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ABSTRACT

In vivo multimodal, multiplexed microscopy allows real-time observation of
hematopoietic cells, their stem and progenitor cells and metastatic cancer cells in
their native bone marrow (BM) environment. Multiplexing has made possible
detailed studies of the BM's microarchitecture, which helps define the niche of these
cells; it has nonetheless been limited by the paucity of suitable probes fluorescent in
the near-infrared spectrum that is favored by tissue optics. This project attempts to
address this problem by developing cellular and vascular fluorescent imaging probes
comprised of semiconductor nanocrystals, or quantum dots (QDs), with tunable
fluorescence between 65o-8oonm and exhibiting photostability, robust quantum
yield and narrow fluorescence profiles that are critical for such applications.

The synthesis of alloyed CdTexSe1 x QDs will be detailed in the thesis. Reproducibility
and workability in subsequent steps are emphasized in the methods. Special
attention is also paid to the difference between working with alloyed versus single
semiconductor QDs, especially the need to achieve physical and spectral uniformity
when composition and its gradient are also variable.

The steps for creating biological probes from these QD fluorophores are also
described. They include overcoating, water solubilization and functionalization for
cellular uptake and vascular retention. Finally, the thesis returns to its motivation and
reports novel methods, developed using NIR QD vascular imaging probes, for
visualizing in vivo 3-D imaging data of the murine BM and characterizing the tissue's
architecture. Measuring the Euclidean distance between BM osteoblasts and blood
vessels is presented to exemplify a potential platform for describing the geographic
relationships between cells, molecules and structural components in any tissue.

Thesis Co-supervisor: Moungi G. Bawendi, Ph.D.
Title: Lester Wolfe Professor in Chemistry, MIT

Thesis Co-supervisor: Charles P. Lin, Ph.D.
Title: Associate Professor, Harvard Medical School
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1 Near Infrared Fluorescent Probes for In vivo Imaging

1.1 Motivation: In vivo Multiplexed Imaging as a Tool for Understanding

Biological Processes- Studies of the Murine Calvarial Bone Marrow

Biological processes are the sum of intricate interactions between extra- and intra-

cellular components. These interactions can be local or remote and they proceed in a

wide range of timescales. Remarkable advances in imaging technologies have greatly

expanded our medical knowledge. In vivo imaging, in particular, has offered the

opportunity to observe biological events in real time and in their native environment,

circumventing the shortcomings of using in vitro models that often fall short of fully

capturing the structural and biochemical complexity of live tissues. It also precludes

interpretations of ex vivo data that is often marred by artifacts resulting from post-

mortem biopsies and histological preparations. As a technique that can track an

event over time, in vivo imaging offers a more telling picture on the function of each

relevant entity than "snapshots" from immunochemistry are able to.

In vivo imaging has evolved into a technically advanced field that includes a wide

range of modalities, some of which-such as X-ray computer tomography (CT),

magnetic resonance imaging (MRI) and positron emission tomography (PET)-have

become standard tools for clinical diagnosis. Meanwhile, fluorescence microscopy

has found ubiquitous applications in laboratory research. In particular, by extracting

information from animal models with well-characterized genetic makeup designed to

mimic human physiology and pathology, in vivo fluorescence microscopy has closed

significant gaps between knowledge gained from in vitro and clinical studies. In

particular, the use of small animals (such as rodents) for imaging, combined with the

highly-resolved optical sectioning power of confocal and multi-photon microscopy

[188,202], allows for time series and 3-D reconstructions of biological events that



cumulate to a comprehensive view of these events that are impossible to collect

from human subjects.

Multiplexing is indispensible to the utility of in vivo fluorescence imaging. A series of

optical channels simultaneously visualize multiple biological components, each

labeled with imaging probes of a specific range of fluorescence wavelengths. By

permitting observation of not only the individual components but also co-localization

of their representative fluorescent signals, which suggests of interactions, the data

from in vivo multiplexed imaging has helped to identify the roles played by each

component and from that, the mechanisms that drive and maintain the biological

processes they take part in, whether they are physiological or pathological. With this

knowledge, novel strategies in clinical management can be devised.

The bone marrow (BM) is a biologically active and functionally complex tissue, the

residence of hematopoietic cells and a common metastatic site for solid and liquid

tumors. Biology of the BM is clinically relevant to immunology, cancer biology and

transplantation medicine, and while it is beyond the scope of this thesis to examine it

in detail, in vivo multiplexed imaging of the BM has offered the context and

motivation of this project-namely, to further expand the multiplexing capability of

the in vivo imaging systems developed in Lin Lab [61,107,108164,171] (Figure 1.1) by

adding near-infrared (NIR) fluorescent imaging probes to our current set in use,

which mostly emits in the visible spectrum.



Cell trafficking in the BM-whether the cells are leukocytes, malignant cells, or

hematopoietic stem & progenitor cells (HSPCs)-is highly dynamic, from the cells'

physical behavior (ex. the "rolling and sticking" of leukocytes on the endothelium

[99]), to the local microenvironment's expressions of molecules to guide the cells'

migration in and out of the BM, to the fate of the cells and its corresponding clinical

outcome (ex. organ-specific metastasis). The BM is a traditionally difficult tissue to

study ex vivo, as its interface with the hard bone, which not only acts as structural

support but also modulates its function, is prone to damage and creation of artifacts

during tissue sectioning. The relative translucence of murine calvarium (i.e. mouse

skullcap) has provided unique opportunities for in vivo observation of the BM with its

surrounding cortical bone left intact [116], thus minimizing perturbation of the local

environment before and during imaging. Description of the murine calvarial BM and

representative in vivo images collected from the area are illustrated in Figure 1.2.

Structurally, the calvarial BM is located in multiple cavities inside the bone, most of

which lie sagittally to the midline of the skull (Figure 1.2 a). The bone surface lining

each cavity, the endosteum, is covered with bone cells (osteoblasts and osteoclasts)

U Figure 1.1: In vivo multimodal,Po 
Vaable

Attenuator

Dichroic multiplexed imaging system
0500

PnhoNO FFiters

Fiur 11:Invvomutiodl

lfdeveloped in the Lin Lab. The lightTo acrjoisltion Pinhole Filter d v l p dLI h
board

input includes a titanium:sapphire

Pinl Flaser (700-11oonm excitation) for
two-photon microscopy and second

bete30 4ly Tellharmonic generation, and three
hans N .9 Golvo 0Yn

(fst aois) diode lasers (492, 532, 633nm) for
translation To control 81-cel confocal imaging. Three detection

channels can be acquired at video rate (30 frames/second) simultaneously (out of the six

available; 3 for confocal (A-C) and 3 for two-photon (4-6)). The anesthetized animal subject is

placed on a 37'C, motorized precision stage for imaging.



that constantly remodel the hard tissue and secrete cytokines and other soluble

factors that modulate the behavior of hematopoietic cells; arteries burrow through

hard bone of the skull into the BM and arborize into an intricate network of

capillaries and sinusoids that supply nutrients to the soft tissue in each cavity and

drain into a central sinus that runs parallel to the skull's midline (Figure 1.2 b, c).

Hematopoietic cells pack the soft tissue of the BM (Figure 1.2 d), which is also the

engraftment site of secondary lesions when bone metastasis occurs [130,164,171].

The BM plays a critical role in regulating the balance between quiescence, renewal

and differentiation of HSPCs for maintenance and repair [169]. The complex

microarchitecture of the BM, in spatially defining the locations of its residing cell

types (endothelial cells, osteoblasts etc.), partially describes the HSPC niche [166]. As

HSPC proliferation reconstitutes the blood and immune cells in patients who have

undergone BM irradiation and transplantation, identifying the niche for HSPCs is of

clinical significance; it also helps to pinpoint the multipotent subpopulation within

the HSPCs that is truly capable of regenerating hematopoietic cells of all lineages. In

vivo multiplexed imaging in two-photon or confocal mode has not only visualized

single HSPC activity (Figure 1.2 e), but also permitted quantitative morphometry of

the local microenvironment-measurement of the density and location of nearby

cells such as osteoblasts and endothelial cells, for example, and expressions of

biologically relevant molecules such as signaling proteins and chemokines that

altogether form the residence of and offer functional cues to the HSPCs (Figure 1.2 f).
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Figure 1.2: In vivo imaging of the murine calvarial BM [107,108]. a) The murine calvarial BM.

Left: the boxed area in each image represents the region of interest; in the white light image,

the bone marrow, with its reddish tint, can be seen distributed along the central sinus (CS).

This "aerial" perspective corresponds to the X-Y imaging plane; the Z-axis quantifies the

imaging depth from the skull surface. Right: an X-Z tissue slice that shows the cross section

of two bone marrow cavities (labeled with asterisks) flanking the central sinus and

embedded inside hard bone; the bracket indicates the imaging depth the in vivo imaging

system can reach, which is limited by tissue absorption and scattering. b) Representative in



vivo 3-D imaging stack of a BM cavity. The number indicates imaging depth from surface (z

value). As depth increases, the cavity opens up within the bone (blue, from second harmonic

generation of bone collagen). It is lined with bone cells (green, from EGFP-col2.3 osteoblasts)

and vascularized with a complex but well-organized network of blood vessels (red, from

semiconductor-based vascular probes pre-injected into the mouse). Visual presentation of

these image stacks has been made versatile by imaging analysis programs such as 1mageJ [1],

as seen in c), in which a simple reslicing function offers three cross-sectional views of a BM

cavity with the cross hair set as origin. d) The dark regions seen within the BM cavity in b) and

c) are in effect packed with hematopoietic cells, made evident in this image by the DNA label

Hoechst33342 (blue) that highlights all cell nuclei; the bone is labeled red by the calcium stain

Alizarin. A blood vessel, which is not labeled, can be seen traversing the upper left corner of

the cavity. e) With its submicron resolution, the in vivo imaging system can track single cell

activity. In this image (color-coded the same way as b) and d)), the white signal belongs to

HSPCs transplanted 1 day before imaging. The cell on the left had remained quiescent after

homing to the BM, while the cluster on the right were progenies of a single cell that had

homed and proliferated. f) Quantitative analysis of the BM microenvironment and cell

activities are possible with the highly resolved optical sectioning ability offered by both the

two-photon and confocal imaging mode of the imaging system. This graph describes the

geographical relationship between the osteoblasts and the vasculature in the BM, plotting

the Euclidian distance between the osteoblasts and the closest blood vessel in their 3D

vicinity; the method with which this data is derived from the images will be described in

Chapter 4. Proper optics setup and the selection of fluorescent probes go hand in hand in

making morphometric analysis like this possible, in that accurate measurements require

strong signal-to-noise ratio in the original image stack and a good match of the fluorescence

signal from each entity to its assigned imaging channel, such that the boundaries of each are

easily observed and defined. This requires the fluorophores that identify cells and vessels to

be bright, not only having high absorption coefficients and quantum yields but also avoiding

the wavelengths at which the tissue itself absorbs and scatters photons, exclusive to the

entity they are set to label, and have a fluorescence profile that is spectrally well-confined

within the detection range of their own imaging channel. Scale bar=50im except in a),

which is = 150 p-m.



Morphometric analysis, as the example shown in Figure 1.2 f, requires that the optics

setup of the in vivo imaging system and fluorescent probes are not only robust

themselves but also optimized for one another. Considerations pertaining to tissue

optics and how it affects fluorophore selection will be discussed in sections 1.2 and

1.3. Looking ahead, the imaging probes based on semiconductor nanocrystals, which

were used to label the vasculature in Figure 1.2 including the images from which the

numerical data for Figure 1.2 f had been derived, have been found to be well suited

for in vivo multiplexed imaging.

Another application for in vivo multiplexed imaging of the BM is the evaluation of

new therapies against metastasis to the bone. Predilection for bone metastasis has

been observed in both "liquid" malignancies that originate from blood cells

(leukemia, multiple myeloma) and solid tumors (ex. lung, prostate, breast cancers) at

later stages of the disease. Development of lesions in the bone is a sign of poor

prognosis, leading to significant morbidity and mortality [125,163]. These malignant

cells are known to share common trafficking pathways with normal lymphocytes and

HSPCs to access the bone marrow (ex. SDF-1/CXCR4 axis [181], [180] and references),

making them difficult to target with therapies without adversely affecting the

"good" cell populations. It has also been known that the BM is a safe haven for

certain hematological malignancies against chemotherapy due to the drug resistance

conferred to these cells when in contact with the stroma; in multiple myeloma, for

example, this has been contributed to both the physical adhesion of the cells (CAM-

DR, for cell-adhesion mediated drug resistance) and the stromal release of soluble

cytokines such as IL-6 that promote survival (SM-DR, soluble factor mediated drug

resistance) [103]. Potential drug candidates therefore include reagents that 1)

prevent cancer cells from homing into the BM and 2) cause the already-homed cancer

cells to egress and return to the vasculature, where cytotoxins used in current

chemotherapy are the most effective.



Before the advent of multiplexed imaging, these drugs and their treatment plans

must be tested individually by, for example, injecting into an animal subject a single

cancer cell population, pretreated in vitro with a specific regimen, then repeating for

each drug and regimen to be tested with a different animal and comparing the

imaging results. Multiplexed imaging allows simultaneous introduction of multiple

pre-treated cell populations into one animal, such that the populations can compete

for the same homing and engraftment sites in the BM. Competitive assays as such

thus circumvent the need to interpret data from different animals, the intra-species

differences among which necessarily lead to ambiguities during analysis. It also

ensures that the experimental variables-including the optical setup, the health and

cell cycle of the cells investigated, even the circadian rhythm of the host that is

known to affect trafficking [117]-are held consistent for each drug treatment

option.

1.2 The In vivo Challenge: Tissue Optics and the NIR spectral window

Considerations in fluorophores' optical properties, together with the spectral

limitations placed by tissue optics that is highly relevant for in vivo imaging and shall

be discussed next, restrict the number of channels that can be included in an in vivo

multiplexed imaging system. By extension, they restrict the complexity of the

biological processes one can observe and study. This limitation serves as motivation

for this thesis project, which is to develop new imaging probes that are optimized

specifically for use in in vivo multiplexed imaging. The probes will ideally have the

following attributes: near-infrared (NIR; >65onm) fluorescence, bright (often

expressed as the product of extinction coefficient and quantum yield), narrow and

symmetric fluorescence profiles. The goal is to allow for more optical channels to be



set up within the wavelength ranges (or "windows") that are friendly for photon

transmission within tissues, which fall within the near infrared (NIR) spectrum.

In an ideal in vivo multiplexed fluorescence imaging setup, entities to be observed are

each assigned an optical channel suitable for the imaging probe that labels the entity,

with spectral characteristics that is specific and exclusive to that entity alone. Often

then, each imaging channel has its own excitation source and detector, defined

spectrally by an appropriate optical filter or dichroic mirrors. Complexity of these

imaging system setups therefore escalates quickly when the number of multiplexing

channels increases. Also, the transmission cutoffs of these filters and mirrors are not

infinitely sharp and low levels of photon transmission likely remain at some of the

wavelengths they are supposed to block. This must be factored in when deciding on

the spectral spacing between individual channels, in addition to considering the

fluorophores used and the exact shape of their absorption and fluorescence profiles.

Fluorophores in organic imaging probes, which include traditional fluorescent dyes

and also fluorescent proteins, often have shoulders in their fluorescence as well as

absorption profiles that widen their spectral "footprint" significantly compared to

the peak's full-width-half-maximum (FWHM) value, rendering them less confined in

their own optical channel. Other cautions regarding fluorophore selection may be

subtle. For example, the shape of fluorescence profile may vary significantly from dye

to dye even when they are grouped into one commercial series (ex. the Alexa Fluor

series (Invitrogen, Carlsbad, CA) [4]). Also, because commercial sources commonly

plot the spectral profiles of their fluorescent products at peak absorption wavelength

excitation, fluorescence below the peak absorption may be omitted in these plots

but occur in reality when the excitation wavelength is hypsochromic of the

absorption peak. Excitation and fluorescence profiles of fluorophores have thus been

plotted as 2-D matrices in academic literature [42].



Deviations in optical properties have been observed when fluorophores are excited

under multi-photon conditions. When performing two-photon microscopy, for

example, while a good estimate of fluorophore's two-photon absorption peak is to

double the wavelength reported in literature for single-photon excitation, organic

dyes with structural symmetries (ex. rhodamines) are known to have broadened

absorption profiles that are significantly shifted in wavelengths from this estimate,

due to the difference in selection rules between one-photon and two-photon

processes [202] and the energetic discrepancy in the vibronic states available for a

given electronic transition. The fluorescence profile usually remains the same but the

quantum yield may change. Literature reporting the two-photon spectral properties

of common fluorophores has been published [23,176,178,193,204].

1.2.1 Tissue Optics: Absorption, Scattering and Autofluorescence

In vivo imaging presents additional challenges compared to in vitro imaging in that

incoming and exiting photons must penetrate a finite thickness of tissue. Thus

Imaging in vivo is often photon-limited from signal attenuation due to absorption by

major tissue components (blood oxy/deoxyhemoglobin, water, lipids [58]) or

scattering, which eliminates the photons and alters their direction of travel

respectively. The risk of thermal damage sets an upper limit to the excitation energy.

Optical properties also differ from one tissue type to another due to variations in the

composition and organization of absorbers and scatterers in each tissue.

Scattering from tissues is generally considered to be intermediate between Mie and

Rayleigh scattering, as the size distribution of scatterers, including cells, organelles,

pigment bodies etc., is continuous. The scattering coefficient p.s as well the reduced

scattering coefficient ps5 (. s'= ps (1-g), where g = anisotropy factor) has been assigned

to many tissue types, which differs significantly and exhibits its own wavelength



dependence [35,115,168,212]. However, as p, a "V and n>o, imaging at longer

wavelengths always lessens the effects of scattering [104,213]. Meanwhile, the

absorption spectrum for major tissue absorbers must be taken into account (fat:

[10,182,185]; water: [68,148]; hemoglobin: [149,162]). 95% of lipids in human fat are

composed of oleic, palmitic, linoleic, stearic, palmitoleic acids [182]. While there are

published absorption spectra of general live tissues, which combine the effects of

major absorbers at their most common relative concentrations (ex. [159]), their

accuracies, as expected, depend on the exact composition of the absorbers in the

tissue type of interest.

Bone is often excluded from studies of tissue optics as the need to image the hard

tissue itself is relatively rare. Imaging of the soft tissue connected the bones (such as

bone marrow) often proceeds after demineralization. Bone is a strong scatterer with

a significantly different refractive index (-1.56 [203]) compared to water-based tissue

components (-1.3; intracellular and interstitial fluids have approximated n=1.37 and

1.35 respectively [205]).

Autofluorescence from endogenous fluorophores adds background to imaging data.

Endogenous fluorophores commonly found in tissues include the adenine

dinucleotides (NAD, FAD) and their reduced forms (NADH, NADPH, FADH 2), collagen

and elastin, porphyrin and flavins, tryptophan and lipofuscin [42,188,206,209]. Most

of these species fluoresce in the visible violet to green, rendering these hemoglobin-

absorption wavelengths even less ideal for in vivo imaging. The visible red is not

entirely exempt, as seen in the overall tissue autofluorescence spectrum of the skin

of a nude mice [209]. Lipofuscin, an age pigment found in lysosomal bodies of

phagocytized lipids and membranes, is a collection of fluorophores with wide

fluorescent peak extending beyond 6oonm [206,208]. NIR autofluorescence is often

contributed by chlorophyll in animal diets and hence removable if needed [209].

While the spectral properties of many of these autofluorophores are available in



literature [42], the actual tissue autofluorescence during imaging is also determined

by the relative composition of these autofluorophores in the tissue, as well as the

physical-chemical conditions of the local microenvironment (ex. pH may lead to

spectral shifts and quantum yield changes) and the metabolic states of the cells.

Background from autofluorescence is therefore difficult to remove by retrospective

compensation / signal un-mixing without aggressive assumptions regarding the tissue

and the state of its endogenous fluorophores [193], especially when complex tissue

structures are involved.

1.2.2 The NIR Windows for in Vivo Imaging

With tissue optics considerations in mind, the optimal wavelengths for in vivo

imaging have been determined computationally to lie within small ranges, or

"windows" (sometimes, "therapeutic windows"), within the near infrared (NIR)

spectrum.

The first NIR window, which spans between the absorption peaks of hemoglobin and

water, is the most well known and cited; the exact endpoints vary between literature

but are usually reported to be -65onm and ~95onm. The cause of these variations is,

again, tissue-dependent absorber composition. A well-vascularized tissue, for

example, may require wavelengths >65onm to ease the loss of signal due to

hemoglobin absorption. Biological probes suitable for intravital use in this 1st NIR

window are commercial available, despite having a smaller selection compared to the

visible blue to green; in vivo imaging within this window and the improvements in

photon penetration depth is therefore well documented (ex: [9,97,172]). Multi-

photon microscopy has also contributed to the feasibility of in vivo imaging in the 1st

NIR window by allowing NIR excitation for fluorescent dyes originally excited by

visible blue to green wavelengths.



Other NIR imaging windows, more recently defined, are situated near the two local

minima of the water absorption curve before i9oonm, at which water absorption

spikes sharply in value. The second window, between 1ooo-130onm as described by

Smith et al. [173], follows the minor water absorption peak between 950-looonm.

The historical cutoff between this second NIR window and the first may be

contributed by the limits in detection range of the traditional silicon-based CCD

cameras, which lose sensitivity beyond 900nm. The third NIR window is between

16oo-19oonm after the water absorption peak between -130o-16oonm, as seen in Lim

et al [104]. The high volume fraction of water in soft tissues (>65% [86]) explains the

lack of water absorption as the best indicator of optimal in vivo imaging wavelengths;

nonetheless, in tissues exhibiting significant wavelength-dependent scatter, the third

NIR window, which has stronger water absorption, may fare better than the second

because longer imaging wavelengths reduce scattering-associated loss of photons.

High fat content in specific tissue types may also narrow the effective range of these

NIR windows; in the -16oo-19oonm water absorption minima, for example, the local

maximum of lipid absorption at 1735nm would narrow this window to -1600-1700nm

for imaging high fat content tissues [104].

NIR windows therefore only serve as guidelines for in vivo imaging wavelengths; the

optimal wavelength(s) within each window is ultimately determined by the exact

composition of the tissue type of interest (Figure 1.3). As previously mentioned,

wavelength cutoffs of conventional photodetectors are additional considerations in

defining imaging windows [172]. InGaAs detectors are suited for imaging further into

the NIR. Ideal biological probes should therefore be able to tune to adjust to tissue

type as well as address the limitations in optical sensitivities in the imaging systems.
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Figure 1.3: Suitability of NIR Imaging windows depends on tissue type and its components.

Top row: tissue with high water-to-hemoglobin ratio; bottom row: tissue with low water-to-

hemoglobin ratio, both are models reproduced from [104], assuming tissue thickness =

0.25cm and scatter is wavelength-dependent. The plots highlight how tissue types dictate

which NIR window is best photons for imaging-the it window is only suitable for low blood

content tissues, for example, and even within each window the transmission efficiency of

photons can vary widely as a function of wavelength, such as the case for high blood content

tissues in the 2nd window.

1.3 Selection of Biological Probes for NIR In vivo Fluorescence Imaging

While the second and third NIR imaging windows further extend the choice of

wavelengths suitable for in vivo multiplexed imaging, biological probes optimized for

use within these windows are still under development. Besides the need to

incorporate fluorophores with appropriate spectral properties, biological probes for

in vivo fluorescence imaging must perform satisfactorily in terms of their interactive

behavior with the local environment.



Water solubility is the requirement for almost all biological probes, with very rare

exceptions such as those designed to directly apply on hydrophobic cell membranes

(ex. DiA, Invitrogen Corporation, CA). Aggregation occurs when the probes are

insufficiently soluble and the resultant labeling, if any, tends to be poor and non-

specific. Furthermore, after systemic injection into animals for in vivo labeling, these

aggregates are often removed rapidly from the vasculature as part of the host's

immune response (via the reticuloendothelial system, to be discussed below) or

worse, may cause animal death from emboli occlusion of, for example, pulmonary

capillaries. Water solubility is a concentration-dependent parameter; a probe that is

soluble at 1uM in the labeling medium may not be soluble at 1ouM, and while full

solubility of the probe at its applied concentration is usually required for proper

labeling, a probe far more soluble than needed may have trouble interacting with the

entity they are designed to label.

Parameters that describe the in vitro environment in which fluorophore

characterization is performed generally fall short of describing all the variables that

determine the efficacy of biological labeling. They mostly consist of quantifiable

physical-chemical variables: temperature, pH, matrix polarity and proticity (hydrogen

bonding ability), viscosity, ionic strength, presence of fluorescence quenchers such as

oxygen and molecules with affinity to the probes [158], while the in vivo environment

is at once much more restrictive-for example, living tissues, including those from

tumors that are known to be more acidic, rarely have pH outside 6.0-8.0 [67]-and

broad in scale. Resident cell types are tissue-specific and their architecture may

provide differential access to different probes (ex. via endothelial fenestrations in

specific organs [150]). The cells also carry out dynamic activities that interact with the

local microenvironment and can modify it over time.

Furthermore, biological activities that influence the efficacy of labeling may originate

from remote tissues. Case in point, the reticuloendothelial system (RES), which



comprises of phagocytic cells at various organs including the spleen, liver and lymph

nodes and clears away foreign particles and spent tissue debris from circulation,

determines the clearance rate of probes introduced in vivo and hence, the effective

concentration of probes available for labeling any tissue (not just the RES-related

organs) over time. RES action on the probes is dependent on the latter's physical

properties, such as size and charge, the details of which has been extensively

investigated in nanomedicine and drug delivery [55,160]. Incorporation of

poly(ethylene glycol) on probe surfaces has become a standard strategy to help the

probes evade RES clearance as well by minimizing their adhesion to other biological

molecules [16].

Despite difficulty in reproducing the in vivo environment in vitro, in vitro assays can

help predict the probes' intravital behavior. Full solubility of the probes in

physiological buffers without compromising their optical properties can be seen as

the most primitive test for in vivo probe functionality. Incubation with commercial

serum or its major components (ex. albumin) has been used to gauge the probes'

interaction with blood. The most important requirement for in vivo biological

probes-the absence of toxicities and physiological changes through direct or

indirect probe-tissue interactions (ex. uptake of the probes leading to cell death for

former; changing the media properties, such as shifting the pH and gettering /

sequestering needed nutrients for latter)-can be tested by running viability and

functional assays on cultured cells pre-incubated with the probes; these cells can

belong to the same cell type to be labeled or can be macrophages that mimic the

cellular component of the RES. In vitro confocal imaging can confirm labeling

specificity for cellular and molecular probes and provide information on coverage and

labeling uniformity. Fluorescence-activated cell sorting (FACS) quantifies the

fluorescent intensity and uniformity and viability of large populations of labeled cells.

While these tests, even collectively, cannot replace in vivo evaluation of the probes,



they eliminate the need for extensive animal testing and minimize mortality and

morbidity in the tested animal subjects.

Sections 1.3.1 and 1.3.2 will focus on the development of fluorophores that govern the

optical properties of in vivo NIR multiplexed imaging probes. Selection of proper

methods for water solubilization and functionalization is possible only after knowing

the physical and chemical properties of the fluorophore, which, if unmodified, will

determine the probes' interactions with the environment.

1.3.1 "Classical" NIR Probes based on Organic Cyanines

Organic dyes with absorption and fluorescence in the visible spectra have long been

available as contrasting agents for in vivo imaging. Equivalent products in the NIR are

far fewer. Certain dye classes, such as oxazones, exhibit drastic changes in their

optical properties, including their spectra and quantum yields, in response to their

immediate neighboring molecules (solvatochromism). Among the dye classes less

susceptible to environmental factors-resonant dyes rather than charge transfer

dyes [158]-cyanines have been popular fluorophores among the commercially

available bioprobes fluorescent in the NIR.

Heptamethine cyanines fluoresce above 70onm. Commercial products that make use

of this cyanine class include indocyanine green (ICG), Cy7 (GE Healthcare, NJ),

Alexa750 (Invitrogen, CA) and IR Dye series (LI-COR, NE). Polymethines are defined

by their linear chain of multiple conjugated carbon (methine, -CH=) groups,

terminated at two ends by an electron donor group and an electron acceptor group.

Cyanines are cationic polymethines, their heterocyclic electron donor and acceptor

groups containing nitrogen; one of these nitrogen atoms that bracket their methine

chain is positively charged to induce electron pulling along the delocalized n-orbitals.



Absorption/fluorescence peaks of polymethines are largely governed by the number

of vinylene (-CH=CH-) group in the chain, the addition of each causing a discrete

bathochromic wavelength shift [54]. NIR cyanines generally have phenol-

incorporated bicyclic or tricyclic rings (ex. indole, benzoindole) to further shift their

optical spectra to longer wavelengths.

To achieve the water solubility needed for most biological applications, the bulky,

hydrophobic heptamethine cyanines mostly require sulfonation of the donor and

acceptor cyclic groups. The negative charges supplied by the sulfonates also prevent

aggregation by repelling the dye molecules from one another. Alkyl chains may also

be incorporated into the donor and acceptor ring systems, either for lipid labeling or

functionalization with a terminal carboxylate group, which can in turn be esterified

(ex. form NHS ester) for protein conjugation.

Heptamethine cyanines nonetheless have several drawbacks. The long polymethine

chain is structurally unstable and torsional vibrations make it prone to non-radiative

energy losses, causing poor quantum yield and photobleaching. Structural flexibility

also leads to strong coupling between the molecules' different vibrational levels in

the electronic ground-state and excited singlet state, the multiple vibronic transitions

contributing to the "shoulder" on the hypsochromic side of the absorption peak and

bathochromic side of the fluorescence peak.

Physical- and photostability in heptamethine cyanines has been partially ameliorated

by incorporating large cyclic groups to improve structural rigidity, particularly along

the methine chain [54]. Nonetheless, quantum yield of NIR cyanines rarely exceeds

30% and their fluorescence often bleaches too quickly for the longer in duration,

higher excitation energy conditions required for in vivo imaging.



Trans 4cis conformational changes are also known to occur in heptamethine

cyanines and cause substantial shifting of their optical spectrum to shorter

wavelengths [46]. Cyanines are also more restricted in their availability of

wavelengths due to the discrete chromatic shift from each vinylene's addition, even if

smaller spectral "stepping" can be made via modifications of the cyclic structures.

Cy3, Cy5 and Cy7 in the CyDye series, for example, have identical structures other

than the length of their methine chains but exhibit a ioonm difference in

fluorescence peak wavelength from one dye to the next. Extending the repertoire of

cyanines further into the NIR region (>9oonm) for in vivo multiplexed imaging will

likely present a significant challenge due to the severe structural instability expected

in such fluorophores, especially if the polymethine chain is to be further extended.

And as is true for most organic resonant dyes, asymmetry in cyanine's spectral

properties (the "shoulders" in both their absorption and fluorescence profiles) and

their small Stokes shift-compared to even other organic fluorophores, such as the

charge-transfer dyes coumarin-render channel separation difficult in multiplexing.

Heavy sulfonation for water solubility in large organic dyes may also lead to

difficulties in bioconjugation due to charge and steric effects [58].

1.3.2 NIR Probes based on Inorganic Semiconductor Nanocrystals (QDs)

The first reports on using semiconductor nanocrystals, or quantum dots (QDs), as a

novel, inorganic class of fluorophores for biological probes were published in 1998

[8,27,33], five years after Murray et al. [127] reported the colloidal synthetic scheme

that made possible the production of highly crystalline and uniformly sized

semiconductor nanocrystals [127]. Semiconductor nanocrystals can be grown to a

wide variety of shapes [92,113,140]; those with an aspect ratio of -1 (near-spherical)

are mostly used for biological imaging and will be the focus of this thesis. The



advantages of using QDs over the "classic" organic cyanines for in vivo multiplexed

imaging include: unlimited choices of peak fluorescence wavelengths, photostability,

narrow fluorescence profiles, wide absorption curves / long Stokes shifts that are

especially attractive for multiplexed imaging setups, and large two-photon action

cross-sections.

Colloidal syntheses of QDs are performed in organic solvents, with the growing

nanocrystals capped by ligands that are commonly also surfactants-molecules with

polar head groups to bond to the surface and non-polar, usually linear hydrocarbon

tail to suspend the crystals in the organic solvent. The nanocrystals, in their as-made

form, cannot survive as individual fluorophores in biological environments without

modification of this organic "cap" to confer, at minimum, water solubility. Functional

handles for probing biological units must be incorporated into the water-solubilized

organic cap as well.

Inorganic nanocrystals found in biological probes are mostly composite structures of

at least two semiconductor materials: the emitter in which radiative recombination

occurs and the overcoat that passivates the emitter and protects it from

environmental assault. For clarity's purpose, the term fluorophore, when applied on

QDs in this thesis, will always designate the overall inorganic structure that includes

both the emitter and the overcoat, as the latter can significantly modulate the

emitter's optical properties. Also, as both emitter and overcoat can be made of more

than one semiconductor material, the composition gradient-i.e., fraction of each

constituent material as a function of QD radius-is relevant and will be referred to as

follows:

e homogeneously alloyed, in which the composition is uniform throughout

- gradient alloyed, in which the composition changes incrementally as a

function of radial distance.



* Core-shell, in which an ultra-steep gradient composition gradient effectively

separates the different materials into sublayers. When a core-shell gradient is

found in the emitter and the core and shell semiconductor each supplies one

type of charge carrier, the result is a Type Il QD (see section 2.2).

Figure 1.4 illustrates the schematic of a QD biological probe:

Inorganic Semiconductor
Nanocrystal (QD)
Fluorophore +
Organic Polymer Cap

CH3  
HN--2--

n

Homogeneously Alloyed
Emitter + Overcoat

Idient Alloyed
Emitter + Overcoat

Core-
Emitter + Overcoat

Figure 1.4: Schematic of a QD biological probe, including the nomenclature to be used in this

thesis for describing the inorganic fluorophores' compositional structure. The red material

will be cadmium telluride (CdTe), , cadmium selenide (CdSe), and blue, cadmium

sulfide (CdS).

Overcoating has become standard for QDs designed for use in biological applications.

While it is often performed as a separate step from synthesis, both its chemistry and

physical outcome can be seen as an extension of growth, in which monomers of a

semiconductor-one with a larger bandgap and a lattice constant well-matched to

the emitter-is epitaxially deposited onto the surface of a nanocrystal, the emitter

itself. Overcoating serves two major purposes: i) passivation, in which it completes



the dangling bonds from the emitter at the emitter/overcoat interface and thus

removes their mid-bandgap energy states that serve as non-radiative recombination

centers [7], ii) protection, in which it shields the emitter from oxidizing agents (02,

water, etc.). Overcoat therefore confers the stability required for nanocrystals to

immerse in the aqueous biological environment and maintains their quantum

efficiencies for in vivo fluorescence detection. Notation for overcoating in this thesis

will be A@B, in which A and B denotes the overcoating and emitter material,

respectively.

Upcoming chapters of this thesis will focus on the development of a NIR QD

fluorophore for use in in vivo imaging probes, using alloyed CdTexSe1 x as the emitter

material. Chapter 2 will begin with an overview of the structural and optical

characteristics of QDs, followed by potential fluorescence tuning parameters that are

specific to alloyed CdTexSe1 x QDs and the special considerations to be made when

synthesizing and optimizing the properties of such alloyed emitter nanocrystals. New

synthetic schemes for these CdTexSex QDs will then be presented in Chapter 3, with

emphasis on uniformity control and parameters that may affect reproducibility.



2 CdTeSe,., Alloyed QDs for In vivo NIR Fluorescence Imaging

2.1 Introduction: Structural & Optical Properties of QDs

At ~102_13 atoms per nanocrystal, QDs generally have diameters in the scale of 1E1 to

1E2 nm. The ultra small physical dimensions, comparable or smaller than the Bohr

radii of excitons generated during excitation, quantum-confine the electron-hole

pairs. The quantum mechanical model of QDs conforms to the simple "particle in a

sphere" configuration with strong confinement in all directions, provided that the

surface is perfectly passivated and relieved of strain [6,7,28,87,131,133]. QDs have

thus been known as "artificial atoms", or mesoscopic materials that exhibit

properties intermediate between the bulk and molecular forms [7,41,52].

Quantum confinement leads to discretized density of excitonic states in QDs, with

energy values dependent on both the composition-determined bulk semiconductor

bandgap and the nanocrystals' diameter. The bandgap of a QD of radius r, Egr, is

proportional to r2 [131], thus increasing from the bulk bandgap value as the

nanocrystal size decreases [7,41]. The shape of the nanocrystals, which changes the

extent of quantum confinement in each crystal axis, and their compositional

gradients (for alloyed QDs) further diversify the spectral outcome of QDs [137].

QDs are known to have narrow and symmetric fluorescence peaks [131]. This is due to

the low Franck-Condon vibrational coupling factors associated with excitons in QDs,

the rigid sp3-hybridized orbitals of its semiconductor crystalline structure permitting

little lattice distortion [131]. Hence, the electronic dipole selection rule suppresses the

number of conduction-to-valence band transitions involving vibrational sidebands,

eliminating the red "shoulder" often seen in organic dyes' spectral profile. Structural

stability also confers photostability in the QDs by suppressing non-radiative internal

conversions.



