformation functor D') on the category of local Artinian Qp-algebras

A' equipped with a local map A' -+ A which reduces to an isomorphism on E modulo

the maximal ideals, which assigns to such an A' the set of deformations VA' of V to

A' (resp. deformations VA' of V which is equipped with an A'-basis lifting the chosen

basis on V.)

Let E/Q, be a finite extension. The same arguments of (1.2) of [29] show that, an

E-representation V of G admits a versal deformation to a complete local noetherian

Q,-algebra with residual field E. The versal deformation ring is universal if (V OE

V*)G = E. The framed deformation functor D' is (pro-)represented by a complete

local noetherian Q,-algebra, which we denote by R'.

5.1 Galois deformations in characteristic p and in

characteristic 0

Let p : G -> GLN(F) be an N-dimensional F-representation of G whose underlying

F-vector space is denoted by V.

Let E be a finite extension of Q,. Suppose we are given a map z : Rier[1/p] -+ E

(resp. z : R'[1/p] -+ E) whose kernel is mz and whose image is Ez. This by continuity

induces a map Rver -+ OE (resp. R' - OE). Denote VzOE VRer ®fver DE (resp.

Vz,o, - VRE OR[ OE) and Vz,E = VOE ®OE E, where VRver (resp. VRo) is the versal

(resp. universal) Rer[G]-module (resp. R'[G]-module).

Denote by RzE the complete noetherian local ring representing the deformation

functor D'. If H0 (G, Vz,E E z* E) = E, we have the universal deformation ring

Run"; representing the deformation functor DV.

The mz-adic completion Rz,Ez (resp. RzEz) of Rer[1/p] (resp. Rf(1/p]) is a



complete noetherian local ring with residual field Ez. Write Rz = Rz,Ez ®E2 E and

R ,Ez OEz E. Then VRL ORE R[ is a deformation of Vz,E, hence gives us a natural

map R -+ RE, which respects the projections to E. Similarly, when HO(G, Vz,E0E

V2'E)= E, we have a natural map R"'*" -- Rz respecting the projections to E.

Proposition 5.1.1 (Kisin, (9.5) [26], (2.3.5) [24]). The natural map R' z ,E

an isomorphism.

If H0 (G,Vz,E 9E z E) F E, then the natural map R v - RZ is formally smooth,

which is an isomorphism if R er is universal.

5.2 Smoothness and representability of finite slope

deformation functors

Let G be a profinite group satisfying p-finiteness condition. Let Bi (0 < i < j) be

topological Qp-algebras equipped with continuous G-actions such that each Bi is a

topological sub-Q,[G]-algebra of B =: BO. Suppose for any Qp-representation V of

G, dimQ,(B &Q, V)G is finite. We may regard elements in (B, o&, V)G for different

i's as elements in (B og, V)G via the inclusions (B, so, V)G C (B o&, V)G, so that

it makes sense to talk about linear independence.

5.2.1 Smoothness of p-adic period deformation functors

Let V be a fixed finite free A-module, with A a fixed local Artinian Qp-algebra whose

residue field E is a finite extension of Q,.

Given an ordered set of (non-zero) A-linearly independent G-equivariant A-linear

maps

S{hi : V Bi &U, A} 0o<Z<,

we define a functor D on the category of local Artinian Q,-algebras A' equipped

with a local map A' -± A which reduces to an isomorphism on E modulo the maximal

ideals, which assigns to such an A' the set of deformations VA, of V to A' such that



for each hi E j there exists an A'-linear G-equivariant lifting hi : VA' -± Bi &, A' of

hi. The functor D extends to the category of complete noetherian local Q,-algebras.

Let j' be an ordered subset of . One checks that D is a sub-functor of D'. In

particular, they are sub-functors of DV. By definition, we have D = 1 Dhj with

the product taken over Dv.

For each i, hi : V -± Bi og, A induces the obvious map hi 3A 1: V OA V* a

Bi og, V*, hence the maps on cohomologies. Denote the map {H'(G, hi OA 1)}hiE

by H1 (G, j OA 1). Define

H (GV ®A V*) = Ker(H'(G, V OA V*) H
1
(Gjj®A 1) @DH'(G, Bi , V*)).

It is a standard result (cf., e.g., Page 288, [28]) that there are canonical isomor-

phisms

Dv(A[])~ H1(G, V OA V*) ~ ExtA [G] (V7 V)I

where e # 0, E2 = 0.

Lemma 5.2.1. We have canonical isomorphisms

D'(A~e])~ H (G, V OA V*) Exth[G], V

with the last term the subspace of ExtA[G](V, V) consisting of extensions 0 -+ V -+

W -± V -+ 0 such that there are A®QBG-linearly independent A-linear G-equivariant

maps gi : W -± Bi ®, A with gi V = hiVhi c .

Proof. We just need to apply the proof of Prop. 8.2 [26]. First, given an extension

0 - V - W - V -+ 0 in Dv(A[e]) ~_ ExtN[G](V,V), for each i we already have a

map W - V - Bi g, A, the composition of the projection W -+ V with hi. Now

it is easy to see lifting hi to hi : W -- Bi , A[e] = A @ A - e is equivalent to giving

an A-linear G-equivariant map gi : W - Bi 0, A - c whose restriction to V C W is

Ehi. This tells us DVO(A[e]) ~ ExtA[G], V)

We are left to show Ext[G],(V, V ~ Hj(G, V ®A V*). With the notation

and discussion loc. cit, the extension 0 - V - W -± V - 0 in H 1 (G, V OA



V*) ExtA[G](V, V) lies in ExtA[G],{hi}(V, V) if and only if 6w(hi) = 0, and the map

W -+ 6w(hi) is just the map H 1(G, hi &A 1). Then the extension class [W] lies in

ExtA[G],(V, V) if and only if 3w(hi) = H'(G, hi (A 1)([W]) = 0 for all 0 < i < j, i.

e. if and only if it lies in H'(G, V OA V*). E

For each i, denote by hi the reduction of hi modulo the maximal ideal mA of A,

and write V = V oA E. Then we have the maps

hi 9E 1: V 3E V* - B, Q, V,

hence the induced map

H'(G, [6 9E 1) : H (G, V 9E V*) -± 1 H'(G, B &Q, V*).

Proposition 5.2.2. Suppose the map H1 (G, & oE 1) is surJective. Then the functor

Db is smooth if Dv is.

Proof. One gets this by checking the proofs of (8.3) and (8.4) [26].

replace the map TI in (8.3.2) loc. cit by

Precisely, we

q=() : Dv(A') -+e H1(G, Bi , V*) &E I,

and then notice that [VA'] E Do(A') if and only if 6v,,(hi) = 0 for all i. D

One may apply these results to the p-adic period rings and the Galois equivariant

maps to them.

5.2.2 Finite slope deformations

Now suppose B is equipped with a continuous BG-linear endomorphism (. Suppose

we are given elements Ai E AX and an ordered set of A-linearly independent G-

equivariant A-linear maps

= {hi : V - (Bi og, A)A--} 0 <;i<.

[A'] ov,,(hi)) i,



We define a functor Dj on the category of local Artinian Q,-algebras A' equipped

with a local map A' - A which reduces to an isomorphism on E modulo the maximal

ideals, which assigns to such an A' the set of deformations VA' of V to A' such

that for each i there is a lifting A, C A' of Ai and an A'-linear G-equivariant map

hi : VA' - (Bi OQ, A') = i lifting hi. Again, the functor DVd extends to the category

of complete noetherian local Qp-algebras.

Let j' be an ordered subset of j. One checks that DV' is a sub-functor of D 'E

They are sub-functors of D, with each hi regarded as a map to Bi og, A via the

inclusion (Bi Og, A) =Aj c Bi &®, A. By definition, we have DVd = H 0 D h' with

the product taken over DV.

Let Ai be the image of A2 in A/mA for each i. We have the map

hi OE 1:VOE V*Q(BiQpV*) =A,

hence the induced map

H1(G, ® OE 1) : H (G, V OE V*) - eiH 1(G, Bi ®gQ V*)=i.

Proposition 5.2.3. Let A' be a local Artinian Qp-algebra equipped with a surjective

local map A' -+ A with kernel I such that I - MA = 0, which reduces to an isomor-

phism on E modulo the maximal ideals. If each -eigenvalue Ai on (B , V*)G is of

multiplicity one, then the natural map DVy(A') -+ Do(A') is an isomorphism.

Proof. By (8.9) [26] this is true for each D so is for D"V.

Proposition 5.2.4. Suppose each -eigenvalue Ai on (B 0, V*)G is of multiplicity

one, and suppose the map H'(G, [E 1) is surjective. Then DV is smooth if Dv is.

Proof. With the notation of Prop. 5.2.2, we have (cf. Prop. 8.10 [26])

T(rj([VArc -- Ar[) w VA,]).

Thus the surjectivity of H'(G, 0 OE 1) shows that there is a class [c] E H'(G, VOEV*



mapping to r([VA,]), which implies that [VA'] - [c] E D' (A'). On the other hand, we

have by Prop. 5.2.3 that D"j(A') D'(A'). l

Proposition 5.2.5. Let E/Qp be a finite extension. Fix an ordered set of E-linearly

independent G-equivariant E-linear maps

S{hi : V - (Bi &Q, E) =A}o<i<j

with A c E Lx.

Suppose dimE(Bi &Q, V*)G, = A= 1 for any 0 < i < j. Then for each i, there

exists a unique lifting Ai Ax of Ai such that the A-module (Bi eQV )G, = j contains

an lifting of h, and the A-module above is free of rank one.

Proof. By the E-linear independence of elements in , we are reduced to show the

Proposition for a single hi, which is the case of (8.12), [26]. D

Proposition 5.2.6. Keep the notation and assumptions as in Prop. 5.2.5. Then the

functor Dj is representable if DV is.

Proof. It follows from (8.13) [26] that if DV is representable then each D h' is repre-

sentable, so is Doj. E

For example, we can apply these results to the case G = GK, B = Bc+ f

where f is the residue degree of K.
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Chapter 6

Deformations of a Galois

representation with refinement

In what follows, N > 2 is an integer, K/Q, is a finite extension of degree n with

residue degree f, and E is a finite extension of Qp.

Recall that for an E-representation V of GK with E c E = Q, we can attach Sen

polynomial P0(T) E K ®Q, E[T]. For a given embedding t : K "- Q,, the zeros of the

specialization Po,(T) E Q[T] via t®Q,1 : K ®Q, E " (Q are called the (generalized)

Hodge- Tate weights of V with respect to t. When we use the term Hodge- Tate weight,

we mean Hodge-Tate weight with respect to a fixed embedding K -- QP.

6.1 Obstruction for deforming a de Rham repre-

sentation

Denote dimE H 0 (GK, V &E V*) - h0.

Lemma 6.1.1. Let V be an N-dimensional E -representation of GK. Then

dimE H 1 (GK, V OE V*) h0 + nN 2 + dimE H 2 (GKi V OE V*).

Proof. One gets the equality by the local Tate duality, noting H'(GK, V (E V*)



OVi > 2.

