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ABSTRACT

Asymmetric cell division allows for better environmental adaptation and organismal
complexity. Cells often divide by binary fission to form two identical daughter cells with
similar developmental fates. However, a cell can also divide asymmetrically to form two
daughter cells with different developmental fates. This process makes possible diverse
behaviors such as differing life cycles respondent to environmental stimuli and
specialization of cellular functions to generate organ systems. How cells divide
asymmetrically and how they enforce the differential fates of daughter cells remain
unsolved, fundamental problems in biology.

In this work, I use the model organism Caulobacter crescentus to investigate how
intracellular asymmetry within the mother cell is translated into the formation of two
developmentally distinct daughter cells. Caulobacter is an alpha-proteobacterium that
always divides asymmetrically to generate two daughter cells that are morphologically
distinct and have different replicative capacities. I show that kinase and phosphatase
activities at opposite poles of the cell generate a spatial gradient in the phosphorylation
level of an essential cell cycle regulator called CtrA. This spatial gradient of CtrA
phosphorylation enforces replicative asymmetry and couples it to the asymmetric
morphogenesis of the daughter cells. I then investigate how CtrA's control of replicative
asymmetry relates to the control of replication periodicity. I show that the activity of an
essential replication initiator DnaA dictates the timing of replication initiation and
oscillates independently of CtrA activity. The genetic separability of the spatial and
temporal controls of replication in Caulobacter suggests that DnaA comprises an ancient
and phylogenetically widespread control module for replication in almost all bacteria
while CtrA developed later in c-proteobacteria and was recruited to enforce replicative
asymmetry in daughter cells. This work provides a foundation for understanding cellular
asymmetry and evolution of the cell cycle in bacteria.

Thesis Supervisor: Michael T. Laub
Title: Assistant Professor of Biology
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Introduction

Biological systems evolve toward increasing complexity to improve adaptability and to

diversify cellular functions. In metazoans, a single totipotent embryonic cell divides

repeatedly to generate increasingly specialized cells to form a complex pattern of organ

systems. We are all the result of this tightly regulated process. Not only are we capable

of engaging with our environment and with each other in complex, unpredictable ways,

but we are also equipped to repeat the entire developmental process from single cell to

fully formed person. A key process in generating this complexity is asymmetric cell

division. Although cell division is often a simple binary fission that creates two identical

cells, there are many cases in which cell division produces daughter cells with different

fates. How cells divide asymmetrically and enforce the differential fates of daughter cells

remain unsolved problems in biology.

There are two general ways to produce daughter cells with different fates [6]. A mother

cell might divide to form two identical daughters that become distinct through later

events, such as signaling with each other or with neighboring cells. Alternatively, a

mother cell might first become polarized intracellularly, such that upon division, the two

daughters inherit different fate-determining factors and are immediately distinct. This

latter process is termed asymmetric cell division. Even during the development of the

nematode Caenorhabditis elegans, a relatively simple animal, 807 of the 949 nongonadal

cell divisions are asymmetric [7, 8], underscoring the importance of this process to

development.
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Although prokaryotes do not have a complex body plan, bacteria nonetheless lead richly

asymmetric lives and often form multi-cellular structures, such as biofilms and fruiting

bodies [9, 10]. Some bacteria decorate themselves with asymmetrically placed structures

such as chemoreceptors, flagella, and pili, and some divide asymmetrically to adapt to

environmental stresses, as in the case of Bacillus subtilis sporulation. To better

understand the phenomenon of asymmetric cell division, I have pursued two questions

using the alpha-proteobacterium Caulobacter crescentus as a model organism. One, how

is intracellular asymmetry within the mother cell translated into the formation of two

developmentally distinct daughter cells? And two, how does the cell couple asymmetric

morphogenesis during the cell cycle to other essential events, such as DNA replication?

Generation of organismal asymmetry

The mechanisms for breaking cellular symmetry fall into two broad categories; the cell

can either generate polarity de novo from a random internal cue or it can harness an

existing asymmetric landmark or extrinsic signal. I will refer to these two methods as

"random" and "deterministic" symmetry breaking. Below I describe examples of each

and then the general mechanisms by which an initial asymmetry is ultimately translated

into different daughter cell fates.

One example of random asymmetry formation is the placement of bud sites in the

budding yeast Saccharomyces cerevisiae. S. cerevisiae cells can alternate between diploid

and haploid growing states (Fig. 1.1). In vegetative nutrient-rich conditions, both haploid

and diploid cells simply divide by mitosis [11]. However, under conditions of high stress,

such as nutrient deprivation, haploid cells will die, whereas diploid cells can enter

meiosis and produce four stress-resistant haploid spores [12]. When living conditions
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improve, these haploid spores can then germinate and reenter the mitotic cell cycle.

Alternatively, two haploid cells can mate to form a diploid cell. Haploid cells can be of

two different mating types: a or c. Only haploid cells of opposite mating types can mate

to form diploid cells, which then undergo mitotic cycles until environmental conditions

provoke sporulation.

Both haploid and diploid S. cerevisiae cells divide through a special mitotic process

called budding in which a mother cell buds off a daughter cell. Each cell division is thus

asymmetric, yielding a larger mother cell and a smaller daughter cell, which have two

major differences in cell fate (Fig. 1.1). Since the daughter cell is smaller, it must grow

before it can initiate replication, while the mother cell can initiate replication soon after

division. Mother and daughter cells also differ in their ability to switch mating type.

Upon budding, mother and daughter cells start off with the same mating type; however,

the mother cell can switch mating types but the daughter cannot. This ensures that mother

and daughter cells will have opposite mating types such that an isolated spore can always

form diploid cells through mating between descendants.

Chen 1 12



Meiosis Sporulation

Tetrad
a a with

a/ct a four spores

Germination
Mating

(or cc)

Mother
(with active HO)

Figure 1.1. Life cycle of budding yeast. Each spore within the tetrad can bud to produce a
smaller daughter cell and a larger mother cell. The mother cell has active HO and can switch
mating types. The two mating types 'a' and 'a' are shown in blue and red, respectively. Haploid
cells of opposite mating type can mate to produce a zygote (purple) that can undergo meiosis and
sporulate to form a tetrad with four spores. Figure adapted from [3].

Mitosis in budding yeast thus consists of two major symmetry-breaking processes. One is

determining the bud site and polarizing the cytoskeleton asymmetrically toward the bud

site. The second is using this polarized cytoskeleton to partition fate-determining

components asymmetrically between mother and daughter cells. The second process will

be discussed in the next section. Below, we first focus on how bud site determination can

be an example of random de novo generation of asymmetry.

Typically, asymmetrically localized determinants will persist at the site of a previous bud,

called a bud scar, and these determinants inform the placement of new bud sites [13, 14].

In the absence of bud scars, however, S. cerevisiae can still form asymmetric buds, using

the Rho GTPase Cdc42 [15]. Although Cdc42 appears randomly and uniformly

distributed around the cell periphery, it can stochastically accumulate at a random
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location on the cell surface, which will ultimately become the future bud site as follows

(Fig. 1.2). In its active GTP-bound form, Cdc42-GTP stimulates actin nucleation, thus

polarizing the actin network. The polarized actin cables transport more Cdc42-GTP to the

future bud site, which stimulates further actin nucleation [16, 17]. The process whereby

Cdc42 and the actin cytoskeleton positively feedback on each other enhances polarization

in a single direction. After bud site determination, the polarized actin cytoskeleton is used

for delivering vesicles from the mother cell to the daughter cell [18]. Therefore, the

process of bud site determination not only initiates asymmetric bud formation but also

sets up a system for asymmetrically distributing cytoplasmic components between the

bud and mother cell.

Cdc42-GTP Internal Cdc42
Random distribution stimulates transported along

of Cdc42-GTP actin nucleation actin cables Stable polarity

0 O

e Cdc42-GTP

0 Exocytic vesicle
with Cdc42-GTP

OActin nucleator

IActin cable
Figure 1.2. De novo symmetry breaking through actin-dependent positive feedback. Initial
stochastic accumulation of Cdc42-GTP triggers actin nucleation. This leads to transport of
internal Cdc42 to the polarizing site, leading to further nucleation of actin cables. Figure adapted
from [2].

As with budding yeast, the first cell division for a newly fertilized C. elegans embryo is

asymmetric, yielding a larger anterior cell called AB and a smaller posterior cell called Pi

[5, 19-21]. These sister cells undergo different patterns of cell division and ultimately

generate different tissue types. AB undergoes a series of synchronous cleavages,
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producing equally-sized daughter cells that go on to generate ectoderm [22]. By contrast,

P1 descendants undergo multiple asymmetric divisions and ultimately produce mesoderm,

endoderm, the gonad, and some ectoderm [22].

Unlike budding yeast, the asymmetry of the C. elegans embryo cannot be determined

randomly. Instead, it is defined deterministically using the site of sperm entry, which

delineates the posterior pole [21]. Upon fertilization, a network of actin and myosin on

the cell cortex of the embryo drives surface contractions uniformly around the cortex

[23]. At the same time, the Rho GTPase-activating protein CYK-4 is transferred from the

sperm to the zygote. CYK-4 then locally inactivates Rho, resulting in actomyosin

relaxation around the posterior pole but continued actomyosin contractions in the anterior

(Fig. 1.3). These asymmetrically placed actomyosin contractions profoundly reorganize

the embryonic cytoplasm [23]. Yolk granules near the surface move away from the

posterior and toward the anterior in a process called cortical flow. By contrast, yolk

granules deeper within the embryo move posteriorly in a process called cytoplasmic flow.

Cortical flow transports important polarity determinants, such as PAR-3, PAR-6 and the

protein kinase PKC-3, to the anterior hemisphere of the embryo [23, 24]. Other

determinants, such as PAR-1 and PAR-2 remain in the posterior. Negative crosstalk

between PAR-3, PAR-6, and PKC-3 in the anterior and PAR-1 and PAR-2 in the

posterior reinforce their separate spatial distributions, forming distinct anterior and

posterior domains of the embryo. During this maintenance phase, the myosin network

also breaks down to form smaller puncta (Fig. 1.3). Later, during the domain correction

phase, the boundary between the anterior and posterior domains of the embryo that are

defined by the PAR proteins aligns with the cleavage furrow; this is thought to be
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mediated in part by the larger myosin puncta that form in the anterior and in the nascent

contractile ring to be used for cytokinesis (Fig. 1.3) [4].

Internal Cdc42
Onset of asymmetry transported along

establi hment End of establishment actin cables

sperm entry site
(defines posterior)

Actin cable
0 Myosin 11 foci

Par-1/Par-2
Par-3/Par-6/Pkc-3
CYK-4

Figure 1.3. Symmetry breaking based on an external cue. CYK-4 (purple) at site of sperm
entry locally inhibits actomyosin contraction (black lines and grey dots). This causes PAR-3,
PAR-6, and PKC-3 (blue) to move towards the anterior while PAR-1 and PAR-2 (red) are
released from inhibition in the posterior. At the end of asymmetry establishment, cortical ruffling
induced by actomyosin contractions are restricted to the anterior half of the cell and two
domains of different PAR proteins have been set up. Later the myosin network breaks down to
form puncta and a contractile ring. Figure adapted from [4] and [5]

Establishment of anterior and posterior PAR protein domains then drives the next step

toward asymmetric cell division: the asymmetric segregation of cytoplasmic components

[25]. Although the mechanism by which each of the PAR proteins effect downstream

functions is not completely understood, the best studied involves PAR-1. PAR- 1 is

critical for localizing germ plasm to the posterior end of the embryo. The germ plasm

contains proteins and RNA-rich organelles called P granules that are essential for

germline development in descendants of the posterior P1 cell. Germ plasm components

start out uniformly distributed throughout the oocyte but then segregate to the posterior

only after the establishment of PAR domains. PAR-I localizes germ plasm components

through two redundant intermediates, MEX-5 and MEX-6, which localize to the anterior

of the cell in a PAR-I dependent manner [26]. MEX-5 and MEX-6 likely promote
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degradation of germ plasm components in the anterior of the cell while PAR-I by an

unknown mechanism protects them from degradation in the posterior [27, 28]. In sum,

the example of deterministic asymmetry formation in the C. elegans embryo

demonstrates how an external signal (CYK-4) initiates the asymmetric partitioning of

PAR proteins and how the PAR proteins then convert a transient stimulus (sperm entry)

into a stable asymmetry by harnessing basic cellular functions like actomyosin

contractions and protein degradation.

Translation of cellular asymmetry into distinct daughter cell fates

In both the random and deterministic examples of asymmetry, once polarity has been

established, the cell must translate this polarity into an asymmetric cell division and

different daughter cell fates. In eukaryotes, this often involves two key steps: (1)

signaling from a pole to the cytoskeleton to asymmetrically organize transport and then

(2) exploiting this directional transport to asymmetrically distribute components with

effector functions [29]. We already saw briefly how these two steps contribute to

asymmetric cell division in the C. elegans embryo. What are some other examples of the

mechanisms used to differentiate sister cells?

Asymmetric fate determination ultimately results from the differential localization and

inheritance of proteins by daughter cells. There are three major ways to achieve this

asymmetric distribution of proteins [21]. One way is to localize mRNA, which can lead

to either translational repression or translation of a specific product in the target daughter

cell. Well-studied examples of this mechanism are the asymmetry in mating type

switching in budding yeast [30] and body plan specification in Drosophila

embryogenesis [31]. A second way is to localize the protein itself, which can then be
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inherited asymmetrically by daughter cells. This mechanism drives neural development

in Drosophila melanogaster [19]. A third mechanism is differential protein stability,

which occurs in C. elegans embryos, where an E3 ligase causes degradation of germline

specification proteins in daughters that are fated to be somatic cells [32]. Below, I will

discuss the paradigmatic examples of differential mRNA localization in budding yeast

and protein localization in Drosophila neural progenitors.

In budding yeast, localization of an mRNA specifically to the bud is responsible for

inhibiting daughter cells from switching mating type. As discussed in the previous

section, budding yeast divide asymmetrically into a larger mother cell and a smaller

daughter cell that have different mating type switching abilities (Fig. 1.1). Mating type

switching results from mother-specific expression of the HO endonuclease, which

initiates a genomic rearrangement of the MAT locus. Using information copied from one

of two silent mating-type cassettes on either side of the MAT locus, this rearrangement

can convert an 'a' cell to an 'a' or vice-versa (reviewed in [33]). A screen for mutants in

which daughter cells anomalously switch their mating type uncovered a gene called ashI

[34]. Ashlp is a transcriptional repressor that silences HO expression in daughter cells.

Therefore, the control of mating type switching centers on the asymmetric localization of

AshIp to daughter cells.

How is Ashlp localization controlled? In a budding cell, Cdc42 polarizes the actin

cytoskeleton toward the bud, as discussed in the previous section. These polarized actin

filaments are used to transport ASH] mRNA into the bud. In order to be transported,

ASH] mRNA must first be packaged in an mRNP called the 'locasome'. Four 'zipcode'

sequences within the ASH] mRNA are recognized by the protein She2p, which
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complexes with an adaptor protein She3p and a type V myosin Myo4p to make up the

core locasome (Fig. 1.4). During transport, Ashlp translation is repressed by two proteins

that bind the ASH] mRNA, Puf6p and Khdlp [35-37]. The arrival of the locasome at the

bud tip causes Khdlp, a cytoplasmic protein, to come close to the membrane, where it is

phosphorylated by a membrane-bound kinase Ycklp. Phosphorylation reduces Khdlp

affinity to RNA and thus unmasks ASH] mRNA, relieving its translational repression

[38]. At this time, ASH] translation begins and newly produced Ashlp translocates into

the daughter cell nucleus, where it silences the HO locus. By contrast, the mother cell

does not express Ashlp and therefore is able to express HO and switch mating type.

late anaphase telophase

%fJi

division
ASHI mRNA
ASH1 mRNA in RNP
actin fiber
ASH1 anchoring proteins
Ash1 protein

G1

Figure 1.4. Asymmetrically localized Ashi p silences HO transcription in the daughter cell.
In late anaphase, ASHI mRNA (red) is packaged into a locasome (purple, RNP) that represses
ASHI translation. The RNP is transported along actin cables to the distal tip of the bud. In
telophase, ASHI translation occurs and Ash1 protein (red) enters the nucleus, where it represses
HO in the daughter cell. Figure adapted from [3]
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Another classic model of asymmetric cell division is neural development in Drosophila;

in this case, asymmetry is largely controlled at the level of protein and not mRNA. The

Drosophila peripheral nervous system (PNS) consists of neurons that innervate sensory

organs. These sensory organs can be mechano- or chemosensory and have external

sensory structures in the cuticle such as bristles or campaniform sensilla that sense

exoskeleton bending. Other than the eye, each external sensory organ develops from a

single progenitor cell, called the sensory organ precursor (SOP) cell, which produces four

cells that form the final organ [39]. The SOP cell divides asymmetrically to generate an

anterior pIlb and a posterior pIla cell (Fig. 1.5). pIb descendents form the internal

structure of the sensory organ while pIla descendents generate its external structures [19,

40].

Localization of the Numb protein to the anterior of the SOP cell drives the asymmetry in

cell fate upon division [41, 42]. In Numb-deficient mutants, the first SOP division

produces two Ila cells, whereas if Numb is overexpressed, this division produces two Ilb

cells (Fig. 1.5). Numb is a plasma membrane-associated cytoplasmic protein that

determines cell fate by antagonizing Notch signaling [43-45]. Although Notch and its

associated signaling proteins are expressed in both pIub and plIa cells, signaling only

occurs from pIub toward pIla. That is, pIub secretes the Delta ligand that activates

signaling from the Notch receptor only on pIla cells. As a result, expression of tramtrack

(ttk), which encodes a zinc-finger transcription factor, is activated in pI~a but not in pIlb

cells; this results in transcriptional programs that differ between pIa and pIb cells.
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Numb Numb
wild type deficient overexpression

SOP SOP SOP

0la 11b Ila lIb |b

0 '0 0'0 0 0
0QuQ0 0 0 00 (9' 0(1) "0

socket hair sheath neuron socket hair socket hair sheath neuron sheath neuron
cell cell cell cell cell cell cell cell cell

Figure 1.5. Asymmetrically localized Numb determines cell fate in the Drosophila
peripheral nervous system. (A) In wild type cells, the sensory organ precursor (SOP) localizes
Numb protein (red) anteriorly such that it is specifically inherited by the lIb cell. (B) In a Numb-
deficient mutant, the SOP cell divides to form two Ila cells. (C) When Numb is overexpressed, the
SOP cell divides to form two llb cells.

How does Numb get localized specifically to the anterior? Just as the PAR proteins

determine asymmetry in the C. elegans zygote, homologs of those same PAR proteins

play a critical role here. Numb localizes opposite a complex containing Par3, Par6, and

atypical protein kinase C (aPKC) in SOP cells undergoing division [41]. Recently, it was

shown that the mitotic kinase Aurora A (AurA) directly phosphorylates Par6, a regulator

of aPKC, and activates aPKC [46]. Activated aPKC phosphorylates another protein Lgl,

causing its release from the cell cortex, which permits Par3 to complex with Par6 and

aPKC. Par3 is a specificity factor that allows aPKC to phosphorylate Numb, which

causes the release of Numb from the posterior cortex, leaving Numb at the anterior [47,

48]. How Par3, Par6, and aPKC specifically localize to the posterior cortex is not known.

In addition to Numb, signaling between pIlb and pIa cells is also regulated by the E3

ubiquitin ligase Neur. Like Numb, Neur localizes to the anterior cortex of SOP cells
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during mitosis and is therefore inherited only by pIlb daughter cells. It has been

suggested that Neur ubiquitinates Delta and promotes its endocytosis into pIlb, which

exposes Notch receptors on pIla to an activating extracellular cleavage. Therefore,

asymmetric cell fate determination in Drosophila PNS development involves asymmetric

partitioning of fate determinants, such as Numb, as well as signaling between daughter

cells via the Notch pathway to further specify cell fate.

Prokaryotic asymmetry

Unlike eukaryotic cells, bacterial cells typically do not have membrane-enclosed

organelles or cytoskeletal components that transport fate determinants. Prokaryotic cells

are also at least one order of magnitude smaller than eukaryotic cells. Despite these

challenges, prokaryotes display a wide array of asymmetric phenomena, from structural

features such as flagella and chemoreceptors to complex behaviors such as sporulation or

dimorphic life cycles. This begs the question, how do prokaryotes generate, maintain,

and utilize cellular asymmetry?

old pole

division forms diffusion and
new poles capture

________ new poles

old pole

Figure 1.6. Cell division has inherent polar asymmetry. If certain proteins localize to the
division septum, they will be inherited by both daughter cells and will mark the newly formed pole.
Such a landmark protein (red) can also serve to capture other proteins (blue) and localize them
specifically to the new pole. Therefore, even morphologically symmetric bacteria have an inherent
polarity generated by each cell division.
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One efficient and prevalent way to break symmetry in prokaryotes is to use the

intrinsically asymmetrical process of cell division. With every division, the pole that

arises from the division site is the "new" pole and can contain landmark proteins that

differ from those at the "old" pole, which is inherited from the mother cell (Fig. 1.6).

How the initial process of localizing proteins to the old or new pole will be discussed

later. Below, I first discuss strategies for how cells take advantage of such polar

localization, once established, and convert it into an asymmetry in cell fate.

Sporulation of Bacillus subtilis is a well-studied asymmetric division event that offers

multiple examples for how an initial cell polarity can be converted into a difference in

daughter cell fates [49]. B. subtilis is a rod-shaped Gram-positive bacterium commonly

found in soil. In rich medium, B. subtilis divide by binary fission approximately every 30

minutes. Upon stress, however, it can develop a tough, dormant endospore that can

tolerate extreme environmental conditions. This process of sporulation is a carefully

orchestrated differentiation process that takes about 8 to 10 hours.

Sporulation begins when a threshold concentration of phosphorylated Spo0A is reached

and only after one round of DNA replication has been completed [50]. This defines stage

0. During stage I, the replication origins of the two chromosomes are tethered to opposite

poles (Fig. 1.7A). In stage II, an asymmetrical septum forms to divide the cell into a

larger mother cell and a smaller forespore. This septum traps the origin-proximal region

of one of the chromosomes, and the rest of this chromosome is actively pumped into the

forespore over 10-20 minutes. In stage III, the mother cell engulfs the forespore. In stages

IV through VII, the forespore differentiates into a dense spore that is resistant to many

physical and chemical stresses, and finally, the mother cell lyses. When living conditions
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improve, specific nutrients can trigger germination of the spore and re-entry into the

vegetative life cycle.

A

0
0

formation of
septum 0 chromosome

pumped into
forespore

0
engulfment 0P

I*
forespore

Figure 1.7. Sporulation in Bacillus. (A) After the cell commits to sporulation, it forms an
asymmetrical septum. This septum captures an origin-proximal region of one chromosome
(origins are shown as green dots) within the forespore. The chromosome is then pumped into the
forespore, which is engulfed by the mother cell. (B) Sporulation is driven by four sigma factors,
each requiring transcriptional activation (green arrow) from a previous step as well as
posttranslational activation (blue arrow) from the other cell. Figure adapted from [1]

Sequential activation of five sigma factors (aH F CE G and K) drives sporulation by

directing the expression of distinct subsets of genes (Fig. 1.7B). Therefore, the controls at

each step in sporulation are primarily directed toward regulating sigma factor activation.

oF and 0 G are forespore-specific while o' and oK are mother cell-specific sigma factors.

oG is only synthesized via oF-mediated transcription and oK is synthesized via o0 -

mediated transcription (Fig. 1.7B). Each of these sigma factors is inactive when

synthesized and requires an activating signal that is made by the sister cell, thus forming
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a developmental ratchet that requires crosstalk between the mother cell and forespore at

each stage of differentiation [1]. For example, oF activity requires an activating

proteolytic cleavage by SpoIIGA. SpoIIGA needs to be activated by SpoIIR, a protein

secreted by the forespore that is transcribed only after oF activation [51]. o then directs

the next stage of differentiation by mediating the expression of an activating signal

required by G

During the process of sporulation, the first asymmetrically activated sigma factor is o,

which defines the forespore's commitment to a different fate than the mother cell. 0 F

activity is regulated by three proteins: the anti-sigma factor SpoIIAB, the anti-anti-sigma

factor SpoIlAA, and a phosphatase SpollE (Fig. 1.8). SpoIIAB complexes with ATP and

o to prevent dF from binding to RNA polymerase. At the same time, SpoIIAB is a

kinase that phosphorylates SpoIIAA at a conserved serine; this inhibitory

phosphorylation prevents SpolIAA from releasing SpoIAB's inhibition of od [52]. After

formation of the asymmetrical septum, however, SpoIE dephosphorylates SpoIIAA and

enables it to bind SpoIIAB. This sequesters SpoIAB away from dF and allows O to bind

RNA polymerase and activate forespore-specific gene expression,
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Predivisional cell:

AA~P

Forespore: RNA pol

Figure 1.8. Regulation of OF. In the predivisional cell, the anti-sigma factor SpoIIAB (red, AB)
binds aF and keeps it inactive. SpollAB also inactivates SpollAA by phosphorylating it to
SpoIIAA-P (yellow, AA-P). In the forespore, SpollE (green, E) concentration increases. SpollE
dephosphorylates SpoIIAA (green, AA), allowing SpoIIAA to sequester SpoIIAB away from aF
This allows aF to bind RNA polymerase and activate forespore-specific gene expression.

The asymmetry in SpoLIE activity is essential for activating o in the forespore. However,

SpoILE, along with SpoIIAA, SpoIIAB, and J, is found in both the mother cell and the

forespore, so how is this asymmetry achieved? SpolIE has three domains: a hydrophobic

N-terminal domain responsible for membrane binding, a central domain involved in

SpollE oligomerization and interaction with the cell division protein FtsZ, and a C-

terminal protein phosphatase domain for SpoIAA dephosphorylation. First, SpollE

localizes to the FtsZ ring [53] where it contributes to asymmetric septal morphogenesis

[54, 55]. Then, SpoLLE lines both sides of the septum and partitions equally to the mother
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cell and forespore. Because the forespore has a much smaller volume, the SpoIIE to

SpoIIAB ratio is increased by about 10-fold, sufficient to shift the equilibrium toward

SpoIIAA dephosphorylation and the release of oF from SpoIIAB binding [56]. In sum,

the major contributor to the asymmetry in SpollE activity is the difference in volume

between forespore and mother cell that creates a difference in SpollE concentration.

In addition to a volume-dependent increase in SpoIIE activity in the forespore, another

mechanism contributes to forespore-specific cW activation by decreasing SpoIIAB levels

in the forespore. During the first step of sporulation, the septum forms over one of the

two chromosomes, placing the origin-proximal one-third of the chromosome within the

forespore and the rest of the chromosome outside (Fig. 1.7A). Therefore, during the 10-

20 minutes it takes to pump the rest of the chromosome into the forespore, origin-distal

genes, such as spoIAB, are excluded [57, 58]. Since the SpoIIAB protein is constantly

degraded by ClpCP and the spoIIAB gene is excluded from the forespore based on its

chromosome location, SpoIIAB degradation exceeds SpoLIAB synthesis in the forespore.

As a result, SpoIIAB proteins levels drop after formation of the septum, further

decreasing its ability to block o activity [59, 60]. Interestingly, in a strain lacking both of

the genes essential to o activation, spo/IE and spoIlAA, the ability to sporulate could be

restored by moving the gene encoding oF to the origin-proximal region [61]. These data

support the idea that a transient asymmetry in chromosome position, and therefore gene

content, is significant enough to drive an asymmetry in protein content.

B. subtilis sporulation thus relies on an intrinsically asymmetric cell division as well as

signaling between daughter cells. Formation of an asymmetrical division septum

produces intrinsic differences between the forespore and mother cell-cell volume and
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chromosome content-that result in forespore-specific oF activation. The mother cell and

forespore must then engage in multiple rounds of signaling to activate a cascade of

transcriptional regulators that drive further differentiation.

Caulobacter cell cycle as a model for studying cellular asymmetry

Another major model system for understanding the molecular basis of cellular asymmetry

is the alpha-proteobacterium Caulobacter crescentus. Unlike Bacillus subtilis, every cell

division for Caulobacter crescentus is asymmetric, yielding two morphologically

different daughter cells: a motile swarmer cell with polarly localized flagellum and pili

and an immotile stalked cell with a tubular extension of the cell envelope referred to as

the stalk [62]. These two daughter cells also differ in their ability to initiate DNA

replication [63]. A stalked cell can immediately initiate DNA replication while a swarmer

cell must first differentiate into a stalked cell before it can initiate replication. The

morphological transition from swarmer to stalked cell thus coincides with the G1 to S cell

cycle transition. With each cell cycle, DNA replication occurs once and only once,

resulting in distinguishable G1, S, and G2 phases.

Specific morphogenetic events, such as flagellar assembly or stalk development, always

occur in coordination with cell cycle progression. Therefore, it was proposed early on

that regulators of the cell cycle also cue the timing of morphologic events [64]. Indeed,

chromosome replication is required for formation of the flagellum in the predivisional

cell [65], suggesting that common factors control both the initiation of DNA replication

and the transcription of early flagellar genes. Therefore, one might expect to find cell

cycle regulators by screening for temperature-sensitive mutants that are defective in

flagellar biogenesis at the permissive temperature and inviable at the higher restrictive
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temperature due to a cell cycle defect. Genetic screens based on this logic resulted in the

identification of two essential regulators of the Caulobacter cell cycle: the CtrA response

regulator and the CckA histidine kinase [66, 67]. Temperature-sensitive mutants of CtrA

(ctrA's) and CckA (cckA's) fail to form polar flagella, pili, and stalks at the permissive

temperature; at the restrictive temperature, they fail to divide, become filamentous and

accumulate multiple chromosomes, and eventually die [66, 67].