The width of a QD sample's fluorescence peak nonetheless deviates from the line

width expected from its discretized energy states. As QD's fluorescence is size-

dependent, size distribution in a population of QDs-which in a well-controlled

synthesis can be limited to -5% [127]-translates to a distribution in peak

fluorescence wavelengths. However, even if each QD is identical, broadening of the

emission peak from its theoretical linear profile still occurs due to spectral diffusion,

in which trapped charges on or near the surface of the nanocrystals, created by

energy input that can be very mild (such as room light), respond to the local

environment and create a time-evolving electric field that polarize nearby excitons to

form dipoles, leading to a small spectral Stark shift in each QD over time [51,52]. As an

ionization phenomenon, spectral diffusion is also related to the "blinking" observed

in single QDs [112,132] that compromise the quantum yield of a population [129].

The wide absorption band of QDs makes them highly attractive for multiplexed

imaging. QDs' large Stokes shift is the outcome of the densification of excitonic

states at energies removed from the band edge and the rapid fluctuation of their

energy values as a result of short lifetimes, an outcome of the Heisenberg

Uncertainty Principle (ApAx<h; or alternatively AEAth) [6]. Extinction coefficient of

QDs is therefore larger at shorter wavelengths, as the absorption band extends away

from its first absorption peak towards the UV. This allows QD probes of different

fluorescence wavelengths to be excited simultaneously by a single laser source

during multiplexed imaging, which greatly simplifies the needed optical setup.

Two-photon action cross section of QDs (two-photon absorption cross section a2p

multiplied by the fluorescence quantum yield) is significantly higher than that of

organic dyes, at the order of 1E3 to 1E5 GM (1GM=1E-50 cm4s) compared to organic

dyes' 1-1E2 GM [97,202]. As previously mentioned, multi-photon imaging allows the

use of NIR excitation wavelengths for visible wavelength fluorophores, thereby



reducing signal attenuation in the excitation path; it also allows for higher resolution

and less photo damage. QDs tend to have higher one-photon absorption coefficient

than organic dyes as well, with typical values between 1E5-1E6/(M.cm) (QD size

dependent) [98] compared to 1E4-1E5/(M.cm) for dyes (at dye absorption maximum

wavelength) [64,158].

2.2 In vivo Imaging with QDs: Semiconductor Choices Beyond the Visible

Spectra

Since Murray et al. [127] reported the colloidal synthetic scheme for highly crystalline

and uniform CdE (E=S, Se, Te) nanocrystals, the protocol has been adopted for a wide

variety of metal precursors, ligands and solvent systems [127,128]. Overcoating has

also employed similar schemes with success [71,184]. Research has postulated the

molecular mechanisms by which precursors of different element (ex.

trioctylphosphine-chalcogenides (TOP-E), cadmium-phosphonate complexes)

interact and become semiconductor monomers (ex. CdTe, CdSe) that either form

nucleates or deposit onto the growing crystal structure. These mechanisms are often

elucidated by first developing a working protocol for synthesis and then tracking the

identity and concentrations of precursors and molecules that form during the

reaction ([135]; [9] for InP; [179] for PbSe). Based on these studies, guidelines and

strategies on controlling the process and its outcome have been established.

The first QDs created from colloidal synthesis are based on compound

semiconductors made from divalent transition metals (zinc Zn, cadmium Cd, mercury

Hg) and the Group VI chalcogens (sulfur S, selenium Se, tellurium Te). Referred to as

II-VI semiconductors, fluorescence from these QDs, such as CdSe and CdS, usually

falls within the visible wavelengths. Only with appropriate mixture of materials and



stringent control of size and architecture can Il-VI QDs reach the first NIR window

(-650-95onm) suitable for in vivo imaging.

Ili-VI semiconductors are therefore not the most spectrally suitable QD materials for

achieving NIR fluorescence. Ill-V and IV-VI semiconductor families form nanocrystals

that fluoresce mostly, if not completely, within the NIR, and without the need to mix

two or more materials. Recent reviews [111,158,161] tabulated the wavelengths

achieved by these QDs; the Ill-V family (ex. InAsyP1y, lnxGa1xP, lnxGa1xAs) can emit

from the visible red (62onm, InP) to 14oonm (InAs), while the IV-VI semiconductors,

PbS and PbSe, can fluoresce up to 18oonm and 35oonm [70,143] and even longer

wavelengths are possible given their large Bohr radii (18 and 46nm respectively,

compared to 5.4nm for CdSe and 7.5nm for CdTe [26]) that allow for strong

confinement effects-thus each can comfortably span every NIR window suitable for

in vivo imaging. Of note, PbTe's bandgap is greater than PbSe's (Eg, PbTe=O.19eV, Eg,

PbSe=O.17eV) [94]. In vivo imaging with Ill-V QDs has been reported [9,63,85,201] and

their bio-distribution determined as well [36]. In vivo imaging using PbS and PbSe QDs

are yet to be reported.

Nonetheless, the Ill-V and in particular, the IV-VI family QDs have yet to catch up with

the 1l-VI family in regards to the knowledge base and tools available for controlling

synthesis and functionalizing the products for in vivo use. The rest of this thesis will

therefore be devoted to II-VI semiconductor NIR QDs.

For in vivo imaging applications, CdSe, often considered the "classic" QD material,

covers most of the visible spectrum with its size-determined emission from -470-

67onm [120]. Fluorescence from CdS and the Zn-chalcogenides are limited to the blue

end of the visible spectrum and therefore has limited use for tissue imaging.

Commercial biological probes based on CdS or CdSe emitter QDs with ZnS overcoat

have exemplified the strengths of QDs-symmetric and narrow (<4onm full width



half maximum (FWHM)) fluorescence profiles, minimal photobleaching, broad

Stokes' shift and large absorption cross-section.

Although CdTe QDs are capable of peak emission up to 75onm and quantum yields up

to 70%, Te atoms on the surface of the nanocrystals are strongly susceptible to

oxidation and act as hole traps that compromise the photoluminescence [74]. Unlike

the oxidation of CdSe (as well as ZnSe and ZnTe), which is shared between the cation

and the anion and is relatively self-limiting via a CdO-enriched surface, oxidation of

CdTe is specific to tellurium ions, forming TeO2 that continuously sublimes with un-

oxidized cadmium [50]. The resulting degradation of the CdTe QDs' physical structure

and optical properties, exacerbated by light, and the large diameters required to

reach NIR wavelengths all present issues in post-synthesis processing (in particular,

water solubilization), reliability and shelf-life.

NIR-emitting biological probes based on Il-VI semiconductor QDs are nonetheless

commercially available, the most prominent example being the QTracker series from

Invitrogen (Carlsbad, CA; spectral data available on company website). Fluorescence

spanning the 1st NIR window (650-95onm) from Il-VI QDs was first achieved by CdTe

core-CdSe shell QDs, which emitted up to iooonm [83]; the study suggested that the

spectral properties of these QDs depend not only on the size and overall composition

of the nanocrystals, but also the degree of mixing between the constituent

semiconductor materials, which can vary from complete (homogeneous alloy) to

none (core-shell). The latter, which gave rise to what is known as a type Il electronic

band structure within the emitter, was key to its reaching the longer NI R

wavelengths.

In the electron band diagram of type 11 CdTe-CdSe QDs (Figure 2.1), the conduction

and valence bands (Ec and Ey) are staggered and the band offset is positioned such

that the hole and the electron are quantum-confined to the core and the shell



respectively. Charge recombination must occur across the material interface during

radiative decay.

TYPE I QD Radial Distanc TYPE 11 QD Figure 2.1: Type I vs. Type II

i electronic structure. In type I

-Fr. a = Q~ssuch asthose withCdSe G i n. ~h
CdSe as emitter and ZnS as

v CdS v overcoat, both the

conduction and valence

E band edge has lower energy
_(D I I

-E in the inner (emitter)

Radial Distance Radial Distance material. Thus both
electrons and holes are generated and they recombine in this one material without having to

cross a material interface. In type I QDs, such as those with CdTe core and CdSe shell, the

staggered conduction and valence bands energetically favors electron and hole generation in

separate materials. Recombination occurs across the core-shell interface, thus emission

requires the participation of two materials. It can nonetheless generate photons with lower

energy (shown in green) than the bandgap of the core or the shell. Band diagrams are

reproduced from [84].

The effective bandgap in these type I QDs, modulated by two semiconductors,

extends the longest peak fluorescent wavelength attainable by CdTe-core/CdSe-shell

QDs into the NIR [83]. The FWHM of the fluorescence peak is nonetheless broad

(74nm@ 705nm peak fluorescence for Qtracker 705 (Invitrogen, Carlsbad, CA),

compared to 33nm for Qtracker 655 that is composed of CdSe-ZnS QDs). Quantum

yield is also compromised due to long radiative lifetimes resultant of spatial

separation of charge carriers, which promotes non-radiative decay with interfacial

crystalline defects serving as non-radiative recombination centers [83]. Interfacial

defects also trap charge carriers at mid-bandgap energy states prior to radiative

recombination, giving rise to a "red tail" in the emission profile that is not unlike the



"shoulder" in organic dye spectra, with the same effect of rendering the

fluorescence spectra more difficult to confine within a single optical channel during

multiplexed imaging.

Syntheses of CdTe+CdSe QDs with more uniform compositional mixing-the

homogeneous and gradient alloy CdTexSex QDs-have also been reported in

literature. Closely related to the gradient alloyed QDs are the quasi type-Il CdTe-CdSe

QDs; in quasi-type II QDs, one of the charge carriers remains confined in the core or

shell material while the other carrier delocalizes [74]. While homogenous alloys are

ideal Type I structures, gradient alloys may be more practical to synthesize due to

differential kinetics between the precursors, in this case, of the chalcogen Te and Se

that are to be alloyed. Regardless of the degree of alloying, CdTexSe1 x QDs have not

been commercialized, although they too, are capable of achieving wavelengths in the

NIR [13]. They will be the focus of the rest of this chapter as well as Chapter 3 of this

thesis.

On a final note, the II-VI mercuric chalcogenides (HgE, E=S, Se, Te) have longer

absorption and emission wavelengths compared to the cadmium equivalents and

their fluorescence extends well into the NIR range; HgS QDs can emit up to 8oonm

and HgTe QDs, 1800nm [161]. Application of these QDs in the biological context is not

considered, however, due to the extreme toxicity and environmental concerns

regarding the use and disposal of mercury.

2.3 CdTeSe1 x Binary Alloy QDs

Over the past decade, several groups have prepared and characterized CdTexSex

alloyed QDs as NIR emitters [13,14,73,77,144]. While CdTexSe-x QDs do not have the



staggered bandgap that is responsible for Type Il CdTe core-CdSe shell QDs' NIR

fluorescence, optical bowing in bulk CdTexSe1 x (more details in section 2.3.2)

suggested the potential of CdTexSex QDs to surpass CdTe QDs in their longest

emissible wavelength. Meanwhile, by alloying / physical mixing of the constituents

CdTe and CdSe and eliminating the material interface to be crossed for radiative

recombination, CdTexSe1 x alloyed QDs are expected to share the attributes of type I

QDs such as CdSe-robust quantum yields and narrow and symmetric fluorescence

profiles. These qualities, together with their NIR fluorescence and photostability,

would make CdTexSe1 x QDs the ideal fluorophore candidate for in vivo imaging.

Unlike QDs composed of one semiconductor material such as CdSe or CdTe,

therefore, CdTexSe1 x has three major parameters controlling its fluorescence rather

than one (assuming shape is constant and isotropic): size, composition, composition

gradient. This is akin to having a 3-D parameter space to search for a robust synthetic

scheme for CdTexSe1 x QDs compared to a 1-D line for single-semiconductor QDs.

Achieving uniformity in the products' physical and optical properties also presents a

much greater challenge-not only because of the diversity of outcomes, but also

because of the multitude of additional factors that must be considered when

working with the CdTexSe1 x alloy system. Some of these factors stem from the bulk

properties of the alloy, others, the nanoscale dimensions of QDs and still others, the

practical concerns and limitations in the colloidal chemistry used for QD synthesis.

These factors will be detailed in the remainder of this chapter.

2.3.1 Structural overview of CdTe.Se 1x QDs: Lattice Structure and Surface

Reconstructions.

QDs made of CdTexSe1 x are expected to crystalize in the hexagonal close-packed

wurtzite structure assumed by bulk and nanocrystalline CdSe or the cubic zinc blende

structure of bulk CdTe [144]. Wurtzite and zinc blende structures are identical in their



tetrahedral bonding to local neighbors but differ in their plane stacking sequence

along the (1 1 1) direction (wurtzite: ABABAB...; zinc blende: ABCABC...). Thus,

compared to the isotropic zinc blende, wurtzite loses structural symmetry in its c-

axis, which coincides with the direction of most aggressive growth in wurtzite QDs.

This anisotropy in growth direction, which stems from difference in surface energy

among the crystal facets, allows for syntheses of QDs with various shapes; by

modulating the selection and availability of monomers and ligands, nanocrystals from

spheres (aspect ratio -1; minimal shape anisotropy) to elongated rods to branched

structures have been produced [113].

Controlling the surface of the QDs, which enumerates a significant fraction of the

total number of atoms per nanocrystal (30% in a 5nm diameter CdSe QD, for

example), is vital to developing a proper synthetic scheme. Surface reconstruction

reduces the number of dangling bonds, minimize electronic energy and electrostatic

energy via the rearrangement of charged, inorganic surface atoms [114]. Only with

the presence of organic ligands, however, can full passivation be attained; ligand

binding is nonetheless modulated by surface reconstructions that first determine the

facets to which they bind. Relatively availability of each ligand during synthesis and

its controlled removal during flocculation also control the outcome of ligand binding;

decreasing the acid input during synthesis, for example, has been shown to switch

the prominent ligands on CdSe QDs from strong acids to phosphine oxides and

selenides [90]. Densely-capped ligands with strong electron donating abilities are

well suited to transfer their electrons to passivate the surface states [134]. While

ligands modulate the shape of nanocrystals via the facet-dependent variations in

surface energy upon ligand adsorption / binding, the shape of the ligands themselves

has been linked to their ability to passivate; cone-shaped ligands (such as

trioctylphosphine, or TOP) have been reported to encourage the growth of small QDs

with small radii of curvature, while linear / rod shaped ones (alkyl amines and acids)

favor larger QDs [134].



Various reports have investigated the relationship between the QDs' crystal lattice,

their surface reconstructions and the strength and coverage of their surface ligands'

binding. QD shape anisotropy is a well-known consequence. Via first-principles

modeling, atoms on the surface of CdSe QDs have been shown to have different

propensity to passivation via self-healing (rearrangements of surface atoms [151]) and

ligand binding leads to growth rates and surface strain and energies that are all facet

specific [114,156]. The details can be summarized as follows. On the non-polar, Cd+Se

containing (1o 1 o, 11 2 o) planes, the Cd atoms, with their sp3 -> sp2 change in

hybridization, donate electrons to the Se dangling bonds and mechanically relax the

surfaces, the energy of which is further lowered by good coverage of strong Cd-

complexing ligands including phosphonic and carboxylic acids. Hence, these facets

are the most inactive in QD growth [156]. On the other hand, the polar planes along

the c-axis, which carry alternating layers of Cd and Se atoms, are strained and not so

easily passivated. The (ooo1) plane, which is preferentially terminated by Cd, is

partially stabilized with a vacancy and an incomplete coverage of ligands (-75%).

Meanwhile, the high surface energy of the Se-preferred (ooo 1 ) plane, which cannot

be passivated by any ligands, is largely responsible for anisotropic growth. The

influence of ligand binding on the mechanical strain within the entire QD lattice has

also been studied; for example, Meulenberg et al. [119] reported compressive strain

exerted by hexadecylamine (HDA) on the lattice of CdSe QDs and tensile strain by

trioctylphosphine oxide (TOPO), the extent of both decreasing as the nanocrystals'

size increases.

Surface reconstructions can also cause non-stoichiometry. Despite the predicted Cd

vacancy for (ooo1) plane relaxation, elemental analysis of actual cadmium

chalcogenide QDs from various synthetic schemes has reported Cd-enriched products

(ex. [41,114,123,196]) with positively charged surfaces. Related to surface charging is

that ligand binding occurs as L- or X-type. L-type ligands do not donate their charges



and include trioctylphosphine oxide (TOPO) and amines that were first described as

QD ligands by Kuno et al. [93], while X-type ligands are dative and are, in most cases,

deprotonated phosphonic and carboxylic acids that complex strongly with ionic

cadmium atoms on the surface. Abundance of X-type ligands compared to the L-type

may encourage non-stoichiometry by their stabilizing effect [123].

Both the lattice structure and organic / inorganic surface reconstructions may

participate in the fluorescence tuning of CdTexSex QDs, as will discussed in the next

section. While it is beyond the scope of this project to provide experimental evidence

on how and to what extent each of these factors, often atomic in scale, contributes

to spectral modulation, understanding these factors is helpful for predicting how the

spectral characteristics of CdTexSex QDs may shift when changes are applied to their

synthetic schemes.

2.3.2 Fluorescence Tuning in CdTexSex QDs: Optical Bowing, Strain-induced

Spectral Shifting & Surface Effects

Optical bowing tunes bulk CdTexSex fluorescence in a nonlinear manner. Vegard's

law, which predicts the bandgap Eg for an alloy of composition AxB1 x as a linear

function of composition x

Eg,AXBI, - E Ax + E9,B (1 - x) (Eq.1)

is modified with b(x), the bowing function to give a second order relationship:

Eg,ABB1_ - Eg,AX + Eg,B(1 - x) + b(x)x(1 - x) (Eq.2)



b(x) is smaller than o eV for CdTexSe.x, ZnTexSejx, CdyZnl-ySe and CdyZn 1yTe binary

alloy systems, thus they fluoresce at longer wavelengths at certain alloy

compositions compared to what is predicted by Vegard's law [69,146]. Proposed

physical mechanism behind optical bowing is the local ordering of the alloy's atomic

constituents, which differ in atomic radii, electronegativity and lattice constants, to

allow for structural relaxation of the lattice [22,146].

Bailey and Nie [13,15] were the first to hypothesize that the NIR wavelengths

observed in alloyed CdTexSe1 x QDs is caused by the optical bowing effect. In the

series of homogeneous and gradient alloy QDs they produced, the longest

wavelength achieved was 825nm for a 6.5nm diameter, CdTeo.66Seo.34 QD, compared

to -74onm for the same sized CdTe [13].

Estimates of the expected fluorescence wavelength of CdTexSe1 x QDs of diameter D

can be made if b(x) is assigned the near composition-independent optical bowing

factor of bulk CdTexSelx, -0.94eV [69,146], and assuming the 1st absorption peak

energy, Eabs,, shares the bowing characteristics of its corresponding fluorescence

energy. From Eq.2, Eabsi of CdTexSe1 x QDs of diameter D can then be formulated as, in

eV:

Eabs1,CdTexSeix(D) = EabslCdTe(D)x + EabslCdse(D)(1 - x) - 0.94 x(1 - x)

(Eq-3)

This assumes that the alloy is fully homogeneous. Estimates of Eabsi, caTe and Eabsi,CdSe

can be made from published fitting curves that describe CdTe and CdSe QD diameters

as a function of their 1st absorption peak wavelength A, determined from

experimental data ([195] for CdTe; [126,127] for CdSe):

DCdTe = 9.8127 x lO 7 AcdTe3 - 1.7147 x 10 3AcdTe2 + 1.oo 6 4 ACdTe - 194.84 (Eq.4)



DCdSe = 3.149 x 10~9ACdSe 5 - 8.482x 10-6 Acdse4 + 9.119x 10 3ACdSe3 - 4.891ACdSe 2 + 1.0387x 10 3ACdse -

1.3975x 105 (Eq.5)

Figure 2.2 shows the resultant plot of the predicted 1st absorption peak wavelength

for CdTexSe1 x QDs as a function of nanocrystal diameter D based on the above

calculations:
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Figure 2.2: Estimated 1st

absorption peak wavelength of

CdTexSex QDs as a function of

QD diameter D and at different

compositions x, assuming that

optical bowing behaves

identically in QDs as in bulk. The

longest wavelength is attained

when x=o.6o-o.65 (shown in

orange).

While optical bowing has been cited as the cause of non-Vegard's rule compliant

fluorescent wavelengths in QDs composed of CdTexSex as well as other alloyed

systems, attempts to model optical bowing in nanocrystals has nonetheless given

contradictory results. For example, Zhu et al. determined that the bowing function

b(x,D) increases rapidly from -o.83eV to o as D shrinks to <1onm for zinc blende CdTe

xSex, suggesting that the effects of optical bowing diminish in nanocrystals [200].

However, Mourada and Czycholl applied an alternate model on CdyZn1ySe and

reported that optical bowing actually becomes more pronounced as D decreases to

<5nm [124].



It should hence be noted that optical bowing, as a bulk phenomenon, assumes the

alloy under observation is completely homogeneous with no surface or interface

effects, which is unlikely to hold true for nanocrystals. Whether the alloy is

compositionally homogeneous within each QD depends on the synthetic scheme;

also, the large surface-to-volume ratio of each QD, as well as the fact that QDs

almost always have at least one material interface (emitter / overcoat), means that

any local lattice ordering that gives rise to optical bowing within the nanocrystals

must be influenced by the mechanical strain at the surface and interface(s), a

consideration that is less than vital in the modeling of the bulk.

Related to optical bowing, then, is the more recent report that mechanical strain by

means of core-shell lattice mismatch can yield QDs with fluorescence tunability far

exceeding the extent permissible by optical bowing in the bulk material [173]. In

determining the distribution of mechanical strain inside a QD, shell deposition on a

core (or overcoat on an emitter) can be regarded as epitaxial growth of a film on a

substrate; while in 2D systems, the substrate is often significantly thicker than the

film and thus considered infinite in size and fully relaxed mechanically (strain Esubstrate

-> o) [60], the core in QDs, with similar dimensions as the shell, is expected to be a

compliant substrate that can distort its lattice to accommodate the shell. The strain

due to lattice mismatch is hence shared between the core and the shell and the

extent each undergoes is determined by the elastic modulus of the respective

materials [109].

The stiffness of Cd and Zn chalcogenides is inversely related with its unit cell volume

[78], which, in turn, is inversely related with its bandgap energy. The shell material,

which has a larger Eg, is therefore expected to be stiffer than the core. If the

compliant substrate hypothesis holds true for nanocrystals, then the core would

sustain more of the elastic strain from lattice mismatch and experience a spectral

shift. While compressive strain in the core lattice alone would lead to shorter



fluorescent wavelengths, elevation of the core's conduction band position (which

accounts for most of the change in Eg value in Il-VI semiconductors [102]) and the

lowering of Ec in the stretched shell's may become sufficient to yield a type Il

electronic structure.

Although the reasoning above mainly concerns core-shell structures, fluorescence

modulation by mechanical strain is expected to extend to gradient alloyed CdTexSe1 x

QDs, which are Te-rich at the center and Se-rich towards the surface. Such gradient-

alloyed QDs can be seen as intermediates between homogeneously alloyed QDs and

core-shell QDs; as their compositional gradient steepens, gradient-alloyed CdTexSex

QDs should converge to type Il CdTe core-CdSe shell QDs in structure and optical

properties. Thus like core-shell QDs, gradient-alloyed QDs should also experience

mechanical strain, if only to a lesser extent, within its lattice structure and exhibit the

accompanying spectral shifts, the amplitudes of which are determined by the

compositional gradient within each nanocrystal.

Consequently, prediction of the spectral properties of CdTexSex QDs is far from

straightforward. Although mechanical strain and / or optical bowing are expected to

play a role in modulating the fluorescence of CdTexSe1 x QDs, their effects are difficult

to gauge and dependent on synthesis conditions.

Surfaces and interfaces may also augment the set of variables in CdTexSe1 x

fluorescence tuning given their contributions to the mechanical stain of QDs. If both

optical bowing and strain-based bandgap modulations originate from lattice

distortions, then "outside" layers of material with different lattice constants

epitaxially grown on the CdTexSe1 x emitter-for example, a CdyZn1 yS overcoat-can

further alter the lattice strain within the emitter, rendering the latter's optical

properties even less predictable. Meanwhile, the configuration of surface atoms and

their passivating ligands influences the mechanical strain and the surface



stoichiometry of the QDs, as previously discussed. While Puzder et al. [151] claimed

these factors had negligible influence on the bandgap of CdSe QDs, in a modeling

study [24], Cd-rich and Te-rich CdTe nanoclusters that are dominated by surface

atoms have been predicted to have different HOMO-LUMO gap size due to

differences in mechanical relaxation. Experimentally, band gap modulation by

surfaces and interfaces has yet to be reliably determined, in part due to the sensitivity

of both the surface atoms and the ligands to post-synthesis processing steps

required for structural and elemental analysis; flocculation ("crash out"), for

example, which cleans up the QDs, may strip off surface cadmium-ligand complexes.

2.4 Process Control in the Colloidal Synthesis of CdTeSe,.x QDs

Reproducibility of the synthesis of CdTexSe1 x QDs is therefore critical for

understanding the behavior of this alloyed system in nanocrystal form and optimizing

its structural and optical properties. Even minor differences in size and composition

may translate to a substantial shift in composition gradient and fluorescence

wavelengths.

CdTexSe1 x QDs also lack "gold standard" absorption profiles, which have served as

fast metrics of nanocrystal size and quality for single material QDs. This is due to the

need to specify the composition gradient in addition to size and composition in

creating such standard, and the only truly reliable means to determine the

composition gradient is by carrier lifetime measurements. Major publications on

CdTexSe 1 x QDs have reported vastly different absorption spectra from well-defined

[13,144] to barely resolved features [77]. Given that high quality single material QDs

are characterized by sharp, well-defined absorption features that shift in a known

relationship to nanocrystal size ([126,127] for CdSe; [195] for CdTe) and type Il QDs



have diminished absorption band edge and often smoothed features [83], gradient-

alloyed QDs, even those that are highly crystalline and uniform, are expected to have

less defined absorption peaks-but the extent of loss in definition is likely influenced

by both the composition gradient, which is inherent to the nanocrystals, and

morphological non-uniformity or poor crystallinity, which are reversible by improved

synthetic schemes.

The practical consequence of having no simple models that describe the effects of

factors other than size on CdTexSex QDs' bandgap tuning is that in situ selection of

fluorescence wavelengths during synthesis is difficult to perform. During the growth

of single-material CdSe or CdTe QDs, for example, the size and fluorescence peak

wavelength increase incrementally, allowing the endpoint of determined in real time

by monitoring the band edge or fluorescence peak location in time intervals.

Synthesis of alloyed QDs may not enjoy such convenience in wavelength tuning. Non-

linear shift in fluorescence peak over the course of growth has been observed during

the synthesis of CdTexSe1 x QDs for this project. In quasi type II CdTe-CdSe QDs, which

may be viewed from a compositional perspective as gradient alloyed nanocrystals,

sub-monolayer thickening of the CdSe shell has been reported to push the spectral

characteristics significantly into longer wavelengths, presumably due to carrier

delocalization [38] but can also be contributed by Te-to-Se chalcogenide exchange at

the surface and/or lattice ordering within the emitter. The high temperature phase

during synthesis may also relax intraparticle strain via annealing, inducing further

atomic rearrangements in the lattice. In addition, composition gradients in alloyed

QDs are generally unpredictable from their synthetic schemes. Non-unity reaction

yields can cause the composition of the QDs to deviate from the composition of

starting precursors and depending on ligand choice and the balance it maintains

between kinetic- and sterically driven growth, what is left behind can be exclusively

the slower precursors (Se in this case) or a mixture that is closer in composition to

the precursor input.



CdTexSe1 x synthesis protocols therefore demand specificity that is beyond what is

needed for describing the synthesis of single semiconductor QDs. Critical parameters,

such as temperature, concentration and purity of starting chemicals, the timing and

rate of precursor introduction, are already routinely reported in detail for single

material QD syntheses. Still, it is known that successful reproduction of any published

synthesis protocol is more an exception than a rule even in the hands of experienced

QD chemists. Variations in outcome have shown themselves to be more pronounced

in alloyed QD systems. While the causes of these variations may be traced to obscure

differences in reaction conditions, such as temperature ramping and cooling rates

(dependent on the setting of the temperature control) or pressure of the inert gas

and its quality (ex. concentrations of oxygen and water); it has been established that

impurities found in starting chemicals can exert a significant effect on the

morphology of the synthesized QDs (further discussion in section 2.4.2.1). The high

temperature conditions of synthesis also encourage side reactions and formation of

byproducts.

Another potential source of ligands and monomers-and a very difficult to control

one-are the QDs themselves in the growth solution. The growing, changing QDs are

sinks of monomers and ligands that dynamically reverse their role to act as sources

when precursor concentrations run low, thus acting a crystalline "buffer" that

maintains an equilibrium between free and bound monomers. Maintaining a single

population of QDs at all times during synthesis-i.e., suppressing any nucleate

formation after an initial "burst" of nucleation events-eliminates the complexity in

process control due to the presence of multiple precursor sinks and sources. It also

aids in ensuring reproducibility of the alloyed QDs which, unlike single material QDs,

cannot "uptake" late nucleates (in size focusing, to be described in more detail in

section 2.4.1.2) without the risk of modifying its optical properties.



In the upcoming section, the means to maintain a single QD population over the

course of a single-semiconductor QD synthesis will first be introduced. How these

mechanisms and their theories apply to alloyed QD synthesis-and in particular, how

they can be compromised by the variations in composition among the alloyed QDs-

will be discussed next. This is followed by a closer look at the role of chemical

impurities.

2.4.1 Maintaining a Single Population of QDs

2.4.1.1 Achieving Uniformity in Single Semiconductor QD Systems @ Nucleation

Evolution of organometallic monomer concentrations in the colloidal synthesis of

QDs follows closely the nucleation and growth model described by La Mer and his

colleagues, based on their studies of self-nucleation in hydrosols and aerosols [95,96]

(Figure 2.3). Monodispersity of the nucleated phase is achieved when nucleation

occurs as a "burst", i.e., within an infinitesimal amount of time.

Figure 2.3: La Mer's nucleation and growth
CRITICAL LIMITING SUPERSATURATION

S C,;-+Iir RAPID model, reproduced from [96]. Cs is the

t PARTIAL RELIEF OF SUPERSATURATION saturation concentration of precursors, CN,

GROWTH BY DIFFUSION the critical concentration of nucleation. RN is

W CS the rate of nucleation. Stage 11 is the
SOLUBILTY C,

nucleation phase and Stage III is the growth

phase. Monodispersity of nucleates is

TIME achieved when the precursor concentration
approximates Ccr, the limiting state of supersaturation at which the rate of nucleation, RN,

approaches infinity and creates all nucleates within a single, infinitesimal "burst" of time;

ideally then, Stage I is also bypassed such that the monomer concentration never passes

through the range at which slow nucleation occurs. Css, dependent upon the reaction



In QD synthesis, monodispersity of nucleates is further ensured by the initial high

temperature, fast injection of organic metallic precursors, which not only allows for

the spike of concentration to near C., and bypassing Stage I as defined in Figure 2.3,

but also lowers the temperature (which shifts the whole curve upward) and expands

the volume of the growth solution (hence, suppresses the precursor concentration

by more than the amount exhausted by nucleation). Uniformity of nucleate growth is

encouraged subsequently by supplementing precursors to sustain their

concentration at supersaturation and allow for size focusing, the latter to be

discussed next. Other changes in the growth solution that can encourage uniformity

are more subtle and difficult to quantify; for example, release of by-products that

changes the viscosity or interact with the nanocrystals (ex. TOPO's oxidation into

phosphinic and phosphonic acids under sustained heat [192]).

2.4.1.2 Achieving Uniformity @ Growth in Single Semiconductor QD Systems: Size

Focusing & Oswald Ripening

As the key mechanism for maintaining monodispersity during the growth of single-

semiconductor QDs, size focusing refers to the narrowing of QD size distribution that

occurs when the size of individual growing QDs universally exceeds a critical radius,

determined by the concurrent free monomer concentration in the reaction vessel.

High monomer concentrations encourage size focusing by suppressing the value of

the critical radius, hence size uniformity is achieved either by ceasing the reaction

when precursors are not yet exhausted or via continuous introduction of free

precursors [137]. As a dynamic process, size focusing not only preserves the narrow

conditions, should be sufficiently dilute such that once a single burst of nucleation events has

occurred, it falls under CN but above Cs; the supersaturation then drives the growth of the

nucleates but allows no further nucleation.



size distribution of a monodisperse population of nucleates but actively drives the

current population to the narrowest size distribution-thus it has the potential to

"repair" a starting nucleate population with less than ideal uniformity.

Surface energy of the nanocrystals has been determined to be the driving force

behind QD size focusing [155]. The Gibbs-Thompson (or Kelvin) effect delineates the

relationship between solubility of a particle and its surface energy, which is due to

the increase in chemical potential when local curvature increases:

2C-Vm

Sr = Sbx e rRT (Eq.6)

Where Sr, Sb are, respectively, the solubility of a particle of radius r and its

corresponding bulk material; a, the specific surface free energy; Vm, the particle's

molar volume. R and T are the gas constant and temperature [138].

The reverse process to size focusing is Ostwald ripening, which describes the

widening of particle size distribution due to the exhaustion of free precursors in

solution. Small crystals, which are kinetically favored to nucleate, are lost at the

expense of larger ones that are thermodynamically favored to grow. Oswald ripening

has been modeled based on diffusion-limited growth, which assumes the interface

between the particles and their matrix acts as an efficient source/sink for monomers.

Specifically, the LSW theory describes the growth rate of a particle of radius r using

Fick's first law as a starting point, then takes into account the Kelvin effect as well as

the resistance from the adsorbed layer on the particle surfaces [45,79,207] to give

rise to a equation of the following form [138]:

dr K( + $)( - )
dt r - r)(Eq.7)



6 is the thickness of the adsorbed layer; K is a constant proportional to the diffusional

coefficient; r* is the critical radius at which solubility of the particles is equal to the

free monomer concentration in solution and increases in value when the free

monomer concentration decreases. One important assumption of the LWS

competitive growth theory specifies that the particles (i.e., the QDs) and bulk phase

(the growth solution) must have identical compositions [207]. According to Eq.7, as

growth proceeds and monomers are depleted, the rise in r* (and consequent drop in

1/ r*) leads to the smaller particles having a negative growth rate and dissolving while

larger ones continue to grow in their expense. This competitive growth phenomenon

thus widens the size distribution of the overall population.

Size focusing occurs, on the other hand, whenever enough monomers are present

such that all particles are in the positive growth regime (1/r* - 1/r >o). Metal-ligand

precursors supplied late during growth initiate focusing as well as those introduced

at or before nucleation [138]. Size focusing by late injection of precursors also allows

independent control of precursor concentration for nucleation and for growth.

However, even if the precursor concentration is kept below the critical concentration

for nucleation (CN), it has been known that nucleation can still occur in the form of

magic-sized nanoclusters (MSNCs), which are ultra small, ultra stable nanocrystals;

their properties and effects on synthesis will be detailed in section 2.4.1.4.

Last but not least, the size focusing point, at which the QD population is at or near its

narrowest size distribution, has been observed to coincide with maximum quantum

yield of the nanocrystals. The same study hypothesized this phenomenon to be due

to the near monomer-QD equilibrium achieved at the size focusing point, which leads

to less atomic exchanges between the QDs and the solvent and allows for optimal

QD surface reconstruction, improving both quantum yield and photostability [153].



2.4.1.3 Achieving Uniformity Post-Synthesis in Single Semiconductor QD Systems:

Flocculation

Flocculation (or crash-outs) extracts the QDs from their growth solution-the

solution and suspension of unused precursors, ligands, surfactants and byproducts of

reactions at the end of synthesis and overcoat. Two countering forces determine if

flocculation occurs: Van der Waals forces, from induced dipole / induced dipole

attraction that draw neighboring nanocrystals together, and steric repulsion, in

which the ligands extending from the QD surface entropically and enthalpically repel

the particles from one another and suppress aggregation [126]. A solvent that

suspends QDs single nanocrystals shields the interparticle charge interactions;

subsequent addition of a miscible non-solvent reduces the repulsion force and causes

the QDs to form a flake, or "floc". The turbid media is then centrifuged and the

supernatant decanted to collect the pellet of nanocrystals, which can be re-

suspended in the solvent for another round of cleanup or proceed to the next

processing step such as overcoating or water solubilization [128]. Solvents and non-

solvents of choice for QD flocculation are therefore dependent on the organic cap of

the QDs. The hydrocarbon tails of most QD surface ligands result in the choice of non-

polar, hydrophobic liquid hydrocarbons (ex. hexanes, toluene) as solvents and the

alcohols and ketones (ex. methanol, isopropanol, acetones), which are of

intermediate polarity, as non-solvents. Strongly polar solvents, as well as over

zealous addition of medium polarity non-solvent and repetition of the flocculation

procedure, are known to strip away the organic cap and causes irreversible

aggregation and loss of fluorescence.

One notable application of flocculation for single-semiconductor QDs is size-selective

precipitation. Larger QDs tend to aggregate first upon addition of non-solvents due

to their higher polarizability [51], which in turn creates stronger inter-particle Van der

Waals attraction. Partial flocculation of the QDs therefore yields a pellet that is



enriched in larger-sized QDs. A QD population can hence be divided into a series of

subpopulations, each of a progressively smaller mean diameter, by adding the non-

solvent in increments, centrifuging and decanting the supernatant that is free of the

largest subpopulation.

