Families of p-adic Galois Representations

TMASSACHUSETTS INSTITUTE
H
by :

i OF TECHNOLOGY
Fucheng Tan § SEP 2 2 201

|

3

Submitted to the Department of Mathematics LIBRARIES

in partial fulfillment of the requirements for the degree of  ARCHIVES
PHD
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2011
(© Massachusetts Institute of Technology 2011. All rights reserved.

Department of Mathematics
April 27, 2011

/@ 4/)//

Certified by .. ............... ;.. i N
/ Barry Mazur

Gerhard Gade University Professor, Harvard University

Thesis Supervisor

V!

S R E Oy
/ Bjorn Poonen

Chairman, Department Committee on Graduate Theses

Accepted by ...... ... ...l






Families of p-adic Galois Representations
by

Fucheng Tan

Submitted to the Department of Mathematics
on April 27, 2011, in partial fulfillment of the

requirements for the degree of
PHD

Abstract

In this thesis, I first generalize Kisin’s theory of finite slope subspaces to arbitrary
p-adic fields, and then apply it to the generic fibers of Galois deformation spaces. I
study the finite slope deformation rings in details by computing the dimensions of
their Zariski cotangent spaces via Galois cohomologies. It turns out that the Galois
cohomologies tell us not only the formal smoothness of finite slope deformation rings,
but also the behavior of the Sen operator near a generic de Rham representation.
Applying these results to the finite slope subspace of two dimensional Galois repre-
sentations of the absolute Galois group of a p-adic field, we are able to show that a
generic (indecomposible) de Rham representation lies in the finite slope subspace.

It follows from the construction of the finite slope subspace that the complete
local ring of a point in the finite slope subspace is closely related to the finite slope
deformation ring at the same point. As a consequence, we manage to show the flatness
of the weight map near generic de Rham points, and accumulation and smoothness
of generic de Rham points. In particular, we have a precise dimension formula for
the finite slope subspace. Taking into account twists by characters, we define the
nearly finite slope subspace, which is believed to serve as the local eigenvariety, as
is suggested by Colmez’s theory of trianguline representation. Following Gouvéa-
Mazur and Kisin, we construct an infinite fern in the local Galois deformation space.
Moreover, we define the global eigenvariety for GL; over any number field, and give
a lower bound of its dimension.
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Chapter 1

Introduction

Throughout the paper, p is a fixed prime number. We fix the p-adic valuation v,()
with v,(p) = 1 on Q,, which extends uniquely to any finite extension K/Q, (which
we call a p-adic field), where it is written as vk (-). The valuation then extends
to the algebraic closure @p, whose p-adic completion is denoted as C,. We write
Gr = Gal(Q,/K) for the absolute Galois group of K for K a p-adic field, and write
G for the absolute Galois group of a number field F' similarly.

For K a p-adic field, let wk be a fixed uniformizer of K. We let K, denote the
maximal unramified extension of Q, inside K, and let f = [Kj : Q,] be the residue
degree. Denote by xx: Gx — O the cyclotomic character. We choose an element
Irob, € Gg,, a lifting of the map on F, raising an element to its p-th power, such
that Frobz’; = Frobg € G is mapped to wg via the cyclotomic character. We call
it (and its powers) the arithmetic Frobenius, whose inverse is called the geometric
Frobenius.

Our convention is that xx has Hodge-Tate weight —1, as a 1-dimensional contin-
uous representation of G.

Let X be a rigid analytic space (in the sense of Tate) over a p-adic field E. We
say that a subset S C X is a closed subset of X if there exists an admissible covering
{Ui}ier of X such that for each i € I, SNU; is the zero-locus of some ideal I; € O(U;).
We say that a subset S is Zariski-dense if the only closed subset of X containing S is
X itself. For a point & € X(£') with E’ a finite extension of Q,, let Z be the image
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of x in X, and @X,j the complete local ring at this closed point. We denote by ) X,z
the extension of scalars to £’ of @X@ from the residue field of z. We identify closed

points in X with residue field £’ and E’-valued points of X.

1.1 Hecke operator on modular forms and p-operator

on Fontaine’s modules

Let f be a (classical) cuspidal modular eigenform on I'y(N) with N € Zs;, and let
k > 2 and € be its weight and nebentypus character. Denote by a,(f) the n-th
coefficient of the g-expansion of f. By the well-known theorem of Deligne, there is a

(unique) Galois representation
Go — GLy(Q)

which, after extension by scalars via an embedding Q — @p that we will fix, gives

rise to the p-adic representation
pPr GQ — GLQ(QP)

for (any) prime p. The representation p; is characterized by the condition that for

any prime ¢ { Np the Hecke polynomial of p(Froby) is
X% — ap(f)X + e(Froby) k1.

At the prime p, we have the following results of Falthings, Tsuji and Saito about
Vi = p;lG@p‘ First of all, V; is de Rham with Hodge-Tate weights 0, k — 1. Moreover,

e If pt N, then V; is crystalline.
e If p| N and a,(f) # 0, then V} is semi-stable but not crystalline.

e If p| N and a,(f) = 0, then V} is potentially crystalline.
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More precisely, we have the following result.

Theorem 1.1.1 (T. Saito, [31]). Let U, denote the Atkin-Lehner operator on f. Let
A = ap(f) be the (only) U,-eigenvalue if p | N and a,(f) # 0, and be one of the two
roots of X* — a,(f)X + e(Frob,)p* ! if pt N.

If A # 0, then it is an eigenvalue of the  operator on Fontaine’s module Deris(p}lay, )-

In particular, for any prime p 1 N, if the two roots of X2 — a,(f)X -+ ¢(Frob,)p*™!
are non-zero and distinct, then they are the p-eigenvalues on Dcris(p}\GQp). We refer
the reader to Section 2.1 for more details about Fontaine’s mudules.

In the following, we will see that an analogue of Theorem 1.1.1 holds for families

of (overconvergent) modular forms.

1.2 The Coleman-Mazur eigencurve

Let p be an odd prime . For f a (classical elliptic) cuspidal eigenform of weight k > 2
and level I'; (p"N), where pt N and n > 1, the slope of f is by definition the p-adic

valuation of the Up-eigenvalue on f. Let
Aw = I Z,[(Z/p"N2)] = Z,(Z/pNZ)*] ©2, Z,[L + L],

Denote by W the Q,-analytic space associated to Ay.

Assume the tame level N = 1 in the rest of this subSection for simplicity. The
construction of eigencurve has been generalized to arbitrary tame level by Kevin

Buzzard [6].

Let p: Ggs — F, be a two dimensional odd representation, where S is a finite set
of primes containing the infinite place and all the primes dividing p/N. We assume that
p has only scalar endomorphisms. Denote by p""" the universal representation, R‘pl“i"
the associated universal deformation ring, and Z the rigid analytic space associated

to R3"™. As is explained in Section 4 of [12] (in the case N = 1) the ring R3"" has a
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natural Aj-algebra structure, which gives rise to a weight map

w: 4 — W.

Set ‘H to be the commutative polynomial (topological) A;-algebra generated by
the formal variables X, for all prime numbers ¢ € Z and let H' be the sub-ring
generated by the formal variables X, for ¢ ¢ S. We have a well-defined action of H
on the space My, (1) of r-overconvergent modular forms of tame level N by letting
X, act as the Hecke operator T, for each ¢ ¢ S and as U, for ¢ € S. We refer
the reader to [12] for the definition of overconvergent modular forms and the Hecke

algebras.
Let
L H — R‘ﬁmiv
be the map sending X, to trace(p"™"(Frob,)) for q outside S, which is well-defined

by a theorem of Gouvéa-Hida (cf. Section 5.2 [12]).

For r sufficiently close to 1, by Theorem 4.3.1 of [12], the Atkin-Lehner operator U,
acts on Mpeon(r) completely continuously. By Sec.4 of [12], we can, for each o € H/,

form a Fredholm series with coefficients in A,
Pou,(Y) = det(1 — aU,Y | Mppe(r))

which is independent of the choice of r (for r sufficiently close to 1). For each o € H’

such that «(«) is a unit, define a natural map

Y,

To 1 Z X Gy = W X Gy, (2,y) = (w(2), ()

where ((a)(z) means the residue of ((a) in RY™/z, z € Z being identified with the

corresponding maximal ideal in ;™.
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Define the Coleman-Mazur eigencurve (of tame level N = 1) to be
C= ﬂ'fgl(ZaUp)a Va € H' such that L(a) = (RlﬁlniV)x7

where Z,y, is the spectral curve defined as the zero locus of the Fredholm series
PaUp(Y) which we regard as function on M x G,,,. We refer the reader to Chapter 4
of [12] for the details about spectral curves.

We may and do assume C to be reduced, by taking its nilreduction. It is proved

by Coleman and Mazur in their seminal paper [12] (for N = 1) that

Theorem 1.2.1. (1)The points in C(C,) are in one-to-one correspondence with nor-
malized overconvergent eigenforms of finite slope of tame level 1, such that the image
under the weight map of a point in C(C,) coincides with the weight of the correspond-
ing overconvergent modular form.

(2) The (reduced) curve C is the rigid Zariski-closure of the classical points, i.e.
the points corresponding to the classical eigenforms.

(3) The image of the restriction to any irreducible component of the curve C of
the weight map consists of (at least) all but finitely many weights.

(4) There is an admissible affinoid covering {U}of C such that the image under
the weight map of (each) U is an affinoid subdomain in the weight space W and the
weight map s finite flat over U.

1.3 Kisin’s Galois theoretic eigencurve

It is asked by Coleman and Mazur in [12] how to construct a version of their eigencurve
in terms of Fontaine’s modules, which are purely local. They also ask if the eigencurve
is smooth, among other questions. The first question is answered by Kisin in his paper
[26] and [23], and the second is answered (for most classical points) in [26], combined
with his main result in [25].

In the following, we will use the notation introduced in Chapter 2.
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1.3.1 Theory of finite slope subspaces: continuity of y-operator

In the paper [26], Kisin shows the following:

For a Q,-rigid analytic space X, a finite free Ox-module M with a continuous
Ox-linear Gg,-action and an invertible function Y on X, the existence of a non-zero
Go,-equivariant R-linear map

9*M(SpR) — (B}

cris

®g,R)*"

for certain maps of rigid spaces 6 : Sp’R — X characterizes a Zariski closed subspace
Xss C X.

It is rather important to specify the word "certain”, i.e. to what kind of maps
Kisin’s theorem applies. We explain the idea below and refer the reader to Theorem
4.3.3 for a detailed construction, as well as the generalization to the case where G, is
replaced by Gk for any finite extension K of Q,, among other technical improvements.

To cut a rigid subspace Xy, out of the given rigid space X, one would like to show
that existence of crystalline periods on any affinoid admissible open subset in X is
a closed condition. This is quite hard and is answered by Kisin for certain affinoids,
namely the ones that satisfy the so called Y -small condition, on which one of the
Hodge-Tate weights is fixed and all the others are not constant. Here the Hodge-Tate
weights are given by Sen theory on affinoids, as is recalled in Section 4.1. We explain
the three conditions.

(1) On a Y-small affinoid R, there is a non zero constant in A € Q, such that (on
each connected component) YA — 1 is topologically nilpotent.

(2) It is a technical point in this theory that one needs to fix one Hodge-Tate
weight on Mz =: 0*M(SpR).

(3) Then one assumes further that all the other Hodge-Tate weights on My are
not constant.

The condition (3) guarantees that the Hodge-Tate period obtained in (2) lifts to a
(non-zero) de Rham period on Mg, i. e., a Galois-equivariant R-linear map hz from

Mz into the p-adic Banach space Bj, /t/ Bi; &g, R for any j large enough.
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Then condition (1) of Y-smallness will give that the Y-eigen subspace of crystalline
periods (B, ;&®q,R)?~" is closed in B /t! B{;®q,R. We denote the quotient by Ur.
Finally, one could ask that this de Rham period factor through (B[ ,®q,R)?=",
which turns out to be a closed condition. More precisely, we can write, for any element

m € Mz, the image of hg(m) in Ug in terms of an orthonormal basis in Ug, whose

coefficients form an ideal Ix, that essentially gives rise to Xy,.

1.3.2 Construction of the Kisin eigencurve

It is a general expectation that the Weil-Deligne representations via the local Lang-
lands correspondence are compatible with those via p-adic Hodge theory, namely that
the Hecke eigenvaues of a classical automorphic form coincide with the eigenvalues
of the Frobenius operator ¢ on Fontaine’s module of the Galois representation as-
sociated to the automorphic form (which is expected to exist). For instance, such
compatibility is known in the GLy /g case, thanks to Theorem 1.1.1.

Combining this with the fact that the Atkin-Lehner operator U, is (locally) com-
pletely continuous on the Coleman-Mazur eigencurve, one would expect the analogue
holds for families of (p-adic) automorphic forms (resp. Galois representations). For
this, one needs an analogue of the Coleman-Mazur eigencurve whose points corre-
spond to p-adic Galois representations on the Fontaine modules on which the ¢ op-
erator acts (locally) continuously.

Instead of ¢-eigenvalues, it would be convenient to consider the ¢-eigenvectors
in Fontaine’s modules. Each of these is a nonzero Galois equivariant map from the
representation to the period ring B.s of Fontaine, i.e. a crystalline period, as in the
theory of finite slope subspaces in the previous subsection .

Kisin then applies the general theory of finite slope subspaces to the rigid analytifi-
cation Z, of the generic fibre of a (versal) local Galois deformation space associated to
a (fixed) 2-dimensional mod p representation of Gg,. Namely, he takes X = Z, X Gy,
M the pull-back to X of the (fixed) versal representation, and Y the canonical co-
ordinate on G,,. The finite slope subspace associated to (X, M,Y) is denoted by
Xtsp(GLg/g,). This should be regarded as a p-adic eigenvariety for GLy/q,, which
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turns out to be a 3-dimensional rigid analytic space. When it is clear that we are in
a local situation, we may simply write X, , as X/,.

Now go back to the global picture. Suppose that we are given the rigid analytifica-
tion Z of the generic fibre of a Galois deformation space associated to a 2-dimensional
mod p representation p of Gg. We write Z, for the rigid space associated to ﬁ]GQP as
before. Then we have a map Z — Z, induced by the restriction of a Gg-representation
to the decomposition group Gg, at p, via the (fixed) embedding of Q — Q,. Kisin
takes the fibre product

Xps(GLyg) = (Z X Gr) X(2,xGm) Xfsp»

which is a Zariski closed subspace of Z x G,,. We call X;,(GLy/q) the Kisin eigen-
curve.

Using Saito’s result and Theorem 1.2.1, Kisin manages to show that there exists
a crystalline period

h: pyleg, = (Bl ®q, B)*~)

for any cuspidal overconvergent finite slope eigenform f of a fixed tame level. Here
E/Q, is the p-adic field where f is defined.

It is expected that the local finite slope subspace X s, ,(GLy/q,) (hence X;,(GLy/q))
is exactly characterized by the existence of a crystalline period on any 2-dimensional
p-adic G, -representation (with the same mod p representation). By the general the-
ory of finite slope subspace, the above condition is necessary. However, it is difficult
to prove that the condition is also sufficient. Kisin is able to prove the sufficiency
for 2-dimensional p-adic Gg,-representations V' with Hodge-Tate weights (0, k) in the
following two cases:

(1) k is a negative integer or is non-integral.

(2) k>0, V is de Rham with only scalar endomorphisms, and if V is crystalline
then the two p-eigenvalues on D,,;s(V*) are distinct and they are ordered by increasing
p-adic valuations in the case Deis(V @ V*(1))9=1 £ 0.

Using the result for case (1) above and the Zariski density of non-classical points in
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the Coleman-Mazur eigencurve C, one sees that C is inside X;,(GLa/g) (cf. Theorem
11.6(2) [26]). Years later, Kisin proves that the two subspaces C and X;,(GLy/g)
of Z x G,, coincide (at the same residual part), as a consequence of his modularity
theorem (for trianguline representations) in his remarkable paper [22]. This gives the
complete answer to the first question raised by Coleman and Mazur mentioned at the
beginning of this Section .

It is thus reasonable to expect that the eigencurve (both in the Coleman-Mazur
language and Kisin language) is characterized by the condition that each point in
the eigencurve (regarded as a representation) is, up to twist by a character, equipped
with one crystalline period. Such an expectation is supported by Colmez’s study
of trianguline representations [8], where he (cf. Proposition 9.2.5) proves that a 2-
dimensional Gg,-representation is trianguline if and only if some twist of it carries
a crystalline period. It is hoped that trianguline is the right property characterizing

eigenvarieties p-adic locally.

1.3.3 Local rings via Galois deformations

To show that a de Rham point z = (z,A) in case (2) of the previous subSection
lies in the local eigenvariety Xy,, one has to study its local ring R, in X as well as
the condition that this point carries a crystalline period. Let’s assume the residual
representation for V, has only scalar endomorphisms in this Section , for simplicity.
Then the local ring R, is given by the Galois deformation ring RL‘Z“V (which we assume
to exist, again for simplicity). Thus one may expect that the existence of a crystalline
period will cut out a quotient ring of Ry, which is supposed to be closely related
to the (potential) local ring of z in X,.

In fact, Kisin develops what we call finite slope deformation theory (cf. Section
5). He proves that lifting a crystalline period on a fixed characteristic 0 representa-
tion gives rise to a deformation functor, which is representable in the situations we
consider. Furthermore, for the de Rham point x above the finite slope deformation
ring R’{,’:" is formally smooth of dimension 3, which one can see by computing the

Galois cohomologies related to the cotangent space of R}‘Z“’. Let k., be the ideal of
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R%‘iv corresponding to the quotient ring R?/f. One may then expect that the quotient

1%236 / k. provides the local ring of x in Xy,.

It is not hard to see that the natural map Rz — RI /K. factors through ]%2, which
is by definition the quotient of R, on which the Sen polynomial has a constant weight
0. This corresponds to the condition (2) in Section 1.3.1. One can find the details in
Proposition 6.4.5.

It turns out that the Galois cohomology computations also imply that the weight
map at such a point is not constant! (see Proposition 6.4.5 for a proof.) This corre-

sponds to the condition (3) in Section 1.3.1.

Notice that the universal property of R(l,’f provides a compatible system of crys-
talline periods

hy: M — (Bcris ®@p Rg/(liz —I—m;))’\r, r>1

where m, C R? is the maximal ideal and \A.’s are determined by A. Moreover,
]%g /(K. +m7)* are Y-small affinoids in the sense of theory of finite slope subspace.
This, together with the previous two results, enables one to show that the point z € X
lies in X ;. We refer the reader to the proof of Theorem 7.1.1 for details (in a more

general situation).

Meanwhile, the similar proof (cf. Proposition 7.1.3) gives a Galois theoretical
description of the local ring @styz. Concretely, at a point © = (2, ) € X;,(GLy/g,)
as in case (2), the complete local ring @st(GLz Jo)(2:) is canonically isomorphic to
the finite slope deformation ring R"}’z“’, which is formally smooth of dimension 3. As
a consequence, the weight map on the local Galois eigenvariety Xy, ,(GLoqg,) is flat
at the de Rham points in case (2). This is analogous to the global result Theorem

1.2.1(4) about flatness of the weight map on the Coleman-Mazur eigencurve.

~ Taking into account the main result in [25] about smoothness of modular points in
(the generic fibre of ) the universal deformation space for GLy /g, Kisin shows that the
geometric points with local properties as in case (2) on C = X;;(GLy/g) are smooth.
Here by geometric we mean being unramified at most places and de Rham at p, which

is in most cases equivalent to modular, by Kisin’s proof [23] of the Fontaine-Mazur
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conjecture in this case.

1.4 Mazur’s idea of refinements

In Kisin’s theory, as well as its generalization (cf. Theorem 7.1.1), one reduces to
the computations of Galois cohomologies for de Rham FE-representations (E is the
coefficient field). More precisely, we want to show that the map induced by the
crystalline period h : V — (Beis ®q, E)? =

HI(G@p’h [ 1) : Hl(GQP7V ®E V*) — Hl(GQp,Bcris ®Qp V*)Sﬂf:/\

is surjective. This being the case, one obtains the formal smoothness of the finite slope
deformation ring R"’,’f (cf. Section 5 for the reason). In fact, one is able to prove (2)
and (3) in Section 1.3.1 at the same time: see Theorem 6.4.4 and Proposition 6.4.5.
As we have mentioned in the previous subsection, they play essential roles in the

proof of the general theorem, Theorem 7.1.1.

The surjectivity holds for the points in case (2) of Section 1.3.2, because the
assumption that H(Gg,,V @p V*) = E (essentially made for the use of deformation
theory) turns out to imply that h : V — (Beis®q, F )“Of:’\, considered as a map heps
V' — Beis ®g, E, does not factor through Fil' B ®gq, . The choice of a crystalline
period h and the key assumption that h..;s does not factor through F il' Bepie ®q, F in
fact coincide with Mazur’s consideration of refinement and its property which is called
non-critical, respectively, which are originally made for modular forms but apply to
Galois representations in a natural way as we will explain in Section 3 in details.