Subsequent analyses of CtrA demonstrated that it possesses two critical cell cycle

activities, functioning as a transcription factor for nearly 100 genes as well as binding

directly to the origin of replication to silence initiation (Fig. 1.9). DNA footprinting,

expression profiling, and genome-wide ChIP-chip experiments have shown that CtrA

binds to a conserved TTAA-N7-TTAA motif in approximately 55 promoters to control

95 genes, some organized into operons [68-70]. CtrA target genes include both

morphogenetic genes important for flagellar synthesis, pili assembly, and chemotaxis, as

well as essential cell cycle genes, such as the conserved cell division gene ftsZ.

Microarray experiments comparing gene expression in wild type to ctrA's showed that a

third of all cell cycle-regulated genes are directly or indirectly under the control of CtrA

[71]. In addition to acting as a global transcriptional regulator, CtrA also inhibits the

initiation of DNA replication by directly binding to five sites within the origin of

replication [72, 73]. These CtrA binding sites overlap with elements essential for the

initiation of chromosome replication [74].

Chen 129



CD CtrA-P
Qorigin of

replication

G1

trA~Pr

inhibits origin
of replication

G2
CtrA regulon
(-100 genes)

promotes transcription of
cell division machinery

Figure 1.9. CtrA is the master regulator of Caulobacter cell cycle. In the G1 swarmer cell,
CtrA is phosphorylated (CtrA-P, blue) and inhibits the origin of replication (green). During the G1-
S transition, CtrA is cleared to allow for replication initiation, and the pili and flagellum are shed
and replaced by the stalk. The stalk marks the stalked pole; the opposite pole is called the
swarmer pole. In the predivisional cell, CtrA-P reaccumulates to directly regulate -100 genes.
Each division generates a swarmer daughter cell in G1 and a stalked daughter cell in S phase.

Progression through the Caulobacter cell cycle requires the periodic activation and

inactivation of CtrA. Studies from several labs have shown that CtrA activity is

controlled on at least three levels: transcription, proteolysis, and phosphorylation.

Proteolysis and phosphorylation are the two primary mechanisms of control as the

constitutive expression of ctrA does not lead to significant cell cycle or morphogenetic

defects [75]. In GI swarmer cells, CtrA is phosphorylated and abundant to inhibit the

initiation of DNA replication. During the Gl-S transition, two redundant mechanisms

ensure clearance of CtrA activity: targeted proteolysis and dephosphorylation. Targeted

CtrA proteolysis is mediated by the ClpXP protease complex and restricted to the Gl-S

transition [75, 76]. However, expression of a proteolysis-resistant allele of CtrA,
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CtrAA3Q, does not completely impede the cell cycle because CtrA can still be efficiently

dephosphorylated and inactivated [75]. Similarly, the expression of a CtrA mutant

(CtrAD51E) that partially mimics the phosphorylated state does not disrupt cell cycle

progression because targeted proteolysis of CtrA still occurs. However, expression of a

CtrA mutant that is both constitutively active and resistant to ClpXP-mediated proteolysis

(CtrAD51EA3Q) causes a dominant G1 arrest by preventing the initiation of DNA

replication [75].

How does phosphorylation change CtrA activity? Phosphorylation enhances CtrA

binding to its target DNA sequences [73, 77]. Binding of CtrA to a promoter can then

either activate or repress a target gene. For CtrA-activated genes, the CtrA binding site is

typically upstream of or near the -35 region, allowing CtrA to recruit RNA polymerase to

the promoter. On the other hand, for CtrA-repressed genes, the site usually overlaps the -

10 region; as a result, binding of CtrA at the promoter likely blocks RNA polymerase

binding and thus represses gene expression. Consistently, peak expression of CtrA-

repressed genes occurs at the beginning of S phase when CtrA activity is the lowest while

that of CtrA-activated genes occurs in late predivisional cells when CtrA is maximally

phosphorylated and active as a transcription factor [68, 71].

These experiments have led to the following model of how CtrA regulates cell cycle

progression (Fig. 1.9). In GI, CtrA is phosphorylated and stabilized in daughter swarmer

cells to inhibit DNA replication. CtrA also binds to a small protein SciP that prevents

CtrA from activating target genes in this cell type [78]. During the GI-S transition, CtrA

is both dephosphorylated and degraded to allow for DNA replication [75, 79, 80]. After

replication, CtrA is again phosphorylated and stabilized in predivisional cells to activate
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genes important for cell division and polar morphogenesis [66, 68]. Each division is

asymmetric, generating a daughter swarmer cell with high CtrA activity and a daughter

stalked cell that immediately clears CtrA. This difference in daughter cell levels of CtrA

activity establishes their difference in replicative capacity. Therefore, how Caulobacter

generates asymmetric cell fates is essentially a question of how CtrA activity is

controlled in a spatially asymmetric manner.

Two-component signal transduction

CtrA is a member of the two-component signaling family of proteins. Before describing

the regulatory network that governs CtrA activity, I will first introduce two-component

signaling. Two-component systems are widespread in bacteria and archaea but are also

found in yeast and plants [81, 82]. A two-component system typically consists of a

homodimeric histidine kinase with an extracellular sensor domain that responds to

specific signals. In response to a signal, the histidine kinase will typically

autophosphorylate and then transfer the phosphoryl group to a cognate response

regulator, which typically contains a DNA binding domain and becomes an active

transcription factor upon phosphorylation [83].

All histidine kinases contain a dimerization and histidine phosphotransfer (DHp) domain

and a C-terminal catalytic ATP binding (CA) domain. The CA domain binds ATP and

catalyzes phosphorylation of a conserved histidine residue within the DHp domain in a

process called autophosphorylation (Fig. 1.10). The phosphoryl group from the histidine

is then transferred to an aspartate in the receiver domain of a cognate response regulator.

In addition to a receiver domain, response regulators typically have an output domain,

most commonly a DNA-binding domain. Phosphorylation usually changes the response
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regulator's affinity for DNA, as is the case with CtrA, or its propensity to dimerize, thus

modulating its transcription factor activity. Some response regulators without a DNA

binding domain may contain enzymatic output domains, such as di-guanylate cyclase

[84]. Some do not contain any additional output domain and rely on changes in

conformation of the receiver domain to modulate changes in interactions with

downstream interacting proteins. The final output of a two-component system depends on

the level of response regulator phosphorylation, which results from a balance between

phosphorylation and dephosphorylation. Frequently, the histidine kinase can catalyze the

dephosphorylation of its cognate response regulator and this phosphatase activity can be

regulated by upstream factors [85]. Alternatively, dedicated phosphatases can

dephosphorylate the response regulator [86, 87]. As many as a hundred two-component

systems can co-exist in a single cell without significant crosstalk [88].

hybrid kinase
histidine kinase

response regulator
CL

H P~
H-P

DDP

TTP response regulator

D-P -D

phosphotransferase
Figure 1.10. Prokaryotic signal transduction. The two-component system (left) consists of a
histidine kinase with a transmembrane sensor domain and a response regulator. The histidine
kinase uses its catalytic ATP binding (CA) domain to autophosphorylates the histidine in the
dimerization and histidine phosphotransfer (DHp) domain, which then transfers the phosphoryl
group to an exposed aspartate in the response regulator. A typical phosphorelay (right) consists
of a hybrid kinase with an extra receiver domain (REC), which receives the phosphate from the
DHp histidine and transfers it via a phosphotransferase to the response regulator.
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A common variation of the two-component system is the phosphorelay. Phosphorelays

typically begin with a hybrid histidine kinase that contains sensor, DHp, and CA

domains, as well as a receiver domain similar to that found in response regulators (Fig.

1.10). The hybrid kinase autophosphorylates on the DHp histidine and then passes the

phosphoryl group intramolecularly to the aspartate within the attached receiver domain.

The phosphoryl group is then transferred to a histidine phosphotransferase and from there

to the aspartate of a cognate, terminal response regulator. Therefore, a phosphorelay

contains four phosphorylation steps, while a two-component system only has two. But

similar to a two-component system, phosphotransfers only occur between a histidine and

an aspartate, and never between two histidines or two aspartates. Although all

phosphorelays contain four steps of phosphorylation, the molecular connectivity between

each of the four steps may differ. In some cases, the hybrid kinase may be split into two

parts: one part containing the sensor, DHp, and CA domains and another part containing

the receiver domain [89]. In other cases, the hybrid kinase and histidine

phosphotransferase may be fused into a single protein [87]. Since phosphorelays have

more components than a two-component system, they can have additional points of

control with additional regulatory proteins acting at various points along the

phosphorelay [89].

Phosphorelay control of CtrA activity

CtrA activity is regulated by two phosphorelays, both initiating with the hybrid histidine

kinase CckA and the histidine phosphotransferase ChpT (Fig. 1.11). A strain harboring a

cckA loss-of-function allele (cckA'S) displays a phenotype very similar to a ctrA'8 strain,

where cells accumulate chromosomes and are unable to divide. Additionally, comparative
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microarray analysis of ctrA's and cckA's mutants at the restrictive temperature showed

changes in the mRNA levels of an almost identical set of cell cycle-regulated genes [90].

In vitro and in vivo studies subsequently demonstrated that CckA transfers phosphate to

the histidine phosphotransferase ChpT, which can then act as a phosphodonor for either

CtrA or a single-domain response regulator called CpdR (Fig. 1.11) [79]. The

phosphorylation of CtrA activates its DNA-binding and transcription factor activities,

while phosphorylation of CpdR prevents it from triggering CtrA proteolysis [79]. When

unphosphorylated, CpdR binds the ClpXP protease and localizes it to the new stalked cell

pole during the Gl-S transition; this localization of ClpXP is required for CtrA

proteolysis. In a CpdR-deficient strain, CtrA remains abundant throughout the cell cycle

and ClpX does not localize [80]. Collectively, these data suggest that CckA functions by

driving CtrA phosphorylation and promoting its stability.

4
CckA H@ CckA H=-

kinase phosphatase

0 0

D D*

0 0
() ChpTuHw ChpTIHLU

D LI* D-
CtrA CpdR CtrA, CpdR

origin of origin of **** Oroteolysis
replication replication

Figure 1.11: Phosphorelay control of CtrA activity. When activated as a kinase, CckA drives
forward phosphate flow, resulting in the phosphorylation of both CtrA and CpdR. CtrA-P inhibits
the origin of replication while CpdR-P is inactive. When activated as a phosphatase, CckA drives
phosphate flow backward, dephosphorylating CtrA and CpdR.
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Since CckA drives CtrA activation and accumulation, CckA kinase activity must be

inhibited during the Gl-S transition to permit replication initiation and S phase. Given

that the phosphoryl groups on CtrA-P and CpdR-P are relatively stable in vitro [79],

phosphatase activity is likely important to eliminate CtrA activity (and drive the

dephosphorylation of CpdR) during the Gl-S transition. For some phosphorelays, the

hybrid kinase can act as a phosphatase to siphon phosphate away from the response

regulator [91, 92]. For other phosphorelays, there are separate and dedicated

phosphatases [93-95]. It was not known initially whether CckA could be a phosphatase in

vivo or whether separate phosphatases exist for CtrA. In Chapter 2-3, I show that CckA

can switch between kinase and phosphatase states and explore how CckA phosphatase

activity contributes to establishing a spatial asymmetry of CtrA activity in predivisional

cells.

Control of CckA activity by two-component signaling

CckA activity is controlled during the cell cycle by a circuit of two-component proteins

that includes the essential single-domain response regulator DivK, which inhibits CckA

kinase activity when phosphorylated. DivK phosphorylation is controlled by two

antagonistic enzymes: the histidine kinase DivJ and the histidine kinase PleC, which acts

predominantly as a DivK phosphatase in vivo [96, 97]. PleC was identified in a genetic

screen for mutants with defects in polar morphogenesis; pleC null mutants can divide

normally and assemble flagella but fail to turn on motility, shed the flagellum, or make

stalks [98]. The idea that pleC might connect polar development to the cell cycle led to a

genetic screen for mutations that suppressed the temperature-sensitive non-motile

phenotype of a pleC mutant but also conferred a cold-sensitive cell division defect [99].
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This screen yielded mutations in divJ and divK divJ loss of function mutations lead to

cells that are significantly elongated, suggestive of a cell division defect, and have long

stalks that are often misplaced [100-102]. divK loss of function mutations cause abnormal

stalk formation, cell filamentation, and a block in chromosome replication [99, 103, 104].

In addition to these genetic data, DivJ and PleC were shown to efficiently phosphorylate

and dephosphorylate DivK in vitro, respectively [100, 103, 105]. Finally, it was shown

that DivK-P levels are decreased in vivo in a divJ mutant but increased in a pleC mutant

relative to wild type. These data suggested that in vivo DivJ activates DivK by

phosphorylation but PleC inactivates DivK by dephosphorylation [97].

While the role of DivJ and PleC in the regulation of DivK phosphorylation became

apparent, their role in regulating CtrA activity remained unclear. An important clue came

from the GI arrest observed in a conditional divK loss-of-function mutant; this suggested

that without DivK, elevated CckA kinase activity may lead to a maintainance of CtrA

phosphorylation and the constitutive silencing of DNA replication [79, 104].

Consistently, CckA phosphorylation is elevated in this divK mutant [79, 85].

Genetically, it is clear that DivK downregulates CckA kinase activity, but what is the

mechanism of this inhibition? In contrast to the typical response regulator, DivK contains

only a receiver domain [103, 106]. Other single domain response regulators either

participate in protein-protein interactions or act as a phosphointermediate in a

multicomponent phosphorelay [107]. Initial genetic evidence linked another protein,

DivL, to DivK and CtrA regulation since divL was also isolated as a suppressor of the

pleC motility phenotype, similar to divJ and divK [108]. DivL is an unorthodox kinase

that was found to interact with DivK via yeast two-hybrid analysis [109]. A strain
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carrying a temperature-sensitive loss of function allele of divL (divL') exhibits cell

filamentation, chromosome accumulation, and changes in CtrA-dependent gene

expression similar to the ctrA's strain, suggesting that DivL positive regulates CtrA [85].

Epistasis experiments placed DivL between DivK and CckA, and in vivo phosphorylation

assays showed that CckA-P levels significantly decreased in divL's cells grown at the

restrictive temperature. Taken together, these data suggest that DivL promotes CckA

activity and that phosphorylated DivK binds directly to DivL to prevent it from

stimulating CckA kinase activity (Fig. 1.12). When DivL cannot stimulate CckA kinase

activity, CckA most likely acts as a phosphatase, driving CtrA and CpdR

dephosphorylation [110].

A B
stalked pole swarmer pole

(with DivK-P) (no DivK-P)
= CtrA-P

0 = CckA kinase P
- -l0 = CckA phosphatase H H~P

/0 = DivL D~P D~P

DivK~ 
H~P H~P

origin of replication origin of replication

DNA replication

Figure 1.12. Regulation of CckA kinase activity by DivL. (A) Schematic of the cell cycle
showing how CckA activity (red) and localization varies with the cell cycle. (B) Schematic of how
DivK-P and DivL regulates CckA kinase and phosphatase activity at the stalked and swarmer
poles of a predivisional cell and at the stalked pole of a stalked cell.

Dynamic localization of cell cycle kinases

One striking feature of Caulobacter cell cycle regulation is that the regulatory

components dynamically localize to different cell poles in a cell cycle-dependent manner

(Fig. 1.13). This dynamic localization may be a mechanism to regulate interactions
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between different components in order to selectively drive either kinase or phosphatase

activity of CckA. The membrane-bound CckA histidine kinase is dispersed in the GI

swarmer cell, but localizes to the new, swarmer pole in the early predivisional cell and

then bipolarly in the late predivisional cell [79, 110, 111]. The swarmer pole localization

of CckA is dependent on localization of DivL to the swarmer pole [85]. Upon division,

CckA is again dispersed in the daughter swarmer cell but remains at the stalked pole in

the daughter stalked cell while DivL becomes dispersed in both daughter cells. For DivL

to stimulate CckA kinase activity, DivK must be unphosphorylated. Therefore, PleC

localization at the swarmer pole mirrors DivL localization in the predivisional cell [102,

112]. PleC then remains at this pole during cell division, segregating to the daughter

swarmer cell, where it maintains DivK in an unphosphorylated state until the Gl-S

transition. During the G1-S transition, PleC delocalizes and then re-localizes at the new

swarmer pole after replication initiation.

(Z) = CtrA~P
DivK~P AM = CckA kinase

lo = CckA phosphatase
~ lo/ = DivL

-I/ = PleC (phosphatase)
0 = DivJ (kinase)

Figure 1.13. Dynamic localization of cell cycle kinases during the Caulobacter cell cycle.
The histidine kinases PleC, DivJ, PleC, and CckA exhibit dynamic polar localization over the cell
cycle. The G1-S transition requires an accumulation of phosphorylated DivK, indicated by the
labeled arrow. DivK is a cytoplasmic protein that can exhibit polar foci on microscopy likely due to
interactions with PleC, DivK, and DivK, but it does not stably localize at any cell pole.

In contrast to PleC, DivJ is absent in swarmer cells and is produced during the Gl-S

transition, when it becomes localized at the stalked pole, which replaces the old swarmer
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pole (Fig. 1.13) [102]. DivJ then remains at the stalked pole for the remainder of the cell

cycle. Consistent with the fact that DivJ and PleC have antagonistic enzymatic activities

and localize to opposite poles of the predivisional cell, photobleaching and fluorescent

resonance energy transfer (FRET) experiments have shown rapid diffusion of DivK

between the cell poles, constantly turning over between the phosphorylated and

unphosphorylated states [97]. After cytokinesis, the different poles of the cell along with

DivJ and PleC activities become compartmentalized [113]. The stalked cell inherits

DivJ, which drives DivK phosphorylation and ultimately the inactivation of CtrA, and the

swarmer cell inherits PleC, which drives DivK dephosphorylation and maintains CtrA

activity. In sum, spatial separation of DivJ and PleC ensure CckA kinase activity in

predivisional cells as well as proper inheritance by daughter cells upon asymmetric cell

division. Additionally, the colocalization of PleC, DivL, and CckA at the swarmer pole is

essential to stimulate CckA kinase activity at the proper cell cycle stage.

The dynamic localization of DivJ, PleC, DivL, and CckA are important for their function;

however, it is not known what mechanisms are responsible for localizing these crucial

cell cycle kinases. To find proteins that organize polar complexes, the Caulobacter

genome was screened for proteins with transmembrane regions and large coiled-coil

protein interaction domains. One of the genes identified was subsequently shown to

encode a birth scar protein called TipN [96, 114]. In stalked and early predivisional cells,

TipN localizes to the new swarmer pole and then relocates to the division plane in late

predivisional cells in order to be inherited at the new pole of both daughter cells upon

division. The tipN knockout displays mislocalized flagella and PleC, suggesting that
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swarmer pole factors use TipN as a localizing landmark. Additionally, tipN mutants

display size inversion, with swarmer cells frequently larger than stalked cells [115].

In addition to TipN, PodJ, another coiled-coil rich protein, is also required for PleC

localization [116, 117]. In podJ mutants, PleC is dispersed around the membrane with no

polar localization. podJ mutants also display a phenotype similar to pleC mutants. Both

strains lack pili and holdfast and cannot eject the flagellum; however, pleC mutants are

stalkless and have paralyzed flagella while podJ mutants produce stalks and motile

flagella [116-118]. As expected, PodJ localizes similarly to PleC, at the swarmer pole but

how PodJ is targeted to the swarmer pole or inhibited from localizing at the stalked pole

is unknown.

Consistent with the specific role of TipN as a new pole marker, old pole proteins such as

DivJ do not have disturbed localization in the tipN mutant [115]. Instead, DivJ

localization depends on SpmX, which has been shown to interact with DivJ in reciprocal

coimmunoprecipitation experiments [119]. SpmX has a periplasmic muramidase domain

and two transmembrane domains and has been suggested to interact with one of DivJ's

five transmembrane domains. SpmX localization at the stalked pole depends on the

muramidase domain, which is implicated in peptidoglycan binding; however, it is unclear

what is different between stalked and swarmer pole peptidoglycans that would recruit

SpmX specifically to the stalked pole.

Regulation of the Caulobacter cell cycle involves many asymmetrical localization events

of multiple cascades of signaling proteins. The consequences of PleC, DivJ, CckA, and

DivL localization on their activities and some of the landmark proteins required for their
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localization are now more clearly understood. However, the mechanism by which

landmark proteins, such as TipN, PodJ, and SpmX, then localize to the poles remains

unclear.

Control of replication within the cell cycle

The Caulobacter cell cycle comprises both asymmetric morphogenesis and asymmetric

replicative capacity in the daughter cells, necessitating tight coupling between the cell

division cycle and replication. While the previous sections focused on CtrA, a negative

regulator of DNA replication, Caulobacter also requires a positive regulator of

replication, DnaA, which is a highly conserved protein present in almost all bacteria, with

the exception of a few obligate endosymbionts [120]. DnaA is a member of the AAA+

family of ATPases with DnaA-ATP but not DnaA-ADP active to bind and help melt the

origin of replication to promote initiation [121-123]. DnaA specifically interacts with 9-

bp nonpalindromic sequences, called DnaA boxes, at the single origin of initiation, oriC

[122, 124]. Based on a crystal structure of the major part of Aquifex aeolicus DnaA,

DnaA-ATP monomers bound to DnaA boxes were suggested to oligomerize into a right-

handed filament that wraps around the oriC region to promote local unwinding of an AT-

rich region [125], resulting in helicase loading and replisome assembly.

In both eukaryotes and prokaryotes, replication control centers on the step of initiation.

In prokaryotes, this might involve controlling the activity of DnaA and the availability of

oriC. In E. coli, DnaA activity is tightly regulated, peaking immediately before DNA

replication initiates and then dropping rapidly once replication commences (reviewed in

[123]). Three mechanisms have been described in E. coli to prevent reinitiation from the

newly replicated origins: inactivation of DnaA, titration of DnaA, and sequestration of
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oriC. The inactivation of DnaA depends largely on a protein called Hda, which

stimulates ATP hydrolysis by DnaA, thus converting active DnaA-ATP into inactive

DnaA-ADP [126]. Titration of DnaA protein occurs by a cluster of high-affinity DnaA

boxes (datA), which can bind over 300 DnaA molecules [127]. For reducing oriC

accessibility, the SeqA protein preferably binds hemimethylated GATC sequences that

are overrepresented within oriC. Since the newly replicated oriC regions are initially

hemimethylated, SeqA binds to these regions and thus prevents DnaA from rebinding.

Although prokaryotic replication has been studied extensively, its coordination with the

cell division cycle is not well understood. This is partly because in many prokaryotes,

such as E. coli, multiple replication forks can progress simultaneously, yielding more

than 2 chromosomes per cell during a normal cell cycle. This obscures the coordination

between cell division and replication initiation since replication can initiate at multiple

times with respect to division.

In Caulobacter, I now address both questions of how replication is coupled to the cell

cycle and how asymmetric replicative fates are enforced with every division. A current

model in Caulobacter suggests that CtrA and DnaA are connected through a

transcriptional "ratchet", in which dnaA transcription is indirectly activated by CtrA and

ctrA transcription is, in turn, indirectly activated by DnaA [128, 129]. This circuit,

proposed to drive cell cycle progression, implies that the accumulation of DnaA depends

on CtrA activity. However, cells lacking active CtrA accumulate multiple chromosomes

[72], suggesting that CtrA is not required to promote DnaA activity. Moreover, cells

constitutively transcribing dnaA or ctrA do not exhibit a severe cell cycle or replication

phenotype [75, 130], suggesting that transcriptional changes do not drive cell cycle
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progression. Additionally, although CtrA is often assumed to prevent re-replication in

predivisional cell, cells harboring mutations in CtrA binding sites within the origin do not

exhibit severe defects in DNA replication [131]. These incongruencies raise the question

of whether, or to what extent, CtrA contributes to the temporal regulation of DNA

replication.

Research Approach

In the subsequent chapters, I describe a series of experiments that investigate how the

CtrA phosphorelay drives replicative asymmetry and how the control of replicative

asymmetry relates to replication periodicity. Chapter 2 details the biochemical

characterization of CckA point mutants that have altered kinase or phosphatase activities.

I show that these mutants have effects in vivo that are consistent with their in vitro

activities. I show that a kinase-only allele of CckA that has no phosphatase activity in

vitro can complement a CckA deletion, suggesting that although CckA phosphatase

activity contributes to CtrA regulation, its absence can be compensated by another

unknown phosphatase for CtrA.

In Chapter 3, I explore the role of CckA's bifunctionality in establishing cellular

asymmetry. I use a fluorescent repressor-operator system [132, 133] and fluorescence

microscopy to observe replication events in individual living cells as they progress

through the cell cycle. I show that steady-state gradients of CtrA activity can inhibit

replication at the swarmer pole where CtrA-P is highest but not at the stalked pole where

CtrA~P is lowest. This gradient of phosphorylated CtrA requires CckA kinase and

phosphatase activities at opposite poles. Importantly, we can abolish replicative

asymmetry by mutating the CtrA binding sites at the origin. This demonstrates that CtrA
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exerts its effect on replication by direct binding to the origin and not indirectly through

transcriptional activation of another factor. Our collaborators generated a reaction-

diffusion model to explore the minimal requirements of maintaining such a

phosphogradient and corroborated our experimental findings with theoretical predictions.

Chapter 4 describes a collaborative study investigating the separate roles of CtrA and

DnaA in controlling replication and coordinating it with the cell cycle. Using the same

fluorescent repressor-operator system, we examined the timing of replication initiation

while genetically changing either CtrA or DnaA activity. We show that CtrA activity is

necessary and sufficient to enforce replicative asymmetry in daughter cells. However,

losing CtrA activity does not change the periodicity of replication in stalked cells,

suggesting that DnaA comprises an autonomous oscillator that controls replication

timing. In accordance, we found that changing DnaA activity positively or negatively

profoundly impacted replication periodicity. We conclude that DnaA lies at the heart of a

primordial cell cycle oscillator that continues to dictate replication timing in Caulobacter,

as it does in most bacteria, while CtrA was co-opted later in evolution to enforce

replicative asymmetry and to coordinate replication with cellular differentiation. The

modularity of replication control in Caulobacter thus reflects its evolution and reveals its

relationship to the cell cycles of other bacteria.
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Abstract

In Caulobacter crescentus, progression through the cell cycle is governed by the periodic

activation and inactivation of the master regulator CtrA. Two phosphorelays, each

initiating with the histidine kinase CckA, promote CtrA activation by driving its

phosphorylation and by inactivating its proteolysis. Here, we examined whether the

CckA phosphorelays also influence the down-regulation of CtrA. We demonstrate that

CckA is bifunctional, capable of acting as either a kinase or phosphatase to drive the

activation or inactivation, respectively, of CtrA. By identifying mutations that uncouple

these two activities, we show that CckA's phosphatase activity is important for down-

regulating CtrA prior to DNA replication initiation in vivo, but that other phosphatases

may exist. Our results demonstrate that cell cycle transitions in Caulobacter require, and

are likely driven by, the toggling of CckA between its kinase and phosphatase states.

More generally, our results emphasize how the bifunctional nature of histidine kinases

can help switch cells between mutually exclusive states.
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Introduction

Caulobacter crescentus is a tractable model system for understanding the molecular

mechanisms underlying cell cycle progression and the establishment of cellular

asymmetry in bacteria. Each cell division for Caulobacter produces two morphologically

different daughter cells, a swarmer cell and a stalked cell, which also differ in their ability

to initiate DNA replication. A stalked cell can immediately initiate DNA replication

following cell division, whereas a swarmer cell cannot initiate until after differentiating

into a stalked cell. The swarmer-to-stalked cell transition thus coincides with a Gl-S cell

cycle transition. DNA replication occurs once-and-only-once per cell cycle, resulting in

distinguishable G 1, S, and G2 phases.

Progression through the Caulobacter cell cycle requires the precise temporal and spatial

coordination of both morphological and cell cycle events. Previous genetic screens have

uncovered numerous two-component signal transduction genes that help to regulate these

events [1-8]. Two-component signaling pathways are typically comprised of a sensor

histidine kinase that, upon activation, autophosphorylates and subsequently transfers its

phosphoryl group to a cognate response regulator, which can then effect changes in

cellular physiology [9]. One common variation of this signaling paradigm is called a

phosphorelay [10]. Such pathways also initiate with the autophosphorylation of a

histidine kinase and subsequent phosphotransfer to a response regulator, but these steps

often occur intramolecularly within a hybrid histidine kinase. The phosphoryl group on

the receiver domain of a hybrid kinase is then passed to a histidine phosphotransferase,

which subsequently phosphorylates a soluble response regulator to effect an output

response. Relative to canonical two-component pathways, phosphorelays provide
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additional points of control and enable signal integration; they are often involved in

regulating key cell fate decisions in processes such as sporulation, cell cycle transitions,

and quorum sensing [10-12].

The master regulator of the Caulobacter cell cycle is CtrA, an essential response

regulator that directly activates the expression of at least 70 genes [4, 13]. CtrA also

regulates DNA replication by binding to and silencing the origin of replication [14].

Progression through the Caulobacter cell cycle thus requires the precise control of CtrA

activity. CtrA must be abundant and active thoughout most of the cell cycle to drive gene

expression and to silence the origin, but must be temporarily inactivated in stalked cells

prior to S-phase to permit the initiation of DNA replication (also see Fig. 2.8).