Lemma 6.1.2. Let V be a 2-dimensional de Rham representation of GK . If H0 (GK, V®E

V*) = E, then H 2(GK, V OE V*) -0.

Proof. By the local Tate duality,

H 2(GK, V OE V*) (V OE V*(l))GK (V(1) OE V*)GK,

where V*(1) = Hom(V, Q,(1)) is the Tate twist of the representation contragredient

to V.

If H 2(GK, V OE V*) : 0, then there is a non-trivial map of E[GKI-modules

r: V -+ V(1)

which forces V to be reducible because otherwise V - V(1) as E[GKI-modules. Then

V contains a non-trivial sub-representation Ker(r) U ; V. Then V/U is a sub-

representation of V(1), which we call W(1). This way W is a sub-representation of

V.

In particular, if V is two dimensional indecomposable over E (satisfying H 2(GK, V®E

V*) # 0), we must have U = W. Hence V is an extension of U(1) by U. If V is in

addition de Rham, then the extension class lies in HJ(GK, E(-1)), which is trivial by

Prop. 6.2.1, since E(-1) has Hodge-Tate weight 1. Therefore H 2 (GK, V OE V*) 0

if V is a 2-dimensional indecomposable de Rham representation. E

6.2 Selmer groups

For an E-representation W of GK, we have the natural maps

W -+ W OD, Bcris, W -+ W GO, BdR

which induce maps on cohomologies.



Following Bloch-Kato ([4]), we define

Hf(GK, W) Ker(H'(GK, W) -+ H'(GK, W , Bcris)),

Hj(GK, W) Ker(H1 (GK, W) - H'(GK, W OQ, BdR))

via the induced maps on cohomologies.

Proposition 6.2.1 ([4]). If W is a de Rham E-representation of GK, we have

dimE H (GK, W)= dimE H0 (GK, W) + n dimK DdR(W)/Fil 0 DdR(W),

dimE H2(GK, W) = dimE H(GK, W) + dimE Dcris(W*(1))>O.

Proof. We summarize the results in different places of [4] to give a proof of the

Proposition.

By Prop. 1.17 [4], there is a short exact sequence

0 - Qp 14 Bcris D Fil"BdR 4 Bcris e BdR + 0

where a (x) = (x, x) and #3(x, y) (X - yO(x), X - y).

Tensoring the above exact sequence with W, and taking GK cohomology, we get

an exact sequence

0 - H 0 (GK, W) + Dcris(W)±Fil0 DdR(W) + Dcris(W)eDdR(W) -± HJ(GK, W) -+ 0,

where we have used the fact (Lemma 3.8.1, [4]) that

H 1(GK, Fil0 BdR OE V) C H'(GK, BdR &E V).

Keeping in mind dimK DdR(W)= dimE W, we get the first equality.

Similarly, Prop. 1.17 [4] gives the short exact sequence

0- Q, 4 Bc 10s e B+ - BdR -- 0



where a(x) = (x, x) and 7(x, y) = x - y. We then get an exact sequence

0 -4 H0 (GK, W*(1)) -+ Dcris(W*(1)) =leFilDdR(W*(1)) -+ DdR(W*(1)) -+ H,(GK, W*(1)) 0.

Since

H,'(GK, W* (1)) = Ker(H'(GK, W* (1)) -- H'(GK, W* (1) O( Bc s ))

which is dual to Hj(GK, W) (Prop. 3.8 [4])under the perfect duality

H 1(GK, W) x H 1 (GK, W*(1)) - H2 (GK, Qp(1)) c Qp

as W is de Rham. One sees easily, by the exact sequence and the first equality, that

dimE Hj(GK, W*(1))= dim Hf(GK, W*(1)) - dimE Dcris(W*(1))'=1.

Now the second equality follows as Hj(GK, W*(1)) is the perfect dual of HJ(GK, W),

under the above perfect duality .

For V an E-representation of GK with integral Hodge-Tate weights ko < ... 

kN-1, let si be the multiplicity of ki in the multiset of Hodge-Tate weights. Denote

Sv = <
O<i<N 1,kj7$k, 1

s (si - 1)/2

where we set k_1 = -oo and kN = +00. Write

dimE Dcris(V 0E V*(1))P 1 -

(whence dimE Dcris,K(V OE V*(1)f 1 Ko K = nc.)

Corollary 6.2.2. Let V be an N-dimensional de Rham E-representation of GK with



Hodge-Tate weights 0 = ko ... kN-1 . Then

dimE H(GKi V OE V*) h + nN(N - 1)/2 - nsv,

dimE H (GK, V OE V*) = h0 + nN(N - 1)/2 - nsv + uc.

Proof. Easy computations show

dimE DdR(V ®E V*)/FilODdR(V QE V*) = nN(N - 1)/2 - nsv.

Then the result follows from Prop. 6.2.1.

6.3 Deforming a Galois representation equipped

with p-adic periods

For V an E-representation of GK with integral Hodge-Tate weights ko < ki < ... 

kN-1 , equipped with distinct Hodge-Tate periods

hi,HT V Cp (ki) ®QP Ei = 0,- ,N - 1,

we use the notation

J1,HT i,HT-iEI

for an ordered subset I C {o,-- , N - 1}.

Lemma 6.3.1. Let V be an E-representation of GK with integral Hodge- Tate weights

ko < ... < kN-1.

(1) If k, has multiplicity si in the multiset of Hodge-Tate weights, then

dimE H'(GK, Cp(ki) OE V*) < usi

with equality holds if and only if V is Hodge-Tate.



(2) Assume further that V is de Rham (resp. crystalline).

* cris, K), we have

dimE H 1 (GK, Filk2 B, @E V*) = n(N - i + mi),

For * = dR (resp.

0 < i < N

with mi the number of Hodge-Tate weights k, such that r < i and k, = ki.

Proof. For (1), note that Cp(ki) &Q, V* is a successive extension of Cp(ki - kr) 9Q, E,

r = 0, ... , N - 1. Thus dimE H1 (GK, Cp(ki) iE V*) < nsi by Lemma 2.2.5. We have

Cp(ki) 9Q, V * ~ Cp(k - ko) OQ, E D ... e Cp(k, - kN) Qp E

if and only if the Sen operator is semi-simple, i. e. if and only if V is Hodge-Tate.

For (2), we treat the case * = dR, as the other case is completely analogous. The

dimension of H'(GK, Filk BdR OE V*) can be calculated as follows:

The short exact sequence

0 -- + Filkj**BdR - Fil*BdR - Cp(ki) -±0

induces the long exact sequence

H0 (GK, FilkiBdR ®Q, V*) 4 H0 (GK, Cp(ki) ®E V*) - H1 (GK, Filki +BdR ®Q, V*)

-± H'(GK, FilkiBdR &Q, V*) - H1 (GK, C(ki) ®Qp V*) - 0,

where the surjectivity follows from Prop. 2.2.5. The map # is surjective because

hi,HT is the image of hi,dR via the map FilkiBdR ®Qp V p - CP(kj) OQ, V*. Hence we

have a short exact sequence

0 -- Hl(GK, Filki+1BdRQpV*) - H(GK, FilkBdR®Qpv*) -± Hl(GK, Cp(ki) QPV*) - 0.



As V* is de Rhan, hence Hodge-Tate, we have

H 1 (GK, Cp(ki) Qp V*) ~ H'(GK, ON- 'Cp(ki - kr) O(p E)

Then we get, for i such that ki_1 -f ki, a short exact sequence

0 -± H'(GK, Filki+1BdR ®Q, V*)

- H1 (GK, Filk BdR &Qp V*) - H'(GK, IN- 1 Cp(k - kr) &U, E) + 0,

since H 1 (GK, e 0 Ci(kj - kr) ®QP E) = 0 by Prop. 2.2.5.

Note that

H'(GK, Filk oBdR ®Qp V*) ~ H'(GK, BdR &Qp V*) ~ H 1 (GKi (BdR QQp F)N),

whence has E-dimension nN, by the assumption that V is de Rham and Lemma

2.2.5. Then one checks by the use of the last short exact sequence and by induction

on i that

dimE H 1 (GK, FilkLBdR OE V*) = n(N - i + mi), 0 < i < N - 1.

Recall the definition of H1 for ) an ordered set of p-adic periods from Sec. 5.2 .

Lemma 6.3.2. Let V be an E-representation of GK with integral Hodge-Tate weights

ko < ... kN-1. Given an E-linear GK-equivariant map

hi,HT : V -> Cp(ki) QP E,

we have

(1) If V is Hodge-Tate and ki is of multiplicity one in the multiset of Hodge-Tate



weights, then the natural map

H 1 (GK, hi,HT OE 1) : H1(GK, V OE V*) e H1 (GK, Cp(ki) OE V*)

is surjective with n-dimensional image over E.

(2) If ki has multiplicity si > 1 in the multiset of Hodge-Tate weights, then

H' (GK, V OE V*) C H 1(GK, V OE V*) has codimension < nsi. If V is Hodge-

Tate, then the image of the natural map H1 (GK, hi,HT OE 1) has dimension at least

n over E.

Proof. First note that the first assertion in (2) is clear by Lemma 6.3.1. For the rest of

the lemma, we just need to compare the dimension of the image of H1(GK, hi,HTOE 1)

and that of H 1(GK, Cp(ki) iE V*)-

Now assume V is Hodge-Tate. In either case, for the dimension of the image of

H'(GK, hi,HT OE 1), note that the image of H 1 (GK, E) under the map on H 1 induced

by the inclusions

t : E C Cp &Q, E " Cp(ki) og, V*

generates a subspace of H 1 (GK, Cp(k) OQ, V*) whose dimension is at least n over E.

On the other hand, since the direct summand E C V OE V* (via the trace map) is

mapped, under the map hi,HT OE 1 : V OE Vp - Ci(ki) OE V*, to a GK-invariant

stibspace of Cp(ki) OE V*, it has to map isomorphically to t(E) c Cp(ki) O®, V*.

That is, the image of H'(GK, hi,HT OE 1) contains H1 (GK, Cp q, E), which has

E-dimension at least n by Prop. 2.2.5. l

Let 0 < j < N - 1 be an integer. Denote * dR or cris, K. If V is in addition

equipped with an ordered set of E O, K-linearly independent GK-equivariant E-

linear maps

{hi, : V -4 B* &Q, E}o i<,

we write Di,*(V*) (0 < i j) for the E Og, K-submodule of D,(V*) generated by



hr,* for r = ,- - , i. We use the notation

i,,= {hi,*}E

for an ordered subset I c {0--- ,j}.

Proposition 6.3.3. Let V be a de Rham (resp. crystalline) E-representation of GK

with Hodge-Tate weights 0 - ko < . kN-1, which is equipped with an ordered set

of E 0Q, K-linearly independent de Rham (resp. crystalline)'periods

{hi,, : V -+ FilklB, O®, E}O<i<N-2

such that

D,(V*) = Di,,(V*) e Filk +1D,(V*),

for all 0 < i < N - 2 such that ki # ki+1 .