As is emphasized in Mazur’s paper [27], although one can find a family of p-adic
modular forms such that the Hecke eigenvalues at any good prime p vary p-adically,
one has to specify which one of the two Hecke eigenvalues is varying. This leads to
the concept of refinement. For an elliptic newform f of level N, the choice of one of
the Hecke eigenvalues at a good prime is called a refinement for f at this prime, by

Mazur originally.
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At such a good prime p we may also apply p-adic Hodge theory to the p-adic
representation Vy of Gg associated to f to make sense of the meaning of refinement. In
this case, V' is a two dimensional crystalline G, -representation over a finite extension
E/Q,, we call a choice of one of the two ¢-eigenvectors in Dgis(V*) a refinement of
V. This coincides with Mazur’s definition, thanks to Theorem 1.1.1 and the general

expectation that the two Hecke eigenvalues are always distinct.

Furthermore, one has to consider non-crystalline representations (for example,
those coming from classical eigenforms at bad primes and from non-classical points
on the eigencurve) as well. The definition of a refinement of any 2-dimensional Go,-
representation is given by Emerton [13], inspired by Colmez’s study of trianguline
representations (cf. Proposition 9.2.5).

The picture is clearer if one thinks of refinements in term of families of (p-adic)
modular forms (resp. Galois representations). Here we keep in mind that for a point
on the eigencurve corresponding to an overconvergent finite slope cusp form f, the U,-
eigenvalue a,(f) is equal to the ¢-eigenvalue on Deris(p}lcq, ), or rather, the analytic
function a, on the Coleman-Mazur eigencurve interpolating U,-eigenvalues coincides
with the analytic function ¢ on the Kisin eigencurve interpolating the o-eigenvalues
on Fontaine’s modules Dyis(-).

In the language of Coleman-Mazur eigencurve, for a classical modular eigenform
f,if p{ N, then there are two oldforms fi, fo on I';(pN) corresponding to f such
that (fi, A1) and (f2, A2), with A, Ay roots of the Hecke polynomial at p, both lie
on the eigencurve. By Theorem 1.2.1, in a sufficiently small affinoid neighborhood
in C of such a point, say (f1, A1), the weights vary in an infinite set, while the slope
vp(ap) is constant. It is thus impossible that the two Hecke eigenvalues vary p-adically
continuously simultaneously, because the two slopes add up to be the weight at each
point in the neighborhood. We remark that, as p is a bad prime for f; and f,, there
is only one point on the eigencurve corresponding to each old form, since the Hecke
polynomial is of degree 1.

In the language of Kisin eigencurve, for a classical modular eigenform f both of

the p-eigenvalues on Dcris(pﬂg%) can vary p-adically continuously, but separately, at
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p 1 N, while for a classical form at p|N or an overconvergent finite slope cusp form, the
vector space (over the p-adic field E where f is defined) Dcris(p?‘GQp) has dimension
1, since it is nonzero by the result of Saito and Kisin and since the representation
pslag, 1s not crystalline.

The most important property of a refinement is criticality, which is also posed by
Mazur in [27]. The motivation is the Coleman inequality:

Let N be a positive integer such that p t N and let r be a positive integer. An

overconvergent elliptic eigenform f of level p" N, and weight k € Z> is classical if
vp(A) < k—1.

This implies, by Lemma 2.2.2, that the crystalline period determined by A on
VflGQp does not factor through FilchriS@)QpCp, as observed by Kisin. We may regard

Lemma 2.2.2 as a p-adic analogue of the Coleman inequality.

1.5 Main results

1.5.1 Modification of theory of finite slope subspace

Kisin’s theorem on finite slope subspace does not (obviously) hold for G k-representations,
if K/Q, has residue degree f strictly bigger than one. The reason is that in the case
f > 1, the ¢ action is not linear on the Ky-vector space D s(+).

The substitute of ¢ is just ¢/ which is a Ky-linear operator, as is suggested by the
compatibility of Weil-Deligne representations via classical Langlands correspondence
and those via p-adic Hodge theory, which is explained in details in Section 2.1.

Then one realizes that Kisin’s original proof of Proposition 5.4 [26] is so general
that one needs only to transfer the B s-picture to the Beis x := Bais @k, K-picture.
The basic properties of Beisx Wwe need were already obtained by Colmez [9]. Such
kind of generalization is obtained also in [30]. See Theorem 4.3.3 for the general
statement and proof.

We remark that one can generalize the theory in other ways, depending on the
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purpose. For example, we can require the existence of multiple crystalline periods
on Xy, in which case the invertible function ¥ on X will be replaced by an ordered
set of invertible functions {Y;});c;. This is why we need to define refinement and

criticality in general.

1.5.2 Refinements in general

It is natural to ask for the generalization of the concept of refinement to higher
dimensions, which is at least necessary for the study of finite slope deformations in
general, i.e., in the case that one lifts more than one crystalline period. Inspired by
the works of Kisin, Colmez, Emerton and Bellaiche-Chenevier, we give the general
definition of refinement.

Let V be an N-dimensional Gk-representation over E with K, E finite extensions
of Q,. A refinement of V' is nothing but an ordered set h = {h;}o<i<; of nonzero

E-linear G g-equivariant K ®q, E-linearly independent maps
hi :V ®q, 1 — (Baisk ®g, B)7 7,0 <i < j,

where \; € E and

ns = 1{n : Gk = E™ }o<i<;

is an ordered set of continuous characters. Here the appearance of the ordered set of
characters is due to the consideration of trianguline representations. See Proposition
9.2.5 of Colmez for the GLy/q,-case.

A refinement for a global Galois representation will be the collection of refinements
at all finite places.

Suppose that the set n; consists of trivial characters. A refinement is non-critical
if the ordered crystalline periods are in the general position compared to the Hodge-
Tate filtration of Fontaine’s module. The precise definition is in Section 3.2.

Refinements and ériticality are closely related to the geometry of finite slope sub-

space, as will be seen below.
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1.5.3 Eigenvariety of GL, over p-adic fields

Let p: Gk — GLy(IF) be a (fixed) residual representation with K/Q, and F/F, finite
extensions. Fix a versal deformation ring RJ* associated to p.

Denote by Z = Sp(;*[1/p]) the rigid analytic space over Q, associated to Ry,
and My the universal G k-representation on Z. We have the characteristic polynomial
Py(T) € O4(Z)[T] of the Sen operator ¢ on My. Let Z° C Z be the closed subspace
of Z cut out by P4(0). Set

X° =2° x Gy,

Let M° denote the pullback to X of Mz|0. Write Y for the canonical coordinate
on G,,.

Applying the theory of finite slope subspace (Theorem 4.3.3) to X°, we obtain a
closed subspace

Xpo = Xps0(XO, MY) C Z° x G,,..
Theorem 1.5.1. Let E be a finite extension of Q,, and Ay € E.
(i) If (z, o) € Xss(E) then there is a crystalline period

ho : V., — (B;is,K Xq, E)wf:/\oj

and 0 is a Hodge-Tate weight of V.

(ii) Suppose that an element (z, ) € Z x G, (E) is equipped with a crystalline
period hg as above. Then

(1) If the Hodge-Tate weights of V, are 0, k) with ky € Q, — Zxo, then (2, \) lies
in Xys(E).

(2) Suppose that V, is de Rham of Hodge-Tate weights 0 = ko < ky such that

HO(GKa‘/z®E ‘/Z*) = E7

and the ¢! -eigenvalue \o is of multiplicity one. Then (z, Xo) lies in X;5(F).

The proof follows the same line as Kisin’s (when K = @Q,). The point is to
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analyze the finite slope deformation rings by computing certain Galois cohomologies.
The results are summarized as Theorem 6.4.4 and Proposition 6.4.5, which correspond
to the conditions (2) and (3) of Section 1.3.1. In fact, we do the computations for
Galois representations of higher dimensions as well, which we hope to be useful for
the study of families of Galois representations in higher dimensions.

Write K, = UnZO K (™) with ™ a primitive p"-th root of unity, and let Ika
be the maximal pro-p quotient of I'x = Gal(K/K). Denote Sy as the rigid space
parametrizing the deformations of the trivial representation 1y : ' — F*.

Set

Xnps = X5 X Sp.

This definition is related to our dimension counting and Colmez’s theory of trianguline
representations (cf. Proposition 9.2.5). Both X, and X, are the local Galois
eigenvariety in our mind, since they contain the same information. Sometimes we call
Xy, the finite slope subspace and X, s the nearly finite slope subspace in order to
avoid ambiguity.

Denote by Ox (z20.m0) the complete local ring at a point (2, Ao, m0) € Xyp5(E)

nfs
for Mo € S().
Combining Theorem 1.5.1 with Theorem 6.4.4 and Proposition 6.4.5 (again), we

have the following results.

Corollary 1.5.2. For (2, Ao, m0) € Xnss(E) with (2, Xo) as in Theorem 1.5.1(ii)(2)
and having distinct Hodge-Tate weights, the complete local ring @Xn ez hovm0) 18 for-

mally smooth of dimension 1+ 3n.

Corollary 1.5.3. Let (2, Ao, m0) € Xnss(E) be as in Corollary 1.5.2. Then the weight
map on Xy, given by Sen theory is flat at this point.

Denote by F° the subset of Z° x G,, consisting of crystalline points which satisfies
the conditions in Theorem 1.5.1(ii)(2). Thus F© is a subset of X .

Denote by X¢, (resp. X7,) the union of irreducible components of Xy, (resp.
Xnys) each of which contains a point in F (resp. a point (2, Ao, 7o) with (2, Ag) € F°).
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As a p-adic analogue of the accumulation of classical points in the Coleman-Mazur

eigencurve (Theorem 1.2.1), we have

Proposition 1.5.4. (1) The subset F® consisting of the points (z, Ao, 7o), with (z, \y) €
F° and o = X% (k € Z), is accumulation in X2,
(2) Suppose p admits a universal deformation ring. Any irreducible component of

Xngs has dimension 1+ 3n.
Combining these results above, we obtain

Theorem 1.5.5. Suppose that p admits a universal deformation ring. Let (z, Ao, 70) €
nis(E) with E a finite extension of Q.
If (2, \o) is as in Theorem 1.5.1(i)(2), then (z, Xo) is smooth in X;s. If in addition
the Hodge-Tate weights of V. are distinct, then (z, Ao, mo) is smooth in X, .

At last, we remark that the GL; case fits into our picture, as the G g-characters
with a crystalline period are nothing but Tate twists of unramified characters, and
the weight space on Xy, is a point since we normalize the weight of a character to be

Zero.

1.5.4 Eigenvariety of GlL, over number fields

Let F' be a number field of degree n, and S a finite set of places containing p and all
the archimedean places. Let p: Gpg — GL2(IF) be a residual representation with F
a finite field of characteristic p. Assume that p admits a universal deformation ring
RZ™. Set Z = Sp Rgm"[l/p].

We define

X=Zx[[Cm Xo=2Z,%xGCpm, X,:=]]X.

vlp vlp

We have the nearly finite slope subspaces

Xv,nfs = ans(X’zn Mva }/v)
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for each place v|p in F.
By the versal property of the local deformation rings of p|g, , we get a map
between analytic spaces 7, : X — X,. On the other hand, we have the natural

inclusion [, Xynfs = X

vlp

We define X = X(GLy/r) to be the fibre product of X and [],, Xy, nss over X,

vlp
via the natural maps above, which we call the Galois eigenvariety of GL, JF-

Define n, = [F, : Q,] and f, := [F, o : Q,] for v | p a place in F, where F, g is the
maximal unramified extension of @, inside F;,. By Theorem 1.5.1 and the definition

of global Galois eigenvariety, we have

Theorem 1.5.6. Let z € Z(E) with E a finite extension of Q,. Let A = (\y)y), with
Ay € EX, and 1 = (0y)v)p with 0, € So.

(i) If (z,\,n) € X(E), then for any place v above p, there exists a crystalline
period

hv : ‘/;’IGFU ®Qp Ny — (Bcris ®Qp E)Lpfv:)\v-

(i1) Suppose that for any v|p, the element (z,, \,) € Z, X G,,(F) is equipped with
a crystalline period as above. If for any embedding F, — Q, the data above satisfy
either Theorem 1.5.1(i) or (ii), then (z, A\, n) lies in X.

We note that, in Theorem 1.5.6(ii) whether (2, \,n) € X lies in X is independent

of the choice of map RY" — R;)-‘“i", as the existence of the crystalline periods is

Pl p,
defined globally.

Let X° C X be the union of irreducible components of X containing a closed point

as in Theorem 1.5.6(ii).

Theorem 1.5.7. If p is odd, then an irreducible component of X° has dimension at

least 1 + n.

By a consideration along the line of the Bloch-Kato conjecture, we expect the

lower bound above to be the true dimension of the global Galois eigenvariety.
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1.5.5 Infinite fern in local Galois deformation space of GLs:

an application

For a modular newform which is unramified at p, one has to specify one of the two
Hecke eigenvalues in order to relate f to a point on the eigencurve, which motivates
the concept of refinement. On the other hand, given such a modular form, we have two
different points on the eigencurve related to it, corresponding to different refinements.
In another word, the image of the natural projection from the eigencurve C to (the
analytification of) the generic fibre of universal deformation space contains infinitely
many double points, which is the ”infinite fern” in the language of Mazur.
Originally, Gouvéa and Mazur [18] prove that cusp forms on I'y (N) with N running
over integers not divisible by p give a Zariski dense set of points in (the generic fibre)
of a global universal deformation space. The local analogue of infinite fern is given
by Kisin [21], aimed at the study of p-adic Langlands correspondence. Kisin’s proof
is based on his construction of the finite slope subspace Xy,(GLy/q,). We will apply
Kisin’s method to obtain an infinite fern for GLy/k, with K a finite extension of Q,.
A similar result is also obtained in [30] via the deformations of B-pairs in the sense

of Berger.

Theorem 1.5.8. For a representation p: Gx — GLy(F,) such that the framed uni-
versal deformation space is irreducible and smooth, the crystalline points are Zariski

dense in the generic fibre Z of the Galois deformation space.

We pick the set F' C Z x G,, of all 2-dimensional crystalline G i-representations
with distinct Hodge-Tate weights satisfying the conditions in Theorem 1.5.1(ii)(2)
and the condition

Up()\o) < k,

as well as their Tate twists. The last condition implies, by Lemma 2.2.2 and Theorem
7.1.1 , that F© C X,ss. The point is, the same representation with the other of-
eigenvalue, is also an element in F'.

We can show that F' is non-empty, thanks to the crystalline deformation theory
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of Kisin [22] and the Fontaine-Laffaille theory.

Then the flatness of weight map we proved before implies that the points in F'
are Zariski dense in any irreducible component of X, ¢, whose interSection with F is
non-empty.

Finally, we use the natural projection from X, s, to Z to get an infinite fern. As-
suming the irreducibility and smoothness of Z, we reduce to counting the dimensions
of complete local rings of points in the Zariski closure Y C Z of the crystalline points
z coming from F', via the projections. It turns out that dim Spf@y,z = dim Spf(’jzyz.
Then we are forced to have dimY = dim Z since the regular locus is open in an

affinoid.

1.6 Outline of the paper

In §2, we first describe the construction of Weil-Deligne representations via Fontaine’s
module, which leads to the definition of refinements of Galois representations. It sug-
gests how to generalize Kisin’s theory of finite slope subspace, as is carried out in
§3. We recall the necessary Galois deformation theory from [26] in §4, which, com-
bined with the computations of Galois cohomology in §5, gives a precise description
of the Galois deformation ring of a representation equipped with a refinement. The
main results about local and global Galois eigenvarieties are in §6. Using the con-
struction of local eigenvariety, we get the local infinite fern for GL, in §7. Finally,
in the last Section we recall the results on trianguline representations of Colmez and
Bellaiche-Chenevier, which provide a parallel way for the study of families of Galois

representations.
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Chapter 2

Preliminaries in p-adic Hodge

theory

We recall some basic facts about p-adic Hodge theory, and refer the reader to [17],

[16] and [9] for more details.

Denote by O¢, the ring of integers of C,. Let R = I'&nmﬁﬂ Oc, /p be Fontaine’s
ring, which is equipped with a (continuous) Gg,-action. Set z(™ = limy_, :Z“Zik for

r = (x;);>0 € R, where ¥;, € O, is a lifting of 2. Then
R={z = (2)izolz" € Oc,, (¢ = 2V}
with the addition and multiplication

i . i+k i k i i i
(x4 = Tim (@9 4y (o) = (1) ().

k—+o0

The ring R is perfect of characteristic p and is equipped with a valuation
vp(z) = v, ().

The projection

R — Ocp/p7 (xz')izo = Zo
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lifts uniquely to a projection 6 : W(R) — O¢, by the universal property of the Witt
ring W(R). Define "

| B = lim W(R)[1/p]/(Ker(6))"
as the Ker(6)-adic completion of W (R)[1/p]. The topology in Bj; which is induced

from the inverse limit and the canonical topology in W (R) is called the weak topol-

ogy. On the other hand, as an abstract ring Bj, is a discrete valuation ring with

uniformizer
t=logle] = > (=1)"'([e] - 1)"/n,
n=1
whose residue field is C,, where ¢ = (1, e ...} € R with ™ a primitive p"-th root

of unity. Set Bar = Bji[1/t], the ring of de Rham periods. It comes with a decreasing
filtration {Fil' Bag }iez with
Fil' Bar = t'BJj,.

Let Acis be the p-adic completion of the divided power envelope of W(R) with
respect to the ideal Ker(). We have ¢t € A.s. The Frobenius map on W(R) extends

to a map @ on A, which acts on t by
o(t) = pt,
because the action of Gg, on ¢ is via the cyclotomic character. Set
Bl = Auis[1/p],  Beris = Aais[1/1].

The ¢ operator on Aes extends to BJfy and Beis. The natural map W(R) — Bj;

cris

extends to an embedding A < Bjjy, whence embeddings B, Buis — Bli.

Let p € R be with p©) = p. Define an element, in BJj

u=y ()" ([pl/p—1)"/n,

n>1
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which is transcendental over the fraction field of B and gives an embedding of
By = Bcris[u]

into Bqr. Then By is equipped with the monodromy operator N : Zi>0 byut —

— Y is0 ib;u"!, the unique Bs-derivation such that N(u) = —1.

The filtration on Byg induces filtrations on B, and By;. Namely
Fil' Beyis := Fil'Bag N Beis, Fil'Bg := Fil'Bag N By

We define
Fil' B

cris

= Fil'Baqg N B, Vi € Zso.

cris?

Write Buyr = @ezC,p(¢). For K/Q, a finite extension, we have that

Bif = (Bip)9 = Bgf = K, (B},

cris

)GK — BGK — BSGtK = K.

cris
For x = st, cris, we define
B:K:B:— ®K0 K; B*,K:B* ®K0K

which are equipped with the induced filtration. One may choose (c¢f. Prop.8.10 [9])

an element tx € B k such that
¢ (tx) = wrtk

and

gtk = Xk(9)tk
for g € Gg.

Remark 2.0.1. Note that although BF.. C Fil’B.., we have for any w-module D

cris =
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(i.e. a finite dimensional Ko-vector space equipped with a Ky-semi-linear o-action)
Hom ) (D, Fil' Beyis) = Homp, (D, Fil' BY,), Vi > 0
by (5.3.7) [16], whence

Hom e, (D, Fil' Beris i) = Hom e, (,r (D, FiI'BY, 1), Vi > 0

cris, K

for Dk = D®k, K, keeping in mind that multiplication by t induces an isomorphism

Fil’ Beris k¢ = Fil' Beris i -

Let E be a p-adic field. Let V be a (continuous) E-representation of Gg. For
x = HT, dR, st, cris denote

D.(V) = (B. ®g, V)°r,
and for x = st, cris, we denote
D, k(V) = (B..x ®q, V).

Definition 2.0.2. Let * = HT,dR or * = st, cris. We say V is Hodge-Tate, de Rham
(resp. semi-stable, crystalline) if dimg D.(V) = dimgV (resp. dimp D, x(V) =
dimp V).

We say V' is potentially semi-stable (resp. potentially crystalline) if V|g,, is semi-

stable (resp. crystalline) for some finite extension K'/K.

It follows from the construction of the period rings that potential semi-stability
implies de Rhamness. Conversely, de Rhamness implies potential semi-stability by

the main result of [2].
Let R be an affinoid algebra over E. Let V be a locally free R-module of finite

rank with a continuous Gk-action. For * = HT, dR, st, cris denote

D.(V) = (B. ®q, V)¥,
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and for * = st, cris, we denote
D, (V) = (B, x ®qg, V).

By the results of [3], they are locally free K ®g, R-module of finite rank. Similarly, for
x = HT,dR, st, cris. We say V' is Hodge-Tate, de Rham (resp. semi-stable, crystalline)

if rankxgy R Dix (V) = rankz V.

2.1 Fontaine’s construction of Weil-Deligne repre-
sentations

Let V be an E-representation of Gk with E a finite extension of Q,. Suppose V is
de Rham. Then its E-dual V* is also de Rham. Define

DPSt(V*) = l'QL(BSt ®Qp V*)GL

with L runs over finite extensions of K. Note D, (V*) is a finite free Q)" ®q, E-
module with a Q"-semi-linear action of G, which is linear for the action of the inertia
subgroup Ik . It is also equipped with the monodromy operator N induced from that
on By, and the Frobenius-semi-linear operator ¢, i.e. ¢ acts on Q)" = W(IFP) by
Frob,, the arithmetic Frobenious.