CtrA is regulated on at least three levels: transcription, proteolysis, and phosphorylation

[15, 16]. During Gi, CtrA is phosphorylated and proteolytically stable. At the G1-S

transition, CtrA is dephosphorylated and degraded, thereby freeing the origin of

replication to fire. After DNA replication initiates, ctrA is transcribed and the newly

synthesized CtrA is again phosphorylated and protected from proteolysis. Following

septation of the predivisional cell, CtrA remains phosphorylated and stable in the

swarmer cell, but is dephosphorylated and degraded in the stalked cell to permit DNA

replication initiation. Cells that constitutively transcribe ctrA are viable and display only

a mild phenotype indicating that regulated phosphorylation and proteolysis alone can

ensure the periodicity of CtrA activity [16]. Cells producing nondegradable,

constitutively-active CtrA arrest in G1 because CtrA activity cannot be eliminated [16].
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The regulation of CtrA activity involves two phosphorelays. Each initiates with CckA, a

hybrid histidine kinase, and ChpT, a histidine phosphotransferase. After receiving a

phosphoryl group from CckA, ChpT can act as the phosphodonor for either CtrA or the

single-domain response regulator CpdR [11]. Phosphorylation of CpdR prevents it from

triggering CtrA proteolysis [11, 17]. Unphosphorylated CpdR triggers CtrA degradation,

by somehow influencing the polar localization of the protease ClpXP [17], although why

the protease must be localized is unclear.

The down-regulation of CtrA prior to DNA replication involves the dephosphorylation of

CtrA and CpdR, such that CtrA is both dephosphorylated and, ultimately, degraded.

These events coincide with the time in the cell cycle when CckA's kinase activity is

lowest [18]. As the phosphoryl groups on CtrA~P and CpdR-P are relatively stable, at

least in vitro [11], phosphatases are likely critical to eliminating CtrA activity prior to S-

phase. For some phosphorelays, inactivation of the top-level kinase leads to a siphoning

of phosphoryl groups from the terminal regulator back to the hybrid kinase's receiver

domain. The bifunctional hybrid kinase then acts as a phosphatase, stimulating

hydrolysis and loss of the phosphoryl group [12, 19]. For other phosphorelays there are

separate and dedicated phosphatases [20-22].

Here, we demonstrate that CckA is bifunctional and can act as both a kinase and a

phosphatase such that inactivation of CckA as a kinase stimulates the dephosphorylation

of CtrA-P and CpdRP. We provide evidence that CckA's phosphatase activity

contributes to the down-regulation of CtrA in vivo, but that other phosphatases may exist

Our results indicate that the periodic toggling of CckA between kinase and phosphatase

states is crucial to cell cycle progression in Caulobacter.
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Results

CckA and ChpT are present throughout the cell cycle

CckA, unlike CtrA, is present throughout the cell cycle, but is only active at certain

stages of the cell cycle [2, 18]. To test whether the abundance of ChpT is cell cycle-

regulated and hence a possible means of controlling the timing of CtrA activity, we

generated polyclonal antibodies for ChpT. Immunoblotting with crude sera revealed a

single major band in wild-type lysates that was absent in lysates from a chpT depletion

strain and that was the correct approximate size (Fig. 2.1). To examine the cell cycle

abundance of ChpT, we synchronized a population of wild-type cells and isolated

samples every 20 minutes. Immunoblotting of these samples demonstrated that ChpT was

present throughout the cell cycle, in contrast to CtrA, which showed a characteristic cell

cycle-dependence (Fig. 2.2). These results suggest that phosphate flux from CckA to

CtrA is probably not regulated by changes in ChpT abundance.
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Figure 2.1. Analysis of ChpT protein size and cell cycle abundance. (A) Western blot of cell
lysates from exponential phase cultures of wild type (CB15N) and the chpT depletion strain
ML808 and of purified His 6-ChpT. (B) Cellular morphology of wild type and ML1054, a chpT
deletion strain in which the shorter version of chpT (see text) is expressed from a medium-copy
plasmid. (C) Phosphorelay reconstitutions using the purified components indicated by pluses and
minuses. The components indicated were mixed together without ATP. Phosphotransfer
reactions were started with the addition of ATP and then allowed to proceed for 30 minutes at 30
*C before being stopped. The position of each component is marked with an arrowhead on the
right. CckA-HK contains a His 6-MBP tag, CtrA and ChpTDC contain thioredoxin-His6 tags, and
CckA-RD, ChpT, and CpdR contain His6 tags. ChpTDC is missing the last 126 amino acids, but
retains the entire H-box region of the protein. Scale bar, 4 tm.
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Figure 2.2. Cell cycle abundance of ChpT. Wild-type cells were synchronized and allowed to
proceed through a single cell cycle with lysates collected every 20 minutes and used for
immunoblotting with anti-CtrA or anti-ChpT serum. The cell cycle diagram above indicates the
approximate cell cycle stage at each time point.

Our ChpT antiserum also recognized purified His6-ChpT, although the molecular weight

of this purified ChpT appeared slightly larger than that found in wild-type lysates (Fig.

2.1). This difference could not be accounted for by the epitope tag, suggesting that the

translational start-site for chpT might have been erroneous in the original annotation of

the C. crescentus genome [23]. The chpT open reading frame contains methionines at

positions 19 and 29 (relative to the originally annotated protein), each of which could

serve as the bona fide translational start site. Alignment of chpT orthologs from several

a-proteobacteria indicated that the first 28 amino acids of C. crescentus ChpT were not

conserved (Fig. 2.3). We were able to complement the lethality of a chromosomal

deletion of chpT with a plasmid expressing a version of chpT lacking the first 28 codons

of the original annotation (Fig. 2.1). This result strongly suggests that C. crescentus chpT

encodes a protein of only 225 amino acids with a molecular weight of 23.4 kDa.
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To verify that the smaller version of ChpT is capable of shuttling phosphate from CckA

to CtrA and CpdR, we reconstituted the two cell cycle phosphorelays (CckA-ChpT-CtrA

and CckA-ChpT-CpdR) using a purified version of the smaller ChpT, hereafter referred

to simply as ChpT (Fig. 2.1). Indeed, this shorter version of ChpT was able to efficiently

shuttle phosphate from the receiver domain of CckA to either CtrA or CpdR.
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Caulobacter sp. K31
Brucella melitensis
Sinorhizbium meliloti
Rhodopseudomonas palustris
Bradyrhizobium japonicum
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Figure 2.3. Multiple sequence alignment of ChpT orthologs. Orthologs of C. crescentus
ChpT from seven a-proteobacterial species were aligned using ClustalW. Black and grey
shading indicate high and medium levels of conservation, respectively. The arrows point to
methionines that may act as the bona fide start site of C. crescentus ChpT.

Reconstitution of the CckA-based cell cycle phosphorelays

The reconstituted cell cycle phosphorelays shown in Figure 2.1 and those reported

previously [11] involved a split version of CckA in which the histidine kinase (CckA-

HK) and receiver domains (CckA-RD) were purified as separate polypeptides. Here, we

wanted to examine the phosphotransfer behavior of a CckA construct containing both the

kinase and receiver domains, as occurs in vivo. This construct, called CckA-HK-RD,

lacking only the transmembrane domains, autophosphorylated and was an efficient

phosphodonor for ChpT (Fig. 2.4A), which then transferred the phosphoryl group to
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either CtrA or CpdR, as with the split version of CckA [11]. These data confirm that

CckA initiates two phosphorelays, culminating in the phosphorylation of CtrA and CpdR.

Phosphorelays are often reversible, such that phosphoryl groups can flow either up or

down the pathway according to the principles of mass-action equilibrium [12, 19, 24, 25].

In some cases, the histidine kinase involved can be bifunctional, acting to stimulate

dephosphorylation of its cognate response regulator or, in the case of a hybrid kinase, its

receiver domain. These bifunctional kinases can thus drive the rapid dephosphorylation

of the terminal response regulator when they are not stimulated to autophosphorylate. To

test whether CckA is bifunctional, we isolated radiolabeled, phosphorylated CtrA

(CtrA~P) and CpdR (CpdR-P) by phosphorylating each regulator for extended periods of

time with the heterologous kinases PhoR (a histidine kinase from C. crescentus) and

EnvZ(T247R) (a histidine kinase from E. coli that does not harbor significant

phosphatase activity), respectively. The phosphorylated response regulators were then

purified away from unreacted, radiolabeled ATP. This purification step was not 100%

efficient and each preparation of phosphorylated CtrA or CpdR retains some radiolabeled

ATP that runs at a similar position as inorganic phosphate at the bottom of each gel in

Fig. 2.4B-C.
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Figure 2.4. Full-length CckA can drive the phosphorylation and dephosphorylation of CtrA
and CpdR. (A) Phosphorelay reconstitutions using the purified components indicated by pluses and
minuses. The components indicated were mixed together without ATP. Phosphotransfer reactions
were started with the addition of ATP and incubated for 30 minutes at 30 *C. The position of each
phosphorylated component is marked with an arrowhead on the right. (B-C) Dephosphorylation of
CtrA and CpdR. Purified CtrA-P (B) or CpdR-P (C) was incubated with the components indicated,
but without ATP, to test for backtransfer and dephosphorylation to yield inorganic phosphate (Pi).
Phosphatase reactions were started with the addition of CckA and, if indicated, ChpT. Each reaction
was allowed to proceed for 0, 10, 30, or 60 minutes before being stopped. Note that the faint bands
appearing in the first lane of panels (B) and (C) correspond to the components used to phosphorylate
CtrA and CpdR (see Methods). In each panel, CckA-HK-RD and CckA-HK contain Hise-MBP tags,
CckA-RD, Trx-ChpT, CpdR, and CtrA contain thioredoxin-His6 tags, and ChpT contains a His6 tag.
Different tags for ChpT were used to optimize band separation.
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Incubation of each regulator in buffer alone demonstrated that their aspartyl-phosphates

are both relatively stable against autodephosphorylation in vitro, showing only a minor

production of radiolabeled inorganic phosphate after 60 minutes; the band at the bottom

of lanes 2-4 in Fig. 2.4B-C increases in intensity only marginally relative to lane 1. By

contrast, incubation of CtrA-P with ChpT and CckA-HK-RD led to a significant

depletion of radiolabel from CtrA~P within 10 minutes with nearly complete depletion in

60 minutes (Fig. 2.4B, lanes 8-10). The loss of radiolabel from CtrA-P also coincided

with the appearance of radiolabeled inorganic phosphate, suggesting active

dephosphorylation and not just partitioning of the phosphoryl groups among

phosphorelay components. Incubation of CpdR-P with ChpT and CckA-HK-RD also led

to a decrease in radiolabeled CpdR~P and an increase in inorganic phosphate (Fig. 2.4C,

lanes 8-10), although not as much as with CtrA.

Notably, the dephosphorylation of CtrA and CpdR occurred at a much higher rate when

the kinase and reciever domains of CckA were fused as a single polypeptide. Incubation

of the radiolabeled response regulators with ChpT and the split version of CckA (CckA-

HK and CckA-RD) did not lead to a significant production of inorganic phosphate (Fig.

2.4B-C, lanes 5-7). In these cases, phosphoryl groups did flow up the phoshorelay, as

manifest by the appearance of radiolabeled ChpT and CckA-RD and the depletion of

radiolabeled CtrA and CpdR. However, the levels of inorganic phosphate did not

increase significantly indicating that CckA-RD must be tethered to CckA-HK for

efficient dephosphorylation. Taken together, our data suggest that the cell cycle

phosphorelays can run in reverse and that CckA is bifunctional such that it can stimulate

the dephosphorylation of its own receiver domain. Together these two mechanisms,
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phosphorelay reversal and the phosphatase activity of CckA on its own receiver domain,

can indirectly drive the dephosphorylation of CtrA-P and CpdR-P.

Mutations that genetically separate kinase and phosphatase activities of
CckA

To assess whether CckA and phosphorelay reversal contribute to the dephosphorylation

of CtrA or CpdR in vivo, we sought to identify mutations in cckA that uncouple its kinase

and phosphatase activities to yield CckA with kinase-only (K*P~) or phosphatase-only (K-

P*) activity. To this end we generated ten mutant alleles of cckA based on mutations that

render E. coli EnvZ either K+P~ or K-P+ (Fig. 2.5A) [26-31]. We also made alanine

mutations at the site of histidine autophosphorylation (H322) and at the site of aspartate

phosphorylation in the receiver domain (D623), for a total of 12 mutations. We first

introduced these mutations into our CckA-HK-RD construct and tested their abilities to

autophosphorylate and phosphotransfer to ChpT in vitro (Fig. 2.5B). Four of the mutant

kinases (harboring mutations G318T, G319E, and, V366P, and D623A) retained clear,

detectable levels of autophosphorylation, and each construct could phosphotransfer to

ChpT except for D623A. The mutations G318T and G319E each led to significantly

higher levels of autophosphorylated CckA-HK-RD and higher levels of phosphorylated

ChpT when compared to wild-type CckA-HK-RD. The V366P mutation, however,

produced levels of CckA autophosphorylation and ChpT~P comparable to that seen with

wild-type CckA-HK-RD.

Next, we tested whether any of the mutant kinase constructs that autophosphorylated

could efficiently drive the dephosphorylation of CtrA-P via phosphorelay reversal and

hydrolysis of phosphorylated CckA-RD (Fig. 2.5C). Each mutant construct that retained
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kinase activity was added to ChpT and CtrA-P and then incubated for 30 minutes at

30'C. For the H322A, G318T, G319E, and V366P mutants, the radiolabeled phosphoryl

groups flowed in reverse as seen by the appearance of radiolabeled bands corresponding

to ChpT and CckA. For CckA(D623A) phosphoryl groups partitioned between CtrA and

ChpT, but could not transfer back to CckA. CckA(D623A) lacks the aspartate

phosphorylation site within the receiver domain and therefore cannot participate in

phosphotransfer with ChpT. The dephosphorylation of CckA's receiver domain by its

kinase domain was assessed by examining the production of inorganic phosphate and the

coincident depletion of radiolabel from all other bands. The only mutant with

phosphatase activity comparable to wild-type CckA was that harboring the substitution

H322A.
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Figure 2.5. Identification of mutants that uncouple kinase and phosphatase activity in
CckA. (A) Summary of CckA mutations tested. For mutations reported previously to produce
K+P- (green) or K-P+ (blue) EnvZ, the same amino acid substitutions were introduced at the
corresponding sites of CckA, based on an alignment of EnvZ and CckA sequences. Mutations
are listed below the domain of CckA in which they were constructed. Domains include
transmembrane (TM), dimerization and histidine phosphotransfer (DHp), catalytic and ATPase
(CA), and receiver domain (RD). Phosphorylation sites (H322 and D623) are indicated above
their respective locations. (B) Each mutant version of CckA-HK-RD was tested for
autophosphorylation (top) and phosphotransfer to ChpT (bottom panel). Autophosphorylation
reactions were started with the addition of ATP to preincubated mixtures of the indicated mutant
CckA and reaction buffer. Reactions were incubated for 30 minutes at 30 *C. Phosphotransfer
reactions were performed using autophosphorylated CckA. These reactions were started with the
addition of ChpT and allowed to proceed for 30 minutes before being stopped. (C) Each mutant
version of CckA-HK-RD was tested for dephosphorylation of CtrA-P. Purified CtrA-P was
isolated and reactions were started with the addition of ChpT and mutant versions of CckA, and
then allowed to proceed for 30 minutes at 30 *C. The positions of phosphorylated components
in each panel are marked with arrowheads on the left.
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These in vitro data indicate that the V366P mutation produces a version of CckA that

retains kinase activity but lacks significant phosphatase activity (K*P~) while the H322A

mutation produces a version lacking kinase but not phosphatase activity (K~P*). To better

characterize these two mutants, we analyzed time courses of CtrA-P dephosphorylation

(Fig. 2.6A-C). CckA-HK-RD and CckA-HK-RD(H322A) each showed a depletion of

radiolabel from the phosphorelay components along with an increase in inorganic

phosphate. By contrast, the constructs harboring D623A and V366P showed little to no

depletion of phosphorelay components and no significant production of inorganic

phosphate. These data support the characterization of V366P as a K*P~ mutant of CckA

with kinase activity comparable to wild-type CckA.

A

CckA-HK-RD: WT H322A D623A V366P

time (min.) 0 0.5 1 5 10 20 60 0.5 1 5 10 20 60 0.5 1 5 10 20 60 0.5 1 5 10 20 60 -4 COA
BCChpT

______________________RIO__ .4 P1

100

IL 75 07

WT 0.WT
OH322A *OH322A

V366P *V366P

25 0.261

0 ,_ _ ,_ _ , _ ,_ _ , 0 ,

0 10 20 30 40 50 60 0 10 20 30 40 50 60

time (min.) time (min.)

Figure 2.6. Biochemical characterization of CckA(V366P). (A) Time-course of CtrA
dephosphorylation by CckA-HK-RD constructs. Point mutations are indicated above each time
course. (B) Quantification of CckA-HK-RD band intensities in time-courses from panel A. The
intensities for each construct were normalized to the percent maximum. (C) Quantification of
inorganic phosphate band intensities in time-courses from panel A.
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Phosphatase activity of CckA is important, but not essential, for
dephosphorylation of CtrA and CpdR

To test whether the phosphatase activity of CckA is important for cell cycle progression

and viability, we tested whether the mutant alleles of cckA we created could complement

a cckA chromosomal deletion. For these experiments, we placed a full-length copy of

each mutant allele of cckA, driven by the native cckA promoter, on the low-copy plasmid

pMR20. Each plasmid was transformed into wild type, followed by transduction of a

gentamicin-marked cckA deletion onto the chromosome. As expected, transduction of

AcckA into a strain harboring the wild-type copy of cckA yielded thousands of colonies

while transduction into a strain harboring an empty vector yielded none. Transduction of

AcckA into a strain containing cckA(D623A) also produced no colonies, consistent with

the notion that phosphorylation of the receiver domain is essential for viability.

Unexpectedly, we recovered hundreds of colonies when transducing AcckA into a strain

containing cckA(H322A). However, sequencing of the plasmids in several of these

colonies revealed that the mutation had reverted in each case, likely via recombination

with the chromosomal copy of cckA prior to transduction. Reversion did not occur with

the plasmid harboring cckA(D623A), probably because the D623A mutation is toward the

end of the cckA coding region and does not have sufficiently long regions of homology to

efficiently drive recombination. Because we were unable to produce the CckA(H322A) +

AcckA strain, we conclude that H322, like D623, is essential for CckA function.

As with H322A, transduction of AcckA into a strain expressing cckA(G318T) yielded

abundant colonies, but plasmid sequencing from multiple colonies indicated reversion to

wild-type CckA. In vitro, CckA(G318T) had shown significantly increased kinase
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activity relative to wild-type CckA-HK-RD and no detectable phosphatase activity (see

Fig. 2.5). The inability of cckA(G318T) to complement a cckA deletion suggests that an

imbalance in CckA activities is lethal. We cannot, however, say whether the lethality

results from a lack of phosphatase activity or excessive kinase activity, or both.

For the G319E and V366P mutants we successfully constructed and sequence-verified

strains in which the chromosomal copy of cckA was deleted and the mutant allele of cckA

was carried on a plasmid. The strain expressing cckA(G319E) grew more slowly than a

strain expressing wild-type cckA and exhibited severe cellular filamentation (Fig. 2.7).

These cells formed long, relatively straight filaments reminiscent of the morphology of a

strain overproducing CtrA(D5 1E)A3Q, a non-proteolyzable version of CtrA that mimics

the phosphorylated state and induces a Gl-arrest [16]. Indeed, the cckA(G319E) + AcckA

strain showed a significant increase in cells with one chromosome (Fig. 2.7). Our in vitro

studies showed that CckA(G319E) exhibits a substantial increase in autophosphorylation

relative to wild-type CckA. Taken together, these data suggest that the G319E mutation

renders CckA hyperactive as a kinase, resulting in constitutive phosphorylation of CtrA

and CpdR and hence, a GI-arrest.
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Figure 2.7. Complementation analysis of mutant alleles of cckA. Cellular morphology (left)
and flow cytometry (right) analysis of strains in which the chromosomal copy of cckA was deleted
and the cckA allele indicated on the far left was driven by the native cckA promoter on a low-copy
plasmid. Scale bar, 4 [tm.

The K*P- mutation V366P did not lead to a severe cell cycle phenotype (Fig. 2.7),

suggesting that the phosphatase activity of CckA is either not strictly essential for

viability or that V366P does not completely eliminate phosphatase activity in vivo.

However, even if CckA phosphatase activity is not strictly essential, CckA could still be

an important phosphatase in vivo for either CtrA or CpdR. To further test this possibility,

we sought to examine whether the phenotype of a strain expressing cckA(V366P) as the

only copy of cckA was exacerbated by the synthesis of CtrA(D51E) or CtrAA3Q. For

example, if CckA is a key phosphatase for CtrA, cells producing both CtrAA3A and a

K+P~ version of CckA may exhibit a G1-arrest phenotype, as with cells producing
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CtrA(D51E)A3Q. For these experiments, we transformed the pMR20-cckA(V366P) +

AcckA strain with medium-copy plasmids carrying ctrA, ctrA(D51E), ctrAA3Q, or

ctrA(D51E)A3Q under the control of a xylose-inducible promoter. For comparison, we

transformed the pMR20-cckA + AcckA strain with the same set of plasmids. Each strain

was grown in the presence of xylose to mid-exponential phase and chromosome content

measured by flow cytometry (Fig. 2.8). The strains synthesizing CtrA(D51E) or

CtrAA3Q each showed a small, but reproducible increase in Gl-phased cells when

combined with cckA(V366P) compared to cckA. No difference was seen between the

strains synthesizing CtrA(D51E)A3A indicating that CckA(V366P) mediates its cell-

cycle effect through the CckA-ChpT phosphorelays and not through other pathways.

These data further suggest that CckA participates in the dephosphorylation of both

CtrA-P and CpdR~P in vivo. However, the fact that CckA(V366P) does not yield a G1

arrest suggests that other phosphatases for CtrA and CpdR may exist. Or, as noted, the

V366P mutation may be an imperfect K*P~ allele that retains sufficient phosphatase

activity in vivo to permit the dephosphorylation of CtrA-P and CpdR~P prior to DNA

replication initiation.
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Figure 2.8. CckA contributes to, but is not essential for, the inactivation of CtrA and CpdR.
Cells expressing various combinations of cckA and ctrA alleles were analyzed by flow cytometry
to assess chromosomal content as a readout of CtrA activity. Each strain harbored a cckA
chromosomal deletion and expressed either cckA (light grey) or cckA(V366P) (dark grey) from a
low-copy plasmid using the native cckA promoter. Strains expressed the ctrA allele indicated
above each panel from a medium-copy plasmid using the xylose-inducible promoter Pxyi. High
levels of CtrA(D51 E) partially mimics phosphorylated CtrA. CtrAA3Q is a non-proteolyzable
version of CtrA. All strains were grown in M2G to mid-exponential phase (OD600 - 0.2-0.4) in
the presence of xylose for 8 hours, followed by the addition of rifampicin for 3 additional hours,
and then analyzed by flow cytometry. (A) Representative flow cytometry profiles. (B)
Quantification of the percentage of cells with one chromosome in the flow cytometry profiles.
Error bars represent the standard error of the mean (n=3).

Overproducing CckA drives the dephosphorylation of CtrA~P and
CpdR~P

To further test whether phosphorelay reversal and CckA phosphatase activity can drive

the dephosphorylation of CtrAP and CpdR~P in vivo, we examined the effect of

overexpressing cckA. We hypothesized that overproducing CckA should siphon

phosphoryl groups back through the phosphorelay driving the dephosphorylation of CtrA

Chen 176

DNA content

ctrA3



and CpdR, leading to a decrease in CtrA activity. To test this prediction, we placed a

full-length copy of cckA on the plasmid pJS14 under the control of a xylose-inducible

promoter. After growth in xylose for 4 hours, this strain exhibited mild cellular

filamentation and some accumulation of chromosomes, consistent with a downregulation

of CtrA (Fig. 2.9A). Overproducing a version of CckA lacking its transmembrane

domains, CckAATM, produced more severe filamentation and led to excessive

accumulation of chromosomal DNA (Fig. 2.9A), consistent with an even more significant

downregulation of CtrA. This cellular filamentation and accumulation of chromosomes

depended on backtransfer to the CckA receiver domain as overproducing

CckAATM(D623A) did not severely disrupt the cell cycle (Fig. 2.9A). However,

backtransfer alone was insufficient and CtrA downregulation also depended on the

phosphatase activity of CckA as overproducing the CckA receiver domain alone (CckA-

RD) or a version of CckA lacking phosphatase activity, CckAATM(V366P), did not lead

to cellular filamentation or chromosome accumulation (Fig. 2.9A).

The more severe phenotype of overproducing CckAATM relative to full-length CckA

may indicate that CckA in the membrane can adopt either a kinase or phosphatase state

while a cytoplasmic fragment functions primarily as a phosphatase. Consistent with this

hypothesis, we found that overproducing a full-length version of CckA(H322A), which

can only function as a phosphatase, produced a more severe phenotype than

overproducing wild type full-length CckA (Fig. 2.9A); CckA(H322A) may also have a

dominant negative effect by forming inactive heterodimers with the chromosomally-

expressed CckA.
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Figure 2.9. Overproducing CckA inactivates CtrA. (A) The effect of overproducing various
CckA constructs was examined by light microscopy and flow cytometry. A diagram of the
overexpression constructs used is shown at the top with abbreviations as in Fig. 2.5. Cells
harbored the construct indicated above each pair of micrograph and flow cytometry profile. Each
construct was expressed from a xylose-inducible promoter on a medium-copy plasmid. Cultures
were grown to mid-exponential phase (OD600 - 0.2-0.4) in the presence of xylose for four hours
and then fixed for microscopy and flow cytometry analysis. (B) Genetic interactions between pleC
and cckA. Cells harbored a transposon insertion in pleC and carried a full-length copy of cckA or
cckA(V366P) under the control of a xylose-inducible promoter. Note that in the flow cytometry
profiles, the far right edge of the profile includes an integration of all cells that have chromosome
accumulation beyond the range shown, if any. Scale bar, 4 tim.
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Taken together, these data support a model in which the direction and flow of phosphoryl

groups through the cell cycle phosphorelays in vivo is dictated by both mass-action

equilibrium and the kinase/phosphatase balance of CckA. When CckA is stimulated to

autophosphorylate, the net result is an accumulation of phosphoryl groups on CtrA and

CpdR. Conversely, when CckA is not activated as an autokinase, phosphoryl groups can

flow back to the CckA receiver domain where the kinase domain stimulates their

hydrolysis.

As noted, overproducing a full-length version of CckA did not yield a severe cell cycle

phenotype, in contrast to the case of overproducing CckAATM, indicating that full-length

CckA may retain a balance of kinase and phosphatase activities. If so, the overexpression

of full-length CckA should, in principle, be exacerbated by mutations in other genes that

regulate the activity of CckA. Our previous studies indicated that the response regulator

DivK is a negative regulator of CckA [11]. DivK phosphorylation is controlled by the

reciprocal actions of a cognate histidine kinase, DivJ, and a cognate phosphatase, PleC

[3, 6, 32]. We therefore tested the effect of overproducing full-length CckA in either a

divJ or a pleC mutant background. While CckA overproduction did not have a strong

effect in the divJ mutant (data not shown), it appeared to be strongly synthetic with the

pleC mutant (Fig. 2.9B). CckA overproduction and the pleC mutation each yield a

relatively mild phenotype on their own; however, the combination produced cells that

were extremely filamentous and that accumulated multiple chromosomes, consistent with

a significant drop in CtrA~P (Fig. 2.9B). This severe cell cycle phenotype was

completely dependent on the phosphatase activity of CckA as overproducing full-length

CckA(V366P) in a pleC mutant background had little to no effect on cells (Fig. 2.9B).

Chen 179



These results indicate that cckA likely lies genetically downstream of pleC and further

support a model in which phosphorylated DivK downregulates CtrA by influencing the

kinase/phosphatase balance of CckA.

Subcellular localization of CckA

In addition to changing from kinase to phosphatase during the cell cycle, CckA also

dynamically changes its subcellular localization. CckA, which is present thoughout the

cell cycle, was first reported to be polarly localized only in predivisional cells [2], with a

second study indicating that CckA is also polarly localized in swarmer cells [11]. Here,

to further characterize CckA's polar localization and identify the source of this difference

we fused full-length cckA to gfp and integrated this construct on the chromosome as the

only copy of cckA. The fusion used here includes the last two amino acids, both alanines,

of CckA that had been removed in fusing cckA to gfp in both of the previous studies. By

following a synchronous population of swarmer cells isolated from an exponential phase

culture (Fig. 2.10), we found that CckA-GFP was delocalized in nearly all swarmer cells

and remained delocalized upon differentiation into stalked cells. CckA-GFP then

localized to the nascent swarmer pole in late stalked and early predivisional cells before

localizing bipolarly in late predivisional cells. CckA-GFP was delocalized in daughter

swarmer cells following cell division. In the daughter stalked cells the pattern was

variable with CckA-GFP delocalized in some cells but retained at the stalked pole in most

(>75%) cells, in contrast to both of the previous studies showing, at least in the small

number of cells examined, that CckA-GFP is delocalized following cell division. Finally,

we found that CckA-GFP localization in the initial synchronized population of swarmer

cells was strongly dependent on the density of the culture used for synchronization. As
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cells progressed through early exponential phase and into late exponential phase, an

increasing percentage of swarmer cells showed polarly localized CckA (Fig. 2.11)

indicating that the localization of CckA-GFP in swarmer cells is dependent on culture

conditions but is not typically localized in early exponential phase. The overall pattern of

subcellular localization observed here for CckA-GFP is in accord with that described by

the Jacobs-Wagner group (personal communication). Also, we note that a similar pattern

of CckA-GFP localization during synchronous cell cycle progression was seen with a

strain expressing CckA-GFP from the low-copy plasmid pMR20 (data not shown).