Suppose

H 2 (GKI V®E V*) - 0,

and suppose further that Deri(VOE V*()) P=1 = 0 when V is de Rham but not

crystalline. Then

(1) The map (VO < i < N - 2)

H 1 (GK, Oi,*E 1) : H'(GKi V OE V*) - H'(GK, FilkiB, OE V*)

and the map (VO i < N - 1)

H'(GK, hi,HT &E 1) : H 1 (GKi V ®E V*) -± H 1 (GK, Cp(ki) (E V*)

are surjective.

(2) If the Hodge- Tate weights of V are distinct, then

dimEH' 1,(GK, V E - +nN 2 -nZ(N - i)
iEI



for I C {o, ... , N - 2} an ordered subset.

Proof. We write or,* = J<N-2,* for I = 0, ... , N - 2}.

We first consider the case * = dR.

By Lemma 5.2.1, an extension class 0 -± V -+ W -± V -± 0 in H1(GK, V OE

V*) lies in H<N 2 ,dR(GK, V OE V*) if and only if there is a non-zero E-linear GK-

equivariant map gi,dR: W -+ FilklBdRO Qp E such that gi,dRv = hi,dR, for any 0 < i <

N - 2. Similarly, such an extension class lies in H ,HT(GK V OE V*) if and only

if there is a non-zero E-linear GK-equivariant map gN-1,HT : W -> C,(kN-1) Q E

such that gN-1,HT v - hN-1,HT-

By Prop. 2.2.6, the Hodge-Tate period hN-1,HT V - C(kN-1) Qp E (resp.

gN-1,HT) lifts to be a de Rham period hN-l,dR : V - FilkN- 1 BdR 9Q, E (resp.

9N-1,dR: V -> FilkN- 1 BdR OQ, E).

Thus we get N (distinct) de Rham periods on W by using the elements in

HI<N- 2 ,dR(GK, V OE V*) and HIN HT(GK, V O V*), which, together with the com-

positions

W-+ -4 RFil BdR OQp E, 0 < i < N - 1,

give rise to 2N de Rham periods on W, that is an element in H1 (GK, V O -V*)

Conversely, one sees easily that an extension class [W] in H1 (GK, V OE V*) can

produce such 2N de Rham periods on W. Therefore we have

H <N 2 ,dR(GK, V OV*) n H. N-1HTGK V OE V*) = H (GK, V OE V*)-

This equality implies that the codimension of H1<N- 2 dR(GK EV) c H'(GK, OE

V*) is at least

nN(N + 1)/2 + nsv - nSN-1,

because the codimension of H'(GK, VOEV*) c H'(GK, VOEV*) is nN(N+1)2+nsv

by Cor. 6.2.2, and that of HhiN-1,HT (GK, V OE V*) c H 1(GK, V OE V*) is at most

nSN-1 by Lemma 6.3.1.

Thus to see the surjectivity of the maps H1(GK, hi,dR OE 1) (0 < i N -



2) and H'(GK, hN-1,HT (E 1), we just need to show that the target of the map

H1(GK, 1<N-2,dR &E 1) has dimension nN(N + 1)/2 + nsv - nSN-1, that is

dimE (DN-2H 1(GK, Filki BdR (E V*) = nN(N + 1)/2 + nsv - nSN-1

0<i<N-2,k~ki_1

nsi(si - 1)/2 + n(SN-1 - 1)(SN-1 - 2)/2

where the last equality is written for later use.

On the other hand, by Lemma 6.3.1(2) we have

dimE H 1 (GK, FilkiBdR OE V*) = n(N - i + mi), 0 < i < N - 1,

with m, the number of Hodge-Tate weights k,. such that r < i and k, = ki. Then we

check easily that
N-2

EdimE H'(GK, Filk 'BdR OE V*)

0
O<i<N-2,ki:7ki_1

nsi(si - 1)/2 + n(SN-1 - 1)(sN-1 - 2)/2,

The surjectivity of the map H'(GK, hi,HT OE 1) (0 < i < N 2) then follows

from that of H 1(GK, hi,dR OE 1) and the surjectivity of H'(GK, FilktBdR ®Q, V*) e

H1(GK, Cp(ki) ®Qp V*), where is the latter is seen (cf. proof of Lemma 6.3.1(2)) by

the short exact sequence

0 -+ Hl(GK, Filki+1BdR QpV*) -* Hl(GKFilkiBdR®QpV*) -> Hl(GK, Cp(ki)OQPV*) - 0.

This concludes the proof of (1).

Similarly, for * = cris, K, we have

H 2,cri(GK, V ®E V*) n HN NHT(GK, V OE V*) = HJ(GK, V OE V*).

N-2

= n(N - i) +
i=0

N-2

= : n(N -- +

i=0

as desired.



Then dimension counting remains the same because

dimE Hf(GK, V OE V*)- dimE H (GK, V OE V*)

by Cor. 6.2.2.

The assertion (2) follows from the surjectivity of H 1 (GK, hi,* OE 1) and Lemma

6.3.1(2), which says that dimE H1 (GK, FilkiB, (E V*) = n(N - i) when the Hodge-

Tate weights are distinct.

D

Lemma 6.3.4. Let V be a finite dimensional E-representation of GK and A E E'.

The (Ko @Q, E)[GK -module (Bcris O1, V) '-fA has finite dimensional cohomologies

which vanish in degree > 1, with the Euler characteristic

XE((Bcris &, V) ) ) = -[Ko : Q,] dimE V

Proof. This is (7.9) of [26] when K = Qp. One sees immediately that the analogue

holds for any finite extension K of Q, as indicated in the Lemma. Precisely, we

replace M loc. cit by @'_= (Ko oQ, E)(A') with Ai E E , by Ko-linearity. Then the

same construction loc. cit produces an irreducible weakly admissible Ko &Q, E[<p]-

module. Now replace W loc. cit by Filo(Bcris 0g, M)W'=1, which is an Ko 09, E-

module of rank r. Then the fundamental short exact sequence

0-> Qp - BI --+ Ba/B ---+ 0

gives the short exact sequence of Ko 0O, E[GK]-modules

0 4 W - Be K_1 W -- Bn/Bin OKo W -- 0,
cris the eat s

which, tensored by V over F, gives the exact sequence of K0 &Q, E[GK]-modules

A -+ (BdR 9Ko M)/(BR OKo M) OE V -+ 0-0 + W OE V @ i(Bcris o, V)' f



We see that the third non-zero term has cohomologies vanishing in degree > 2 and

has zero Euler characteristic, by Lemma 2.2.5. Note that

H 2 (GK,W OE V) c HomE[GK (W, V(1)) = 0

as we chose dimE W > dimE V and W is irreducible. Therefore we have

Z XE(Bcris Q, V)fAi = XE(W (E V) = -fr dimE V
i1

with the last equality given by the local Tate duality. Thus

XE(Bcris QP VYf -A = -fdimE V,

because the Ai can vary independently.

For V an N-dimensional E-representation of GK equipped with a non-zero crys-

talline period ho with jp/-eigenvalue A E E:

ho : V -± (Bcris,K Qp E)f A

let ho,cris (resp. ho,dR) denote the crystalline period (resp. de Rham period) induced

by ho via the natural inclusions r : (Bcris,K Qp E) Ao - Bcris,K ®Qp E and t :

Bcris,K "- BdR.

Lemma 6.3.5. Let V be an E-representation of GK equipped with a crystalline period

ho : V -+ (B+isK ®QP E)Pf A

with Ao E EX. We have

dimE H 1 (GBrsK Q V* '=A = nN.



Proof. First note we have the short exact sequence

0 a (Bcris @Q, E)?'=A0 a Bcris oQ, E + Bcris Og, E - 0

with GK-equivariant maps, where one sees the surjectivity of 0f - AO by the use of

the admissible KO 9Q, E[p]-module M and the surjectivity of

Pf - 1 : Bcris @QpW a Bcris OQp W.

from Lemma 6.3.4. This in turn gives a short exact sequence of KO OQ, E-modules

0 - Dcris (V*) -Ao) - H 1 (GK, (BcrisOQV*)f) -+ H 1 (GK, Bcris0QpV*LOf=Ao - 0.

Then

dimE H'(GK, Bcris ®Q0 V*)pf Ao

- dimE H 1 (GK, (Bcris ®Q, V*) fAo) - dimE H0 (GK, (Bcris @9Q V*)Of Ao

where we have used the fact that Dcris(V*)/(pf - Ao) = H0 (GK, (Bcris ®Q, V*)-fAO).

Thus we have

dimE H 1(GK, Bcris Q, - XE((Bcris ®Qp V*) ) =)fN

by Lemma 6.3.4. The result follows by taking extension by scalars via OKo K. EZ

Remark 6.3.6. For any r < 0,

tr-- B+ o, V*/t'rBc+is 0, V* ~- C,(r - 1) o0, V*,

with the right hand side having trivial cohomologies by the assumption that all the

ki > 0 and by Prop. 2.2.5. Therefore Lemma 6.3.1, lemma 6.3.2, Prop.

Lemma 6.3.4 and Lemma 6.3.5 hold with B+i in place of Bcris.

6.3.3,



6.4 Finite slope deformations of 2-dimensional Ga-

lois representations

From now on, we consider the case N = 2.

For the convenience of the reader, we specify the previous results on Galois coho-

molgy in the case N = 2.

Proposition 6.4.1 (Proposition 6.2.1, Lemma 6.3.1, Proposition 6.3.3). Denote *

dR or cris, K. Let V be a de Rham (resp. crystalline) E-representation of GK with

Hodge-Tate weights 0 = ko < k1 , which is equipped with an E-linear de Rham (resp.

crystalline) period

ho,, : V - Fil B, &U, E

such that

D*(V*) = Do, (V*) e Fil'D*(V*).

Suppose

H2(GK, V &E V*) -0.

Then

(1)

dimE H (GK, V OE V*)
h0 +1n,

h0

dimE H (GK, V &E V*) = dimE H (GK7 V OE V*) + Dcris(V OE V*'(1)).

(2)

dimE H 1 (GK, Cp OE V*)
2n, 0 < k1 .

2'n, 0-=ki.

dimE H 1(GK, Fil0 B*OE V*)- 2n.

(3) Suppose Dcris(V ®E V*(1))"= - 0 when V is de Rham but not crystalline.

0< k1

0 = k1 .



The map

H1 (GK, ho,* E 1): H1 (GK, V 3E V*) n H'(GK, Fil0B* OE V*)

and the maps

H'(GK, hi,HT OE 1): H1(GK, V OE V*) - H'(GK, Cp(ki) OF V*)

are surjective, where i = 0, 1.

Let V be a 2-dimensional E-representation of GK equipped with a non-zero crys-

talline period ho with yf-eigenvalue A c E:

ho : V -+ (Bcris,K OQp E)'=o.