2.4.1.4 Nucleate Heterogeneity & Magic-Sized Nanoclusters (MSNCs): Special

Considerations for Alloyed QD Synthesis

Early nucleates of alloyed QDs are expected to exhibit compositional heterogeneity

as long as the competing precursors that give rise to each constituent semiconductor

(ex. TOP-Se versus TOP-Te in CdTexSe1- synthesis) are present and are both

sufficiently reactive to participate in nucleation. Even if the precursors are identical in

reactivity and diffusive properties, statistics alone is sufficient to generate a

compositional distribution. Small nucleates, in particular, can have a significant

compositional spread, wider if the competing precursor incorporation rates are close

to equivalent-this can be modeled using binomial distribution with the relative

incorporation rates converted to the probability p. These nucleates with different

compositions then serve as templates for growth, their lattice constants in all cases

resisting compositional changes to minimize epitaxial strain that expends energy.

Growth rates also differ, thus nucleate heterogeneity translates to a wide range of

composition as well as size over time. Meanwhile, differences in reactivity and steric

effects among competing precursors cause selective precursor exhaustion, which

leads to evolution of the composition of nucleates forming at one infinitesimal time

point to the next.

Nucleation has been known to occur over the course of growth even under

optimized synthesis conditions, in the form of ultra small nanocrystals (1-2nm) with

discrete and defined numbers of atoms known as the magic-sized nanoclusters

(MSNCs). The formation of MSNCs has been ascribed to their exceptional structural



stability and hence, low chemical potential compared to the free monomers in

solution [140]. Each "species" of MSNCs-of one size or number of atoms-

corresponds to a closed-shell atomic configuration and does not evolve gradually in

size or optical profile during growth as QDs do; rather, a MSNC population "jumps"

from one species to the next until it outgrows the largest cage configuration, at

which point it behaves like regular QDs. Size uniformity within each species of

MSNCs also translates to sharp, well-defined features in the absorption spectrum.

MSNCs based on CdTe, CdSe and CdS and their optical absorption band edges

corresponding to each family of close-shell atomic configuration have been reported

[49,91,196]. A family of homogeneously alloyed CdTeo.5Seo. 5 MSNCs with doublet

absorption peaks at 520 and 524nm has also been described [191]. Their caged atomic

configurations have also been elucidated: CdSe MSNCs, for example, lack the reactive

(ooo 1 ) Se-terminated and (ooo1) Cd-terminated surface planes; instead, it is

"caged" within facets identical to the less reactive nonpolar (11 2 o) planes that are

preferentially stabilized by ligands on CdSe QDs [157].

Although MSNCs are essentially defined by their singular, thermodynamically stable

cage structure, they are known to exhibit spectral variations according to synthetic

conditions. This is believed to be caused by the strong effects on lattice strain

imposed by different surface ligands, given that the surface takes up the majority of

atoms in these ultra small nanocrystals. Thus while absorption band-edges have fixed

values for a given species of MSNCs synthesized with a given synthetic scheme,

MSNCs of the same material and size but synthesized in different solvent-ligand

systems vary in their spectral properties [49]. Furthermore, MSNCs capped with

different ligands also merge into the continuous growth phase of "regular" QDs at

different wavelengths, as shown in the Table 1:



Table 1: Variations in absorption band edge among reported CdTe and CdSe MSNCs.

Material Solvent-Ligand System Wavelength, absorption band-edge (nm)

CdTe Nonanoic acid, Decylamine, TOP 445, 488, 506 [196]

Hexylphosphonic Acid, 425, 470, 505, 557, 606 [43]

Hexadecylamine, TOPO

CdSe Nonanoic acid, Dodecylamine, TOP 330, 360, 384, 406, 431, 447 [91]

Diisophosphinic acid, Hexadecylamine, 441, 446, 490 [49]

TBP

That MSNCs can retain their ultra-stable configurations at large diameters / long

wavelengths further cloud the distinction between MSNCs and QDs. Thus rather than

treating MSNCs as an inorganic impurity that is highly distinguishable and easily

removable, MSNCs must be treated as dynamic (and potentially QD-similar)

populations that interact and compete for resources by being in the same precursor

pool as the major QD population.

MSNCs generally pose few problems to the synthesis of single semiconductor QDs.

Although they may lead to significantly faster precursor exhaustion, which is

remediable by precursor injections mid-growth, MSNCs and the QDs that mature

from them should remain the smallest-sized in the growth solution and therefore, the

fastest to re-dissolve when Ostwald ripening occurs. This prevents them from

"catching up" or taking over the major population of QDs by growing in its expense.

Size selective flocculations can also remove them. The major QD population also does

not suffer from compositional perturbations when they incorporate the re-dissolved

precursors from the MSNCs.

On the other hand, MSNCs, when present in significant quantities, can prove

detrimental to controlling the synthesis of alloyed QDs. Size focusing is no longer a

reliable "crutch" for repairing non-uniformity for two reasons. First, alloyed QD



syntheses do not meet an important assumption of the LWS competitive growth

theory that specifies that the particles and solvent (i.e. the growth solution) must

have identical compositions [207]. Size-dependent solubility (S,, Eq.6) also assumes

identical specific surface energies (a), but alloyed QDs are likely to exhibit a small

degree of surface compositional heterogeneity. Thus the relationship described

between QD size and growth rate dr/dt (Eq.7), which drives the size focusing process

in single-semiconductor QD synthesis, may no longer apply. Secondly, MSNCs'

dissolution during Ostwald ripening, which often instigates the need to size focus,

can change the effective composition of the growth solution from which the major

QD population continues to draw its precursors. This is because MSNCs may be

compositionally distinct from the major QD population if they nucleate after the

initial nucleation stage, after significant material-selective precursor exhaustion has

occurred. The composition gradient within the major QD population is then

perturbed, potentially giving rise to more compositional non-uniformity as the

precursors preferentially deposit onto whichever QD subpopulation that has the

most active surface in the reaction vessel.

Even if the MSNCs do not affect the properties of the major QD population, removal

of MSNCs by flocculation presents more challenges in alloyed compared to single-

semiconductor systems, as will be discussed in the next subsection. While the

inability to remove MSNCs effectively can potentially be resolved by increasing the

resolution of selective flocculations (protocol detailed in section 3.5.3.2), the

approach is time consuming and lowers reaction yields.

For simplicity's purpose, the term "MSNCs" in the subsequent sections in this thesis

will refer to both MSNCs and the extraneous QD populations they grow into after

leaving the caged configuration phase.



2.4-1.5 Composition Effect on Selective Flocculation: Special Considerations in

Alloyed QD Synthesis

Size-selective precipitation is part of the original CdSe QD preparation scheme that

yields the <5% size variation that is widely quoted in literature-pre-floccuation size

distribution has been noted to be -10% [128]. However, size is unlikely the only

parameter that controls the flocculation rate in alloyed QDs. Flocculation, as

previously described, occurs due to a shift of balance towards the Van der Waals

attractive forces between the QDs from the steric repulsion offered by their surface

ligands. Van der Waals forces are dependent on polarizability, a molecular property

that is in turn related to the macroscopic bulk dielectric constant of the material via

the Clausius-Mosotti relationship; the calculation is tensor-based, dependent on the

crystal structure, its electric field and also quantum size effects [20]. Thus while the

exact mathematical relationship may not be equivalent, the dielectric constant can

serve as a useful predictor to how polarizability may change according to

composition. Studies on bulk CdTexSe1- alloys have revealed that the dielectric

constant as a function of composition x features a similar "bowing" as the alloy

bandgap Eg, with its maxima at the same location as Eg's minima, at Te composition

x-o.6 [69].

Studies on the flocculation of "soft particles"- hard particles with terminally-

anchored polymer chains-provide insights on the parameters affecting steric

repulsion [186]. QDs can be modeled as soft particles with ligands as terminal

polymers on the hard semiconductor crystals. Parameters involved in the modeling

include particle size, thickness of the adsorbed polymer, degree of interpenetration

between the solvent and the polymer layer, coverage, molecular weight, folding of

the polymer on the particle. A theta solvent is "ideal" in that the polymer coils

naturally in their random walk dimensions; most solvent causes the polymer to

expand or collapse upon itself on the particle surface. MSNCs lack the reactive crystal



facets that are also less protected by ligands, thus their ligand conditions also

differentiate them from the major population. Compositional heterogeneities can

affect the surface polymer cap in that surface tellurium ions are much more prone to

lose their TOP ligand than the selenium ions, which decreases polymer density or

alternatively, leads to the enrichment of surface Cd and its ligands for stabilization.

The size and shape distributions may also change; complications in flocculation that

arise from shape differences alone are evidenced by the intricate steps required to

separate a batch of single-semiconductor QDs of various shapes [113].

If combining every aforementioned considerations regarding uniformity at

nucleation, growth and flocculation, gradient-alloyed CdTexSe1 x QDs should have a

better chance in achieving uniformity than homogeneously alloyed QDs, as both their

nucleates and surface termination should approach single semiconductor in

composition (CdTe and CdSe respectively): the former encourages the growth of a

more uniform major population, the latter, flocculations that may show less

dependence in composition heterogeneities via a more uniform polymer cap.

Overall, the considerations as described above further justify the need for tight

process control and proper planning of the synthetic scheme for alloyed QDs. In

addition to seeking more aggressive methods to minimize nucleate heterogeneity,

Ostwald ripening should be suppressed at all times and any replenishment of

precursors must be well paced to suppress nucleation.

2.4.2 Impurities in Colloidal QD Synthesis

In this thesis, the term impurities will refer to both the extraneous chemical species

introduced "from the bottle" as well as byproducts formed in reactions during

synthesis, including those pertaining to QD nucleation and growth and side reactions.

They have been known to affect the outcome of colloidal QD synthesis by producing



strongly coordinating ligands (ex. TOPO's oxidation into phosphonic and phosphinic

acids), unanticipated precursors (ex. H2S and H2Se) and other molecules that may not

interact with the nanocrystals directly but modulate the physical properties of their

growth solution, resulting in changes in precursor solubilities and the extent of steric

hindrance as the precursors approach the QD surface (ex. coordination polymers

based on phosphonic acids and amines). The following subsections will describe the

examples in further details.

2.4.2.1 Impurities as Adventitious Molecular Species in Starting Chemicals

Impurities in starting chemicals can modulate the properties of the QDs much more

than their weight percent suggests, especially when the impurities have lower

molecular weights (thus more moles of chemicals for a given weight) compared to

the pure chemical and/or exhibit stronger affinity to the coordinating metal, and/or

when the starting chemical in which they are found is needed at high concentrations

for syntheses.

Impurities found in trioctylphosphine (TOP) and its oxide (TOPO) have been among

the most widely attributed cause of non-reproducibility in QD synthesis [189],

possibly due to their strong thus apparent effects on the kinetics and the size and

shape of Il-VI nanocrystals synthesized. The consequences of impurities are best

appreciated in the context of the form and function of the pure chemical. TOP's main

function is to act as the coordinating ligand as well as a liquid carrier for the

chalcogens (mainly Se and Te). It is also a weak reducing agent (compared to

dialkylphosphines) for the divalent transition metal, easing its separation from its

ligand such that it can react with the chalcogen to form a semiconductor monomer

[179]. Tributylphosphine (TBP), also a common chalcogen ligand for QD synthesis, is

structurally and functionally analogous to TOP. The oxide of TOP, trioctylphosphine

oxide (TOPO), often constitutes a significant volume of the growth solvent while



acting as a relatively weak but stabilizing X-type coordinating ligand [93]. TOPO has

therefore been termed a "coordinating solvent", in contrast to the "non-

coordinating solvent" (but not necessary inert; see below) 1-octadecene (ODE), the

use of which for QD synthesis has also become common place [75,101]. TOPO is polar

and is among the least reactive of phosphorus compounds, with a bond energy of

128kcal/mol for R3P=O [154]. The oxygen atom may be exchanged into another

chalcogen, commonly sulfur (R3P=S -90s kcal/mol). TOPO also increases the lability

of the chalcogens.

Common impurities in commercial grade TOP and TOPO (.90%) have been well

investigated [190]. Acid impurities in TOP and TOPO such as octylphosphonic acid, di-

and mono-octylphosphinic acid, much like the free acids intentionally introduced into

synthesis, substantially slow the kinetics of QD nucleation and growth and change

the size, shape and nucleate concentration of the nanocrystal products [62,90,189].

The apparent impact they elicit on synthesis and its non-reproducibility has prompted

the switch to using higher purity TOP and TOPO and adding phosphonic acids in

known amounts to mimic the effects of these impurities. Because TOPO and TOP are

usually introduced in large qualities-often up 10-fold in molar concentration-

compared to the amount of acids intentionally introduced, they can increase the

effective concentration of acidic ligands in the synthesis by a significant fraction via

the impurities they carry. For example, a 90 weight % purity TOPO can carry up to 20

molar % of acidic impurities, if one considers the molecular weight of octylphosphonic

acid (OPA)'s molecular weight (194 g/mol) is -50% of TOPO's (387 g/mol); thus a

synthetic scheme using 5:1 TOPO: OPA and with acids constituting half of TOPO's

impurities would therefore still end up with a 25% increase in the total amount of acid

ligands actually introduced into the reaction vessel.

Secondary phosphine impurities in TOP, specifically, dioctylphosphine, have been

known to enhance the reactivity of TOP-Se precursor solutions upon coordinating



with chalcogen atoms [53]. As dioctylphosphine is not commercially available, its

effect has been mimicked by the addition of other secondary phosphines into

synthesis. Introduction of even a small amount of diphenylphosphine has been

shown to significantly increase the conversion yields of phosphine-chalcogens [179].

2.4.2.2 Impurities as Byproducts of Side Reactions

The high temperatures required for QD synthesis as well as the presence of many

precursors and ligands, including impurities, create an environment conductive to

unintentional chemical reactions. These side reactions can generate byproducts that

modulate the growth of the nanocrystals-a very simple case is the reported

oxidation of TOPO under sustained heat, forming phosphinic and phosphonic acids

[192], or the condensation of two octylphosphonic acids (OPAs) into P,P'-(di-n-octyl)

dihydrogen pyrophosphonic acid (PPA) that binds even more strongly to QDs

compared to OPA itself [90,105]. More complex cases exist and the extent of their

influence on synthesis and post-synthesis processing is not fully understood. Two

examples will be described in this section: 1) the formation of hydrogen

chalcogenides, which are highly reactive precursors (more so than phosphine-

chalcogens), and 2) the formation of phosphonic acid coordinated polymers, which

act as ligands and have been known to affect the post-synthesis processing of QDs.

2.4.2.2.1 Formation of Hydrogen Chalcogenides

The role hydrogen chalcogens (H2E; E=S, Se) play in "phosphine-free" QD synthesis as

gaseous chalcogen precursors formed in situ has been explored in literature [76,194].

Sulfur, and to a lesser extent, selenium, have been known to react with alkanes,

alkenes, carboxylic acids and primary amines to form hydrogen sulfide (H2S) and

hydrogen selenide (H2Se) at the temperature range (>200 0C) pertinent to QD



synthesis. These interactions are therefore potential sources of inconsistencies in QD

syntheses, in particular when large volumes of alkenes such as 1-octadecene (ODE)

are used as non-coordinating solvent. Impurities in alkenes, which are generally other

hydrocarbons including alkanes, branched isomers or alkenes of different lengths,

are likely to exhibit different reactivity against the chalcogens; sulfur has been shown

to yield different amounts of H25 when heated in different but similarly structured

hydrocarbons as the solvent [194]. Primary amines, which are added in significant

quantities in many QD syntheses, may facilitate the formation of H2S and H2Se to the

extent that their purities may matter in synthetic schemes that are more sensitive to

batch-to-batch variations, such as those for alloyed QDs.

In alkanes, sulfurization first removes the secondary hydrogen, followed by pyrolysis

to form alkenes at concentrations proportional to the hydrocarbon chain length [29].

The overall reaction rate is faster for longer hydrocarbon chains that eject electrons

more efficiently; however, the size and shape of the hydrocarbons have also been

reported to make little difference beyond pentane [40].

Sulfur's interactions with alkenes (olefins) have been studied in depth, as olefinic

hydrocarbon networks, cross-linked by disulfide bridges, are effective lubricants [57].

Notably, tertiary phosphines (such as TOP) are known catalysts for the initial

sulfurization of olefin's double bond, allowing the process to occur at >16o*C [81].

The formation of H2S is related to the formation of close-ringed, octatomic sulfur (S8)
that forms at high temperatures. Se also forms Se8 [142]. Radical terminals of

fragmented S8 rings attack the double bonds of alkenes (as opposed to electrophilic

addition reactions by sulfur) to form polysulfide products Rsat-Sx-Rsat, Rsa-Sx=R, and

R=Sx=R, where R' is the saturated version of olefinic R, and Sx is a linear polysulfide

chain. In linear mono-olefins (such as ODE), moderate temperatures (>1oo*C) is

sufficient to initiate the process. Polysulfides further decompose via S-S bond

breakage into H25 and thiols [56] when the temperature is maintained >140C.



Polyselenides have been proposed to be the selenium source for phosphine-free

CdSe QD synthesis [76].

Sulfurization also occurs in the presence of functional groups. Sulfurization of oleic

acid and their esters have been reported, yielding networked molecules with their

functional groups intact [57]. Primary amines open S8 rings to form polysulfide ion

chains in their presence, the ease of which depends on the basicity of the nitrogen

atom; secondary amines thus only has limited faculty and tertiary amines, none.

Overtime and even at room temperature, amine-sulfur solutions also break down into

thioamide and H2S [44].

2.4.2.2.2 Acids & Coordination Polymers

Acids are the strongest coordinating ligands for the divalent transition metal ions

(cadmium, zinc) in QD synthesis. Phosphonic and carboxylic acids are the two major

families of acids employed; metal-carboxylate complexes are more reactive than

metal-phosphonate complexes as the less acidic carboxylic acids are weaker

chelators [140,157].

The mechanism by which metal-carboxylates and metal-phosphonate act as

precursors ("precursor conversion") in QD synthesis has been elucidated [135]. The

two types of complexes are described as differing in binding strength; they share

identical coordination chemistry with the acid ligands, forming the same bi-dentate

linkage to the metal ions. Recent papers have, however, alluded to the presence of a

"coordination polymer" when phosphonic acids but not carboxylic acids, free or

bound, are introduced for synthesis [105,135]. This polymer is close to insoluble in the

growth solvent [135] and flocculation is inefficient in its removal, causing difficulties

in modifying the organic cap of the QDs afterwards for water solubilization [177].



The structure of metal-carboxylates and metal-phosphonates therefore invites

further examination. Literature has detailed the coordination chemistry of transition

metals (emphasizing on zinc and cadmium) with carboxylates and phosphonates,

most of which based on studies of the complexes using IR spectroscopy and

calorimetry. As metal phosphonates are used for the synthesis of (CdS@)CdTexSex

QDs, the discussion below focuses on these metal salts. Information of the metal

carboxylates can be found in Appendix 5.2 for comparison.

Monoalkylphosphonates of divalent metals, in particular zinc and cadmium, form

puckered polymer sheets of the metal-phosphonate network that can be stacked via

interlamellar Van der Waals interactions into crystals, sheets, or lamellae, structures

that have been dubbed inorganic Langmuir-Blodgett films [30,141]. Zinc-

phosphonate complexes can have down to four coordination sites while cadmium is

typically six-coordinated [59,141]. In n-coordinated phosphonates, the metal ion is

held by n-1 phosphonate oxygen atoms in plane to create the ionic network; most of

the oxygen atoms are shared with neighboring metal ions (bridging bi-dentate

linkage) but for one that coordinates to that metal ion alone [141]. Both the organic

alkyl chain from the phosphonic acid and the remaining coordination site, which

extends away from the plane, control the sheet-to-sheet distance. The latter site is

hydrated in the presence of water [66,187] but can otherwise bind to other

molecules; of particular interest to QD chemistry is that amines have been known to

bind to the site and act as "pillars" between the metal phosphonate polymer sheets

[30,141].

Requirements on the amines forming intercalation compound with cadmium-

phosphonate are 1) they are primary alkyl amines, with their a-carbon free of

branched structures, and 2) the phosphonate's hydrocarbon side group is not too

bulky-ex. linear with no aryl groups [31]. Steric considerations extend to the metal



ion: the amines must be in vapor phase for intercalation into zinc phosphonates but

can remain in solution for cadmium phosphonates [31].

On a related note, phosphinic acids, as a key impurity of (TOPO) (ex. as

dioctylphosphinic acid [189,190]) that modulate QD nucleation and growth, has been

shown to assume a polymer chain configuration [187] when coordinated with

divalent metals.

Reaction conditions for many synthetic schemes of cadmium-chalcogenide QDs favor

the formation of ultra-bulky, amine-pillared phosphonate coordination polymers-

the absence of water, the use of (primary) alkylamines, the amines being close to

their boiling point at nucleation temperatures and vaporizing in significant amounts.

While the amines are weakly bound and subject to loss over time and at the re-

introduction of water, they can add substantial bulk to the coordination polymer and

contribute to its insolubility in the QD growth solution, as well as making their

removal during crashout difficult with its long alkyl chain.



3 Synthesis & Processing of (CdS@)CdTexSe, Alloyed QDs:

The Protocols

3.1 Introduction

This chapter will present the synthetic and processing schemes of (CdS@)CdTexSex

QDs. Outcome of these protocols will be detailed, and justifications and potential

pitfalls for the steps taken will also be described. Selection of the coordinating/TOPO-

based chemistry for QD synthesis stems from the strong knowledge base developed

for this chemistry in the Bawendi Lab.

Prior to introducing the protocols, data from early biological experiments using

CdTexSe1 x QDs synthesized from as-purchased, lower purity chemicals is hereby

presented as the starting point of the work described in this chapter. The problems

associated with these data illustrate the need for well-controlled, reproducible

schemes for taking these alloyed nanocrystals beyond "proof-of-concept" to truly

application-ready. Details of the equipment used for QD characterizations and

imaging can be found in Appendix 5.1.

Figure 3.1 shows cell-labeling experiments using the first generation of water-soluble

CdTexSe1 x QDs developed for this project. Confocal microscopy revealed endocytotic

uptake of the probes, pre-treated with the cell delivery peptide PEP-1 (Chariot TM

Protein Delivery Reagent, ActiveMotif, Carlsbad, CA), by the multiple myeloma cell

line MM.1s. These nanocrystals had no overcoat as the attempt to overcoat yielded

morphologically poor QDs, with highly diverse shapes and sizes. Water solubilization,

attained via 40%octylamine-polyacrylic acid encapsulation [210], created sufficient

probes for cell labeling experiments but the chemical yield was extremely low (1-2%),

the majority being lost as aggregates. These probes also proved to be non-

reproducible, particularly at the water solubilization stage that had near-zero yields;



loss of nanocrystal uniformity at overcoating also persisted regardless of protocol

changes.

a b Figure 3.1: Live cell

* labeling and imaging

experiments using
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encapsulated with
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le Aggregates - peptide PEP-1. MM.1s

were cultured in
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Sne io%FBS RPMI and

labeled as adherent

cells, washed with

phosphate-buffered saline and imaged immediately. Pre-treatment of probes with the cell

delivery peptide PEP-1 and its incubation with cells proceeded according to manufacturer's

instructions for low molecular weight protein delivery in 6mm well, using -lug of the water

solubilized QD probes as the starting material. Quantum yield of the probes was at 35%. a)

Confocal images of the labeled cells at ioox, each of the 2 frames capturing an area of

0.25mm*0.25mm. Fluorescence was attained via 488nm argon laser excitation and detected

through a 59onm long pass filter. Red signal indicates the presence of endocytosed QDs

inside the cells. b) Schematic of a QD with the amphiphilic 40% octylamine-poly(acrylic acid)

polymer coat and the peptide sequence of PEP-1. Ideally, once PEP-1 enters a cell, the

hydrophilic Nuclear Localization Sequence (NLS) breaks off and targets the nucleus while the

hydrophobic region, associated with the cargo (the QDs in this case) via hydrophobic

interaction, remains in the cytosol. c) Absorption and photoluminescence (PL) of the QD

cellular probes (solid purple). A fraction of the same sample underwent an unsuccessful CdS

overcoat, the spectral profiles of which are shown in dotted lines. Of note, the fluorescence



Figure 3.2 shows in vivo vascular imaging data with CdTexSex QDs intravenously

introduced into a mouse. These vascular QD probes also lacked an overcoat and

suffered high loss to aggregation during water solubilization with 40%octylamine-

poly(acrylic acid). Coupling of poly(ethylene glycol) for evading in vivo RES clearance

was unsuccessful as well, partly due to low chemical yield (<2%) in the water

solubilization step. The absence of PEG on these probes resulted in their in vivo

uptake by macrophages residing in the bone marrow, which was observable using in

vivo confocal microscopy.

signal was significantly elevated at wavelengths shorter than the peak while the peak itself

shifted little in position; this was later determined to be caused by MSNCs "hidden" in the

emitter population being selectively overcoated. d) 68kx TEM images of the CdTexSex QDs

before (left) and after (right) overcoating. The "before" sample appeared somewhat

uniform, despite showing signs of early pod growth. MSNCs in the sample were not evident

in this image. Meanwhile, the "after" sample fared extremely poorly in shape and size

uniformity, with a significant fraction of the nanocrystals being smaller than the starting

emitter population as they had likely originated from MSNCs formed during synthesis. Scale

bar=2onm. e) Size separation by gel filtration chromatography (GFC) of the water-solubilized

CdTexSex QDs. UV absorption was used to detect QDs exiting the column. Aggregates that

left the column early in fraction 1-3 presented only a small fraction of the total loss of QDs via

aggregation, most of which had been removed during pre-GFC centrifugal filtering; fraction

4-6, which contained single QDs, was collected for cell labeling.



These problems prompted the overhaul of the early synthesis and processing

protocols. Very high purity chemicals were introduced to improve reproducibility,

which was needed to determine the root causes of these failures. Difficulties in

overcoating and water solubilization would eventually be found to be

interconnected, and more importantly, originate from issues hidden within the

previous step of probe preparation-namely, the synthesis of CdTexSex emitter QDs.

MSNCs that manifested during emitter synthesis as well as other uniformity issues

would require tight process control of all steps of nanocrystal preparation (including

flocculation) as well as the use of only highly pure chemicals to eliminate. While the

current generation of (CdS@)CdTexSex QDs still need further optimization of its

overcoating scheme to achieve consistent stability in water, it has been cleared of all

a O 1.0 b Figure 3.2: In vivo

8 vascular imaging

experiments using
00Z ~0.5

0 the earliest

generation of
.0(02

CdTexSex QD
0 - 0.0

350 450 550 650 750 850 600 700 8W 9 PL733/45 probesWavelength (nm) Wavelength (nm)
encapsulated by 40% octylamine-poly(acrylic acid). a) Spectral profiles of the samples; QY of

PL677/39 is 12%, decreased from 35% prior to water solubilization. b) In vivo confocal imaging

of the murine calvarial bone marrow vasculature, after injecting -8opmol of the probes into

the tail vein of a BALB/c mouse. This amount was known to be sufficient for vascular

visualization when commercial non-targeting Qtracker 655 (Invitrogen, Carlsbad, CA) was

used (see Figure 1.2). 633nm HeNe laser excited the QDs, the signal of which was detected

with a 650-76onm band pass filter. Uptake of the probes by macrophages, which fluoresced

as bright spots in the bone marrow space between vessels, was especially evident in the

PL677/39 sample that had undergone a failed attempt to couple methoxy-terminated

PEG5ooo onto the probes. Scale bar=5oum.



problems associated with non-monodispersity. The resulting nanocrystal

morphology, uniformity, reproducibility and workability during post processing

including water solubilization collectively show promise for their becoming truly

application-ready.

3.2 Purifications of Starting Chemicals for QD Synthesis

Purification of starting chemicals precedes the making the precursors and synthesis.

Starting chemicals used for this project, while all 97% or above in purity, still contain

inconsistent impurity compositions that render syntheses irreproducible when the

source of the chemicals is switched to a different production lot and/or a different

manufacturer. In developing the purification protocols, efficiency and ease of

purification is also taken into consideration; industrial methods reported in literature

are often geared towards very low purity starting chemicals and are too tedious for

laboratory use.

Appendix 5.3 is dedicated to the purification protocols of TOPO, OPA, HDA, Squalane

and Squalene, and TOP. Discussions on how these protocols are developed and

precautions in their implementation are also included in that section. The choice of

tools is also described-in particular, the temperature controller and its settings

must be similar to what is specified to reproduce all protocols to be described,

including those for purification, for precursor solution preparation and last but

certainly not least, for synthesis.



3.3 Metal-Ligand Complex Formation

3.3.1 Making TOP-Chalcogenides

TOP-chalcogenides are prepared by simply mixing chalcogen pellets (Te powder

99.999% Puratronic (Alfa Aesar, Ward Hill, MA); Se shot 99.999% Puratronic (Alfa

Aesar, Ward Hill, MA); sulfur 99.998% trace metal basis (Sigma Aldrich, St Louis, MO))

and TOP (purchased and purified as described in Appendix 5.3-5) and stirring in an air-

free environment until the pellets are dissolved. While using low heat (up to 6o0C on

a heat plate) can speed up the solubilization process especially for making TOP-Te, all

TOP-E solutions made for this project are created under room temperature

conditions. This, again, is to ensure reproducibility.

As the ligand for Group VI metals, the tertiary phosphine TOP controls the degree and

relative rates of incorporation for tellurium and selenium (and sulfur, for overcoat).

Selenium and tellurium have also been suggested to be more labile and reactive in

their phosphine form than as a metal itself [47,154]. Bond energies of different

tertiary phosphine-chalcogenides have been published [32], with bond strength

between the phosphorus and the chalcogen atom decreasing as one goes down

Group VI, i.e. E(P-S)>E(P-Se)>E(P-Te). However, TOP- and TBP- sulfide and selenide

solutions are in effect composed only partially of the metal-ligand complex, with the

chalcogen atoms present also in their free form. This is evidenced by the gel-like

consistency of saturated TOP and TBP solution of sulfur and selenium (2.2M and

4.oM, respectively), in contrast to the highly crystalline form of purified phosphine

chalcogenides [154]. Saturated TOP-Te solutions cannot be prepared, with the

exception of tri(tert-butyl) phosphine-Te); most trialkylphoshine-tellurides have

reactive rates < 50% [165].

The possible difference in reactivity between free and complexed chalcogen atoms

and the unknown effects of energy input in modulating the relative ratio of the two



forms prompt the need to specify room temperature preparation for the TOP-E

precursors. At room temperature, TOP-Se and TOP-S of concentrations up to

saturation (2.24M) can be prepared with prolonged stirring, while the maximum

concentration attainable for TOP-Te is -1.oM. TOP-Te is stored not only in air-free

conditions as the other phosphine-chalcogenides but also in the dark.

3.3.2 Making saturated sulfur solution in 1-octadecene (ODE-S)

ODE-S was introduced as a sulfur precursor for SILAR overcoating [ioo] at a low

concentration of 0.04M. For this project, the ODE-S solution is made saturated,

starting with 1.oM sulfur; the concentration after filtering is however estimated to be

<o.iM. The protocol for making this solution is made specific as the coordination

chemistry between ODE and sulfur remains poorly understood, and the formation of

polysulfides is expected to be dependent on at least the temperature.

95% 1-octadecene from Fluka and sulfur 99.998% trace metal basis are purchased from

Sigma Aldrich (St Louis, MO). As the major impurity in ODE (b.p.=314 0C @ 76ommHg)

is reportedly hexadecene (b.p.=284.8 0C @ 760mmHg) [2], a degassing step has been

included. It is advisable to degas the ODE prior to sulfur addition in the future.

1. Weigh out 2.565g sulfur and 8omL ODE and transfer to flask.

2. Degas the flask content at room temperature until base pressure is reached.

Then, slowly ramp the degassing temperature towards 12o0C-sulfur should

melt at 115'C-and hold for -iominutes until base pressure is reached. The

sulfur is likely all dissolved and the solution should be yellow in color.



3. Cool the flask under vacuum to 7o0*C, at which all sulfur should precipitate

and the ODE is once again colorless.

4. Switch to N2, set the Variac to 70% power and ramp the temperature to 18o0 C,

which should take 10 minutes to reach with the proper temperature controller

setting. Hold the solution at 18o0*C for another 10 minutes. The solution should

turn yellow, then darken into orange.

5. Cool to 6o0C and transfer into a N2 filled flask, which is then transferred into

the glove box.

6. Allow the solution to settle, during which sulfur precipitates from the solution.

Filter with a medium glass frit inside the glove box; the solution should remain

clear but orange-hued for at least six months afterwards.

3.3.3 Making cadmium-octylphosphonate salt precursors in trioctylphosphine (Cd-

OPA in TOP)

In literature, metal-acid salt complexes that act as Group Il precursors have been

prepared both during synthesis and as a separate step prior to synthesis. In the latter

case, a stock solution is prepared for use as both nucleation and mid-synthesis

precursor supply (for size focusing). Among the commonly reported metal-acid salt

complexes, the methods of making stocking solutions of cadmium and zinc oleate in

1-octadecene are the most well known [139,140]. These stock solutions are easy to

use; sedimentation of the complexes from the solvent is reversible by reheating the

stock to regain solubility.



Separating the formation of metal-acid salt complexes from the synthesis of QDs

allows optimization of its reaction parameters without the need to consider how it

will affect the nucleation and growth of QDs. It also allows user-specified complex

concentrations based on the needs of synthesis-for example, mid-growth addition

of complexes prepared at higher concentrations leads to less increase in growth

solution volume and consequently, less decrease in monomer and ligand

concentrations in the reaction vessel. Furthermore, using stock precursor solutions

enhances reproducibility among batches of QDs by uniformizing the precursor source

while shortening the time and steps required to perform multiple syntheses.

The starting source of cadmium for making cadmium-acid salt complexes is usually a

salt itself because free metal cadmium is highly toxic. Complex formation essentially

involves an exchange of the Lewis base into acid ligands to be used for QD synthesis,

hence the stability of the original salt would determine the rate and ease at which the

new complexes form. Critical parameters in metal-acid salt complex formation

include concentrations of starting chemicals, temperature as well as the rate of

temperature change overtime. The temperature ramping profile determines both

the speed of pyrolysis of the original metal precursors and the concomitant

complexing between the freed metal ions and the acid ligands. Precipitation of metal

particulates occurs if the pyrolysis proceeds at a rate too fast for the acids to

associate in time; in the case of cadmium salt making, the telling sign is the reaction

solution turning intense yellow (similar to egg yolk), then brown and eventually, grey,

indicative of large pieces of pure metal suspended in solution. Aside from too

aggressive a temperature ramp rate, other factors enabling pure metal precipitation

include weak ligands and ligand-to-metal ratios less than or close to the minimum

stoichiometrically required for the complexes to use up all metal ions (2:1 for acid:

metal for cadmium and zinc salts).



Even without concerns of their toxicity, free metal precipitates are expected to be

more reactive compared to the metal-ligand complexes when introduced into QD

synthesis and their concentrations should remain consistent from one preparation of

stock solution to the next. In the case of making cadmium-phosphonate (Cd-OPA) in

TOP, experiences cumulated over this project have suggested that even minor

increase in temperatures and/or temperature ramping rate during salt formation is

sufficient to increase the free: bound cadmium ratios of the prepared stock. It is

indicated visually by a stronger yellow hue as well as lower viscosity, likely due to the

relatively low concentration of cadmium phosphonate polymers (as described in

section 2.4.2.2.2). These observations, once again, confirm the importance of

preparing stock precursor solutions in a rigorous and consistent manner.

CdO has been chosen as the cadmium source for this purpose. While its exceptional

stability cumulates to the need for more aggressive pyrolysis conditions (higher

temperatures, longer reaction times and often, higher acid: metal ratios) compared

to less stable sources (such as cadmium acetylacetonate, cadmium acetate and

cadmium hydroxide), it also contributes to its availability at high purity (>99.99% trace

metal basis), its low cost and good shelf life. Cadmium acetylacetonate (Cd(acac) 2)

was previously used as cadmium source but suffered from batch to batch variations

even at 98% purity level, likely due to its hydration levels not registering as trace

metals that is the purity metric of most cadmium sources; a brownish-pink tint of

varying intensity is often observed and is believed to be cadmium oxide. An

alternative clean source that is easier to pyrolyze is cadmium hydroxide (Cd(OH) 2),

also available at 99.99% purity (trace metal basis) but is much more costly.

As previously mentioned in sections 2.4.2.1 and 2.4.2.2, the choice of octylphosphonic

acid originates from the consideration that it is already present as TOPO's known

impurity as well as its high temperature oxidative product. Involvement of fewer



chemical species should render nucleation and growth of the QDs easier to control

and reproduce.

One of the challenges in "coordinating chemistry" based QD synthesis is the lack of

relatively inert liquid carriers for mid-synthesis precursor addition, unlike its "non-

coordinating chemistry" based counterpart for which the alkene solvent (1-

octadecene, ODE) is already a good carrier. TOP has been the choice carrier for most

injections in "coordinating chemistry" based synthesis, whether at nucleation or

during growth; however, as TOP is also the major ligand for Group VI, the volume of

TOP injected also influences the kinetics of the chalcogens. Furthermore, when

injection volumes become significant, impurities and especially acids in the TOP, if not

removed, are added in significant amounts compared to the acids intentionally

added, similar to the case described for TOPO (section 2.4.2.1)-and commercial

TOP's maximum purity level is only 97% compared to TOPO's 99%.