Whether the subcellular localization of CckA affects its activity as a kinase or

phosphatase, or vice versa, is not yet clear and will likely require the identification of

polar factors that directly influence CckA.
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Figure 2.10. Figure S3. Subcellular localization of CckA. Swarmer cells from a culture of
strain ML1681 grown to OD600 -0.4 were synchronized and allowed to progress through the cell
cycle. At the time points indicated, samples were taken for DIC (left) and epi-fluorescence
(center) microscopy and for flow cytometry (right). Scale bar, 4 ptm.
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Figure 2.11. Culture density-dependence of CckA-GFP localization in swarmer cells.
Increased polar localization of CckA in swarmer cells correlates with increasing cell density. Cells
were grown in M2G, harvested at OD600 0.6, 0.8, or 1.0, synchronized, and then released into
fresh M2G at OD600 <0.2. Samples were taken for DIC (left) and epi-fluorescence (right)
microscopy immediately after release into fresh M2G. Scale bar, 4 [tm.
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Discussion

The Caulobacter cell cycle is ultimately driven by the periodic rise and fall in activity of

the master regulator CtrA (Fig. 2.12A). Our previous work identified two phosphorelays

that collaborate to activate CtrA, by promoting its phosphorylation and proteolytic

stabilization, the latter via CpdR phosphorylation. Conversely, the down-regulation of

CtrA depends critically on the dephosphorylation of CtrA and CpdR, but the mechanisms

involved have been unknown previously. Here, we demonstrated that CckA, when not

active as a kinase, can stimulate the dephosphorylation of CtrA and CpdR to help drive

the initiation of DNA replication. We showed that phosphoryl groups can be transferred

from CtrA~P and CpdR~P back to the CckA receiver domain, via ChpT, where the

bifunctional CckA can stimulate hydrolysis (Fig. 2.12B).
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Figure 2.12. Regulation of the balance between CckA kinase and phosphatase activities
controls cell cycle. (A) Summary of regulatory pathway controlling CtrA activity (left). Schematic
of Caulobacter cell cycle indicating temporal pattern of CtrA activity (right). (B) Summary of cell
cycle phosphorelays. Net phosphate flow depends on the activity of CckA. As a kinase, CckA
drives the phosphorylation of CtrA and CpdR. As a phosphatase, CckA drives the
dephosphorylation of CtrA and CpdR. Cell cycle transitions and changes in CtrA activity are thus
driven by changes in the kinase/phosphatase balance of CckA. DivK influences CckA's switching
between kinase and phosphatase states.

Like phosphorelays in other organisms [12, 19, 24, 25], the direction of flow through the

cell cycle phosphorelays in C. crescentus appears to be dictated by mass-action. Hence,

when CckA is not active as a kinase to drive CtrA and CpdR phosphorylation, the flow of

phosphate can reverse. Overexpressing full-length cckA, however, resulted in a relatively

minor cell cycle phenotype, likely because the CckA produced retains a balance of kinase

and phosphatase activities. By contrast, overproducing a version of CckA lacking the

transmembrane domains, CckAATM, led to a severe disruption of the cell cycle and
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downregulation of CtrA activity as evidenced by chromosome accumulation. The more

severe effect of overproducing CckAATM relative to full-length CckA may indicate that

CckA must associate with other factors in the membrane to autophosphorylate. This

downregulation requires both the reversed flow of phosphoryl groups and their active

elimination by CckA phosphatase activity (Fig. 2.9A). The latter requirement is

supported by the observation that overexpressing CckAATM(V366P) did not disrupt cell

cycle progression. In wild type cells, CckA and ChpT are present at much lower levels

(E.G.B, M.T.L, unpublished data) than CtrA, which is estimated to be present at ~20,000

molecules per cell [33]. Such stochiometries imply that redistribution alone could only

ever deplete a small fraction of the phosphate on CtrA without CckA participating as a

phosphatase.

Phosphorelay reversal and CckA phosphatase activity together constitute one mechanism

for inactivating CtrA prior to S-phase. Using a K*P~ mutant of CckA, V366P, we

demonstrated that the phosphatase activity of CckA contributes to the down-regulation of

CtrA and CpdR in vivo. However, cells producing CckA(V366P) are still viable and able

to initiate DNA replication indicating that other phosphatases likely exist. If other

phosphatases do exist, they may be difficult to identify owing to redundancy with CckA's

phosphatase activity, either of which may be sufficient for survival. Moreover, aspartyl-

phosphatases do not comprise a single, paralogous family and typically show little to no

sequence homology with one another making their identification difficult [20-22, 34, 35].

Alternatively, no other phosphatases may exist if the phosphoryl groups on CtrA~P and

CpdR-P are intrinsically labile, as with CheY and other response regulators [36-38].

However, our data suggest that the aspartyl-phosphates on CtrA and CpdR are relatively
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stable (Fig. 2.4B-C) indicating that active dephosphorylation is probably necessary and

tightly regulated. Finally, as noted earlier, CckA could be the only phosphatase if the

V366P mutation does not completely eliminate phosphatase activity. Our in vitro studies

did not indicate any significant phosphatase activity for CckA(V366P), but the in vitro

conditions may not perfectly reflect in vivo conditions.

How does the V366P mutation produce a kinase-positive and phosphatase-negative

version of CckA? Notably, valine-366 in CckA is predicted, based on alignment to

EnvZ, to lie at the C-terminal end of a-helix-2 in the DHp domain near the linker that

connects the DHp and CA domains. It is thus tempting to speculate that a proline at this

position (V366P in CckA, which was based on the previously reported L288P in EnvZ

[28]) may interfere with kinase/phosphatase balance by affecting domain-domain

interactions. Recent structural studies of a full-length histidine kinase provided evidence

that modulating DHp-CA domain interactions significantly influences the

kinase/phosphatase balance of bifunctional histidine kinases [39]. It will be interesting to

see whether mutations equivalent to V366P in CckA and L288P in EnvZ can produce

K P versions of other bifunctional histidine kinases.

In sum our results indicate that CckA switches between a kinase state and a phosphatase

state to help drive the changes in CtrA activity crucial for proper cell cycle progression.

In vivo measurements of CckA phosphorylation indicated that CckA kinase activity is

detectable in swarmer cells, drops to its lowest levels in stalked cells, and then

accumulates again to maximal levels in predivisional cells [18]. CtrA and CpdR

phosphorylation levels change in a similar fashion during the cell cycle [16-18],
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consistent with a model in which changes in CckA's kinase activity are translated into

changes in CtrA activity (Fig. 2.12A).

What then regulates CckA activity? The essential single-domain response regulator

DivK plays a key role. A divK" mutant is unable to down-regulate CtrA and

consequently arrests with a single chromosome [40], as seen with cells overproducing

CtrA(D5 1 E)A3Q [16] or as seen here with cells overproducing CckA(G3 19E), a version

of CckA with high kinase activity. While DivK could control CtrA phosphorylation and

degradation independently, a simpler model is that DivK regulates CckA, either directly

or indirectly switching CckA from the kinase to phosphatase state. Consistent with this

model, CckA phosphorylation levels per cell were found to increase in a divKc mutant

[11]. Although the increase was only four-fold, it should be noted that this measurement

compared divKf" to a mixed population of wild type which includes predivisional cells

where CckA is most active. The divKf" strain, however, is arrested at the Gl-S transition

when CckA kinase activity is normally at its lowest; in fact, the unabated activity of

CckA as a kinase in the divK" strain may be responsible for its GI arrest phenotype. We

also found here that cckA overexpression exhibits a strong synthetic interaction with

pleC, which encodes a key phosphatase of DivK. This synthetic interaction was

dependent on CckA's ability to act as a phosphatase as overexpressing the phosphatase-

deficient CckA(V366P) in a pleC mutant did not cause cellular filamentation or

chromosomal accumulation (Fig. 2.9B). In a pleC mutant, DivK-P levels are elevated

[32] and our results suggest that this increase may bias CckA toward the phosphatase

state when overproduced, leading to the down-regulation of CtrA and a severe cell cycle

phenotype (Fig. 2.9B). If DivK functioned independently of CckA to regulate CtrA, the
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overexpression of cckA in a pleC background may have resulted in an additive, and

consequently less severe, effect on the cell cycle.

DivK also affects CckA localization, with CckA-GFP present at the stalked pole but

absent from the opposite pole in divKs mutants [11]. However, this may be a secondary

effect of DivK's effect on CckA activity and the consequent G1-arrest. Whether the

localization of CckA influences its activity as a kinase or phosphatase, or vice versa, is

not yet clear. CckA is most active as a kinase in predivisional cells when it is localized to

the nascent swarmer pole and least active in stalked cells where it is either delocalized or

only at the stalked pole. This may suggest that CckA receives an activation signal at the

nascent swarmer pole or a repressing signal at the stalked pole. However, CckA also has

moderate kinase activity in exponential phase swarmer cells when it is typically

delocalized. A better understanding of the role of subcellular localization in modulating

the kinase and phosphatase states of CckA will require the identification of factors that

directly activate or repress CckA.

The model that DivK negatively regulates CckA is consistent with recent data suggesting

that CpdR phosphorylation levels may increase after prolonged depletion of DivK [41].

This observation could indicate that DivK functions in a second pathway to specifically

stimulate CpdR dephosphorylation. Alternatively, or perhaps in addition, the depletion of

DivK may simply lead CckA to remain in a kinase rather than phosphatase state; this

would lead to increased phosphorylation of CpdR (and CtrA) and ultimately the G 1 -arrest

phenotype characteristic of divK loss-of-function mutants. Further, divK mutants can be

rescued if cpdR is replaced by a mutant allele that cannot be phosphorylated [41], and

divK lethality was previously shown to be suppressed by other mutations that diminish
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CtrA activity [3]. We thus favor a model in which DivK helps switch CckA, either

directly or indirectly, from acting predominantly as a kinase to predominantly as a

phosphatase, and that an inability to switch (in either direction) is lethal (Fig. 2.12). The

switch in CckA from kinase to phosphatase likely depends on the phosphorylation of

DivK by DivJ, its cognate kinase. DivJ is preferentially inherited by stalked cells and

accumulates in stalked cells following the swarmer-to-stalked transition [32], presumably

helping to temporally restrict the down-regulation of CckA kinase activity and the

dephosphorylation of CtrA to stalked cells.

In sum, our results emphasize the critical role played by CckA in controlling cell cycle

oscillations and cellular asymmetry in Caulobacter. Although CtrA is also regulated

transcriptionally, constitutive expression of ctrA does not significantly disrupt or delay

cell cycle progression, indicating that proteolysis and phosphorylation are likely the

dominant modes of regulation. CckA controls both of these processes. In turn, a complex

network of regulatory molecules, including DivJ, PleC, and DivK, appear to regulate

CckA activity, helping to toggle it between kinase and phosphatase states at the

appropriate stages of the cell cycle.
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Materials and Methods

Strain construction and growth conditions

E. coli and C. crescentus strains were grown as described previously [1]. Strains,

plasmids, and primers used in this study are listed in Table 4.1. All plasmids were

introduced into C. crescentus by electroporation. PCR amplification of genes and

promoters from CB 1 5N genomic DNA was done with previously described conditions

[1]. For Gateway-based cloning, PCR amplicons of CB15N genes (primer sequences

listed in Table 1) were first cloned into the pENTR/D-TOPO vector according to

manufacturer's protocol and sequence-verified with M13F and M13R primers or primers

within the gene. All site-directed mutagenesis was performed using the following PCR

conditions: 75 ng pENTR clone, 50 [M each dNTP, 100 nM each primer, IX Pfu Turbo

buffer, 1.25 U Pfu Turbo polymerase (Strategene), 2% DMSO, and 60 mM Betaine. For

each reaction, 17 cycles of the following sequence were run: 94'C for 1 min, 550 C for 1

min, and 68 0C for 15 minutes when using pENTR clones or 68 0C for 45 minutes when

using other plasmids as templates. pENTR clones were then recombined into destination

vectors following the manufacturer's protocols (Invitrogen, Carlsbad, CA).

To construct strain ML1054, chpT was amplified from the chromosome using primers

altChpT fw and ChpTrev to create pENTR:chpT. This pENTR clone was recombined

into the destination vector pLXM-DEST and then transformed into a strain harboring a

markerless deletion of chp T [11].

To construct strains ML1491-1499, a pENTR clone of the cckA gene (pENTR:PekA-

cckA), including 158 bp upstream of the translational start that presumably encompasses

the cckA promoter, was amplified from CB 15N genomic DNA using the primers PcckA-
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cckA-fw and PcckA-cckA-rev. This pENTR clone was recombined into the destination

vector pMR20-DEST to produce a low-copy plasmid harboring a full-length copy of

cckA under the control of its native promoter (pMR20-PcckA-cckA). The plasmid pMR20-

PeckA-cckA was then transformed into CB 15N followed by CDCr30-based transduction of a

gentamycin-marked cckA deletion from strain LS3382. To generate cckA point mutants,

site-directed mutagenesis was performed on pENTR:PckA-cckA using primers listed in

Table S 1. These pENTR plasmids were sequence-verified and then recombined into the

pMR20 destination vector prior to transformation and transduction of the marked cckA

deletion.

Strains expressing mutant or wild-type cckA and overexpressing mutant ctrA (ML1567,

ML1571, ML1572, ML1576, ML1578, ML1583, ML1585, ML1587) were made by

transforming ML1491 and ML 1497 with the following plasmids: pJS 14, pJS 14-Pxy-ctrA,

pJS14-Psy-ctrA(D51E), pJS14-Py1-ctrAA3Q, or pJSl4-PxyrctrA(D51E)A3Q (Domian et

al., 1997).

To construct strain ML 1073, full-length cckA was amplified from CB15N genomic DNA

with forward primer CckAfullfw, which adds an NdeI site at the 5' end of the gene and

reverse primer CckA_fullrev, which adds a SalI site at the 3' end. Both pML83 and the

PCR product containing cckA were digested with NdeI and Sal! and ligated to form

plasmid pML83-Psj-cckA, which was then electroporated into a pleC::Tn5 strain [32].

ML1709 was constructed similarly, but pML83-Psyr-cckA was modified by site-directed

mutagenesis PCR with primers V366P_fw and V366Prev before being electroporated

into the pleC:: Tn5 strain.
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To construct a strain overexpressing full-length cckA (ML1688), we first made

pENTR:Psyr-cckA by using primers Pxylfw and CckAfullrev to amplify a fragment

containing a xylose-inducible promoter and cckA from the plasmid pML83:Pxy-cckA .

This pENTR clone was then recombined into the destination vector pJS14-DEST. To

construct a strain overexpressing full-length cckA(H322A) (ML1738), we used primers

H322A_fw and H322Arev for site-directed mutagenesis on the plasmid pJS 14:PxI-cckA

from ML1688.

To construct strains overexpressing pieces of cckA containing no transmembrane domain

(ML1689) or only the receiver domain (ML1692), we generated PCR products from

CB15N genomic DNA using the following primers: HK7_fw and RR53_rev (ML1689)

or RR53_fw and RR53_rev (ML1692). pENTR clones containing these PCR fragments

were then recombined into pHXM2-DEST using the Gateway cloning method. To

construct ML1690 and ML1691, we performed site-directed mutagenesis on

pENTR:cckA-HK-RD with primers D623Afw and D623Arev (ML1690) or V366P_fw

and V366Prev (ML1691) before recombining into pHXM2 -DEST.

To construct strain ML1681, the last 519 codons (without the stop codon) of cckA were

amplified by PCR with primers CckAGFPfw and CckAGFPrev. The reverse primer

removed the stop codon, added two nucleotides to keep it in frame with the downstream

GFP fusion, and contains an EcoRI site. The forward primer contains a KpnI site. The

cckA PCR product was cloned in-frame with the egfp gene in pGFP-c4 [42] using KpnI

and EcoRI restriction sites. The coding region was sequence verified and the plasmid was

recombined into CB15N by electroporation to generate chromosomally encoded CckA-

GFP.
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To create pJS 14-DEST and pMR20-DEST for Gateway cloning, the RfA Gateway

cassette was blunt cloned into an EcoRV site in pJS 14 and pMR20. To create pHXM2-

DEST, the SacI-KpnI fragment containing a xylose-inducible promoter and M2 tag (Px,,-

M2) was digested out of pHXM-DEST and then cloned into pJS 14.

Differential interference contrast microscopy was performed on mid-exponential phase

cells after fixing in PBS with 0.5% paraformaldehyde.

Table 2.1 - Strains, Plasmids, Primers

Organism or Name Genotype, Plasmid description, or Primer SourceCategory Sequence

C. crescentus CB15N
LS3382
ML808
ML1054
ML1073
ML1491
ML1492
ML1494
ML1495
ML1496
ML1497
ML1499
ML1567

ML1571

ML1572

ML1576

ML1578

ML1583

ML1585

ML1587

E. coli

General
purpose
vectors

ML1681
ML1688
ML1689
ML1690
ML1691
ML1692
ML1708
ML1709
ML1738
DH5a
BL21-Tuner
TOP10

pJS14

synchronizable derivative of wild-type CB15
AcckA + pMR10-cckA (gent", kan")
AchpT + pLXM-chpT-ssrA (tet")
AchpT + pLXM-chpT (tet")
p/eC::Tn5 + pML83:PxyrcckA (spec")
AcckA::gent + pMR20-P,,k-cckA (tet",gent")
AcckA::gent + pMR20-P00k-cckA(H322A) (tet",gent")
AcckA::gent + pMR20-P00k-cckA(G318T) (tetKgentn)

AcckA::gent + pMR20-P,01A-cckA(G319E) (tet",gent")
AcckA::gent + pMR20-P,,k-cckA(L327Q) (tet",gent")
AcckA::gent + pMR20-Pe0k-cckA(V366P) (tet",gent")

AcckA::gent + pMR20-P00k-cckA(F496L) (tet",gent")
AcckA::gent + pMR20-P,0k-cckA + pJS14-PxyrctrA
(gentR tetR,chlorR)
AcckA::gent + pMR20-PckA-cckA(V366P) + pJS14-P,,yr
ctrA (gentR tetR chlor R)

AcckA::gent + pMR20-PckA-cckA + pJS14-Pxyr
ctrA(D51E) (gentR tetRchlor R)

AcckA::gent + pMR20-PCkA-cckA(V366P) + pJS14-Pxyr
ctrA(D51E) (gent tR R chlor
AcckA::gent + pMR20-PckA-cckA + pJS14-PxyrctrAA3Q
(gentR tetRchlorR)
AcckA::gent + pMR20-Peew-cckA(V366P) + pJS14-Pxyr
ctrAA3Q (gent ,tetRchlorR)
AcckA::gent + pMR20-Pew-cckA + pJS14-Pxyr
ctrA(D51E)A3Q (gentR tetRchlor R)

AcckA::gent + pMR20-Pew-cckAkV366P) + pJS14-Pxyr
ctrA(D51E)A3Q (gentR tetR chlor
P0,k-cckA-GFP (gentR)
pJS14:PyrcckA (chlor R)
pHXM2-cckAATM (chlor")
pHXM2-cckAATM(V366P) (chlor")
pHXM2-cckAATM(D623A) (chlor")
pHXM2-cckA-RD (chlorR)
AcckA::gent + pMR20-P 01w-cckA-GFP (gent",tet")
p/eC::Tn5 + pML83:PxyrcckA(V366P) (specR)
pJS14:PxyrcckA(H322A) (chlor")
general cloning strain
strain for protein expression and purification
strain for constructing pENTR-TOPO clones

derivative of pBBR1 MCS, high-copy replicon (chlorR)

Evinger et al (1977)
Jacobs et al (1999)
Biondi et al (2006)
this study
this study
this study
this study
this study
this study
this study
this study
this study
this study

this study

this study

this study

this study

this study

this study

this study

this study
this study
this study
this study
this study
this study
this study
this study
this study
Invitrogen
Novagen
Invitrogen

J. Skerker
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Organism or Name Genotype, Plasmid description, or Primer SourceCategory Sequence

pJS71
pML83

Overexpression
plasmids

derivative of pBBR1MCS, high-copy replicon (spec )
Psyj oriented against Plac, inserted into EcoRi site of
pJS71 (chlorR)
broad host range, low copy vector (kan R)
broad host range, low copy vector (tetR)
ENTRY vector for Gateway cloning system (kanR)
high-copy plasmid, xylose-inducible expression of ctrA

high-copy plasmid, xylose-inducible expression of
ctrA(D51E)
high-copy plasmid, xylose-inducible expression of
ctrAA3Q

pMR1O
pMR20
pENTR/D-TOPO
pJS14:PxyrctrA

pJS14:Py-
ctrA(D51E)
pJS14:PyrctrAA3Q

pJS14:Pxyr
ctrA(D51E)A3D
pML83:PyrcckA

pJS14:PxyrcckA
pMR20:P,,kA-cckA

pENTR:chpT

pENTR:chp TAC

pENTR:P,kA-cckA

pENTR:PyrcckA

pENTR:cckA-HK-RD

pENTR:cckA-HK-
RD(D623A)
pENTR:cckA-RD
pENTR:ctrA
pENTR:cpdR
pENTR:phoR

pENTR:envZ

pENTR:envZ(T247R)

pHIS-DEST

pTRX-HIS-DEST
pHIS-MBP-DEST
pHXM-DEST
pLXM-DEST
pMR20-DEST
pJS14-DEST
pHXM2-DEST
PcckA-cckA-fw
PcckA-cckA-rev
CckA full fw
CckA full rev
HK7_fw
HK9_rev
RR53_fw
RR53_rev
CC3470_HPT for
ChpTHboxrev
CckAGFP fw
CckAGFP rev
V366P fw
V366P rev

J. Skerker
M. Laub

R. Roberts
R. Roberts
Invitrogen
Domian et al (1997)

Domian et al (1997)

Domian et al (1997)

Domian et al (1997)

this study

this study
this study

this study

this study

this study

this study

this study

Biondi et al (2006)

Skerker et al (2005)
Skerker et al (2005)
Skerker et al (2005)
this study

Skerker et al (2005)

this study

Skerker et al (2005)

Skerker et al (2005)
Skerker et al (2005)
Skerker et al (2005)
Skerker et al (2005)
this study
this study
this study

high-copy plasmid, xylose-inducible expression of
ctrA(D51E)A3M
high-copy plasmid, xylose-inducible expression of full-
length, untagged cckA
high-copy plasmid, xylose-inducible expression of cckA
full-length cckA driven by its own promoter and
expressed off pMR20
entry clone of chpT lacking the first 28 codons of the
annotated CC3470 gene
entry clone of chpTlacking the last 126 codons of the
annotated CC3470 gene
entry clone of cckA and 158 bp upstream of the
translational start site
entry clone of full-length cckA behind the xylose
promoter
entry clone of cckA containing only the kinase and
receiver domains
entry clone of cckA containing only the kinase and
receiver domains with D623A mutation
entry clone of cckA containing only the receiver domain
entry clone of ctrA
entry clone of cpdR
entry clone of phoR containing the last 415 codons of
the annotated CC0289 gene
entry clone of envZ containing the last 229 codons of
the annotated b3404 gene
entry clone of the last 229 codons of envZ with a
T247R mutation
for producing His 6-tagged proteins

for producing thioredoxin-His6-tagged proteins
for producing Hise-MBP-tagged proteins
pJS71:PxyrM2 destination vector (specR, chlorR)
pMR20:PyrM2 destination vector (tet", chlor")
pMR20 destination vector (tet", chlorm)
pJS14 destination vector (chlor")
pJS14:PxyrM2 destination vector ( chlor")
CACCTCATCAGCTTCATCCTCAACGG

CAGCAGAAGCTTCTACGCCGCCTGCAGCTGCT

GGCATATGGCCGACTTGCAGCTCCA

GGGTCGACCTACGCCGCCTGCAGCTGCT

CACCTCAGCGCTTTCCGGCGGCGA

TCAGATGCGGCCGGCGCCCGACA

CACCTGCCGCATCCTGTTCGTCGAGG

CTACGCCGCCTGCAGCTGC

CACCTTGCGTTATTTTCTCCAAG

CAGCTTTTCCAGTTCGCGCGAG

CAGCAGCAGGGTACCGCAGAGCGACGGCTGGAT

CAGCAGCAGGAATTCTCCGCCGCCTGCAGCTGCTG

CGCCGCCGACCTCCCGCGCAAGCTCTTG

CAAGAGCTTGCGCGGGAGGTCGGCGGCG

Expression
plasmid
ENTRY clones

Destination
vectors

Primers
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Organism or Name Genotype, Plasmid description, or Primer SourceCategory Sequence

A321D fw
A321D rev
V320G fw
V320G-rev
L327Qfw
L327Q rev
R361P fw
R361P rev
N326R fw
N326R rev
F496L fw
F496L rev
G318T fw
G318T rev
G319E fw
G319E rev
N430K fw
N430K-rev
L365D fw
L365D rev
D623A fw
D623A rev
H322A fw
H322A rev
phoRfw
phoRjrev
EnvZT247Rfw
EnvZT247R rev
Pxylfw
aIt_ChpTjw
ChpTjev

GGCCGGCGGCGTCGATCACGACTTCAACAAC

GTTGTTGAAGTCGTGATCGACGCCGCCGGCC

GCCGGCGGCGGCGCGCACGAC

GTCGTGCGCGCCGCCGCCGGC

CACGACTTCAACAACCAGTTGACCGCCATCCAGC

GCTGGATGGCGGTCAACTGGTTGTTGAAGTCGTG

ACGGGCGTGCCCGCCGCC GAC

CGCGCCGCCGACGACGTGCGCAAGCT

GCGCACGACTTCAACAGGCTCTTGACCGCCATCC

GGATGGCGGTCAAGAGCCTGTTGAAGTCGTGCGC

AGATCTTCGACCCGTTATTCACCACCAAGCCG

CGGCTTGGTGGTGAATAACGGGTCGAAGATCT

GCCAGCTGGCCACCGGCGTCGCGC

GCGCGACGCCGGTGGCCAGCTGGC

AGCTGGCCGGCGAGGTCGCGCACGAC

GTCGTGCGCGACCTCGCCGGCCAGCT

AGACGGCGGTCATGAAGCTGGCCGTC

GACGGCCAGCTTCATGACCGCCGTCT

CGCGCCGCCGACGACGTGCGCAAGCT

AGCTTGCGCACGTCGTCGGCGGCGCG

CCTCTTGATCAGCGCGGTGATCATGCCCG

CGGGCATGATCACCGCGCTGATCAAGAGG

CGGCGGCGTCGCGGCGGACTTCAACAACC

GGTTGTTGAAGTCCGCCGCGACGCCGCCG

CACCCTGAACCGGCGAAAGGCCGT

TCAGGCGCTTCCCGCTTCCGCC

AGTCACGACTTGCGCCGTCCGCTGACGCGTATT

AATACGCGTCAGCGGACGGCGCAAGTCGTGACT

CACCTCGAACAGGGCCGTCAGG

caccTTGACCGAGACCGTCACC

GGTTAAGGAGCGGTTTGCTA

Immunoblotting and synchronization

Mixed populations of wild-type cells grown in M2G were synchronized using Percoll

density centrifugation as previously described [43]. Cell samples were taken every 20

minutes for 140 minutes, resolved on a 12% SDS polyacrylamide gel, transferred to

PVDF transfer membrane (Pierce), and probed with anti-ChpT serum at a 1:10,000

dilution. Polyclonal rabbit antisera (Covance) was generated using His6-ChpT.

Flow cytometry

Single colonies were inoculated into 5-10 mL liquid cultures from plates and grown

overnight at 30'C under appropriate antibiotic selection, but were always maintained at
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an OD600 less than 0.7. Cultures were then diluted to an OD600 of 0.005-0.01 and grown to

OD600 ~0.2-0.4 before processing. All strains were grown in PYE except for strains

overexpressing ctrA alleles (Fig. 2.8), which were grown in M2G. Strains overexpressing

cckA or ctrA were induced by the addition of 0.3% xylose to culture media, or maintained

in 0.2% glucose and processed after 4 or 8 hours. After 8 hours of induction, rifampicin

(20 tg/ml) was added to strains overexpressing ctrA, which were grown for 3 more hours

to allow for completion of DNA replication. Cells were fixed in 70% EtOH overnight at

4C and stored at 4'C for up to a week. They were spun at 6000 rpm for 4 minutes,

resuspended in I ml 50 mM sodium citrate, and incubated for 4 hours at 500C with 2

ug/ml RNAse to allow complete RNA digestion. After digestion, cells were incubated in

2.5 [tM SYTOX Green nucleic acid stain (Invitrogen) for 15 minutes at room temperature

before analyzing by flow cytometry using an Epics C analyzer (Beckman-Coulter). For

quantification of flow cytometry data in Figure 6, we gated IN DNA content peaks, using

the same gate for all samples. The percentages shown in the bar graph were obtained by

dividing the gated number cells with 1N DNA content by the total number of cells, which

were gated to exclude cellular debris on the far left of the flow cytometry profiles.

In vitro analysis of kinase, phosphatase, and phosphotransfer reactions

All protein purifications were done as reported previously [1]. Primers

CC3470_HPTfor and ChpTHboxrev were used to amplify the H-box-containing N-

terminus of ChpT for constructing the plasmid pENTR:chpTAC. Primers phoRfw and

phoRrev were used to amplify the last 415 amino acids of PhoR (CC0289) for

constructing the plasmid pENTR:phoR. Primers EnvZT247R fw and EnvZT247R rev

were used for site-directed mutagenesis on the plasmid pENTR:envZ to create the
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plasmid pENTR:envZ(T247R). Creation of other pENTR clones for protein purification

has been described previously [1].