Let deg : Wi — Z be the canonical map such that w € Wk acts on Q) as
Frob, deg(w)  Write o € Gal(Q;7/Ko) for the inverse of the relative Frobenius of Q3
over Ky. Then deg(o) = f.

Note that J = Dy (V*)N="'¥ is a discrete Q)" ®q, F-module with semi-linear
Gk /Ix-action, which is generated by its Gal(Qp"/Kp)-invariants J' = JGalQy/ Ko)

On the other hand, we observe that

J = Dpst(v*)N:U,IK,Gal(Q;f/KO)

= (By @5 V)V700K = Dy (VIN=0 = Do (V).
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Then
J = J @k, Q) = Deis(V™) ®k, Q-

Note that w € Wi acts trivially on D.(V*) and acts as Frob, deg(w) on Qy', and
¢ acts on Q" as Frob,. Therefore we can define a new Q,"-linear action of Wy on
Dyt (V*) by twisting ¢3°8(®) to the semi-linear action of w € Wi-.

The new (linear) action of Wy, together with the operator N, defines a represen-
tation of the Weil-Deligne group WDy on D, (V*). In particular, the o-action on
J' = Deyis(V*) is Id - p38(0) = .

Noting Deis(V*) = Hompgic,(V, Bais ®q, E), we get

Proposition 2.1.1. Keep the notation above. Assume X\ € E is an eigenvalue of o

on Dys(V*). There exists a non-zero G g-equivariant E-linear map
V— (Bcris,K ®Qp E)q’f:/\-

In particular, if the Hodge-Tate weights of V' are all non-negative, the map above
factors as

V — (Fil’ Beie  ®g, E)? =,

hence as

V— (B;is,K Xaq, E)‘pf:/\'

Proof. This follows from the above discussion, with the last assertion following from
Remark 2.0.1.
d

Example 2.1.2. We know the compatibility between Weil-Deligne representations
via Fontaine’s construction and those via the classical local Langlands correspondence
in GLy/q case (see the main result of Saito [31]).

Let N be a positive integer prime to p. Let f be a classical elliptic modular
eigenform of level p"N,r > 0, and of weight £ > 2. Denote by A the U,-cigenvalue of
J if 7 # 0, and one of the roots of the Hecke polynomial of f at p if r = 0. Let V be
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the E-representation of Gg associated to f, for some finite extension £/Q,. By the
compatibility between the Weil-Deligne representation Dys(V[c,,) and that via the

classical local Langlands correspondence, the local L-factor
det(l - Up_S’(Dpst(VfPG@p) ®E®Qp ;r ]_{)NZO,IK)“‘I

coincides with the local L-factor attached to the modular form f. This implies A is an
eigenvalue of o on Dpst(V[*GQp)@) E@g,Qur K, hence is an eigenvalue of o on Des(Vy |’&Qp)
by Prop. 2.1.1.

We thus have, keeping in mind that the Hodge-Tate weights of Vf|GQp are non-

negative, a non-zero Gg,-equivariant E-linear map

Vilaq, — (Bl ®q, E)?P.

2.2 Weak admissibility of a filtered (¢, N)-module

Recall that £ and K are finite extensions of Q,, and f = [K, : Q,] with K, the

maximal unramified extension of @, inside K.

Lemma 2.2.1. Let R be a Banach algebra over Q,. We extend the ' -action on
((@;]f)X to (@;ré@@pR)X by R-linearity. For any unit o € R* such that o — 1 is
topologically nilpotent, there exists a unit u € (Q;WEAQQPR)X such that o/ (u) = awu.

Proof. We just need to apply the proof of Lemma 3.6 [26] to /. O

Corollary 2.2.2. For any A € C, and k € Z>, such that vk(\) < k, we have
Filk(B;is,K g, E)(pf:/\ =0.

Proof. Let x € Filk(B;isyK ®q, E)#’=* Pick an integer ¢ so that qug (\) is an integer,
which we denote by n. Thus ¢/ (29) = 29 = whax? for some o € OF. By Lemma
2.2.1 we may choose an element u € (Q;r ®q, £)* so that ¢/ (u) = au. Replacing 29

by z%u we have o/ (29) = wia?. Note that 27 € Fil**(Bt._ ®q, E)“Of:wﬁ.

cris,
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We claim that the assumption n = qug()\) < gk implies that Fil?* B :¥="" = (.

cris

For this we just need to show that BY¥=P"" = ( for any s € Zsy. Let y € Bre=pr"

cris cris

then we see y = p**¢*(y) for any k € Z>;. Thus y € ﬂkezzlpSkBJ’ = 0 with the last

cris

+

equality being seen by definition of B7,.. This proves the claim.

Hence

Fil** (B

cris,

« ®g, B)Y ="k = Fil*BL¢™" @ K @, E = 0.

cris

g

Lemma 2.2.3. Let V' be an E-representation of Gk which is equipped with nonzero

Gk -equivariant E-linear maps
W :V = Fil"Bgr ®q, E, k€ Z>

and

h:V = (Bl x ®g, E)Y=, A€ E.
If vg(A) <k, then the E ®q, K-module Dag(V*) is of rank at least 2.

Proof. We denote by hyr the composition of h with the natural inclusion (Bctis’ x ®q,

E)¥'=* - Bur®g, E. By Lemma 2.2.2, (Fil* B}

cris,

«®g, E)?’=* = 0. This implies that
hqr does not factor through Fil* Byr ®q, I, hence is F ®q, K-linearly independent
of h’. This concludes the proof.

O

Proposition 2.2.4. Let V' be an N-dimensional E-representation of Gy . Suppose

there is a non-zero E-linear Gk -equivariant map
f—
h:V = (Bl k ®, B)*

with A € E.
If h induces, via the inclusion (B;:is’K ®q, E)?'=* - Bu ®q, E, a non-zero

E-linear Gk -equivariant map hyr : V — Cy(k) ®q, E, then vg(X) > k. Moreover,

38



(1) If v () = k, then there is an element o € ((@I‘Dlr ®q, E)* such that V' has a
one dimensional quotient representation urg x5, whére ur,, is the unramified character
sending the relative geometric Frobenius Froby' to a. 7

(2) If V is de Rham with Hodge- Tate weights 0 < ko < --- < ky_y and k = kn_1,

then V has a one dimensional quotient as in (1).

Proof. Twisting h by x*, we get a non-zero E-linear G g-equivariant map V(—k) —

BF. &0 E)? =" Since the target lies in Fil’ Byr®q, E, we must have vg (Awg") >
cris, K Qp Qyp K

0. The first assertion follows.

For (1), since Aw " is by assumption a unit, we must have
(B;is,K ®Qp E)LPJ‘-:/\W,_(’V =FE-a

for some o € (er ®g, E)* such that ¢/ (a) = Mw i Fa, by Lemma 2.2.1. This gives

rise to a non-zero E-linear (Gi-equivariant surjective map
V(—k) = E - a,

hence the desired quotient after twisting by x%. This proves (1).
For (2), we just need to show vk (M) < kn_1, by (1). As V is de Rham, that
v (\) < ky_ follows from the weak admissibility of Dy (V]¢,.,), for some K’ which

is a finite extension of K so that V|g,, is semi-stable. O

Lemma 2.2.5. Let i < j € Z U {+o0}. Let B, = Bar or Buisk. For any finite
extension K/Q,, we have for r = 0,1 that

0, 1>21orj<0
K, i<0andj>1.

H'(Gg,Fil'B,/FiV B,) =~

and

H"(Gg,Fil'B,/Fi’B,) =0, Vr>2.

39



Proof. We just need to show the Lemma for * = dR, since gr(Bqgr) = gr(Beris i )-
Recall by Theorem 1, 2 of Tate ([34]) we have for r = 0, 1

H'(Gg,C)) =K,  H'(Gg,C,(k)) = 0,Vk € Z\{0}).

and H"(Gk,C,(k)) = 0 for any integers k and r > 2.

Consider the short exact sequence
0 — Cy(j) — Fil' By /Fil’ "' Byg —> Fil' Bgr/Fil Bgp — 0

and the long exact sequence it induces. Then an induction on j — 4 gives the lemma
for 7, 7 finite. The rest are obtained by taking limit.
]

Proposition 2.2.6. Let V be a de Rham (resp. crystalline) E-representation of G
with Hodge-Tate weights kg < --- < ky_1. Then a nonzero E-linear G g -equivariant
map

h:V — (Cp(kal) ®Qp E

induces a nonzero E-linear G i -equivariant map
h:V = Fil""1B, ®q, E,

where x = dR or cris, K.

Proof. We show the case * = dR, as the other case goes over verbatim.

For any 0 < j < N — 1, we have a short exact sequence
0 — Fil"*'Byg — Fil® Byg — Fil® Byg /Fil" ' By —> 0.
It induces the exact sequence

H°(Gk, Fil" Bag ®q, V*) = H(G, Fil" Bag /Fil ! By ®q, V*)
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% HY(Gx, Fil"*! Bag ®q, V*).

The obstruction class for lifting h : V' — C,(k;) ®q, £ = Fil* Byg /Fil* ™ By Rq,
E to Fil% By ®q, F is the image of h under the natural map by .
On the other hand, we have

HI(GK, Filkj+1BdR ®Qp V*) ~ Hl (GK, Fi]kj+1 (BdR ®Qp DdR(V*)))

as V* is de Rham. As the latter is a successive extension of H(G, Fil¥ =% By ®q,
E)fori=0,--- N — 1, each of which is trivial when j = N — 1 by Prop. 2.2.5, the
result follows.

a

Corollary 2.2.7. Let V be a 2-dimensional E-representation of G with Hodge-Tate

weights 0, k, k > 1. Suppose there is a non-zero E-linear Gk -equivariant map
h:V — (Bctis,K ®aq, E)wf:)‘

for some A\ € F.

(1) If v,(X) = 0, then V is de Rham and we have an extension of representations
0—=exh -V sur, =0

with ur, the unramified character sending the relative geometric Frobenius Froby' to
some o € (Qgr ®q, E)* and € a character such that €(Ix) is finite. The extension

above may not split.

(2) If v,(X) = k, then we have an extension of representations
0—=e—=V = urgxh =0

with ur,, and € as in (1). If V is in addition de Rham, then the above extension splits.

Proof. In (1), we get, by Prop. 2.2.4, a non-zero E-linear Gx-equivariant surjective
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map

V —F «

for some o € ((@;r ®q, £)*. The kernel of the above map is a character of Hodge-Tate
weight k, hence of the form ex% with € a character under which the inertia has finite
image.

Then V is de Rham by Prop. 2.2.6 and Cor. 2.2.3. The obstruction for the
extension to split lies in H,(Gk+, Qy(k — 1)) by Hochschild-Serre, with K'/K a finite
extension such that V¢, is semi-stable. On the other hand,

dim H! (G, Qy(k)) = W, k=L
n+1, k>1.
with n’ = [K' : Q,], by (3.9) of [4] (see also Prop. 6.2.1). Therefore the extension is

not necessarily split.

In (2), we get the extension similarly, again by the use of Prop. 2.2.4.

When V is de Rham, the obstruction for the extension to split lies in H} (G, Qp(—k))

(for some finite extension K'/K so that V|g,, is semi-stable) by Hochschild-Serre

again. In this case, however,
Hgl(GK,,Qp(—k)) =0, Vk>1

by (3.9) of [4].
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Chapter 3

Refinements of a Galois

representation

3.1 Definition

Let V be a (continuous) N-dimensional E-representation of Gg. For a crystalline

period (resp. de Rham period, Hodge-Tate period) of V we mean a nonzero E-linear

G k-equivariant map V' — Buiskx ®g, E (resp. V — Bgr ®g, E, V = Bur ®q, E).
Note that ¢/ is a Ky-linear operator on the Ky[p]-module Des g (V*). Given

A € E, a nonzero E-linear (G g-equivariant map
h:V — (écriS,K ®g, B)7 =
induces a crystalline period via the natural Galois-equivariant embedding
(Beris,x g, E)“of:)‘ = Buis,x ®q, E,

which we denote by
hcris V= Bcris,K ®Qp E.

When we say some crystalline periods factoring through different ¢/-eigenspaces

are E-linearly independent (or simply distinct), we always mean they are E-linearly
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independent as elements in Des x(V*). We use similar conventions for de Rham

periods and Hodge-Tate periods.
Definition 3.1.1. Let V be an N-dimensional E-representation of Gi. For 0 <
Jj < N — 2 a positive integer, write J = {0,---,j}. A J-refinement of V is a triple
R = (ns,bs,As) with

ns = {ni: Gk = E* }ocic;

an ordered set of continuous characters,
Ar = (Nosics € BT

and
by = {hi : V ®q, 1 = (Bais,k ®q, E)‘pf:’\i}ogigj
an ordered set of £ ®q, Ko-linearly independent crystalline periods.

We will simply call a J-refinement of V' a refinement when it is obvious what J
is.

Let R = (ns,bs,A;) and R' = (1}, 4, \)) be two J-refinements of V. We say
they are equivalent if for any h; € b, hl € i/, there is a unit a; € Oj; and a non-zero
element u; € (Oqu ®z, E)‘Pf:o‘i, such that h, = h; - p;. Note that, this being the case,
we have that 7} equals to the product of 7; and the unramified character sending the
relative geometric Frobenius to «;, and that v,(\;) = v,(A]).

A J-refinement is called ordinary if there exist integers {k;}ic; such that each

h; € b factors through Filk"(Bcri& K ®q, E)‘Pf:)‘i, and the natural composition
V &g, T — Fil*(Buis x ®g, E)? = = Fil¥ Byg ®g, E — Cp(ki) ®g, E
is non-zero. This being the case, we have, for any 7 € J,
Fil¥ (Beis x ®g, E)* = ~ E - u

for some u; € Ky ®q, O such that ¢/ (u;) = A\u;, by Lemma 2.2.1. As the above

44



composition is G g-equivariant, the twist by n; ' of the unramified character sending
the relative geometric Frobenius to u; 1s a quotient representation of V. In particular,
a G -representation (of dimension at least two) which can be equipped with an

ordinary refinement has to be reducible.

3.2 Ciriticality of refinements

Assume further that V' is with integral Hodge-Tate weights kg < -+ < kn_;. If the
characters 7; in R are all trivial, let D, .;s(V*) denote the Ky ®¢q, E-submodule of
Deis i (V*) generated by the crystalline periods {h,}o<,<;- Then a J-refinement R

being non-critical means
Dcrisj{(v*) - Di’cm‘s(v*) @ Fﬂki-’_chris’K(v*)’ Z = ()’ e ,j

for all ¢ such that k; # k;1. This is used in [1] for Gg,-representations with distinct
Hodge-Tate weights.

In particular, in the case that V' is of dimension 2 with 0 = ky < &y, the refinement
R = (1g,{ho},{No}) is non-critical if hy does not factor through Fil' Beyis, i ®q,
E. Notice that the refinement is always non-critical when V' has equal Hodge-Tate

weights.

Example 3.2.1. For V a 2-dimensional crystalline Gg,-representation with Hodge-
Tate weights 0, k > 0, such that the p-adic valuation of any ¢-eigenvalue on D s(V™*)
is strictly smaller that & , there are always two non-equivalent non-critical refinements
of V.

(2) The restriction to Gg, of the p-adic Galois representation associated to an
elliptic modular form of weight 1 has Hodge-Tate weights (0,0), hence admits only

ordinary refinements, which have to be non-critical.

In GLy/g case, the following results of Coleman and Breuil-Emerton explain the

meaning of criticality on the automorphic side.
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Theorem 3.2.2 (Coleman inequality). Let N be a positive integer such that p t N.
An overconvergent elliptic eigenform f of level p" N,r > 0, and integral weight k > 2

is classical if
v,(N) < k— 1, or f is not in the image of the map OF 1.

Here X\ s the Uy-eigenvalue of f if r # 0, and either of the roots of the Hecke

polynomial of f at p if r =0, and © is the operator acting as qd% 0N q-expansions.

(We remark that in Thm. 3.2.2, the condition has to be checked for both of the
Hecke eigenvalues in the case r = 0.)

In the first case of Thm. 3.2.2, the refinement of Vf]G@p given by the crystalline
period corresponding to A (cf. Example 2.1.2) is non-critical, by Lemma 2.2.2. In the

second case, v,(A) = k£ — 1 and it is not easy to see if the refinement is non-critical.

Theorem 3.2.3 (Thm.1.1.3, [5]). Let f be as in Thm. 3.2.2. The refinement of
Vfic% given by the crystalline period corresponding to A is critical if and only if [ is

in the image of the operator ©F 1.
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Chapter 4

Finite slope subspace: the general

theory

4.1 Sen theory on p-adic Hodge structures in fam-
ilies

We recall Sen theory from the summary (2.2)-(2.6) of [26].

For L a finite extension of Q,, we denote Loo = U, on L(e™) with ™ a primitive

neN

p"-th root of unity, and write ', = Gal(Lw/L). Let I'y; be the free (quotient)
part of I';, and let L, be the subfield of Eoo corresponding to I' ;. Denote by
H; = Gal(@p /Loo) and L., the completion of L,,. Recall that

i .
C,)t = Ly
by Ax-Sen-Tate.

Let E and K be two finite extensions of @, such that F C K. Let X be an
E-analytic space and M a locally free O x-module of rank n, with a continuous G g-

action.

Let Sp R C X be an affinoid admissible open subset. Again denote by M the
restriction to SpR and write Ro = Ko®pR. We may choose (by Prop.6 of
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33]) K’ a Galois extension of K which is big enough so that the K’ & zR-module

(C,®pMpg:)Hx is free of rank n, and we have a natural isomorphism
(CoopMi) " @4, Cp = Mg @5 Cp.

The étale descent shows (C,®5M)"x is a finite flat Roo-module, and we have a

natural isomorphism

((C,,@EM)HK@&O(CP = M ®p C,.

Then Prop.6 of [33] allows us to choose a finite extension K’/ K so that (C,@p Mg/ )x’
is free over K’, @ R, and to find a basis of (C,®@rMj)Hx" such that the K' @ R-
module W, generated by the basis is Ik j-stable. Let y be a topological generator of
Ik = Zy. Let r € N be big enough and define an element ¢ € Endgg, =W, by

_ log(+""|w.)
logxr (77")

One checks that ¢ is well-defined and is independent of the choice of r for r big enough.
By extension of scalars to K/ ® R R We get an operator on (C,®pMg:)Hx’ which
is again denoted by ¢. By P. 659 of [33], the characteristic polynomial Py(T) of ¢ lies
in (K ®g R)[T].

We will globalize Sen’s operator ¢ to get a polynomial P,(T") € O(X)[T] attached
to the Ox-module M, once we check the compatibility with change of coefficients of
the above construction. That is, we need that for any map of E-Banach algebras

R — R/, the natural map
(C,@pMg) ' @rR — (My:@rR)Hx
is an isomorphism. This is seen easily by using the previous isomorphism
(CoReMK) "' &z, Cp 5 Mg ®p C,.

Remark 4.1.1. To an E-representation V of Gk, we can attach Sen’s polynomial
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Py(T) € (E ®q, K)[T) by the discussion above. For a given embedding v : E — K,
the zeros of the specialization Py ,(T) € K[T) via 1 ®q, 1 : E ®g, K — K are called
the Hodge-Tate weights of V' with respect to ¢. As ¢ runs over all the embeddings
E < K, we get a collection of numbers in K, which are the Hodge-Tate weights of V
regarded as a Q,-representation of Gx. When K = Q, and p € Q,, the multiplicity
with which p appears as a Hodge-Tate weight is independent of the embedding ¢.

4.2 Periods on families of Galois representations

We summarize and modify some results in Sec. 2, Sec. 3 and Sec. 4 of [26].

Let k£ < i be non-negative integers. Keep the notation in the previous subsection.

Proposition 4.2.1. Suppose Ps(T) = (T — k)" Q(T) for some r € Zx; and some
polynomial Q(T) € Ox(X)[T).

(1) The R ®p K-module H(Gg, C,(k)®pM*) is finitely generated and is killed
by det(¢ + k), which is finite flat of rank r if Qx(k) is a unat.

For any map 60 : R — R’ between noetherian Banach E-algebras such that

0(Qr(k)) is a unit, we have a natural isomorphism
HYGg,Cy(k)®pM*) 9r R’ ~ H(Gk, Cp(k)Rp(M* @5 R')).

(2) Let i > k+1 be an integer. HO(G g, Fil* Byr /t! Baqr®@pM*) is a finitely gener-
ated R @ K-module. If Qr(v) is a unit for any k <v <i—1, then

HY(Gg,Fil" Byp /t' Bir@pM*) ~ H* (G, Cp(k)®pM*).
If Qr(v) is a unit for all v > k, then
HO(GK, FlldeR(%JEAf*) >~ HO(GK, FildeR/tinR®EM*) ~ HO(GK, Cp(k)®EM*)

Proof. These are easily seen by the proofs of Prop. 2.4 and Prop. 2.5 [26].
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Let f = [Ky: Qp] and k > 0 be integers.