In using TOP as the carrier for Cd-OPA precursors, therefore, one important goal is to

minimize the volume of TOP needed, which also maximizes the concentration of the

Cd-OPA complexes. A balance must nonetheless be achieved, for it is even more

essential that the amount of phosphonic acids added is minimal, i.e. just sufficient for

CdO pyrolysis-a goal that, in contrast, benefits from using larger volumes of TOP, a

reducing agent for the CdO. Another consideration in developing the complex

making protocol is the ease with which the stock solution can be handled; as the

volume of TOP decreases, the stock solution turns increasingly viscous and unlike Cd-

oleate in ODE solutions, temperatures of >11o 0C- impractical for synthesis use-are

needed to mobilize these Cd-OPA complexes.

The following protocol has taken into account all of the mentioned considerations. It

works as described only when purified TOP is used.



3.3.3.1 Making o.5M Cd-OPA (1:1.25) in TOP: The Protocol

Cadmium oxide (CdO, >99.99% trace metal basis) is available from Sigma Aldrich (St

Louis, MO) and used as purchased. Octylphosphonic acid (OPA, 98% acid basis) is

available from PCI Synthesis (Newburyport, MA) and recrystallized once as described

in Appendix 5.3.2. TOP (97%) is available from Strem Chemicals (Newburyport, MA)

and purified as described in Appendix 5-3.5.

1. Strong, burst-like refluxes are expected to occur due to the relative viscous

content in the reaction vessel during and after the formation of Cd-OPA

complexes. For this reason, use a large round-bottom flask (25omL; 14/20

joint) and long distilling column (30cm, 14/20 joint) for the amount of

chemicals to be described and they should be thoroughly cleaned. The

temperature probe should have minimal contact with the acidic solution.

2. Weigh out 3.211g CdO (25.oommol) and 6.o69g OPA (31.25mmol) and transfer

to flask. Then introduce 5omL of TOP, fresh from its glove box storage, and

immediately pull vacuum on flask content.

3. Degas the flask content at room temperature until base pressure is reached.

Then, over the course of -1omin, slowly ramp the degassing temperature

towards 1oo 0C-at this temperature range, the OPA should remain largely

solid and the CdO, in its brown, powdered form. Wait until the temperature is

stable at ~1oo 0C, then begin ramping towards 125 0C. The OPA should begin

melting at -11o 0 C and bubbling that is indicative of CdO pyrolysis should

commence at the same time. Degas for an additional 15minutes at 1250C. The

reason for the brief hold at -1oo 0C is to avoid temperature overshooting,

which is prone to occur when solids melt and cause excessive bubbling and

refluxes, the latter often leading to a film of dried CdO / OPA / Cd-OPA stuck



on the glass walls of the flask, compromising the accuracy of the stock

solution's concentration.

4. Backfill the flask with N2. The next step is to ramp the temperature to 280*C

for CdO pyrolysis and Cd-OPA complex formation. Once again, the ramp

should be performed in steps to better control the temperature:

a. Set temperature T to 215 0C. Bubbling should steadily increase as the

temperature rises. By -18o0 C, white smoke (from released water

vapor) is likely visible in the flask-a needle (3oG) may be inserted to

relieve this pressure, which also accelerates the rate of temperature

increase.

b. Allow the temperature to stabilize before continuing to ramp the set

point of T towards 28o*C, going in smaller increments as T approaches

its target value.

c. The 280*C hold should last for ~15minutes total. During that period, tap

the reaction flask very lightly (do NOT shake) to bring CdO off the

walls of the flask-the small bursts of reflux (from water vapor) from

the tapping will help to bring the material down. Wait for the white

smoke from these bursts to subside. Repeat if needed until all CdO is

collected and reacted and the flask content is pure white from the Cd-

OPA complexes. (If the flask is separated from its heating pad during

the tapping, it is helpful to set the Variac temporarily to o to avoid

excessive heating).

5. Begin cool down (to 40C) by removing the heating pad from the flask. By

18o0 C, remove the 30G needle that has been used to relieve water pressure, if

inserted. By ~-oo"C, a water bath can be used to speed up the cool-down,

followed by an ice bath once the temperature falls below -40 0C. It is essential



that the flask content is cooled to well below room temperature before

moving on to the next step-the low temperature is needed for the Cd-OPA

complexes / polymers to precipitate and decrease the solution viscosity

sufficiently for the vacuum pull, which, due to the residual water content of

the solution, can otherwise lead to a very messy splashing of the flask

content.

6. Degassing: while on vacuum, ramp the flask temperature slowly back to 1oo*C,

waiting for bubbles to subside at every step (the majority of outgassing

should occur between 20-450C). At 1 0 *C, degas for -15minutes and the flask

content should reach base vacuum pressure.

7. Cool the flask content back to 40C with water and ice baths, as described in

step 5. This time, the precipitation of Cd-OPA and lower viscosity of the

solution is helpful for a clean and complete transfer into a N-backfilled flask,

which can then be introduced into the glove box for storage. At this point, the

stock solution should carry a light yellow tint and has a gel-like consistency.

Unlike Cd-oleate in ODE solutions, Cd-OPA complexes do not settle efficiently

in TOP at room temperature and a few vigorous shakes should be sufficient to

homogenize the solution before use.

3.4 Overview of Synthesis, Overcoat & Flocculations of CdTeSe.x QDs:

Strategies, Challenges, and Occasionally, Solutions

This section will discuss the specific issues surrounding the ongoing optimization for

each of the three major preparing steps for CdTexSe1 x QDs: synthesis, overcoat and



flocculation. Its intent is to highlight the lessons learned from past observations and

justify the design of the protocols to be described next.

3.4.1 Refrain: On The Importance of Purified Chemicals and QD Population

Uniformity

The synthesis protocol for CdTexSe1- QDs have undergone several overhauls over the

course of this project, most of which are associated with the switch from using as-

purchased to purified starting chemicals of the same purity level. Because of the

time, effort and cost involved for purification, purification of the chemicals was

initially performed on a need-to basis and only TOPO and TOP were purified based on

reports in literature. Over time, however, it becomes clear that every starting

chemical contains impurities that modulate synthesis, with some being subtler in

their effects. For example, hexadecylamine (98%)'s impurities have been found to

encourage MSNC formation. Thus while purifications may seem tedious, they have

proven to be worthy of the time and effort.

Another important lesson learned is more specific to the development of alloyed

QDs: achieving a monodisperse, uniform QD population is a prerequisite for its

proper characterization and use. Many QD characterization techniques, such as X-ray

diffraction (XRD) for crystal structure or inductively coupled plasma spectroscopy

(ICP-AES, ICP-MS etc.) for elemental analysis, are performed with the assumption

that the sample population is single and uniform, thus the results are only as

meaningful as to what extent this assumption holds (Figure 3.3). "Use" includes

using the nanocrystals as crystalline templates for overcoating. The presence of

MSNCs, for example, compromises any attempt to determine the appropriate

amount of precursors to introduce, by being very difficult to detect, of vastly



different sizes compared to the major population and also by its being a secondary

source of semiconductor monomers via Ostwald ripening (section 2.4.1.2).

Figure 3.3: Compromised accuracy

in the characterization of non-

uniform QD samples. TEM shows

that the mean diameter of the major

QD population in this early sample is

-5.8nm. It also reveals the presence

of extraneous populations (MSNCs)

that are difficult o discern in the original image (left) but are more visible under enhanced

contrast (right; some circled in red). The major QD population also suffers from poor

morphology, varying in shape and showing signs of pod growth. XRD analysis of the same

sample assumes sample uniformity and identifies the nanocrystals' mean diameter as 3.2nm.

The diameter is clearly incorrect and likely influenced by the MSNCs seen in TEM. Similarly,

elemental analysis can provide inaccurate results for non-uniform samples like this one, if the

major and extraneous populations differ in composition. Scale bar = 2onm.

As seen in Figure 3.3, TEM is a highly efficient tool for gauging the uniformity and

shape of QD products. TEM data has also, over the course of this project, aided in the

understanding of how absorption profiles of (CdS@)CdTexSex QDs are shaped by

composition gradients, by identifying genuine synthesis problems (poor crystallinity,

presence of MSNC and other extraneous QD populations etc.) that also modulate the

features of the curves. Relevant data and discussion can be found in section 3.6.3.

3.4.2 On the Synthesis of CdTexSe1.x QDs: Strategies towards Creating Singular

Emitter Populations with Predictable Composition and Fluorescence



A set of "perfect scenarios" has been defined for CdTexSe1 x synthesis. First of all,

nucleation should produce a single population of nucleates of identical size and

composition. This is ideally followed by nanocrystal growth that can overlook the

kinetic difference between the chalcogen precursors and incorporate CdTe and CdSe

at a rate reflective of the relative precursor concentrations in the growth solution,

which encourages alloying over the formation of core-shell compositional structure

and suppresses type I optical behavior. By the end of growth, near-exhaustion the

tellurium and selenium precursors (i.e. high reaction yield) is desirable as it not only

equates high reaction yield but renders the final QD compositions more predictable

prior to synthesis, in a "what you add is what you get" manner.

The following strategies have therefore been implemented in the synthesis of

CdTexSe1 x QDs:

1) Allow head start for Te entry, such that the nucleation "burst" creates all CdTe

nucleates. Use two syringes for injection at nucleation, such that TOP-Te, in

the first syringe with the Cd-OPA precursors, can be injected immediately

before TOP-Se, which is loaded in the second syringe. The goal is to exhaust

cadmium precursors to below CN, the critical concentration for nucleation

(section 2.4.1.1), with the formation of CdTe monomers only.

2) Increase the reactivity and reaction yield of chalcogens, particularly the

selenium precursors (TOP-Se), for growth, by introducing diphenylphosphine

(DPP) during and not before nucleation. As previously discussed (section

2.4.2.1), diphenylphosphine enhances the incorporation rates of chalcogens

[53,179].

3) Encourage sterically-driven incorporation of chalcogens via introduction of

squalene (98%, as purchased), also during and not before nucleation. Current

86



hypothesis is that squalene is less effective than TOP in breaking down the

polymerized cadmium phosphonate (Cd-OPA) precursors (section 2.4.2.2.2),

which will also become the dominant metal-ligand species on CdTexSe1 x QD

surfaces. Physical diffusion barrier in the form of this coordination polymer

should favor the entry of smaller-sized CdSe monomers compared to CdTe,

which is energetically / kinetically favored, thus equalizing the incorporation

rate between the two monomers. Squalene may also facilitate the formation

of hydrogen chalcogenides (ex. H2Se) (section 2.4.2.2.1). Squalene should also

have a much lesser effect on the lability of Te and Se compared to TOP, which,

if introduced in large volumes, can over-facilitate surface atom exchanges that

widen the physical size and spectral distribution of the major population.

4) Sulfur precursors are added towards the end of growth, in significant excess,

to encourage full incorporation of tellurium and selenium precursors into the

QDs by shifting the reaction equilibrium between precursors and monomers

towards the latter. Incorporation of sulfur into the nanocrystals also

commences the overcoating process for the CdTexSe1 x emitters.

These goals are interrelated and may, at times, be at odds with one another.

Introducing steric hindrance to enhance homogeneity of alloying may be

counterproductive to improving reaction yield, for example. There are also potential

tradeoffs, or restrictions in the extent of which these strategies can be performed;

steps aimed to improve uniformity-such as offering a head start to tellurium-

necessarily enhances the type Il character in these QDs by ensuring the products are

gradient alloys (more discussion in section 3.6.3).



3.4.3 On the Overcoating of CdTexSe-x QDs: Removal of Magic-Sized Nanoclusters

(MSNCs) as Pre-requisite, the Emitter/Overcoat Interface and i-Pot vs. 2-Pot

Processes

Achieving full stability in water has been the greatest obstacle in adopting NIR

CdTexSe1 x QDs for biological applications. Bailey et al. reported entry of their

gradient-alloyed QDs into biological buffers, but the nanocrystals formed a separate

phase when mixed with water and were reported to precipitate over a period of two

to three weeks [15]. Jiang et al. reported 12-14% CdS in composition, which translated

to less than 1 monolayer of CdS overcoat (but should be less according to the

dimensions of a wurtzite CdS unit cell), on their water-solubilized QDs [77]; a thin

overcoat as such was not expected to offer full oxidation protection and stability

data in the publication was restricted to 400 seconds in duration. Meanwhile, Pons et

al. was able to overcoat their CdTexSe1 x QDs with three monolayers of CdyZnyS and

demonstrate product stability over the course of four days [144], but the

fluorescence of the emitters was mostly in the visible spectrum and while

overcoating delivered the needed spectral "push" into the NIR, it did so with

considerable spectral widening as well.

Early failures in overcoating CdTexSex QDs for this project were plagued with

inconsistencies that concealed the root cause of the problems and prevented proper

optimization of the protocols. Overcoating late visible red (-68onm) fluorescent

emitters, for example, led to the appearance of QDs spanning the entire visible

spectrum, while the original emitters' spectral profile could red-shift, blue-shift or not

shift at all. Almost in all cases, the major population lost its fluorescence and

aggregated even under mild flocculation conditions, despite being introduced into

overcoating at concentrations calculated from absorption cross-section values

estimated based on Leatherdale et al [98], which had worked consistently for CdSe

QDs, and the precursors and surface ligands were added accordingly and in excess



(see Appendix 5.5 for details of estimating the concentration of CdTexSex QDs).

TEM images revealed nanocrystals and their aggregates in a wide range of shapes

and sizes when the emitter population had appeared uniform prior to overcoating, as

previously seen in Figure 3.1 on early cell labeling experiments. Meanwhile, emitters

that managed to retain their fluorescence after overcoating revealed only sub-

monolayer changes in size (if any) under TEM.

It became evident over time that uncontrolled populations of MSNCs within the

CdTexSe1 x major population instigated these inconsistencies in overcoating. These

MSNCs had managed to remain after several rounds of hexanes / ethanol

flocculation, the possible causes as discussed in section 2.4.1.5-in summary, size was

no longer the only determinant in the flocculation rate of alloyed QDs. They had,

moreover, often remained "invisible" to optical characterization and TEM for several

reasons:

1. The telltale signs of MSNC formation in single-material CdTe or CdSe QD

synthesis are sharp absorption peaks in the lower visible wavelengths.

Compared to visible-fluorescent QD major populations, a NIR-fluorescent

CdTexSe1 x major population, assuming similar 1st absorption peak absorptivity,

is expected to absorb more strongly in the CdTe or CdSe MSNC-relevant range

of wavelengths, thus possibly "burying" the MSNC absorption peaks co-

existing in its absorption profile. Alloying also encourages the MSNCs from

CdTexSe1 x synthesis to quickly lose their uniformity once they exit their caged

structure configurations, leading to wide and flat signal distributions that are

even more difficult to detect. Also, the lack of reference / "gold standard"

absorption profiles for CdTexSe1 x QDs means there are no effective guidelines

to identify extraneous absorption peaks prior to isolation of the major

population, even if the MSNCs do present themselves as a "hump" in the

profile. Figure 3.12 in section 3.6.2 compares the absorption profile of a sample



of QDs prior to and after MSNC cleanup by a multi-alcohol "high resolution"

flocculation, thus identifying the MSNC peak retrospectively.

2. Fluorescence of the MSNCs is often poor compared to the major population

before overcoating (also see Figure 3.12).

3. At the contrast setting optimal for imaging the CdTexSe.x major population

under TEM, CdSe-rich MSNCs are not only small but also likely in poor contrast

due to their lower electron density. Flocculation also affects visualization of

MSNCs in that the Cd-OPA polymer networks protecting the surface of the QD

samples tend to leave electron dense "smudges" (as observed in sample

PL656/29 in Figure 3.4) that further conceal the presence of MSNCs. Also, QDs

often distribute on the sample grid in colonies, each composed of

nanocrystals with similar physical attributes. Careful and extensive inspections

are needed to "find" the MSNC colonies and accurately gauge the sample's

uniformity.

MSNCs compete for the supply of precursors and monomers with the major QD

emitter population, compromising the latter's ability to grow; furthermore,

experiments performed for this project have suggested that MSNCs frequently have

an upper hand in this competition for resources. These outcomes echo the discussion

in section 2.4.1.4 about how, due to the dependence of surface energy to

composition, MSNCs and their evolution via size focusing / Ostwald ripening can be

detrimental to alloyed QD preparations. Depending on the MSNCs' concentration and

sizes and the amount of precursor input, therefore, the major population could

remain un-overcoated (no shift in the absorption peak), grow sluggishly (red-shift) or

worse, dissolve to re-equilibrate free vs. bound monomer concentration in the

reaction vessel (blue-shift). Very high concentrations of precursors lead to new
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nucleation events (often observable as blue fluorescence from CdS nucleates) that

introduce further non-uniformity to the major QD population.

Solving the problem of MSNCs required revisiting the protocols of emitter synthesis

and flocculation to eliminate their sources, even if the major CdTexSe1 x population

often appeared robust spectrally prior to overcoating. Modifications to synthesis

aimed to improve reaction yield in order to keep the precursor concentration low and

suppress MSNC nucleation while not evoking Ostwald ripening. A rigorous, highly-

resolved multi-alcohol flocculation recipe (presented in section 3.5.3.2) for ridding the

major CdTexSe1 x population from MSNCs was developed, although low

concentrations of extraneous QDs usually remained. The flocculations were also

time-consuming to perform and required "tweaking" based on the condition of

synthesis to achieve the needed cleanliness without causing aggregation of the

nanocrystals.

The switch from as-purchased to recrystallized 98% hexadecylamine (HDA) finally

made overcoating CdTexSe1 x QDs a practical as well as a manageable, optimizable

process. Afterwards, the use of multiple alcohols for flocculation was no longer

necessary, with less MSNCs forming during synthesis and also being sufficiently

distinct from the major population in size and shape that they are separable with

"standard" 1-alcohol flocculations (protocol in section 3.5-3.1). H DA recrystallization

has likely removed octadecylamine (ODA) as impurities. Syntheses using ODA had

previously created a more uniform major population of QDs but also large

concentrations of MSNCs, presumably due to the bulkier ODA slowing down growth

kinetics; the MSNCS were also more difficult to extract, as were the leftover

cadmium-phosphonate and amines from synthesis that precipitated as white salt

during flocculation and in which MSNC fluorescence was frequently observed. The

observed relationship between amine chain length and MSNC retention has led to

questions of whether the cadmium-phosphonates on the nanocrystal surface, which



serves important protective purposes especially for tellurium-containing QDs with

weak phosphine-tellurium surface bonds, not only polymerize but also coordinate

with long chain amines given the anhydrous synthesis environment (section

2.4.2.2.2). It also generates the question whether the very bulky polymer complex

that forms can harbor residual cadmium precursors / MSNCs and introduce them into

subsequent steps of QD preparation, such as overcoating.

A general strategy for overcoating CdTexSex QDs has been defined in this project

and much progress has been made on its implementation. Prevalent 2-pot

overcoating schemes of recent years-either using highly reactive precursors / very

low temperatures (ex. dimethyl cadmium, bis(trimethylsilyl) sulfide / -130*C [72]) or

moderately reactive precursors / moderately high temperature (ex. SILAR; cadmium

stearate, bis(trimethylsilyl) sulfide / 2400C [1oo])-have not performed well for

CdTexSe1 x emitters, which do not tolerate well the long duration (>=2hrs) needed in

both cases. When these schemes were tested, spectral widening was common, with

a fluorescence "tail" developing on either side of the peak or both before

overcoating began; successful suppression of the widening process, via introducing

Cd-OPA precursors early and before the QDs were heated, usually led to insufficient

or lack of overcoating.

The small compositional heterogeneity among the CdTexSex population may be the

cause of the defocusing spectral profiles, related to the alloyed QDs' compromised

ability to size focus in that compositional effects on surface energies could encourage

unwanted surface atom exchanges among the emitter QDs. CdTexSe 1x's relative lack

of tolerance to prolonged heating may also share the same root cause / mechanism

that underlies the known sensitivity of quasi-type II QDs' fluorescence to sub-

monolayer shell thickening [38], such as, as previously discussed, the input heat

driving a local re-ordering of atoms that modulates the compositional gradient. To

address this possibility, durations of the high temperature phase in synthesis and



overcoating, including the rates of temperature ramping and cooling, have all been

regulated to ensure consistency.

The inhibitory role of Cd-OPA precursors / coordination polymers is also worth

attention. While the strong cadmium-phosphonate bonds on QD surfaces should

render subsequent surface processes more difficult compared to non-phosphonate

linkages, that they could bind tight enough as coordination polymers to "block" the

surface and make it completely unworkable in subsequent steps had only been

described in recent years, particularly during polymer cap exchange or encapsulation

for water solubilization of the QDs [105,135,177]. It is possible that the use of higher

purity starting chemicals and additional purifications as described in Appendix 5.3

have removed impurities that can potentially limit the size of the phosphonate

polymer; phosphinic acid impurities in TOPO, for example, favors a 1D, straight-chain

configuration rather than the bulkier 2D polymer sheet of phosphonic acids when

coordinated with cadmium (section 2.4.2.2.2). A more in depth discussion on the

cadmium phosphonate polymer, and how flocculation can modulate its quantity and

size, can be found in the upcoming section 3.4.4.

Given the above considerations, overcoating of CdTexSe1 x emitter QDs now begins as

a 1-pot approach, in which CdS incorporation follows immediately after emitter

synthesis as an extension of growth. The temperature remains close to syntheses'

and the time needed to overcoat shortens significantly as a result, due to fast kinetics

at high temperature and also the elimination of steps required to degas the starting

chemicals and the QD carrier when 2-pot approaches are implemented. 1-pot recipes

also need not re-define a starting chemistry for overcoating; given the less certain

concentrations of CdTexSe1 x emitter QDs (compared to single semiconductor QDs;

see Appendix 5-5) and the need for higher temperatures, the chemistry at the end of

growth should present the optimal condition for maintaining the equilibrium

between precursors, monomers and QDs and stability of the latter. Meanwhile, the



major disadvantage of 1-pot approach is the inability to clean up or characterize the

CdTexSe1 x emitter QDs prior to overcoating, which makes it more difficult to optimize

or troubleshoot the process.

Hence, the recipes in focus in the upcoming protocol section will be for the synthesis

of CdS@CdTexSex QDs, with "CdS@" designating the incorporation of CdS on the

emitters as the overcoating material. Optimal conditions of 1-pot overcoating

schemes have, as expected, exhibited strong dependence on the preceding

nucleation and growth steps that dictate the concentration and size of QDs. Hence,

the optimal timing and quantity of precursor supply is expected to differ according to

the target fluorescent wavelengths. Compositional analysis has confirmed the

presence of sulfur and the nanocrystals are morphologically robust and highly

uniform. However, they have yet to achieve consistent stability in water-while air

stability has ranged from acceptable to good, stability in water has been limited and

variant among the few tested samples (see section 3.7). This is likely due to an

inadequate amount of CdS being incorporated, and/or the difficulty in creating a

steep CdSe-to-CdS gradient that ensures complete sulfurization of the nanocrystal

surface.

Controlling the CdTexSel-x/CdS composition gradient is the main challenge of 1-pot

CdS@CdTexSex synthesis as the chemical "history" in the growth solution prevents

independent optimization of the CdS overcoating process. The emitter/overcoat

interface is ideally infinitely sharp to completely free the surface of the faster and less

stable emitter material (CdTe and CdSe) at termination; however, incorporation of at

least a small amount of sulfur prior to Te and Se precursor depletion is expected due

to the steric hindrance from the ligand condition intended for growth-which, the

more it equalizes the incorporation rate of Te and Se, the more it is likely to counter

the kinetic preference of Se over S. Thus the initial shift from kinetically to sterically

controlled incorporation between nucleation and growth is preferably reversed



when overcoating begins. However, if the chemistry is to be limited to the set of

chemicals used and purified for nucleation and growth, which has been chosen to

ensure reproducibility, this reversal is more difficult to achieve as only the sulfur

precursors and Cd-OPA are easily modifiable chemical variables in 1-pot overcoating.

Three types of sulfur precursors have been tested for this project: TOP-S, TBP-S and

ODE-S. The relatively stable TOP-S and TBP-S ligand complexes have traditionally

been considered ineffective precursors. However, these 1-pot processes use high

overcoating temperatures and nucleation is not required (and best avoided);

phosphine-chalcogenide precursors can also be made at high concentrations

(2.24M/4.oM at saturation for TOP/TBP) that minimize dilution of the growth

solution. Disparity between using TOP-chalcogenides and their TBP equivalents most

likely lies in their steric differences; published enthalpies of chalcogen atom transfer

have indicated that while the phosphorus-chalcogen bond strength is proportional to

the alkyl chain length, the difference is small compared to a change in the

hydrocarbon structure (linear vs. branched) or the chalcogen atom (S vs. Se vs. Te)

[32]. Also noteworthy is TBP's relatively low boiling point, at 2400C (-26o0 C under

elevated flask pressure); this poses an opportunity to "boil off" the ligand but poses

a safety risk for high temperature injections.

Meanwhile, ODE-S prepared as described in section 3.3.2 is estimated to be <o.1M.

And while ODE-S has created the most air-stable overcoated sample in this study, its

chemistry remains obscure, as does the identity of sulfur's protective ligands in

synthetic schemes without phosphines (as in SILAR). Coordination between sulfur

and ODE to form polysulfide chains (section 2.4.2.2.1 ) is likely; a similar

solution/suspension of red octatomic sulfur (S8) has failed to form with other high

temperature alkene such as squalene. Elucidating the coordination chemistry of

ODE-S's sulfur on the QD surfaces is important for gauging the QD products' stability

at application stage. In particular, if the coordination is the polysulfide chain as



described, then an environment that can effectively reduce disulfide bridges will,

over time, destabilize the nanocrystals.

In 1-pot processes, it is difficult to supplement the weaker ligands, TOPO and HDA, to

balance the phosphonic acids added along with the cadmium as precursors during

growth and overcoat. TOPO facilitates chalcogen reaction rates and yields and also

acts a Group Il stabilizing ligand that competes with phosphonic acids at high

temperature [140]; its higher polarity should also help suppress the size of the Cd-

OPA polymer network on the surface of the nanocrystals, thus relieving the steric

hindrance met by CdSe and CdS monomers. Any solvent chosen as carrier during

overcoating must be close to inert due to the high temperature conditions and the

presence of oxidation prone CdTexSex emitters; alkanes and alkenes are nonetheless

poor solvents for both TOPO and HDA. Current schemes therefore drive the

overcoating process by providing the system with significant excess of sulfur

precursors; as Cd-OPA is continuously supplied for overcoat, complete reversal of

steric hindrance is not expected and the CdSe/CdS interface likely retains some

alloyed character, which increases the probability that emitter materials reside on the

surface of the final nanocrystals and compromise their stability.

Nonetheless, the 1-pot protocols described in this thesis should provide solid

groundwork for future improvements. In addition to successful inclusion of sulfur,

robust morphology and uniformity, their QD products have demonstrated efficacy

for water solubilization, with near unity reaction yield and negligible loss to

aggregation. Most important of all, preliminary data has suggested that with the

inclusion of sulfur, the CdTexSe1 x emitters-now CdS@ CdTexSe1 x QDs-have gained

the stability that they previously lacked to undergo a second overcoating procedure,

the recipe of which can then be optimized specifically for overcoating. Aside from

ensuring complete protection of the emitter, this separate overcoating procedure

can also introduce ZnS that offers stronger carrier confinement than CdS.



Experimental efforts on this front have been performed using all purified chemicals

as well, which ensure reproducibility and are also less forgiving to work with; thus

this second overcoating procedure has remained a work in progress.

3.4.4 On Flocculation: Sizing the Cadmium Phosphonate Coordination Polymers as

a Protective Ligand and Surface Barrier

As the process that separates QDs from their growth solution (both synthesis and

overcoat), flocculation is ubiquitous in QD protocols but often described with few

details. While publications focusing on size- and shape- selections have investigated

the effects of flocculations in more depth (ex. [113]), specifics of the process-how

much solvent and anti-solvent to add, for example-are rarely provided.

Yet, at the same time, most researchers experienced with the handling of QDs are

aware that the manner by which flocculation is performed dictates the health of the

QD population and its quantum yield (QY). Flocculation protocols are considered too

"aggressive" not only when they remove too much of the QDs' protective surface

ligands and cause them to be no longer suspendible in any solvent, but also when

they instigate a major drop in QY; yet there are few guidelines on whether a gentle

flocculation is actually adequate for its intended purpose, i.e. if it provides

"workable" QDs that are sufficiently free of residual precursors, ligands and

extraneous populations (MSNCs) from synthesis to proceed to the next step, and

that behave predictably and consistently once they are there.

Reported QY values are therefore meaningful only if the QDs emerging from the

specific cleanup condition are actually usable. For CdTexSe1 x QDs, performing

flocculations has required the same rigor as needed for synthesis. In addition to

removing MSNCs, flocculation has determined how "friendly" the QDs are to the



next step, be it overcoating or water solubilization, presumably by controlling the

amount of strongly-bound cadmium-phosphonate (Cd-OPA) polymer remaining on

the QD surfaces. This polymer, as previously discussed, may become not only an

unaccounted source of cadmium but also MSNCs as well.

The number of flocculations performed has been found to be less consequential than

the choice and volume of solvent versus non-solvent. In particular, non-polar hexanes

in insufficient volumes have rendered the polar Cd-OPA polymer network increasingly

difficult to remove with repeated use, presumably by deviating enough from a theta

solvent to collapse the polymer on the nanocrystals (section 2.4.1.3). The hexanes in

each round also carry increasingly lower concentrations of residual and relatively

polar synthesis chemicals including amines and TOPO. The outcome is high QY,

robust long-term storage ability but poor workability of the nanocrystals in

subsequent steps.

Toluene is more effective in dissolving the coordination polymer and easing their

removal from the surface of the nanocrystals, at the cost of QY and storage ability. It

is more polar than hexanes, with Snyder polarity index P'= 2.4 compared to o.1 of the

latter [19,167,175] (exact values of polarity may differ slightly between sources-

based on the methods used to determine the values-but the relative differences are

similar).

Earlier in this project, chloroform (P'=4.1) was observed to be capable of suspending

un-overcoated, flocculated CdTe-containing QDs and maintaining their QY for hours.

Despite being cited as a good solvent early in the development of colloidal synthesis

[126], suspension in chloroform has been known to cause speedy fluorescence loss,

followed by aggregation. This unexpected display of robustness in early CdTexSex

QDs was immediately followed by a challenge when attempts were made to water

solubilize them via polymer encapsulation (section 3.7). Adsorption of the



amphiphilic polymer was so inefficient that the QDs remained completely soluble in

hexanes after the process and with little loss of QY. The extent of water

solubilization, if any, was also inconsistent, until a rigorous protocol was used for

flocculation.

The purity of starting chemicals from synthesis further modulated the outcome of

flocculation. The most chloroform-compatible QDs were synthesized after TOP and

TOPO purifications, which likely encouraged more extensive polymerization of the

Cd-OPA (section 2.4.2.2.2). Over time, it became clear that amphiphilic polymer

encapsulation could only work efficiently when the early CdTexSe1 x QDs were more

aggressively cleaned up and lost their ability to sustain themselves in chloroform; in

achieving the latter, they lost their ability to sustain in air as well, given their lack of

an overcoat.

Compatibility of gently flocculated CdTexSe1 x QDs in chloroform, coupled with

observations that its survival in chloroform correlates with the amount of Cd-OPA

salts precipitated at flocculation, suggested the Cd-OPA bonds are not only strong

but also likely dominant in the form of polymers on the nanocrystals, which then

render the surface more polar and well protected compared to the triplet of octyl

chains supplied by TOP ligands or a single one by monomeric phosphonates or

amines. Chloroform is a good QD solvent when the surface of the QDs is dominated

with TOPO ligands [93,126], which are also more polar. The strongly coordinating

polymer may be key to suppressing cadmium sublimation in CdTe as part of its

oxidation process, which would have led to unchecked loss of CdTe past the surface

into the inner structure of the nanocrystals [50]; supporting this reasoning is the

observation that while these CdTexSe1 x QDs loses fluorescence in air, the process can

be very slow prior to flocculation-sometimes taking days. In such cases, cadmium

phosphonate polymers on CdTe-containing QDs may fulfill a similar protective role as

CdO in CdSe QDs, the formation of which is ligand-independent and is resistant to



non-solvent breakdown-and Te-containing QDs' sensitivity to flocculation reflects

their reliance on the cadmium phosphonate polymer to protect them against

environmental assault. The corollary would be that CdSe QDs are less sensitive (but

not insensitive) to flocculation conditions, which would explain why flocculation

protocols in literature (mostly for CdSe QDs) have traditionally been described in a

less rigorous manner compared to the needs of this project.

One postulation from size focusing of single material QDs is that the highest QY and

narrowest size distribution is achieved when equilibrium between the surface

monomer and QDs minimizes the rate of surface atom exchange, the latter allowing

time for optimal surface reconstruction [153]. Dependence on the external polymer

for oxidation protection would imply a significant role played by the concomitant

state of surface ligands during the surface optimization of CdTexSex QDs. As

overcoating must remove the ligand "cap" to deposit inorganic protective material,

the key to its success may lie in minimizing the lag time between ligand disruption

and new material deposition. This would explain why long overcoating processes are

often problematic for the alloyed QDs-the transition between the two steps may

not be seamless enough, allowing time for significant surface atom exchanges

between the emitters after ligand disruption but before sulfide incorporation.

A proper flocculation for CdTe-containing QDs should, therefore, achieve a balance

between retaining the protective properties of the phosphonate polymer and

restricting its size to warrant surface accessibility. Specifically, an optimized

flocculation avoids dissociating the bonds between the nanocrystals and the ligands,

but trims down the bulk of the phosphonate polymer by dissolving it and breaking it

down with a proper mixture of solvent(s) and non-solvent(s). Longer chain alcohols

have proved more effective for this purpose, likely due to steric hindrance that

prevents them from diffusing deep enough to reach the crystal-ligand interface.

Ethanol (P'=4.3) has been the "standard" non-solvent for CdTe and phosphonate-
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containing QDs after methanol (P'=5.1), the classic non-solvent for CdSe QDs, was

deemed too aggressive; this reasoning alone, however, is likely too simplistic in

explaining why ethanol has been a better non-solvent choice. The non-solvent's

effectiveness in breaking down the coordination polymer goes hand in hand with the

solvent's ability to spread out the polymer, rendering the QDs well suspended as

single nanocrystals but also more prone to attack by other agents. Methanol's

immiscibility with the common solvent hexanes has traditionally been solved by the

addition of butanol, which exerts its own solvent / non-solvent effect. In all cases, for

a flocculation to perform properly, the solvent and non-solvent should be considered

as one system to be optimized; they must be fully miscible and the ideal ratio of the

two may require adjustments upon gradual removal of the growth solution from

synthesis (ex. dissolved TOPO), which acts as a co-solvent in the initial round of

flocculation. Ultimately, a robust flocculation protocol is well-paced in its cleanup and

ensures good resolution in each step, the latter also critical to removing extraneous

QD populations such as the MSNCs.

3.5 Protocols for Synthesis, Overcoating & Flocculation of (CdS@)CdTe.Se,.-

QDs

There's no "unifying" protocol that broadly describes the synthesis and overcoating

of (CdS@)CdTexSex QDs, with NIR fluorescence that is sufficiently narrow for the

original motivation of this project, i.e. to create a series of imaging probes suitable

for multi-channel NIR imaging. The difference in kinetics between the alloying Te and

Se precursors affects concentrations of QDs that form in the solution, which in turn

determines the quantity of precursors needed for the process. The rate of precursor

depletion is further modulated by the size evolution of the nanocrystals over time.

As Ostwald ripening must be avoided but too high concentrations of precursors lead
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to extraneous nucleation, the appropriate concentration "windows" at any time

point during synthesis and overcoating are very narrow. There is also a practical limit

on how much the Group 11 Cd-OPA precursors can be supplied, as the major solvent

and weak/facilitating ligands, TOPO and hexadecylamine (HDA), are both difficult to

supplement given their solid forms at room temperature.

Consider this scenario: two populations of 5nm diameter QDs, with 1st absorption

peak at -70o and -725nm, are needed. Consulting the plot of estimated 1st absorption

peak for 5nm CdTexSe1 x QDs determined based on bulk optical bowing factor (Figure

2.2), the goal translates to making QDs of compositions CdTeo.9Seo.1 (for 70onm) and

CdTeo.6Seo.4 (for 725nm), respectively. The chemist proceeds to inject o.9mmol TOP-

Te+o.1mmol TOP-Se and o.6mmol TOP-Te+o.4mmol TOP-Se into a two reaction

vessels, each with the same amounts of ligands, solvents and group Il precursors.