Phosphatase reactions: First, 10 ttM TRX-His6-CtrA was incubated with 0.2 [tM PhoR

with 5 [tCi [y3 2P]ATP (~6000 Ci/mmol, Amersham Biosciences) in storage buffer

supplemented with 2 mM DTT and 5 mM MgCl 2 . Reactions were incubated at 30'C for

60 minutes and then depleted of any remaining ATP by the addition of 1.5 U hexokinase

(Roche) and 5 mM D-glucose for 5 minutes at room temperature. Reactions were then

washed in 10 kD Nanosep columns four times with lOX reaction volumes of HKEDG

buffer (10 mM HEPES-KOH pH 8.0, 50 mM KCL, 10% glycerol, 0.1 mM EDTA, 1 mM

DTT (added fresh)) with a final resuspension in the original reaction volume of HKEDG

buffer. A similar procedure was used to prepare CpdR~P except that EnvZ(T247R) was

used instead of PhoR. These preparations of CtrA~P or CpdR-P were then incubated

with upstream components, as indicated in figure panels, each at a final concentration of

5 [M. Phosphatase reactions were supplemented with 5 mM MgCl 2 and incubated at

30'C before being stopped at indicated timepoints by the addition of 3.5 tL 4X sample

buffer (500 mM Tris [pH 6.8], 8% SDS, 40% glycerol, 400 mM beta-mercaptoethanol).

Samples were heated at 30'C for 2 minutes before loading onto 10% Tris-HCl gels (Bio-

Rad) with electrophoresis at room temperature for 40 minutes at 150 V. Gels were

exposed to phosphor screens overnight at -80'C and then scanned using a Storm 86

imaging system (Amersham Biosciences).

Autophosphorylation reactions: Histidine kinase constructs at 5 [M were incubated with

0.5 RM ATP and 5 [C, [y 32P]ATP in HKEDG buffer supplemented with 5 mM MgCl 2 at
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30 C for 60 minutes. Reactions were stopped at indicated timepoints by the addition of

4X sample buffer and analyzed as with phosphatase reactions, described above.

Phosphotransfer reactions: To autophosphorylation reactions, His6-ChpT or TRX-His6 -

ChpT was added to a final concentration of 12.5 iM and reactions incubated at 30'C

before being stopped at indicated timepoints and processed as above.
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Abstract

Spatial asymmetry is crucial to development. One mechanism for generating asymmetry

involves the localized synthesis of a key regulatory protein that diffuses away from its

source, forming a spatial gradient. While gradients are prevalent in eukaryotes, at both

the tissue and intracellular levels, it is unclear whether gradients of freely diffusible

proteins can form within bacterial cells given their small size and the speed of diffusion.

Here, we show that the bacterium Caulobacter crescentus generates a gradient of the

active, phosphorylated form of the master regulator CtrA, which directly regulates DNA

replication. Employing a combination of mathematical modeling, single-cell microscopy,

and genetic manipulation, we demonstrate that this gradient is produced by the polarly

localized phosphorylation and dephosphorylation of CtrA. Our data indicate that cells

robustly establish the asymmetric fates of daughter cells before cell division causes

physical compartmentalization. More generally, our results demonstrate that uniform

protein abundance may belie gradients and other sophisticated spatial patterns of protein

activity in bacterial cells.
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Introduction

Asymmetry plays a crucial role in generating complexity within biological systems, and

the establishment of asymmetry often requires spatial heterogeneity of key regulatory

proteins. Among the best-studied examples of this phenomenon are morphogen gradients

in multicellular organisms that drive developmental patterning [1]. In such cases,

signaling proteins form a concentration gradient across many cells via diffusion from a

spatially localized source. Protein gradients have also been observed within individual

eukaryotic cells (reviewed in [2]), such as the gradient of Ran-GTP that emanates from

yeast chromosomes to help organize the mitotic spindle.

Consistent with their ability to establish protein gradients in the presence of diffusion,

eukaryotic cells can sense gradients of small molecules by directly comparing

concentrations across their cell bodies [3]. By contrast, due to their small size, bacterial

detection of chemoattractant gradients relies on temporal comparisons during swimming

[4]. It is thus unclear whether bacteria, typically smaller than eukaryotic cells by an order

of magnitude or more, can establish spatial gradients of freely diffusible proteins. Indeed,

most bacterial cytoplasmic proteins are uniformly distributed within the cell, and

exceptions such as the gradient of MinC protein in E. coli are notable for their

dependence on interaction with membrane-associated proteins [5].

The bacterium Caulobacter crescentus is a model bacterium for understanding the

molecular basis of cellular asymmetry. Each cell division in this organism is asymmetric,

producing a daughter stalked cell in S phase and a daughter swarmer cell in G1. This

difference in cell fate is dictated by the cytoplasmic protein CtrA, an essential

transcription factor that also binds to and directly silences the origin of replication [6].
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Here, we present evidence for a spatial gradient of the active, phosphorylated form of

CtrA. Before cell division occurs, phosphorylated CtrA (CtrA~P) is abundant and

transcriptionally activates more than 70 target genes, many required for cell division [7].

Following cell division, CtrA-P continues to repress DNA replication in daughter

swarmer cells, but is rapidly dephosphorylated and degraded in daughter stalked cells,

permitting the immediate initiation of DNA replication. A prevailing model posits that

cytokinesis is necessary for the establishment of cell fate asymmetry [8], implying that

phosphorylated CtrA is homogeneously distributed prior to cell division. Our data

challenge this model, indicating instead that the cell employs a sophisticated symmetry-

breaking mechanism such that CtrA is differentially phosphorylated across the

predivisional cell. Cytokinesis then serves to reinforce the existing asymmetry in

daughter cells.

CtrA activity is regulated by CckA, which can act either as a kinase or as a phosphatase

for CtrA via the phosphotransferase ChpT [9, 10]. In predivisional cells, when CtrA

phosphorylation levels peak, CckA is usually bipolarly localized [10, 11]. Here, we

demonstrate a critical role for the localization and bifunctional activity of CckA in which

CckA is a kinase at the swarmer pole and a phosphatase at the stalked pole. This spatial

asymmetry in opposing CckA activities produces a gradient of CtrA phosphorylation

across the predivisional cell with dramatic consequences for the asymmetry of critical

cellular processes such as DNA replication.

Chenl 108



Results

Replication in predivisional cells has an intrinsic spatial asymmetry

Caulobacter cells normally replicate their DNA exactly once per cell cycle [12].

However, we found that blocking cell division with the antibiotic cephalexin allowed for

additional rounds of replication in predivisional cells. Intriguingly, flow cytometry

indicated that for most cephalexin-treated cells, only one of the two chromosomes

replicated such that cells transitioned from having two to three chromosomes (Fig. 3. lA).

By contrast, when E. coli cells harboring two chromosomes were treated with cephalexin,

both chromosomes replicated to yield cells with four chromosomes (Fig. 3.1A). We thus

asked whether the two chromosomes in Caulobacter predivisional cells have unequal

likelihoods of initiating replication, even before cell division occurs.

To visualize DNA replication in individual living cells, we implemented a fluorescent

repressor-operator system [13] in which cells produce TetR-YFP and harbor an array of

tet operator (tetO) sites near the origin of replication [14]. Binding of TetR-YFP

molecules to the tetO array produces a fluorescent focus that marks the origin and enables

tracking of DNA replication (Fig. 3.1B). In a synchronous population of G1 swarmer

cells, a single focus was visible at the older pole, which became the stalked pole after

differentiation. Following the G 1-S transition, DNA replication led to the appearance of a

second focus that was rapidly tethered to the opposite, nascent swarmer, pole (Fig. 3.1 C).

In the presence of cephalexin, cells did not divide and 77% replicated again to produce a

third TetR-YFP focus, on average 105 minutes after the appearance of the second focus

(Fig. 3. 1C). Strikingly, this third focus originated from the stalked pole in 82% of cells

and from the swarmer pole in only 16% of cells, with 2% of cells replicating bipolarly
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(defined as instances when origins at both poles fire within one 6 minute frame of each

other) (Fig. 3.1D). Experiments using BrdU labeling also revealed a strong bias for

replication of the stalked pole-proximal chromosome (Fig. 3.2A-B). To confirm that

cephalexin inhibits compartmentalization in Caulobacter, we performed fluorescence

recovery after photobleaching (FRAP) on cells expressing a YFP-CtrA fusion. After

bleaching one of the poles, fluorescence in that area typically recovered rapidly, and

levels within the two halves of the cell converged to similar values, indicating that YFP-

CtrA diffuses freely throughout cephalexin-treated cells (Fig. 3.2C-D). Consistent with

the cephalexin-treated cells, we also observed a strong asymmetry of DNA replication in

cells depleted of ftsZ (Fig. 3.2E). Our data thus indicate that replicative capacity in

predivisional cells is strongly asymmetrical, being heavily biased toward the stalked pole,

and occurs without compartmentalization.
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Figure 3.1. Chromosomal replication in wild-type predivisional cells exhibits spatial
asymmetry. (A) Flow cytometry analysis of DNA content in mixed populations of Caulobacter
crescentus and E. coli cells. Cephalexin was added to cultures at time t=0 to inhibit cell division.
Samples were taken immediately or after 15 minutes (E. coli) or 60 minutes (Caulobacter) and
chromosome content examined by flow cytometry. (B) Experimental design for using the tetO,
TetR-YFP fluorescent reporter-operater system to examine DNA replication in individual cells. At
time t=0, newly synchronized swarmer cells are placed on an agarose pad supplemented with
cephalexin and imaged at various time points by phase and epifluorescence microscopy. Green
dots represent fluorescent foci of TetR-EYFP, which label the origins of replication. (C)
Representative time-lapse images from a wild type cell harboring the tet FROS. A single origin at
the old/stalked pole (marked with arrowhead) replicates within the first 90 minutes to yield two
polar origins. A third origin stemming from the stalked pole is visible following the 126-minute
time point. (D) Quantification of the spatial patterns of DNA replication in division-inhibited wild-
type cells. (E) Computational modeling of CtrA-P asymmetry when CckA functions as a kinase at
the swarmer pole and as a phosphatase at the stalked pole (phosphorylation and
dephosphorylation rates are sk = 100/sec and sp = 1O/sec, respectively, and occur across the
hemispherical surfaces indicated in red). The predivisional cell is represented as a three-
dimensional curved cylinder with length 4 mm. Small triangles represent the surfaces of
tetrahedral simulation grid points and the concentration of CtrA-P is shaded relative to total CtrA
protein.
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Figure 3.2. DNA replication occurs asymmetrically in cells treated with cephalexin or
depleted of ftsZ. (A) Representative immunofluorescence images of asymmetrical
bromodeoxyuridine (BrdU) incorporation in the stalked half of wild-type predivisional cells treated
with cephalexin. White arrowheads indicate the stalked pole, as determined from the phase
micrograph. (B) Quantification of BrdU incorporation in cells analyzed by microscopy. (C)
Fluorescence recovery after photobleaching analysis of a cell expressing YFP-CtrA and growing
on an agarose pad containing cephalexin. A phase image of the cell is shown alone and with a
yellow dot representing the portion of the cell bleached, followed by fluorescence images taken
immediately before and at 1 and 5 seconds after bleaching. The average fluorescence intensity
within the two halves of the cell (indicated with red and blue outlines in the phase image) was
measured before bleaching and every second after bleaching. These fluorescent intensities are
plotted as a function of time (right panel). The arrow labeled "FRAP" shows the time of bleaching.
A total of 47 cells were examined by FRAP with the majority (>75%) showing similar YFP-CtrA
levels in the two halves of the cell within 1-8 seconds after bleaching, as in panel C. (D) Same as
in panel C, but for a cell in which compartmentalization had already occurred prior to FRAP
analysis and cephalexin addition. YFP-CtrA levels in the two halves of the cell do not converge
after bleaching one pole. (E) Quantification of the spatial patterns of DNA replication in cells
depleted of ftsZ.
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A spatial gradient of CtrA phosphorylation generates replicative
asymmetry in predivisional cells

The difference in DNA replication potential of Caulobacter daughter cells after cell

division involves asymmetry in the levels of the master regulator CtrA. Whether CtrA

dictated the replicative asymmetry we observed in predivisional cells (Fig. 3.lD) was

initially unclear because a YFP-CtrA reporter was found uniformly distributed

throughout the cytoplasm (Fig. 3.3A) [15]. However, we hypothesized that

phosphorylated CtrA was asymmetrically distributed, forming a spatial gradient of CtrA

activity that was responsible for the observed replicative asymmetry. The

phosphorylation of CtrA is ultimately driven by CckA, which likely requires the essential

factor DivL for kinase activity [16]. While CckA typically localizes to both poles of a

predivisional cell, DivL usually localizes only to the swarmer pole [17]. These patterns

are maintained in a large fraction of cephalexin-treated cells (Fig. 3.3B), suggesting that

CckA functions as a kinase at the swarmer pole and perhaps as a phosphatase at the

stalked pole, thereby acting as a source and a sink for CtrA~P, respectively.
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Figure 3.3. Cell-cycle dependent localization of DivL, CckA, and CtrA is not altered by
cephalexin treatment. Schematics (top) illustrate progression through the cell cycle stages that
correspond to the micrographs (below) and summarize the subcellular localization patterns of
CtrA, DivL, and CckA. Synchronized swarmer cells were grown on agarose pads without
cephalexin (left) or with cephalexin (right). DivL-GFP (top) is localized to the swarmer pole in late
stalked and predivisional cells. DivL-GFP remains localized to the swarmer pole of most cells
following cephalexin treatment (Fig. 2B). CckA-GFP (middle) is localized bipolarly in most
predivisional cells. CckA-GFP remains localized to both poles in most cells following cephalexin
treatment (Fig. 2B). YFP-CtrA (bottom) is abundant in swarmer cells, eliminated in stalked cells,
and abundant again in predivisional cells. Following cell division, YFP-CtrA is cleared from the
stalked daughter cell. In cells treated with cephalexin, CtrA remains homogenously distributed
in predivisional cells. White arrowheads indicate the stalked poles.
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To investigate whether this asymmetry in CckA activity could generate and maintain a

steady-state gradient of CtrA-P prior to cell division, we developed a reaction-diffusion

model of the Caulobacter predivisional cell (see Methods). In this model, we assumed

that the phosphorylation state of CtrA is controlled predominantly by kinase and

phosphatase activity localized at the swarmer and stalked poles, respectively, and that

CtrA and CtrA~P freely diffuse within the cytoplasm. For a cell of length L ~ 4 [tm and a

CtrA diffusion constant of D 1-10 ptm 2/sec (Fig. 3.4C and Methods), the time scale

required to diffuse between the two poles is -rD L2/2D ~ 1-10 sec. We then determined

that if the rates of CtrA phosphorylation and dephosphorylation are fast compared with

1/rD, a gradient of CtrA-P can be produced while maintaining a uniform distribution of

CtrA protein (Fig. 3.1E, 3.4A). We measured the half-life of the phosphoryl group on

CtrA-P in predivisional cells to be on the order of tens of seconds or less, suggesting that

there are indeed high rates of both phosphorylation and dephosphorylation (Fig. 3.5),

which could produce a gradient. Incorporating ChpT into our model did not disrupt the

spatial asymmetry of CtrA~P, even if ChpT is free to diffuse (Fig. 3.6A). This gradient

was also insensitive to whether CckA activity was assumed to be spread across the entire

pole or concentrated in a region as small as 50nm (Fig. 3.6B).

Because the direct observation of a protein phosphorylation gradient is currently

intractable, we used our model to systematically alter the gradient via perturbation of

CckA localization and function and then verified these predictions using a variety of

mutations. Our model predicts that a gradient of CtrA-P would be substantially reduced

or eliminated by removing (i) the kinase activity of CckA alone, (ii) both the kinase and

phosphatase activity, or (iii) the phosphatase activity alone (Fig. 3.4A). In each case, the

Chen| 115



absence of a source and/or sink of CtrA~P would lead to a near-uniform distribution of

CtrA~P, which should reduce or eliminate the stalked pole bias in replicative asymmetry

of predivisional cells and lead to an increase in the fraction of cells replicating bipolarly

(Fig. 3.4A).
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Figure 3.4. CtrA activity is required for replication asymmetry in predivisional cells. (A)
Mathematical modeling of the spatial distribution of CtrA phosphorylation in wild type and mutant
strains disrupted for CckA kinase activity (divLts) or CckA phosphatase activity (cckA(V366P)).
For wild type the phosphorylation and dephosphorylation rates, ok and op, respectively, are
100/sec and 10/sec. For divLt, Ok = 0; for cckA(V366P), op = 0. The predicted patterns of CtrA-P
as a percentage of the total CtrA concentration are shown as a function of position along a 1 D, 2
pm cell and in the p redivisional cell schematics. (B) Experimental design for examining DNA
replication in cckA'' and divLt" cells. At time t=0, a mixed population of cells harboring the tet
FROS and grown at 280C (cckAts) or 300C (divLts) was placed on an agarose pad for microscopy
at 340C. Phase contrast and epifluorescence microscopy were used to follow late predivisional
cells that divided immediately after beginning a time-lapse movie. Both daughter cells inherit a
single chromosome that replicates, leading to two origin foci. At the restrictive temperature of
340C, cckAts and divLts cells do not divide; we then examined the spatial pattern of subsequent
DNA replication events. (C) Frames from a representative time-lapse movie of divLts cells
showing bipolar replication (left cell) and unipolar replication from the stalked pole (right cell). (D)
Quantification of the spatial patterns of DNA replication in wild type, cckAts, divLts, and
cckA(V366P) cells. Temperatures and numbers of replicating cells examined are indicated.
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Figure 3.5. Kinetics of CtrA~P dephosphorylation in vivo. (A) In vivo phosphorylation pulse-
chase showing 32P-labeled CtrA (CtrA-P) levels in synchronized predivisional cells from the wild-
type strain or from cells expressing cckA(V366P), each grown in M5G. Time 0 is after labeling
and immediately before adding the chase solution. All other time points are taken after adding the
chase solution. (B) Quantification of the CtrA-P bands. Error bars represent standard deviations
calculated from two experiments done on separate days using independent cultures.
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Figure 3.6. CtrA-P asymmetry is insensitive to ChpT diffusion and to the size of polar
CckA activity. (A) Simulations of CtrA phosphorylation gradient when ChpT is included as a
freely diffusible species (green line) or polarly localized during phosphotransfer via binding to
CckA (purple line). The rates of ChpT phosphorylation and dephosphorylation by CckA are
100/sec and 1 0/sec, respectively, and levels of ChpT are chosen so that the rates of CtrA
phosphorylation and dephosphorylation at the poles are 100/sec. If polarly localized, ChpT-
mediated phosphorylation produces an identical CtrA-P gradient to that in Fig. 4A. If ChpT
diffuses freely, CtrA-P has similar polar concentrations and has a concave distribution.
Diagrams on the right indicate the distribution of ChpT and ChpT-P (blue) engaged in
phosphotransfer to CtrA in the two models. (B) 1 D simulations of the CtrA phosphorylation
gradient when the area of CckA activity at the poles was varied between 50-250 nm. (C) 3D
simulation of the CtrA phosphorylation gradient when the area of CckA activity at the poles is
restricted to a width of 50 nm.
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To test our predictions regarding the relationship between CtrA activity and replicative

asymmetry, we first examined DNA replication in cells harboring the TetR-tetO system

and either a divL's or cckAt' mutation. Both strains exhibit a decrease in CtrA activity

when shifted from a permissive to restrictive temperature [18, 19]. For divLts, CckA

kinase activity is likely reduced at the restrictive temperature [16], while the cckA's

mutation probably affects both kinase and phosphatase activities. We placed a mixed

population of cells (for both cckA's and divL'') on agarose pads at 34'C and followed late

predivisional cells, which divided once but not again due to the loss of CtrA activity,

even without adding cephalexin (Fig. 3.4B-C). We then examined the spatial pattern of

new rounds of DNA replication in these cells, assessing whether replication occurred at

the old/stalked pole, the new/swarmer pole, or both.

In the divLs and cckA'S strains, the loss of CckA kinase activity and consequent reduction

in CtrA-P at 34'C completely eliminated the asymmetry of replication (Fig. 3.4D). For

divL'S cells that replicated unipolarly, 51% initiated at the stalked pole and 49% at the

swarmer pole. For cckA'S cells that replicated unipolarly, 46% of cells initiated at the

stalked pole and 54% at the swarmer pole. By contrast, for wild-type cells at 34'C that

replicated unipolarly, 85% initiated at the stalked pole. In agreement with our prediction

of uniform CtrA-P levels, the divL's and cckAts strains also exhibited increases in bipolar

firings; 50% of divL'" cells and 30% of cckA'S cells at 34'C replicated bipolarly, compared

to just 4% in wild type (Fig. 3.4D). As a control, we verified that these losses in

asymmetry were not attributable to differences in cell length in the mutant strains (Fig.

3.7). The timing of replication was also substantially faster in the mutant strains, with

replication at the stalked pole in divL' and cckA'' cells occurring an average of 45 and 43
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minutes, respectively, earlier than in wild-type predivisional cells at 340C. Earlier

replication likely reflects a loss of CtrA-mediated inhibition of the origin of replication.

In sum, our data indicate that replicative asymmetry is eliminated in divL's and cckA's

cells at 34'C due to a loss in CekA kinase activity.

A

Wt
30*C

St

dI"
34"C

stalked pole swarer pole

0 1 2 3 4 6
posltion along coll (pm from stalked pole)

Figure 3.7. Cell length at the time of replication does not affect the extent of replicative
asymmetry. (A) Cell length was measured at the time of replication initiation in predivisional cells
in each of the strains indicated. Cells were classified according to whether replication initiated
from the swarmer pole (sw), stalked pole (st), or from both poles (bi). The average cell length
(mm) is listed at the bottom of each bar. (B) Mathematical modeling showing that the spatial
asymmetry in CtrA-P concentration is insensitive to cell length, using the wild-type localization
and kinetic parameters from Fig. 2A.
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CckA phosphatase activity is important for generating a CtrA activity
gradient

To test the importance of CckA phosphatase activity in forming a CtrA~P gradient, we

replaced the chromosomal copy of cckA with cckA(V366P). CckA(V366P) retains kinase

activity, but has significantly diminished phosphatase activity in vitro [10] and leads to a

significantly longer half-life of the phosphoryl group on CtrA~P in vivo (Fig. 3.5). Using

the TetR-tetO system, we confirmed our prediction that predivisional cells of the

cckA(V366P) strain also exhibited a dramatically decreased spatial replication bias, with

53% of origins coming from the stalked pole and 45% from the swarmer pole (Fig. 3.4D).

Additionally, cckA(V366P) predivisional cells took an average of ~10 minutes longer

before initiating DNA replication than wild type cells (p = 0.0003, two-sided t-test). This

delay is likely due to an increase in the overall levels of CtrA~P, resulting from a loss of

CckA phosphatase activity. If the V366P mutation had simply increased kinase activity

rather than eliminating phosphatase activity, our model predicts that CtrA~P asymmetry

would be retained. Thus, the combination of decreased asymmetry and slower replication

implies that CckA at the stalked pole is not inert [11], but is actively dephosphorylating

CtrA to help form a CtrA~P gradient.

Replicative asymmetry depends on direct repression of the origin by
CtrA

CtrA has two distinct functions: direct repression of the origin and transcriptional

regulation of cell-cycle genes [6, 7]. To show that replicative asymmetry depends on

CtrA~P binding to the origin rather than indirectly on CtrA-dependent transcription, we

used strains in which either two or three of the five CtrA~P binding sites at the origin

were mutated to severely disrupt CtrA~P binding [20] (Fig. 3.8A). These strains still
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harbor wild type copies of ctrA, cckA, and divL, and exhibit relatively normal cellular

morphology and doubling times, suggesting CtrA transcriptional activity is not

significantly affected. For the strain with two mutated binding sites, we observed a

weaker spatial bias, with 58% of cells replicating from the stalked pole and 31% from the

swarmer pole (Fig. 3.8B). The strain in which three of the five CtrA binding sites were

mutated exhibited a further reduction in replicative asymmetry, with 51% of cells

replicating from the stalked pole and 31% from the swarmer pole (Fig. 3.8B). We predict

that mutating all five CtrA binding sites would completely eliminate spatial bias, but such

strains could not be examined because they are extremely sick, likely because removing

all CtrA binding sites eliminates other critical, overlapping elements of the origin.

Cori CtrA-binding sites C

a b c d e

a b c d e
bd3 0 0

ab c d e
bc~d066 0

100-

Obipolar

Oswarmer

Estalked

.100

E so

C
i60

240
E

0 10 i23

at" 0.001/5; a,10.0056s6

I ,!,O
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wt orI(bced) od(bd)
(n=504) (n-363) (n-415)

Figure 3.8. Asymmetry of replication depends on direct CtrA repression of the origin. (A)
Schematic of CtrA binding sites in the origin of replication of wild type and the 'bd' and 'bcLd'
mutants [20] which have mutations in two or three sites, respectively. (B) Quantification of spatial
patterns of DNA replication in wild type and origin mutants. Cells were examined as in Fig. 2C at
30*C. (C) Markov model for concentration dependence of the average time before all CtrA-P
binding sites are left unoccupied, thereby allowing for DNA replication initiation. Rates of binding
(ab = 0.001/sec) and unbinding (ou = 0.005/sec) were selected to reproduce the average firing
time in wild-type cells. Polar concentrations (dashed lines) were translated into approximate
molecule counts using a DNA-interaction volume of 105 nm3, and the heights of the shaded
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triangles indicate the degree of asymmetry between the stalked pole (left) and swarmer pole
(right). As the number of CtrA binding sites increases from 2 to 4 (green line to red line), the
height of the shaded triangle increases, indicating an expected increase in the asymmetry of firing
times between the stalked and swarmer poles.

The effects of mutating the origin on replicative asymmetry were captured in a Markov

chain model in which CtrA~P molecules rapidly bind to and dissociate from the origin,

with replication initiating only when all binding sites are unoccupied (Fig. 3.8C). This

model predicts that the difference in firing times at opposite poles should decrease in the

presence of fewer CtrA binding sites in a manner consistent with our experimental results

(see Methods). Hence, our data collectively indicate that a spatial gradient of

phosphorylation dictates CtrA's propensity to bind and repress the origins in different

regions of predivisional cells, and that the dependence of origin firing on CtrA-P

concentration can be altered by perturbing the regulation of CtrA~P in trans or the

binding of CtrA~P in cis.

Fundamental criteria for generating phosphorylation asymmetry

Our experimental readout provides information on CtrA activity only near the poles

where the origins of replication are anchored. While there are not yet tools to measure the

complete spatial distribution of phosphorylated CtrA, our mathematical modelling

predicts that a sufficiently fast-acting source and sink for phosphorylation localized at

opposite poles would produce a linear gradient of CtrA~P. To test whether other

mechanisms could explain our data, we used the model to investigate the range of kinetic

parameters that produce robust gradients, whether gradient formation relies on

localization of both the source and the sink, and the role of localized synthesis and

proteolysis in gradient formation.
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We first exhaustively explored the ranges of possible phosphorylation and

dephosphorylation rates that would support a substantial steady-state gradient of CtrA-P,

and uncovered a general rule that a robust gradient requires both rates to be faster than

the inverse diffusive time scale 1/rD ~1/sec (Fig. 3.9A). The phosphorylation and

dephosphorylation rates for CtrA in vivo are likely 50-100/sec (see Methods), suggesting

that cells operate well above the threshold necessary to produce a substantial gradient of

CtrA~P. We then used the model to assess whether a gradient can be produced if either

the CckA kinase or phosphatase activity is delocalized. We also considered a scenario

where CckA phosphatase activity at the pole is slow, but an additional delocalized

phosphatase for CtrA exists [10]. Our simulations indicated that, provided the overall

rates of phosphorylation and dephosphorylation remained faster than 1/rD, the formation

of a gradient was robust to delocalization of one, but not both activities (Fig. 3.10).
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Figure 3.9. Both kinase and phosphatase activities of CckA must be fast to produce a
CtrA~P gradient. (A) Mathematical modeling of the spatial asymmetry in CtrA-P across a 1 D cell
for varying kinase and phosphatase rates. A substantial gradient is obtained only when CtrA
phosphorylation and dephosphorylation are faster than the inverse of the time scale required for
diffusion across the cell, 1/TD = 2D/L 2. Degradation and synthesis are not included in these
simulations as they have little effect on the gradient unless the half-life is shorter than TD. (B)
Schematic of protein localization patterns in Caulobacter resulting in formation of a gradient of
CtrA-P in predivisional cells. Cell division reinforces the asymmetric distribution of CtrA-P,
resulting in daughter cells with different replicative capacities and fates. (C) Schematic of the
CckA/ChpT/CtrA phosphorelay. When stimulated by DivL at the swarmer pole, CckA operates as
a kinase, resulting in phosphorylation of ChpT and, ultimately, CtrA. When unstimulated at the
stalked pole, CckA operates as a phosphatase, driving dephosphorylation of CtrA-P.
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Figure 3.10. CtrA~P asymmetry can be established if either phosphorylation or
dephosphorylation, but not both, is delocalized. (A) Low levels of delocalized background
phosphotransfer activity with rate O.1/TD have little effect on the gradients shown in Fig. 4A. (B, C)
A delocalized exogenous kinase (B) or phosphatase (C) will also generate spatial gradients in
CtrA-P if the phosphorylation and dephosphorylation rates are fast compared with 1/TD and the
opposing activity remains localized. (D) The spatial gradient is completely eliminated when both
kinase and phosphatase activity is delocalized. (E) Modeling predicts that saturation of the
phosphorylation and dephosphorylation of CtrA at 10% of its average cellular concentration (see
Methods) does not abolish the spatial asymmetry in CtrA-P when the phosphorylation and
dephosphorylation rates, ok and op, are large compared with 1/rD.
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Finally, we used our model to address the potential roles of localized CtrA synthesis or

proteolysis in gradient formation. We assumed that synthesis produces unphosphorylated

CtrA while degradation does not distinguish between CtrA and CtrA~P. Although the

absolute levels of CtrA activity will depend on total CtrA protein levels, our model

predicts that the shape of the gradient (and hence the relative asymmetry) is insensitive to

the location or amount of CtrA synthesis, because diffusion between the poles is fast

relative to the rate of CtrA synthesis. Because the protease for CtrA is often polarly

localized in stalked cells [21], we also considered a model in which CtrA proteolysis is

concentrated at the stalked pole. Such asymmetry in proteolysis also did not significantly

affect a gradient of CtrA-P unless the half-life of CtrA protein was comparable to, or

shorter than, rD (on the order of seconds or faster) (Fig. 3.1 IA). However, we measured a

half-life for CtrA in predivisional cells of ~60 minutes (Fig. 3.1 lB-C), several orders of

magnitude too slow to impact a phosphorylation gradient. Moreover, if the rate of

proteolysis at the stalked pole were comparable to 1/rD, a clear signature would be a

gradient of CtrA protein, which we do not observe with YFP-CtrA. Finally, we note that

while the protease for CtrA is often localized in stalked cells, it is usually dispersed in

predivisional cells [21], and our model predicts that dispersed proteolysis at a rate that is

slow compared with 1/rD would also not significantly impact a phosphorylation gradient.