Proposition 4.2.2. For any )\ € Q;j, there exists a finite extension E/K and a
positive integer ig depending only on vy(X\) and k, such that for any i > iy, the
natural map

(Fi* B,  ®x B)*' = < Fil* Byp /Fil' By @ E
15 an injection with closed image.

Proof. One deduces this by the use of the argument (3.3)-(3.5) [26], replacing Beyis, ¢
loc.cit with Beyis k¢, o’ O

Corollary 4.2.3. Let R be a K-Banach algebra and' Y € R*. If there exists an
element A € E* with E a finite extension of K contained in R such that YA ™' —1 is

topologically nilpotent, then for i > 0 we have an injection

(Fil* Bt &k R)?" =Y < Fil* Byp /Fil' Bir®x R

cris, K

with closed image.

Proof. Using Lemma 2.2.1, we have Ju € (@;r®Qp’R)X such that ¢/ (u) = (Y "' \)u.
Then by multiplying u on both sides of the above map we reduce to the case Y = \.
Applying @R to the map

(Fil*B

cris,

K ®q, B)¥"= < Fil* By /Fil' Bar ©q, E

obtained in Prop. 4.2.2, we are done. a

Let x = (x;);>0 € R, Fontaine’s ring. Suppose vg(z) > 0 and define the power

series

P(z, Tk = ) " ()T,

i€z
where [y] € W(R) denotes the Teichmiiller lifting of an element y € R. Note that
one has the identity

¢! (P(x,T))k = T P(x, T).
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Proposition 4.2.4. Let R be a Banach algebra over K and o« € R such that o —1 1s
topologically nilpotent. Then the R-submodule of (FilkBJr

cris,

K®KR)‘Ff:wllc<+1°‘ spanned
by
{tieP(z, @i a™)i||lz@] < 11}

15 dense.

Proof. One notices that in the case k = 0 the Proposition follows from the same proof
as that of Cor. 4.6 [26]. For any k, the result follows since we have an isomorphism

of Q,-topological spaces

B2 ™ = (R B, )9 =,
given by multiplication by t%. O

4.3 Construction of finite slope subspace

Let E be a finite extension of Q,. Write Xz = X ®pg E’ for X a rigid analytic space
over E and E’/E a finite extension. For a map X’ — X of rigid spaces and Y an
analytic function on X, we denote by Y’ the pullback to X’ of Y. For @ an analytic

function on a rigid space X, we denote by X the complementary of the vanishing

locus of Q.

Definition 4.3.1. Let X be a K-analytic space and M a locally free Ox-module of
finite rank, equipped with a continuous G-action. For a given invertible function
Y € O%(X), we say a map 6 : X’ — X between two analytic spaces over K is Y-
small if there is a finite extension K’ of K, and an element A € Ox , (X}-)* such that
K'()) is a product of finite extensions of K and Y’A™! — 1 is topologically nilpotent
on Xy..

We say a rigid space X is Y-small if the identity map on X is Y-small.

For example, in the proof of Thm. 4.3.3, we consider the case that X’ = Sp R’ is
a connected affinoid over K and A € K’ C R/, so that we will be able to apply Cor.
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4.2.3.

Remark 4.3.2. One sees that in the following two cases we have Y -small maps,

which will be the situations we work in.

e For a point x € X and a positive integer k the inclusion
Sp(Ox./mf) = X

1s Y -small for any invertible function Y on X, where one can take K' = K and

A =Y(x). Here m, is the mazimal ideal of the local ring Ox ,.

o Ifz € X isa closed point and SpR is a sufficiently small affinoid neighborhood
of x, then the inclusion Sp R — X is Y-small for any invertible function Y on

X, where one can take A =Y (x) and take K' to be the residue field of x.

Let X be a separated K-analytic space and M a finite free Oyx-module with
a continuous Ox-linear Gg-action. We have Sen operator ¢ and Sen polynomial

Py(T) € Ox(X)[T] attached to M.

Theorem 4.3.3. Let k > 0 be an integer, and let X* C X be the closed subspace
on which Py(T) = (T — k)Qw(T) for some polynomial Qi(T) € Ox(X)[T]. Let
Y € Ox(X)* be an invertible function on X.

There exists a rigid Zariski closed subspace X5 = X s (X, M,Y) of XF* which
s characterized by the following two conditions:

(i) For any v € Zsy, Qx(v) is not a zero-divisor on X s, .

(1t) For 0 : SpR' — X any Y -small map of K-analytic spaces factoring through
ng(y) for every integer v > k, it factors through Xy, if and only if any R'-linear
G k -equivariant map

hrs : 0*M(SpR') = Fil* Bir&x R’

factors through (FﬂkB;is,K@)KR’)“’f:Y'.

Moreover, the formation of Xy commutes with base change by flat maps.
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Remark 4.3.4. In the setting of Thm. 4.3.3, we fir the p-adic field K and take X
to be an rigid analytic space over K, which does not lose any generality. Precisely,
suppose that X is defined over a p-adic field E and M a finite free Ox-module with
a continuous Ox-linear G g-action. In the case E C K, we may apply Thm. 4.3.3 to
the base change X to K of Xg and regard the resulting subspace as an E-analytic
space via the natural morphism Sp K — Sp E. In the case K C E, we may apply
Thm. 4.3.3 to X, (k) (and the Sen polynomial on it) for each embedding 7 : K — E
and obtain the finite slope subspace Xy, C Xr(xy which depends on the embedding
7. Alternatively, we could obtain an analogous subspace independent of the choice of
embedding T, by simply requiring the conditions (1) and (2) of Thm. 4.3.3 hold for
any T7(K). We choose to state the theorem as in Thm. 4.3.3 in order to simplify the

notations hereafter.

Proof of Theorem 4.3.3. The uniqueness and that the formation of Xy, commutes
with base change by flat maps are formality, as are shown in (5.7), (5.8) and (5.9) of
[26].

For the existence of Xy, we may assume X = Sp R is an affinoid. This can be

seen by replacing B, ¢ in (5.9) [26] by Beis.x, ¢

Furthermore one can assume SpR to be small enough, so that |Y||Y ™! < |wy!|.
Here | - | denotes a residue norm on SpR, which is a semi-multiplicative K-algebra
norm. Fix an element A € @, such that |[Y 17! < |\ < |V and fix a finite Galois
extension Ex/K which contains A\. Then we check easily that |wgAY ™| < 1, which,
together with Cor. 4.4 of [26], implies t§ P(x, @'Y A™!) is a well-defined element
in (FilkBj;i& k®xEr ® R)‘Pf:w’?lyfl’\, where (@ € Oc, with norm strictly smaller
than 1.

First note that a map hg in question factors through (FilkBCtiS,K@KR’ yo! =Y’
if and only if this holds for its composition with the projection from Fil*Byz to
Fil* By /Fil' Bgr for i big enough, by the assumption that 6 factors through X0w)

for every integer v > k.
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Now we consider a non-zero R-linear G g-equivalent map
h: M — FilF Bir®xR. (4.1)

We further choose by Cor. 4.2.3 a sufficiently large integer ¢ (depending on v,()\) and
k) so that the natural map

(Fil* BY,, x ®x Br)? ==Kk < Fil* Bay /Fil By @k Er

T

is injective with closed image. We denote its cokernel by Uy, which admits an orthog-
onal basis, which in turn gives rise to an orthogonal basis of the R ® x Ex-module

Ux&kR by a result of Coleman (A1.3, [10]).

Now consider the composition

WM @k Er "2 Fil* Bip@xR @ Er — Filf Bug /Fil Bin®@ xR @k Er

t';(P(x,w;(lY)\_l) ak i ~ ~
— Fil BdR/Fll BirOkR QK Er » UyQKR.

We define the ideal I'rg, 1 (A, , m, h) C Rk Er to be generated by the coeflicients

of h'(m®1) (m € M) written in the orthogonal basis of the R®x Ex-module Uy & R.

Here we note that deGal(ER/K) IRk Er (g A, z,m, h) is invariant under the action of

Gal(Er/K), hence descends to an ideal Ir(), z,m,h) C R.

We define X }s,k to be the K-analytic subspace of SpR with respect to the ideal

, . L .
a, = Z,\,x,m,h Ir(X, x,m,h) with A\, m,x, h varying in obvious ranges.

In the following, we check X7 , satisfies condition (ii) of the Theorem. Now
suppose we are in (ii). We first remark that for the corresponding map ¢! : R —
R’ of affinoid algebras, the image in R’ of me Ir(A,z,m,h) is zero if and only
if (for any x,m as above) the extension by @R’ of the map A’ factors through

(Fil*BY, x®xR' @ Er)?' ==X,

Now suppose the map hgs in question factors through (Filk Bctis, KOKR )“’f:Y'. We
may assume (by Prop. 4.2.1) its specialization to Fil* Bgg /Fil' Bip®@ xR’ is induced
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by the map h above, via the map #* : R — R'. Then (for all z, A as above) the

composition

M &r R "5 il Bir@ xR’ — Fil* Bur /Fil Bir&@x R’

th P(z,m Y/ A~
K K

< Fil* By /Fil' Bir®x R’ @k Fr Fil* Byg /Fil' Bir®k R @k Er

factors through (FilkB;is’KQ%KR’ Rk ER)‘Pf:w’;(H’\. Hence § € X, (R'). Here we
have used the fact that

O P, m' YA = oY IAP(z, w ' YATY)).

Conversely, suppose the given Y-small map ¢ : SpR’ — Sp R lies in X}, (R'). We
may assume that Sp R’ is connected and the field K’ in the definition of Y-smallness
is contained in R’ and is Galois over K (see the end of (5.9), [26]). Then we have, by
Definition 4.3.1, Y'X\;' — 1 € R’ is topologically nilpotent, for some A\ € K’

For any map hr : M @ R’ — Fil*Bir& xR’ in question, the assumption that
Qr(v) (Vv > k) is a unit implies that the R'-module H°(G, FildeR/FilinR@)QpM@R
R’) is finite flat of rank 1. Hence we my assume that the specialization to Fil* Byr JFil' Bir®@gR’
of hz is the scalar extension via the map 6% : R — R’ of the map h in the construction

of X}, . Thus the composition

M ®x R 2 FilF Bin@x R' — Filk Bar /Fil Bir@x R’

: Pz,w Y/ AT
K 0

. ~ K - ~
< Fil* Byr /Fil Bir@x R’ @ K' ' Fil* Byr /Fil' Bin@x R’ @ K’

factors through (Fil* B}

cris, K

OkR QK K’)“’f:w?l)‘“, by the definition of X7, .

On the other hand, by Lemma 2.2.1 there is an element u € (@gr ®x R')* such
that o/ (u) = Y'""X\u, as Y'Ay! — 1 is topologically nilpotent. These together show
that

uthtt e (FIFBY, @R @ K')¥ ==K Y0,

cris,

Now use the multiplication map R' @ K/ - R'. Forany m' = m® 1 € M ®r R/

35



with m € M,

uth he (m') € (Fil* BE, & R)# ==k o,

cris, K

as th. P(z, 'Y/ Ay ) hr/(m') lies in the right by the construction of X' x» and the ele-

ments t5 P(z, @ Y/ A\; ") are dense in (Fil* B, &xR/)¥ ==k"Y" 20 by Prop. 4.2.4.

cris, K
Therefore

hro(m') € (Fil*BY, &R =Y vm' € M ®@r R,

This concludes the proof that X, is characterized by condition (2) in the Theorem.

Now write X, for the Zariski closure of X}s,k,]_[f;]k o 10 Xfor Then X3 o
satisfies condition (i) of the Theorem. For integers i > 1 we have a decreasing
sequence of closed subspaces of X}, which is stationary since R is noetherian. We
define X, = X}, for i sufficiently large, which is characterized by condition (i)

and (ii) in the Theorem, as desired. O

Proposition 4.3.5. Keep the notation in Thm. 4.3.3. We have a natural isomor-
phism

XfSk(X’ .A/[, Y) ~ st,O(Xa ]\4(’6)7 Y),
where M (z) the twist by X% of M, for any i € Z.

Proof. Adopt the notation in the proof of Thm. 4.3.3. First note that the twist by X}k
of the map h' (the composition of h ®g, 1 and multiplication by t5 P(z, @'Y A7) k)

is

W(=k) : M(—k)®k Br " 25! Fil' Bin@x Rk Er — Fil Bag /Fill Ban@ xR @ Fr

P(z,mg' Y1

% Pl By /Fil' By @R @ Er.

Applying the construction of X7, using h'(—k), we see Ir(X, z, m, h) >~ Ig(X, z, m, h(—k)),
whence a;, = Z,\,:c,m,h Ir(A,z,m,h) >~ a) = Z)\,z,m,h Ir(A,z,m, h(—k)). Hence we
have

X}S’k(X, M)Y) ~ X}S,O(X,M(k),Y).
Note that the Sen polynomial for (M(—k))* is equal to Py(T + k), with Qo(T) :=
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Py(T+k)/T" = Qr(T + k). Thus Thm. 4.3.3(i) is equivalent to saying that, for any
v € Z>p, Qo(v) is not a zero-divisor on Xz, Now we have that X}&O, the Zariski

closure of X’ ” in Xi, o(X, M(k),Y) >~ Xj, (X, M,Y), is isomorphic to

£,0.I T2 Qo
X}, Therefore we have the desired isomorphism.

O

The following result is completely analogous to (5.16) [26]. We include it here for

later use.

Proposition 4.3.6. Let X, MY,k and X5 be as in Theorem 4.5.3. Let SpR be a
Y -small affinoid subdomain of Xy .

(i) For i larger enough, any R-linear G i -equivariant map
M(SpR) — Fil* Byg /' Bir®kR

factors through (FilkB;isyK@)KR)@f:Y.

(ii) Let H C R be the smallest ideal such that any map as in (i) factors through
FildeR/tinR@)KH. Then the complementary of the vanishing locus of H 1s Zarisk:
dense in SpR.

(iii) For E C R a closed subfield with a continuous map R — E, there exists a

non-zero E-linear Gk -equivariant map

M @ E — (FiI* B}, @xE)?’=Y.

cris, K

Proof. These follow from the arguments of (5.14)-(5.16) [26].

Let € SpR be a closed point such that Q(v)(x) 74 0,Vv > k. Noting that for
r a positive integer the map R,/m, — SpR is Y-small (cf. Remark 4.3.2), where
R, denotes the m,-adic completion of R. Denote I to be the index set {z,7} with =
running over SpR and r € Zs;. Write R, = Ry/m’, for o = (z,7) € I. Set I, = I
for any v € Z>.

One checks (cf. the proof of (5.16) [26]) that
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(1) For any « € I,,, any R,-linear G g-equivariant map
h:M®g Ry — FilF Byp /t' Bir®k Ra

factors through (Fil* Bl ,®xRa)? ="

(2) For any a € I, [['Z}, Qx(v) € R, is a unit.

(3) The map R — [],¢; Ra is an injection.

Now using (1)-(3) we can apply the proof of (5.14) [26] to deduce (i) and (ii).
More precisely, the results (3.7) and (2.6) loc. cit will be replaced by Cor. 4.2.3 and
Prop. 4.2.1. The assertion (iii) is a consequence of (ii) (cf. the proof of (5.15) [26]).

U
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Chapter 5

Finite slope deformations

Let’s recall some basic concepts and results from the fundamental papers [29], [28]
and [26].

Let G be a profinite group satisfying p-finiteness condition, that is any finite
dimensional (continuous) F,-representation of G has finite dimensional cohomolo-
gies. This condition in turn implies that any finite dimensional (continuous) Q,-
representation of G has finite dimensional cohomologies.

Let FF be a finite extension of F, and V an N-dimensional (continuous) [F-representation
of G. Fix a basis of V. We then get a representation p: G — GLy(F).

We define D, to be the functor which assigns to a local Artinian W (IF)-algebra A
with residue field F the set of (continuous) liftings of p to A, up to strict equivalence,
where we say two lifts are strictly equivalent if they are conjugate by an element in the
kernel of reduction map GLy(A) — GLy(F). As usual, we call a strict equivalence
class of lifts of p a deformation of V.

Similarly, we define DY to be the functor which assigns to a local Artinian W (F)-
algebra A with residue field F the set of deformations of p to A which are equipped
with a A-basis lifting the chosen basis on V.

By (1.2) of [29], p admits a versal deformation to a complete local noetherian
W (F)-algebra with residue field F. The versal deformation ring RZ™ is universal if
(V @ V*)¢ = F. Note that the framed deformation functor D7 is always (pro-

Jrepresented by a complete local noetherian W (F)-algebra, which we denote by Rp.
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We have analogues for the generic fibre of a (uni-)versal deformation ring. Let A
be a (fixed) local Artinian Q,-algebra whose residue field E is a finite extension of
Qp- Let V be a (fixed) finite free A-module with an A-linear continuous G-action,
which are equipped with a fixed A-basis. We define the deformation functor Dy
(resp. framed deformation functor DY) on the category of local Artinian Q,-algebras
A’ equipped with a local map A" — A which reduces to an isomorphism on E modulo
the maximal ideals, which assigns to such an A’ the set of deformations V4 of V to
A’ (resp. deformations V of V' which is equipped with an A’-basis lifting the chosen
basis on V.)

Let E/Q, be a finite extension. The same arguments of (1.2) of [29] show that, an
E-representation V' of G’ admits a versal deformation to a complete local noetherian
Qy-algebra with residual field £. The versal deformation ring is universal if (V ®p
V*)¢ = E. The framed deformation functor DY is (pro-)represented by a complete

local noetherian Q,-algebra, which we denote by RY.

5.1 Galois deformations in characteristic p and in

characteristic 0

Let p: G — GLy(F) be an N-dimensional F-representation of G whose underlying

F-vector space is denoted by V.

Let E be a finite extension of Q,. Suppose we are given a map 2 : RY*[1/p] —» E
(resp. z : Rg[1/p] — E) whose kernel is m, and whose image is E,. This by continuity
induces a map RY™ — Op (resp. Ry — Og). Denote V, o, = Viyr @pyer Op (resp.
V.op = VR‘g Ry Op)and V, g = V, 0, Ro, E, where VR}er (resp. VRg) is the versal
(resp. universal) R}*'[G]-module (resp. Rg|G]-module).

Denote by R‘D/LE the complete noetherian local ring representing the deformation
functor DSZ,E. If HY(G,V. r ®¢ V) = E, we have the universal deformation ring
Rﬁ“‘]‘; representing the deformation functor Dy, .

The m,-adic completion R, p, (resp. R7. ) of RY*[1/p] (resp. Rp[1/p]) is a
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complete noetherian local ring with residual field £,. Write ]A%Z = Rzy E. ®p, F and
R = RY; ®p, E. Then Vrs ®ro RY is a deformation of V, z, hence gives us a natural
map R‘[}z = RS, which respects the projections to E. Similarly, when H(G,V, p®g

Vg) = E, we have a natural map R“‘}Z’ig - R, respecting the projections to E.

Proposition 5.1.1 (Kisin, (9.5) [26], (2.3.5) [24]). The natural map Ry, , — R is
an isomorphism.
If HY(G, V. p®p V) = E, then the natural map Ry, — R, is formally smooth,

which is an isomorphism if BRI is universal.

5.2 Smoothness and representability of finite slope

deformation functors

Let G be a profinite group satisfying p-finiteness condition. Let B; (0 < i < j) be
topological @Q,-algebras equipped with continuous G-actions such that each B; is a
topological sub-Q,[G]-algebra of B =: By. Suppose for any Q,-representation V' of
G, dimg, (B ®g, V)¢ is finite. We may regard elements in (B; ®q, V)¢ for different
i’s as elements in (B ®g, V)¢ via the inclusions (B; ®g, V)¢ C (B ®q, V)€, so that

it makes sense to talk about linear independence.

5.2.1 Smoothness of p-adic period deformation functors

Let V be a fixed finite free A-module, with A a fixed local Artinian Q,-algebra whose
residue field E is a finite extension of Q.

Given an ordered set of (non-zero) A-linearly independent G-equivariant A-linear
maps

h={hi:V — B, ®q, Alo<i<;,

we define a functor D?/ on the category of local Artinian Q,-algebras A’ equipped
with a local map A" — A which reduces to an isomorphism on £ modulo the maximal

ideals, which assigns to such an A’ the set of deformations Vy of V to A’ such that
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for each h; € § there exists an A'-linear G-equivariant lifting k; : Var — B, ®q, A’ of
h;. The functor D?/ extends to the category of complete noetherian local Q,-algebras.

Let b’ be an ordered subset of h. One checks that D}, is a sub-functor of D:’,/. In
particular, they are sub-functors of Dy . By definition, we have D?/ = 320 D"}" with
the product taken over Dy, .

For each i, h; : V — B; ®q, A induces the obvious map h; @4 1: V@4 V* —
B; ®q, V", hence the maps on cohomologies. Denote the map {H'(G,h; ®4 1) }1,cp
by H'(G, ®4 1). Define

1
HYG,V ®4 V) = Ker(HY(G,V @, V) "5 o, HY(G, B, g, V7).

It is a standard result (cf., e.g., Page 288, [28]) that there are canonical isomor-
phisms

Dy (Ale]) ~ H(G,V ®4 V*) = Extyy (V. V),
where € # 0,2 = 0.