The following is likely to occur: the first synthesis, for CdTeo.9Seo.1, forms nucleates at

a higher concentration due to the fast kinetics of tellurium precursors, and the high

surface area / volume ratio of small nanocrystals means they will sooner exhaust the

precursors in the reaction vessel, and at smaller sizes than the synthesis for

CdTeo.6Seo.4. Supplying Cd-OPA in a steady pace helps to prevent Ostwald ripening

(which would then require focusing to re-establish a narrow distribution), but only to

a certain extent because the phosphonate/amine ratio eventually becomes too high

for growth to proceed; supplying chalcogen precursors perturbs the smooth

composition gradient and makes it even less predictable. It is hence a challenge to

match the two populations in size, and the composition of each is also likely deviate

from the target and to a different extent, with the higher [Se] sample potentially

being more problematic; composition gradient, a function of size and composition,

deviates then. The overall outcome is that the absorption and fluorescence

wavelengths of the two populations can be far from predicted.
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Optimized synthesis protocol should minimize the difference between prediction and

outcome. While there is no "unifying protocol", the series of protocols at their

current state, compiled based on the properties and quality of products they yield,

share the majority of their attributes and are sensitive to wavelength modulating

parameters such as %Te in Group VI precursors, temperatures and amine/acid ratio.

While this statement is intuitively obvious, it has not been necessary true. Early in the

project, overly high ligand concentrations prevented wavelength extension into the

NIR, presumably due to a very sluggish growth that is kinetically sufficient to

incorporate only tellurium into the major emitter population; selenium was left out

and eventually formed MSNCs. The first step towards optimization is therefore

determining the range of precursor concentrations that "sensitize" the protocol to

wavelength modulating parameters. Using pure starting chemicals is essential for

clarifying these trends.

3.5.1 Protocol for the Synthesis of CdTexSex: Without Overcoating

Synthesis of CdTexSe1 x without overcoating allows for relatively large initial

precursor-ligand concentrations-which translate to higher nucleate and QD

concentrations-within the Cd-OPA maximum concentration limit that still allows for

efficient growth, as there is no need to "make room" for CdS incorporation. The

protocols presented this subsection are therefore suitable only for the preparation of

emitters for separate overcoating procedures and with proper flocculation in

between.

In order to reproduce the protocols to be described below, which are only minutes-

long in duration and hence allow little time for temperature stabilization, the

temperature controller must be well calibrated and uses a temperature ramping rate

that minimizes temperature overshooting. These requirements can be verified
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beforehand by checking the temperature profile upon heating a high temperature

solvent such as squalene. The stir rate should also be controlled as it affects heat

distribution and thermocouple reading. The growth temperature is in particular

sensitive to instrumentation, being the collective outcome of nucleation

temperature, the starting growth solution and injection volumes that determine the

temperature drop after injection, and the extent of rebound in temperature

immediately after injection, which is the combined effect of the temperature of the

heat pad (determined during ramping to nucleation temperature) and the

temperature controller's feedback response to the sudden plummet in its reading.

The following tools and setups have therefore been used for syntheses:

" Glassware: 4-neck round bottom flask, 5omL. 14/20 joint.

* Temperature control: REX-Dioo Controller (RKC Instrument, South Bend,

Indiana) or equivalent that ramps at a consistent rate of (T-T 1)/1o min (REX-

Dioo ramps at this rate in its default factory setting). Type K thermocouple

(Omega Engineering, Stamford, CT). Variable autotransformer ("Variac";

Model 3PN11o, Staco Products, Dayton, OH) set at 140V maximum.

e Stirrer (Model PC-42oD, Corning, Lowell, MA): set at a stir rate of -8oorpm.

Use only egg-shaped magnetic stir bars and never those cleaned in acid baths;

the stir bars should be dedicated for syntheses and washed with alcohols and

hexanes (no water) between runs.

e Stopwatch with seconds measurement.

e Heat gun with fan-only mode, to be used for reducing the cooling time

(usually by -50%).

There is no time for introducing materials into the glove box after degassing begins,

thus all needles, syringes and vials should already be inside the N2 environment

before starting synthesis. The volumes needed for all precursors to be injected
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should be calculated, and scaled up accordingly to account for the un-injectable

"dead volume" inside the needle, which is - O.15mL (an excess of -o.3mL is

recommended to ensure sufficient volumes can be drawn for injection). The schlenk

line should be at steady base pressure.

TOPO, TOP, hexadecylamine (HDA) and octylphosphonic acids (OPA) are purified as

described in Appendix 5.3. Squalene 98%, diphenylphosphine (DPP) 98% and

anhydrous hexanes (95%) are used as purchased, from Sigma-Aldrich (St Louis, MO).

Precursors stock solutions including Cd-OPA (=o.5M Cd-OPA in TOP), TOP-Te, TOP-Se

are prepared according to the instructions in section 3.3. The protocol below

describes the general steps; exact quantities of chemicals, temperatures, time points

and injection rates for different wavelengths of CdTexSe1 x QDs will be listed in Table

2. Samples are labeled PL X/Y, with X being the fluorescence peak wavelength and Y,

the FWHM of the fluorescence peak in nm after flocculation.

1. Measure the appropriate amounts of recrystallized TOPO and HDA and place

in a 5omL 4-neck flask. Pull vacuum and degas flask at room temperature to

make sure base pressure can be reached-this ensures the flask is completely

sealed.

2. With Variac setting at -60-70% full power, ramp the temperature to -60*C

(TOPO melts), then -105 0C (HDA melts) and finally the degassing temperature

Tdegas, which is 125 0C for this protocol series. Make sure thermocouple tip is

steadily positioned well above the stir bar but inside the flask content.

3. Degas TOPO and HDA for 10 minutes. At the end of 1o minutes, the mixture

should be at base pressure; if not, the timing should be consistent between

runs to avoid inconsistent evaporative loss of amines. Prepare TOP+DPP for
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injection (use 21G or smaller needle) in the glove box. Retrieve syringe from

glove box and inject.

4. Degas flask content for an extra 5 minutes. The pressure should fall back to

base pressure within this time frame.

5. Switch to N2. Turn Variac to full power (100%) and change temperature set

point to nucleation temperature TNuc+1.o*C to begin ramping, which generally

takes between 17-20minutes. Do not use glass wool to speed up the process

as it may create temperature control problems later. The longer ramp time is

due to the very high nucleation temperature, which is also approaching the

boiling point for H DA. During the temperature ramping period, prepare

syringes for injection during both nucleation and growth in the glove box.

6. The following set of syringes is to be prepared:

A. Cd-OPA+TOP-Te+Squalene for NUCLEATION; 5-6mL syringe /16G

needle.

B. TOP-Se for NUCLEATION (except for CdTe only QDs); imL syringe / 21G

needle. Do not use 16G needle for imL (or any non-Luer locked) syringe

as the pressure inside the flask will dislodge the two.

C. Cd-OPA for GROWTH; imL syringe / 21G needle.

Shake all precursor stock solutions, including the TOP-chalcogens and in

particular, the o.5M Cd-OPA in TOP solution immediately before drawing out

volumes. When mixing Syringe A, add Cd-OPA last, then mix the content by

drawing and injecting the solution in and out of the preparation vial several

times before loading. Keep the syringes in the glove box until it is time to

inject.
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7. Once the flask content stabilizes at TNuc+1.0 0C (do not wait as amine content

may decrease via evaporation), retrieve the syringes from glove box and

unlock the needle cap for all of them. Immediately proceed to the following

step, which must be performed at quick succession.

8. NUCLEATION **start timer, tNuc = osec**: Lower temperature set point to Tcro-

set = 315 0C, insert both Syringe A and Syringe B needles through separate septa.

When temperature drops i.o*C to nucleation temperature, inject A, then B

immediately. Note the temperature drop for future reference. Do not remove

the heat pad.

9. GROWTH: begin Syringe C Cd-OPA injection to supplement Group II precursors

for growth at designated time tCd-cro (=15sec for this protocol series), at the

specified injection rate(s) rcd-cro; in some cases, rcd-cro increases over time,

similar to during SILAR when more precursors are introduced for consecutive

semiconductor monolayer growth. Follow the rate as closely and as evenly as

possible; for example, if o.9mL Cd-OPA is to be injected over the course of 1

minute, with 1/3=o.3mL in the first 30 sec and 2/3=o.6mL in the second 30 sec,

then during the first 3osec the injection rate can be o.1mL /10 sec, and during

the second 30sec, 0.2mL /10 sec. Note the temperature during growth, TGro,

and record for future references; with appropriate temperature controller

settings, nucleation temperature -350-360C and injection of -3.0-3.5mL total,

the temperature should bounce back to the set point temperature (315 0C)

almost immediately with minimal heat input and without overshooting. It is

likely, however, that TGro will deviate several degrees from 315 0C.

10. At the end of growth (time tGro, = 9osec for this protocol series), turn Variac to

o% power, remove heat pad and use the fan-only mode of the heat gun to

speed up the cool rate by - 2x. Flask content should cool to 8o0C in -5-6min.
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Samples can be taken at this point for absorption and fluorescence

measurement.

11. Inject 12mL anhydrous hexanes retrieved from the glove box, transfer solution

into N2-filled septum vial and transfer into glove box for storage.

Table 2: Specifications of synthesis conditions for CdTexSe1 x QDs.

CdTe CdTeSe CdTeSe

*Em: 668/31 **Em: 737/37 ***Em: 764/47

TOPO 4.640 g 4.640 g 4.640 g

Starting chemical (12.000 mmol) (12.000 mmol) (12.000 mmol)

Hexadecylamine 1.449 g 1.449 g 1.449 g

Starting chemical (6.ooo mmol) (6.ooo mmol) (6.ooo mmol)

TOP 2.679 mL 2.679 mL 2.679 mL

inject after 10min degas (6.ooo mmol) (6.ooo mmol) (6.ooo mmol)

DPP 0.0209 mL 0.0261 mL 0.0209 mL

inject after 10min degas (0.120 mmol) (0.150 mmol) (0.120 mmol)

Squalene 2.900 mL 2.955 mL 2.955 mL

Nucleation: Syringe A

TOP-Te 1.oM 0.100 mL 0.045 mL 0.045 mL

Nucleation: Syringe A (0.100 mmol) (0.045 mmol) (0.045 mmol)

(Te 30%; Se 70%) (Te 30%; Se 70%)

0-5M Cd-OPA in TOP o.3oo mL 0.300 mL 0.300 mL

Nucleation: Syringe A (0.150 mmol Cd) (0.150 mmol Cd) (0-150 mmol Cd)

TOP-Se 1.2M N/A 0.0875 mL 0.0875 mL

Nucleation: Syringe B (0.105 mmol) (0.105 mmol)

(Te:Se 3:7) (Te:Se 3:7)

0-5M Cd-OPA in TOP 0.700 mL o.900 mL 1.200 mL

Growth: Syringe C (0-350 mmol Cd) (0.450 mmol Cd) (0.600 mmol Cd)

TNUC 3500C 355 0C 357'C

Nucleation Temp. (T + to 302.50C after (T + to 3030C after (T 4 to 305-5"C after
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Syringe A injection) Syringe A+B Syringe A+B

injection) injection)

tNuc o sec o sec o sec

Time of Nucleation (always o:

begin timing)

TGro-set 315"C 315 0C 315"C

Growth Temp.: Set point

tCd-cro 15sec 15sec 15sec

Time, start Growth Cd-OPA

(Syringe C) injection

rcd-Gro O.7mL/6osec for o.3m L/3osec for o.3m L/3osec for

Injection Rate of Growth Cd- t=15-75sec t=15-45sec t=15-45sec

OPA (Syringe C) Done at 75sec o.6mL/3osec for o.6mL/3osec for

t=45-75sec t=45-75sec

Done at 75sec Done at 75sec

torO 9osec 9osec 9osec

Total Growth time

Toro 3o8*C 311*C 318 0C

Growth Temp. (Mean)

TEM and spectral data of these QDs will be shown in section 3.6.1.1.

3-5.2 Protocol for the Synthesis of CdS@CdTexSe1.x: With Sulfur Incorporation /

Overcoating

1-pot approaches that combine synthesis and overcoating require lower starting

precursor-ligand concentrations to create less nucleates, so that enough Cd-OPA can

be supplemented for CdS incorporation without stalling the growth process. Sulfur

input begins the overcoating process of the CdTexSe1 x emitter QDs and helps to
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exhaust the supplied tellurium and selenium precursors such that the QD

composition matches the chalcogenide precursor input's.

These protocols have created QDs that are air stable for days to weeks; however, the

two samples that underwent water solubilization via encapsulation by poly(maleic

anhydride alt-i-tetradecene) (see section 3.7 for details) did not exhibit sufficient

stability for biological applications, have suffered an average loss of 60% of their QY

after 1 day in water. As there was no signs of aggregation or precipitation of these

water-solubilized QDs, it is likely that the overcoating is not thick enough for

complete protection against oxidation. Out of the QDs synthesized and overcoated

using the following protocols, the sample PL 786/62 was most likely to have a

complete overcoat given its distinctly larger size after overcoating under TEM and its

air stability upward of 14 days; this sample, however, did not undergo water

solubilization.

The tools and preparation required are the same as for the protocols for synthesis

without overcoating (section 3.5.1). Degassing steps are also identical, with the

exception of DPP being introduced with Nucleation Syringe A; as expected, the most

significant difference occurs during and after growth, with further temperature

modulations and multiple injections of Cd-OPA and sulfur precursors. The full,

generalized protocol is once again described first, followed by a table with exact

quantities of chemicals, time and temperature for different wavelengths (Table 3).
The protocols for two more samples, PL672/35 and PL77o/61, are presented in their

original worksheet format in Appendix 5.4.

1. Measure the appropriate amounts of recrystallized TOPO and HDA and place

in a 5omL 4-neck flask. Pull vacuum and degas flask at room temperature to

make sure base pressure can be reached-this ensures the flask is completely

sealed.
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2. With Variac setting at -60-70% full power, ramp the temperature to -6o0 C

(TOPO melts), then ~1050C (HDA melts) and finally the degassing temperature

Tdegas, which is 1250C for this protocol series. Make sure thermocouple tip is

steadily positioned, well above the stir bar but inside the flask content.

3. Degas TOPO and HDA for 10 minutes. At the end of 10 minutes, the mixture

should be at base pressure; if not, the timing should be consistent between

runs to avoid inconsistent evaporative loss of amines. Prepare TOP for

injection (use 21G or smaller needle) in the glove box. Retrieve TOP syringe

from glove box and inject.

4. Degas flask content for an extra 5 minutes. The pressure should fall back to

base pressure within this time frame.

5. Switch to N2. Turn Variac to full power (100%) and change temperature set

point to nucleation temperature TNuc+1.o*C to begin ramping, which generally

takes between 17-2Ominutes. Do not use glass wool to speed up the process

as it may create temperature control problems later. The longer ramp time is

due to the very high nucleation temperature, which is also approaching the

boiling point for HDA. During the temperature ramping, prepare syringes for

injection during both nucleation and growth in the glove box.

6. The following set of syringes is to be prepared:

A. Cd-OPA+TOP-Te+DPP+Squalene for NUCLEATION; 5-6mL syringe/ 16G

needle.



B. TOP-Se (+TOP-S) for NUCLEATION; imL syringe / 21G needle. Do not use

16G needle for 1mL (or any non-Luer locked) syringe as the pressure

inside the flask will dislodge the two.

C. Cd-OPA for GROWTH; imL syringe / 21G needle.

D. ODE-S for OVEROCOAT; 16G needle for quick injection

E. Cd-OPA for OVERCOAT; 21G needle

Shake all precursors stock solutions, including the chalcogenide solutions and

in particular, the O.5M Cd-OPA in TOP solution immediately before drawing

out volumes. When mixing Syringe A, add Cd-OPA last, then mix the content

by drawing and injecting the solution in and out of the preparation vial several

times before loading. Keep the syringes in the glove box until it is time to

inject.

7. Once the flask content stabilizes at TNuc+1.o*C (do not wait as amine content

may decrease via evaporation), retrieve the syringes from glove box and

unlock the needle cap for all of them. Immediately proceed to the following

step, which must be performed at quick succession.

8. NUCLEATION **start timer, tNuc = osec**: Lower temperature set point to Tcro-

set = 315*C, insert both syringes A and B needles through separate septa. When

temperature drops 1.o0 C to nucleation temperature, inject A, then B in close

sequence. Note the temperature drop for future reference. Do not remove

the heat pad.

9. GROWTH: begin Syringe C Cd-OPA injection to supplement Group 11 precursors

for growth at designated time tCd-cro, at the specified injection rate(s) rc-cro; in

some cases, rcd-cro increases over time, similar to during SILAR when more

precursors are introduced for consecutive semiconductor monolayer growth.



Follow the rate as closely and as evenly as possible; for example, if o.9mL Cd-

OPA is to be injected over the course of 1 minute, with 1/3=O.3mL in the first 30

sec and 2/3=O.6mL in the second 30 sec, then during the first 3osec the

injection rate can be o.1mL /10 sec, and during the second 3osec, 0.2mL /10

sec. Note the temperature during growth, TGro, and record for future

references; with appropriate temperature controller settings, nucleation

temperature -350-360*C and injection of -3.O-3.5mL total, the temperature

should bounce back to the set point temperature (315*C) almost immediately

with minimal heat input and without overshooting. It is, however, likely that

the mean TGro will deviate several degrees from 315'C.

10. At the end of growth (time tGro), turn Variac power to o% and remove heat

pad.

11. OVERCOAT: Wait for temperature to cool to TODE-S, inject Syringe D, ODE-S in

one go and record the time, tODE-S. For samples provided with an overcoating

temperature set point Toc-set(=20 0*C for this protocol series), change it and

when temperature reading falls to near Toc-set, place heat pad under flask

again and return Variac to 100% power. If Toc-set is "NA" ("not applicable"; for

samples with short overcoating duration), ignore this step. Note that this step

is likely to overlap, timing wise, with the next step.

12. OVERCOAT: Start Syringe E Cd-OPA to supplement Group 11 precursors for

overcoat at designated time tCd-oc, at the specified injection rate(s) rcd-oc. Note

the temperature during overcoat, Toc, and record for future references. Mild

overshooting (from the high temperature of the heat pad after synthesis) is

expected and accounted for in setting Toc-set, which is lower than the actual

target overcoating temperature; for an actual target overcoating temperature

between 210-215*C, for example, Toc-set is set at 2000c; Toc should not exceed



220 C with appropriate temperature controller settings. Begin cool down to

8o0C at time tend.

13. Inject 12mL anhydrous hexanes retrieved from glove box, transfer solution

into N2-filled septum vial and transfer into the glove box for storage; <0-5mL

ethanol can be added to keep the solution fluid, but only if necessary.

Table 3: Specifications of synthesis conditions for CdS@CdTexSex QDs.

CdTeSeS CdTeSeS CdTeSeS

#Em: 733/43 ##Em: 750/45 ###Em: 782/61

TOPO 6.960 g 6.960 g 6.960 g

Starting chemical (18.ooo mmol) (18.000 mmol) (18.ooo mmol)

Hexadecylamine 0.869 g 0.724 g o.869 g

Starting chemical (3.600 mrnmol) (3.000 mmol) (3.600 mmol)

TOP o.670 mL o.670 mL o.670 mL

inject after 10min degas (1-500 mmol) (1-500 mmol) (1.500 mmol)

Squalene 2.940 m L 2.940 m L 2.923 mL

Nucleation: Syringe A

DPP 0.0042 mL 0.0052 mL 0.0042 mL

Nucleation: Syringe A (0.024 mmol) (0.300 mmol) (0.024 mmol)

TOP-Te 1.oM 0.060 m L o.o60 mL o.060 mL

Nucleation: Syringe A (0.060 mnmol) (0.060 mmol) (0.060 mmol)

0-5M Cd-OPA in TOP 0.240 mL 0.300 mL 0.240 mL

Nucleation: Syringe A (0.120 mmol Cd) (0.150 mmol Cd) (0.120 mmol Cd)

TOP-Se Various M 1.8M: o.o167mL 1.2M: 0.100 mL 1.2M: 0.100 mL

Nucleation: Syringe 8 (0.030 mmol) (0.120 mmol) (0.120 mmol)

(Te:Se 2:1) (Te:Se 1:2) (Te:Se 1:2)

TOP-S 2.24M 0.3348 mL NA NA

Nucleation: Syringe B (0.7500 mmol)

0.5M Cd-OPA in TOP o.18o mL 0.210 mL 0.210 mL

Growth: Syringe C (0.090 mmol Cd) (0.105 mmol Cd) (0.105 mmol Cd)

ODE-S, Saturated 4.140 mL o.9oomL 4.320mL



Overcoat: Syringe D

0-5M Cd-OPA in TOP o.3oo mL 0.300 mL 0.300 mL

Overcoat: Syringe E (0-150 mmol Cd) (0-150 mmol Cd) (0.150 mmol Cd)

TNUC 357-50C 357-50C 357-50C

Nucleation Temp. (T 4 to 301.7 0C after (T 4 to 3o6.50C after (T + to 308C after

Syringe A+B Syringe A+B Syringe A+B

injection) injection) injection)

tNuc o sec o sec o sec

Time of Nucleation (always 0:

begin timing)

Tcro-set 315"C 315 0C 315*C

Growth Temp.: Set point

tCd-Gro 3osec 3osec 3osec

Time, start Growth Cd-OPA

(Syringe C) injection

rcd-Gro 0.030m L/3osec for o.07m L/6osec for o.o7mL/6osec for

Injection Rate of Growth Cd- t=30-2losec (3min t=30-9osec t=30-9osec

OPA (Syringe C) total) 0.14mL/6osec for O.14m L/6osec for

Done at 21osec t=90-15osec t=9o-15osec

Done at 15osec Done at 15osec

tGro 240sec 18osec 18osec

Total Growth time

TGro 3230C 323C 3240C

Growth Temp. (Mean)

TODE 2450C 285 0C 26o"C

ODE Inject Temp.

tODE 360sec (6min) 240sec (4min) 255sec (4min)

ODE Inject time

TOc-set 2000C NA 2000C

Overcoat Temp.: Set point (No heat input; T

falls naturally during



overcoat)

tCd-OC 48Osec (8min) 27osec (4min3osec) 54osec (9min)

Time, start Overcoat Cd-OPA

(Syringe E) injection

rcd-oc o.olmL/2osec for o.O5mL/3osec for o.olm L/3osec for

Injection Rate of Overcoat t=8-18min t=270-33osec t=9-14min

Cd-OPA (Syringe E) Done at 18min o.1omL/3osec for o.02mL/3osec for

t=330-39osec t=14-19min

Done at 39osec Done at 19min

Toc 208 0C 2250C 2000C

Overcoat Temp. (Mean)

tend 20min 6min3osec 23min

Time, end Overcoat & cool

TEM and spectral data of these QDs will be shown in section 3.6.1.2. TOP-S has been

introduced in Nucleation Syringe B (with Se precursors) with the intended goal of

elevating group VI concentration early to drive full Te and Se incorporation, while

permitting a lower [Se] such that the Te:Se ratio is 2:1-near the composition at

which the longest fluorescence wavelengths can be achieved based on optical

bowing estimation (Figure 2.2). Inclusion of sulfur in the protocols has widened the

fluorescence profiles with no observable changes in the size and shape uniformity of

the nanocrystals under TEM; overall, these sulfur-inclusive protocols have produced

QDs with the best morphology and uniformity to date, while also showing evidences

suggestive of strengthened type II character for a given wavelength (see section

3.6.3).

3.5.3 Protocol for Flocculation of (CdS@)CdTexSe-

Flocculations that prepare (CdS@)CdTexSex QDs for storage, overcoating and water

solubilization are performed in the N2 environment in its entirely, using anhydrous
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solvents including anhydrous hexanes, ethanol, propanol, butanol and methanol, all

of which are available from Sigma Aldrich (St Louis, MO). Syringes are employed for

solvent transfer to ensure consistent volumes are used between runs for a given

protocol. As the protocol changes, the conditions may require small changes. The

following guidelines may help with modifications:

* Always start with a spin-down to remove as much insoluble Cd-OPA + amines

salts (off-white in color) as possible. The spin speed can be high as long as the

QDs do not flocculate.

e For crashing out, the non-solvent volume is ideally close to the minimal

amount required to flocculate the QDs, such that non-QD materials are most

likely to stay in the supernatant to be discarded. QDs should therefore be

thoroughly suspended in the solvent before adding the non-solvent, and the

non-solvent should be added slowly and with continuous shaking so that the

minimal volume needed can be determined. Higher solvent volumes lead to

cleaner QDs after the crashout when this condition is met; its maximum

volume is limited by the non-solvent's ability to crash out the QDs. Meanwhile,

centrifuge speed can be adjusted according to the weight of the QDs to allow

better-paced, better resolved flocculations: the heavier CdTe1Se1 x QDs, in

general, can be flocculated at a slower spin speed compared to CdSe QDs,

further preventing the precipitation of unwanted ligands etc. from the

supernatant.

* MSNCs' fluorescence (often blue to yellow) tends to be sufficiently far

removed from the (CdS)@CdTeSex QDs' to be easily observable in the

supernatant during the early rounds of crashout. Checking for the signal is

therefore a good way to estimate the concentrations of MSNCs in addition to

looking for them under TEM, in which the ultra small nanocrystals can be



elusive. As previously noted, the Cd-OPA and amine salt pellets are also good

"hiding places" for MSNCs. MSNC fluorescence should no longer be visible in

the supernatant of the last round of crashout.

If the synthesis produces large quantities of Cd-OPA+amine salt that cannot

be effectively removed with hexanes as solvent-this can manifest as the QD-

hexanes stock solution "gelling up" after days in storage-replace 50% of the

hexanes volume with toluene in every round of crashouts except the first one.

However, store the QDs in hexanes only.

The protocols below have been developed based on crashing out the full volume of

growth solution from one synthesis as described in sections 3.5.1 and 3.5.2. They can

be scaled down for partial volumes, provided that the growth solution is well mixed

when divided into aliquots.

3.5-3.1 The i-Alcohol "Standard" Flocculation Protocol

This protocol assumes that the QD growth solution contains 12mL anhydrous

hexanes (+ <o.5mL ethanol) in storage, as is the case for all synthesis protocols

described above. If not, add hexanes and make sure the solution is completely fluid

(i.e., with no clumps of TOPO) before proceeding to step 1.

1. SALT REMOVAL 1: Spin down the solution at 3.9krpm, 5min. A salt pellet

should precipitate. Transfer the supernatant (with the QDs) into a fresh 5omL

centrifuge tube.

2. SALT REMOVAL 1: Place 6mL hexanes into the salt pellet and re-suspend it by

vortexing, then spin down again at 3.9krpm/5min. This washes the pellet to

collect all QDs and the pellet should be off-white afterwards. Transfer the
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hexanes supernatant into the supernatant from step 1, so the growth solution

has 18mL hexanes total. Discard pellet.

3. 1st CRASHOUT: Add 18mL ethanol slowly and with constant shaking to mix it

well. Centrifuge at 3.3krpm for 5min to flocculate the QDs. This should leave

mostly MSNCs in the supernatant; if some QDs remain in the supernatant,

transfer the supernatant into a different tube (so to avoid extended contact

between the QD pellet and ethanol), add ethanol in 3mL increments and spin

at 3.3kprm/2.5min to flocculate them.

4. Discard the supernatant. Reverse the centrifuge tube with QD pellets and set

it upside down on a paper towel for several minutes to drain remaining

solvent (ethanol doesn't evaporate quickly). Re-suspend all QDs in 6mL

hexanes. Vortex briefly.

5. SALT REMOVAL 2: Spin down at 3.9krpm / 5min. A small off-white pellet will

likely precipitate. Transfer the QD-containing supernatant into a fresh tube

while filtering the solution with a o.1-o.2um PTFE syringe filter. There should

be no clogging at this point, but if there is and the clog is lightly- or un-colored

in the filter, spin the supernatant again to remove more salt. If the clog is of

the same color as the QDs, then it is likely that the QDs have aggregated.

6. 2"d CRASHOUT: Add an additional 6mL hexanes (-> 12 mL hexanes total). Then

add 12 mL ethanol slowly and shaking the tube to ensure good mixing. Spin

down 3.3krpm/5min.

7. Discard the supernatant. Reverse the centrifuge tube with QD pellets and set

it upside down on a paper towel for several minutes to drain remaining

solvent. Re-suspend the QDs in 3mL hexanes and vortex briefly.
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8. SALT REMOVAL 3: Spin down again at 3.9krpm/5min. Salt rarely precipitates at

this point but if there is, transfer the QD-containing supernatant into a fresh

tube.

9. 3rd CRASHOUT: Add additional 3mL hexanes (-> 6 mL hexanes total). Then add

6 mL ethanol slowly and shaking the tube to ensure good mixing. Spin down

at 3.3krpm/5min.

10. Discard the supernatant. Reverse the centrifuge tube with the QD pellet and

set it upside down on a paper towel to drain remaining solvent. Re-suspend in

3mL hexanes and store in a close-capped vial (do not use septum vial as the

solution dries out quickly over time). so.1%v/v of TOP can be added at this

point, if the QDs have to be stored long term.

3.5.3.2 The Multi-Alcohol "High Resolution" Flocculation Protocol: for Growth

Solutions with Difficult to Remove MSNCs.

Multi-alcohol flocculations was originally developed for syntheses using as-purchased

rather than recrystallized 98% hexadecylamine, which retained a small population of

MSNCs (and their QD progenies) that was poorly removed by the "standard"

flocculation protocol. Over the course of this project, the general strategy of using

multiple alcohols during flocculation to improve separation of different QD

subpopulations has proven applicable to a variety of synthesis and overcoating

protocols, although the appropriate solvent / non-solvent volumes and endpoints do

differ and at times significantly.

The following protocol was successfully used on QDs synthesized using protocols

almost identical to those delineated in section 3.5.1, but with as-purchased 98% HDA
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and also stored in 8mL TOP + 6mL anhydrous hexanes instead of 12mL anhydrous

hexanes. Loss analysis has been performed on the QDs left in the supernatant to be

discarded from each crashout; they were flocculated separately and imaged by TEM,

the data from which will be shown in Figure 3.12 in section 3.6.2.

1. 1st CRASHOUT: In the growth solution stored with 6mL hexanes + 8mL TOP,

add 3omL ethanol. Spin down at 3.3kprm/5min. Decant and drain supernatant.

2. SALT REMOVAL: Re-suspend QDs in 3mL hexanes. Spin down insoluble Cd-

OPA + amine salt pellet at 3.9krpm/5min and transfer the QD-containing

supernatant to a fresh tube. Wash pellet with 1mL hexanes and combine

supernatant with the 3mL QD solution.

3. 2 CRASHOUT: Add 2mL hexanes so that total hexanes volume is 6mL. Add

12mL 1-propanol. Spin down at 3.6krpm/5min. Decant and drain supernatant.

4. 3rd CRASHOUT: Repeat 2nd crashout-re-suspend QDs in 6mL hexanes, add

12mL 1-propanol and spin down at 3.6krpm/5min. Drain supernatant.

5. 4th CRASHOUT: Re-suspend QDs in imL hexanes. Add 1omL 1-butanol and spin

down at 4.5krpm/5min. Decant and drain supernatant.

6. 5th CRASHOUT: Re-suspend QDs in 6mL hexanes. Add 2mL 1-butanol and 6mL

methanol and spin down at 3.okrpm/5min. Decant and drain supernatant.

7. Re-suspend QDs in imL hexanes, filter with o.2um syringe filter and spin down

residual salt at 3.9krpm/5min. Transfer the QD-containing supernatant to a

closed capped vial and adjust hexanes volume for storage.



3.5-3.3 Flocculating (CdS@)CdTexSe,.x for TEM: A Quick Note

While the above flocculation protocols are designed to clear all MSNCs from the

(CdS@)CdTexSex QDs for storage and further processing, flocculations performed

on QDs for TEM have aimed to retain the extraneous nanocrystal populations for

imaging. The growth solution has a small aliquot retrieved for TEM before transfer

into the glove box, and flocculation on this aliquot is performed as described in

section 3.5-3.1 but scaled down according to the aliquot volume. The ethanol:

hexanes ratio is elevated from 1:1 to -3:1 for each crashout. If extraneous populations

were found in this TEM aliquot, the storage QD solution also undergoes TEM to

confirm that the "standard" flocculation protocol manages to clear them completely.
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3.6 Data Pertaining to the Synthesis and Overcoating of (CdS@)CdTeSe,.,

QDs

3.6.1 Properties of (CdS@) CdTexSe.x QDs

3.6.1.1 CdTexSe,.x QDs Synthesized Using Protocols Described in 3.5-1.1

TEMs of the CdTexSe1.x QD series synthesized using identical (marked by asterisks *)

or similar protocols to those described in section 3.5.1, including the average sizes of

the nanocrystals, are shown in Figure 3.4.
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PL Peak/FWHM: 656/29nm PL Peak/FWHM: 668/31nm PL Peak/FWHM: 737/37nm PL Peak/FWHM: 757/44nm
QD Diameter: 4.46nm QD Diameter: 5.40nm* QD Diameter: 5.03nm** QD Diameter: 5.29nm

PL Peak/FWHM: 764/47nm PL Peak/FWHM 7 6751nm k 71
QD Diameter: 5.02nm*** QL Dieter 0

Figure 3.4: TEM of CdTexSe1.x QDs with peak fluorescence from 656 to 778nm. The first two

samples are CdTe QDs. */**/*** denote samples with their synthesis protocol described in

section 3.5.1. Morphologically, the nanocrystals in this series fare very well in both shape and

uniformity, but slightly worse than those to be shown in Figure 3.6, which include sulfur in

their precursors, as the ligands and TOPO quantities were optimized for as-purchased 98%

H DA rather than the recrystallized amine used in these syntheses. Optimization for the use of

recrystallized HDA as well as inclusion of sulfur would involve increasing the amount of TOPO

while decreasing the amounts of HDA and Cd-OPA during emitter growth. Scale bar=2onm.



Figure 3.5 below shows the optical spectra of the same series of QDs:

Notably, the size range of these QDs is quite small, in marked contrast from the series

of homogenously alloyed CdTeo.66Seo.34QDs reported by Bailey and Nie [13], which

spanned a similar range of wavelengths but with sizes between 2.7 to 7.onm. By

holding constant the quantity and timing of tellurium entry, the synthesis protocols

presented in section 3.5.1 uniformizes the amount of nucleates and hence, the

amount of precursors needed for growth and simplifies protocol optimization for the

whole series, but at the cost of strengthened type I character especially for long

wavelength samples; fluorescence tuning is expected to occur mostly via changes in
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Figure 3-5: Optical spectra of CdTexSex QDs. */**/*** denote samples with their synthesis

protocol described in section 3.5.1. The two lowest wavelength samples are CdTe QDs. a)

Absorption spectra, each showing a 2nd absorption band near the band edge. Significance of

the relative height ratio of the two local maxima, Abs7/Abs, which is shown in the upper

corner with Abs, normalized to 1, will be discussed later section 3.6.3. b) Fluorescence spectra

showing symmetric profiles, the upper right corner shows their FWHM vs. peak wavelength.

c) Fluorescence spectra showing only the marked samples.



composition and its gradient, adding a small number of monolayers that are Se and S-

enriched. That a composition gradient exists in these QDs and is likely strengthening

as wavelength increases will imply a drop of quantum yield, which will be seen in the

next QDs series that includes the addition of sulfur.

3.6.1.2 CdS@CdTexSe,.x QDs Synthesized Using Protocols Described in 3.5-1.1

TEMs of the CdS@CdTexSex QD series synthesized using identical (marked by hash

symbols #) or similar protocols to those described in 3.5.2 are shown in Figure 3.6.

Quantum yield (QY) and size information are also included; details on how QY values

are determined can be found in Appendix 5.1.

125



QD Diameter: 5.08nm

QD Diameter: 6.03nm

QY 72%/o Y 60% QY 41%

1 PL Peak/FWHM: 672/35nm PL PeakIFWHM: 700/39nm PL PeakIFWHM: 733/43nm
QD Diameter: 5.08nm QD Diameter: 5.49nm QD Diameter: 5.64nm #

im PL Peak/FWHM: 748/47nm PL Peak/FWHM: 750/45nm PL Peak/FWHM: 753/48nm
QD Diameter: 5.77nm QD Diameter: 5.65nm ## QD Diameter: 5.76nm

PLPaIWH:7756mP eaIWMY706mP 30%!WH 781.n P 4%WH
PL Peak/FWHM: 757/56nm PL Peak/FWHM: 770/61 nm PL, Peak/FWHM 78/64nm M~>'
QD Diameter: 5.76nm OD Diameter: 5,46nm QD Diameter: 5 95nm r #4

Figure 3.6: TEM of CdS@CdTexSel.x QDs with fluorescence peaks from 656nm to 782nm. The

first sample has a CdTe emitter. #/##/### denote samples with their synthesis protocol

described in section 3.5.2. Post standard crashout (section 3.5.3.1) quantum yields, if

measured, are also indicated. Crashout of the PL74o/47 sample followed the flocculation

protocol described in section 3.5.3.3 for TEM, thus retaining the CdS MSNCs nucleated during

the overcoating stage; for comparison, sample PL700/39, which encountered a similar

problem, was flocculated using the standard protocol described in section 3.5.3.1 and was

free of extraneous nanocrystal populations. Scale bar=2onm.

As in the case of CdTexSe1 x QDs (Figure 3.4), the sizes of these QDs are fairly

consistent through the wavelength series, with only a mild increasing trend towards
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longer fluorescent wavelengths. Meanwhile, the quantum yield decreases, also likely

due to a strengthening type Il character as tellurium entry conditions were held

consistent for this series as well. Figure 3.7 shows the absorption and fluorescence

spectra of the same series of CdS@CdTexSel x QDs:

a Figure 3.7: optical spectra
AAbs

of CdS@CdTexSex QDs.