We conclude that replicative asymmetry depends primarily on the phosphorylation and

dephosphorylation of CtrA and not on proteolysis or synthesis, specifically because

phosphorylation state can be modified on time scales faster than diffusion.
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Figure 3.11. CtrA proteolysis does not significantly contribute to the CtrA-P gradient. (A)
Mathematical modeling of the effects of CtrA proteolysis on the distributions of CtrA-P using a 1 D
reaction-diffusion model; proteolysis (represented by the blue circle) is assumed to be
concentrated at the stalked pole (see Methods for details). For the experimentally measured CtrA
half-life of 60 min (rate -0.0003/sec), the spatial gradient generated by CckA-mediated
phosphorylation with rate ok=100/sec and dephosphorylation with rate op=10/sec is almost
completely unaffected (purple curve). (B) Pulse-chase analysis of CtrA protein stability in
synchronized cultures of wild type CB15N. Swarmer cells were synchronized, released into fresh
M2G, and CtrA stability measured either immediately or after 120 minutes. (C) Exponential fit to
pulse-chase data from panel A. The half-lives of CtrA in cells pulsed immediately or 120 minutes
after release into M2G were calculated to be 18 and 58 minutes, respectively.
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Discussion

Spatial homogeneity of a protein's abundance throughout the cell does not necessitate

spatial homogeneity of the protein's activity. Here, we provided evidence that although

YFP-CtrA is uniformly distributed in a Caulobacter predivisional cell, CtrA-P forms a

gradient. We observed a remarkable spatial bias for DNA replication in predivisional

cells with initiation occurring much more frequently at the stalked pole. Because

chromosomal origins are tethered to opposite poles in Caulobacter predivisional cells and

are silenced by CtrA-P, this replication bias reflects an underlying asymmetry in CtrA

phosphorylation at the poles. This asymmetry in CtrA phosphorylation depends on the

bifunctional enzyme CckA. Although localized to both poles, our data suggest a

difference in activity state of polar CckA in predivisional cells, with a strong bias toward

the kinase state at the swarmer pole and toward the phosphatase state at the stalked pole

(Fig. 3.9B). The gradient of phosphorylated CtrA identified here thus establishes

replicative asymmetry before cytokinesis, which then locks in the existing spatial bias in

CtrA activity.

Although it is often assumed that diffusion eliminates spatial variations in protein

concentrations at this short length scale and on time scales relevant to cell division, our

data indicate that phosphorylated CtrA, a freely diffusible protein, forms a robust

gradient. Given the prevalence of two-component signaling systems in bacteria, there

may be other regulators that have uniform protein distribution but spatially heterogeneous

activity. Our work reveals a pressing need for phosphorylation state-specific reporters of

bacterial proteins. There may also be other enzyme pairs with opposing, spatially

segregated activities that can produce gradients, such as the diguanylate cyclases and
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phosphodiesterases that produce and degrade, respectively, the bacterial second

messenger c-di-GMP [22]. In sum, while the advent and application of GFP technology

has clearly demonstrated that bacterial proteins can be targeted to specific cellular

locations, our results suggest yet another level of spatial organization operating on

protein activity.
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Materials and Methods

Growth conditions

Escherichia coli and C. crescentus strains were grown as described previously [23].

Strains, plasmids, and primers used in this study are listed in Table S 1. All plasmids were

introduced into C. crescentus by electroporation or by conjugation with E. coli S17 cells

as described previously [24]. PCR amplification of genes and promoters from CB 15N

genomic DNA was performed under previously described conditions [23].

For analysis of synchronized populations, mixed populations were grown in PYE and

induced and synchronized using Percoll density centrifugation as previously described

[25]. Synchronized swarmer cells were resuspended in PYE to an OD600 of 0.2-0.3. For

movies of mixed populations, cells were grown in PYE to an OD6 00 of 0.2-0.3.

Synchronized swarmer or mixed population cells were spotted onto 1.2%-1.5% agarose

(UltraPure Agarose, Invitrogen) PYE pads containing 0.3% xylose. Cephalexin (36

[tg/ml) was added to the pads when indicated.

Strain construction

All strains and plasmids are listed in Table 3.1. To construct C. crescentus strain

ML1753, <Cr30-based transduction of a chloramphenicol-marked, temperature sensitive

divL(A288V) allele (divL'8 ) [19] from ML1798 was used to replace wild-type

chromosomal divL in the FROS strain (MT16) [14]. To construct strain ML1798, a C-

terminal fragment of divL(A288V) was amplified from PC4403 with primers

divLfulllengthrev and divLfwdl788 [19]. The PCR product was digested with EcoRI

and KpnI and ligated into those sites in pMCS6, a chloramphenicol-marked integration
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vector [26]. The resulting plasmid (pMCS6:divL(A288V)) was electroporated into

CB15N.

To construct strain ML1754, 1261 bp of cckA(V366P) were amplified from pML83:Py-

cckA(V366P) with primers CckAEcoRIFw and CckAHindIIIRev, which added a 5'

EcoRI site and 3' HindIII site. This fragment of cckA(V366P) was then TOPO cloned

into pCR2.1-TOPO (Invitrogen), sequenced, and then digested with EcoRI and HindIII,

and ligated into the integration vector pNPTS 138, also digested with EcoRI and HindIII.

The resulting plasmid pNPTS 138-cckA(V366P) was electroporated into the FROS strain

(MT16). Clones in which the plasmid had recombined were counterselected on sucrose

and screened by sequencing of the cckA gene for the correct markerless replacement of

wild type cckA with the mutant allele.

To construct strain ML1756, a C-termiial fragment of divL without the stop codon was

amplified by PCR with primers divLfulllengthrev and divLfwdl788. The divL PCR

product was cloned in frame with the egfp gene in pGFPC-4 using KpnI and EcoRI

restriction sites. The plasmid was recombined into CB 15N by electroporation to generate

chromosomally encoded divL-egfp.

To construct strains ML1793 and ML1794, the tetO cassette in MT16 was first PCR

amplified using primers CCO006_HindIIIfw and M13REcoRI. This PCR product was

digested with Hind!II and EcoRI and ligated into the Caulobacter integration vector

pNPTS138, also digested with HindIII and EcoRI. The resulting plasmid

pNPTS 138:ccOO06-tetO was electroporated into the origin mutant 'bcLd' strain GM3 193

and 'bd' strain GM3 103 [20]. A Cr30-based transduction with phage lysate from MT16

Chen 1132



and selection on spectinomycin was then used to insert lacJ-ECFP-tetR-EYFP at the xylX

locus.

To construct strain ML1876, Py-ftsZ::kan was transduced from YB1585 [27] into a

strain containing the tetO cassette at the origin and Pvan-tetR-YFP at the vanA/B locus.
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Table 3.1 - Strains, Plasmids, Primers

Organism or
Category Name Genotype, Plasmid description, or Primer Sequence Source

C. crescentus

E. coli

General purpose
vectors

Integration plasmids

Overexpression
plasmids

Primers

CB15N
GM3193
GM3103
LS4259

MT1 6

PC4403
ML1 506
ML1 681
ML1 753
ML1 754
ML1 755
ML1756
ML1 793

ML1 794

ML1 795
ML1 798
ML1 876

DH5a
TOP10
pJS14

pJS71
pML83
pMR10
pMR20
pNPTS138
pGFPC-4

pMCS-6

pNPTS138:cckA(V366P)
pNPTS138:ccOO06-tetO
pGFPC-4:cckA-GFP
pGFPC-4:divL-GFP
pMCS-6: divL(A288V)
pJS14:PxyrctrA

pML83:PxyrcckA(V366P)
CckA_497_EcoRIFw
CckA_1717_HindlllRev
CCO006Hindlllfw
M13REcoRI
divLfulllengthrev
divLfwd 1788
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synchronizable derivative of wild-type CB15
oi(bcLd)
od(bd)
pKR173 (pMR20:Pxyl-YFP-ctrA) (gent")
ccOO06::(tetO), (gentR) + xylX::Iac/-ECFP, tetR-EYFP (specR) (gentR
specR)
divL346 (divL)
pJS14:Pxyl-ctrA (chlor")
cckA-EGFP::gent (gentR)
divL"::chlor in MT16 (chlor", spec", gent")
cckA(V366P) in MT16 (specR, gentR)

ApleC::tet in MT16 (tet",spec",gent")
divL-EGFP::gent (gentR)
ori(bc d) + cc0006:(tetO), (gentf, kan") + xyIX::ac/-CFP, tetR-YFP
(spec ) (kanR, gent , specR)
ori(bd + cc0006::(tetO)n (gentR, kanR) + xyIX::acI-CFP, tetR-YFP
(spec ) (kanR, gentR, Spec
cckAK in MT16 (spec", gent")
divLt::chlor (chlorR)
Pxyl-ftsZ (kan") + ccO006::(tetO), (gent') + vanA::tetR-YFP (kan",
gentR)

general cloning strain
strain for constructing pENTR-TOPO clones
derivative of pBBR1MCS, high-copy replicon (chlorR)

derivative of pBBR1IMCS, high-copy replicon (specR)
Pxy, oriented against P1,c, inserted into EcoRI site of pJS71 (chlor")
broad host range, low copy vector (kanR)
broad host range, low copy vector (tet")
Integration vector (kanR)
Integration vector for c-terminal tagging of desired protein with EGFP
(gent)
Integration vector (chlorR)

for markerless allelic replacement of cckA
for integration of tetO cassette at ccOO06, near the origin
for replacing cckA with cckA-EGFP on the chromosome
for replacing divL with divL-EGFP on the chromosome
for integration of divL's at the native locus
high-copy plasmid, xylose-inducible expression of ctrA (p1D42)

high-copy plasmid, xylose-inducible expression of cckA(V366P)
GAATTCtgcgggcggacggctgatga

AAGCTTtcgtcctcgacgaacaggat

cagcagcagaagcttATGGCCCAGTTCCAGACCCT

cagcagcaggaat tcCACAGGAAACAGCTATGA

cagcagcaggaat tctcGAAGCCGAGTTCGGGCTGC

cagcagcagggtaccCGTGCTGGACATGGCCCA

[28]
[20]
[20]
[29]
[14]

[19]
[30]
[10]
this study
this study
this study
this study
this study

this study

this study
this study

this study

Invitrogen
I nvitrogen
Lab collection

Lab collection
Lab collection
Lab collection
Lab collection
Lab collection

[26]

[26]

this study
this study
this study
this study
this study
[30]

[10]
this study
this study
this study
this study
this study
this study



Flow cytometry

Wild type CB 1 5N were grown in PYE and wild type E. coli K12 were grown in LB. At

time 0, cephalexin (36 tg/ml) was added to both Caulobacter and E. coli cultures to stop

cell division. Rifampicin (60 [tg/ml for Caulobacter, 300 mg/ml for E. coli) was then

added to cultures at either t=0 to prevent new rounds of DNA replication or at a later

time to allow for one additional round of replication in division-inhibited cells (60

minutes for Caulobacter and 15 minutes for E. coli). After rifampicin addition, cells

were incubated at 30"C for 4 hours (Caulobacter) or at 370C for 3 hours (E. coli) to allow

for completion of ongoing rounds of replication before sample collection. Processing and

flow cytometry of samples was performed as previously described for Caulobacter [10]

and E. coli [31].

Pulse-chase analyses

For determining CtrA half-life, cultures of ML1506, which contains ctrA driven by a

xylose-inducible promoter on a medium-copy plasmid, were grown in M2G at 30'C until

OD6 00 reached -0.3. Expression of plasmid-encoded ctrA was then induced with 0.03%

xylose for 1.5 hours before synchronization. For measurement of CtrA half-life, a

synchronized culture was either pulse-labeled immediately after release into M2G or

grown for 120 minutes in M2G supplemented with cephalexin (36 [tg/ml) before pulse-

labeling. Cells were pulsed for 2 minutes with 10 [Ci ml 1 [3 5S]-methionine and then

chased with excess cold methionine and casamino acids. 1 ml of culture was collected at

each time point indicated and flash-frozen in liquid nitrogen. After resuspending cell

pellets in 50 ml SDS buffer and boiling for 2 min, the cell lysate was resuspended in 800

ml IP wash buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-
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100) and pre-cleared with 25 pl Staph A cells (Calbiochem) for 10 minutes on ice. Each

sample was then spun down and the pre-cleared supernatant transferred to a new tube.

CtrA antiserum (Covance) was added at a dilution of 1:550 and rocked gently at 40C

overnight; 30 pl protein A-agarose (Invitrogen) was then added for 1 h. The

immunoprecipitate was collected by centrifugation, washed three times with IP wash

buffer, resuspended in 15 tl of SDS sample buffer, and boiled for 4 min. The resulting

samples were resolved by SDS-PAGE. The gel was dried and exposed against a Phosphor

Screen (Molecular Dynamics) for at least 5 days. Labeled protein bands were scanned

and quantified using a Phosphorlmager with ImageQuant software (Molecular

Dynamics).

Determination of the phosphoryl group half-life of CtrA~P was done as previously

described [32] with the following modifications. A synchronized culture of the wild-type

FROS strain (MT16) was grown in M5G for 80 minutes until they had reached the

predivisional stage. The cells were then labelled for 5 minutes with 90 [tCi [y32P]-ATP

per ml culture and the first sample collected. After labeling, the cells were chased with

an excess of cold ATP (1 mM). Samples were then immunoprecipitated using CtrA

antiserum (Covance).

Fluorescence recovery after photobleaching analyses

FRAP experiments were performed on a Nikon Eclipse Ti inverted microscope with a

Nikon Plan Apo 100x objective (numerical aperture of 1.4) and a Haison plexiglass

chamber heated with an Air-Therm Atx heater to maintain cells at 30'C. Images were

recorded with an Andor DU-885 camera. A 405 nm solid state Ixon laser passed through

a Chroma CFP filter cube was used for illumination. The laser formed a Gaussian spot
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with a full-width-half-maximum size of -3 [tm. Cells constitutively expressing YFP-

CtrA were grown on agarose pads containing cephalexin for 90 minutes and then imaged.

YFP-CtrA levels in each cell was measured with a 1 second exposure, followed by

bleaching of a polar region with the laser for 200 msec. YFP-CtrA levels were then

measured every second (with one second exposures) for nine seconds to assess recovery.

Forty-seven cells were analyzed and a representative cell is shown in Fig. S1C. For

comparison, a cell in which compartmentalization had already occurred is shown in Fig.

SlD. All imaging and FRAP was done with an ND8 filter. Image analysis was done in

Excel and Matlab using a modified version of PSICIC

(http://www.molbiol.princeton.edu/labs/gitai/psicic/psicic.html).

Determination of cell length

To measure cell lengths, a freehand line in ImageJ (http://rsbweb.nih.gov/ij/) was drawn

through the middle of the cell running from the pole to pole. The pixel length of this line

was then converted to mm based on the magnification used.

Reaction-diffusion model of CtrA~P dynamics

Our reaction-diffusion model of the CckA/DivL/CtrA system is described in the main

Methods section. Additional details are provided here.

To model the effects of ChpT on CtrA-P asymmetry, we treat ok= 100/sec and or= 10/sec

as the phosphotransfer rates between CekA and ChpT, and assume that phosphotransfer

between ChpT and CtrA occurs at the poles at the rate 100/sec. We assume that the

concentration of ChpT is significantly higher than CckA, such that ChpT is not a

bottleneck for CtrA phosphorylation. When ChpT spends a significant fraction of the
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time bound to CckA, the phosphorylation and dephosphorylation of CtrA again occurs

predominantly at the poles and there is a linear gradient of CtrA-P with higher levels of

CtrA~P at the swarmer pole. If ChpT is free to diffuse, CckA produces opposing linear

gradients of ChpT and ChpT~P, identical to the gradients of CtrA and CtrA-P in Fig. 2A.

These gradients of CtrA phosphorylation and dephosphorylation are still able to maintain

an asymmetric distribution of CtrA-P (Fig. S4A), with similar effects to delocalizing the

kinase activity of CckA (Fig. S6B).

If the population of CtrA is very large, the CckA population could saturate, reducing the

kinase and phosphatase rates in a CtrA and CtrA~P concentration-dependent manner,

respectively. In Fig. S6E, we incorporate saturation of CckA at high CtrA concentration

by multiplying ok and a, by (1+[CtrA]/K)-l and (1+[CtrA-P]/K)-, respectively, where K

is 10% of the total amount of CtrA. We verified that saturation has little effect on a

gradient (Fig. S6E), since the concentrations of CtrA and CtrA~P are kept low at the

swarmer and stalked poles, respectively, by the activities of CckA.

Markov model of CtrA~P replication inhibition

If CtrA-P is the only determinant of the timing of origin firing, the average duration

before firing events is determined by the steady-state densities at the poles. To determine

the dependence of replication asymmetry on the number of CtrA~P binding sites, we

varied the number of independent binding sites nb between 2 and 4 binding sites (sites a

and b are cooperative and hence treated as a single site [33]), and assumed that binding of

CtrA-P to any one site is sufficient to inhibit replication initiation. Given a CtrA

population of 10,000 molecules, the number of CtrA~P molecules available to bind to the

origin within a volume of (50 nm) 3 is between 0 and 20, depending on the gradient of
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concentration in Fig. 2A. We selected rates of CtrA~P binding (ob) and unbinding (oh) to

match the average time of initiation in wild-type cells. We assumed that replication

initiates rapidly as soon as all binding sites are empty. This selection of DNA-binding

volume and rate constants illustrates the qualitative dependence of firing time on the

number of binding sites, although other pairs of values (ob, or) and numbers of CtrA~P

also produce the same initiation time. We ignored diffusion within this volume given that

comparatively slow time scales of binding are required to reproduce measured firing

times. The number of sites bound by CtrA-P was varied stochastically using a Monte

Carlo algorithm, and we calculated the probabilities Pi of i=1,2,...,nb sites being

occupied. The average time before firing in 1000 simulations (Fig. 3C) was determined

as <T>=(P1 Y)1 , where we have assumed that multiple simultaneous unbinding events is

extremely unlikely.

Microscopy

Imaging was performed on a Zeiss Axiovert 200 microscope with a 63x phase objective

fitted with an objective heater (Bioptechs). The stage was fitted with a culture dish heater

(Warner Instruments). Imaging was performed at 300C or 340C. We examined divL's and

cckA's strains at 340C because at 370C, under our movie conditions, many cells failed to

segregate their chromosomes; individual origin foci increased in intensity indicating

rereplication had occurred, but segregation of the new origins was impaired.

For analysis of synchronized cells, the stalked pole was determined as the pole proximal

to the initial, single origin. For analysis of unsynchronized cells, we followed the two

daughter cells of each mother cell that was in the late predivisional stage at the beginning

of the movie. The poles of the mother cell become the stalked poles of each daughter cell
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while the two poles formed upon cytokinesis of the mother cell become the nascent

swarmer poles of each daughter cell in the predivisional stage. Fluorescence images were

taken every 6 minutes, and origin firing was designated as bipolar if the two origins in a

predivisional cell fired within one frame of each other. Replication patterns were counted

in cells that replicated; some cells did not grow or lysed, presumably due to the effects of

growth on cephalexin or on an agarose pad. To confirm the quantification of replication

patterns, a member of the lab who did not collect the microscopy data performed a blind

quantification of two strains (wild type and cckA(V366P)). The results fit within the error

bars shown in Fig. 3.12
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wt ori(bc.d) or(bd) cckA(V366P) wt divL* cckAb

30*C 34*C

a stalked o swarmer a bipolar

Figure 3.12. Summary of spatial patterns of DNA replication. Quantification of DNA
replication patterns in predivisional cells of the strains indicated. Error bars represent standard
deviations for quantifications from three independent cultures, processed on three different days.
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Reaction-diffusion model of CtrA~P dynamics

We developed a reaction-diffusion model of the CckA/DivL/CtrA system consisting of

two equations describing the spatial and temporal evolution of the [CtrA] and [CtrA-P]

densities:

, if"u""o , Phosphorylation Dephosphorylation Synthesis Degradation

d[CtrA] d2[CtrA] ' ' ')'c'rDeg---^---,

t - D , -o x"[CtrA + a t (xa ,) r P)[CtrA - Pa - y(x)[CtrA]

Jt x(CtrA ~ P] d[tA -P tX Y,,[CtrA ~ P ~~ Cr
& - D x2 + (a,,Sw(x) +o a)[CtrA]J- (,(x)TICrP~P ~)[tA~P

We used the Einstein relation (D = kBT/6r/1R) and the 23 kDa molecular weight of CtrA

to estimate an upper bound on the CtrA diffusion constant D ~ 8 [tm2/sec. Our FRAP

studies demonstrated full recovery of photobleaching at the poles within 1-8 seconds in

the majority of cells examined (Fig. B.S1C, Appendix B), indicating that D ~ 1-10

[Lm
2/sec. For all calculations, we assume D = 2 [m

2/sec and is independent of

phosphorylation state. Any reduction in D caused by factors such as DNA binding only

enhances the gradient of CtrA-P. The functions Sw(x) and St(x) are 1 at the swarmer and

stalk poles, respectively, and zero elsewhere. The poles occupy 1/8 of the cell length,

except in Fig. B.S4B, Appendix B where they range from 1/8 to 1/40 of the cell length.

The uniform appearance of YFP-CtrA indicates that CtrA does not spend a significant

amount of time in an immobile bound state, hence the rate constants ok and og

representing the phosphorylation and dephosphorylation of CtrA, respectively, are

assumed to be linearly dependent on the concentration of CckA. Unless otherwise stated,

we set these rates at 100/sec and 10/sec, respectively, which are conservative, lower-

bound estimates. For predivisional cells with CtrA and stalked pole-localized CckA
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numbering 10,000 [15] and 50 molecules, respectively, a half-life of the phosphoryl

group on CtrA~P on the order of seconds (Fig. B.S3, Appendix B) implies a rate of CtrA

dephosphorylation by each CckA molecule on the order of 100/sec. The rate of CtrA

phosphorylation must be even faster as there is a net accumulation of phosphorylated

CtrA in predivisional cells. We assume that other cytoplasmic sources of phosphorylation

and dephosphorylation are uniformly distributed and, except for Fig. B.S6, are slow

enough (0. 1/sec) to only define the overall levels of CtrA-P in the absence of CckA.

To analyze CtrA-P asymmetry in mutants, we set ok = 0 for divL's and op, = 0 for

cckA V366P. For divL's, we assume that CckA remains as a phosphatase at the swarmer

pole. In Figs. lE and 2A, we ignore CtrA synthesis (a = 0) and proteolysis (y = 0). In Fig.

B.S8, we investigate the effects of stalk pole-localized proteolysis using the function y(x)

= yoSt(x). The phosphorylated fraction of CtrA determined by Eqs. 1-2 is independent of

the amount of CtrA protein.
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Chapter 4

Modularity of the bacterial cell cycle enables independent
spatial and temporal control of DNA replication

This work is in press as Kristina Jonas*, Y. Erin Chen*, and Michael T. Laub. 2011 Curr Biol.

K.J., Y.E.C., and M.T.L. designed the study, analyzed the data, and wrote the manuscript. Y.E.C.
executed the experiments for figures 4.2 and 4.3 and collaborated with K.J. to produce figures
4.11 and 4.12.

*These authors contributed equally to this work.
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Abstract

Background: Complex regulatory circuits in biology are often built of simpler sub-

circuits, or modules. In most cases, the functional consequences and evolutionary origins

of modularity remain poorly defined.

Results: Here, by combining single-cell microscopy with genetic approaches, we

demonstrate that two separable modules independently govern the temporal and spatial

control of DNA replication in the asymmetrically dividing bacterium Caulobacter

crescentus. DNA replication control involves DnaA, which promotes initiation, and CtrA,

which silences initiation. We show that oscillations in DnaA activity dictate the

periodicity of replication while CtrA governs the asymmetric replicative fates of daughter

cells. Importantly, we demonstrate that DnaA activity oscillates independently of CtrA.

Conclusions: The genetic separability of spatial and temporal control modules in

Caulobacter reflects their evolutionary history. DnaA is the central component of an

ancient and phylogenetically widespread circuit that governs replication periodicity in

Caulobacter and most other bacteria. By contrast, CtrA, which is found only in the

asymmetrically dividing a-proteobacteria, was integrated later in evolution to enforce

replicative asymmetry on daughter cells.
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Introduction

Important cellular processes are often orchestrated by regulatory circuits involving

numerous genes and proteins. These complex circuits are often comprised of simpler

parts, or modules, that are interconnected but perform separable functions [1, 2]. A

modular architecture of biological systems may enhance evolvability as it allows the

generation of new functions or network properties by altering the connections between

modules, rather than by creating new networks from scratch. Defining the modularity and

evolutionary history of regulatory circuits remains a major challenge. Here, we

demonstrate an intrinsic modularity to the Caulobacter crescentus cell cycle with two

interlinked, but genetically separable circuits governing the temporal and spatial control

of DNA replication. Caulobacter is an ideal model for investigating the regulation of

DNA replication as cells replicate a single chromosome once-and-only-once per cell

cycle [3] (Fig. 4.lA). The absence of multi-fork replication facilitates the analysis of

DNA replication in individual cells using time-lapse fluorescence microscopy [4].
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Table 4.1. Summary of DNA replication periodicity measurements

Strain Temp. Replication perioda n

wt 30 C 69 10 (81 13) 90(46)

wt 34 C 67 ±13 (80 ±14) 337(319)

divL's 34 C 6 6 1 9b 243

cckA's 34 C 6 5  2 1 b 117

ApleC 34 C 73 14 (73± 14) 178(175)

Cori bcLd 34 C 64 ±17 (72 ±17) 395(331)

FtsZ depletion 34 OC 80 16 113

FtsZ depletion, divL's 34 0C 61 13b 232

FtsZ depletion, Cori bcLd 34 0C 68 ± 12 50

wt + PxyrM2-dnaA& (high copy) 30 0C 47 35 228

wt + PxyrM2-dnaA& (low copy) 30 0C 77 15 77

wt + PxyrM2-dnaA(R357A)8 (low copy) 30 'C 50 3 3b 280

wt + Pvan-hdaA& 30 C 95 20 (110 ±20) 132(89)

wt + Pvan-hdaA(Q4A)& 30 C 78 13 (94± 15) 172(101)

HdaA depletion 30 C 30 11 / 78 12c 26/113

a The mean values with standard deviations are shown for stalked
periods.

and swarmer (in parenthesis) replication

b For strains that have lost replicative asymmetry due to a loss of CtrA activity (divL'' or cckA's) or that
initiate significantly earlier than wild type, we did not distinguish between stalked and swarmer replication
cycles.

C Because the distribution for the HdaA depletion strain appeared bimodal, the periods listed are for those
cells with replication periods less than or greater than 48 minutes.

* Number of replication cycles counted.

& For strains harboring plasmids with a xylose- or vanillate-inducible promoter, cells were grown in the
presence of 0.3% xylose or 2.5 mM vanillate, respectively.
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Figure 4.1. A loss of CtrA activity does not perturb DNA replication periodicity. (A)
Schematic of the Caulobacter cell cycle showing the stalked (ST) and swarmer (SW) replication
cycles. (B) Representative time-lapse images of wild-type cells with TetR-YFP-labeled origins of
replication. Arrowheads depict the appearance of a new origin in either stalked (ST) or swarmer
(SW) daughter cell. (C) Histograms of wild-type stalked (ST) and swarmer (SW) replication cycles
for cells grown at 340C. Mean values for each population are noted. The number of cells (see
Table 4.1) are normalized to 1.0 for visualization. (D) Histograms showing replication cycle
periodicity in divLts and cckAts cells compared to wild-type stalked cells at 340C. (E) Southern
blots of DNA near the origin (ori) and terminus (ter) in divLts cells shifted to the restrictive
temperature of 370C at time 0. Band intensities were quantified and ratios normalized to the 0-hr
time point.
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DNA replication initiation in Caulobacter requires DnaA [5], which binds and helps melt

the origin of replication to promote initiation. DnaA is a member of the AAA+ family of

ATPases, with DnaA-ATP but not DnaA-ADP active for replication initiation [6-8].

DnaA is highly-conserved and present in all bacteria, with the exception of some obligate

endosymbionts [9]. In E. coli, DnaA activity is tightly regulated, peaking immediately

before replication initiation and then dropping rapidly after initiation [8]. Inactivation

depends largely on Hda, which stimulates ATP hydrolysis by DnaA [10].