Recall that ho,cris (resp. ho,dR) denotes the crystalline period (resp. de Rham period)

induced by ho via the natural inclusions T: (Bcris,K 9q E) f=Ao Bcris,K Q, E and

t Bcris,K 9 BdR-

We remark that if V is de Rham and if Dcris(V OE V*(1))=1 # 0 then V is

crystalline. This is because, as V is de Rham (hence potentially semi-stable), there

is a finite totally ramified extension L/K such that

Dcris(V OE V*(1))P= 1= Hom(EOQPLo)[(p,N]((Bst Q, V*)GL, (Bst OQ, V*)GL ( 1 ))GaL/K.

Then a nonzero element a in Dcris(V OE V*(1)) 1 forces N to be zero (hence VIGL is

crystalline) and the image of ho GL under a is another nonzero element hi E (Bst @Q,

V*)GL which is E-linearly independent of h0 lGL- As ho is Gal(L/K)-invariant, so is

hi. In this case, we denote the other pI-eigenvalue on Dcris(V*) by A,. Of course, by

the observation above, we must have A0 = p±Ai.

Note that the induced map

H'(GK, ho OE 1) : H'(GK, V OE V*) - H'(GK, (Bcris,K OE



A' by assumption.factors through H 1 (GK, Bcris,K E

Proposition 6.4.2. Let V be a de Rham E-representation of GK with Hodge-Tate

weights 0 = ko < k1 , equipped with a non-zero crystalline period

ho : V -+ (B+sK QP E>=-Ao

with A0 - E', such that

Dcris,K(V*) = DO,cris,K(V*) e Fil'Dcris,K

when ki > 1.

Assume H 2 (GK, V OE V*) -0.

Then the map

H'(GK, h0  E 1) : H1 (GK, V OE V*) - H1 (GK, B+i V*, E AO

and the map H'(GK, hi,HT &E 1) (V0 < i < 1) are surjective. As a consequence,

dimE H GKi V (E V*) 0 h + 2n.

Proof. First we deal with the case Dcris(V @E V*(1)> = 1 -

Note that there is a natural map t OE 1 : Bcris,K ®Qp V* -+ BdR ®Qp V*, hence a

map

H 1 (GK, L OE 1) : H 1 (GK, Bcris,K Qp V*) H1 (GK, BdR &Qp V*),

which is compatible with filtration. By Prop. 6.3.3 the map H1 (GK, ho,dR &E 1) is

surjective. We just need to show that the map H 1 (GK, h0 QE 1) coincides with the

map

H1 (GK, ho,dR OE 1)

via the induced map H'(GK, t ®E 1). By definition H'(GK, ho,dR OE 1) is the com-



position

H'(GK V OE V*)H(G OE) H'(GK, B+sK E
H1 ri, (GK ,t®E1)

H H(GK, BR 9QP V).

Then the map H1(GK, tOE 1) is surjective. Hence it is an isomorphism, as the source

and the target have the same dimension by Lemma 6.3.5.

Next we look at the case Dcris(V @E V*())"=l : 0. We have seen that V is

crystalline. Then replacing ho,dR by h0 ,cris in the argument above, we get the desired

result, Precisely, again by Prop. 6.3.3 the map H'(GK, 0,cris OE 1) is surjective. We

just need to show that the map H'(GK, h0 E 1) coincides with the map

H1(GK, hcris OE 1)

via the natural map induced by the inclusion T : (Bcris,K (Qp E) p=\O - Bcris,K SQp E.

By definition H'(GK, h0 ,cris OE 1) is the composition

V)H 1 (GK~h l h ,\
H'(GK, V OE V* H f(G El) H 1 (GK, B+ris,K (E V*< O

H 1
(GKTOEl)

- H'(GK, B+ V*).

Then the map H 1(GK, T OE 1) is surjective. Hence it is an isomorphism, as the

dimensions of the source and the target are the same.

Remark 6.4.3. In Prop. 6.4.2, in the case Dcris(V®EV*( 1))P' 0 we could assume

that A1 = pfAo as is in (7.13) [26], instead of

Dcris,K(V*) = DO,cris,K(V*) G FillDcris,K (V*)

Note that the two slopes are k-1 and k+1. Then both of them are strictly smaller than
2 2

k if k > 1 and the smaller one i's always smaller than k. In either case, Lemma 2.2.2



gives

Dcris,K(V*) = Do,cris,K(V*) D FilDcris,K (V

In the following, we recall the nice argument in [26] to obtain Prop. 6.4.2 in

the case that Dcris(V ®E V*(1)=1 f 0 under the assumption that A, = p Ao. This

argument also shows that H1 (GK, ho,dR OE 1) is not surjective.

Now we assume Dcris(V OE V*=(1))1 f 0, i.e. dimEDcris(V OE V*(1))P c =

We denote the last crystalline period by

hi : V - (B+isK p E) f 1

First, we have by the proof of Prop. 6.3.3 that

HO (GK, V E V*) n H (GK, V OE V*) = H(GK, V &E V*),

which (combined with Cor. 6.2.2) gives

dimE HhI dR(GK, V &E V*)

<h + nN(N - 1)/2 - nsv + nsN-1 +c 0 + 2n + c: h' R+nc,

where we have used that the target of the map H1 (GK, h1,HT OE 1) is of dimension

nsN-1 over E, by Lemma 6.3.1. If the equality holds, one sees the surjectivity of

H1(GK, h1,HT E 1), because then its image has dimension equal to that of the target.

Meanwhile, we have

dimE H c, (GK7 V OE V*)

> dimE H'(GK, V (E V*) - dimE H 1 (GK, B+isK fp V*=h

where we, obtian thodR'

where we obtian the last equality by recalling Lemma 6.3.1(3).



Therefore to show the surjectivity of H'(GK, h0 E 1), it suffices to show that

dimE H (GK, V OE V*) - dimE H/ -(GKV EC,

which will make the inequalities above equalities.

We claim that

H (GKi V OE V*) C HI,,,. (GKi V OE V*).

To see this, let 0 -+ V -+ W - V -+ 0 be an extension of de Rham representations,

i.e. an element in H'(GK, V O -V*). Replacing K by a finite extension if needed, we

may assume this is a semi-stable extension, which in turn induces an extension

0 + Dcris(V*) + Ds,(W*) ' Dcris(V*) ± 0

of Ko[ o]-modules, where the map res sends a map on W to its restriction on V.

The monodromy operator Nw on Dst(W*) induces a map of Ko[y']-modules Nw

Dcris(V*) 4 Dcris(V*)( 1). The claim means, by Lemma 5.2.1, that any GK-equivariant

E-linear map w, : W -*Bst 0, E whose restriction to V is h1,cris, factors through

Bcris ®Q E. Hence we just need to show Nw(wi) = Nw(h 1 ) = 0 in Dcris(V*)(-1).

Suppose Nw(h 1 ) # 0. On one hand, the p!-eigenvalues on Dcris(V*)(-1) are

{p - A0, p- A, }.

On the other hand, the assumption that j!(h1 ) = Ahi and that Nw is o-equivariant

imply that Nw(hi) E Dcris(V*)(-1) has p!-eigenvalues A,, which is a contradiction

to the assumption that A, # p-f Ao. This proves the claim.

It is easy to see (cf. the proof of Lemma 5.2.1) that

H (GK V F V*) n HE(GK E V*) = H (GK, OE V*).



Intersecting it with H (GK, V GEV*) and using the claim shown above, one gets

H (GK, V GE V*) n H(GK, V E V*) = HGK E .

Since the three terms are subspaces of Hi1,dR(GK) V GEV*), the codimension of

H',i,,,, (GK, V (E V*) C H (GK, V EV*) is at least

dimE H (GKi V 9E V*)- dimE H (GK, V 9E V*)- nc,

where the last equality holds by Prop. 6.2.1. This finishes the proof of surjectivity of

H 1(GK, ho,cis GE 1) (and that of H (GK, h1,HT OE 1) at the same time).

Now we relate the results on Galois cohomologies above to finite slope deformation

functors in Sec. 5.

Theorem 6.4.4. Let V be as in Prop. 6.4.2. Suppose the po!-eigenvalues A0 are of

multiplicity one. Then

(1) The functor Do'f is represented by a Qp-algebra Ry2''f, if Dv is repre-

sentable.

(2) If H0 (GK, V &E V*) = E, then the finite slope deformation ring R'o'' is a

formally smooth quotient of Ru"v, with (relative) dimension equal to 1 + 2n.

Proof. That the representability of the deformation functor Dv implies that of its

sub-functor D is by our assumptions and Prop. 5.2.6. This concludes the proof

of (1).

For (2), first note that the deformation functor DV is representable as HO(GK, VGE

V*) = E and is smooth since H 2 (GK, V GE V*) = 0. The smoothness of Dyhi f fol-

lows from that of Dv and Prop. 5.2.4, as the map H 1(GK, h0 E 1) is surjective by

Prop. 6.4.2. Hence the finite slope deformation ring R h obtained in (1) is formally

smooth. One sees the dimension by Prop. 6.4.2, recalling from Lemma 5.2.1 that

D>"'af(E[c]) D ho (E[E]) ~ H'1 (GK E



where the first isomorphism is by Prop. 5.2.3.

El

Proposition 6.4.5. Let V be as in Prop. 6.4.4(2). Denote by PO(T) the Sen

polynomial on the universal representation on R ""V . Then PO(T) takes the form

P4(T) = TQo(T) for some Qo(T) C R" >,p[T ], and Qo(v) is non-zero on R""'f for

any v > 0.

Proof. First, Prop. 5.2.2 implies that D1,HT is a smooth functor, by the surjectivityV

of the map H'(GK, hl,HT OE 1) obtained in Prop. 6.4.2.

For r E Z>1 , let V be the universal deformation to R,2f /mr, where m C Rho,,f

is the maximal ideal. By assumption, ho lies in B'iSK ®QE but does not factor

through Fill B+iSK , E, i.e. it has non-zero image under the map

B K , V* -± Cp , V*. (6.1)

By the definition of R "'f, ho lift to R$ "Fp /m'. It is easy to check that ho lifts to

an element ho E HO(GK, Fil0 B o®, V,*). The image ho,HT E HO(GK C~,p Q

of ho has to be non-zero, as its image in H0 (GK, Cp 9Q V*) is the specialization

of hi via (6.1) which is non-zero. Note that ho,HT - R opf /m is a free Rho,/f

module. On the other hand, by Prop. 4.2.1 the module H0 (GK, Cp ®Qp ,*) is killed

by det(#), where by abuse of notation we write # as the Sen operator on the universal

deformation V, on R) h f/mr. In particular, det(#) - hO,HT - 0, hence det(#) = 0,

which means 0 is a root of P,[T] E Rio /mr[T]. Letting r -+ oc we get that 0 is a

root of Sen polynomial on R$ h, .

We are left to show that none of the v E Z>o are roots of Qo(T) on R$ * , for which

it is enough to show that D o, DD'HT # DO hc as we already have Qo(T)(V)

T - k1. Suppose the converse is true. We must have that H, 0 (GK, V OE V*) is

contained in HlHT (GK, EV O V*), then by Lemma 5.2.1 and Prop. 5.2.3 we should

have

H oc (GK, V OE V*) n HlHT (GK E V*) H (GK, V O -V*).