#/##/### denotes samples

with synthesis protocol

described in section 3.5.2.

a) Absorption spectra also
PL 750145 W

PL MW 0 WevewnMl) contain prominent 2nd

350 450SO C 650 70 M S0

Wavdaigth (Nm) absorption band features
b .c 1.0 adjacent to each band

edge; at lower

wavelengths, the presence

os Jos of CdS is evident in some

samples. Upper right corner

also shows a normalized

00 00 Abs2/Abs, plot with a clear
w.tw*th m) WavWnt"("m) increasing trend of Abs,

towards longer fluorescence wavelengths. b) Fluorescence spectra and its FWHM vs. peak

wavelength; the slight increase in FWHM after sulfur inclusion (see Figure 3.8) may be due

to CdS further augmenting the type II character of the QDs, given that these QDs are highly

uniform morphologically. c) Fluorescence spectra of only the marked samples. The slight

"shoulder" on the hypsochromic side of PL782/6i (###)'s fluorescence peak has been

observed occasionally after overcoating and is not removable by flocculation.

Fluorescence peak FWHM as function of peak wavelength of this CdS@CdTexSel.x QD

series is compared against that of the CdTexSel.x QD series in Figure 3.8. Also included
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in the plot is an older CdTexSe-x QD series synthesized using protocols similar to

those described in section 3.5.1 but with as-purchased 98% HDA. The PL FWHM values

for the sulfur-free emitters have been fairly consistent over the course of this project,

even though the synthesis protocols have evolved significantly and the resulting QD

morphology has seen vast improvements (see Figure 3.13 and Figure 3.14, section

3.6.3).

Figure 3.8: Fluorescence FWHM vs. peak

wavelength of (CdS@)CdTexSex QDs. Key: orange:
55

CdTexSex QDs synthesized as described in section

24S *.3.5.1 (also seen in Figure 3.5 b); red: CdS@CdTexSel-x

QDs synthesized as described in section 3.5.2 (also

35 *seen in Figure 3.7 b); yellow: CdTexSelx QDs

synthesized as described in section 3.5.1, but with as-

25 purchased 98% HDA. Colored lines are linear
650 675 700 725 750 775 S0o

wav~ength (nm) regression plots of the experimental data points.

The crystal structure and composition of a subset of CdS@CdTexSelx QD samples

were examined by X-ray diffraction (XRD) and inductively coupled plasma atomic

emission spectroscopy (ICP-AES). XRD (Figure 3.9) reveals the crystal structure of

these QDs is of mixed zinc blende and wurtzite character, which has been observed

in both single-semiconductor (ex. CdSe [211]) and CdTexSe.x QDs [144]. It is practically

very challenging to determine experimentally if the mixing occurs on the population

scale, as in subpopulations of pure wurtzite and pure zinc blende being mingled

together, or if it occurs on the individual scale, as in each QD carrying both crystalline

phases [211].
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Figure 3.9: Crystal structure of selective

CdS@cdTexSex QD samples, analyzed by X-

- ray diffraction (XRD). For reference, XRD

patterns of bulk wurtzite and zinc blende
20 25 30 3 40 4 so 5

CdTe and CdSe in the same 20 range, as well

as the Miller indices (h k 1) of the peaks'

corresponding crystal planes, are also

P709 provided (top two plots). CdS@CdTexSex
PL672/5

0"2-Ta W * QD samples are of mixed zinc blende and

wurtzite character, with the former being dominant. In the 2E=20-3o*range, zinc blende CdTe

and CdSe has one prominent peak whereas wurtzite has three due to the latter's loss of

symmetry in its crystal structure. For the same reason, the 2O=37-50o range carries two

prominent peaks in zinc blende but three in wurtzite. The broad diffraction peaks in QDs

compared to bulk are caused by their finite sized crystal domains. Based on this data,

CdS@CdTexSex QDs are expected to be close to zinc blende, in that their XRD patterns do

not contain the prominent (103) wurtzite peak at 20 -42-45* that should fall between the

(220) and (311) zinc blende peaks. Nonetheless, the non-zero intensity count in the region is

indicative of the presence of some wurtzite, and its elevated relative value, compared to the

(220) zinc blende peak (equivalent to (110) wurtzite), in longer wavelength CdS@CdTexSex

QDs suggest stronger wurtzite character in these samples. This is not surprising as CdSe and

CdS, which are more abundant in these samples (see Figure 3.10), favor the wurtzite lattice

more than CdTe, which favors zinc blende unless the kinetics of the synthesis is very

aggressive. A shoulder on the right hand side of the (111) peak is also observed in longer

wavelength CdS@CdTexSex QDs, which is likely a manifestation of the (101) wurtzite peak.

An in-depth study will be needed to determine with certainty whether the zinc blende phase

co-exists with wurtzite within each QD or whether it forms its own subpopulation of

nanocrystals. The sample peaks of CdS@CdTexSex QDs fall between CdTe and CdSe values

as expected from their alloyed compositions, and the shift towards CdSe as wavelength

increases agree with the composition data, as shown next in Figure 3.10.
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Elemental analysis by ICP-AES (Figure 3.10) confirms the presence of sulfur and at a

composition equivalent to 1-1.5 monolayers of CdS overcoat. It also indicates that the

Te:Se compositional ratios in these QDs are sensitive and above all, similar to the

molar ratio of tellurium and selenium precursors introduced during synthesis.

1.08 1.17 10 Figure 3.10: ICP-AES elemental analysis of 4
Te% 0.64 0.65 0.51 0.42
So% 0.00 0.13 0.23 0.24 samples in the CdS@CdTexSex wavelength
S% 0.36 0.22 0.26 0.34

T*:S* In QPs 0.83: 0.17 0.69: 0.31 0.64 : 0.36 series. Sulfur is present at quantities
T8:Se in precursors 0.80 : 0.20 0.80 :0.20 0.66: 0.33 0.57 : 0.43

% cdSVol 29.2% 17.6% 21.4% 28.7% equivalent to 1 to 1.5 monolayers of overcoat,
Icas osyws 11.5 <1.0 1.0 1.5 which is -50% of what is ideal for full

oxidation protection. Moreover, alloying between the CdTexSe.x emitter and the CdS

overcoat is possible, which would further compromise the surface coverage of CdS and its

ability to protect the emitter against oxidative damage. The relatively low CdS% in PL700/39 is

likely due to the nucleation of CdS, which is visible both in the TEM and the absorption

spectrum of the sample (Figure 3.6 and Figure 3.7). Each sample is also enriched in

cadmium, consistent with previous observations of QDs with strong, dative X-type

phosphonate ligands. Increasing the Se composition in the QDs is at least partly responsible

for the extension of wavelength between samples PL7oo/39, PL733/43 and PL77o/61, which

are of equivalent sizes (Figure 3.6) (composition gradient may play a role as well), and was

implemented by introducing more Se precursors at nucleation while the amount of Te

precursors was held constant at o.o6mmol. Overall, the Te: Se compositional ratios in the

QDs and the precursors agree well with one another ("what you add is what you get"),

easing the prediction of fluorescence wavelength at the planning stage of synthesis. While

the QDs consistently contain more Te, which is expected from the kinetic difference between

TOP-chalcogenide precursors and a non-unity reaction yield, the small difference in their Te:

Se ratio from their precursor input's suggests a diffusion-based, sterically driven growth,

which is nonetheless not conductive to creating a sharp emitter / overcoat composition

gradient during overcoating. The 64% Te: 36% Se ratio of PL770/61 should be able to achieve

the longest wavelength based on optical bowing calculations (Figure 2.2).
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As already mentioned, the general trend of decreasing quantum yield as wavelength

increases in the CdS@CdTexSex QD series is likely due to the strengthening of their

type Il character, which is also suggested by the trend of Abs2/Abs, and the distance

between the two absorption bands (dabsabs2) that will be discussed in further details

in section 3.6.3. Coverage of the Cd-OPA coordination polymer surface ligand may

also modulate QY values; reduced coverage may favor the incorporation of CdS

especially in longer wavelength samples but compromise QY. While QY is an

important performance parameter, its values are only meaningful at the application

stage and are irrevocably connected to the environmental stability of Te-containing

nanocrystals.

This CdS@CdTexSex QD series display sufficient air stability for amphiphilic polymer

encapsulation experiments, which will be described in detail in section 3.7. Air

stability is quantified as the ability to hold on to its air-free QY value in a dilute

(absorbancemax at 35onm < o.1) hexanes solution that is stored under room light and

capped in air. To date, only one sample (***, PL 782/61) has demonstrated no drop in

QY value for more than 4 days, and insufficient surface coverage of overcoating

sulfides is likely the cause of this instability. Short-term stability of these QDs, while

sufficient for determining the appropriate methods for water solubilization, has

prevented these QDs from becoming truly application-ready. Figure 3.11 presents the

air stability data of 4 samples in this QD series:



3.6.2 Removal of MSNCs formed during Synthesis by Multi-Alcohol "High

Resolution" Flocculation

The protocol described in section 3.5.3.2 is generally suitable for cleaning up synthesis

and overcoating products in which the major and extraneous QD populations are too

similar in size and composition to be separable by the 1-alcohol "standard"

flocculation protocol (section 3.5-3.1), assuming that a similar solvent / ligand system

has been used to prepare the nanocrystals as those described in sections 3.5.1 and

3.5.2.

The example shown in Figure 3.12 is the cleanup of a CdTexSel-x synthesis that was

performed using similar protocols as described in section 3.5.1 but used as-purchased
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1.25 PL6725 PL733/43* PL770/61 PL78161*** Figure 3.11: Stability of selected
-MrI1Dy -- Ar1Day A1Day AM2Day

Al 3ay ~ r3aV A30a AJ30" CdS@ CdTexSel-x QD samples,
1.00Ak~a AirOOVA.J1ay

0.75 / including two (*/***) with
0.7 Starting QY Startig QY J Starting QY Starting QY72% 41% 30% 24% synthesis protocols described in/ 3.5.2. a) PL profile of each sample,

0.25s
0. the concentration of which in

600 700 7 00 900 600 700 800 900 600 700 800 900 600 700 800 900
Wavelength (nm) Wavelength (m) Wavelength (rm) Wavelength (nm)

'4 1.3 recorded after various durations
S1.2 of air storage; b) the area of the

1.1

01.6 0 PL peaks relative to the first00 2 0

0.8 DaysmIn Ar recorded value, which is

equivalent to the relative QY compared to the starting value provided in a). Water

solubilization experiments performed concurrently on other aliquots of PL672135 and

PL733/43 sped up and confirmed oxidative degradation that is suggested in this plot after Day

4 (see Figure 3.19).



98% hexadecylamine. After ist to 4th crashouts (labeled EtOH, PrOH-1, PrOH-Il and

ButOH respectively in accordance to the alcohol used in each), the supernatant was

retained, flocculated separately with ethanol (for 1st crashout) and methanol (for 2nd

to 4th crashout) and centrifuged at 80oorpm/5min to retain as many nanocrystals as

possible; each pellet was then re-suspended in hexanes, imaged with TEM and its

absorption and fluorescence spectra determined.

a End of Growth 20 b I
-Crashout Soln

-1st Crash: EtO Loss

-2nd Crash: PrOW Loss 15

-3rd Crash: PrOH-l1 Loss

-4th Crash: BuOH Loss

so Jos o.s

0 0 0
35 400 450 O 55 6W SO ?00 ?5W # C 3so 4so sso 650 750 350 W 600 700 80 600 700 800 900

WavWngth (nm weleingth nm) Waventh (nm) Wavelensth(nm)

C

1a Crash: EtOH Loss 2nd Crash: PrOH- Loss 4h Crash: BuOH Loss Crashout Solution
(QD size non-uniform) QD Diameter: 4.3nm QD Diameter: 5.3nm QD Diameter: 5.6nm

Figure 3.12: Multi-alcohol "high resolution" flocculation, as described in section 3.5.3.2,

performed on the products of a CdTe.Se 1.x synthesis contaminated with MSNCs. End of

Growth refers to the QDs as synthesized, i.e. it contains all subpopulations in the growth

solution prior to crashout. Crashout soln is the final, flocculated stock solution of QDs in

hexanes. a) Absorption spectra. Left: loss from the first two crashouts (EtOH, PrOH-1) is

dominated by a smaller but uniform MSNC population with 1st absorption peak at -56onm,

separated from the major population characterized by the double peak feature in the NIR.

Right: comparison between End of Growth and Crashout Soln only, both curves normalized to

the it absorption peak to accentuate the difference in features. It is impossible to determine
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3.6.3 Reading the Spectral Profiles of CdTexSex QDs

As previously discussed, there have not been sufficient data to create references for

the spectral profiles of CdTexSe1 x QDs. While the influence of composition gradients

on the shape of absorption profiles can be deduced from past literature comparing

type I versus type II QDs, it remains difficult to be distinguished from "health"

parameters, i.e., those that are purely determined by synthesis conditions, such as

crystallinity and uniformity. Literature on CdTexSe1 x QDs have measured the

composition gradient of their products using elemental analysis [13], which is

theoretically sufficient as a characterization tool but is in practice prone to errors

from residual precursors and MSNCs remaining in the solution or unintentional

selective separation during flocculation. Irreproducibility of synthesis protocols also

makes it difficult to verify the gradient or compare between reports.
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from the End of Growth curve alone that extraneous QD populations are present, due to the

lack of spectral references for CdTexSe. QDs. b) Fluorescence spectra. Left: although the

small extraneous MSNC population dominates the first two crashout losses in absorption, its

fluorescence in the visible wavelengths remains weak compared to the NIR fluorescence

from the minute quantities of major population left behind; thus signals from MSNC

populations can easily become "invisible" if the major population has not been removed by

flocculation. Also, non-zero signal strength between the two distinct peaks suggests that the

two populations are actually not distinct. Right: the major population peak is almost identical

in every round of the crashout. c) TEM. The presence of multiple QD populations is especially

observable in the loss from the 1st ethanol crashout; some populations are likely non-

fluorescent. The 4th crashout by butanol turns out to perform size-selective precipitation for

the major population. Scale bar=2onm.



Observations from this project have made apparent that the shape and width of

CdTexSe1 x QDs' fluorescence spectra are unreliable indicators of the health of the QD

population. In fact, dominance of non-fluorescent species in "bad" samples often

results in the narrowest fluorescent spectra. As seen in Figure 3.13 and Figure 3.14,

which showcase various qualities of QDs with similar fluorescence peaks (-68onm

and 74onm respectively) and their spectral profiles, samples with poor morphology

and wide distributions of nanocrystal size and shape can give rise to a

photoluminescence (PL) spectrum that is symmetric, narrow and essentially

equivalent to that recorded from robust samples.

SAMPLE 680A
s. - n m 1st Abs peak/HWHM: 667/25nm

. PL peak/FWHM: 682/41nm
Mean QD Diameter: 5.4nm

3.0

-o SAMPLE 680B
S1st Abs peak/HWHM: 666/25nm
PL peak/FWHM: 687/38nm

0 ........................... ...... .... ....... Mean QD Diameter: 5.7nm

Waw... (fint

SAMPLE 680C
(1 ML ZnS Overcoat)
1st Abe peak/HWHM: 658/21nm
PL peak/FWHM: 679/38nm
Mean QD Diameter 5.7nm

350 400 450 500 550 600 650 700 750

Wavelength (nm)

Figure 3.13: Morphological variations in QDs with fluorescence spectra of peak -68onm and

FWHM -4onm. Sample 68oA, an early sample, is heavily contaminated with MSNCs and has

poor size and shape uniformity in the major population, which is not apparent from its

fluorescence or absorption profile without a reference for the latter. TEM inspection is

therefore necessary. Sample 68oB has no MSNCs but still has suboptimal shape control;

Sample 68oC, meanwhile, has very good shape and size uniformity. Sample 68oC was

synthesized using a protocol similar to those described in section 3.5.2 and is, in effect,

PL656/3o in Figure 3.6 overcoated with an extra monolayer of ZnS from a second

overcoating process. It is important to note, however, that while Sample 68oC is

morphologically robust, its absorption profile is not a "standard" unless the composition

gradient of the sample is also known. Fluorescence spectra are therefore poor indicators of

135



136

sample quality for CdTexSe1.x QDs. Absorption spectra reveals more information: the black

arrow points to a 2"d absorption band feature that is likely related to the composition

gradient; the HWHM values of the 1st absorption peak may in fact be better indicators of

major population uniformity. TEM scale bar = 2onm.



SAMPLE 74A SAMPLE 740C W Sufu
IstAbs pek4WHM:70/36nm - W 73

L PL pek/FWHM: 740/49nm P W 14
" -O Mn 0D Dater: N/A (pods) w o 

SAMPLE 740B SAMPLE 740 (Wt Suiur)
1st Abs peak/HWHM: 716/27nm ist Abs peak/HWHM: 711127nm

350 o 4so SW0 SSO 600 650 700 750 8O0 PL peak/FWHM: 737/41 nm PL peak+FWHM: 73O42nm
Waveliegth (n1 Mean OD Diameter: 5.7nm Mean 00 Dianeter: 5.nm

Figure 3.14: Morphological variations in QDs with fluorescence spectra of peak -74onm and

FWHM -45nm. Sample 740A, similar to 68oA in Figure 3.13, is an early sample and exhibits

very poor nanocrystal morphology that does not reflect in its spectral profiles. Sample 740B

has no MSNCs but retains minor shape problems in the major population; the small "kink"

(pointed by the green arrow) and flattening / lengthening of the tail of its absorption curve is

also seen in 740A and likely indicative of a subpopulation with a stronger type Il character.

This subpopulation may also appear as a small bump separate from the rest of the curve.

Sample 740C has good major population uniformity but developed MSNCs during CdS

overcoating, which have been intentionally retained for this TEM. As commonly observed for

extraneous populations, the MSNCs form localized "colonies" on TEM samples that could be

easily overlooked. The MSNCs shown here are relatively benign in that they are, size and

spectrum wise, very distinct from the major population, appearing in the absorption profile

as a "notch" at -40onm that is far removed from the band edge, which is as well defined as

Sample 74oD that was synthesized with a similar protocol but free of MSNCs. Again, this

figure shows that the fluorescence profile provides little clue to sample quality. The black

arrows also point to the 2nd absorption band feature likely related to the composition

gradient. Scale bar=2onm.
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Absorption profiles are expectedly more variable in CdTexSe1 x QDs and reveal more

information on the population(s) of nanocrystals present in the samples. Notably,

they contain a pronounced 2 nd absorption band at the immediate left of the 1st

absorption peak, as seen in Figure 3.5 and Figure 3.7 and indicated by black arrows in

Figure 3.13 and Figure 3.14. This 2 nd absorption band, separated from the 1st

absorption peak by the distance dass,-bs2 (Figure 3.15) was previously assigned to the

lowest excitonic state associated with CdSe, Xcdse, in quasi type 11 CdTe-CdSe QDs

[38], although energetically it fails to match any of CdSe transition's states that are all

positioned at lower wavelengths for the given sizes of nanocrystals; rather, the

higher transition state of CdTe (2S3/'Se) should contribute to its oscillator strength.

The tracking of this band's evolution with respect to the 1st absorption peak has been

possible for the entire CdS@CdTexSex QD series developed for this project, as pure

CdTe emitter samples that emit at the shortest wavelengths have also consistently

displayed this 2nd absorption band (Figure 3.5), as well as absorption features from

higher transitions with details that are seldom achieved for CdTe QDs.

Abs2/Absi= 0.68 Figure 3.15: Definition of Abs2/Abs, and dabs1-abs2

in the absorption profile and its values in a CdTe

QD sample (PL656/29 in Figure 3.4, Figure 3-5).

450 550 650 750
Wavelength (nm) d As1-A2= 36nm

The ratio of the local maximum of the 2nd absorption band with respect to the 1st

absorption peak's, Abs JAbs,, is a potential indicator of the compositional gradient,

provided that the QD populations under comparison are of similar size and synthesis

conditions permit the fine features of the absorption profiles to be readable.

Abs JAbs, can quantify the transition from type I to type 11 electronic structure, which

is akin to creating an increasingly strong composition gradient that moves the
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compositional structure of the nanocrystals from an alloy to a core-shell. The spatial

separation of the electron and hole wavefunctions to form type II QDs-with the

electrons being first delocalized between the core and a thin shell to form quasi-type

il structures before being confined to a further thickened shell-are known to

weaken oscillator strength at the band edge and lower its absorptivity value

including Abs,; the first literature on type II CdTe-CdSe QDs reported a band edge so

diminished that the absorption profile becomes essentially a monotonically

decreasing curve [83]. Reports on quasi type-Il QDs, in which CdSe is grown in

monolayer increments on type I CdTe emitters of known size and concentration, has

provided visual information on how the type I-to-Il transition is reflected in the

absorption profile [38,197, 88, 198]. The most evident change is the increasing

prominence of the 2nd absorption band with respect to the 1st absorption peak, until

the latter is no longer a local maximum but a shoulder. For the absorption curve to

achieve monotonicity, however, loss of definition of these transition bands is needed,

which is usually observed after more CdSe monolayers are added and appears to be

overall more indicative of the synthetic conditions that control the "smoothness" of

the curves from the start rather than the evolution of the band edge that indicates

electron delocalization from the CdTe core.

Abs2, which reflects the oscillator strength of higher energy transitions in CdTe in

(CdS@)CdTexSelx QD absorption curves, also increases in magnitude as the

nanocrystals grow in size as both charge carriers become more delocalized. The

increasing trend of Abs/Abs, is therefore also present in the size series absorption

profiles of single semiconductor QDs such as CdTe and CdSe QDs, which are devoid of

composition gradients, and can be observed when synthesis is sufficiently well-paced

for every size population to retain identifiable absorption features. Published size

series of CdSe and CdTe QDs in which the increasing prominence of the 2"d

absorption band is evident can be found in [65,127,199]. One way to visually

differentiate this category of Abs2/Abs, increase-which has been reported for near
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homogeneously alloyed CdTe0.66Seo.34QDs [13] as well-from the one due to type I

carrier separation and diminished band edge (and Abs,) is the spectral distance

between Abs, and Abs 2, dAbs-AbS2, which decreases in the former case but increases in

the latter. The decrease in dAbslAbS2 can be attributed to the loss of quantum

confinement and the collapse of distinct absorption bands. Hence, (CdS@)CdTexSex

QDs should be able to employ AbsJAbs, as a fast indicator of composition gradient,

provided that the populations under comparison are similar enough in size.

The influence of synthesis conditions on the "smoothness" of absorption features

and especially the actual values of AbsJAbs, is best appreciated by comparing the

absorption profiles of similarly sized QDs of one and uniform composition (for

example, the CdTe absorption profile in Figure 3.5 versus the same wavelength

samples in [65,199]). dAbs1AbS2 does not appear to change significantly with respect

to synthesis conditions. Smoothening of absorption bands from their expected

definition (based on the extent of quantum confinement as dictated by the

nanocrystals' size and its relative magnitude to the material's Bohr radius) are, if not

indicative of non-uniformity, likely associated with diminished coverage of the

nanocrystals by surface ligands, the latter thus serving as a weaker dielectric that is

less capable of confining charges or regulating interparticle surface atom exchanges.

These atom exchanges make possible size focusing in single material QDs but are

likely to increase the fluorescence spread of alloyed QDs, as previously discussed.

Optimizing the synthetic conditions for this project has, indeed, suppressed

smoothing of absorption profiles and retained well-defined and easily distinguishable

1st and 2"d absorption bands for (CdS@)CdTexSex QDs, even those fluorescing at

long wavelengths. Thus Abs2Abs, can be used as a qualitative indicator of the

composition gradient. The gradual increase of AbsJAbs, in (CdS@)CdTexSex QDs

begins from pure CdTe emitters synthesized for lower wavelengths and dAbss-AbS2, as

the "gap" between Abs, and Abs2, widens at the same time, suggestive of an
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increasing type II character in the QDs (Figure 3.16). As previously mentioned, this is

expected as the protocols for this QD series supply a consistent amount of tellurium

and only at the start of synthesis for alloying, thus the extensions in fluorescent

wavelength are largely realized by the addition of selenium and/or sulfur with only

minor increases in nanocrystal size.

a Abs/Abs PL 656.4/29.9 b Figure 3.16:
2.0 -PL 672.1/35.4

-PL 700.4/39.4 Evolution of
-PL 733.3/42.9 #

-PL 739.5/46.7 
absabs2

-PL 747.7/46.61.01
-PL749.6/44.6, in diCdS@CdTexSel-x
-PL 752.5/48.1

QDs. a) AbsjAbs, =
PL 769.7/60.5

PL 778.4/63.8

s5 s P781.6/60.5 #, Abs2 after

-200 -100 0 .. . normalizing Abs,waveloh(nm) Wavelength ref. to Almi n)

value to 1. Blue dots indicate the position of Abs2 and highlight the increasing AbslAbs, trend

as fluorescent wavelength increases. The increase is not monotonic, given that the samples

are not time series of a single synthesis but rather the product of individually tailored ones,
which may differ in their CdTe-CdSe-CdS composition gradients. The overall size increase of

this QD series, though minor (all sizes fell between 5.o-6.lnm; Figure 3.6), is thus also non-

monotonic. b) Aligned Absi plot, using green and blue dashed lines as visual references,

shows that dabssabs2 follows a trend that echoes that of AbsJAbs, shown in a). The increase in

dabsabs2 suggests steepening of the composition gradient and type Il character as fluorescent

wavelength increases, which agrees with the observation of falling QY as shown in Figure

3.6. While homogenous alloying is very unlikely, how the compositional structure of these

QDs compares to true type II CdTe-CdSe QDs' (i.e. in which the composition gradient

approaches infinity) cannot be deduced from this plot alone.

Dedicated experiments on carrier lifetimes will be needed to scientifically establish a

connection between Abs2/Abs,, dAbsAbs2 and the composition gradient, but availability

of such an indicator will simplify the quality control process of (CdS@)CdTexSex QDs,

by 1) offering guidelines that can help create reference absorption profiles for QDs of
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this alloy system and 2) circumventing the need to collect multiple aliquots during

synthesis to obtain composition gradient information that is so vital to optimizing the

optical properties of these QDs.

Over the course of the project, improved uniformity of (CdS@)CdTexSex QDs has

coincided with a drift towards higher AbsjAbs, and larger dAbsAbS2 for a given

fluorescence peak wavelength (Figure 3.17). If the relationship between Abs2/Abs,

dabs-abs2 and compositional gradient were true, then the nanocrystals have also been

gaining a stronger type Il character but notably sans an increase in fluorescence peak

FWHM. This may be due to a steeper CdTe-CdSe gradient favoring a reduced

statistical variation in composition among the QDs-via the formation of CdTe onlu

nucleates, for example-the latter canceling out the widening of the fluorescence

spectra. Sulfur incorporation in CdS@CdTexSe-x QDs may further influence the

composition gradient.

2.o Figure 3.17: Increase in Abs2/Abs, and dabs-abs2

I as (CdS@)CdTexSex QDs synthesized for

this project improved in morphology and

uniformity. All absorption spectra are

00, J0normalized to the value of Abs,. Green:

before 98% HDA purification, see

SAM PLE74oB (PL737/41) in Figure 3.14 for

TEM. Orange: PL 737/37** CdTexSex QDs; TEM in Figure 3.4. Red: CdS@CdTexSelx, TEM seen

in Figure 3.6 as PL740/47.

On a last note, data cumulated on 2-pot overcoating has suggested that in order for

efficient overcoating to proceed, the ligand condition (likely the dominance of Cd-

OPA polymer) that retains the double absorption peak/band feature is to be

reversed. When CdTexSe1 x emitters lack sulfur protection, the loss of Cd-OPA not only
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smoothens their absorption features but also instigates a rapid increase in

fluorescence peak FWHM, which can be symmetric or one sided, as well as a loss in

quantum yield. Thus an optimized overcoating process may be, from the practical

perspective, one that efficiently "switches" the protection mode of CdTexSe,.x

emitters from organic ligand to inorganic sulfide coverage. The preparation of

CdS@CdTexSe,.x may accomplish just that, by starting this ligand-to-sulfide exchange

process while the CdTexSe1 x QDs are well-equilibrated with their native growth

solution. The resulting CdS overcoat, even if it may not be thick enough to offer full

oxidation protection, is sufficient to protect the QDs through flocculation, in which

the QDs must shed their excess of Cd-OPA, and through the degassing / temperature

ramping that begin a second overcoating process.

3.7 Water Solubilization & Functionalization

Readers interested in water solubilization of QDs are invited to consult Liu et al., Choi

et al. [36,37,106] and their references on the different techniques currently available,

the strengths of each and its disadvantages. The method by which hydrophobic

nanocrystals are made water-soluble post-synthesis or overcoat determines the size

and charge distribution; unless further modifications are done, these parameters will

also decide their fate in vivo. Zwitterionic (thus neutral overall), small (hydrodynamic

diameter <5.5nm) probes evades adsorption by serum proteins and allows fast renal

clearance with minimal residual accumulation within the animal, while probes that

are charged, larger in size or both tend to collect for days to years in different organs

including, mainly, the liver and the spleen. For these probes with longer in vivo

retention times, their time in blood circulation-which is equal to the time they are

effective as vascular probes-can nonetheless be modulated via neutralization of

charged surface groups (such as carboxylates or amines) and size increase to slow
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their leakage into tissues (ex. through fenestrations along the endothelium). This can

be done by coupling to the probes high molecular weight methoxy-terminated

poly(ethylene glycol) (PEG), which also shields the charged functional groups. The

effect of PEG molecular weight on in vivo uptake by different organs is further

detailed in Choi et al. [36,37].

Water solubilization of CdS@CdTexSex QDs for this project has been performed via

polymer encapsulation, in which an amphiphilic polymer is adsorbed on the

nanocrystals' organic surface ligands from synthesis / overcoating to achieve

hydrophilicity. Compared to ligand exchange, in which the new ligands displace the

original ligands, polymer encapsulation yields products that are readily derivatizable

and poses less risk of compromising their quantum yields, but at the cost of yielding

hydrodynamic diameters larger than allowable for renal clearance even before

pegylation [147]. Slower clearance is not a concern for the purpose of this project as

the imaging probes are prepared for non-clinical imaging experiments on animal

models, which actually benefit from relatively long fluorophore circulation times. In

fact, commercial cell labeling and in vivo non-targeted (vascular) NIR QD imaging

probes (Qtracker series, Invitrogen, Carlsbad, CA) also employ the amphiphilic

polymer approach as detailed in Wu et al. [210] and Ballou et al. [18]. The amphiphilic

polymer is 40%octylamine-poly(acrylic acid) (the structure is illustrated in Figure 3.1).

A cellular probe is made by adsorbing cell penetrating peptides onto the water

solubilized QDs, which has been replicated in this project as illustrated in Figure 3.1.

For vascular probes, coupling of the amphiphilic polymer's carboxylate groups to a

50ooDa methoxy-terminated poly(ethylene glycol) (PEG) extends the in vivo

circulation half-life of the probes to 70 minutes, which is sufficient for imaging [18].

The 40%octylamine-poly(acrylic acid) polymer construct was originally intended for

the (CdS@)CdTexSex probes and was, in fact, used in the earliest biological

experiments (Figure 3.1 and Figure 3.2). However, the EDC coupling procedure for
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making the amphiphilic polymer could not be replicated upon switching to a new

batch of poly(acrylic acid) as starting chemical; the yield was poor and the product

had difficulty dissolving in chloroform, which was the first step of the encapsulation

process. Instead, the polymer had to be synthesized using the Reversible Addition-

Fragmentation Chain Transfer (RAFT) method [34]. Aggregation and low yield

remained significant problems, however, when encapsulation of (CdS@)CdTexSex

QDs was attempted with RAFT-synthesized 5o%octylamine-poly(acrylic acid).

Attempts to water solubilize the QDs via ligand exchange using the recently reported

imidazole-PEG construct (50% Imidazole monomer + 50% methoxy-PEG11 or methoxy-

PEG16 monomer) [106] were also met with similar issues.

These setbacks were at first suspected to be due to the QDs' phosphonate network

surface ligands rendering them "unworkable" even after rigorous flocculations

(section 3.5.3.1). But the problems were resolved and without additional processing

required when poly(maleic anhydride alt-1-tetradecene) (Mw-9000; Mn-73o0) [136]

was employed as amphiphilic polymer for encapsulation. Once hydrated, the polymer

differs from 40%octylamine-poly(acrylic acid) in that its intercalating, hydrophobic

alkyl chains are longer (14 carbon in length versus 8) and that it lacks the nitrogen

atom that connects these chain to the hydrophilic, carboxylate-rich backbone.

Commercially available version of the polymer, which was used for experiments in

this project, has been discontinued but methods of producing the polymer with

various alkene chain lengths via radical polymerization / RAFT has been published

[110,183]. It should be noted that the octadecene version of the same copolymer,

which is also sold commercially, causes significant aggregation and is not suitable for

water solubilization of the QDs.

The next subsections will describe the protocol for encapsulating CdS@CdTexSex

QDs with poly(maleic anhydride alt-1-tetradecene) for water solubilization and its

related data on hydrodynamic size and stability.
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3.7.1 Water Solubilization of CdS@CdTexSex QDs with Poly(maleic anhydride alt-

1-tetradecene) Encapsulation

Poly(maleic anhydride alt-i-tetradecene) M,-9ooo, high purity bis(hexylmethylene)

triamine, anhydrous chloroform stabilized with ethanol is purchased from Sigma

Aldrich (St Louis, LA). Deionized water, reagent grade, is from Ricca Chemical

Company (Arlington TX). Both 0.5x Tris-borate-EDTA buffer and sodium borate

buffer have pH - 9.o. A notable difference between this preliminary protocol and the

published version [136] is the omission of the sonication step because aggregation

never occurred. The data to be described in section 3.7.3 was generated following

this protocol.

1. Make stock solutions of poly(maleic anhydride alt-i-tetradecene) ("polymer")

and bis(hexylmethylene) triamine ("crosslinker" in anhydrous chloroform,

each at the concentration of 8mg/mL (or 0.125mL/mg). These solutions are

stored in 4'C until use.

2. According to Pelligrino et al. [136], 100 monomer units should be introduced

to cover each 1nm 2 of nanocrystal surface area. Assuming the QDs are -6nm in

diameter and the average number of monomer units per poly(maleic

anhydride alt--Itetradecene) is 25, 3.3mg polymer (or o.4mL of its chloroform-

based stock solution) is needed for water solubilizing 1.onmol of

CdS@CdTexSejx QDs.

3. Prepare a 20mL septum vial with continuous N2 supply and in a water bath, the

latter to suppress evaporative cooling of the solution later. Add o.4mL

polymer stock solution into the vial. Immediately dry 1.onmol of QDs (stored in
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N2, hexane post-flocculation) in a separate vial, re-suspend them in o.1mL

anhydrous chloroform and add this solution dropwise into the o.4mL polymer

stock solution while stirring at low speed (-15orpm).

4. Let stir at low speed (-15orpm) for 1 hour-the slow speed prevents splashing

and keeps all solution at the bottom of the vial. The N2 supply should dry most

of the solution by the end of the 1 hour.

5. Start vacuum and dry solution for -15minutes or until base pressure is

reached. Switch back to N2.

6. Re-suspend the QDs in o.47mL anhydrous chloroform, then add 3ouL of the

crosslinker stock solution (i.e. o.24mg crosslinker, or 10 /nm 2 QD surface as

specified by Pelligrino et al. [136]) and let stir for 15minutes. This step can be

performed in air, but the septum cap should remain on to slow down

evaporation.

7. Start vacuum and dry solution for -15minutes or until base pressure is

reached. Release to air.

8. Stirring at -6oorpm, add 0.5mL o.5x Tris-EDTA-borate buffer and stir for 5

minutes. The QDs should solubilize readily without apparent cloudiness.

Fluorescence loss should also be minimal.

9. Increase O.5x Tris-EDTA-borate buffer volume to 4mL and dialyze 5x using 5ok

MWCO, 4mL centrifugal filtering devices and a spin speed of 7ooorpm (4

minutes are usually sufficient to filter the solution each round)-if EDC

coupling (for pegylation) is needed later, switch to 50mM sodium borate

during dialysis.
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10. Re-suspend in 0.5mL 50mM sodium borate buffer and filter with 0.2um PES

filter. The solution, which should remain clear and fluorescent, is ready for

storage. The products are analyzed for size with dynamic light scattering

(DLS). Any remaining small aggregates should be removed by gel filtration

chromatography (GFC) prior to pegylation.

Subsequent experiments have shown that the polymer encapsulation step (step 4)

can be shortened to 30 minutes and also, the crosslinking step is not needed to

stabilize the polymer cap after water solubilization. Stability test of water-solubilized

and PEGylated products (Figure 3.19 in section 3.7.3) was performed on QDs prepared

with two major changes in the protocol. The crosslinking step was removed

altogether as the introduction of amines may destabilize the ligand-nanocrystal

interface, with the weaker-binding but abundant amines replacing the strongly

bound but few in quantity phosphonates. In the future, long-term stability of the QDs

with and without the crosslinker should be compared.