In Caulobacter, every cell division is asymmetric, resulting in daughter cells with

different cell fates [11]. The daughter stalked cell immediately initiates replication,

whereas the daughter swarmer cell must first differentiate into a stalked cell before

replicating. This cell-fate asymmetry and cellular differentiation process depend on CtrA,

an essential transcription factor that activates ~100 genes and that also binds to and

silences the origin of replication [12-14]. A complex circuit of two-component signaling

proteins ensures that swarmer cells phosphorylate and stabilize CtrA to repress

replication while stalked cells dephosphorylate and degrade CtrA to permit DNA

replication [15-18]. CtrA is again phosphorylated and stabilized in predivisional cells so

that it can activate target genes. CtrA is often assumed to also prevent the reinitiation of

replication, but mutating CtrA binding sites in the origin does not severely perturb

replication control [19].

Although both CtrA and DnaA have been previously studied in Caulobacter, the precise

roles played by each and the interdependencies of the two regulators remain surprisingly
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ill-defined. One current model suggests that CtrA and DnaA are connected through a

transcriptional circuit, in which dnaA transcription is indirectly activated by CtrA and

ctrA transcription is indirectly activated by DnaA [20, 21]. This circuit, proposed to drive

cell cycle progression, implies that the accumulation of DnaA depends on CtrA activity.

However, cells lacking active CtrA accumulate multiple chromosomes [12], indicating

that DnaA is likely not limiting in these cells. Moreover, cells constitutively transcribing

dnaA or ctrA do not exhibit a severe replication phenotype [16, 22].

It thus remains unresolved how the task of regulating DNA replication in Caulobacter is

distributed between CtrA and DnaA and how these two regulators are wired together. To

address these issues, we have investigated DNA replication in individual living cells

using time-lapse fluorescence microscopy. We provide evidence that periodic changes in

DnaA activity determine the periodicity of DNA replication and, importantly, that DnaA

activity cycles independently of CtrA. By contrast, CtrA establishes replicative

asymmetry by silencing replication in daughter swarmer cells, with no major effect on the

periodicity of replication in stalked cells. These findings suggest that DnaA lies at the

heart of a primordial cell cycle oscillator that continues to dictate replication timing in

Caulobacter, as it does in most bacteria, while CtrA was recruited later in evolution to

coordinate asymmetric replication with cellular differentiation. The modularity of

replication control in Caulobacter thus reflects its evolution and reveals its relationship to

the cell cycles of other bacteria.
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Results

CtrA dictates replication asymmetry but does not influence the
periodicity of initiation

To probe the temporal regulation of DNA replication in Caulobacter, we monitored

replication initiation in individual living cells. We used a fluorescent repressor-operator

system in which origins of replication are fluorescently marked by TetR-YFP proteins

bound to an array of tet operator (tetO) sites inserted near the origin [4]. Using time-

lapse microscopy, we observed that wild-type stalked cells initially harbor a single,

polarly localized origin of replication, represented by a single fluorescent focus (Fig. IA,

B). Shortly after replication initiation, one origin remains at the stalked pole while the

other rapidly translocates to the opposite pole [23]. The time at which two separate foci

are first visible in an individual cell was used as a proxy for the time of initiation. We

then tracked each cell through its cell cycle and measured the time at which each

daughter cell initiated replication. Daughter stalked cells typically initiated shortly after

cell division whereas the daugther swarmer cells had to first differentiate into stalked

cells. We refer to the intervals between replication initiation in a stalked cell and its

daughter stalked and swarmer cells as the stalked and swarmer replication cycles,

respectively (Fig. 4.lA). For wild type, we observed a stalked replication cycle of ~67

minutes and a swarmer cycle of -80 minutes (Fig. 4.1B-C), consistent with the known

replicative asymmetry of daughter cells.

To investigate whether CtrA influences the periodicity of replication, we analyzed

replication in cells harboring either a divL'" or cckA'S mutation, such that CtrA activity

decreases after shifting cells to a restrictive growth temperature of 34'C [24-26].

Surprisingly, despite the loss of CtrA activity, and consequently cell division, the divL's
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and cckA's mutants accumulated chromosomes with an average time between rounds of

DNA replication of 65-66 minutes, nearly identical to that measured in wild-type stalked

cells (Fig. 4.lD, 4.2A).
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Figure 4.2. CtrA silences replication in swarmer cells. (A) Histograms showing replication
cycle periodicity in wild-type stalked cells and in divLts and cckAts cells when grown at 34 C.
These same histograms are overlaid in Figure 1 D. (B) Time course of flow cytometry data
showing normalized DNA content per cell in synchronized populations of wild-type, divLts and
FtsZ-depleted cells. Synchronized swarmer cells were diluted in plain PYE media and shifted to
37oC at time 0. (C) Flow cytometry profiles of synchronized populations of wild-type (solid line)
and bcLd (dashed line) cells after 0 or 60 minutes of growth. At 0 minutes, a significant population
of newly synchronized bcLd swarmer cells has 2N DNA content. At 60 minutes, a significant
population of bcLd predivisional cells has 3N DNA content.
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(D) Quantification of filamentous cells in wild-type or bcLd strains. In wild type, 4% of cells
became filamentous, all due to an inability to segregate newly replicated origins (black bar). In
bcLd mutants, 18% of cells became filamentous; 9% had an apparent origin segregation defect
(black bar) and 9% initiated replication inappropriately in predivisional cells (gray bar), an event
that never occurred in wild-type cells. Of the predivisional cells that inappropriately replicated,
75% arose from swarmer cells that had replicated prematurely (inset, black bar) while 25% arose
from stalked cells (inset, white bar). (E) Time-lapse images of bcLd mutant cells with TetR-YFP-
marked origins in green overlaid onto phase contrast images. The top panel shows a swarmer
cell that prematurely replicated at time 30 (black arrowhead) and developed into a predivisional
cell that replicated inappropriately at time 90, 180, and 240 (white arrowheads). The bottom panel
shows a swarmer cell that cannot segregate its newly replicated origins (black arrowheads). SW
= swarmer cell, ST = stalked cell, PD = predivisional cell. In both cases, the cell is delayed for cell
division or unable to divide.

This unexpected result suggests that CtrA is not required to maintain the periodicity of

DNA replication nor does CtrA prevent reinitiation during an ongoing round of

replication. Using Southern blotting, we verified that the copy-number ratio of origin-

and terminus-proximal DNA (ori/ter ratio) was unchanged in the divL's strain after a shift

to the restrictive temperature (Fig. 4.1E). An increase in the ori/ter ratio would have

indicated that extra rounds of replication initiated before prior rounds had completed

(hereafter referred to as overinitiation). Thus, divL's and cckAts mutants accumulate

multiple chromosomes because cells fire successive rounds of DNA replication without

intervening cell divisions and not because of overinitiation. These data are consistent

with a recent study showing that mutations in the CtrA binding sites in the origin do not

lead to significant overreplication [19].

CtrA delays the reinitiation of DNA replication in division-inhibited
cells

Because divL'5 and cckA' cannot divide at the restrictive temperature, we wanted to

compare replication in these strains to an FtsZ depletion strain, which also cannot divide

but maintains CtrA activity. Using flow cytometry to measure total DNA as a function of

time, we observed that DNA accumulated in the divL's mutant faster than in cells depleted

offtsZ (Fig. 4.2B). The retention of active CtrA in FtsZ-depleted cells could explain their
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slower chromosome accumulation relative to divLs cells. To test this hypothesis, we

measured DNA replication in the FtsZ depletion strain using fluorescence microscopy.

Consistent with our flow cytometry data, the intervals between replication events

stemming from the stalked pole averaged 80 minutes, longer than that of divL's and cckA's

cells (Fig. 4.3A). When the FtsZ depletion was combined with the divL' mutation,

replication intervals decreased to 61 minutes at the restrictive temperature. Thus, the

presence of active CtrA in division-inhibited cells delays replication initiation.

Previously, we found that division-inhibited cells maintain a gradient of phosphorylated

CtrA that preferentially inhibits replication at the swarmer pole [24]. Although replication

therefore occurs preferentially at the stalked pole in FtsZ-depleted cells, it was still

delayed compared to cells without active CtrA, including divL ', cckA's, and wild-type

stalked cells (Fig. 4.lD, 4.3A). If this delay depends on the direct binding of residual

CtrA to the origin at the stalked pole, it should be possible to shorten the replication

period in an FtsZ depletion strain by disrupting CtrA binding sites in the origin. We

therefore analyzed replication timing in a strain with mutations in three (bcLd) of the five

CtrA binding sites in the origin (Fig. 4.3A) [19]. In cells depleted of FtsZ and harboring

the bcLd mutations, stalked replication cycles were shortened from 80 to 68 minutes.

Thus, disrupting CtrA binding to the origin largely restored the normal timing of

replication cycles. We conclude that the compartmentalization of cells during cytokinesis

is necessary to completely clear CtrA from the stalked cell and to prevent a delay in

replication that results from residual CtrA binding to the origin.
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We also examined DNA replication in cells harboring the bcLd origin mutations while

maintaining native ftsZ expression. In this strain, the stalked replication cycle was 64

minutes, similar to wild type (Fig. 4.3B). However, the swarmer replication cycle

averaged 72 minutes, 8 minutes shorter than wild-type swarmer replication cycles (Fig.

4.3B), as bcLd swarmer cells often initiated DNA replication prematurely (defined as an

initiation event occurring within one frame of initiation in the sister stalked cell). For

swarmer cells that initiated prematurely, DNA replication still continued periodically;

consequently, the next round of DNA replication sometimes occurred before cell

division, leading to predivisional cells with three origins (Fig. 4.2C-E). These cells

frequently failed to divide and subsequently became filamentous. Such premature

replication, resulting in three origins and cellular filamentation, was never observed in

wild-type cells (Fig. 4.2D). Although wild-type swarmer cells occasionally initiated

prematurely, these cells did not replicate again before cell division, likely because CtrA

can block new rounds of replication, thereby resynchronizing DNA replication with cell

division. Taken together, our results suggest that CtrA is important for coordinating DNA

replication with cellular differentiation and for enforcing the asymmetric replicative fates

of daughter cells, but does not significantly affect the intrinsic periodicity of DNA

replication.

As an additional test of CtrA's role in replication control, we examined a ApleC mutant,

which produces morphologically symmetric daughter cells [27]. We found that a YFP-

CtrA reporter partitions symmetrically in ApleC, in contrast to the wild-type (Fig. 3C-D).

Consistently, DNA replication in both ApleC daughter cells occurred with a period of -73

minutes, a value intermediate to that of wild-type swarmer (-80 minutes) and stalked
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(~67 minutes) cells (Fig. 4.3E). This finding further supports the notion that the

asymmetric accumulation of CtrA in wild-type daughter cells accounts for their

differential replication capacities.

Replication periodicity is governed by DnaA

If CtrA does not impact the fundamental periodicity of stalked cell replication cycles,

another oscillatory control module must exist. We hypothesized that such a module

centers on DnaA, an essential, widely-conserved positive regulator of replication

initiation [8]. To test if changes in DnaA perturb replication timing, we first examined

strains expressing dnaA from a xylose-inducible promoter on a high-copy vector. Flow

cytometry revealed a substantial accumulation of extra chromosomes per cell within 3

hours of xylose addition (Fig. 4.4A, 4.5A). Moreover, the ori/ter ratio increased -3.6-fold

in this strain within one hour after inducing dnaA, indicating that new rounds of

replication initiated before prior rounds had completed (Fig. 4.4B). Thus, overexpressing

dnaA in Caulobacter causes an overinitiation of DNA replication, as in E. coli [28], but

in contrast to divLts cells (Fig. 4. ID).

We then examined replication timing in a high-copy dnaA overexpression strain

harboring the TetR-YFP/tetO system. Strikingly, DNA replication periodicity was

completely lost upon induction (Fig. 4.4C). Many cells initiated multiple rounds of

replication within 30 minutes of a previous initiation without an intervening cell division,

resulting in the accumulation of 5-6 origins per cell and cellular filamentation (Fig. 4.4D,

4.5B). In contrast to the high-copy vector, expressing dnaA from a xylose-inducible

promoter on a low-copy vector did not lead to significant overinitiation (Fig. 4.4A,C).
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Representative time-lapse images showing accumulation of origins over time in high-copy dnaA
overexpression cells grown on agarose pads containing 500 pM vanillate at 300C.
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Cell cycle-dependent regulation of DnaA is independent of CtrA

Our finding that dnaA overexpression severely disrupted replication periodicity suggests

that changes in DnaA activity are critical to temporally regulating replication initiation. A

previous model proposed that regulated changes in DnaA transcription and abundance

drive cell cycle progression and depend on CtrA; in this model CtrA promotes DnaA

synthesis by driving expression of ccrM, a DNA methyltransferase, which methylates the

dnaA promoter to promote dnaA transcription [21]. However, given our observation that

replication periodicty is unchanged in cells lacking active CtrA, we expected that the

synthesis and hence abundance of DnaA would be independent of CtrA.

To test whether the abundance of DnaA is affected via promoter methylation in divL's

cells, we first measured the methylation status of the chromosome in synchronized

populations of cells using Southern blotting. For wild type, the chromosome alternated

between hemi- and fully-methylated states as the chromosome was replicated and then
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subsequently methylated de novo (Fig. 4.6A). In divL's cells, fully-methylated DNA

disappeared while hemi- and unmethylated DNA accumulated, confirming that CcrM

activity depends on CtrA activity [13] (Fig. 4.6A). However, in contrast to CcrM, DnaA

protein levels did not seem to depend strongly on CtrA. Using immunoblotting and

quantitative phosphorimaging, we found that DnaA was present at a relatively constant

level throughout the cell cycle in divL" and wild-type cells grown synchronously in rich

media at the restrictive temperature of 37'C (Fig. 4.63). Further, we found that in mixed

populations of cells, DnaA levels were comparable in divL'S and wild type at both the

permissive and restrictive temperatures (Fig. 4.6C). The finding that DnaA levels do not

depend strongly on CtrA or CcrM is also consistent with a recent study in which the

mutation of a putative methylation site in the dnaA promoter did not significantly affect

expression of a PdnaA-lacZ reporter [29]. Collectively, these data are also consistent with

our studies showing that DNA replication continues periodically in cells lacking CtrA

activity (Fig. 4.lD).
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Changes in DnaA activity govern the periodicity of DNA replication

Because DnaA levels do not vary significantly during the cell cycle in rich media (Fig.

4.6B) and because cells constitutively expressing dnaA do not overreplicate (Fig.

4.4A,C), we hypothesized that oscillations in DnaA activity ultimately determine

replication periodicity. In E. coli DnaA switches between an active ATP-bound and an

inactive ADP-bound state [6-8]. ATP hydrolysis by DnaA thus prevents replication

reinitiation and a highly-conserved arginine residue, R334, is critical for this hydrolysis

[30]. We substituted the corresponding residue, R357, with alanine in C. crescentus

DnaA (Fig. 4.7) and expressed the resulting mutant from a xylose-inducible promoter on

a low-copy plasmid. Unlike cells expressing wild-type dnaA, the induction of

dnaA(R357A) led to an increase in chromosome content per cell and replication

overinitiation (Fig. 4.8A-B), as in cells overexpressing dnaA from a high-copy plasmid.

Western blotting indicated that DnaA(R357A) accumulated to similar levels as the wild-

type DnaA control after 2 hours of induction (Fig. 4.8C). Quantitative analysis of

individual cells confirmed that inducing dnaA(R357A) drastically disrupted the

periodicity of replication (Fig. 4.8D) with intervals between replication rounds often less

than 30 minutes. These data suggest that the R357A substitution hyperactivates DnaA

and that regulated changes in DnaA activity, which are CtrA-independent, are important

in determining the periodicity of DNA replication.
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Figure 4.7. Domain structure and amino acid alignment of DnaA. E. coli DnaA consists of
four functional domains, of which domain IlIl harbors AAA+ ATPase activity. The amino acid
sequence of domain IlIl of E. coli DnaA was aligned with the corresponding sequences of C.
crescentus, Helicobacterpylori, Chlamydia trachomatis, Bacillus subtilis and Mycobacterium
tuberculosis. Residues identical in all six organisms are highlighted in gray. Arg-334 (Arg-357 in
Caulobacter) important for ATP hydrolysis is highlighted in red. Arg-281 and Arg-285, both of
which are important for the stabilization of DnaA multimers upon replication initiation, but
correspond to histidines in Caulobacter, are marked in green.
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HdaA influences replication periodicity, not asymmetry, by interacting
directly with DnaA

ATP hydrolysis by E. coli DnaA is stimulated by Hda, a DnaA homolog that also

interacts with DnaN, the beta-subunit of DNA polymerase [10, 31, 32]. Hda has a

homolog in Caulobacter, called HdaA, and cells depleted of this protein exhibit a mild

accumulation of chromosome content and an increased ori/ter ratio [22]. Consistently,

when we examined replication in HdaA-depleted cells using fluorescence microscopy,

we found that a subpopulation of cells overinitiated, with replication periods less than 48

minutes (Fig. 4.9A). Taken together, our data suggest that increasing DnaA activity,
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either by depleting HdaA or synthesizing DnaA(R357A), leads to shorter intervals

between rounds of DNA replication.

To test whether decreasing DnaA activity extends replication intervals, we overexpressed

hdaA from a vanillate-inducible promoter on a high-copy plasmid. At a vanillate

concentration of 2.5 [tM, HdaA protein levels were moderately elevated (Fig. 4. 1OA) and

replication intervals were extended to ~95 min in stalked cells and - 110 min in swarmer

cells (Fig. 4.9B). These data indicate that overproducing HdaA changes replication

periodicity, but, importantly, not asymmetry. We verified that this mild overexpression of

hdaA did not substantially change DnaA protein levels (Fig. 4. 1OB), suggesting that the

elevated levels of HdaA impact DnaA activity.

To test whether HdaA's effect on replication depends on a direct interaction with DnaA,

we searched for a mutation in HdaA that specifically disrupts interaction with DnaA. In

E. coli, Hda(Q6A) is deficient in binding DnaA and in stimulating ATP hydrolysis, the

latter likely stemming from a failure to also interact with DnaN [32, 33]. We engineered a

mutant variant of Caulobacter HdaA harboring the corresponding substitution, Q4A (Fig.

4. 10C). Yeast two-hybrid analysis indicated that HdaA(Q4A), but not wild-type HdaA,

was indeed impaired in binding Caulobacter DnaA and DnaN (Fig. 4.9C). We then

measured the timing of DNA replication initiations in a strain mildly overexpressing

HdaA(Q4A) and observed significantly shorter inter-replication times compared to

isogenic cells overexpressing wild-type HdaA (Fig. 4.9B). Immunoblots indicated that

HdaA(Q4A) accumulated with a similar rate and to similar levels as the wild-type HdaA

protein (Fig. 4.1 OA). We conclude that excess HdaA slows down replication cycles by
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directly modulating DnaA activity, but without affecting the replicative asymmetry of

daughter cells.
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Figure 4.9. Overproducing HdaA leads to slower replication cycles. (A) Histograms of
stalked replication cycles in the HdaA depletion strain compared to wild type at 300C. For the
HdaA depletion, replication timing appeared bimodal, so means were calculated separately for
cells with replication times shorter or longer than 48 min. (B) Histograms depicting stalked (left)
and swarmer (right) replication cycles in wild type (black) and in cells in which hdaA (white) or
hdaA(Q4A) (gray) driven by a vanillate-inducible promoter were induced with 2.5 mM vanillate at
300C. (C) Yeast two-hybrid assay showing interactions between wild-type and mutant variants of
DnaA, HdaA and DnaN. Yeast containing plasmids encoding the proteins indicated fused to
either the activation (AD) or DNA-binding domain (BD) of Gal4 were restreaked on media lacking
histidine (-HIS) or adenine (-ADE). Media lacking uracil and leucine (-URA-LEU) selects for
plasmid maintenance. Growth and light colony color indicate strong protein interactions, whereas
no growth or dark color indicate no or weak interactions.
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Figure 4.10. HdaA acts as a repressor of DnaA-mediated replication. (A) Western blot and
quantification of the Western blot showing comparable HdaA and HdaA(Q4A) protein levels
expressed from a high copy vector after 2 hrs induction with 0, 2.5, or 500 mM vanillate. (B)
Western blot (top) and quantification of the Western blot (bottom) showing that DnaA protein
levels remain unchanged when hdaA is overexpressed. (C) Domain structure and amino acid
sequence alignment of Hda. Hda consists of a short N-terminal region (gray) and an AAA+
domain (green) that shares homology with the AAA+ ATPase domain of DnaA proteins. The
amino acid sequence of E. coli Hda was aligned with the sequences of Hda homologs from C.
crescentus, Yersinia pestis, Shewanella amazonensis and Haemophilus influenzae. Residues
identical in all five organisms are highlighted in gray. The N-terminal region of Hda proteins
contains a putative p-clamp-binding motif (box) [2]. Residue Gln-6 within this motif is required for
the interaction and negative regulation of DnaA and is highlighted in red.

Chen 1172

-0- P,,,-hdaA

0
0 2.5 500

pM vanilate

I



Discussion

We found that DNA replication initiation in Caulobacter is regulated by two genetically

separable modules. One module centers on the essential initiation factor DnaA, which

promotes replication initiation. Mutations affecting DnaA activity severely perturbed the

timing of replication initiation, with increases and decreases in activity leading to shorter

and longer intervals between rounds of replication. The other module involves the

essential response regulator CtrA, which silences DNA replication in a cell type-specific

manner, ensuring that swarmer cells cannot initiate replication until after differentiating

into stalked cells. In stark contrast to DnaA, mutations that reduced or eliminated CtrA

activity had almost no effect on the periodicity of DNA replication during the stalked cell

cycle of Caulobacter (for a summary of all replication periods measured, see Table 4.1).

We conclude that CtrA's role in replication control is mainly to enforce the asymmetry of

daughter cells while DnaA serves as the fundamental pacemaker of DNA replication.

The functional separability of these two modules was revealed by examining DNA

replication in individual cells lacking active CtrA. In divL's and cckA's strains, which

harbor very little phosphorylated CtrA [24-26], the periodicity of replication was virtually

indistinguishable from that of wild-type stalked cells indicating that DnaA activity

oscillates independent of CtrA. However, CtrA activity does not oscillate completely

independent of DnaA. Cells depleted of DnaA stop replicating and also fail to activate

CtrA through an unknown mechanism [5, 34]. Thus, the DnaA module entrains the CtrA

module, but not vice versa. This coupling of DnaA and CtrA presumably helps cells

coordinate DNA replication with the cellular functions controlled transcriptionally by

CtrA, such as polar morphogenesis and cell division. Indeed, our results suggest that a
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failure to coordinate replication initiation with other cell cycle events can have lethal

consequences. Mutations that disrupted CtrA binding to the origin often resulted in

replication occurring out of phase with other cell-cycle events (Fig. 4.2C-E, 4.3B),

leading to cell division defects, chromosome accumulation, and a failure to proliferate.

Under stressful conditions, the failure to coordinate replication control with cellular

development might result in a particularly severe fitness disadvantage [19].

In sum, our data lead to a new model for DNA replication control during the Caulobacter

cell cycle in rich media (Fig. 4.11, 4.12). In a swarmer cell, CtrA is abundant and

phosphorylated such that it can inhibit the initiation of DNA replication. Upon

differentiating into a stalked cell, CtrA activity is eliminated, thereby enabling active

DnaA-ATP to drive the initiation of DNA replication and promote the activation of

newly synthesized CtrA. DnaA is inactivated immediately after replication initiation,

likely by the combined action of HdaA and other factors that promote ATP hydrolysis.

DnaA activity then reaccumulates approximately 60 minutes later, through new synthesis

and the reloading of DnaA with ATP. If DnaA activity accumulates to high levels before

cell division, the abundance of CtrA at this stage will prevent premature initiation,

thereby ensuring that replication occurs once-and-only-once per cell cycle. Following cell

division, both daughter cells likely inherit active DnaA. In stalked cells, CtrA is rapidly

eliminated, enabling DnaA to immediately drive a new round of replication. By contrast,

swarmer cells maintain active CtrA, thereby delaying DNA replication until after they

differentiate into stalked cells and eliminate CtrA activity.
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Regulated changes in DnaA activity are important for replication
periodicity

Our results indicate that changes in DnaA activity are the primary means by which DNA

replication timing is controlled during the Caulobacter cell cycle. Although the

transcription of dnaA peaks in GI [35, 36], and de novo synthesis is probably required to

replenish DnaA-ATP levels after initiation occurs, cells constitutively expressing dnaA

initiated replication with a periodicity similar to wild type (Fig. 4.8A,C). Thus, while the

transcription of dnaA is necessary for replication, it appears that regulated transcription

alone cannot account for the periodicity of initiation. By contrast, mutations that affect

the regulation of DnaA activity, but not its abundance, significantly disrupted the timing

of replication initiation (Table 4.1). In E. coli, the primary mechanism for inhibiting

DnaA, termed RIDA (regulatory inactivation of DnaA), involves direct stimulation of

DnaA ATPase activity by Hda [10]. In B. subtilis, DnaA activity is regulated by direct

interactions with the Soj (ParA), SirA and YabA [37-40]. Thus, it appears that, like these

other bacteria, Caulobacter primarily regulates the timing of replication by modulating

DnaA activity, at least in rich medium, the growth condition used here. Regulated

changes in DnaA abundance may, however, be important in stressful and nutrient-limited

conditions [41].

Modularity of the bacterial cell cycle

Recognizing the intrinsically modular design of replication control during the

Caulobacter cell cycle has important implications for understanding the evolution of the

bacterial cell cycle. We propose that DnaA lies at the heart of a primordial cell cycle

oscillator that has been conserved in virtually all bacteria and that sets the fundamental

periodicity of DNA replication in each (Fig. 4.11B, Fig. 4.12B), whereas CtrA was
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recruited later, in a subset of a-proteobacteria, to establish replicative asymmetry in

daughter cells (Fig. 4.111B). CtrA is highly-conserved throughout the c-proteobacteria

(Fig. 4.12B) where it transcriptionally regulates a range of genes, often involved in polar

morphogenesis and cell division [14, 42, 43]. Many, and perhaps most, c-proteobacteria

divide asymmetrically and there is evidence that CtrA is often differentially regulated in

daughter cells [43-45]. Hence, the evolution of replicative asymmetry in Caulobacter and

closely related species likely required only the evolution of CtrA binding sites within the

origin. The plausibility of this parsimonious scenario is supported by the fact that CtrA

binding sites within an origin are thought to have evolved independently at least twice

within the lineage leading to the Caulobacterales [46]. Also, in the more distantly related

a-proteobacteria Rickettsia, functional binding sites for the CtrA homolog CzcR were

identified in the chromosomal origin of replication [47]. However, whether the binding of

CzcR to these sites silences replication is difficult to address as Rickettsia grow slowly

and only as intracellular parasites of eukaryotic cells.

In sum, we propose that CtrA and the regulatory circuit that controls it arose early within

the a-proteobacteria lineage; this CtrA module was subsequently recruited to spatially

control DNA replication, without significantly impacting the DnaA-based temporal

control of replication (Fig. 4.1 1B). The net result is a system with two genetically

separable modules, as observed here. Our results thus help to provide a unifying view of

cell cycle regulation in bacteria with a conserved cell cycle engine built around DnaA.

Other modules and components, such as CtrA, have then been integrated with, and are

often entrained by, DnaA, but are otherwise autonomous and hence genetically separable.

Notably, a modular circuit was also recently proposed to control the cell cycle in S.
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cerevisiae, where multiple regulatory modules, each capable of oscillating on their own,

were phase-locked to a central pacemaker [48]. More generally, our findings emphasize

the notion that regulatory circuits are not monolithic entities of irreducible complexity,

but instead are built over time by the relatively straightforward, sequential integration of

discrete modules [1, 2, 48].
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wild type

t 66 min t 66 min t

[t A A
65 min 65 min
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Figure 4.11. Modularity of replication control in Caulobacter crescentus reflects the
evolution of the bacterial cell cycle. (A) Schematic summary of CtrA and DnaA activities during
the stalked cell cycle in various strains. For a comparison to the swarmer cell cycle, see Fig. S6A.
(B) Evolution of replication control in Caulobacter. DnaA is part of an ancestral control module
that sets the periodicity of replication in nearly all bacteria. In a-proteobacteria the CtrA module
arose to transcriptionally regulate division and polar morphogenesis. In a sub-group of a-
proteobacteria including Caulobacter, CtrA evolved to bind to the origin, thereby enforcing
replicative asymmetry of daughter cells. Although DnaA and CtrA each influence the origin (ORI),
each factor is regulated largely independently.
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Figure 4.12. Modularity of replication control in Caulobacter crescentus reflects the
evolution of the bacterial cell cycle. (A) Schematic model of CtrA (red) and DnaA (green)
activities during stalked (top) and swarmer (bottom) replication cycles. In swarmer cells, CtrA and
DnaA are high at the beginning of the cell cycle. First after clearance of CtrA, replication can
initiate and DnaA is subsequently inactivated (B) Phylogenetic tree showing the distribution of
dnaA and ctrA orthologs among bacteria. dnaA is nearly universal and represents an ancient
regulator of DNA replication. ctrA is only present in a-proteobacteria. A subset of a-
proteobacteria, including C. crescentus, subsequently evolved CtrA binding sites at the origin to
facilitate replicative asymmetry. The phylogenetic tree was built using the default species tree
provided on the iTOL webpage (http://itol.embl.de/) [3].

Experimental Procedures

Strains, plasmids, and growth conditions

All strains and plasmids used in this chapter are listed in Table 4.2. Primers are listed in

Table 4.3. Cultures of C. crescentus and E. coli were grown in PYE or LB, respectively,

as described previously [4]. PYE was supplemented with 0.2% glucose, 0.3% xylose, and

2.5 or 500 [M vanillate, as indicated. Synchronizations were performed on mid-log phase

cells using Percoll (GE Healthcare) density gradient centrifugation [5]. Transductions

were performed using $Cr30 as described previously [6].