However, the left hand side is just HJ(GK, V OE V*), which is at least n dimensional

smaller than the right hand side, a contradiction.
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Chapter 7

Local and global eigenvarieties of

GL2

7.1 Local Galois eigenvarieties of GL 2

Let p: GK - GL 2 (F) be a (fixed) residual representation with F/F, a finite extension.

Fix a versal deformation ring RP"e associated to p.

Denote by Z = Sp(Rr[1/p]) the rigid analytic space over Q, associated to R ,

and Mz the universal GK-representation on Z. We have the characteristic polynomial

PO(T) E Oz(Z)[T] of Sen operator # on Mz.

We let ZO C Z be the closed subspace of Z cut out by P(O). Set

X0 = ZX X Gm.

Let MO denote the pullback to X 0 of Mzlzo. Write Y for the canonical co-oordinate

on Gm.

Applying Thm. 4.3.3 to X0, we obtain a closed subspace

Xf5 := Xfs,o(X 0 , M 0 , Y) C Zo X Gm.

For z E Z(E) (resp. Z 0 (E)) an E-valued point with E/Q, a finite extension, write



V, for the corresponding E-representation of GK and R, (resp. NM) for the (scalar

extension from its coefficient field to E of) complete local ring at z E Z (resp. Z0 ).

For A0 c E, if (z, Ao) c X(E) (resp. X 0(E)) we define Nz,Ao (resp. NO,Ao) similarly.

Recall from Sec. 5 that we have the universal deformation ring Runiv when

HO(GK, Vz OE Vz*) = E. In this case, we have, by Prop. 5.1.1, a canonical for-

mally smooth map R"niv -+ R, which in turn gives a map Ruliv -a NzA by the

composition with Rz - Rz,- .

Theorem 7.1.1. Let 0 = ko < k1 be non-negative integers. Let E be a finite extension

of Q,, and A E E'.

(i) If (z, 'No) G Xf s(E) then there is a non-zero GK-equivariant E-linear map

ho : V -+ (B+iS ®QP E f =Ao

and 0 is a Hodge-Tate weight of Vz.

(ii) Suppose an element (z, Ao) e Z x G,(E) is equipped with a crystalline period

ho as above. Then

(1) If the Hodge- Tate weights of V are 0, k1 with k1 G QP - Z>0, then (z, 'o) lies

in Xf, (E).

(2) Suppose V is de Rham of Hodge-Tate weights 0 = ko < k1 such that

H (GK, z OE Vz*) = E,

and the pof-eigenvalue 'O is of multiplicity one. Then (z, A) lies in Xf s(E).

Remark 7.1.2. In the case (ii)(2), we actually have that the assumption

HO(GK, Vz OE z*) E

implies

Dcris,K(Vz*) = DO,cris,K(Vz*) D FillDris,K(V*) 

by Corollary 2.2.7.



Proof of Thm. 7.1.1. If (z, Ao) E Xf 5 (E) then the existence of ho follows from Prop.

4.3.6. This shows (i).

In what follows, we adopt the notations in the proof of Thin. 4.3.3.

That the existence of ho implies (z, Ao) E Xf8 (E) in case (1) of (ii) is seen by

Thin. 4.3.3, as Qo(v) is not a zero-divisor in Xf, for any v C Z>o by assumption.

To prove (z, Ao) C Xf5 (E) in case (2), we may assume E = k(z) for simplicity.

We will use the same notation for MO and its pullbacks when no confusion arises.

Let -z be the kernel of the natural projection RVfli" - Rho*f which exists by

Thin. 6.4.4.

First we recall that the natural projection Rz,A0 - Rz,Ao/z (resp. Rz Rz/rz)

factors through NiA0/hz (resp. NM/rz). This is what we have seen in the proof of

Prop. 6.4.5.

Recall there are canonical (formally smooth) maps Runiv -> Nz and Ru" - Nz.
We have for any positive integer r, the composition of the obvious maps

v = R /Kz-* -+ Nm/zE) N/z+ 4 ,Ao/( + ±zmAo)

with mz,E (resp. Mz,A) the maximal ideal of Nz (resp. NORA). Then we have the

maps

ho,,r : MO - (B+is jO Kz + z+,E) Aor

(Bciis, O z

(BjisK (Q Rz,Ao/Qrz + M§Z',A))~'A,

by the universal property of Ry, where Ao,, denotes the image in NS/(iz + m',E

of the universal element Auniv E Rha lifting A0 . Note by Prop. 5.2.5 that Auniv is

uniquely determined, which enables us to choose {ho,,},>1 to be a compatible system

in the sense that A,,+1= AO,, modulo m'zE (this is condition (2.7)(3) of [26]). Let

ho :1 ho,, : M - Fil 0B+isK®QP /,tz

As in the proof of Thin. 4.3.3, let SpR. be an affinoid neighborhood of (z, AO) c

Z x Gm so that |Y||Y 1 | < |wKl on SpR. Take a non-zero R-linear GK-equivariant



map

h' : M -4 B+R/Filk BdR(a,

so that

(BcsK ®Qp E)'--KAo" Fil"BdR/Filk BdR &Qp E

is an injection with closed image for k > 0, where we take ER = E as A0 E E. The

map h' gives rise to the composition

h4 : Mo - FiloBdR/FilkBdR$Q,IR -± FiloBdR/FilkBdRQp Ao /Kz-

We claim that the K oQ, NO /,Z-module

H 0 (GK, BjR/FilkBdR$Q(MO)*)

is free of rank 1.

This follows from Prop. 2.8 [26]. To do this, we need to check the Conditions

(1)-(5) (2.7) [26], with RhM, J, h loc. cit being NAo, Kz , ho in our case.

First, we have R"u"iv is formally smooth as H 2 (GK, z ®E z*) - 0.

ring R,Ao is formally smooth over R"iv, because Rz is, by Prop. 5.1.1. Hence

-z/rz = R/ Kz and Rzgo/Kz - /rz are formally smooth over Rv"'/ rz := Rho,

On the other hand, Rho"'' is formally smooth by Prop. 6.4.4. Therefore NM/Kz and

Ni AO/K2 are formally smooth rings. Then K Q, RAO/Kz is a domain.

Condition (1).

Condition (3) is already seen by our construction, and Condition (4) is the claim

we proved at the beginning.

Note that Condition (2) (resp. Condition (5)) is equivalent to saying that v E Z>i

(resp. v = 0) is not a root of the Sen polynomial in K @Q, RA/Kz. They follow

from Prop. 6.4.5. This concludes the proof of the claim.

By the claim, h' and ho only differ by multiplication by some element ao E

The local

This is



Nz /Kz. Thus the specialization of h'O,

h' M d BIR/FilkBdR QR - B+R/FilkBdRRQj ,Aoj(rz + m,A

factors through (Bi@Q NR0 /(rAmr )) 0, with A', = AO,, by the uniquenessr ZAoZr z,A0  ,r Arb teunqens

of A"univ

Recall the fact (cf. Remark 4.3.2) that the map

SpN2 0 /(Kz + m§,Ao) -_ SpR

is Y-small. Now Prop. 6.4.5 enable us to use Thin. 4.3.3, which implies the map

above factors through X' Xyo(SPR)), i.e. the ideal a' C R cutting X' out of

SpR satisfies

a'oNR~ C (R2 + mr,A)NA

for each r > 1, where

Rz := K2$2,4+ (Y - A0) C N2,A

with A0 E NU a lifting of the image in N0/Kz of Au"iv E Rhy 'f.Z Z 0vz Hence a' N, C

RZ&' which means (z, Ao) C X', and we have a map

-R/a' - N,x /Rz.
K0 -±

This map must factor through R/ao with ao the ideal cutting out Xf : Xf,,o(SpR)),

because of the existence of the formally smooth map R>y '* N0/2rz ~ 50,R/kz, and

Prop. 6.4.5, which imply that there is at least one component of XX containing (z, AO)

where det(#0 v) is non-zero for any v C Z>o. That is, (z, AO) E Xjs.

Keep the notation in Thin. 7.1.1. Denote by OX,,(z,Ao) the complete local ring at

(z, Ao) c Xf,(E).



Proposition 7.1.3. (1) If (z, Ao) is as in Thm.

eigenvalue Ao is of multiplicity one, then there is a canonical isomorphism

()Xf,,(z,AO) *?z R niv RV

Moreover, the complete local ring Oxf,,(,AO) is formally smooth over R" if HV(GK, ZE

YV*) = E.

(2) If (z, AO) is as in Thm. 7.1.1 (ii) (2), then there is a canonical isomorphism

OXf,,(z,Ao) z R ni Rv I

and the complete local ring OXf,,(z,Ao) is formally smooth quotient of Rz with codi-

mension 2n.

Proof. This follows from the argument of (10.6) [26]. Keep the notations in the proof

of Thm. 7.1.1.

The existence of canonical isomorphism Ox,,(A) - Rz ®RUi, Ray'*f implies,

combined with Prop. 5.1.1 and Thm. 6.4.4, the assertions about smoothness and

dimensions.

First suppose we are in case (1) of Thm. 7.1.1(ii), where Qo(v) is not a zero divisor

in fM,/(iz + m,), for any v E Z>o. Consider the specialization

h'jM : M0 - FilOBdR/Fil BdR$Qp /(2 + mz, A)

of the fixed map h' by the map R - /2 - $Z,/(K2 + mr, 0). Then by

Prop. 4.2.1 the above map coincides (up to a scalar) with the map ho,, obtained by

the universal property of RE,'*' (recall the proof of Thin. 7.1.1). Hence it factors

through (Bcis OQ , /(Kz + mAo))P'--O0. Then the map

-4 FilOBdR/FilkBdR&Qp /,A Kz-mzA) -* FilOBdR/FilkBdR&Qp , Ao z-mz,)

4.3.3(ii), noting RO/(KZ ± mz,Ao) is Y-small.factors through Ox by Thm.

7.1.1(ii)(1) such that the <,of-



This gives, passing to the limit over r, a natural map

OXf,,(z,Ao) -i |z ~ / R n O>fiv Rh',P.

We now need to find the inverse map. Write the maximal ideal of OXf,,(z,Ao) by

nz,Ao. Note that Qo(v) (for any v E Z>o) is not a zero-divisor on Oxf,(z,Ao) /nrA for

r > 1, since ki is assumed to be away from Z>o. Then by Thm. 4.3.3 (ii), there exists

(for any r > 1) some A' Ox,(z,A)/n§,O and an Ox,,,(z A)-linear, GK-equivariant

map

h', :M4 OR Oxf,,(z,A)/n§ A0 - (BcisK ®Q Xf,,(z,Ao)/fnAo) r

lifting the given map ho : Vz (Bciis 0, E)'=. Then the composition

Runiv -+ Rz -R,* -> 
0 Xf,,(z,Ao) - OXfS,(z,Ao)/ n,

factors through R o, by the universal property of the latter. One takes the limit

over r and gets a map N& ORuniv Rho,f 3 OXf,(z,Ao), which easily seen to be the

inverse of the map constructed at the beginning. This concludes the proof in case

(1).