3.7.2 Coupling of methoxy-PEG on CdS@CdTexSel-x QDs Water Solubilized with

Poly(maleic anhydride alt-1-tetradecene)

The following preliminary protocol describes the PEGylation of o.5nmol

CdS@CdTexSex QDs with 5oooDa methoxyPEG, based on the guidelines published

by Ballou et al. [18]. While DLS data suggest promising results in coupling efficacy

(Figure 3.18 in section 3.7.3), fluorescence instability that is believed to be caused by

insufficient overcoating has prevented the products from proceeding to serum

protein adsorption or in vivo experiments. PEGylation is performed by a simple EDC

coupling of amine-terminated methoxyPEGs to carboxylates formed upon hydration

of maleic anhydrides on the amphiphilic polymer backbone. The solvent is 50mM
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sodium borate buffer, free of phosphates and Tris that comprise EDC coupling

efficiency. Amine-terminated methoxyPEGs (abbreviated as NH2-mPEG in the

protocol) of molecular weights 750Da and 5oooDa are purchased from Creative PEG

works (Winston Salem, NC); EDC (N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide

hydrochloride) ;98% is from Fluka (Sigma Aldrich, St Louis, LA) and stored in 4*C until

the time of use. Deionized water, reagent grade, is from Ricca Chemical Company

(Arlington TX).

1. Prepare borate buffer solution of NH-mPEG: o.1mL/mg for NH2-mPEG 750Da,

0.O2mL/mg for NH2-mPEG 5oooDa.

2. In a vial, introduce 0.5nmol of water solubilized CdS@CdTexSex stored in

50mM sodium borate buffer. Add in NH-mPEG such that [NH 2-mPEG]/[QD] =

2kx for NH2-mPEG 75oDa and = 6kx for NH2-mPEG 50ooDa, which translate to

75uL and 3oouL of their stock solution respectively. Finally, introduce

sufficient volumes (371uL; 146uL) of 50mM sodium borate buffer so that the

total volume of each reaction is 5oouL. Begin stirring.

3. Prepare EDC solution in DiH 20 (pH-6) for immediate use, at a concentration of

o.1mL/mg. Add 0.14mg (14uL of solution) into the stirring contents of the vial.

Let stir for 2 hrs.

4. Increase 50mM sodium borate buffer volume to 4mL and dialyze 2x using 50k

MWCO, 4mL centrifugal filtering devices. The solution should remain clear and

fluorescent throughout. The products can then undergo DLS size analysis and

gel filtration chromatography (GFC) to check for and remove any small

aggregates. Upon confirmation of satisfactory physical and optical properties,

the probes can proceed to evaluation for serum protein adsorption. If the

result is negative, the products are ready for in vivo use.
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3.7.3 Data from Water Solubilization and PEGylation of CdS@CdTexSel-x QDs

GFC and DLS data collected from water-solubilized CdS@CdTexSe.x QDs, with or

without pegylation, is illustrated in Figure 3.18. DLS analysis reported the

hydrodynamic size of the sample (PL700/39 in Figure 3.6 and Figure 3.7; core

diameter = 5.5nm by TEM) to be 10.5nm and 16.6nm after amphiphilic polymer

encapsulation and encapsulation+NH2rmPEG 50ooDa coupling, respectively. For

comparison, commercial Qdot565 (4.6nm inorganic crystal; Invitrogen, Carlsbad, CA)

has a hydrodynamic radius 14.2nm after 40% octylamine-poly(acrylic acid)

encapsulation [145], while Qdot655 (9nm inorganic crystal; also from Invitrogen) has

a reported hydrodynamic radius value of 22.6nm after the attachment of NH2 mPEG

50ookDa on the same amphiphilic polymer cap [17]. Whether the relatively small

hydrodynamic radius, especially after water solubilization, is due to poly(maleic

anhydride alt-i-tetradecene) being more compact after hydration in the 50mM

sodium borate buffer or being at lower concentrations is yet to be determined, as is

whether the amount of PEG coupled on the surface is sufficient to shield all surface

charges that would lead to serum protein adsorption and shorter circulation time in

vivo. Robust in vivo vascular retention may require further increase in probe size to

match the values of the commercial products, either by increasing the coverage of

the polymer, the PEG or both or switching to an even higher molecular weight NH2

methoxyPEG. Reaction yield for both steps has shown a vast improvement over early

samples (Figure 3.1 and Figure 3.2) (>95% compared to <2%), with no appreciable loss

as aggregates in all cleaning steps following water solubilization and PEGylation.
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Water-solubilized QDs, with or without PEGylation, suffered significant fluorescence

loss over a period of one day (Figure 3.19). As no aggregation or precipitation from

water was observed and the quantum yield of the pre-water solubilized sample also

fell over time (albeit at a much slower pace), it was determined that the oxidation

protection on these CdS@CdTexSe1.x QDs was incomplete. Experimental focus has

therefore returned to determining the proper methods for overcoating and

stabilizing the inorganic nanocrystal within each probe.

b 2so Figure 3.18: GFC and DLS data of
200

water solubilized, PEGylated

50_ _ _ CdS@CdTexSe 1 .x QDs. a) TEM of
5 10 15 20 2s 30 3s 4045 50s s s p" """n) sample PL700/39 before water

Diameter 5.49nm
QY: 60% 4s solubilization. Scale bar=2onm. b)

40

GFC data after encapsulation with30 
4

*2* poly(maleic anhydride alt-1-
15 20

10 tetradecene); again, UV absorption
10

1 0 was used to detect the presence of
1 0 10 1 10 100

Diameter (nm) Diameter (nm) QDs exiting the column. Unlike early

samples (Figure 3.1), QDs exited the size exclusion column at close to one time point,

suggesting the absence of aggregates that would have left the column earlier. c) DLS data

also shows a uniform size peak for the water solubilized QDs (left); after PEGylation (right),
the size of the QDs increases according to the molecular weight of the NH2 mPEG coupled to

the amphiphilic polymer cap. Blue=water solubilized QDs without PEG; Green=water

solubilized QDs coupled with NH2 m PEG 750Da; Brown=water solubilized QDs coupled with

NH2 mPEG 50ooDa.



3.8 Future Work for Developing In vivo NIR imaging probes based on

CdTexSe.x QDs

The work described in this chapter has emphasized on the creation of

morphologically and spectrally uniform CdTexSe1 x nanocrystals, using synthesis

protocols that are developed with reproducibility as a main criterion. Uniformity and

reproducibility are difficult-to-convey parameters in literature but are essential for

quality control and development of application-ready products. They elucidate trends

that are helpful for protocol optimization and ensure that these trends will remain
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poly(maleic anhydride alt--

tetradecene) and with or without PEGylation with 5oooDa methoxy-poly(ethylene glycol). All

samples were pre-diluted to concentrations appropriate for spectroscopic measurements on

Day o and stored in air for the duration of the experiment. a) Absolute QY values. While the

hexanes samples were quite stable and their QY did not fall below their initial value until 5

days later, once the QDs were solubilized in water the drop of QY occurred in 1 day, with

PEGylation making a relatively minor impact. The longer wavelength sample (PL733/43)

showed a smaller drop in absolute QY despite starting at a lower value; its relative QY drop

compared to pre-water solubilization was also smaller, which was better observed in b),

compared to the shorter wavelength sample (PL672/35). This smaller relative QY drop, which

translates to better stability, is likely due to the CdTexSe1 , emitters being more Se-rich and

therefore exhibited better tolerance against oxidation.



true in the long run, even after the protocols change hands and the lots of starting

chemicals have run out in the companies that manufacture them. In the case of

CdTexSe1 x QDs' application as fluorophores for in vivo multiplexed imaging probes,

the QDs must be sufficiently consistent in their physical and optical properties such

that their fluorescence signal can be trusted to depend only upon the biological

information to be gathered. This implies consistent wavelengths, quantum yield,

physical size, surface charge and concentrations of functional moieties, and the

ability to re-create the probes in sufficient qualities on demand and with a reasonable

shelf life such that the timing of the experiments need only to suit the application

itself (such as the time points of imaging studies) and not when the probes will suffer

a loss in quality.

The CdTexSe1 x QDs developed for this project has achieved morphological uniformity,

which has been proven to be key to their acquiring a predictable behavior during

overcoating, water solubilization and post-synthesis processing in general. Purity of

starting chemicals and tight process control are critical, and the nanocrystals gain

workability only after a strict protocol for flocculation has been developed and

followed consistently. Tellurium composition x in the QDs approaches the ratio of

tellurium and selenium precursors supplied during synthesis, which is highly useful

for predicting the spectral properties of the products from synthesis, and sulfur has

been incorporated into the nanocrystals in amounts significant enough to form a

preliminary overcoat. Water solubilization has also been successful with

CdS@CdTexSex with near unity yields, as well as PEGylation that is needed to make

vascular imaging probes and adsorption of the cell penetrating peptide PEP-1 to make

cellular probes. The main shortcoming of these hydrophilic CdS@ CdS@CdTexSex

QDs is their current lack of long-term fluorescent stability in water, which is believed

to be due to insufficient CdS incorporation and possibly aggravated by too gentle of a

CdTexSe,-x emitter / CdS overcoat composition gradient such that sulfurization at the

nanocrystal surface is not complete, resulting in premature oxidative degradation
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especially in an aqueous environment. The 1-pot overcoating approach is likely the

root cause of the problem by carrying the chemical "history" of nucleation and

growth, which includes substantial amounts of strongly binding acids in the form of

Cd-OPA and can equalize the incorporation of emitter CdTe+CdSe and CdS as it does

to CdTe and CdSe. Nonetheless, the 1-pot approach is also essential for stabilizing the

CdTexSe1 x QDs enough such that they can undergor a second overcoating procedure,

which can then be optimized solely for overcoating-by introducing ZnS, for

example, for better carrier confinement, higher quantum yield and a lesser type II

character compared to using CdS. It also encourages the exhaustion of Te and Se

precursors.

The timing of sulfur entry during the 1-pot process is worthy of more investigation.

The difference in stability between samples PL733/43 and PL782/61 in the

CdS@CdTexSex series, for example, with the latter being more stable in air, is likely

due to the timing, temperature and quantity of not only the sulfur but also the Cd-

OPA being introduced, which modulate the emitter / overcoat gradient. Higher

precursor concentrations are not always more effective; too high of concentrations

causes CdS nucleation as seen in sample PL700/4o; high concentrations of

phosphonates in Cd-OPA also hinders monomer incorporation. Avoiding too early of

an incorporation of sulfur is also important as it can shorten the fluorescence

wavelength without any stability benefit.

Experiments on the second overcoat attempted for this project have so far focused

on using purified chemicals, with the intention of ensuring reproducibility of the

entire probe development process. It is nonetheless possible that purity of starting

chemicals does not require as strict a control during this second overcoating step to

achieve the needed reproducibility; thus well-known overcoating procedures such as

SILAR [ioo] and the dimethyl cadmium / bis(trimethylsilyl) method [72] may be tested

again for both efficacy and reproducibility.
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The water solubilization protocol as described in section 3.7 is preliminary and further

optimization in, for example, the duration of the poly(maleic anhydride alt-1-

tetradecene) polymer adsorption step, may improve the stability of the products. As

previously mentioned, the effect and necessity of the bis(hexylmethylene) triamine

crosslinking step is yet to be confirmed.

Last but not least, if future applications can specify a small number of fluorescent

wavelengths of interest, it may be worth optimizing the synthesis protocol for those

few selected wavelengths to minimize their type II character as much as possible and

without re-introducing uniformity problems. As the (CdS@)CdTexSex QDs are

developed as a wavelength series in this project, optimizing the protocol for each

wavelength is too time-consuming to be practical and the protocols have been

designed such that tuning the fluorescent wavelength does not require significant

changes in the timing and quantity of precursor entry (especially Cd-OPA)'s. The cost

of this approach, which is implemented by holding constant the timing and quantity

of tellurium entry, is the augmentation of type II character in the QDs fluorescing at

longer wavelengths. While the absorption spectra should offer clues to the

composition gradient, measurement of carrier lifetimes is ultimately the most (and

only) reliable way of gauging its amplitude. Minimizing the type Il character should

improve quantum yield and produce sharper fluorescence profiles.
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4 Visual Presentation and Quantitative Morphometry of the

Murine Calvarial Bone Marrow using In vivo Multiplexed

Imaging

This chapter returns to the motivation of the thesis, which is to expand our

knowledge of the bone marrow (BM) microenvironment via in vivo multimodal,

multiplexed microscopy. The cause for developing a protocol for quantitative

characterization of the BM's morphology, or morphometry, is straightforward: to

provide a simple, systematic method to describe co-localization (or lack thereof)

data, which is spatial / topographical in nature and often difficult to convey due to

the intricate tissue architecture of the BM. Developing a well-defined visual

presentation method for 3-D in vivo multiplexed images serves two purposes: 1)

condenses the visual information such that it can be communicated with ease; and 2)

prepare the imaging stacks for quantitative analysis. While the NIR CdTexSex QDs

developed for this project have yet to be used in their intended biological

applications due to their fluorescence instability, commercial QD vascular probes

fluorescing in early NIR (non-targeted Qtracker655, Invitrogen, Carlsbad, CA) have

aided tremendously in the development of these methods, an example of the

analysis data has already been shown in Figure 1.2 f. These analyses have helped to

unveil the complex associations between BM structure and its function, and describe

the activities of HSPCs, immune cells and cancer cells in a systemic manner that

should more efficiently point to the mechanisms underlying the physiological and

pathological processes in which these cells are involved.

The protocol developed for visual presentation and quantitative morphometry of the

BM from in vivo multiplexed imaging data to be presented here has been published

[107,108]. This chapter will describe in better detail the purpose of each step as well

as its outcome; the illustrations also showcase NIR QDs vascular probes at work.
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There are four major steps in this protocol, with "V" denoting steps that aim to

improve visual presentation and "M" for steps intended for morphological analysis,

which at present are mostly distance measurements that describe the geometrical

relationships between the endosteum, osteoblasts and blood vessels:

V1: Calvarial tilt correction

V2: Signal strength equalization as a function of depth

Mi: Segmentation (i.e., binarization of images)

M2: Euclidean distance measurement

Unless otherwise specified, all images in this chapter were captured in two-photon

mode from Col2.3 -GFP mice with C57BL/6 background. 35uL of Qtracker655, 2uM

stock solution (Invitrogen, Carlsbad, CA) was diluted with 115.5uL ix PBS + 3.5uL lox

PBS and injected retro-orbitally into the anesthetized animal immediately before

imaging. Bone signal was the second harmonic generation from its collagen and

collected through a 4oo-5oonm band-pass filter. Osteoblasts were detected by its

EGFP fluorescence that was collected through a 500-590nm band-pass filter.

Qtracker655's red fluorescence was collected through a 625-675nm band-pass filter.

A titanium: sapphire femtosecond pulse laser, mode locked at 92onm, was used to

excite all three channels. The planes and axis of imaging are defined as shown in

Figure 1.2 c, with X-Y as the imaging plane and Z quantifying imaging depth.

4.1 Visual Presentation of the BM

The BM does not have a well-defined tissue layer structure that is often observed in

the biopsy of other organs (for example, skin: epidermis / basement membrane /

dermis / hypodermis), which makes its morphology relatively difficult to describe
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verbally or on a 2-D visual platform. The complexity of BM microarchitecture and the

well-accepted notion that these physical structures influence the BM's role as a

niche-as evidenced by the naming of candidate HSPC niches as osteoblastic niche,

endosteal niche and vascular niche etc. [122]-necessitates the need to present the 3-

D character of the BM in an accurate, consistent and easily readable manner.

Pre-requisite for good visualization is that the original in vivo imaging data must be

robust, with strong signal-to-noise ratio and the fluorescence signal from each

labeled biological entity being largely confined to within its own optical channel, i.e.,

there is minimal spectral overlapping between the fluorophores (Figure 4.1). Two-

photon microscopy using 1 um Z-stepping created 3-D image stacks that captured

with clarity the boundaries of small features, especially the capillary network

enmeshed between the endosteum and the osteoblasts (see Figure 1.2 b).

Qtracker655, as the only fluorescent probe introduced into the animal subjects, was

also instrumental in resolving these small capillaries. It did not exhibit any leakage

into the intervascular space, which would have blurred the vascular boundaries and is

often observed when smaller-sized organic vascular dyes (such as Evans blue, also

known as T-1824, which circulates as a dye-albumin complex; albumin's effective

radius is -7.5nm [121,214]) are used. Also, since the blood flow rate in these ultra-small

vessels (<1 um diameter) was unknown and the resolution required for analysis

prolonged imaging times, the QDs' resistance to photobleaching also ensured a more

comprehensive view of the BM vasculature.
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Methods developed for visual presentation of the BM must not create artifacts or

eliminate structures. While image processing programs with impressive visualization

and analytical capabilities have been developed (ex. [25]), many are written for

specific tissue types to limit the computations required; "guidelines" incorporated in

the software code that originate from the modeling of these tissue types can

significantly compromise the outcome's accuracy when working on the imaging data

from other tissues. Given our understanding of the BM anatomy is far from complete,

there is insufficient a priori knowledge on BM morphology-on how the vascular

network should align or how the osteoblasts should distribute, for example-to

create a model for automating image visualization and analysis. Thus BM visualization

and morphometry has been performed manually with the help of the open-source

image processing software Image J [1].
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Figure 4.1: Check for fluorescence signal

confinement within its assigned optical

channels in in vivo BM images. The white

__ boxes in the in vivo BM image on the left

demarcate sample regions of the bone, the osteoblasts and the blood vessels and their

corresponding histograms are shown on the right. Signals from the bone and the vasculature

were well confined within their optical channels (blue and red, respectively), while osteoblast

fluorescence (green) extended into the blue channel. This "leakage" causes the osteoblasts

to carry a cyan hue in the image, and while the osteoblasts remain easily distinguishable from

the bone by eye, it adds difficulty during segmentation (step Mi) when the image analysis

program must define the boundary between the osteoblasts and their adjacent bone. Also

seen in this figure is the well-defined vasculature (red) after intravenous injection of

Qtracker655, with capillaries of micron-diameter range showing clean boundaries that are

required for proper segmentation. Scale bar=5oum.



Step Vi: Calvarial tilt correction maximizes the area of BM cavity that can be viewed in

every X-Y image, thus minimizing the number of images needed to convey the 3-D

visual information of the cavity. It is accomplished by correcting the tilt of the

calvarium that originates from both the anatomy of the animal and the angle of its

placement on the stage during imaging. Because the boundaries of the cavities

follow the curvature of the sandwiching bones, the practical outcome is also that the

tissue thickness over each X-Y image is normalized for all points in that image, which

translates to a uniform "illumination" over the area. Figure 4.2 illustrates the

principles and outcome of step V1.
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-. b c "Figure 4.2: Visual

presentation of the BM-

step V1, calvarial tilt

correction. a) A mouse skull
d

with its natural tilt shown in

a yellow dotted line. b)

illustration of the

e motivation of step V1. Blue

presents the bone and red,

the BM cavity space. An
Z=51ium Z -56umn Z=61um Z =66umn Z=71um

image stack is composed of

optical sections, each a "slice" along the vertical (Z-axis) direction. Before tilt correction,

every slice can only capture a small cross-sectional area of the cavity; the thickness of tissue

to be crossed by photons (shown by white arrow and its length) also varies across the

horizontal X-Y plane, resulting in uneven "illumination" from one side of the image to

another. Rotating the image stack such that the tilt approaches zero in both the coronal and

sagittal planes solves these problems. c) In vivo image of the bone channel only, re-sliced in

the X-Z plane to show the tilt of the cavity before and after tilt correction. d) An in vivo

multiplexed image stack showing the bone (blue), osteoblasts (green) and vasculature (red)

of a BM cavity, pre-tilt correction. A span of 2Oum in depth is needed to visually convey the

sinusoid that runs along the periphery of the cavity. e) The same image stack after tilt

correction. A single image, Z'=66, is sufficient to visualize the entire sinusoid of interest, and

the same span of 2Oum in depth is sufficient to show the cavity opening in the bone and is

therefore enriched in visual information. Illumination is also more uniform in this image stack,

which is especially evident when comparing the brightness of the lower right versus upper

left corner of each image. Scale bar=5oum.

Step V2: Signal strength equalization as a function of depth aims to recover the loss of

signal in deep imaging planes due to absorption from overlying tissues. It is

performed mathematically, based on the understanding that 1) intensity is presented
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as greyscale values in the images and 2) intensity attenuation due to tissue

absorption can be described as an exponential decay function, which corresponds to

the Beer-Lambert's law:

I0 = e-#acz(Eq.8)

in which I is light intensity, a is the absorption (extinction) coefficient specified by

the absorber, c is the absorber concentration, and z, the path length, in this case the

thickness of tissue traversed by the photons or the imaging depth.

Once this decay function, as a function of z, is determined for a 3-D image stack, it can

be normalized and its inverse applied to the stack to recover the lost signal. Calvarial

tilt correction (step Vi) is a pre-requisite as it uniformizes the tissue thickness, and

hence the value of z for all pixels within each X-Y image plane, allowing the correction

of each image by a single constant. It is important to note that this step does not

increase the signal-to-noise ratio, only easing the viewing of features already present

but are too dim to see by eye; moreover, for this method to work, the fluorophore

supplying the signal must not photobleach at all for the duration of capturing the

original image stack. Figure 4.3 explains in detail the principles and outcome of step

V2.
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Figure 4.3: Visual

0Y-Z Befor presentation of the

0 as 70 IQ* BM-step V2, signal
z-Distance from Max. Signal Plane

b strength

equalization as a

function of depth.
Z =15umZ=3u Z =55umV

a) Loss of

fluorescence as a

function of imaging

C A depth z fits well to

an exponential

decay curve (light
,Z=25um Z=45um Z=65um blue line placed

over dark blue

data), as seen in the

Z=25um Z=45um Z=65um plot of average

greyscale intensity of each X-Y plane in the bone (blue) channel versus the plane's pixel

distance away from the one with maximum signal intensity, set as z=o, which generally

approximates the position of the bone surface. The decay curve is specific to the color

channel as well as the image stack, and steeper in the blue compared to the green and red

channels as expected from tissue optics. For signal equalization, the inverse of this

exponential decay curve is mathematically applied to the image stack from which it was

determined, with all greyscale values in each X-Y plane multiplied by one constant. The

outcome is illustrated on the right, in which a Y-Z (vertically) re-sliced bone image shows an

equalized fluorescence intensity as a function of z. b) Comparison of a tilt-corrected BM

image stack in all 3 colors in the X-Y perspective, before (upper row) and after signal

equalization (lower row). Tilt correction ensures that signal attenuation is uniform

throughout each X-Y plane, which is pre-requisite for the one-constant-per- plane

mathematical approach to amplify the signal strength of deeper planes. c) Signal strength

equalization demonstrated with an image stack that is visually presented with its original

calvarial tilt. The upper row shows the original image stack without tilt correction or signal

equalization, the lower row, after signal equalization and then, re-introduction of the
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4.2 Morphometry, or Quantitative Analysis of the BM Anatomy

The ability to perform quantitative morphometry goes hand in hand with robust

visualization as it begins with segmentation (step Mi), or definition of objects from

their background. Segmentation creates the needed boundaries to become outlines

or endpoints from which measurements can be made; for BM images, it has been

performed by applying a threshold on each color channel individually and creating

binarized images. Edge-finding algorithms are difficult to implement on BM imaging

data due to the intricacy and irregularity of anatomical features, especially in the

vascular channel. Algorithms that can help elucidate the structure of the vascular

tree, such as those that predict connectivity based on ray tracing or local-

unidirectional cylinder models, not only require manual inspection for accuracy [5]

but may also assume unidirectional vessel morphology [152], which is prone to omit

branching points that are widely and densely distributed in the BM vascular network

in the form of loops and shunts.
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calvarial tilt. In the original images stack, the "bright" lower left corner is showing features

closer to the skull surface than the "dim" upper right corner with its thicker overlying tissue.

After signal equalization, the "brightness" of the two corners becomes much more uniform,

with the upper right corner signal being amplified significantly while the lower left corner

stays relatively unchanged. What is clear from this visual orientation, in which the modified

and unmodified pixels are positioned side by side, is that although signal equalization eases

the observation of dim features, it does not improve the quality of the image-thus the

upper right corner of the image, while bright, still looks "grainy" with its lower signal-to-

noise ratio. Scale bar=5oum.



As expected, deep tissue objects captured with low signal-to-noise ratio are most

likely to suffer from poor segmentation fidelity. Thus quantitative measurements

must often be limited to a shallower depth (as seen bracketed in Figure 1.2 a)

compared to the maximum depth at which features are discernible by eye, especially

after visual presentation steps Vi and V2 are implemented. It is important to visually

check for accurate image binarization, which include removing unwanted noise

pixels, confirming connectivity of small features such as capillaries and ensuring

spatial specificity of anatomical features (i.e. no overlapping of physical structures)

before proceeding to measurements (step M2).

Step M2 provides Euclidean distance measurements between different anatomical

features in the BM. Euclidean distance is defined between points P = (P1,p2,... pn) and

Q = (q,q2,... qn) in a space of dimension n as follows:

n

(i p qi ) (Eq.9)

As full 3-D distance measurement is computationally intensive, distance

measurements have been performed on the three Cartesian planes: X-Y, Y-Z and X-Z

in 2D and the final measurement is the minimum of the three values for each

Cartesian point.

ImageYs built-in "Distance Mapping" function performs 2-D Euclidean distance

measurements, by marking each pixel in the background with a greyscale value that

equals the pixel distance from that point to the closest boundary of an object. Using

the binarized vascular image stack (red channel) to define objects, for example, one

obtains a greyscale map that describes the distance between every non-vascularized

pixel in the image to its nearest vessel wall. Binarized image stacks of the other

channels can then be applied as masks and identify the physical nature of these non-
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vascularized points-the green channel specifies them as osteoblasts, for example.

By combining the two pieces of image data and calculating the output's greyscale

histogram, a distribution of distances between the osteoblasts and their nearest

blood vessel is obtained. Illustration of this procedure is shown in Figure 4.4.
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b Figure 4.4: Quantitative

.morphometry of the

C BM-step M2, Euclidean

Histogram, distance measurement
EDM+MaskE a (EDM). a) Principle of

sEDM+Mask L

"a " EDM in 2-D. For a

binarized black object on

white background such as

this flower, the "Distance

Map" function in ImageJ assigns to each background pixel a greyscale value that represents

the pixel distance it is away from the closest object pixel-in this case, the nearest edge pixel

of the flower. The greyscale distance is re-colored using ImageJ's "Red-Hot" LUT as shown in

the bar below. b) To expedite computation, 3-D EDM of every point is estimated by first

performing 2-D EDM on the three cartesian planes (X-Y, Y-Z, X-Z) and then taking the

minimum of the three distance values, dXY, dy, and dz. c) The process flow of making distance

measurements between two BM anatomical components, the vasculature and the

osteoblasts. The original image stack (one image is shown here) is separated according to its

R/G/B color channels, each of which is then segmented to create a binarized image stack.

Afterwards, the binarized image stack created from the red (blood vessel) channel is used to

create an EDM stack, in which every non-vascular pixel is assigned the greyscale value that

corresponds to its pixel distance to the nearest vessel wall. When the binarized image stack

from the green (osteoblast) channel is applied as a mask on the EDM stack, the EDM stack

becomes "white-out" but for the non-vascular pixels that co-localize with the positions of

osteoblasts-i.e. the pixels that are relevant to this measurement. ImageJ readily creates a

histogram of this masked EDM stack, the data of which describes the distance between the

osteoblasts and their nearest blood vessels after applying a scaling factor that calculates

actual physical distances from pixel distances. This plot is identical to Figure 1.2 f.

Morphometry is not limited to distance measurements. Volumetric measurements-

for example, vascularized volume fraction in the BM cavity-can be performed with
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ease once the image stacks are successfully segmented, by counting the pixels

occupied with blood vessels and comparing the value to the cavity pixel count that is

known from the binarized image stack of the bone.

Methods described in this chapter, from visualization to quantitative analysis, is by no

means restricted in application to images of the bone marrow. They should adapt

well to in vivo multiplexed images of other tissue types, having no BM-specific criteria

in their principles or implementation. Nonetheless, no matter the tissue type or the

components within that are being observed or measured, the accuracy and

significance of knowledge gained is ultimately limited by the quality of the original

image stacks, defined by parameters such as signal-to-noise ratio, specificity of

fluorescence contrast to its own optical channel, and the maximum imaging depth at

which the image quality is maintained. While steps V1 and V2 condense the visual

information contained within the image stacks and render it more presentation-

friendly, they do not enhance the quality of the imaging data itself. Therefore, they

cannot substitute the need for robust fluorophores and imaging optics, which must

also work well in concert with one another. Instead, these methods are themselves

separate but equally important tools for making the most out of biological studies

performed using in vivo multiplexed imaging.
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5 Appendices

5.1 Details of Equipment and Methods used for the Characterization of QDs

and In vivo imaging

Temperature control for the synthesis of QDs, purification of starting chemicals and

making of QD precursors

The temperature controller REX-Dioo (RKC Instrument, South Bend, Indiana) is used

at its default factory setting with type K thermocouple (Omega Engineering,

Stamford, CT) and variable autotransformer ("Variac"; Model 3PN11o, Staco

Products, Dayton, OH) set at 140V maximum.

Absorbance spectroscopy

UV-Vis HP 8453 diode array spectrophotometer (Agilent, Santa Clara, CA) for up to

800nm detection; Cary 5000 UV-Vis-NIR spectrophotometer (Agilent, Santa Clara, CA)

for detection range extending beyond 800nm.

Photoluminescence (PL) spectroscopy

Vis-NIR fiber optics spectrometer (USB4000 Vis-NIR; Ocean Optics, Dunedin, FL) with

594nm HeNe excitation. Fluoromax-3 (Horiba, Edison, NJ) for detection up to 8oonm

and for other excitation wavelengths.

Quantum yield (QY) measurements

QY of QD samples is determined using reference organic dyes that fluoresce at similar

wavelengths and have known QY values: Oxazine725 (PL peak 66onm), with QY=11%

in ethanol and HITC (PL peak 77onm), with QY=29% in methanol. The calculation is

based on the following relationship, in which AbsorbanceDye should approximate the

value of AbsorbanceQD [9]:
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AbsorbanceDye PL Peak AreaQD nQDsolventQQD =~ QYy X 2  E.oQ Dye AbsorbanceQD PL Peak AreaDye yesolventE )

To ensure accuracy, each QY measurement uses fresh reference dye solution

prepared the same day, as red- and NIR-fluorescent organic dyes are prone to

photobleaching. Also, rather than trying to create two solution of similar absorbance

values at the excitation wavelength of choice, three or more different concentrations

of the reference dye are first measured for absorbance and PL peak area, which, as

long as the solutions are appropriately dilute and proper "blanking" of the

spectrophotometer has been performed, the data can be fitted with close-to-unity R2

value to a linear equation in the form y=mx+b (m=slope, b=y-intercept):

PL Peak AreaDye = m x AbsorbaneDye + b (Eq.11)

Once this equation was known, Eq.io above can be simplified to:

2PL Peak AreaQD -QDsolvent
QYQD= QYD(Eq. 12)PL Peak AreaDyeLinEst nDyesolvent

With PL Peak AreaDye LinEst being calculated from the linear equation using

AbsorbanceQD as the AbsorbanceDye value.

Of note, the commercially available NIR QDs, Qtracker 705 and 8oo, have not been

used as references as their QYs reported in accompanying data sheets have deviated

from the values re-measured using the method as detailed above, which has worked

for other fluorophores with known QY values. A sample of Qtracker705 with a

reported QY of 67%, for example, measured 31% when re-measured against

Oxazine725; this may be due to sample destabilization (for example, due to

aggregation and loss of adsorbed amphiphilic polymer) over time in storage.

Literature has also reported discrepancies between the reported and actual QY value
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for Qtracker 800 and 655 (90% vs. 71% for Qtracker655; 49 vs. 19% for Qtracker8oo)

[17].

Transmission electron microscopy (TEM)

JEOL200cx (JEOL USA, Peabody, MA). After flocculation of a small volume growth

solution aliquot as described in section 3.5-3.3, the hexanes solution is diluted to a

concentration suitable for spectroscopic analysis (optical density <o.1 @ 35onm) and

dried on a copper TEM grid in a vacuum chamber. Unless otherwise specified, images

were taken at 200kV, 8okx magnification and the whole field is presented in the

figures in this thesis. The whole grid is surveyed for colonies of MSNCs and other

extraneous populations of QDs. Measurement of QD size is performed with ImageJ

[1]. An ellipse is drawn around each nanocrystal and its area is measured. The area

measurements of >50 QDs from >5 image fields (except for early samples) are then

averaged, from which the mean diameter is calculated and reported as size. If

ultrasmall MSNCs or QDs with shapes that significantly deviate from a sphere are

present, their images are captured but they are not included in size measurements;

TEM is the repeated for the storage solution after a "standard" flocculation (section

3.5-3.1) is performed on the growth solution and the size calculation is repeated.

X-ray powder diffractometry (XRD)

X'Pert Pro Multipurpose Diffractometer (PANalytical, Westborough, MA) with Cu K.

as source radiation and a variable divergent slit to fix the irradiated length to 6mm

length X iomm width. The diffractometer was operated at a 20 range of 20 to 60*; the

operating voltage and current were 45kV and 4omA respectively. QD samples are

flocculated as described in section 3.5.3.1, suspended in hexanes and dried on ZBH

(zero background holder) for crystal structure analysis.

Inductively-coupled plasma atomic emission spectroscopy (ICP-AES)
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Activa-S ICP Spectrometer (Horiba Jobin Yvon, Edison, NJ). ICP standard solutions for

Cd (1ooomg/ml in 2% nitric acid), Te (1ooomg/ml in 5% nitric acid) and Se (1ooomg/ml in

2% nitric acid) are purchased from Perkin Elmer (Waltham, MA). Standard solution for

S (1ooomg/L as H2 SO 4 ; Fluka brand) and nitric acid ( 69% puriss ACS reagent ISO.) are

purchased from Sigma-Aldrich (St Louis, MI). Deionized water, reagent grade, is

purchased from Ricca Chemical Company (Arlington TX). QD samples are flocculated

as described in section 3.5-3.1, then digested overnight in 2% nitric acid for elemental

analysis.

Gel filtration chromatography (GFC)

AKTAPrime Plus TM System with Superose 6 10/300 GL size exclusion column (GE

Healthcare, Pittsburgh, PA).

Size Analysis by Dynamic Light Scattering (DLS)

DynaPro Titan Dynamic Light Scatterer with 83onm diode laser excitation (Wyatt

Technology Corporation, Santa Barbara, CA).

Confocal microscopy for in vitro live cell imaging

Leica TCS NT Microscope (Leica Microsystems, Buffalo Grove, IL) with argon-488nm /

krypton-568nm / HeNe-633nm as laser sources. 1ox PLAN APO 1.4NA oil immersion

objective lens is used to image live cells. Cells are cultured in their optimal medium

and re-plated in 1-well chamber slides (Lab-TekTM, Nalge Nunc International,

Rochester, NY) one day prior to labeling and imaging, targeting for -50% confluence.

After labeling, the cells are washed 3x with phosphate-buffered saline (w/ Ca2
4, Mg 2.)

set on ice and immediately imaged.

In vivo murine bone marrow imaging

Lin Lab has developed a video-rate (30 frames per second) laser scanning hybrid

confocal/two-photon microscope specifically designed and optimized for live animal
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imaging (Figure 1.1; also see [61,107,164]). The scope uses a 30x, o.9NA water

immersion objective (LOMO PLC, St Petersburg, Russia) and is equipped with a

titanium: sapphire laser (Mai Tai HP, Spectra Physics, Irvine, California) for two-

photon excitation between 700-lloonm, as well as 491nm, 532nm and 633nm solid

state lasers for single photon excitation. 6 channels are available for detection. Exact

excitation and detection conditions are specified in the text.
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5.2 Coordination Chemistry of Metal (11) Carboxylates

Metal-carboxylates are weaker in binding strength and structurally more diverse

compared to metal-phosphonates. The paucity of literature on polymer formation in

cadmium may mean the process favors smaller, lower atomic number elements (the

first ionization energy of cadmium and zinc are similar, at 867.7 and 906.4kJ/mol).

Zinc carboxylate can form polymer sheets, as well as polymer chains and the closed,

octahedrally-coordinated tetranuclear oxo complexes M40(RCOO)6. Stereochemistry

of the hydrocarbon side chain and the temperature of the system determines the

configuration; both the polymer sheet and chain configurations conform

stoichiometrically to a bi-dentate linkage (RCOO~/Zn = 2) referred to in QD literature,

but the oxo complex has a lower ratio at 1.5 [11,66,89,118]. Saturated, linear metal-

alkanoates previously used as QD precursors (cadmium and zinc stearate and

mystriate, for example) mostly take on the polymer sheet structure [11,48]; as heat is

supplied, however, the polymer chain configuration becomes dominant and when

temperature rises above its melting point, the tetranuclear oxo complex, which is

accompanied by free acid release and simultaneous decomposition of the highly

volatile oxo complexes to form metal oxide. The exception is with the presence of

water, which leads to the dominance of tetranuclear oxo complexes even under

moderate temperatures [21,48]. In general, temperature of these transformations

decreases at longer carboxylate chain length [21]; these phase transformations are

also highly reversible, and modulating the equilibrium between these complexes and

the polymeric forms results in notable changes in viscosity [11,21,48].