Lemma 5.2.1. We have canonical isomorphisms
DY (Ale]) ~ Hy(G,V @4 V") ~ Extlyg (V. V)

with the last term the subspace of Exth[G](V, V) consisting of extensions 0 — V —
W — V' — 0 such that there are ARq, BEC-linearly independent A-linear G-equivariant
maps g; - W — B; ®q, A with g;|V = h;,Yh; € .

Proof. We just need to apply the proof of Prop. 8.2 [26]. First, given an extension
0=V W =V = 0in Dy(Afe]) ~ Extqu}(V, V), for each i we already have a
map W — V — B; ®q, A, the composition of the projection W — V with h;. Now
it is easy to see lifting h; to h; : W — B; ®q, Ale] = A® A - € is equivalent to giving
an A-linear G-equivariant map g; : W — B; ®q, A - € whose restriction to V.C W is
eh;. This tells us DY (Afe]) ~ ExtL[GM(V, V).

We are left to show Extly,(V,V) ~ HNG,V ®4 V*). With the notation

and discussion loc. cit, the extension 0 = V — W — V — 0 in HY(G,V ®4
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V*) ~ Exth[c](\/, V) lies in Exth[G]’{hi}(V, V) if and only if oy (h;) = 0, and the map
W — 0w (h;) is just the map HY(G, h; ®4 1). Then the extension class [W] lies in
Ext g (V, V) if and only if oy (k) = H' (G, h; ®4 1)([W]) = 0 for all 0 <@ < g, L.
e. if and only if it lies in Hy(G,V ©4 V*). O

For each i, denote by h; the reduction of h; modulo the maximal ideal m4 of A,

and write V =V ®4 E. Then we have the maps
hi®sl:VepV' — Bi®g, V7,
hence the induced map
HY (G, h®@pl): HY(G,V @5 V") = &;H'(G, B ®, V*).

Proposition 5.2.2. Suppose the map H'(G,h @5 1) is surjective. Then the functor
D), is smooth if Dy is.

Proof. One gets this by checking the proofs of (8.3) and (8.4) [26]. Precisely, we
replace the map n in (8.3.2) loc. cit by

n=(m)i: Dy(A") = &H'(G,B; @, V) @p I, [Val> (dv,, (h)),

and then notice that [Va] € DJ,(A) if and only if &y, (h;) = 0 for all 4. O

One may apply these results to the p-adic period rings and the Galois equivariant

maps to them.

5.2.2 Finite slope deformations

Now suppose B is equipped with a continuous B%linear endomorphism £. Suppose
we are given elements \; € A* and an ordered set of A-linearly independent G-

equivariant A-linear maps

h={hi:V = (B &g, A }ocics.
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We define a functor D?/’E on the category of local Artinian Q,-algebras A’ equipped
with a local map A’ — A which reduces to an isomorphism on E modulo the maximal
ideals, which assigns to such an A’ the set of deformations V4 of V to A’ such
that for each i there is a lifting A; € A’ of \; and an A'-linear G-equivariant map
hi: Va — (B; ®q, A’ )5:;\" lifting h;. Again, the functor D?}E extends to the category
of complete noetherian local Q,-algebras.

Let b’ be an ordered subset of §. One checks that D)* is a sub-functor of D?,/’g.
They are sub-functors of D?//, with each h; regarded as a map to B; ®q, A via the
inclusion (B; ®q, A)*=" C B; ®qg, A. By definition, we have DY = 3:0 D‘}?”g with
the product taken over Dy .

Let \; be the image of A; in A/my for each i. We have the map

}—li KE 1: ‘7 KE I_/* — (BZ, ®Qp V*)gzﬂi’
hence the induced map
H'(G,h®pl): H(G,V®pV*) = &:H'(G, B; ®q, 1780 S

Proposition 5.2.3. Let A’ be a local Artinian Q,-algebra equipped with a surjective
local map A" — A with kernel I such that I - m4 = 0, which reduces to an isomor-
phism on E modulo the mazimal ideals. If each &-eigenvalue \; on (B ®qQ, V*C is of

multiplicity one, then the natural map DBZE(A') — D{’/(A’) s an isomorphism.
Proof. By (8.9) [26] this is true for each Dii*, so is for D). O

Proposition 5.2.4. Suppose each £-eigenvalue \; on (B ®qg, V*)Y is of multiplicity
one, and suppose the map H'(G,h®p 1) is surjective. Then D?/’g 1s smooth if Dy is.

Proof. With the notation of Prop. 5.2.2, we have (cf. Prop. 8.10 [26])

Eni(Va])) = Aimi([Va]).

Thus the surjectivity of H'(G, h®p 1) shows that there is a class [¢] € H(G, V@ V™)
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mapping to 7([Va]), which implies that [V] — [¢] € D}, (A’). On the other hand, we
have by Prop. 5.2.3 that DJ*(A’) ~ D?/(A’). O

Proposition 5.2.5. Let E/Q, be a finite extension. Fiz an ordered set of E-linearly
independent G-equivariant E-linear maps

h={hi:V = (B ®q, E)*}o<ic;

with \; € E*.
Suppose dimp(B; ®g, V*)9=* =1 for any 0 < i < j. Then for each i, there
exists a unique lifting \; € A* of \; such that the A-module (B, ®q, Vj)G’E:Xi contains

an lifting of h, and the A-module above is free of rank onc.

Proof. By the E-linear independence of elements in b, we are reduced to show the

Proposition for a single h;, which is the case of (8.12), [26]. O

Proposition 5.2.6. Keep the notation and assumptions as in Prop. 5.2.5. Then the

functor D% is representable if Dy is.
1%

Proof. Tt follows from (8.13) [26] that if Dy is representable then each D{** is repre-

sentable, so is D:’/’g. O

For example, we can apply these results to the case G = Gy, B = Bl & = ¢/,
where f is the residue degree of K.
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Chapter 6

Deformations of a Galois

representation with refinement

In what follows, N > 2 is an integer, K/Q, is a finite extension of degree n with
residue degree f, and E is a finite extension of Q,.

Recall that for an E-representation V of Gg with E C E = Qp, we can attach Sen
polynomial Py(T") € K ®q, E[T]. For a given embedding ¢ : K — Q,, the zeros of the
specialization Py, (T) € Q,[T] via 1®g, 1 : K ®g, E < Q, are called the (generalized)
Hodge- Tate weights of V' with respect to 1. When we use the term Hodge- Tate weight,
we mean Hodge-Tate weight with respect to a fixed embedding K — (@p.

6.1 Obstruction for deforming a de Rham repre-

sentation
Denote dimg H(G g,V ®p V*) = h°.
Lemma 6.1.1. Let V be an N-dimensional E-representation of Gx. Then

dlmE HI(GK,V ) V*) = ho + nN2 -+ dlmE HZ(GK,V Xp V*)

Proof. One gets the equality by the local Tate duality, noting H'(Gk,V @ V*) =
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0,Vi > 2. 0

Lemma 6.1.2. Let V be a 2-dimensional de Rham representation of Gi. If H*(Gg,V®g
V*) - E, then Hz(GK, % XE V*) =0.

Proof. By the local Tate duality,
H*(Gr,V @p V") = (Vep V(1) ~ (V(1) ®p V)9,

where V*(1) = Hom(V,Q,(1)) is the Tate twist of the representation contragredient
to V.
If H*(Gg,V ®@p V*) # 0, then there is a non-trivial map of E[G g]-modules

r:V— V(1)

which forces V' to be reducible because otherwise V' = V(1) as E[Gg|-modules. Then
V' contains a non-trivial sub-representation Ker(r) := U & V. Then V/U is a sub-
representation of V' (1), which we call W(1). This way W is a sub-representation of
V.

In particular, if V' is two dimensional indecomposable over E (satisfying H*(G g,V ®g
V*) # 0), we must have U = W. Hence V is an extension of U(1) by U. If V is in
addition de Rham, then the extension class lies in H] (G, E(—1)), which is trivial by
Prop. 6.2.1, since £(—1) has Hodge-Tate weight 1. Therefore H*(Gg,V ® V*) =0

if V is a 2-dimensional indecomposable de Rham representation. O

6.2 Selmer groups

For an E-representation W of G, we have the natural maps
W —-Ww ®q, Bais, W =W g, Bar

which induce maps on cohomologies.
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Following Bloch-Kato ([4]), we define
H}(GK, W) = KQI(H1<GK, W) — Hl(GK, W ®QP Bcris))7

Hgl(GK, W) = Ker(Hl(GK, W) — HI(GK, W ®Qp BdR))
via the induced maps on cohomologies.

Proposition 6.2.1 ([4]). If W is a de Rham E-representation of G, we have
dimg H}(Gg, W) = dimg H (G, W) + ndimg Dag(W)/Fil’ Dar(W),

dimp H)(Gg, W) = dimp H}(Gk, W) + dimp Deris(W*(1))#71

Proof. We summarize the results in different places of [4] to give a proof of the
Proposition.

By Prop. 1.17 [4], there is a short exact sequence
O - Qp £> Bcris @ FilOBdR _/6; Bcris ©® BdR — O

where a(z) = (z,2) and f(z,y) = (v — ¢(x),z — y).
Tensoring the above exact sequence with W, and taking Gk cohomology, we get

an exact sequence
0= H(Gg, W) = Deig(W)DFIl’ Dap(W) = Deris(W)®Dgr(W) = Hp (G, W) — 0,
where we have used the fact (Lemma 3.8.1, [4]) that

HY Gy, Fil'Bir @ V) C H (G, Bar ®r V).

Keeping in mind dimg Dgr(W) = dimg W, we get the first equality.
Similarly, Prop. 1.17 [4] gives the short exact sequence

0—-Q, > B @Bl 5 Bar =0

cris
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where o(z) = (z,x) and vy(z,y) =  — y. We then get an exact sequence
0 = H(Gr,W*(1)) = Deris(W*(1))?'@Fil° Dy (W*(1)) — Dar(W*(1)) = HX (G, W*(1)) — 0.
Since

HY (G, W*(1)) = Ker(H' (G, W*(1) — H'(Gie, W*(1) ®g, BEZ)),

which is dual to H (G, W) (Prop. 3.8 [4])under the perfect duality

HY (G, W) x HY(Gg, W*(1)) > HYGk,Q,y(1)) ~ Q

D

as W is de Rham. One sees easily, by the exact sequence and the first equality, that
dlmE Hel(GK, W*(l)) = dim H}(GK, W*(l)) - dlmE Dcris(W*(l))wzl.

Now the second equality follows as H (G g, W*(1)) is the perfect dual of H{(Gg, W),
under the above perfect duality .

O

For V an E-representation of Gx with integral Hodge-Tate weights kg < --- <
kEn_1, let s; be the multiplicity of k; in the multiset of Hodge-Tate weights. Denote

Sy = Z 81‘(81‘ - 1)/2

0<i<N —1,k;i#k; 1

where we set k_; = —oo and ky = +oo. Write
dlmE Dcris(V ®E V*(l))pzl = C.
(whence dimp Deis x (V ®F V*(l))"’f:1 ®K, K = nc.)

Corollary 6.2.2. Let V' be an N-dimensional de Rham E-representation of Gk with
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Hodge-Tate weights 0 = kg < --- < kyx_1. Then
dimp H}(Gk,V @ V*) = R’ + nN(N —1)/2 — nsy,
dimg Hgl(GK, V®p V") =h"+nN(N —1)/2 — nsy + nc.
Proof. Easy computations show
dimp Dar(V ®g V*)/Fil’Dgr(V @5 V*) = nN(N — 1)/2 — nsy.

Then the result follows from Prop. 6.2.1.

6.3 Deforming a Galois representation equipped
with p-adic periods
For V an E-representation of Gx with integral Hodge-Tate weights kg < k; < --- <
kn_1, equipped with distinct Hodge-Tate periods
hi,HT V= Cp(k’l) ®Qp E,Z = O, ,N — l,
we use the notation
b1, = {himr}icr
for an ordered subset I C {0,---,N —1}.

Lemma 6.3.1. Let V' be an E-representation of G with integral Hodge- Tate weights
ko < - <kn_i.

(1) If k; has multiplicity s; in the multiset of Hodge-Tate weights, then
dlmE Hl(GK, (Cp(kll) Rp V*) S ns;

with equality holds if and only if V is Hodge-Tate.
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(2) Assume further that V is de Rham (resp. crystalline). For x = dR (resp.

* = cris, K ), we have
dimg HY(Gg,Fil*B, @ V) =n(N —i+m;), 0<i< N —2,

with m; the number of Hodge-Tate weights k, such that r < i and k, = k;.

Proof. For (1), note that C,(k;) ®q, V™ is a successive extension of C,(k; — k,) ®q, E,
r=0,---,N—1. Thus dimg H(Gg, Cp(k:) ® V*) < ns; by Lemma 2.2.5. We have

Cp(ki) ®g, V' ~ Cy(ki — ko) ®g, ED -+ ® Cp(k; — kn) ®q,

if and only if the Sen operator is semi-simple, i. e. if and only if V is Hodge-Tate.

For (2), we treat the case x = dR, as the other case is completely analogous. The

dimension of H'(G, Fil* Bar Qg V*) can be calculated as follows:

The short exact sequence
0 — Fil*"' Byg — Fil*Bgg — C,(k;) — 0
induces the long exact sequence
H(Gr, Fil" Bag ®g, V*) 5 HO(Ge, Cylk) ®p V) = H' (G, Fil" ' By @, V*)

— H' (G, Fil" By ®q, V*) = H'(Gx, C,(k:) ®q, V*) = 0,

where the surjectivity follows from Prop. 2.2.5. The map [ is surjective because

h; mr is the image of h; 4p via the map Fil* Byr ®q, V* = Cp(ki) ®q, V*. Hence we

have a short exact sequence

0— HI(GK, Fﬂki+leR®@pV*) — Hl(GK,FilkinR(X)QPV*) — HI(G}(, Cp(ki)®QPV*) — 0.
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As V* is de Rham, hence Hodge-Tate, we have
H'(Gx,Cplki) @q, V') = H' (Gr, @, Cylks — kr) ®g, E)
Then we get, for ¢ such that k;_; # k;, a short exact sequence
0 — HY(Gr,Fil"" Ber ®q, V")

— H'(Gg, Fil" Byr ®q, V*) = H'(Gk, & ;'Cplk; — k) ®g, E) — 0,

since H'(G g, 8. (Cp(k; — k,) ®g, E) = 0 by Prop. 2.2.5.

Note that
HY (G, Fil®Byg ®q, V*) =~ H' (G, Bar ®g, V*) ~ H (G, (Bar ®g, E)V),

whence has F-dimension nN, by the assumption that V' is de Rham and Lemma
2.2.5. Then one checks by the use of the last short exact sequence and by induction

on ¢ that

dimg H' (G, Fil¥ Bgp @ V*) =n(N —i+my), 0<i< N-—1

Recall the definition of Hg for h an ordered set of p-adic periods from Sec. 5.2 .

Lemma 6.3.2. Let V be an E-representation of Gk with integral Hodge-Tate weights

ko <--- < kn_1. Gwen an E-linear Gk -equivariant map
hinT V- Cp(ki) ®QP E,

we have

(1) If V is Hodge-Tate and k; is of multiplicity one in the multiset of Hodge-Tate
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weights, then the natural map
HI(GK, hi,HT Rp 1) : HI(GK,V(X)E V*) — Hl(GK,(Cp(/{,‘i) (595 V*)

s surjective with n-dimensional image over E.

(2) If ki has multiplicity s; > 1 in the multiset of Hodge-Tate weights, then
Hflu,HT(GK’V ®p V*) C HY (Gg,V ®g V*) has codimension < ns;. If V is Hodge-
Tate, then the image of the natural map H (G, hi gr ®p 1) has dimension at least

n over E.

Proof. First note that the first assertion in (2) is clear by Lemma 6.3.1. For the rest of
the lemma, we just need to compare the dimension of the image of H' (G, h; pr®g1)
and that of H'(Gk,C,(k;) @ V*).

Now assume V' is Hodge-Tate. In either case, for the dimension of the image of
HY(Gg, hi gr®g1), note that the image of H'(Gg, E) under the map on H' induced

by the inclusions

v EC (Cp ®Qp E— (Cp(k’,) ®Qp %

generates a subspace of H'(G g, C,(k;) ®g, V*) whose dimension is at least n over E.
On the other hand, since the direct summand E C V ®g V* (via the trace map) is
mapped, under the map h; gr Q1 : V @ V* — C,(k;) ®g V*, to a Gg-invariant
subspace of C,(k;) ®x V*, it has to map isomorphically to «(E) C C,(k;) ®q, V*.
That is, the image of H'(Gg,hinr ®p 1) contains H'(Gg,C, ®q, E), which has
F-dimension at least n by Prop. 2.2.5. 0l

Let 0 < j < N — 1 be an integer. Denote x = dR or cris, K. If V is in addition
equipped with an ordered set of E ®q, K-linearly independent G g-equivariant F-

linear maps

{hi7* V= B* ®QP E}0§i§j7
we write D;(V*) (0 < i < j) for the E ®g, K-submodule of D,(V*) generated by
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hy . for r =0,---  i. We use the notation

br« = {hixtier

for an ordered subset I C {0,---,j}.

Proposition 6.3.3. Let V be a de Rham (resp. crystalline) E-representation of Gk
with Hodge-Tate weights 0 = ko < --- < kn_1, which is equipped with an ordered set
of E ®q, K-linearly independent de Rham (resp. crystalline) periods

{hij* V= Fllk’B* ®Qp E}OSiSN_Q
such that
D.(V*) = D (V*) @ Fil5t D (V*),

for all 0 < i < N — 2 such that k; # kiyq.
Suppose
H*(Gg,V @ V*) =0,

and suppose further that Dei(V ®p V*(1))?=' = 0 when V is de Rham but not

crystalline. Then

(1) The map (VO <i< N —2)
HYGg, hiw@p1): H(Gg,V @ V") — H(Gk,Fil" B, ®p V*)
and the map (VO <i< N —-1)
HY Gy, hinr ®p 1) H(Gk,V ®p V*) = H' (Gk,Cpki) @ V)

are surjective.

(2) If the Hodge-Tate weights of V' are distinct, then

dimpg Hé{y*(GK,V ®p V*) =h® +nN? — nZ(N —1)

icl
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for I C {0,---,N —2} an ordered subset.

Proof. We write by, = hey_o, for I ={0,--- N —2}.
We first consider the case x = dR.
By Lemma 5.2.1, an extension class 0 - V - W — V — 0 in HY(Gg,V ®p

V*) lies in H}

<N 2dR

(Gk,V ®p V*) if and only if there is a non-zero E-linear G-
equivariant map g; 4r : W — Filk"BdR ®q, ' such that Gidr|lv = hiar, for any 0 < i <

N — 2. Similarly, such an extension class lies in H ilw G,V ®g V*) if and only

o
if there is a non-zero E-linear G g-equivariant map gy_1,u7 : W — C,(kn_1) ®q, £
such that gN—l,HTlV = hn_1,H7.

By Prop. 2.2.6, the Hodge-Tate period hy_1pr : V — Cp(kn_1) ®q, F (resp.
gn-1,ur) lifts to be a de Rham period hy_14r : V — Fil*¥-! By ®q, E (resp.
gn-1,4r : V — Fil™ ' Bjr ®q, E).

Thus we get N (distinct) de Rham periods on W by using the elements in

Hy_, ,.2(Gr,V®pV*)and H),, (Gk,V®gV*), which, together with the com-
positions

W=V " il Byg @, B, 0<i<N-—1,

give rise to 2V de Rham periods on W, that is an element in H,(Gx,V Qg V*).
Conversely, one sees casily that an extension class [W] in H}(Gk.V ®g V*) can

produce such 2N de Rham periods on W. Therefore we have

Hy_ ., (G, VopV)NH,, (Gk,VRgV*)=H) (G, VoV
This equality implies that the codimension of Hy__ (Gk,V®V*) C H(Gk,V®E

V*) is at least
nN(N 4+ 1)/2+ nsy —nsy_1,

because the codimension of H) (G, V®pV*) C H(Gk,VRpV*) is nN(N+1)24+nsy
by Cor. 6.2.2, and that of HilLN_l,HT(GK’V ®p V*) € HY(Gk,V ®g V*) is at most
nsy-, by Lemma 6.3.1.

Thus to see the surjectivity of the maps H'(Gk,higp ®r 1) (0 < i < N —
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2) and H' (G, hny_1.57 ® 1), we just need to show that the target of the map
HY (Gk,h<n-24r ® 1) has dimension nN(N + 1)/2 + nsy — nsy_1, that is

dimy N 2H (G, Fil" By @ V*) = nN(N + 1)/2 + nsy — nsy-1
—2

= Z n(N — z) + Z nsi(si — 1)/2 + H(SN—1 — 1)(SN—l - 2)/2

z 0<iSN =2 ki £k

where the last equality is written for later use.