Now suppose we are in case Thm. 7.1.1(ii)(2). Recall from the proof of Thm.

7.1.1 the map RI/cto -+ N Ao/kz. This provides us a natural map

0 Xf,(z,Ao) -*R 0 /k z/K fi_ R f R ho,,Ox n $ |o Rz ~ u/s ~S niv RV''

To show this is an isomorphism, as in the proof for case (1), we just need to show the

natural map

RiV" -, R - R 0 X,,(z,Ao)

th ffactors through Rk>0'~ That is, we need to show rz' ,,(,o (= 0.

Let Sp R c Z 0 x Gm be an affinoid subdomain which is Y-small. Then Prop.



4.3.6 implies (for k > 0) any R/ao-linear GK-equivariant map

(ho)l/ao : M 0 OR R/ao -+ BjR/FilkBdROQpR /ao

factors through (Bc is QRao . Let H be the smallest ideal in R/ao such

that (ho)R/ao factors through BiR/FilkBdR$QH. Applying Prop. 4.3.6, we have

that Sp(R/co)\V(H) is Zariski dense in Sp(R/ao). Let To be the blow-up of H on

Sp(R/o) and zr E To a point over x = (z, Ao) E Sp(R/ao). Then the argument on P.

62 [26] shows that

KzOTO i 0

and

117 0 T,

with z running over the points above x. We then have FoOxf, =(zA - 0, as wanted.

Write Koo = Un>OK(c(")) with F(n) a primitive p"-th root of unity, and FK,1 the

maximal pro-p quotient of FK = Gal(Koc/K), for which the cyclotomic character XK

gives a canonical injection FK - Zp'

Denote by D1 and To the deformation functor and universal deformation ring of

the trivial representation of FK,1 over F, respectively. Then To is formally smooth

over W(F) of relative dimension n = [K : Q,]. Write So = (Spec To[1/p])an for the

associated rigid space and Ms, for the universal representation on So. Denote by

so C So the point corresponding to the trivial representation W(F)[1/p] of FK,1-

Set

Xn5S = X5s X So.

Following (1.3.1) [21], we have

Proposition 7.1.4. Let (z, /o) C Xf5,(E) be as in Prop. 7.1.3 such that the Hodge-



Tate weights ki of V, are distinct. Then the natural map

vho : R yi" -- +, Ry"'v fW(F)[/p]so,so

(inducing the map (VA, x) i VA QQ x for a local Artinian E-algebra A with residue

field E) is surjective.

In particular, in the case of Prop. 7.1.3 (2) the image &,,"'f Of whh is formally

smooth over E of dimension

dimE Rho,,i + n.
vz

Proof. It suffices to show the map induces an injection on A-points with A any Ar-

tinian local E-algebra whose residue field is E. For this, recall we have Sen polynomial

PO(T) on any finite free A[GK]-module. Let (VA, X) and (VA, X') be two points having

the same image under Spec vh0 . We may assume x = ro. The Sen polynomials of VA

(resp. VA) takes the form T(T - ki + ai) (resp. T(T - ki + a')) with ai, a' mA, the

maximal ideal of A. Pick a topological generator -y of FK,1 (or that of the pro-cyclic

open subgroup of FK,1 and set a = logx'(Y)/logxK(Y). Then the Sen polynomial on

VA &U, X' is (T + a)(T - ki + a' + a). Since ki's are distinct and a, ai, a' mA, a has

to be zero. Hence x' = ro and VA = VA.

Denote by OX, 1 z,(,z,Ao,qo) the complete local ring at a point (z, Ao, r/o) E Xnfs(E)

for qo E So.

Corollary 7.1.5. Assume (z, Ao) is as in Prop. 7.1.4. Then we have a canonical

isomorphism

0x~f,,(z,Xo,ro) R z ho,1v Sv -

If in addition (z, A0 ) is as in Prop. 7.1.3(2), then the complete local ring 0 Xf,,z,Ao,0 o)

is a formally smooth quotient of R of codimension n.

Proof. The isomorphism follows from Prop. 7.1.3 and Prop. 7.1.4, which implies, in

particular, that

dim N, - dim 0 Xnf,,(z,Ao,qo) = dim Ru7v - dim Ry"''' - n.



Then the quantity about codimension can be seen by Thm. 6.4.4.

7.1.1 Flatness of weight map on the local eigenvariety

We have the Sen polynomial PO(T) E Oz(Z)[T], the zeros of whose evaluation at

a point z E Z are the (generalized) Hodge-Tate weights. The coefficients of these

polynomials give rise to a map

w := {wio<i<1 : Z - A2  V 2 .

We use the same notation w : Xf, _ W/2 for the composite of w with the pro-

jection Xf, - Z, and call it the weight map on Xf . Of course, the factor wo is

constantly zero on Xf, by our construction.

Proposition 7.1.6. Let (z, Ao) C X 5,(E) be as in Thm. 7.1.1(ii)(2). Then the

weight map w1 is flat at this point.

Proof. By Prop. 7.1.3(2), the complete local ring OXf,,(,Ao) is formally smooth over

the finite slope deformation ring Ry ,< Then the flatness of wi follows from Prop.

6.4.5.

7.1.2 Dimension of the local eigenvariety

Denote by F 0 the subset of Z0 x Gm consisting of points (z, A), where V is a 2-

dimensional crystalline representation of GK over a finite extension E/Q, with dis-

tinct Hodge-Tate weights 0 = ko < ki and distinct of-eigenvalues A0, A1 , such that

H0 (GK, Vz 9E V*)= E,

vK(Ao) < k1 .

Note that we have

VK(A) <k1
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as well, because VK(Ao) + VK(A) = k1 by admissibility.

The condition between slopes and Hodge-Tate weights implies that the refine-

ment determined by A0 and A, are both non-critical, by Lemma 2.2.2. Thus Thm.

7.1.1(ii) (2) implies that (z, Ao), (z, AI) E XfS.

Lemma 7.1.7. The subset F 0 C Z0 X Gm is non-empty.

Proof. As is explained in [21], one can find, by replacing V by a twist of the mod

p cyclotomic character (if necessary), and by using the Fontaine-Laffaille theory and

(3.3.8) of [22], a two dimensional crystalline representation satisfying the conditions

we need. For example, there is such a 2-dimensional crystalline representation of

Hodge-Tate weights (0, 1) with A0  A1 and VK(Ao) vK(AI) 1/2.

Lemma 7.1.8. For any point x E F 0 C Xf, there is a quasi-compact admissible

open subset U containing x, such that if a closed point (z, A0 ) E U has image under

w1 being a sufficiently large integer, then (z, AO) is in F0 .

Proof. Let (z, AO) E Xf,(E) with E/Q, a finite extension, such that V has Hodge-

Tate weights 0, ki, and

(1) vK(Ao) < k1 ,

Note that the ypf-eigenvalue A0 determines a crystalline period ho, which, by con-

dition (1) and Lemma 2.2.2, does not factor through FilkiBdR®E. On the other hand,

the Hodge-Tate period V -± Cp(ki) lifts to a de Rham period h' : V -- Filk'BdRnE

by Prop. 2.2.6, which is then K og E-linearly independent of the other de Rham

(crystalline) period obtained above. Hence the V's with (z, Ao) satisfying (1) are de

Rham.

Now look at the Weil-Deligne representation Dpst(V*). By the existence of the

crystalline period ho, Dpst(V*) contains an unramified characters Xo, as a direct sum-

mand. The remaining character X1 corresponding to the de Rham period h' is also un-

ramified because XoXi is unrainified, which follows from the fact that detVzl =K

is crystalline. Therefore Vz is semi-stable.

Suppose further that Vz satisfies
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(2) k1 > 2vK(Ao) + 1.

Then V is in fact crystalline, because otherwise the monodromy operator N on

Dst(V*) is non-zero, hence A, = p+/Ao, which contradicts (2).

We note here that (2) also implies that the (,of-eigenvalues on Dcris(V*) are distinct,

because otherwise ki = 2vK(Ao).

Let U = Sp R be an affinoid neighborhood of x in Xf5 , which consists of points

(z, AO) E Xf, such that if wi((z, Ao)) is an integer, then (z, AO) verifies HO(GK, V &Q,

V-*) = E and conditions (1), (2). Then one sees that U is the desired admissible open,

by Thm. 7.1.1(ii)(2).

Denote by X'fS (resp. X,,) the union of irreducible components of Xf, (resp.

Xf,) each of which contains a point in Fa (resp. a point (z, A0 , rIo) with (z, AO) E FO).

For X a rigid analytic space, we say a subset S C X is an accumulation subset

if for any x c S and any affinoid neighborhood U c X of x, there is an affinoid

neighborhood V c U of x such that S n V is Zariski-dense in V.

Proposition 7.1.9. (1) The subset F 0 is an accumulation subset of X]8 . In partic-

X is the rigid Zariski-closure of F0 .

(2) The subset F consisting of the points (z, Ao, rio), with (z, Ao) c F0 andTI0 = )(

(k G Z), is accumulation in Xf 5,. In particular, Xnf, is the rigid Zariski-closure of

F0.

Proof. By the construction of Xf, 5 via Xfs, we see easily that (1) implies (2). We

now prove (1).

For a point x = (z, Ao) E F0 C Xy], there is only one irreducible component in

Xfs passing through this point and it is smooth, by Prop. 7.1.3(2). For (1), we just

need to show this irreducible component is contained in FO, the rigid Zariski-closure

of F0 in X..

Consider the quasi-compact admissible open subspace U c Xf, containing the

point x, obtained from Lemma 7.1.8. We may assume further that that U is connected

and smooth, as the (unique) irreducible component passing through x is smooth.
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Set T = 0 n U. It is enough to show T = U, because if so then F 0 contains U,

hence contains the irreducible component of Xf, passing through x.

By Prop. 7.1.6 the weight map wi : U -± VV on Xf, is flat at any point in F0 . As

T = F 0 n U is quasi-compact and the image of T under wi contains infinitely many

points in W, there are infinitely many points in V over which wi is flat. Let y E W

be a point at which w1 T is flat. We then get

dim T > dim(wi)- 1(y) + dim W = dim U,

which shows T = U, as T C U is a closed subspace and U is irreducible.

Corollary 7.1.10. Suppose p admits a universal deformation ring. Then any irre-

ducible component of X]8 has dimension

1 + 2n

and any irreducible component of Xn,', has dimension

1 + 3n.

Proof. First for X50. Consider an irreducible component in question. Since a point

in F 0 satisfies the conditions in Prop. 7.1.3(2), such a component has dimension

dimE kz - dimE Runi + dimE R ho" dimE Rz - 2n

at a point (z, Ao) c F 0 . Moverover, by Prop. 5.1.1 R2 ~ R"n"iv, and the latter has

dimension dimE H0 (GK, Vz OE V*) + nN 2 = 1 + 4n. On the other hand, by Prop.

7.1.9, such an irreducible component is the rigid Zariski-closure of the points in F0 ,

hence the result follows.