Studies on metal-carboxylates have not considered oleic acid, however, which, as one

of the most popular acid in QD synthesis, carries a linear but unsaturated

hydrocarbon chain. Nonetheless, what is understood about the phase transitions

between polymer sheet, chain and oxo complexes offer insights to the structural

configurations possibly favored by cadmium and zinc oleate complexes. The
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hydrocarbon chain plays the most significant role in controlling the configuration,

barring temperature and solvent effects, and the ease with which the hydrocarbon

side group of the carboxylates can align in an all trans configuration [21] determines

the likelihood of each configuration: those that aligns the easiest form polymer

sheets, then polymer chains, then tetranuclear oxo compounds. Case in point,

carboxylates with linear alkyl chain form polymer sheets but those with branched

alkyl chains form polymer chains [11,21]. At high temperatures, all carboxylates

assume the tetranuclear oxo compound configuration due to entropy.

For oleates, their cis double bond mid-chain (carbon 9) renders them unlikely to

assume the all-trans alignment that favors sheet arrangement. Studies on the

crystallization of oleic acid have shown that it is polymorphic, its most stable P phase

characterized by a non-segregated arrangement of carboxylate and methyl groups.

This arrangement, not seen in other cis-monounsaturated acids [82], has been

attributed to the equal number of carbons on the two sides of the double bond in

oleic acid. Cadmium and zinc oleates are therefore expected to polymerize in smaller

scales-as polymer chains, for example, which would differentiate them from the

polymer sheet configured cadmium and zinc-phosphonates. In the context of the

synthesis and processing of QDs, it may explain why the bulky coordination polymers

have appeared exclusively in schemes that incorporate metal-phosphonates but not

metal-carboxylates, which are mostly metal-oleate.
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5.3 Purification of Starting Chemicals for CdTexSex QD Synthesis: Detailed

Protocols

Proper preparation of tools and glassware is needed to ensure cleanliness and

consistency. All glassware contacting the chemicals should be free of water and

other polar solvents (particularly alcohols), which drastically change the yield of the

purification processes. Stainless steel spoons can produce substantial amount of

particles when scratched, often at the neck of the flasks when scraping chemicals,

and should also never be exposed to corrosive environment (ex. the acid bath) that

further soften the material. Glass frits and columns used for each chemical are

dedicated for their purpose, so that their history of use is known and can be properly

cleaned without risking damage to the pores for filtration. Fresh stir bars are

preferred, and stir bars that have seen the base or acid baths are never used, both in

purification and synthesis.

All temperature ramping performed during purification (and synthesis) is set at a rate

that ensure no sudden "spikes" in the temperature profile. This requires the

temperature controller to adopt a setting that allows no temperature overshooting.

Even with identical loop feedback (PID) settings, however, different thermal

controller models in the lab have exhibited significant variations in their ramping and

set point maintenance behavior. For this reason, all experiments in the project are

performed with one model (REX-Dioo; RKC Instrument, South Bend, Indiana) that

exhibits the least overshooting behavior and ramps at a consistent rate of (T-T,)/1o

min at its default factory setting. Type K thermocouple is always used (Omega

Engineering, Stamford, CT) and the variable autotransformer ("Variac"; Model

3PN11o, Staco Products, Dayton, OH) is set at 140V maximum. Smooth temperature

profiles are then achieved by a step-wise temperature set point increase and

stabilization towards the target temperature, with the intermediate set points near

the melting point of the solid chemicals.
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5.3.1 Purification of trioctylphosphine oxide (TOPO) with anhydrous heptane

Successful purification of TOPO via recrystallization has been reported in literature.

As an alternate method, distillation has been described as ineffective ([189];

communications with former Bawendi lab members). Other purification methods

described involve the use of water, which is avoided to ensure the purified products

are completely anhydrous for QD synthesis [12].

The purification protocol has been developed and optimized based on using 200 g,

99% TOPO as the starting chemical. The choice of heptane as the anti-solvent takes

into consideration that impurities found in alkanes are usually hydrocarbons of similar

molecular weights and sans function groups, thus minimizing the chance that

residual heptane in the purified TOPO would include impurities that cannot be

removed or lead to secondary reactions during pre-synthesis degassing. Acetonitrile,

the anti-solvent previously cited for TOPO recrystallization [189], has multiple families

of impurities that include water, acids, bases (ammonia), and multiple species of

metals [3,39]; the quantity of the anti-solvent required is also much larger (1oog

TOPO: 200mL for acetonitrile [189]). Heptane's boiling point at 98*C renders its

evaporation rate slower than hexanes, but not so high that removal becomes a

challenge.

The purification protocol begins with degassing, which removes residual solvents

from the manufacturing process and any impurities with boiling points below

TOPO's. Residual solvents in TOPO can lead to poor yields from recrystallization; for

example, TOPO is highly soluble in the alcohols (>2.2g TOPO in 1 mL ethanol) and

crystallization would fail if even a trace amount of the latter has been mixed in the

heptane.
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The second step involves two rounds of crystallization and washing with anhydrous

heptane. Recrystallization is performed at room temperature, as some impurities are

found to solidify into yellow patches that are not easily separable from the TOPO

crystals at 40C. Meanwhile the washes are performed with heptane cooled in dried

ice, as TOPO's solubility in heptane is non-trivial. The final step is a slow, evaporative

drying of the crystallized TOPO just below its melting point (-5o'C), as re-solidified

TOPO is notorious difficult to work with (and the hard scraping needed often leads to

significant amount of particulate contamination). As dried TOPO crystals are

extremely "fluffy", rotovap must be used with caution and may be used only up to a

certain point, as the TOPO flakes are easily vacuum-suctioned from the evaporation

flask to the rest of the apparatus. The rest of the drying is best performed on the

schlenk line.

5-3.1.1 TOPO Recrystallization, The Protocol

99% TOPO from Strem Chemicals (Newburyport, MA) is preferred over 99% TOPO

from Sigma Aldrich (St Louis, MO) with its lower impurity concentration. Anhydrous

99% heptane is from Sigma-Aldrich and should be fresh at use; air storage is okay for

the duration of the purification.

1. Degas up to 200g of TOPO at near the boiling point of the chemical (-150'C

depending on base vacuum and TOPO purity) until pressure is stable. The

process should take -30-45min for each ioog TOPO.

2. For each ioog TOPO (and up to 200g), prepare 75mL anhydrous heptane in a

large neck and sealable glass container.

3. When TOPO degas is complete, release to N2 atmosphere and cool to -90*C.

Release to air and immediately pour into the prepared heptane. Seal cap with
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Parafilm and swirl gently until TOPO and heptane is thoroughly mixed and no

more "swirl patterns" can be seen in the solution. If the solution turns turbid,

heat gently until the TOPO melts and the solution becomes clear again, taking

care to not raise the temperature above the boiling point of heptane (-98*C

@ 760mmHg).

4. Set the flask aside for the first recrystallization in room temperature.

Perturbation should be minimal to allow for a slow, well-paced

recrystallization, which should commence within 2 hours. The first

recrystallization should be left overnight (-12 hrs.), as impurities weaken the

crystal and render the recrystallization process slower than in subsequent

runs. The TOPO is ready when "cloves" can be seen in the crystal, and no

liquid flows out when the container is tipped.

5. Prepare iced heptane in dry ice bath. Transfer TOPO crystals in small

increments into a fine glass frit and wash them twice with approximately

equal volume of iced heptane, using a light vacuum to draw the solvent down

the frit. Place all clean crystals in a new container; also collect all heptane

collected to determine loss.

6. Tare an evaporation flask for rotovap. Dry the heptane collected in 5. on the

rotovap and weigh the approximate weight of TOPO lost (should be ~5%). This

highly impure TOPO solid should also look very yellow and has an oily/waxy

consistency compared to the starting chemical.

7. Perform the second recrystallization of the crystals collected in Step 5,

factoring in the loss in TOPO weight determined from Step 6 and also the

amount of heptane still present in the clean crystals, which can be determined

by weighing the wet crystals and subtract the value by the now known weight
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of TOPO inside. Melt the TOPO gently (again, avoid reaching the boiling point

of heptane = 98*C) and add the appropriate amount of heptane so that the

ratio of 1oog TOPO : 75mL heptane is followed; swirl to mix thoroughly. The

crystallization should also begin <2hr; for this round, 4 hours (after the start of

the crystal forming process; -6 hours total) should suffice for the

recrystallization to complete; again, crystal "cloves" should be visible and no

liquid should flow out when container is flipped.

8. Repeat 6. for second wash. If the loss is collected, it should look visibly similar

to the recrystallized TOPO, with little to no difference in color and

consistency. If not, the recrystallization and wash should be repeated. The

total loss from the two recrystallizations should be -10%.

9. Dry the TOPO crystals. As previously mentioned, TOPO crystals are "fluffy"

and hence, of low density-200g of the crystals, once dried, occupy a volume

upwards of 5oomL. Rotovap can be used for the initial drying, with the water

bath temperature gradually increased to 45'C (below TOPO's melting point);

when the TOPO becomes dry enough that the risk of contaminating the

rotovap becomes significant, the drying process should be moved to a schlenk

line. It is advisable to use a long distilling column (30cm length, 24/40 joint) to

separate the flask with TOPO from the schlenk line, although in previous

experiences, TOPO contamination is not an issue at this stage. As heating

mantle cannot distribute heat well in solids, room temperature and long

drying time is preferred. This final step should also be performed in smaller

batches of TOPO to ensure thorough drying.

5.3.2 Purification of octylphosphonic acid with anhydrous heptane
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The choice of n-octylphosphonic acid (OPA) as the acid ligand for QD synthesis takes

into consideration that the same acid species is supplied by TOPO both as a starting

impurity and a high temperature oxidation product. It is important to note that the

purity level (-98%) specified by the manufacturer can be based on total acid content

and not the content of the OPA itself. The main purpose of this purification is to

remove non-acids from the starting chemical.

Recrystallization is again the chosen method upon determining the proper anti-

solvent, which consists of heptane mixed with a small volume of toluene. As the anti-

solvent, heptane (boiling point: 98*C @ 76ommHg) offers the advantages as

described in the previous section on the purification of TOPO, but is too non-polar

(and therefore insoluble to OPA) to permit a well-paced OPA recrystallization at

reasonable volumes. On the other hand, OPA recrystallization in the more polar

toluene alone is very slow and the yield tends to be poor; using significant amounts

of toluene may also leave behind residual acid and water [80]. Just like heptane,

toluene has a boiling point (111 0C @ 76ommHg) suitable for solubilizing hot OPA

(melting point: 100-1020C @ 760mmHg).

Similar to the recrystallization of TOPO, the protocol begins with degassing and

proceeds to recrystallization. The protocol is developed based on 35g starting OPA;

larger batches are not recommended due to the high cost of the chemical. It should

be noted that this protocol does NOT work for long chain phosphonic acids, including

tetradecylphosphonic acid and octadecylphosphonic acid.

5.3.2.1 Octylphosphonic Acid Recrystallization, The Protocol

98% Octylphosphonic acid is from PCI Synthesis (Newburyport, MA). Anhydrous

heptane 99% is from Sigma-Aldrich (St Louis, MO). Toluene, 99.85%, Extra Dry over

Molecular Sieve, Acroseal is from Acros Organics (New Jersey, US).



1. Degas 35g OPA on the schlenk line at 120'C for one hour, or until pressure is

stable. Switch to N2.

2. Prepare 175mL heptane in a large neck, sealable glass container and pre-warm

to -85*C, while keeping the container covered (but not sealed) to slow down

evaporation.

3. Decrease OPA temperature to -105 0C and inject 12mL toluene (b.p.=111 0C).

Then release content to air and quickly but carefully pour the OPA-toluene

solution into the warmed heptane. Seal cap with Parafilm and swirl gently

until the solution is thoroughly mixed and no more "swirl patterns" can be

seen in the solution. If the solution turns turbid and/or the OPA solidifies,

maintain the solution temperature at 85-9 00C until the solids melt and the

solution clarifies again, taking care to not raise the temperature above the

boiling point of heptane (-980C @ 76ommHg).

4. Set the flask aside for recrystallization in room temperature. Perturbation

should be minimal to allow a well-paced recrystallization, which should

commence quickly (-8-10min) and but will require 40 hours to complete. The

crystals should resemble small, iridescent flakes.

5. Prepare iced heptane in dry ice bath. Transfer OPA crystals in small increments

into a fine glass frit and wash them twice with approximately equal volume of

iced heptane, using a light vacuum to pull the solvent down the frit. Place all

clean crystals in a new container. If need to determine loss, collect all the

solvent.
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6. To determine loss, tare an evaporation flask for rotovap, dry the heptane

collected in 5. on the rotovap and weigh the approximate weight of OPA lost

(should be -7%).

7. Dry the OPA crystals on schlenk line, slowly increasing the temperature from

room temperature to 8o0C. Once again, a long distilling column (30cm length)

may be useful to separate the flask from the schlenk line and avoid

contamination.

5.3.3 Purification of hexadecylamine

Impurities in hexadecylamine (HDA; boiling point b.p. 322.80C @ 760mmHg) have

been reported to include their isomers and other linear alkyl amines of similar chain

lengths. The data sheet for 90% HDA from Sigma Aldrich, for example, lists the

presence of 3% tetradecylamine (b.p.: 2960C @ 76ommHg) and 3% octadecylamine

(b.p.: 346.80C). While amines are considered weak ligands that act as facilitators of

monomer incorporation, CdTexSex QD synthesis has demonstrated sensitivity to lot

switching even when 98% hexadecylamine (Sigma) is used.

Studies on the industrial purification of amines has indicated that distillation is

effective for separation of amines with distinct boiling points, while isomer extraction

requires creating amine complexes (ex. reaction with a reactive carbonyl via

treatment with acid [170]) to achieve full resolved separation. Such chemistries often

involve an aqueous phase, which is not desirable for preparation of chemicals for QD

synthesis. A simple recrystallization using benzene has been recommended for HDA

purification in Purification of Laboratory Chemicals [12] and in the purification protocol

developed for this project, which uses 98% HDA as starting chemical and also

comprises of degassing followed by recrystallization, heptane has replaced benzene
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for reasons as stated for TOPO and OPA. The primary goal of this purification

protocol is to remove non-amine impurities.

5.3-3.1 Hexadecylamine Recrystallization, The Protocol

98% Hexadecylamine (melting point: 38-470C @ 760mmHg) and anhydrous heptane

99% is from Sigma-Aldrich (St Louis, MO).

1. Degas 125g HDA on the schlenk line with a gradual temperature ramp to 1050C;

hold temperature at 1050C, at which reflux should commence, until pressure is

stable. Do not attempt to return the small amounts of material deposited on

the distillation column into the flask. Switch to N2.

2. Prepare 187.5mL heptane (general guideline: ig HDA: 1.5mL heptane) in a large

neck, sealable glass container.

3. Lower the temperature of HDA to -8o0*C and release it to air. Carefully pour

the hot liquid into the heptane. Seal cap with Parafilm and swirl gently until

the solution is thoroughly mixed and no more "swirl patterns" can be seen in

the solution. If the solution turns turbid and/or the HDA solidifies, heat up the

solution in small increments-the final temperature should be well below the

boiling point of heptane (-980C @ 76ommHg).

4. Set the flask aside for recrystallization in room temperature. Perturbation

should be minimal to allow a well-paced recrystallization, which should

commence in -30min. In previous runs, the crystallization is allowed 3 days to

complete-whether a shorter duration provides the same yield has not been

tested.
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5. Prepare iced heptane (set in dry ice bath). Transfer HDA crystals in small

increments into a fine glass frit and wash them twice with approximately

equal volume of iced heptane, using a light vacuum to pull the solvent down

the frit. Place all clean crystals in a new container. If need to determine loss,

collect all heptane.

6. To determine loss, tare an evaporation flask for rotovap, dry the heptane

collected in 5. on the rotovap and weigh the approximate weight of HDA lost

(should be -11%). Much like the case for TOPO, the loss tends to carry a yellow

tint compared to the purified product-it also has a higher melting point, thus

may be enriched in heavier amines such as octadecylamine.

7. Dry the HDA crystals on schlenk line, slowly increasing the temperature from

room temperature to 6o0C. Once again, a long distilling column (30cm length)

may be useful to separate the flask from the schlenk line and avoid

contamination.

5.3.4 Purification of Squalane and Squalene

Purification of Laboratory Chemicals [12] has recommended the recrystallization of

squalene using acetone (@ 1.4ml/g) as the anti-solvent in a dry ice bath, which is

followed by a cold acetone wash. The purification protocol as described below is the

first trial for squalane (the hydrogenated form of squalene); a similar protocol is

expected to perform well for squalene but with the acetone: squalene ratio set to

1.4ml/g [12].

A visual clue of the impurity levels in squalane is the degree of yellow to yellow-green

hue in the starting chemical. Purified squalane is almost colorless; meanwhile,
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comparison of the various bottles of 98% and 99% squalane found in lab revealed that

98% squalane carried a significantly stronger yellow tint, the intensity of which

differed between lots and was extracted during recrystallization. The impurities

involved were also found to be more viscous than squalane after the decanted

acetone had been removed by rotovapping.

5.3.4.1 Squalane Recrystallization, The Protocol

99% Squalane and 99.9% Acetone (CH ROMASOLV) are available from Sigma Aldrich

(St Louis, MO).

1. Mix 200mL squalane and 100 mL acetone thoroughly in sealable glass

container.

2. Place squalene-acetone solution in dry ice bath; a thick gel should form over

time, indicating the crystallization of squalane. Meanwhile, cool acetone in dry

ice until the temperature matches that of the squalane solution.

3. Decant acetone. Pour in 200mL iced acetone, then decant and repeat 3x for

washing. As squalane's melting point is -380C and dry ice sublimation

temperature is -56.40C, the procedure should be performed quickly and with

the temperature of acetone as low as possible.

4. Dry squalane first by rotovap, then on the schlenk line at near boiling point to

remove solvents until base pressure is reached. It is then transferred, air-free,

into the glove box for storage.
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5.3.5 Activated alumina column filtration of trioctylphosphine (TOP)

The use of activated alumina to remove phosphinic acids was recommended for the

purification for TOPO [12] and has since been applied to the purification of TOP,

which carry similar impurities as its oxide. Adsorptive filtration with activated alumina

is largely limited to the removal of acids but not the other impurities such as

dialkylphosphines; distillation, which has been tested as an alternate method to

filtration, has also shown to be ineffective in removing all impurities from the TOP,

presumably due to similar boiling points between the phosphine and its impurities.

Preparation of clean TOP therefore combines the following strategies:

1) Use 97% TOP as starting chemical. The bottles are opened in the glove box

immediately before purification to avoid contamination from previous usage.

2) Columns for TOP filtration with activated alumina are dedicated to this

purpose only. Filtration takes place in the glove box.

3) Alumina-treated TOP is immediately degassed (and filtered through glass frit

to remove any alumina particulates), thus removing most non-acidic

impurities with lower boiling points than TOP. Only degassed TOP is

introduced into synthesis, including the making of precursor solutions.

5.3-5.1 TOP Purification, The Protocol

97% TOP is available from Strem Chemicals Inc. (Newburyport, MA). Activated

aluminum oxide, basic, Brockmann I is available from Sigma Aldrich (St Louis, MO)

and should be fresh to ensure minimal amounts of adsorbed water. Econo-Column

Chromatography Columns (2.5cm*20cm max vol. 98mL) from Bio-Rad (Hercules, CA)

are used for filtration. Fresh Tygon tubing (R-3603; I.D.:3/16in, O.D.:5/16in) may be
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used to guide the filtrate from the flow adaptor of the column into the collection

container.

1. All columns used for TOP filtration are dedicated for this use only. They (and

any Tygon tubing to be used) are thoroughly cleaned with methanol and

repeated rinses of hexanes and dried prior to introduction into the glove box.

Only fresh bottles of TOP are used.

2. Set up the filtration system in the glove box. 4 columns are usually set up for

each 500g bottle of TOP to expedite the process, which is slow as it must

occur at near atmospheric pressure. From experience, older or more impure

TOP, which tends to be more viscous, also slows the process. For each

column, ~8omL space is filled with activated alumina.

3. Pour in TOP continuously and in small increments until filtration is complete. A

significant volume of TOP remains in the alumina column at this point; to

collect this TOP, a 1omL syringe can be used to "inject" the O-free

atmosphere into the column through a Tygon tubing connecting the syringe

to the cap of the column. Steps 2 and 3 have, in general, taken approximately

40 hours to complete (for each bottle of TOP).

4. A note on cleanup of these columns: TOP oxidation is exothermic and the

amount left behind in the columns is sufficient to ignite paper products

nearby. Clear the hood of all paper products prior to retrieving the columns

from the glove box. Once in the hood, place the columns in a large glass

beaker and immediately put in hexanes to flush out the remaining TOP out of

the alumina. After the initial hexanes rinse, ethanol should be used as well.
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5. Degas the filtered TOP at 1450C. When performed in batches of -15omL,

approximately two hours should be sufficient time for the TOP to reach base

pressure. As TOPO and phosphonic acids are known oxidization products of

TOP at high temperatures, the temperature and duration of these degassing

runs should be consistent.

This protocol can also be used for the purification for TBP, the filtration time of which

is much faster with steps 2-3 taking approximately 6 hours. Extra care should be

taken during cleanup as TBP oxidizes more aggressively than TOP.
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5.4 Protocol for the Synthesis of CdS@CdTe.Se.,: With Sulfur Incorporation

/ Overcoating: Original Worksheet Format

The worksheets attached are the protocols for samples PL 672/35 and PL77o/61 in

their original format. They are included to provide a better picture of how the

syntheses are planned and performed. The chemistry and steps are highly similar to

the protocols described in section 3.5.2.

PL672/35
TOP (w/DPP) Lot8134048 Filtered/Degas 0.6700
1 -Octylphosphonic acid (PCI99.4%) NA
Hexadecylamine 98% ReXtal 1.0692
0.5M Cd-OPA 1:1.25 in TOP (Feb10) 0.2400
Diphenylphosphine 98% (in 25%v/v Squalene) 0.0042
TOPO 99% Lot2178108 ReXtal 8.0000

9.9834

Weight (g) kAoi Weilt (g/mnolb Mol-s (mol) Males Osmnol)

0.5561 35 1.5004
0,0 00000.0000 194N.0 .Z 0 0.000
0.8693 241.4600 10.0036 3.6001

~180

0.1200
0.0240
18.0011

-.8 --- --- .
Growth soin: TOP-Se+ TOP-S immediate, then Cd -OPA slow a ter injection.
TOP-Se 1.8M 0.0083 0.0150
TOP-S 2.24M (Sat 2.5M) 0.1868 Separate needle entr immediate alter Te 0.4185

SU!MW 0.1932 ISO] W) 0.0003

0.5M Cd-OPA 1:1.25 Post Se 0.1800 0.0900
TOP-S 2.24M (Sat 2.5M) 0.3757 Separate needle 0.8415

Sum vol 0.5557 Divide 3 ) ,52

CdAM* 1.3 0.3600 TCP-1.$ 0. 3
ODE-S 1.OM (Sat) 4.0650 4.0650
O.SM Cd-OPA 1:1.25 Post-S 0.3000 0.1500

PL672/35 No wool Stirrer: 850rpm Line base p 170mtorr
Start degas 9:58pm Temp 1125C

End degas 10:08pm Final pressure 171mtorr Stable. Hold at vac 12SC

Inject TOP 10:08pm 125C, vac for 5min (final p=171mtorr); switdh to N2

No Wool. SetT=358.5C= injectT+1.OC 10:13pm No wool.
Reach 357.5- : 10:22pm --> Set T = 315C4

Inject Cd-OF WA+OP-Te+Squaene+D1CPP (1t G needle6mll syrhw3),
Then immeditlyinject TOP-Se+TOP-5 (1 G needleamt syrin, stick in fiask before Te in
Heat pad REMAINS ON; T drops to ~304.5C then rapidly clilmbs back to 323-324C growth e
Inject CdOPA+TOP-5 for 3minutes: start 10:24:30pm (30sec) constant rate -0.1 85mL / min

Hold 30sec (so total CdTeSe rowth time=4min). Start natural cool. Immediate setT-200Cq

I I I - I |
Injct all ODE-S w/ 21G needle at 6minoesec after natural lh 0 T247C. T drop to 21

Heat pad on. T overshoots to 215SC then stabililze t 200C

Start Cd-OPA inject 10:32:00pr (8:00mins/t1 0d total)
Rate: 0,03 mUI min=0.01 ml/20sec for 10rnin

Hold for extra 2 min after Cd-OPA done. 0 20 min (10:44pmr) I .t 0.67mL TOP. SA natur

10:54pm 30min 76C Spec

10:57pm 33min T064C TDPA in; start -0.5hr vac +8

NIR Spec: 33min79C V. Dilute, before TDPA Peak 672,4700
300#mec FWHM 37.65 (654.05-691.6) 50% peakvalue 1688.7000

TOP-Te 1.0M vol
"TOP-So 1.8M (Grwth)
TOP vol (w/Cd-OPA)
'7OP-S 2.24M (w/TOP-Se)
Squalene vol (w/Te)_
DPP
Total Te+Se VI mmol
Te% in CdTeSe
Postlniect TOP 97%
Amine / Acid Post Se
Amine / Acid Post S

PREMIX vol

S0.0720

0.0250
0.2880
0.5605
3.5280
0.0050

(Filtered)

8.0002

ct) 0 357.5C 10:24:00pm

mp
--> 0.062 ml/20sec, with 1 mL syrne 1Cnel

2C

at cool to RT

OC anneal
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Volume (ml)
PL770/61

TOP (w/DPP) Lot8l 34048 Filtered/Degas 0.6700
1 -Octylphosphonic acid (PCI99.4%) NA
Hexadecylamine 98% ReXtal 1.0692
0.5M Cd-OPA 1:1.25 in TOP (Feb10) 0.2400
Diphenylphosphine 98% (in 25%v/v Squalene) 0.0042
TOPO 99% Lot2178108 ReXtal 8.0000

Weight (g) lWeight (n/mo Moles (niol) Moles (muml)

0.5561 370.6427 0.0015 1.5004
0.0000 194.2100 .0000 0.0000
0.8693 2414600 0.0036 3.6001

0.1200
0.0045 186.2000 0.0000 0.0240
69600 386.6421 0.0180 18.0011

T1
T
T1
TP
S
D

Growth soln: TOP-Se+ TOP-S immediate, then Cd OPA slow after injection. I P
TOP-Se 1.8M 0.0250 m 1 0.0450 A
TOP-S 2.24M (Sat 2.5M) 0.3281 Separate needle; entry immediate after Te 0.7350 A
O.SM Cd-OPA 1:1.25 Post Se 0.1800 0.0900

TOP-S 2.24M (Sat 2.5M) 0.1875 Separate needle 0.4200

ODE-S 1.OM (Sat) 4.1400 4.1400
.5M Cd-OPA 1:1.25 Post-S 0.3000 0.1500

PL.770/61 No wool Stirrer: 850rpm Line base p 170mtorr
tan degas 5:54pm I Temp 125C

End degas 6:04pm Finalpressurel 172mtorr Stable. Hold at vac 125C

njectTOP 6:04pm 125C, vac for 5min (final p=1 72mtorr); switch to N2

No Wool. SetT = 358.5C = injectT+1.OC 6:09pm No wool.
At 358.5C 6:28pm -> Set T = 315C 6:30pm
In ject Cd-OPA+10P-Te+Squalene+DPP (16G eedle/6mt
Then immediately inject TOP-Se+TOP-S (16G needle/3mL syringe, stick In flask before Te inject)
Heat ad REMAINS ON; T drops to -301.2 C then rapidly climbs back to 322C rowth temp

I I I 111
Inject CdOPA for 3minutes: start 6:31:45 (30sec) ; constant rate - 0.18mL /3min -> 0.03m

I 1 1 1
Hold 30sec (so total CdTeSe growth time=4min). Start natural coal.

I I I
During cool injectTOP-S in 3 batches: 30sec pbotch

14min30sec 0.625ml (At 310OC)
5min0sec 0.625ml
5~mIn30sec I0.625ml

Inject all ODE-5 w/ 21 G needle at 6minoosec after natural i ng: 0 T=245C. T drop to 08.
Heat pad on.T overshoots to 215C then stabilize at 200C

Start Cd-OPA inject 6:39:1 5pin (81:00min/1 OiW _____)

Rate:0,03mU1min=0.01mL/20secfor1_rnin

Hold for extra 2 min after Cd-OPA done.@ 20 n (651:15p) 0 inject 0.67L TOP. Start ntu
7:01pm 30min 79C Spec

NIR Spec: 33min79CV. Dilute, beforeTDPA Peak 768.7500
300msec FWHM 62.9 (73431-797.05p 9213000

P-Te 1.OM vol
2P-Se 1.8M (Growth)
OP vol (w/Cd-OPA)
OP-S 2.24M (w/TOP-Se)
qualene vol (w/Te)
PP
otal Te+Se VI mmol
e% in CdTeSe
ostinject TOP 97%
mine /Acid Post Se
mine/ Acid Post S

0 357.5C 6:31:15pm

PREMIX vol

0.0720
0.0600
0.2880
0.7875
3.5280
0.0050

(Filtered)
1.,,
8.0002

l30sec, with 1mL syringe, 21 G needle

4C

al cool to RT



5.5 Absorption Cross Section Calculation for Determining CdTe.Se. QD

Concentration

Accurate determination of the concentration of alloyed QDs is hindered by the

unknown effect of alloying and the composition gradient on the absorption cross

section of the nanocrystals. Thus for this project, the concentrations are calculated

by first assuming the QDs as pure CdTe and CdSe QDs, and then taking a weighted

average of the two concentration values based on their estimated composition. The

contribution of each value is decided based on the fluorescent wavelength of the

samples, which have been of fairly similar sizes (-5.5nm diameter): PL70o 4 8o%Te,

PL 720 4 70% Te, PL 740460% Te; all samples with longer fluorescent peaks are

assumed to be 5o%Te. Because CdTe's extinction coefficient is -150% the value of

CdSe's based on the Leatherdale model (see below), the concentration of QDs for a

given absorbance value is expected to be -150% more if the QDs are assumed to be

CdSe compared to CdTe. Thus even if the weighted average method is correct in

calculating alloyed QD concentrations, a wrong guess of the QD's composition can

still deviate the concentration estimation by this numerical scale-which is not so

significant that a practical estimate of the amount of QDs to introduce for post

synthesis steps, such as overcoating or water solubilization, cannot be made (the

amount of QDs to use for polymer encapsulation, as described in section 3.7, has

been determined using the calculations below), but render estimations of other

parameters such as reaction yields to be not very meaningful.

Concentrations assuming pure CdSe and pure CdTe QDs are determined based on the

method published by Leatherdale et al. [98], but which only described the outcome

for CdSe. To determine the absorption cross-section for CdTe QDs, published material

constants for CdTe were substituted into the equations. The worksheet attached

detailed subsequent calculations that cumulated to the following relationships, with

the excitation wavelength set at 35onm:
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Absorption cross section Cabs, CdTe (cm2)=8.247x1o 5*a3

Molar extinction coefficient ECdTe (M'cm')=2156x026*a3 (Eq.14)

a is the QD radius in cm. To ensure accuracy, the worksheet also includes CdSe to

verify that the outcome of the calculations agrees with the values reported in

Leatherdale. Furthermore, it confirms that wurtzite versus zinc blende material

constants make little difference in the absorption cross section and molar extinction

coefficient values for CdSe, which is important to know as only zinc blende CdTe

material constants can be found in literature.
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_> restart
Define constants
N a = Avogadros number
h = Planck's constant
c = speed of light

> N := 6.022E23
h := 6.626E-34
c = 299792458

Define hexane optical parameters
Data from Kerl&Varchmin JMolStruc349 1995.

Also input experiment conditions
T = 300K
Wavelength of excitation = lambda ex = 350nm

> a/hexane := 1.53157227:
b.7 := -5.5035E-4

a2 := -4.6005 :
b2 :=2.2803E-3

a3 hexa 6159.3:
b3h := -5.9360

a /xane :=8.9E-5
a2hexane :=3 E - 5 :

dO :=0.8262917:
d/ee =-2.52E-4
d2 :=-10.8E-7:

aldxane := 2E-5 :

Mo/veighth,, = 86.18:

> T:= 300:
Xex := 350:

2 -Pi-c
L Oex e

n hexane tab is the tabulated refractive index of hexane - 1.3749 @ 20C

Calculate complex refractive index for hexane, m hexane := n hexane - ik hexane based on parameters above
(Only nhexane is used later; else has imaginery term in absorption cross section)
n unitless; k unit = M/nm

> n h := 1.3749:L hexanetab
S(a

2 hexne + b2 .T ( a3& + b3hexne

h axhexane ehexane

ex Tex

[>Phexane:= dohexne + dlhe.e T +d
2

he,, T~2
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>chan := eva/f solve(

n 2 
- 1 ) 4

(~2-n hexane + 4

h~~exane±2

Pi N,- phexane- alpha

M ~e'fhth , .alpha (1 E
7

> kh := eva/f
( Xex chexane

(4-Pi) )
> n -fl -m1exane0.hexane h5xan

mn :1.391020384 - 0.3459712800 I
hexrane

Specific complex refractive index for CdSe and CdTe, 300K
m semiconductor = n - ik
(note: in some papers, k = extinction coefficient; in others, negative extinction coefficient)

CdTe: Bridgeman method single crystal, bulk, cubic(zincblende) from Adachi et al. JApplPhy74 1993
CdSe: VaporPhase growth single crystal, bulk, cubic(zincblende) (c) and wurtzite (w) rom Ninoyima&Adachi
JApplPhys78 1995
(For wurtzite, average two axis data)
CdSe with subscript L uses values from Leatherdale paper for cross checking

> n 3.02cCd~e

kcCdTe:='4

cCdTe cCdTe cCdTei

:O 3.02 - 1.47 1

> ncCdSe 2.93

kCdse:= 0.809:

cCdSe cCd5e cCdSe'

m 2.93 - 0.809 I

(2.84 + 2.82)
> n wCdSe 2

(0.645 + 0.8785)
kwcdSe 2
m~d n - 1k

wcse wcase-- wCdSe

2.830000000 - 0.7617500000 I
redC'se

> n LCdSe :=2.772:

kL CdSe

'L CdSe L CdSe L CdSe

m := 2.772 - 0.7726 1
LCd-Se

Absorption cross section (nmA2) per QD; a and lambda ex in nm
Use Equation 2 from Leatherdale paper (Leatherdale et al. JPhysChemB106 2002)
(Assume Leatherdale used tabulated hexane refractive index value; should be close to 5.501 E5cmA-1,
or5.501 E-2cmA-1)

81t-*fl n
> Cabs := eva/f -Re

c~~dex k

( 2 2 n 2 i '
mCdTe hexane) 3

/. I 2 + 2 /72 \ -acdre'
\ccdre hexane) , C ,

0.08247102008 a3
(e eclm'
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2-ahexane cCdSe hexane) 3> Cabsecds :=eval - m2 +2n
2  \ accds~?ex CdSe hexane)

Ca/s := 0.05339758676 a
3

c CdSe c/Se

8 - e2 n r s2  - exn e
> Cabswcse evaf x ( n

2  + 2 n2 J wCdSe
ex~ nCdSe hexane)

Cahs 0.05370193521 a
3

Cd(Ie

8-71 nhexanetab ( I(mCdSe- hexanetb) 3

ex( LCdse hexanetab a,>CabsLCdSe :=eaf Xex (~ "' 2 2d +2 )7hxn~ L LCdSeJ

Cahs 0.05521338980 a
3

LCdSe LG/Se

Alternatively,
(check for consistency)
Use Equation 4 from Leatherdale paper (Leatherdale et al. JPhysChemB106 2002)

> Cabs2 eva/ -
cCdTe, ( hexane C

CdTe

[ abs (3 "hexane)abs ea2n )
( cdre hexane)

S2.nCdTe k cce4Pi

> Cabs2 ccdse := e val

> Cabs2 Cd5 eval
wCdSe

> Cabs2 LCdSe :=evalf

Moex

( hexane

Cabs2 :0.08247102011 a
3

cC/Te C/Te

3-n2 2ane)
abs hex a2

ccdse hexane)

C) 3

Cabs2 0.05339758676 a
3

Cfdse eCdSe

' 3-n 2 \ 2
\ hexane J

abs ,n 2 + 2 - n2 \ -e 2-n aCdse -k wcase' - '-

' w dse hexan

n(exae' C)

Cabs2 := 0.05370193518 a
3

I/se nG/Se

\ hexaneab)
abs ( m2 + 2-2 -2 -2-nLCdSe-kLCdSe-4

\ cdSe hexane beex

nhexamebt'

-
2 .n cdSk ccdse4t

(10)

3
-acCdSe

(11)

(12)
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aCdS,

Cabs2 0.05521338982 a
3  (13)

LCdSe LcISe

OK.

Determine extinction coefficient (1/(M*cm)) using molar, convert absorption cross section to cm^12

2303 -epsilon
> dr so/ve Cabs 1E7 epsilon;ce lv cCd~e N pio

eccdr, 2.156493630 1026 a
3  (14)

2303e
> ecd/se :solve Cabsecdse 1E7 = ,

ECdSe 1.396266902 1026 a
3  (15)C. ISe (5

2303 -e
> ewcdse solve Cabs - 1E7 N

a

e...s,:= 1.404225158 1026 a
3  (16)

2303 - '
ELcdse.. :=solve Cabs 1E7 NagLCdSe .= 4 1

LI~. 1443747431 1026~ a3  (7I-(17)
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