On the other hand, by Lemma 6.3.1(2) we have
dimp HY(Gg, Fil*¥ By @ V) =n(N —i4+m;), 0<i< N —1,

with m; the number of Hodge-Tate weights k, such that r < ¢ and k, = k;,. Then we
check easily that

N-2
> dimp H' (G, Fil* Byp @ V")
i=0
N-2
= n(N —1i)+ Z nsi(s;i —1)/2+n(sy-1 — 1)(sn-1 — 2)/2,
i=0 0<i<SN—2,k#k;
as desired.

The surjectivity of the map H'(Gk,higr ®p 1) (0 < i < N —2) then follows
from that of H' (G, hiqr @ 1) and the surjectivity of H' (G, Fil* Byr ®q, V*) —
H'Y(Gk,Cp(k;) ®g, V*), where is the latter is seen (cf. proof of Lemma 6.3.1(2)) by

the short exact sequence
0 — HY(Gg, Fil" "' Bir®g,V*) = H'(Gk, Fil" B4r®q, V") = H' (G, Cp(ki)®g,V*)

This concludes the proof of (1).

Similarly, for = = cris, K, we have

HF}SN—Z,CH'S(GK’ 4 ®p V*) N H}LN—LHT(GK7 4 Qp V*) = H}(GK, Vv SF V*)
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Then dimension counting remains the same because
dimg H} (G, V @ V*) =dimp H)(Gk,V @ V)

by Cor. 6.2.2.

The assertion (2) follows from the surjectivity of H'(Gk, h;. ®g 1) and Lemma
6.3.1(2), which says that dimy H'(Gg, Fil* B, ®p V*) = n(N — i) when the Hodge-
Tate weights are distinct.

O

Lemma 6.3.4. Let V be a finite dimensional E-representation of G and A € E*.
The (Ko ®q, E)[Gk]-module (Beis ®q, V)#'= has finite dimensional cohomologies

which vanish in degree > 1, with the Euler characteristic
XE((Bcris ®Qp V)Lpf:/\) = —[KO : Qp] dlmE V.

Proof. This is (7.9) of [26] when K = Q,. One sees immediately that the analogue
holds for any finite extension K of Q,, as indicated in the Lemma. Precisely, we
replace M loc. cit by ®]_,(Ko ®g, F)(A") with A\; € EX, by Kj-linearity. Then the
same construction loc. cit produces an irreducible weakly admissible Ky ®q, E[¢]-
module. Now replace W loc. cit by Fil®(Bgis ®Rg, M )9’f:1, which is an Ky ®q, E-

module of rank 7. Then the fundamental short exact sequence

0— Qp — .B(’D:1 — BdR/Bg_R — 0

cris
gives the short exact sequence of Ky ®q, E[Gk]-modules

0—->W — B(pf:l ®K0 W — BdR/B;_R QK W — 0,

cris
which, tensored by V' over E, gives the exact sequence of Ky ®q, E[G k]-modules

0 =>W®rV — &_(Beis ®q, V)‘pf:)‘i — (Bgr Rk, AJ)/(B;RV Rk, M) ®gV — 0.
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We see that the third non-zero term has cohomologies vanishing in degree > 2 and

has zero Euler characteristic, by Lemma 2.2.5. Note that
HQ(GK, w (o) V) >~ HOHIE[GK](W, V(l)) =0
as we chose dimg W > dimg V and W is irreducible. Therefore we have
Z X £(Beis ®g, V¥ = = g (W @5 V) = —frdimg V
i=1
with the last equality given by the local Tate duality. Thus
X5 (Beris ®g, V) =N = —fdimg V, Vi

because the \; can vary independently.

For V an N-dimensional E-representation of Gk equipped with a non-zero crys-

talline period hy with ¢/-eigenvalue A € E:
hO V= (Bcris,K ®Qp E)SOf:/\D>

let hocris (resp. hoar) denote the crystalline period (resp. de Rham period) induced
by ho via the natural inclusions 7 : (Beis,x ®q, E)“"f:AO — Beris,x ®g, E and ¢ :

Beis,k = Bar-

Lemma 6.3.5. Let V be an E-representation of G equipped with a crystalline period
ho : V — (B;is,K ®q, E)wf:)\o

with Ao € E*. We have

dimp HI(GK,BCJ;S,K ®q, V)= — N,

79



Proof. First note we have the short exact sequence
f=\ Lpf —-Xo
0 = (Bais ®q, £)? ™ = Buis ®q, E "= Beris ®qg, E — 0

with G g-equivariant maps, where one sees the surjectivity of ¢/ — Ay by the use of

the admissible Ky ®q, E[p]-module M and the surjectivity of
o' —1: Bee R®qg, W — Buis ®g, W.
from Lemma 6.3.4. This in turn gives a short exact sequence of Ky ®¢q, £-modules
0 = Deris(V*) /(¢! =X0) = HY (G, (Beris®g, V*)*' =) = H (G, Beris®g, V*)?' = — 0.
Then
dimg H'(G g, Baris ®g, V*)?' =

- dlmE Hl(GK’ (BCriS ®Qp V*)(Pf:/\o) - dlmE HO(GKa (Bcris ®Qp V*)Lpf:/\o)7

where we have used the fact that Deis(V*) /(¢! — Xo) = HY(G k., (Beris Rg, V) =0y,

Thus we have
dimE HI(GK, Boie ®Qp V*)npfzx\o — _XE((Bcris ®Qp V*)cpf:Ao) = fN

by Lemma 6.3.4. The result follows by taking extension by scalars via Qg K. O

Remark 6.3.6. For any r <0,

r—1 -+
t Bcris

®Rq, V"Bl ®qg, V* ~ Cy(r — 1) ®q, V*,

with the right hand side having trivial cohomologies by the assumption that all the
ki > 0 and by Prop. 2.2.5. Therefore Lemma 6.5.1, lemma 6.3.2, Prop. 6.3.5,
Lemma 6.3.4 and Lemma 6.5.5 hold with Bt

cris

in place of Beis.
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6.4 Finite slope deformations of 2-dimensional Ga-
lois representations

From now on, we consider the case N = 2.

For the convenience of the reader, we specify the previous results on Galois coho-

molgy in the case N = 2.

Proposition 6.4.1 (Proposition 6.2.1, Lemma 6.3.1, Proposition 6.3.3). Denote * =
dR orcris, K. Let V be a de Rham (resp. crystalline) E-representation of G with
Hodge-Tate weights 0 = ko < ki, which is equipped with an E-linear de Rham (resp.
crystalline) period

h07* V= FIIOB* ®Qp E

such that
D.(V*) = Dy (V*) @ Fil' D, (V*).
Suppose
H*(Gg,V @ V™) =0.
Then
(1)
. 1 hY + n, 0<ky;
dlmE Hf(GK, Vv ®E V*) =
ho, 0= kl'

dimpg Hgl(GK, V®p V") =dimg H}(GK, V ®p V*) + Dais(V @ V(1))77.

(2)

n, 0< k’l,'

2n, 0= kl’

diITlE HI(GK,(CP XRE V*) -

dimp H (G, Fil’B, @5 V*) = 2n.
(3) Suppose Deis(V ®@p V*(1))?=! = 0 when V is de Rham but not crystalline.
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The map
HY Gk, ho. @5 1) : H(Gk,V @5 V*) —» H(Gk,Fil’B, @5 V*)
and the maps
HY Gk, hinr ®p 1) : H(Gg,V @5 V*) = H(Gk,Cy(ki) @1 V™)
are surjective, where 1 = 0, 1.

Let V be a 2-dimensional E-representation of G equipped with a non-zero crys-

talline period hg with /-eigenvalue A € E:
ho : V = (Buisx ®g, E)? .

Recall that hg s (resp. hoqr) denotes the crystalline period (resp. de Rham period)
induced by hg via the natural inclusions 7 : (Beyis i ®q, E)“Pf:)‘0 > Beris,k ®q, F and
Lt Beris,x = Bar.-

We remark that if V is de Rham and if Des(V ®p V*(1))?=! # 0 then V is
crystalline. This is because, as V' is de Rham (hence potentially semi-stable), there

is a finite totally ramified extension L/K such that
Deris(V @5 V*(1))?7" = Hom(geq, Lo)ie. N ((Bs @g, V)", (By @q, V') (=1)) /K,

Then a nonzero element o in Deis(V @ V*(1))#=! forces N to be zero (hence Vg, is
crystalline) and the image of ho|g, under a is another nonzero element h; € (By ®q,
V*)¢L which is E-linearly independent of hy|g,. As hg is Gal(L/K)-invariant, so is
hi. In this case, we denote the other ¢/-eigenvalue on Deiis(V*) by Ay. Of course, by
the observation above, we must have Ay = p*t' ).

Note that the induced map

HY(Gr,ho ®p 1) : H (G, V ®@p V") — HY(Gk, (Baisk ®p V*)“Oj:)‘o)
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factors through H* (G, Beis x @ V*)#'=% by assumption.

Proposition 6.4.2. Let V be a de Rham E-representation of Gk with Hodge-Tate

weights 0 = ko < ky, equipped with a non-zero crystalline period
ho : V — (B(-:tis,K ®q, E)qu:/\o
with A\g € K>, such that
Deyis,k (V") = Do eris, (V") & Filchris,K(V*)

when k; > 1.
Assume H*(Gg,V @ V*) = 0.

Then the map
HY (G, ho @p 1) : H(Gx,V @5 V) = H\(Gr, Bh x @p V)P =N
and the map H' (G, hinr ®5 1) (VO <1 < 1) are surjective. As a consequence,

dimg Hy,  (Gg,V ®@pV*) =h’ + 2n.

Proof. First we deal with the case Dis(V ®g V*(1))?=! = 0.

Note that there is a natural map ¢ @ 1 : Buisk ®g, V* — Bar ®q, V", hence a

map

HY(Gg,t®p 1) : H(Gk, Baisx ®qg, V*) = H'(Gk, Bar ®q, V"),

which is compatible with filtration. By Prop. 6.3.3 the map H'(Gk, hoar ®p 1) is
surjective. We just need to show that the map H'(Gg, ho ®p 1) coincides with the

map

HY Gk, hoar ®r 1)
via the induced map H'(Gk,t ®g 1). By definition H'(Gk, ho4r ®g 1) is the com-
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position

H! (GK’hO@]El
S

H'\(Gx,V @5 V) "HY (G, By @ V)=

1 L
HHEPED Y (G, Bl ®g, V7).

Then the map H'(Gg,t®g 1) is surjective. Hence it is an isomorphism, as the source

and the target have the same dimension by Lemma 6.3.5.

Next we look at the case Dqi(V ®@g V*(1))?=' # 0. We have seen that V is
crystalline. Then replacing ho 4r by hocris in the argument above, we get the desired
result, Precisely, again by Prop. 6.3.3 the map H'(Gk, ho cris @ 1) is surjective. We
just need to show that the map H(G g, hg ®g 1) coincides with the map

HY Gk, hoeris ®5 1)

via the natural map induced by the inclusion 7 : (Beis i ®q, E)*@f:’\0 — Beris,k ®q, E.

By definition H' (G, ho cris @£ 1) is the composition

HI(GK,}),()@EI)
Lt

H'(G,V @5 V") H (G, Blsse @5 V)7 0

HY Gk, 7@gl) %
=" HY (G, Bl ®g, V).

Then the map H'(Gg,T ®g 1) is surjective. Hence it is an isomorphism, as the

dimensions of the source and the target are the same.

Remark 6.4.3. In Prop. 6.4.2, in the case Dqs(V@V*(1))9=! # 0 we could assume
that Ay = p Xo as is in (7.13) [26], instead of

Dcris,K(V*) - DO,cris,K(V*) ©® Fﬂchris,K(V*)-

k41

Note that the two slopes are % and =3

. Then both of them are strictly smaller than

k if k > 1 and the smaller one is always smaller than k. In either case, Lemma 2.2.2

84



gives

Dcris,K(V*) - DO,C’r'iS,K(V*) D Filchris,K(V*)-

In the following, we recall the nice argument in [26] to obtain Prop. 6.4.2 in
the case that Deis(V @ V*(1))?=! # 0 under the assumption that \y = p'Xg. This

argument also shows that H* (G, ho.ar ®g 1) is not surjective.

Now we assume Deis(V @i V*(1))9=1 #£ 0, i.e. dimg De(V @p V*(1)97! i=c =

We denote the last crystalline period by

hy =V = (B, x ®g, )P =,

First, we have by the proof of Prop. 6.3.3 that
Hy (G, VepVI)NH, , (Gk,VepV*)=H)(Gk,Vep V),
which (combined with Cor. 6.2.2) gives
dimp Hio,dR(GK’ V&g V)

<K +nN(N —1)/2—nsy +nsy_1+c=h"+2n+c:=h; +nc,

where we have used that the target of the map H* (G, hy yr ®p 1) is of dimension
nsy_1 over E, by Lemma 6.5.1. If the equality holds, one sees the surjectivity of

HY Gk, hinr ®p 1), because then its image has dimension equal to that of the target.

Meanwhile, we have

dimE H}L(J,cris(GK7 V ®E V*)
> dimg H' (G, V @5 V') — dimp HY(Gx, Bl x ®q, V)P ™ =ht, .
where we obtian the last equality by recalling Lemma 6.3.1(3).

85



Therefore to show the surjectivity of H (G, ho @ 1), it suffices to show that
dlmE H}lbo,dR(GK’ V ®E V*) — dlmE Hio,cris(GK’ Vv ®E V*) Z nc,
which will make the inequalities above equalities.

We claim that
Hy(Gk,V@pV*) CH,  (Gk,V&pV*).

To see this, let 0 =V — W — V — 0 be an extension of de Rham representations,
i.e. an element in Hgl(GK, V®gpV*). Replacing K by a finite extension if needed, we

may assume this is a semi-stable extension, which in turn induces an extension
0 = Deris(V*) = Dg(W*) =5 Deris(V*) — 0

of Ko|p]-modules, where the map res sends a map on W to its restriction on V.
The monodromy operator Ny on Dg(W*) induces a map of Ko|p]-modules Ny :
Deis(V*) = Deyis(V*)(=1). The claim means, by Lemma 5.2.1, that any G g -equivariant
E-linear map wy : W — By ®q, E whose restriction to V' is hy cris, factors through
Beis ®q, E. Hence we just need to show Ny (wi) = Ny (hi) = 0 in Des(V*)(—1).
Suppose Ny, (h1) # 0. On one hand, the ¢/ -eigenvalues on Des(V*)(—1) are

{P_on, p—f)‘l}'

On the other hand, the assumption that ¢/ (hi) = \h; and that Ny is p-equivariant
imply that Ny (hy) € Deis(V*)(—1) has of -eigenvalues Ay, which is a contradiction
to the assumption that Ay # p~FXg. This proves the claim.

It is easy to see (cf. the proof of Lemma 5.2.1) that

H}:}LO,CTiS(GK’ V ®E V*) m Hl'lLl,cris (GK7 V ®E V*) = H}(GK7 V ®E V*)
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Intersecting it with Hgl(GK, V ®p V*) and using the claim shown above, one gets
Hy, (G, VR V)NH) Gk, V @p V") =H;(Gk,V V7).

Since the three terms are subspaces of H,{l WG,V ®p V"), the codimension of

H;, (G, VepV*) CH; (Gk,V®gV*) is at least
dlmE Hgl(GK; V KE V*) - dlmE H}(GK, vV Rp V*) = nc,

where the last equality holds by Prop. 6.2.1. This finishes the proof of surjectivity of
HY Gk, hoeris @p 1) (and that of H' (G, h1yr ®@p 1) at the same time).

Now we relate the results on Galois cohomologies above to finite slope deformation

functors in Sec. 5.

Theorem 6.4.4. Let V be as in Prop. 6.4.2. Suppose the o/ -eigenvalues Mg are of
multiplicity one. Then

(1) The functor D{}“""f is represented by a Q,-algebra R}‘L/O"Pf, if Dy is repre-
sentable.

(2) If H(Gk,V ®g V*) = E, then the finite slope deformation ring R}&O’“Of is a

formally smooth quotient of R, with (relative) dimension equal to 1 + 2n.

Proof. That the representability of the deformation functor Dy implies that of its
sub-functor D"lfo"pf is by our assumptions and Prop. 5.2.6. This concludes the proof
of (1).

For (2), first note that the deformation functor Dy is representable as H*(G g, V®g
V*) = E and is smooth since H*(Gk,V ®g V*) = 0. The smoothness of D‘h/o"pf fol-
lows from that of Dy and Prop. 5.2.4, as the map H'(G, hy ®g 1) is surjective by
Prop. 6.4.2. Hence the finite slope deformation ring R}{,O’“’f obtained in (1) is formally

smooth. One sees the dimension by Prop. 6.4.2, recalling from Lemma 5.2.1 that

Dy?'(El) = DY?(Ele]) ~ Hj, . (Gi,V @5 V),
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where the first isomorphism is by Prop. 5.2.3.
O

Proposition 6.4.5. Let V be as in Prop. 6.4.4(2). Denote by Py(T) the Sen
polynomial on the universal representation on R{L,O"Df. Then Py(T) takes the form
Py(T) = TQo(T) for some Qo(T) € R?}”“’f [T, and Qo(v) is non-zero on R}‘L/O"pf for

any v > 0.

Proof. First, Prop. 5.2.2 implies that D?}‘H " is a smooth functor, by the surjectivity
of the map H'(Gg, h1 g ®g 1) obtained in Prop. 6.4.2.

For r € Z>4, let V, be the universal deformation to R]f/o’@f /m”, where m C R’f,o"pf
is the maximal ideal. By assumption, h¢ lies in B;iS’K ®q, E but does not factor

through Fil' B}

s, ik @, F, 1.e. it has non-zero image under the map

B+

cris, K

Rq, V' = C, ®q, V" (6.1)

By the definition of R’&O’“Of, ho lift to R{l/o’“of /m". It is easy to check that hg lifts to
an element hy € HO(Gy, Fil’BY;, xx ®q, V;*). The image ho yr € H(Gx,C, ®g, V")
of hy has to be non-zero, as its image in H°(Gg,C, ®q, V*) is the specialization
of h; via (6.1) which is non-zero. Note that hg g7 - R{l,o’“’f/mT is a free R}‘l/o’“pf /m’-
module. On the other hand, by Prop. 4.2.1 the module H°(G,C), ®q, V;*) is killed
by det(¢), where by abuse of notation we write ¢ as the Sen operator on the universal
deformation V. on R"l}”“"f /m”. In particular, det(¢) - hoyr = 0, hence det(¢) = 0,
which means 0 is a root of P,[T] € R}‘L,O"pf/m’" [T]. Letting r — oo we get that 0 is a
root of Sen polynomial on R}“/O’“"f.

We are left to show that none of the v € Z-( are roots of Qo(7") on R’&O"pf, for which
it is enough to show that D‘@O’@f X Dy, D‘h/“” # D{}O"pf, as we already have Qo(T)(V) =
T — k;. Suppose the converse is true. We must have that Hl}/o.ms(GK’ V®pV*)is

contained in H, _ (Gk,V ®g V*), then by Lemma 5.2.1 and Prop. 5.2.3 we should

have

Héo,cris (GK’ |14 ®E V*) N Hé1,HT(GK> 4 g V*) = Hflbo,cm‘s(GKa 4 OF V*)
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However, the left hand side is just H }(G i,V ®pg V*), which is at least n dimensional
smaller than the right hand side, a contradiction.

OJ
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Chapter 7

Local and global eigenvarieties of

GLo

7.1 Local Galois eigenvarieties of Gl

Let p : Gx — GLy(F) be a (fixed) residual representation with F/F), a finite extension.
Fix a versal deformation ring RZ* associated to p.

Denote by Z = Sp(I;*[1/p]) the rigid analytic space over Q, associated to R,
and My the universal Gi-representation on Z. We have the characteristic polynomial
P,(T) € Oz(Z)[T] of Sen operator ¢ on M.

We let Z° C Z be the closed subspace of Z cut out by P,(0). Set

X°=27"%G,,.

Let MY denote the pullback to X of Mz|40. Write Y for the canonical co-oordinate
on G,,.

Applying Thm. 4.3.3 to X, we obtain a closed subspace
st = styg(XO,MO,Y) C Z° x G,,.

For z € Z(E) (resp. Z°(E)) an E-valued point with E/Q, a finite extension, write
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V, for the corresponding E-representation of Gy and R, (resp. RS) for the (scalar
extension from its coefficient field to E of) complete local ring at z € Z (resp. Z9).
For \g € EX, if (2, Xo) € X(E) (resp. X°(E)) we define R, ,, (resp. }?2’/\0) similarly.

Recall from Sec. 5 that we have the universal deformation ring R{"™ when
H°(Gk,V, ®g V}) = E. In this case, we have, by Prop. 5.1.1, a canonical for-
mally smooth map R“Z‘i" — R,, which in turn gives a map R%“" — Rz,/\o by the

composition with R, — R, ).

Theorem 7.1.1. Let 0 = kg < k; be non-negative integers. Let E be a finite extension
of Qp, and Xy € E*.
(1) If (2, Mo) € Xss(E) then there is a non-zero G -equivariant E-linear map

ho : V., — (B:;is,K Xaq, E)Sof:/\oa

and 0 is a Hodge-Tate weight of V.