The dimension of Xnf is then seen by the definition of XfS, which is dim X, + n.
f
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7.1.3 Smoothness of de Rham points in the local eigenvariety

Theorem 7.1.11. Suppose p admits a universal deformation ring. Let (z, AO, rjo) C

X?(f,(E) with E a finite extension of Qp.

If (z, A) is as in Thm. 7.1.1 (ii) (2), then (z, Ao) is smooth in Xf5. If in addition

the Hodge-Tate weights of V are distinct, then (z, Ao, r1o) is smooth in Xf5.

Proof. By Prop. 7.1.3 (2), Cor. 7.1.5 and Cor. 7.1.10, under the assumptions in the

Theorem, the dimension of the complete local ring at a point in question is equal to

the dimension of the corresponding rigid space.

7.2 Global Galois Eigenvariety of GL 2

As before, N = 2.

Let F be a number field of degree n, and S a finite set of places containing p and

all the archimedean places. Let p : GF,S -+ GL 2(F) be a residual representation with

IF a finite field of characteristic p. Assume that p admits a universal deformation ring

R univ.
P

Denote by Z the rigid analytic space associated to Rniv[1/p] and by Mz the

universal Galois module over Z. For v a place of F above p, F, denotes the completion

of F at v. Then GF, is a subgroup of GF,S by choosing an embedding F c± FV. Denote

by Z, the analytic space associated to RvF [1/p] for RvFv the versal deformation

ring associated to the local residual representation PlGFv. Note that we have Sen

operator 4v on Z, for any place v in F.

We denote

X = Z X (G, Xv = ZV X Gm, Xp := J X.
vip vIp

Let M, denote the pullback to X, of Mzlz,. For each v p, write Y, for the canonical

co-oordinate on Gm. As in the local case, let So,v be the rigid space parameterizing

the characters on l'Fv,1 whose reduction is the trivial character 1F-
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Now we have the nearly finite slope subspaces

Xv,nfs = Xn5s( Xv, Mv, Y)

for each place v p in F.

By the versal property of R", we have a map of local W(F)-algebras Rv -+
PIGFV'PG

R,""v (may not be unique), which induces a map between analytic spaces Z - Zv,

for any place vlp. Then we have the induced map T : X -+ Xp.

We define X = X(GL 2/F) to be the fibre product

X -* F Xvnfs

I t
where the right vertical map is the natural inclusion.

We call X the Galois eigentower of GL 2/F.

As usual, if z E Z(E) is an E-valued point, Vz denotes the corresponding N-

dimensional E-representation of GF,S. We denote by zv the image of z in the local

deformation space Zv.

Denote nv = [Fv : Qp] and fv := [F,o : Qp] for v I p a place in F, where F,,o is the

maximal unramified extension of Q, inside Fv.

Theorem 7.2.1. Let z E Z(E) with E a finite extension of Qp. Let A = (Av)v\p with

Av C E, and rj = ('Th)vl with r7v So,..

(i) If (z, A,r,) C X(E), then for any place v above p, there exists a non-zero GF-

equivariant E-linear map

hv : Vz|GFv + (Bcri ®Q, F, fv =A-}

(ii) Suppose for any v~p, the element (zv, Av) E Zv x Gm(E) is equipped with a

non-zero GF, -equivariant E-linear map

hv : V , Fe n ( B+j, 0Q, E )'"-A.
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Then (z, A, Ty) lies in X, if for any embedding F, "± Qp the data above satisfy either

Thm. 7.1.1(ii)(1) or Thm. 7.1.1(ii)(2).

Proof. This follows from Thm. 7.1.1 and the definition of global Galois eigentower

immediately. F

We note that, in Thm. 7.2.1(ii) whether (z, A, I) E X lies in X is independent of

the choices of maps ever - Ru"'v we make by Thm. 7.2.1, as the existence of f) is

defined globally.

Keep the notation in Thm. 7.2.1. Set the functors

Dv2,p:= H Dv D ' := (D G x Di:)D Db := f f(D vOFo x DiF).z, l IGF. 17(D 1 X- D Gi~ V-" 17 VZ IGF,
vip vip vip

D': Dv XDv, D' p : D" := Dv, XDv,, D p.

Proposition 7.2.2. If (z, A, TI) is as in cases (1) or (2) of Theorem 7.2.1 (ii) such that

the <p!v -eigenvalues Ae are of multiplicity one, then the functor Db" is represented by

the complete local ring Ox,(z,A,q).

In particular, the cotangent space of X at (z, A, q) is canonically isomorphic to

H1 (GF,S, z (gQp Vz)

Ker(H1 (GF,S, Vz OE Vz*) -> ]7 Im(H 1 (GF, hv OE 1))) (E ll H1 (GF,,, Vso, vE Vs*O v
vip vip

where so,v G So,v denotes the point corresponding to the trivial representation W(F) [1/p]

of l'Fv,1-

Proof. The first assertion is formality, for which one can refer to (11.3) [26] for details.

The second assertion then follows from Lemma 5.2.1 and Cor. 7.1.5.

Assume dimF EndF[GF,S 1.
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Proposition 7.2.3. If the number field F is of degree rn = r1 + 2r 2 with r1 (resp. r2)

the number of real (resp. imaginary) embeddings, we have

Assume N -

0
, then

-I /

2m. If the image of any complex conjugation is equivalent to

the Krull dimension

dim R"niv/pRniv > 1 + nmN.

ssume N = 2m + 1. If the image of any complex conjugation is equivalent

then the Krull dimension0 )
-Im+1

dim Rniv/pRniv > 1 + nmN+ r 2 N.

(3) For any positive integer N, if the image of the complex conjugation is equiva-

lent to IN, then the Krull dimension

dim Rniv/pRuiv > 1 + r 2 N 2

Proof. It follows from the proof of Prop. 5 of [29], which uses the global Tate duality.

A representation p : GF,S -+ GLN(F) is said to be odd (resp. even) if it satisfies

(1) or (2) of Prop. 7.2.3 (resp. Prop. 7.2.3(3)).

Let X" C X be the union of irreducible components of X containing a closed point

as in Thm. 7.2.1(2).

Theorem 7.2.4. (1) If p is odd, then an irreducible component of X 0 has dimension

at least

1+ n.

(2) If p is even, then an irreducible component of X 0 has dimension at least

1+ 4r 2 - n.
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Proof. We show (1), since (2) is seen similarly. One sees by Prop. 7.2.3 that

dim Z > 1+ 2n, N = 2m = 2

at any point in Z.

Let v be a place of F above p. By Cor. 7.1.5, the surjective map Oz,2 -

xo~,nfsi(zv ,Av~n) has kernel generated by n elements, whence the kernel of OzZ -+

Ox,(z,A,77) is generated by at most n elements, keeping in mind Ev nv = n. Thus the

dimension of an irreducible component in question is at least dim Z - n, hence the

desired quantities by Prop. 7.2.3.

D-
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Chapter 8

Infinite fern in a local Galois

deformation space

Let K be a finite extension of Q, of degree n and F a finite extension of Fp. For a

2-dimensional F-representation V of GK with a fixed basis, denote by R' the framed

universal deformation ring.

We will construct, for certain V's, an infinite fern (in the sense of Mazur) in the

generic fibre Spec R' [1/p] of the universal deformation space Spec R', using Kisin's

method in [21] and the construction of the local Galois eigenvariety for GL 2/K-

Lemma 8.0.5. The scheme Spec R[/p] is of dimension d = 4(1+n) over W(F)[1/p]

at every irreducible component.

Proof. To see this, first note that Ro is a power series ring whose number of generators

minus the number of relations is d = 1 + nN 2 + N 2 - 1 by the argument of [29].

Hence each irreducible components has dimension at least d. On the other hand,

it is easy to see the irreducible locus of Spec R'[1/p] is a dense subspace. For a

closed point z in Spec RV[l/p] whose corresponding representation is irreducible, we

have H 2 (GK, Vz Qp z*) ~- H0 (GK, Vz Q Vz*(1)) = 0, which implies that R'[1/p]

is formally smooth of dimension d by the local Tate duality. By Prop. 5.1.1, the

complete local ring at the point z is isomorphic R' [1/p], hence is of dimension d.

Then any irreducible components of Spec R' [1/p] is of dimension d.
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Theorem 8.0.6. If the generic fibre of the universal Galois deformation space as-

sociated to V is irreducible and smooth, then the crystalline points in it are Zariski

dense.

Proof. Denote by Z = Sp(R [1/p]) the Q,-analytic space associated to the complete

noetherian local ring R'[1/p].

We apply the construction of Xf, and Xfy to Z. The proofs in Sec. 7.1 go over

verbatim, by Prop. 5.1.1. In particular, with N2 (resp. Rniv") replaced by NRD (resp.

R'), Prop. 7.1.3 and Cor. 7.1.5 hold for framed deformation rings. Thus we have

(with the notation there) natural isomorphisms

Vz (zAVol: (Xnf sI(zAo1rjo).

Hence the isomorphisms above hold for points (z, Ai, 7i) E F0 (7i is an integral power

of XK). In particular,

dim Oxf,(, 2,n,) =d - n, i =0,1.

Consider the projection

7r1 Xnfs -+ Z : (z, A, I) -4 V 09T1.

Let F be the Zariski closure in Z of F, the subset of crystalline points of Z coming

from the elements in F 0 (via 7ri) and their Tate twists. Note that the sets F C Z and

the set F0 C Xfy are in one to one correspondence. By Lemma 7.1.7, F contains a

crystalline point coming from F 0 , hence is non-empty.

By Prop. 7.1.9, the preimage of F under the projection r1 is Xnfs, the union of all

the irreducible components of Xnf, passing through a point (z, A, Tj) with (z, A) E F0 .

Then, at a point z E F coming from F 0, SpfoFz contains two formally smooth
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subspace SpfRi ~_ SpfOx,,f,(z,Ajjj), whose dimensions are equal to

d - n.

Moreover, we see easily nj 0SpfR, is the formal scheme associated to a twist of

the crystalline deformation ring Rr associated to V ([22]), noting that

(01 ojfy' p) ~g (oRhp ) ow(jF)[1/P] $so,so.

The crystalline deformation ring is formally smooth of dimension d - 3n by (3.3.8)

loc. cit, as V has distinct Hodge-Tate weights. Thus n 0SpfR, is formally smooth

of dimension

d - 2n.

Consider the tangent space (at any z coming from FO) mPz/m 2 ,, where mp, is

the maximal ideal of 6p,z. One must have that

1

(dim mp,Z/m2, - dim Spf Rj) > dim mFZ/m2,z - dimn 0SpfRj,
i=O

which gives, by the quantities obtained before, that

dim mF,z/m2, 2 d.

Note that twisting by xK (k E Z) is an automorphism of F, provided V® w~ V

where WK is the mod p cyclotomic character. We then have that dim mFzmp, > d

for any z E F.

Pick a point z E F. Let SpR be an affoid neighborhood of z in F. Since R is

excellent, the regular locus U in SpR is open. There must exist a point z' E F n U,

as F is Zariski dense in SpR. Now F is smooth at z', as the local ring of F at z'

is the local ring of SpR at the same point. Thus dim OFz, = dimmp,z,/m2 > d.