(it) Suppose an element (2, o) € Z X G,,(E) is equipped with a crystalline period
ho as above. Then

(1) If the Hodge-Tate weights of V, are 0,k with ky € Q, — Zsq, then (2, \g) lies
in Xys(E).

(2) Suppose V, is de Rham of Hodge-Tate weights 0 = ko < ki such that

HO(GK7‘/Z®E' ‘/Z*) = Ea

and the o' -eigenvalue No is of multiplicity one. Then (z, \o) lies in X;5(E).

Remark 7.1.2. In the case (ii)(2), we actually have that the assumption
HY(Gk,V.@pV})=E

implies
DCI‘iS,K(‘/z*) - DO,C’I‘is,K(‘/Z*) @ Flll DCI’iS,K(‘/z*)7

by Corollary 2.2.7.
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Proof of Thm. 7.1.1. 1If (2, Ag) € X s(FE) then the existence of hq follows from Prop.
4.3.6. This shows (i).

In what follows, we adopt the notations in the proof of Thm. 4.3.3.

That the existence of hg implies (2, Ag) € X s(F) in case (1) of (ii) is seen by
Thm. 4.3.3, as Qo(v) is not a zero-divisor in Xy, for any v € Zs( by assumption.

To prove (z,A) € X;s(E) in case (2), we may assume E = k(z) for simplicity.
We will use the same notation for M° and its pullbacks when no confusion arises.

Let x, be the kernel of the natural projection R%iv —» R?/‘:"pf, which exists by
Thm. 6.4.4. |

First we recall that the natural projection }A%z, ro — Rz, ro/ K2 (resp. R, > R, /K2)
factors through RB,AO /K. (resp. R°/k.). This is what we have seen in the proof of
Prop. 6.4.5.

Recall there are canonical (formally smooth) maps R%‘:i" — Rz and R&‘Z‘iv — RZ, Ao-
We have for any positive integer r, the composition of the obvious maps

f . ~ ~ A
Ry = RY™ ke = Rk — RY (kom0 p) = RE, /(k: +mi )

with m, g (resp. m.,) the maximal ideal of R? (resp. RS’AO). Then we have the
maps

hov"' : MO - (B(;"I_'iS,K ®Qp R(z)/(ﬁz + m;E)LPf:)\O,r -
~ ) I =X,
(BCJrris,K ®Qp R(z),)\o/(mz + m7z,/\0))<‘0 o

by the universal property of R}{,S’“Of, where )q, denotes the image in Rg /(K. +m7 )
of the universal element A"V € R}"/S""f lifting Ag. Note by Prop. 5.2.5 that A"V is
uniquely determined, which enables us to choose {hg, },>1 to be a compatible system

in the sense that Ay, = Ao, modulo m} j (this is condition (2.7)(3) of [26]). Let
ho :=lim ho,r - M° — Fil’BY, &g, B2, /K-

As in the proof of Thm. 4.3.3, let SpR be an affinoid neighborhood of (z, \g) €

Z x G, so that |Y]|Y ™! < |wg'| on SpR. Take a non-zero R-linear G gx-equivariant
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map

hy : M° — B, JFil* Bip®g, R

so that
(B x ®g, E)?' =7 s Fil' By /Fil* Byr ®q, E

is an injection with closed image for £ > 0, where we take Exr = F as \g € E. The

map hy, gives rise to the composition

hpy : M — Fil’ By /Fil* Bypg, R — Fil' Bar /Fil* Barg, R 5, /-

We claim that the K ®q, R?, /k.-module
H® (G, Bip/Fil" Bir®q, (M°)")

is free of rank 1.

This follows from Prop. 2.8 [26]. To do this, we need to check the Conditions
(1)-(5) (2.7) [26], with R, J, h loc. cit being R®, k., hy in our case.

z,A0) V&)

First, we have Ry™" is formally smooth as H*(Gg,V. ®p V) = 0. The local
ring Rmo is formally smooth over R“Z‘iv, because R, is, by Prop. 5.1.1. Hence
R./k, = R0/k. and R, 5, /K. = R, /k. are formally smooth over R /r, := R}‘i‘z”“"f.
On the other hand, R(’,O"pf is formally smooth by Prop. 6.4.4. Therefore R/, and

R;{AO /k. are formally smooth rings. Then K ®q, R?

22/ K= 18 a domain. This is
Condition (1).

Condition (3) is already seen by our construction, and Condition (4) is the claim

we proved at the beginning.

Note that Condition (2) (resp. Condition (5)) is equivalent to saying that v € Zs,
(resp. v = 0) is not a root of the Sen polynomial in K ®q, R‘;’AO /k.. They follow
from Prop. 6.4.5. This concludes the proof of the claim.

By the claim, h% and ho only differ by multiplication by some element ag €
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RY, /k.. Thus the specialization of hj,

h! . .o
hy,  M® = B, /FilF Bir®g, R — By /Fil* Bir®g, R, /(K. +m] ),
factors through (B, ®q, ]—?2 WACHE S /\O))“’f:’\fl»r, with Ay, = Ao, by the uniqueness
of Agnv.
Recall the fact (cf. Remark 4.3.2) that the map
SPRS,,\O/(@ +m;,,) = SpR

is Y-small. Now Prop. 6.4.5 enable us to use Thm. 4.3.3, which implies the map
above factors through X, := X}, (SpR)), i.e. the ideal ay C R cutting X}, out of
SpR satisfies

0
Z,A0

20 - N
ang,/\o - (K’Z + mZ,Ao)R

for each » > 1, where

R, := /izf%g,)\o +(Y =X) C RQN
with Ay € RY a lifting of the image in RY/k, of A}V € R?};"”I. Hence a)R°

2,A0
~ DO
KZRZ’)\O,

C

which means (z, Ag) € X}, and we have a map

Rjay — RO, /..
This map must factor through R/ag with ag the ideal cutting out Xy, := X50(SpR)),
because of the existence of the formally smooth map R{}S’“@f — Rk, ~ RS’ o/ Fzy and
Prop. 6.4.5, which imply that there is at least one component of X, containing (z, A¢)
where det(¢ — v) is non-zero for any v € Zs. That is, (2, \o) € Xys.
]

Keep the notation in Thm. 7.1.1. Denote by (ijfs,(z,Ao) the complete local ring at
(z,20) € Xys(E).

95



Proposition 7.1.3. (1) If (2,X0) is as in Thm. 7.1.1(ii)(1) such that the /-

etgenvalue \g is of multiplicity one, then there is a canonical isomorphism
19, ~ R w Rio#
st,(z,)\o) - z ®R“1/2lv V. :

Moreover, the complete local ring @st,(z,Ao) is formally smooth over R?}S’“ﬁf if H(Gk, V.®p
V= E.
(2) If (2, Xo) is as in Thm. 7.1.1(i)(2), then there is a canonical isomorphism

A ~ ~ . h f
OXfS,(z,/\o) — Rz ®RL‘|/2iv RVS,W ’
and the complete local ring C’A)st,(zﬁ,\o) s formally smooth quotient of R, with codi-

mension 2n.

Proof. This follows from the argument of (10.6) [26]. Keep the notations in the proof
of Thm. 7.1.1.

The existence of canonical isomorphism @st,(z,,\o) — Rz Q Rypiv R}“,S»cpf implies,
combined with Prop. 5.1.1 and Thm. 6.4.4, the assertions about smoothness and
dimensions.

First suppose we are in case (1) of Thm. 7.1.1(ii), where Qo (v) is not a zero divisor

in R(z),/\o/(’fz +m7, ), for any v € Z>,. Consider the specialization

hy : M° = Fil°Byr /Fil* Bir&g, RY 5, /(K= + m1 )

z,A0

of the fixed map hy by the map R — ng)‘o//ﬁz — R(z),/\o/(ﬁz +m], ). Then by
Prop. 4.2.1 the above map coincides (up to a scalar) with the map hg, obtained by
the universal property of R}‘l}z”“"f (recall the proof of Thm. 7.1.1). Hence it factors
through (Bf;, ®q, R(Z)’)\O/(/{Z + m;,\o))“"f:’\of. Then the map

MO "y Fil’ Bar /Fil* Bap®q, 12, / (k4™ ) — Fil’ B /Fil* Bar&@g, R,/ (RoAm7 )

2,20

factors through @st,(z,m) by Thm. 4.3.3(ii), noting RS’/\O/(FLZ +m7 ) is Y-small.
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This gives, passing to the limit over r, a natural map

o P02 P e~ F ho !
OX s:(z,0 — RZ A /K:Z - Rz//fz s RZ ®Runiv RV .
f »A0 V. z

We now need to find the inverse map. Write the maximal ideal of Ox or(z20) DY
n. . Note that Qo(v) (for any v € Zs) is not a zero-divisor on @st(z,,\o)/n;,\o for
r > 1, since k; is assumed to be away from Z>,. Then by Thm. 4.3.3 (ii), there exists
(for any > 1) some ;. € @sty(z,,\o)/n;)\D and an @st,(zy,\o)—linear, G k-equivariant

map
. g0 A r A T=X
hor : M” ®@r Ox;, (za0)/We e = (Blis k ©0, O, (z00)/ W 1) T 707

lifting the given map hg : V, — (BZ

cris

KqQ, E)#"=%_ Then the composition
R = R, = R, \, — Ox .00 = Ox1, 2000 /Mo g

factors through R{l}z)""f by the universal property of the latter. One takes the limit
over r and gets a map R, ) guniv R}‘L/S’vf - (;)st,(Z,AU), which easily seen to be the

inverse of the map constructed at the beginning. This concludes the proof in case

(1).

Now suppose we are in case Thm. 7.1.1(ii)(2). Recall from the proof of Thm.

7.1.1 the map R/ay — RSAO/@. This provides us a natural map
. . i X ) .
O e0) = oo /Re = Rofk. = R @pyav RyY7

To show this is an isomorphism, as in the proof for case (1), we just need to show the

natural map

univ

v, — Rz — Rz)\o — @st,(Z)\o)
factors through R’(/g’“’f. That is, we need to show x,0x forlzro) = 0.
Let SpR C Z° x G,, be an affinoid subdomain which is Y-small. Then Prop.
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4.3.6 implies (for & > 0) any R/ag-linear G g-equivariant map
(hO)R/ao : MO ®’R R/Cl() — B;_R/FildeR@QpR/ao

factors through (B:;iSYK@QpR/aO)*"f:Y. Let H be the smallest ideal in R/ay such
that (ho)r/a, factors through BQFR/FildeR@)QpH . Applying Prop. 4.3.6, we have
that Sp(R/ag)\V (H) is Zariski dense in Sp(R/ag). Let Ty be the blow-up of H on
Sp(R/ag) and & € Ty a point over z = (2, Ag) € Sp(R/dg). Then the argument on P.
62 [26] shows that

k:0p,;, =0

and

Oxyeeny = ] Oris
z

with & running over the points above . We then have F,Ox I = 0, as wanted.

(z,20)

O

Write Ko = UpsoK (™) with €™ a primitive p"-th root of unity, and T'g; the
maximal pro-p quotient of I'yy = Gal(K/K), for which the cyclotomic character x g
gives a canonical injection I'x — Z7.

Denote by D;, and Tj the deformation functor and universal deformation ring of
the trivial representation of I'k; over [F, respectively. Then Tj is formally smooth
over W(F) of relative dimension n = [K : Q,]. Write Sy = (SpecTy[1/p])** for the
associated rigid space and Mg, for the universal representation on Sy. Denote by
so € So the point corresponding to the trivial representation W (F)[1/p] of T'k ;.

Set

Xngs = Xgs x Sp.

Following (1.3.1) [21], we have

Proposition 7.1.4. Let (2, \y) € Xss(E) be as in Prop. 7.1.3 such that the Hodge-
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Tate weights k; of V, are distinct. Then the natural map
. oA ~
Upo » By — R}{/S’“D Qw )[1/p1DS0,50

(inducing the map (Va, x) = Va Qq, x for a local Artinian E-algebra A with residue
field E) is surjective.

In particular, in the case of Prop. 7.1.3 (2) the image R}{,S’“’f of vy, s formally
smooth over E of dimension

: ho,p!
dimg Ry +n.

Proof. 1t suffices to show the map induces an injection on A-points with A any Ar-
tinian local E-algebra whose residue field is F. For this, recall we have Sen polynomial
P,(T) on any finite free A[Gk|-module. Let (Vy4, x) and (V}, x') be two points having
the same image under Spec v,,. We may assume x = 7. The Sen polynomials of V4
(resp. V) takes the form T(T — ki + ay) (vesp. T(T — ky + a})) with a1, a} € my, the
maximal ideal of A. Pick a topological generator v of 'k ; (or that of the pro-cyclic
open subgroup of 'k ; and set a = logx’(7y)/logxx (7). Then the Sen polynomial on
Vi®g, X is (T + a)(T — ki1 + a} +a). Since k;’s are distinct and a, a1, @} € my, a has

to be zero. Hence x' =y and V4 = V). O

Denote by @X"fs,(z,ko,no) the complete local ring at a point (z, Ao, 70) € Xpps(E)
for ng € Sp.

Corollary 7.1.5. Assume (z, o) is as in Prop. 7.1.4. Then we have a canonical
isomorphism

) ~ K _ Phosp!
Oans’(Z,/\Oﬂ'IO) — Rz ®Rl‘l/l;nv sz )

If in addition (z, \o) is as in Prop. 7.1.3(2), then the complete local Ting (’A)X,nfs,(zmm)

1s a formally smooth quotient of R, of codimension n.
Proof. The isomorphism follows from Prop. 7.1.3 and Prop. 7.1.4, which implies, in
particular, that

dim R, — dim @ans,(z,,\o,no) = dim R%‘Zli" — dim R}(/Z’“’f —n.
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Then the quantity about codimension can be seen by Thm. 6.4.4. O

7.1.1 Flatness of weight map on the local eigenvariety

We have the Sen polynomial Py(T) € Oz(Z)[T], the zeros of whose evaluation at
a point z € Z are the (generalized) Hodge-Tate weights. The coefficients of these

polynomials give rise to a map
w = {wi}ggigl L —> Az = W2.

We use the same notation w : Xy, — W? for the composite of w with the pro-
jection Xys — Z, and call it the weight map on X, Of course, the factor wy is

constantly zero on Xy, by our construction.

Proposition 7.1.6. Let (z,A) € Xy(E) be as in Thm. 7.1.1(ii)(2). Then the

weight map w, s flat at this point.

Proof. By Prop. 7.1.3(2), the complete local ring (’A)st,(z,,\o) is formally smooth over
the finite slope deformation ring R}{,S’“Of. Then the flatness of w, follows from Prop.
6.4.5.

O

7.1.2 Dimension of the local eigenvariety

Denote by F° the subset of Z° x G,, consisting of points (z,\), where V, is a 2-
dimensional crystalline representation of G over a finite extension E/Q, with dis-

tinct Hodge-Tate weights 0 = kg < k; and distinct o/-eigenvalues Ay, A;, such that
H(Gg,V.®g V) = E,

QK(/\O) < k.

Note that we have
UK()\I) < kl
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as well, because vk (Ag) + vk (Ao) = k1 by admissibility.

The condition between slopes and Hodge-Tate weights implies that the refine-
ment determined by Ay and A; are both non-critical, by Lemma 2.2.2. Thus Thm.
7.1.1(ii)(2) implies that (z, Ao), (2, \1) € Xs.

Lemma 7.1.7. The subset F° C Z° x G,,, is non-empty.

Proof. As is explained in [21], one can find, by replacing V by a twist of the mod
p cyclotomic character (if necessary), and by using the Fontaine-Laffaille theory and
(3.3.8) of [22], a two dimensional crystalline representation satisfying the conditions
we need. For example, there is such a 2-dimensional crystalline representation of
Hodge-Tate weights (0, 1) with Ay # A\; and v (Ng) = vk (A1) = 1/2.

O

Lemma 7.1.8. For any point © € F° C Xy, there is a quasi-compact admissible
open subset U containing x, such that if a closed point (z,Ag) € U has image under

wy being a sufficiently large integer, then (2, o) is in F°.

Proof. Let (z,A) € Xs(E) with £/Q, a finite extension, such that V, has Hodge-
Tate weights 0, k1, and

(1) vg(Ao) < ki,

Note that the ¢/-eigenvalue )y determines a crystalline period hg, which, by con-
dition (1) and Lemma 2.2.2, does not factor through Fil* Bgg ® E. On the other hand,
the Hodge-Tate period V, — C,(k;) lifts to a de Rham period ' : V, — Fil" B(r®F
by Prop. 2.2.6, which is then K ®g, E-linearly independent of the other de Rham
(crystalline) period obtained above. Hence the V,’s with (z, Ag) satisfying (1) are de
Rham.

Now look at the Weil-Deligne representation Dy (V,*). By the existence of the
crystalline period hg, Dpst (V") contains an unramified characters xo, as a direct sum-
mand. The remaining character x; corresponding to the de Rham period A’ is also un-
ramified because xox; is unramified, which follows from the fact that detV,|;, = )(];é
is crystalline. Therefore V, is semi-stable.

Suppose further that V, satisfies
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(2) k1 > 2ug(Ao) + 1.

Then V, is in fact crystalline, because otherwise the monodromy operator N on
D (V) is non-zero, hence \; = p*™/ Ao, which contradicts (2).

We note here that (2) also implies that the ¢/ -eigenvalues on De(V,*) are distinct,
because otherwise k1 = 2vk (o).

Let U = Sp'R be an affinoid neighborhood of = in X, which consists of points
(2, M) € Xy, such that if wy((z, Ao)) is an integer, then (z, A) verifies H*(Gg, V. Qq,
V) = E and conditions (1), (2). Then one sees that U is the desired admissible open,
by Thm. 7.1.1(ii)(2).

L]

Denote by X%, (resp. X7;,) the union of irreducible components of X, (resp.
X ts) each of which contains a point in F° (resp. a point (z, Ao, 79) with (2, Xg) € F?).

For X a rigid analytic space, we say a subset S C X is an accumulation subset
if for any x € S and any affinoid neighborhood U C X of z, there is an affinoid
neighborhood V' C U of z such that SNV is Zariski-dense in V.

Proposition 7.1.9. (1) The subset F° is an accumulation subset of X9,. In partic-
ular, X{; is the rigid Zariski-closure of FY.
(2) The subset FO consisting of the points (z, Mo, 7o), with (z, A) € F® andny = x%

(k € 7Z), is accumulation in X°

nfs- An particular, X7  is the rigid Zariski-closure of
FO.

Proof. By the construction of X, s via Xy,, we see easily that (1) implies (2). We
now prove (1).

For a point x = (2, ) € F® C X%, there is only one irreducible component in
X?¢, passing through this point and it is smooth, by Prop. 7.1.3(2). For (1), we just
need to show this irreducible component is contained in F°, the rigid Zariski-closure
of F¥in X7,

Consider the quasi-compact admissible open subspace U C Xy, containing the
point z, obtained from Lemma 7.1.8. We may assume further that that U is connected

and smooth, as the (unique) irreducible component passing through z is smooth.
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Set T'= DN U. It is enough to show T" = U, because if so then F° contains U,
hence contains the irreducible component of Xy, passing through x.

By Prop. 7.1.6 the weight map w, : U — W on X/, is flat at any point in F°. As
T = F°N U is quasi-compact and the image of T under w; contains infinitely many
points in W, there are infinitely many points in W over which w; is flat. Let y € W
be a point at which w|r is flat. We then get

dim 7T > dim(w,) "' (y) + dim W = dim U,

which shows T"= U, as T' C U is a closed subspace and U is irreducible.
O

Corollary 7.1.10. Suppose p admits a universal deformation ring. Then any irre-

ducible component of X  has dimension
14 2n

and any irreducible component of X7, has dimension
1+ 3n.

Proof. First for X7 . Consider an irreducible component in question. Since a point

in F satisfies the conditions in Prop. 7.1.3(2), such a component has dimension
dimg RZ — dimg %’i" + dimg R}{/i”“"f = dimpg RZ —2n

at a point (z,\o) € F°. Moverover, by Prop. 5.1.1 R, ~ RW" and the latter has

dimension dimg H*(Gk, V. @ V) + nN? = 1 + 4n. On the other hand, by Prop.

7.1.9, such an irreducible component is the rigid Zariski-closure of the points in F?,
hence the result follows.

The dimension of X, is then seen by the definition of X, s, which is dim X ¢, +n.

O
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7.1.3 Smoothness of de Rham points in the local eigenvariety

Theorem 7.1.11. Suppose p admits a universal deformation ring. Let (2, Ao,m0) €
Xy :o(E) with E a finite extension of Q.

If (2, M) %s as in Thm. 7.1.1(ii)(2), then (z, Ao) is smooth in X¢s. If in addition
the Hodge-Tate weights of V, are distinct, then (z, Ao, m0) s smooth in X, 5.

Proof. By Prop. 7.1.3 (2), Cor. 7.1.5 and Cor. 7.1.10, under the assumptions in the
Theorem, the dimension of the complete local ring at a point in question is equal to

the dimension of the corresponding rigid space.

7.2 Global Galois Eigenvariety of GL,

As before, N = 2.

Let F' be a number field of degree n, and S a finite set of places containing p and
all the archimedean places. Let p: Gpg — GL3(F) be a residual representation with
F a finite field of characteristic p. Assume that p admits a universal deformation ring
R;niv_

Denote by Z the rigid analytic space associated to Ry™[1/p] and by M the
universal Galois module over Z. For v a place of F above p, F, denotes the completion
of F at v. Then G, is a subgroup of G s by choosing an embedding F' — F,,. Denote
by Z, the analytic space associated to R;Té‘m, [1/p] for RFY)T(EFU the versal deformation
ring associated to the local residual representation p|g, . Note that we have Sen
operator ¢, on Z,, for any place v in F'.

We denote
X=2Zx][Gm Xu=2,xGCn, X,=]]X.
vlp vlp

Let M, denote the pullback to X, of Mz|z,. For each v|p, write Y, for the canonical
co-oordinate on G,,. As in the local case, let Sy, be the rigid space parameterizing

the characters on I', | whose reduction is the trivial character 1p.
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Now we have the nearly finite slope subspaces
X’u,nfs - ans(Xv; Mv> }/v)

for each place v|p in F.

By the versal property of R;(IZFU’ we have a map of local W (IF)-algebras Ry =
R;—‘“i" (may not be unique), which induces a map between analytic spaces Z — Z,,
for any place v|p. Then we have the induced map 7, : X — X,.

We define X = X(GLy/r) to be the fibre product

X ? Hv\p Xv,nfs

l !

X =5 X,
where the right vertical map is the natural inclusion.

We call X the Galois eigentower of GLy/p.

As usual, if z € Z(F) is an E-valued point, V, denotes the corresponding N-
dimensional E-representation of Gpg. We denote by z, the image of z in the local
deformation space Z,.

Denote n, = [F, : Q,] and f, 1= [F,o : Q,] for v | p a place in F', where F,, is the

maximal unramified extension of @, inside F,.

Theorem 7.2.1. Let z € Z(E) with E a finite extension of Q. Let X = (X,)y)p with
Ao € EX, and n = (ny)vp with 1, € So .
(i) If (z,\,n) € X(E), then for any place v above p, there exists a non-zero Gp, -

equivariant E-linear map
fo—
hv : ‘/zlev — (Bcris ®Qp E)SO )\U}'

(ii) Suppose for any vip, the element (z,,A,) € Z, x G,,(E) is equipped with a

non-zero G g, -equivariant E-linear map

hy Vil — (Bl ®g, B)?" =M.

cris
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Then (z, A\, n) lies in X, if for any embedding F, — @p the data above satisfy either
Thm. 7.1.1(i)(1) or Thm. 7.1.1(ii)(2).

Proof. This follows from Thm. 7.1.1 and the definition of global Galois eigentower

immediately. O

We note that, in Thm. 7.2.1(ii) whether (z, A,n) € X lies in X is independent of
the choices of maps B R‘g“iv we make by Thm. 7.2.1, as the existence of b is
" Fy

defined globally.
Keep the notation in Thm. 7.2.1. Set the functors

fu
sz’p = HDVZ|GF1, D) D?/Z,P = H(D?/ZlcFv X Dl[p) D) D?}fp = H(D?/’:TGFD X DllF)'

vlp vlp vlp

D?/z = Dy, Xp,,_, D?/,,,p ) D?/’f =Dy, Xp,,_, D?/fp'

Proposition 7.2.2. If (2, A,n) is as in cases (1) or (2) of Theorem 7.2.1(ii) such that
the ofv-eigenvalues A, are of multiplicity one, then the functor D?}f is represented by
the complete local ring @l‘,(z,k,n)-

In particular, the cotangent space of X at (z,A\,n) is canonically isomorphic to

Hy(Grs, V. ®q, V) =

Ker(H'(Grps, V. ©p V) = [ [Im(H' (Gr,. hy @5 1)) @5 [ [ H' (G, Veo, ®E V2,),

vlp vlp
where sy, € So,, denotes the point corresponding to the trivial representation W (IF)[1/p]

Of FFU,L

Proof. The first assertion is formality, for which one can refer to (11.3) [26] for details.

The second assertion then follows from Lemma 5.2.1 and Cor. 7.1.5.

Assume dimyp Endg(q,. 40 = 1.
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Proposition 7.2.3. If the number field F is of degree n = ry + 2ry with vy (resp. rs)
the number of real (resp. imaginary) embeddings, we have

(1) Assume N = 2m. If the image of any complex conjugation is equivalent to
I, O
0 _Im

, then the Krull dimension

dim R;™ /pR;™ > 1+ nmN.

(2) Assume N = 2m + 1. If the image of any complex conjugation is equivalent
I, 0

to , then the Krull dimension
0 T im+1l

dim R3™ /pRy™ > 1+ nmN + ryN.

(3) For any positive integer N, if the image of the complex conjugation is equiva-

lent to Iy, then the Krull dimension
dim RY™ /pRy™ > 1+ ryN*.
Proof. Tt follows from the proof of Prop. 5 of [29], which uses the global Tate duality.

O

A representation p : Gpg — GLy(FF) is said to be odd (resp. even) if it satisfies
(1) or (2) of Prop. 7.2.3 (resp. Prop. 7.2.3(3)).
Let X° C X be the union of irreducible components of X containing a closed point

as in Thm. 7.2.1(2).

Theorem 7.2.4. (1) If p is odd, then an irreducible component of X° has dimension
at least

1+n.
(2) If p is even, then an irreducible component of X° has dimension at least
1+ 47'2 — 1.
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Proof. We show (1), since (2) is seen similarly. One sees by Prop. 7.2.3 that
dimZ >1+2n,N =2m =2

at any point in Z.
Let v be a place of F' above p. By Cor. 7.1.5, the surjective map @ZU,Z —
@XM s:(z0h0my) Das kernel generated by n, elements, whence the kernel of @Z’z o

@357(% An) is generated by at most n elements, keeping in mind »_ ,_n, = n. Thus the

vlp
dimension of an irreducible component in question is at least dim Z — n, hence the

desired quantities by Prop. 7.2.3.
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Chapter 8

Infinite fern in a local Galois

deformation space

Let K be a finite extension of @, of degree n and F a finite extension of F,. For a
2-dimensional F-representation V of G with a fixed basis, denote by R‘g’/ the framed
universal deformation ring.

We will construct, for certain V’s, an infinite fern (in the sense of Mazur) in the
generic fibre Spec Rp[1/p] of the universal deformation space Spec RE/, using Kisin’s

method in [21] and the construction of the local Galois eigenvariety for GLy k.

Lemma 8.0.5. The scheme Spec Ry [1/p] is of dimension d = 4(1-+n) over W (FF)[1/p]

at every irreducible component.

Proof. To see this, first note that RE, is a power series ring whose number of generators
minus the number of relations is d = 1 + nN? + N? — 1 by the argument of [29].
Hence each irreducible components has dimension at least d. On the other hand,
it is easy to see the irreducible locus of Spec Ry[1/p] is a dense subspace. For a
closed point z in Spec R2[1/p] whose corresponding representation is irreducible, we
have H%(Gg,V, ®q, V') ~ H*(Gk,V. ®g, V(1)) = 0, which implies that Ry, [1/p]
is formally smooth of dimension d by the local Tate duality. By Prop. 5.1.1, the

complete local ring at the point z is isomorphic Ry [1/p], hence is of dimension d.

Then any irreducible components of Spec R;[1/p] is of dimension d.
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Theorem 8.0.6. If the generic fibre of the universal Galois deformation space as-
sociated to V is irreducible and smooth, then the crystalline points in it are Zariski

dense.

Proof. Denote by Z = Sp(R3[1/p]) the Q,-analytic space associated to the complete

noetherian local ring R7[1/p].

We apply the construction of X, and X, ¢s to Z. The proofs in Sec. 7.1 go over
verbatim, by Prop. 5.1.1. In particular, with R, (resp. R“}L‘iv) replaced by RE (resp.
Ry), Prop. 7.1.3 and Cor. 7.1.5 hold for framed deformation rings. Thus we have

(with the notation there) natural isomorphisms
Rho,sof ~ 0O Rhoﬁpf ~0O
V. — MXgs(2,20) V: = YXags(z,00m0)

Hence the isomorphisms above hold for points (z, A;,7;) € F° (; is an integral power

of xk). In particular,
dim Oy, (i) = d —n,i =0, 1.
Consider the projection
T Xnps = Z (2, \\n) =V, Q1.

Let F be the Zariski closure in Z of F, the subset of crystalline points of Z coming
from the elements in F° (via m;) and their Tate twists. Note that the sets F C Z and
the set £ C Xy ss are in one to one correspondence. By Lemma 7.1.7, F contains a

crystalline point coming from F°, hence is non-empty.

By Prop. 7.1.9, the preimage of F' under the projection 7 is X 1s» the union of all
the irreducible components of X, s, passing through a point (z, A, ) with (2, \) € F°.

Then, at a point 2 € F coming from F°, SpfO;, . contains two formally smooth
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subspace SpfR; ~ Spf@xn oz, Whose dimensions are equal to

d—n.

Moreover, we see easily NI_,SpfR; is the formal scheme associated to a twist of

the crystalline deformation ring R{; associated to V, (|22]), noting that
Ve
phisp! hispf A
(®11:0sz¢ ) =~ (®.%:0szp ) @w @)1/ Oso.s0-

The crystalline deformation ring is formally smooth of dimension d — 3n by (3.3.8)
loc. cit, as V. has distinct Hodge-Tate weights. Thus N_,SpfR; is formally smooth
of dimension

d—2n.

Consider the tangent space (at any z coming from F°) mj , /m%’z, where mg , is
the maximal ideal of @p’z. One must have that
1

dimm; ,/m%  —dimSpfR;) > dimmy,/m%  — dimN,_,SpfR;,
) Pz ) Pz =0

1=0

which gives, by the quantities obtained before, that

i 2
dimmp ,/my > d.

Note that twisting by x% (k € Z) is an automorphism of F, provided V ®pwh. ~ V
where wg is the mod p cyclotomic character. We then have that dimmg , /m% . >d

for any z € F.

Pick a point z € F. Let SpR be an affoid neighborhood of z in F. Since R is
excellent, the regular locus U in SpR is open. There must exist a point 2’ € F N U,
as F is Zariski dense in SpR. Now F is smooth at 2, as the local ring of F at 2’
is the local ring of SpR at the same point. Thus dim @p,z, = dimmp/m} , > d.

Then the irreducible component F,, of F passing through 2’ is of dimension at least

111



d, hence is of dimension d. Therefore F,, = F = Z as Z is irreducible.
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Chapter 9

Trianguline representations:

another point of view

Let K /Q, be a finite extension. We define Hx = Gal(Q,/Kx) where Koo = |, K (™).
Write I'x = Gg/Hk. The cyclotomic character then gives a canonical map g :

FK‘—)Z;

9.1 (¢,I')-modules over Fontaine’s rings and over-
convergence

Write m = [¢] — 1. Let Ag, € W(FrR) be the completion of Z,[7][1/7] under the p-
adic topology on W(FrR). Then By, = Ag,[1/p] is a field complete for the valuation
v, with ring of integers Ag, and residue field IF,((7)).

Let E° be the separable closure of F,((7)) in FrR. The theorem of Fontaine and
Wintenberger ([14], [35]) says that E* is dense in FrR and stable under Gg, and

Gal(Qy/ Ko,) = Gal(E*/k((T)))

where Koo = U, ey Ko(e™), and k is the residue field of K.
Then W (FrR)[1/p] contains a unique extension Bk of Bg, whose residue field is
Eyx = (E%)x and whose ring of integers is Ax = Bx N W (FrR). By uniqueness, By
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is stable under the commutative actions of ¢ and I'x. The field B* = U[ K:Q,)<c0 BK
is the maximal unramified extension of Bg,. We denote by B the p-adic completion

of B". Then its ring of integers is A = BNW (FrR) and its residue field is A/p = E*.

Definition 9.1.1. A (¢, ['k)-module over Ak (resp. Bg) is a finitely generated Aj-
(resp. Bg-) module D with semi-linear continuous (for the canonical topology) and
commutative actions of ¢ and I'k. It is said to be étale if (D) generates D as an
Ag-module. A (¢, 'k)-module D over By is said to be étale if it has an Ag-lattice

which is étale as a (p, 'x)-module over Ag.

A fundamental theorem of Fontaine ([15]) says that the correspondence
Vs D(V) = (A®g, V)«

is an equivalence of tensor categories from the category of Z,-representations of G

to that of étale (¢, ['k)-modules over Ay, and the inverse functor is
D (A R Ay D)Lp:l.
For a real number 7 > 0, we define a subring A©7l ¢ W(FrR) as

A0 g if. . = ‘
AT = {z =" pflw] € W(ER)|, lim_vg(ay) + k/r = +00}

>0
Set AO7 = A©7TN B, For a Z,-representation V of G, define

DONV) = (A &, V)Hx C D(V).

Theorem 9.1.2 (Chebonier-Colmez [7]). For any Z,-representation V of G, there

exists an ry > 0 such that

Ag ® 4001 DOVIVY S D(V).
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9.2 (p,I')-modules over the Robba ring and slope

filtration

In the following, let A denote a finite dimensional local QQ,-algebra.

The Robba ring R4 with coefficients in A is the topological ring of power series

f(z) = Zan(a: —1)"a,€ A

nez

which are convergent on some annulus r(f) < |z — 1] < 1 of C,, with the natural
A-algebra topology. A (p,'x)-module over the Robba ring Ra is a finite free R4-
module D with R4-semi-linear continuous commutative actions of ¢ and I'y, and
©(D) generates D as an Ra-module. A (¢,I'x)-module over R, is called étale if
its underlying ¢-module is purely of slope 0 in the sense of slope filtration theory of

Kedlaya [20] [19].

Write AT = ,., A%, Bt = U,., BT with BO = AC[1/p], and AT = Af N
B,B" = Bt N B. The ring B, = (B is isomorphic to the ring of bounded
analytic functions f(my) in the variable mx on the annulus 0 < v,(7) < r(f), which
is in fact a field. The (¢, [g)-action on Bj, extends by continuity to Rg. For V a

Q,-representation of G, define

DY(V) = (B'®q, V)", Dyg(V) =Rk ®p DI(V).

Theorem 9.2.1 (L. Berger, [2]). Let V be a Q,-representation of Gx. We have
Dess(V) = (Dg(V)[1f£])" .
If V is crystalline, then we have isomorphism of (@, 'k )-modules
Ricl1/t] @k Deis(V) = R [1/t] @y D(V).

115



Theorem 9.2.2 ([8]). The functor
Dyig: V = (B®g, V)"

induces a tensor equivalence of categories from the category of A-representations of

Gk to that of étale (o, k)-modules over R 4.

9.2.1 Refinements and triangulations of G -representations

Definition 9.2.3. A rank N (p, 'k )-module D over R 4 is triangular if it is equipped

with a strictly increasing filtration
0CFI°DCFiI'Dg---¢cFIN'D=D

by (¢, 'k)-submodules Fil’'D which are free and direct summands as R 4-modules.
The filtration is called the triangulation of D. We say an A-representation V of Gg

is trianguline if Dy;z(V') can be equipped with a triangulation.

In the rest we only consider the case K = Q,.
For a continuous character ¢ : Q; — A*, we define, following [8], the (¢,Tg,)-
module R 4(6) over Ra whose underlying R 4-module is R4 and the (¢, g, )-action

on which is defined as

p(1) =4d(p), (1) =d(y), VyeTlg, =7;.

We then regard ¢ as a continuous homomorphism Wg, — E* via the Artin map,
by setting
3(g) = 6(p)"*#9(xq, (9))-

The character ¢ extends continuously to Gg, if and only if v,(d(p)) = 0, in which

case

Ra(6) = Dyig(9).
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Theorem 9.2.4 (Thm.0.2, [8]). Any rank 1 (¢, g,)-module over R, is isomorphic
to Ra(0) for a unique character 6 : Q) — A*. Such a module s isocline of slope

up(8(p))-

We note that an extension of two rank 1 (¢, I'g,)-modules can be étale even if
they are not étale.

Suppose D is a triangular (¢, g, )-module of rank N. Then each
gr'D =Fil'D/Fil" 'D,0<i< N -1

is isomorphic to R4(d;) for some character d; : Q) — A*. We define the parameter

of the triangulation 7 = (Fil'D)g<;<n_1 to be the continuous homomorphism
8= (6:)osisn—1: Q= (AN,

The following result is Prop.5.10 of [8].

Proposition 9.2.5. Let V' be a 2-dimensional continuous E-representation of Gg,.

Suppose there is a 1-refinement
h:V&n— (Bl ®g, B)F

with A € E*.
Then there is a sequence 0 G Dy & D = Dy, (V*) of (p,I'g,)-submodules of
Dyig(V*), where Dy is a free and direct summand of Dy;(V*) as Rp-modules.

Proof. Choose sufficiently large integers ¢, and replacing 1 (resp. A) by nx, ¢ (resp.

Ap°), so that, keeping in mind Thm. 9.2.1, we may assume
DV ()" )7 = Dy V() )=

The E-vector space Dy (V(7)*)'=29=* is generated by a non-zero element x, which

is stable by ¢ and fixed by I'. The R g-submodule of D,i,(V(n)*) generated by z is
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stable by ¢ and I We then have (¢, T')-submodules Dy of Dig(V*). The (p,'g,)-
submodule Dy is saturated by Lemma 4.4 of [8], which is equivalent to saying that

D/ Dy is free and direct summands of D as Rg-modules. We are done.

We recall the following result from [1].

Remark 9.2.6. There is a one to one correspondence between refinements of an
N-dimensional Gq,-representation V' and triangulations on Dy (V) when V is crys-

talline, essentially by Thm. 9.2.1.

First Denis(V') admits a p-stable filtration F = {D;(V)}o<icn_1:
0="Do(V) C Di(V) S C Dy 1 (V) = Deris(V).

Define a triangulation T = {Fil'D} on the (0,lg,)-module D = D,i,(V') over the
Robba ming Ry by setting

Fil'Dyie (V) := (Di(V) @ RL[1/1]).

On the other hand, given a (p,Tg,)-module D = D,s(V) over the Robba ring
R with triangulation T = {Fil'D}, one defines a p-stable filtration on Dis(V) by
setting

Dy(V) := (Fil'(Dyi(V)) @ Rpp[1/t]) .
Noting Dyig(V)[1/t]'% = Deis(V), and the isomorphism in Thm. 9.2.1
Dcris(v) OFr RE[l/t] = Drlg(v)[l/t]

one sees the above two maps define a bijection between the set of refinements of V

and that of triangulations of Dyig(V).
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9.2.2 Trianguline deformations of G -representations of Bellaiche-

Chenevier

Denote by AR the category of local Artinian Q,-algebras A with an isomorphism
A/m, = E whose restriction to E is the identity.

Let D be a (¢,T'g,)-module over R of rank N which is equipped with a trian-
gulation T = {FiliDA)}OSiSN_l with parameter {0; }o<i<n_1.

Consider the following functors:

Mp : ARg — Sets : A — isomorphism classes of pairs (D, 74)

where Dy is a (¢, I'g,)-module over R4 and 74 : Dy ®a4 FE 5 D as (¢, Ig,)-

modules.

Mpr: ARp — Sets : A v isomorphism classes of triples (Da,7a, {Fil'D4})

where (D4, {Fil'D4)}) is a (¢, T'g,)-module over R4 and 74 : Dy ®4 E 5 D
is a R4-linear map of (p, I'g, )-modules such that m4(Fil'D4) = Fil'D,0 < i <
N —1.

Fv : AREg — Sets : A~ isomorphism classes of pairs (Va, 74)

where V, is an A-representation of Gg, and m4 : V4 ®4 E = V as A[Gg,|-

modules.

Fur: ARp — Sets : A+ isomorphism classes of triples (Va, ma, {Fil'Dyig(Va)})

where V4 is an A-representation of Gg, with 74 : Vi ®4 E = V as A[Gg, -
modules, and (Dyig(Va), Dyig(m4), {Fil'Dyig(Va)}) is an element of Mp 7(A).
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We have the following results from Sec.2.3 and Sec.2.5 of [1].

Proposition 9.2.7. (1) If §;6; ¢ zN,Vi < j, then Mp 1 is a subfunctor of Mp and
Mp 1 = Mp is relatively representable.

(2) The functor Dy, induces natural isomorphisms of functors
Fv~Mp, Fvr~Mpr.

Let V' be an N-dimensional crystalline E-representation of G, with a refinement

(15,5, {\}) and denote the corresponding triangulation on Dy;.(V) by T

Proposition 9.2.8 (Thm.2.5.9 [1]). Suppose the refinement (1, b,{\;}) is non-
critical such that \A; ¢ {1,p~'} for i < j, and suppose Homg, (V. V(-1)) = 0.

Then the functor Fyr is formally smooth of dimension
dlmE HO(GQP, Vv XRE V*) + N(N + 1)/2

Note that, when N = 2, the formally smoothness and the dimension above coincide
with those of the complete local ring of the nearly finite slope subspace X, 5,(GLy/g,)

at this crystalline point.
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