Then the irreducible component F2' of F passing through z' is of dimension at least
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d, hence is of dimension d. Therefore F2, = F = Z as Z is irreducible.

El]
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Chapter 9

Trianguline representations:

another point of view

Let K/Q, be a finite extension. We define HK = Gal(Q,/K,) where K,= UnEN K(")).

Write rK = GK/HK. The cyclotomic character then gives a canonical map XK

rFK " ZP

9.1 (<p, F)-modules over Fontaine's rings and over-

convergence

Write -r = [E] - 1. Let AQ, c W(FrR) be the completion of Z7rf[1/7] under the p-

adic topology on W(FrR). Then BQ, = AQ,[l/p] is a field complete for the valuation

vp with ring of integers AQ, and residue field FI((7r)).

Let E' be the separable closure of IFp((wF)) in FrR. The theorem of Fontaine and

Wintenberger ([14], [35]) says that E' is dense in FrR and stable under GQ, and

Gal(Q,/Ko,.) ~- Gal(E'/k((7-r)))

where Ko,, UnEN Ko(E(n)), and k is the residue field of K.

Then W(FrR)[i/p] contains a unique extension BK of BQ, whose residue field is

EK = (ES)HK and whose ring of integers is AK= BK n W(FrR). By uniqueness, BK
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is stable under the commutative actions of o and FK. The field B"1' = UKQJ<. BK

is the maximal unramified extension of BQ,. We denote by B the p-adic completion

of Bu. Then its ring of integers is A = B n W(FrR) and its residue field is A/p = Es.

Definition 9.1.1. A (p, FK)-module over AK (resp. BK) is a finitely generated AK-

(resp. BK-) module D with semi-linear continuous (for the canonical topology) and

commutative actions of o and FK. It is said to be itale if o(D) generates D as an

AK-module. A (9v, FK)-module D over BK is said to be 6tale if it has an AK-lattice

which is 6tale as a (p, FK)-module over AK-

A fundamental theorem of Fontaine ([15]) says that the correspondence

V - D(V) =(A Oz PV)HK

is an equivalence of tensor categories from the category of ZP-representations of GK

to that of 6tale (o, FK)-modules over AK, and the inverse functor is

D 1-4 (A®AKD) 1.

For a real number r > 0, we define a subring A(0,] C W(FrR) as

A(Or] = {x = Zp'[xi] c W(FrR)|, lim vR(zk) + k/r = +oo}.
i>0 k- +00i >0

Set A(Or] -A(Or] 0n B. For a Z,-representation V of GK, define

D(or](V) = (A(O'r] Oz V)HK C D(V).

Theorem 9.1.2 (Chebonier-Colmez [7]). For any Z,-representation V of GK, there

exists an rv > 0 such that

AK ®A(O,rV| D(Orv] (V) -~4 D(V).
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9.2 (sp, F)-modules over the Robba ring and slope

filtration

In the following, let A denote a finite dimensional local Q,-algebra.

The Robba ring RA with coefficients in A is the topological ring of power series

f (x) = Zan(x - 1)", an E A
nCZ

which are convergent on some annulus r(f) < Iz - 11 < 1 of Cp, with the natural

A-algebra topology. A (P, FK)-module over the Robba ring RA is a finite free RA-

module D with R-semi-linear continuous commutative actions of (p and FK, and

(p(D) generates D as an RA-module. A (o, FK)-module over RA is called 6tale if

its underlying (p-module is purely of slope 0 in the sense of slope filtration theory of

Kedlaya [20] [19].

Write At = Ur>o A(Or] t = Ur>o 5O,I with (O,] = A(0, [1/p], and At = At n

B, Bt = bt n B. The ring Bt = (Bt)GK is isomorphic to the ring of bounded

analytic functions f(WrK) in the variable 7 K on the annulus 0 < vp(T) < r(f), which

is in fact a field. The (p, FK)-action on B> extends by continuity to RK- For V a

Q,-representation of GK, define

Dt(V) = (Bt O V)HK Drig(V) = RK ®Bt Dt(V).

Theorem 9.2.1 (L. Berger, [2]). Let V be a Q,-representation of GK- We have

Dcris(V) = (Drig(V)[1/t]) K.

If V is crystalline, then we have isomorphism of ((p, FK) -modules

RK[1/t] OKo Dcris(V) I RIK [ Bt] Bt Dt(V).
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Theorem 9.2.2 ([8]). The functor

Drig : V P-> (B 9(, V)HK

induces a tensor equivalence of categories from the category of A-representations of

GK to that of itale (so, FK)-modules oveT RA -

9.2.1 Refinements and triangulations of GQ,-representations

Definition 9.2.3. A rank N (sO, FK)-module D over RA is triangular if it is equipped

with a strictly increasing filtration

0 g; FilOD g; Fil'D g---gFilN-1'D = D

by (yP, FK)-submodules Fil'D which are free and direct summands as RA-modules.

The filtration is called the triangulation of D. We say an A-representation V of GK

is trianguline if Drig (V) can be equipped with a triangulation.

In the rest we only consider the case K = Q,.

For a continuous character 6 : Q' - A', we define, following [8], the (W, FQ,)-

module ZA( 6 ) over RA whose underlying RA-module is RA and the (W, FQ,)-action

on which is defined as

p(1) = 6(p), -Y(1) = (7), V7- c F, Z.

We then regard 6 as a continuous homomorphism WQ, - Ex via the Artin map,

by setting

6(g) = 6(p)-deg(g)6(,Q(g)).

The character 6 extends continuously to GQ, if and only if vp(6(p)) = 0, in which

case

RA(6) = Drig(6).
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Theorem 9.2.4 (Thm.0.2, [8]). Any rank 1 (ye, FQ,)-module over RA is isomorphic

to RAGo) for a unique character 6 Q^ -+ AX. Such a module is isocline of slope

VP( 6
(p)).

We note that an extension of two rank 1 ((p, Fq,)-modules can be 6tale even if

they are not 6tale.

Suppose D is a triangular (yQ, FQ,)-module of rank N. Then each

gr'D = Fil'D/Fil--ID, 0 < i < N - 1

is isomorphic to RA( 6 ) for some character 6 : Q A'. We define the parameter

of the triangulation T = (Fil*D)o<i<N-1 to be the continuous homomorphism

6 = ( 6o)0i<N-1 Qx - (Ax )N

The following result is Prop.5.10 of [8].

Proposition 9.2.5. Let V be a 2-dimensional continuous E-representation of GQ,.

Suppose there is a 1-refinement

h: V @r; & (B+js ()0U E)P'

with AE Ex.

Then there is a sequence 0 C Do g D - Drig(V*) of (o,FQ,)-submodules of

Drig(V*), where Do is a free and direct summand of Drig(V*) as RE-modules.

Proof. Choose sufficiently large integers c, and replacing r/ (resp. A) by TX,-' (resp.

Ape), so that, keeping in mind Thm. 9.2.1, we may assume

Dcris(V(rl)*)=A = Drig (V(r/)*)-1,,p=A.

The E-vector space Drig(V(T/)*)=l(=A is generated by a non-zero element x, which

is stable by o and fixed by F. The RE-submodule of Drig (V(r/)*) generated by x is
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stable by o and F. We then have (o, F)-submodules Do of Drig(V*). The (sO, FQ,)-

submodule Do is saturated by Lemma 4.4 of [8], which is equivalent to saying that

D/Do is free and direct summands of D as R E-modules. We are done.

We recall the following result from [1].

Remark 9.2.6. There is a one to one correspondence between refinements of an

N-dimensional GQ,-representation V and triangulations on Drig(V) when V is crys-

talline, essentially by Thm. 9.2.1.

First Dcris(V) admits a ,o-stable filtration F = {Di(V)}o<i<N-1-

0 = Do(V) C DI(V) C C DN-1(V)= Dcris(V).

Define a triangulation T = {Fil'D} on the (o, FQ,)-module D = Drig(V) over the

Robba ring RL by setting

Fil'Drig (V) := (Di(V) 0 RIL [1/ti)-

On the other hand, given a (,o, FQ,)-module D = Drig(V) over the Robba ring

RiE with triangulation T = {Fil'D}, one defines a o-stable filtration on Dcris(V) by

setting

Di(V) := (Fil'(Drig(V)) 0 RE [ -t])QP

Noting Drig(V)[1/t]rQp = Dcris(V), and the isomorphism in Thm. 9.2.1

Dcris(V) @E RE[1/t] ~ Drig(V)[1|t]

one sees the above two maps define a bijection between the set of refinements of V

and that of triangulations of Drig(V).
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9.2.2 Trianguline deformations of GQ,-representat ions of Bellalche-

Chenevier

Denote by ARE the category of local Artinian Qp-algebras A with an isomorphism

A/mA ~+ E whose restriction to E is the identity.

Let D be a (p, FQ,)-nodule over RE of rank N which is equipped with a trian-

gulation 'T = {Fil1 DA)}0<i N-1 with parameter {S}O<i<N-1-

Consider the following functors:

MD ARE -+ Sets : A F-+ isomorphism classes of pairs (DA, WA)

where DA is a (p, FQ,)-module over RA and 7A : DA ®AE - D as (p, F(Q,)-

modules.

MD,T: ARE- Sets : A 4 isomorphism classes of triples (DA, 7A, {Fil'DA})

where (DA, {FilDA)}) is a ((p, FQ,)-module over RA and WA : DA oE ~ >- D

is a RA-linear map of ((p, FQ,)-modules such that 7A(Fil'DA)

N - 1.

Filt D,0 < i <

Ty : ARE -+ Sets : A e isomorphism classes of pairs (VA, 7A)

where VA is an A-representation of GQ, and WA : VA (A E ~ V as A[GQ,]-

modules.

FV,T: ARE -4 Sets : A F- isomorphism classes of triples (VA, 7A, {Fil'Drig(VA)})

where VA is an A-representation of GQ, with 7A : VA (A E - V as A[GQ,]-

modules, and (Drig(VA), Drig(FA), {Fil'Drig(VA)}) is an element of MD,T(A).
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We have the following results from Sec.2.3 and Sec.2.5 of [1].

Proposition 9.2.7. (1) If 6i6j 0 xNVi < j, then MD,T is a subjunctor of MD and

MD,T -± MD is relatively representable.

(2) The functor Drig induces natural isomorphisms of functors

Tv ~ MD, TV7T - MD,T.

Let V be an N-dimensional crystalline E-representation of GQ, with a refinement

(1E, I, Ai}) and denote the corresponding triangulation on Drig(V) by T.

Proposition 9.2.8 (Thm.2.5.9 [1]). Suppose the refinement (1E, J, {Ai}) is non-

critical such that Ai Aj {1,p--} for i < j, and suppose HomG,(V,V(-1)) = 0-

Then the functor FVT is formally smooth of dimension

dimE H0 (GQ, V OE V*) + N(N + 1)/2.

Note that, when N = 2, the formally smoothness and the dimension above coincide

with those of the complete local ring of the nearly finite slope subspace Xf,(GL2/Q,)

at this crystalline point.
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