ML1878 was constructed by transducing a chloramphenicol-marked temperature

sensitive divL(A288V) allele (divL's) into GM1251 [7]. To construct ML1879,
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pNPTS138::Pvan-tetR-YFP from ML1876 [8] was integrated at the vanAB locus by

selection on kanamycin followed by counterselection on sucrose to generate a markerless

strain containing vanAB::tetR-YFP in the HdaA depletion strain JC353 [9]. The tetO

array on pNPTS 138::ccOO06-tetO [8] was then integrated at locus CCO006. To construct

ML1881, divL'"::chlor was introduced by transduction into ML1876 [8]. To construct

ML 1882, pNPTS 138::ccOO06-tetO was digested with Xhol and Clal and then blunt-end

ligated to drop out the kanamycin resistance gene. This modified integration vector was

integrated into GM3193 [10] harboring the mutant chromosomal origin, ori(bcLd). This

mutant origin, as well as ccOO06.::(tetO)n (gentR), were then moved into a markerless

strain containing vanAB.:tetR-YFP by transduction. Finally, PxyrftsZ.:kan from YB1585

was introduced by transduction and selection on both kanamycin and gentamycin.

ML 1883 was constructed by transduction of ApleC::tet from ML 1755 into LS4259 [11].

All expression vectors were constructed using the Gateway cloning system (Invitrogen)

and are listed in Table S1. PCR products were cloned into the pENTR/D-TOPO vector

and subsequently recombined into destination vectors following the manufacturer's

protocol. To construct pENTR clones for dnaA, hdaA, and dnaN, PCR was performed

using primer pairs DnaAFor/DnaARev, HdaAFor/HdaARev, and

DnaN_For/DnaN_Rev, respectively. To construct pENTR-vanR-Pvan-dnaA and pENTR-

vanR-Pan-hdaA, each of which contains the entire vanR gene followed by the Pvan

promoter driving dnaA or hdaA, respectively, fusion PCR was used. First, the coding

region for the VanR repressor and the promoter Pvan, was amplified using primers

PvanF2 and PvanR. In a separate reaction, dnaA or hdaA was amplified using the

primer pairs DnaAPvanF/DnaARev and HdaAPvanF/HdaARev, respectively. The
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vanR-Pvan construct was then fused, using fusion PCR, to the construct containing dnaA

or hdaA, using primers PvanF2 and DnaARev, or PvanF2 and HdaARev,

respectively. All entry vectors were sequence verified and recombined with the

destination vectors pML1716, pML498, pML375, pCT155, pAD or pBD to generate

pML1716-dnaA, pML498-dnaA, pML375-dnaA, pCT155-vanR-Pvan-dnaA, pCT155-

vanR-Pvan-hdaA, pAD-dnaA, pAD-hdaA, pBD-hdaA and pBD-dnaN. The resulting

plasmids were transformed into Caulobacter, E coli, or S. cerevisiae, as appropriate.
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Table 4.2 - Strains and Plasmids

Name Description Source
C. crescentus strains
CB15N Synchronizable derivative of wild-type CB15 [16]
GM1251 purA::Tn3?-MP [7]
GM3193 ori(bcLd) [10]
JC353 AhdaA + pMR20-hdaA (tet7) [9]
LS4259 pKR173 (pMR20:PCykyfg-ctrA) (tet) [111
MT16 ccO006: :(tetO), (gent"), Pvi:lacI-ecfp:tetR-eyfp (spec ) [17]
ML1852 divLs (kanW) [18]
YB1585 PxyrftsZ (kan) [19]
ML1753 divL's (chiork), ccOO06::(tetO)n (gent?), P,: lacI-ecfp:tetR-eyfp [8]

(specR)
ML1754 cckA(V366P), ccOO06::(tetO)n(gen ), Pj1 :lacI-ecfp:tetR-eyfp (speck) [8]
ML1755 ApleC (tetH), ccOO06::(tetO),, (gentR), PyI:lacI-ecfp:tetR-eyfp (spec) [8]
ML 1793 ori(bcLd), ccOO06::(tetO),,(gent?), PyI:lacI-ecfp:tetR-eyfp (spece) [81
ML1876 YB 1585 (kann), ccOO06:: (tetO) (gentR), Pvan:tetR-eyfp this study
ML 1878 GM1251, divLrs (chlor") this study
ML 1879 JC353, ccOO06::(tetO)n (gentR), Pvan:tetR-eyfp this study
ML 1881 ML1876, divL's (chlor") this study
ML1882 ML1876, ori(bcLd) this study
ML1883 LS4259, ApleC (let") this study

E. coli strains
BL2 1-Tuner Strain for protein expression and purification Novagen
DH5a General cloning strain Invitrogen
TOP10 General cloning strain for pENTR/D-TOPO clones Invitrogen

S. cerevisiae strain
PJ69-4A Strain for yeast two-hybrid with GALI-HIS3, GAL2-ADE2, GAL 7- [20]

lacZ

General purpose
vectors
pAD-DEST Destination vector of pGAD-C 1, Gal4-AD (activating domain) [15]

fusion plasmid (carbR, LEU2)

pBD-DEST Destination vector of pGBDU-C3, Gal4-BD (DNA-binding domain) [15]
fusion plasmid (carbR, URA3)

pENTR/D-TOPO ENTRY vector for Gateway cloning system (kanR) Invitrogen
pCT155 Destination vector of high-copy plasmid pJS14 (chlor5 ) lab collection
pML375 (pTRX- Destination vector of pET-His6 (amp?) [12]
HIS-DEST)
pML498 (pLXM- Destination vector of pMR20, low copy vector (let!) [12]
DEST)
pML 1716 Destination vector of pJS 14; high-copy, P,,/, M2 tag (chlor) lab collection

Plasmids
pENTR-dnaA pENTR containing the dnaA open reading frame this study
pENTR-dnaN pENTR containing the dnaN open reading frame this study
pENTR-hdaA pENTR containing the hdaA open reading frame this study
pENTR-vanR-Pvan- pENTR containing vanR and Pvan fused to dnaA this study
dnaA
pENTR-vanR-Pvan- pENTR containing vanR and Pvan fused to hdaA this study
hdaA
pCT155-vanR-Pvan- pCT 155 containing vanR and Pvan fused to dnaA this study
dnaA
pCTl55-vanR-Pan- pCT155 containing vanR and Pvan fused to hdaA this study
hdaA
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pCT155-vanR-Pvan- pCT155 containing vanR and Pva,, fused to hdaA(Q4A) this study
hdaA(Q4A)

pML375-dnaA pML375 containing His6-dnaA this study
pML498-dnaA pML498 containing PIy-M2-dnaA this study
pML498- pML498 containing Psy;-M2-dnaA(R357A) this study
dnaA(R357A)

pML 1716-dnaA pML 1716 containing Pr-M2-dnaA this study
pAD-dnaA dnaA fused to Gal4-AD this study
pAD-dnaA(R357A) dnaA(R357) fused to Gal4-AD this study
pAD-hdaA hdaA fused to Gal4-AD this study
pAD-hdaA(Q4A) hdaA(Q4A) fused to Gal4-AD this study
pBD-hdaA hdaA fused to Gal4-BD this study
pBD-hdaA(Q4A) hdaA(Q4A) fused to Gal4-BD this study
pBD-dnaN dnaN fused to Gal4-BD this study
pNPTS138::ccOO06- for integration of (tetO) at ccOO06, near the origin [8]
tetO III

Table 4.3 - Primers

Primers Sequence (5' - 3') Purpose
DnaA For CACCTTGACCATGAAGGGCGGGGTTGC pENTR cloning
DnaA Rev CAATCCTACGATACGGTTTCG pENTR cloning
DnaAR334A F CACCGACAGCGTCGCCGAGCTGGAAGGCGC Site-directed mutagenesis
DnaAR334A R GCGCCTTCCAGCTCGGCGACGCTGTCGGTG Site-directed mutagenesis
HdaA For CACCTTGTCCACCCAGTTCAAACTGCCG pENTR cloning
HdaA Rev GGAGAAGGAGCGTCACGGC pENTR cloning
pCT155hdaAQ6A F CGACGTTGTCCACCGCGTTCAAACTGCCGCTG Site-directed mutagenesis
pCT155hdaAQ6A R CAGCGGCAGTTTGAACGCGGTGGACAACGTCG Site-directed mutagenesis
pENTRhdaAQ6A F CTTCACCTTGTCCACCGCGTTCAAACTGCCGCTG Site-directed mutagenesis
pENTRhdaAQ6A R CAGCGGCAGTTTGAACGCGGTGGACAAGGTGAAG Site-directed mutagenesis
DnaN For CACCATGAAGCTTACGATCGAACGG pENTR cloning
DnaN Rev TCCGATGACCCGGCTGCG pENTR cloning
PvanF2 GACTGGTTCACACCTAAAGCG Fusion PCR for pENTR

cloning
PvanR CGTCGTTTCCTCGCATCGTG Fusion PCR for pENTR

cloning
DnaAPvanF CACGATGCGAGGAAACGACGATGACCATGAAGG Fusion PCR for pENTR

GCGGGGTTGC cloning
HdaAPvanF CACGATGCGAGGAAACGACGTGTCCACCCAGTTC Fusion PCR for pENTR

AAACTGCCG cloning
Tn5MPprobe For CTAGAATCGATACCGACTCG Southern blot probe
Tn5MPprobe Rev ATCGAATCGATGAGCCTGAC Southern blot probe
Ter For ACCCAGGTCCTCGCCAAGCTG Southern blot probe
Ter Rev CTCAACATGCTTGACCGCCAGATC Southern blot probe
Cori For GAAGCCCTGGACTACGCCATCG Southern blot probe
Cori Rev CAGAGGCAGGCCCAGGATGG Southern blot probe

PCR conditions

DNA was amplified from CB15N genomic DNA as described previously [12]. Fusion

PCR was performed similarly, but in the presence of 1 mM MgCl 2 and with the template
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concentration of 50 ng of the larger template PCR fragment and equimolar amounts of

the smaller PCR fragment. Site-directed mutagenesis was performed as previously

described [13].

Time-lapse microscopy

Time-lapse movies were performed as previously described [24]. Briefly, cells were

immobilized on agarose pads, containing 1-1.5% agarose in PYE. Imaging was

performed at 300C or 34"C using a Zeiss Axiovert 200 microscope with a 63x phase

objective fitted with an objective heater (Bioptechs) and a culture dish heater (Warner

Instruments). Images were acquired using the phase and YFP emission/excitation filters

in 6 min intervals over at least 4 hrs. ImageJ software was used to analyze and process

the images (http://rsbweb.nih.gov/ij/). To analyze DNA replication timing, we measured

the interval between consecutive DNA replication initiations using the TetR-YFP/tetO

system as diagrammed in Fig. 1A. The time between replication initiation in a stalked cell

and its daughter stalked and swarmer cells are referred to as the stalked and swarmer

replication cycles, respectively. In division-inhibited cells, stalked and swarmer cycles

were examined by measuring the time interval between replication in a stalked cell and at

the stalked and swarmer poles, respectively, of the filamenting cell. For all timing

measurements, Matlab (Mathworks) was used to generate histograms of replication times

and to calculate the mean values of replication periods.

Isolation of genomic DNA

Genomic DNA was isolated using the Qia kit, according to the manufacturer's protocol

(Qiagen). DNA concentration and quality were assessed using the NanoDrop ND-1000
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UV-Vis Spectrophotometer (NanoDrop Technologies) and on ethidium-bromide stained

TAE agarose gels.

Southern Blotting

To determine the copy number ratio of ori to ter DNA, genomic DNA from mixed

cultures grown to mid-log phase, was digested with BamHI. For each sample,

approximately 3 Rg of digested DNA was run on a TAE agarose gel and then blotted onto

Amersham Hybond-N+ membrane (GE Healthcare) according to the manufacturer's

manual. Two Southern probes, one complementary to a 1010 bp region near the origin

and the other to a 720 bp region at the terminus, were obtained by PCR using primer pairs

Cori For/Cori Rev and TerFor/TerRev. Labeling of the probes, hybridization to

membranes, and detection were performed using the Amersham Gene Images AlkPhos

Direct Labeling and Detection system (GE Healthcare) according to the manufacturer's

instructions. Blots were scanned with a Typhoon scanner (GE Healthcare), images were

processed with Photoshop (Adobe), and the relative band intensities quantified using

ImageJ.

To analyze the methylation status of the chromosome, Southern Blot analysis was

performed as described earlier [7], using GM 1251 which contains Tn5Q-MP at the purA

locus, -120 kb from Cori. Tn5Q-MP contains two sets of GANTC sites overlapping ClaI

sites, which are blocked by methylation, and two additional Pstl sites, which are

methylation insensitive and flank Tn532-MP. Digestion with Clal and PstI results in DNA

fragments that are characteristic in their length of fully, hemi- or unmethylated DNA.

Chromosomal DNA was sampled every 30 min for 3 h from synchronized cultures of

GM1251 and its isogenic divL's mutant, ML1878, and digested with Clal and PstI.
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Blotting, hybridization and detection were performed as described above using a probe

that was generated with the primers Tn5MPprobeFor and Tn5MPprobeRev. Relative

band intensities were quantified using ImageJ and the percentages of fully, hemi- and

unmethylated DNA were plotted as a function of time.

Flow Cytometry

Flow Cytometry was performed as previously described [13]. For time-course

experiments, samples were taken every 15 min after synchronization and the median

value of fluorescence for each time point determined using Flowjo software

(http://www.flowjo.com/) and plotted as a function of time. Each experiment was

repeated independently and representative results are presented.

Protein purification and antibody production

His6-dnaA was expressed from pML375-dnaA in E. coli BL21 for 4 hrs at 30'C.

Purification of His6-DnaA was performed as described previously [14]. To avoid protein

precipitation at high concentrations, DnaA was denatured with 5 M Urea, and then used

as antigen in the production of polyclonal rabbit antisera (Covance).

Immunoblotting

Pelleted cells, normalized to the optical density of the culture, were resuspended in IX

SDS sample buffer and heated to 95'C for 10 min. Equal amounts of total protein were

then subject to SDS-PAGE for 60 or 80 min (for HdaA or DnaA blots, respectively) at

150 V at room temperature on 12%, 10% or 7.5% Tris-HCl gels (Bio-Rad) and

transferred to PVDF membranes (Bio-Rad). Proteins were detected using a 1:1500 or

1:1000 dilution of primary antibody against DnaA, HdaA, or the M2-tag, respectively,

and a 1:5000 dilution of secondary HRP-conjugated antibody. Blots were scanned with a
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Typhoon scanner (GE Healthcare), images processed with Adobe Photoshop, and the

relative band intensities quantified with ImageJ.

Yeast two-hybrid assay

Protein-protein interactions were assayed in the yeast two-hybrid system as described

previously [15].
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Conclusions

In this work, I used Caulobacter crescentus as a model organism to investigate how

regulatory proteins drive the establishment of daughter cells with different replicative

fates. Specifically, I showed that the essential histidine kinase CckA has both kinase and

phosphatase activities in vitro and in vivo (Chapter 2). CckA is bipolarly localized in

predivisional cells and other studies from our lab recently demonstrated that CckA likely

adopts the kinase state at the swarmer pole and phosphatase state at the stalked pole [1].

Using a variety of genetic manipulations corroborated by computational modeling, I

showed that this spatial separation of kinase and phosphatase activities at opposite poles

generates a spatial gradient of CtrA phosphorylation across the cell before cytokinesis.

This spatial gradient is responsible for asymmetrically repressing the origin of replication

at the swarmer pole of a predivisional cell (Chapter 3). These results thus uncover a

previously unappreciated method for producing spatial asymmetry in bacteria. Although

a protein may be spatially homogeneous within a cell, its activity can be spatially

heterogeneous due to asymmetric posttranslational modifications. Given the prevalence

of two-component systems in bacteria, spatially asymmetric phosphorylation and

dephosphorylation of response regulators may be a general mechanism for establishing

asymmetric cell fates. Other enzyme pairs, such as diguanylate cyclases and

phosphodiesterases, with opposing, spatially segregated activities may also be able to

produce such gradients.

In Chapter 4, 1 investigated how CtrA activity might be linked to DnaA activity and

replication timing. In agreement with previous reports, we showed that asymmetric
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inheritance of CtrA activity in daughter cells enforces replicative asymmetry.

Surprisingly, and in contrast to previous models, I found that in the absence of CtrA

activity, replication continues with wild-type periodicity. By contrast, increasing DnaA

activity abolished replicative periodicity and caused overinitiation while decreasing

DnaA activity slowed down replication cycles but did not change the asymmetry in

replication timing between swarmer and stalked daughter cells.

From these data, we concluded that DnaA activity oscillates independently of CtrA

activity and developed a model for the modular evolution of the bacterial cell cycle. In

our model, a primordial oscillator drives periodic changes in DnaA activity and

subsequent replicative cycling in Caulobacter as it likely does in almost all bacteria. CtrA

and the phosphorelay controlling it represents a later development required to drive

asymmetric cell divisions and morphogenesis. The CtrA circuitry was then recruited in

some species, such as Caulobacter, to couple asymmetry in replicative fates to

asymmetry in morphogenesis; this recruitment step likely only required the evolution of

CtrA-binding sites at the origin of replication.

Visualizing the spatial gradient in CtrA phosphorylation

Our results in Chapter 3 demonstrate that although the levels of a freely diffusible

protein, such as CtrA, may be homogenous throughout a prokaryotic cell, its activity may

be spatially heterogeneous. In this work, I did not directly visualize the spatial gradient of

CtrA phosphorylation. Instead, I took advantage of CtrA's phosphorylation-dependent

function as a repressor of replication initiation. By examining the probability of initiation

events at the stalked and swarmer poles, I indirectly assayed the level of CtrA

phosphorylation at each pole. To better understand how CtrA phosphorylation might look
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between the two poles, we made a reaction-diffusion model with CckA kinase activity at

the swarmer pole and CckA phosphatase activity at the stalked pole (Fig. 3. 1E, see

Chapter 3 Methods). CtrA was assumed to diffuse freely and degraded throughout the

cell. When CckA kinase and phosphatase activities were within physiological range,

CtrA phosphorylation levels varied linearly across the cell length (Fig. 3.4A). If an

additional delocalized phosphatase for CtrA exists, then the CtrA phosphorylation

gradient is exponential, dropping off more quickly with distance from the swarmer pole

(Fig. 3.1 OC). The existence of an additional phosphatase for CtrA is likely given that a

kinase-only allele of CckA (CckA(V366P)) complements a deletion of cckA with no

significant cell cycle or morphologic defects (Fig. 2.7). Alternatively, CckA(V366P)

could be an imperfect allele with some phosphatase activity in vivo although it had no

detectable phosphatase activity in vitro. Thus, knowing the precise shape of the CtrA

phosphorylation gradient would yield more insight into understanding what controls CtrA

activity. From our modeling data, we can predict what the shape of CtrA phosphorylation

across the cell might look like in various scenarios. However, we could not directly

visualize CtrA phosphorylation in vivo because there are multiple challenges to

monitoring the spatial distribution of a phosphorylated response regulator in individual

cells. Below, I outline these challenges and potential methods that could be developed to

visualize a phosphorylated response regulator on a single cell level.

In eukaryotes, one method that is widely used to detect a specific phosphorylated protein

involves generating an antibody specific to the phosphorylated form of this protein. This

antibody can then be used to visualize the spatial distribution of this phosphorylated

protein in individual cells by immunofluorescence. However, it has been difficult to
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apply this approach in prokaryotes [2]. In contrast to the phosphorylated serine,

threonine, and tyrosine residues generally found in eukaryotic kinases and substrates,

phosphorylated histidine and aspartate residues found in bacterial two-component

systems have high-energy bonds that undergo hydrolysis easily under acidic conditions.

This property makes phosphorylated histidine kinases and response regulators difficult to

isolate from cells. This also makes it difficult to generate specific antibodies against

proteins containing phosphohistidine or phosphoaspartate since these residues are easily

dephosphorylated in the serum.

To address this problem of phosphohistidine instability, a nonhydrolyzable

phosphohistidine analogue using phosphoryltriazolylalanine (pTza) was recently

developed [3]. Using solid-phase peptide synthesis, the authors synthesized the N-

terminal tail of histone H4 with the phosphorylatable histidine replaced by pTza. Using

this synthetic peptide as an immunogen, the authors obtained the first antibody that

specifically recognizes a phosphorylated histidine. This work might be generally

applicable to histidine kinases and phosphotransferases. Although this work suggests that

a similar approach might be used to generate antibodies specific to proteins containing a

phosphorylated aspartate, currently, there are no stable analogs for phosphoaspartates,

precluding the use of an antibody specific to any phosphorylated response regulator, such

as CtrA.

To circumvent the difficulty of making antibodies to two-component system proteins, in

vivo fluorescence resonance energy transfer (FRET) was used to monitor phosphate flow

through the chemotaxis two-component system in E. coli [4-7]. In chemotaxis, bacteria

move toward higher concentrations of attractants while avoiding higher concentrations of
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repellents. Swimming control is mediated by the directionality of flagellar motor rotation,

which is in turn controlled by signaling from chemoreceptors through two-component

systems [8, 9]. Specifically, in E. coli, binding of chemoreceptors to attractant inhibits

autophosphorylation of the histidine kinase CheA while binding to repellent stimulates

CheA autophosphorylation. When autophosphorylated, CheA phosphorylates the

response regulator CheY, which binds the flagellar motor and increases tumbling. CheY

can also be dephosphorylated by the phosphatase CheZ. Therefore, the concentration of

phosphorylated CheY is determined by a balance between phosphorylation by CheA and

dephosphorylation by CheZ. The concentration of the enzyme-substrate complex, CheZ

with CheY~P, represents the rate of CheY-P dephosphorylation and can then be used as

an indirect marker of net CheY phosphorylation [6]. By fusing CheY and CheZ to YFP

and CFP, respectively, interactions between CheY and CheZ can be determined by FRET

in individual living cells [4, 6]. This FRET signal can be mapped with high spatial

resolution within the cell, demonstrated as follows. The phosphatase CheZ is generally

localized to the chemoreceptor clusters, resulting in a high FRET signal near the cluster

that drops off quickly outside the cluster. However, expression of an allele of CheZ

(CheZF98S) that cannot be localized caused a quantifiable spatial gradient of FRET signal

over the length of the cell, corresponding to diffusion of CheZ and the response regulator

CheY away from the cluster [7]. The fine spatial resolution of this FRET approach makes

it ideal for observing any spatial heterogeneities in phosphorylation or dephosphorylation

reactions within individual cells.

Despite the advantages of having both temporal and spatial information of

phosphorylation events in living cells, there are significant challenges to applying in vivo
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FRET to the CtrA phosphorelay. Unlike CheY, CtrA does not have a separate kinase and

phosphatase; CckA functions as the kinase at the swarmer pole and as the phosphatase at

the stalked pole. Therefore, detecting an interaction between ChpT and CckA or between

ChpT and CtrA does not distinguish between phosphorylation and dephosphorylation.

Instead of simply detecting an interaction between the phosphorelay components, we

must find an interaction or conformational change that is specifically phosphorylation-

dependent or dephosphorylation-dependent. One candidate is a phosphorylation-

dependent conformational change in CtrA that allows for increased DNA binding

affinity. Upon phosphorylation, response regulators are thought to undergo allosteric

activation of effector domains, dimerization, oligomerization, or increased interaction

with heterologous target proteins [10, 11]. It is not known mechanistically how

phosphorylation alters CtrA structurally. If homodimerization increases upon

phosphorylation, then simultaneous expression of YFP-tagged CtrA and CFP-tagged

CtrA might show increased FRET signal near the swarmer pole and decreased signal near

the stalked pole of a predivisional cell. If the receiver and DNA-binding domains of CtrA

change conformation upon phosphorylation, then tagging CtrA with CFP at the N-

terminus and YFP at the C-terminus might yield a phosphorylation-dependent FRET

signal. Alternatively, one could tag CtrA with YFP and RNA polymerase with CFP to

look for a FRET signal upon CtrA-mediated recruitment of RNA polymerase to target

promoters [12]. However, these methods require that YFP-tagged CtrA is still

phosphorylatable, which has not yet been published.

Another method to examine the spatial gradient of CtrA phosphorylation could take

advantage of CtrA's function as a transcription factor. Using quantitative fluorescence in
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situ hybridization to mRNAs (RNA FISH), chromosomally expressed mRNAs were

shown to stay near their site of transcription in Caulobacter and E. coli [13]. Given this

information, it might be possible to visualize the expression of genes that are positively

regulated by CtrA by using RNA FISH. We would predict that the same origin-proximal

genes would be highly expressed in the swarmer half of the cell but repressed in the

stalked half of the cell, while terminus-proximal genes should not show a difference in

expression between the swarmer and stalked halves. Unlike FRET, RNA FISH would be

a less direct measure of CtrA phosphorylation. On the other hand, RNA FISH does not

require any proteins to be fluorescently tagged and could give additional information

about whether mRNAs are inherited asymmetrically by daughter cells.

How does DnaA affect CtrA activity?

In Chapter 4, I showed that disrupting CtrA activity does not change the periodicity of

DnaA activity and DNA replication. However, replication does somehow affect CtrA

activity. Previously, it was reported that replication is required for CckA and DivL

localization to the swarmer pole, which is necessary to activate CekA kinase activity in

late stalked and predivisional cells [14]. In a DnaA depletion strain, a strain producing

stable, constitutively active CtrA, or wild type treated with novobiocin, DNA replication

does not initiate and neither CckA nor DivL localizes to the swarmer pole [14]. In

Chapter 4, we showed that overproducing HdaA, a negative regulator of DnaA activity,

lengthened replication periods and cell division cycles. Interestingly, Western blot data

showed that CtrA accumulation in stalked and predivisional cells is delayed in a strain

that moderately overexpresses hdaA and replicates more slowly (Fig. 5.1). In a strain that

highly overexpresses hdaA, CtrA accumulation is delayed and never reaches the same
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level as in Gl; this is consistent with the observation that cells highly overexpressing

hdaA arrest in G2 (Chapter 4). Collectively, these data indicate that DNA replication or

some associated event is required to trigger DivL and CckA swarmer pole localization,

which are required for the reaccumulation of CtrA activity.

time (min) 0 30 60 90 120 160 180

pVan-HdaA
no induction

pVan-HdaA
2.6 uM Van

pVan-HdaA
600 uM Van

100

75
E
E3 -Pvan-hdaA, no van

50 -0-Pvan-hdaA, 2.5 [tM van

E *-Pvan-hdaA, 500 [tM van

0'0 25

0 15 30 45 60 75 90
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Figure 5.1. HdaA overproduction delays CtrA accumulation in late stalked cells. CtrA
Western blot (top) and quantification (bottom) in synchronized populations that begin
overexpressing hdaA moderately (2.5 uM van) or highly (5 uM van) at time 0.

What is the mechanism by which DNA replication impacts the localization of CckA and

DivL, and consequently CtrA activity? There are several possibilities: (1) the act of

DNA replication initiation might send a diffusible signal that prepares the swarmer pole

for localization of DivL and/or CckA, (2) a gene required for the localization of DivL or
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CckA could be induced or up-regulated following DNA replication, or (3) successful

chromosome segregation which leads to a newly replicated origin arriving at the swarmer

pole may permit the localization of DivL and/or CckA to that pole (Fig. 5.2). Any of

these general scenarios could couple replication to the activation of CtrA, such that if

DNA replication did not initiate, then the swarmer pole would not properly mature,

thereby preventing the activation of CtrA. Below I discuss each possibility and

experiments that could be done to test them or rule them out. Note that I have ruled out

successful completion of DNA replication being involved in activating CtrA because

replication takes about 40-50 minutes and CtrA activity begins to accumulate ~15

minutes after replication initiates, in rich medium. Additionally, replication does not

terminate properly in a strain overexpressing dnaA due to overinitiation (Chapter 3, Fig.

4.4-4.5), and yet the rate of CtrA accumulation is unaffected in this strain (Fig. 5.1). Also

for this reason, a change in DnaA activity is not likely to directly affect CtrA activity

through DnaA-mediated transcription.

The first possibility is that replication initiation at the stalked pole leads to the release of a

diffusible signal that allows for or triggers DivL and CckA localization to the swarmer

pole. This diffusible signal could be some factor that is released from the replication

initiation complex or regulated by another factor involved in replication initiation. This

possibility is unlikely because cells initiate replication when mildly overexpression HdaA

but CtrA accumulation is still significantly delayed in comparison to cells without HdaA

overexpression (Fig. 5.1). A more rigorous test of this hypothesis would be to examine by

timelapse microscopy if CckA and DivL localizes in cells overexpressing HdaA and

harboring the TetR-YFP fluorescent repressor operator system, where origins are marked
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by YFP foci (Chapter 3, Fig. 3.1). In these cells, one can observe the event of replication

initiation and ask whether CckA and DivL successfully localize to the swarmer pole or

not. If not, then replication initiation is not sufficient to release a factor necessary for

swarmer pole maturation and some later necessary event is being disrupted by HdaA

overexpression.

A second possibility is that replication results in a doubling of copy number in origin-

proximal genes, which could double the amount of a gene product that controls swarmer

pole maturation. This idea has been demonstrated in the process of B. subtilis sporulation,

where transient exclusion of the terminal-proximal spolIAB gene from the forespore

contributes to forespore-specific activation of oF (Chapter 1, Fig. 1.7). In the case of B.

subtilis, the copy number of spoIIAB undergoes a large fold change from one to zero

upon forespore formation. By contrast, in the case of replication initiation, the gene copy-

number would only increase by two-fold; therefore, this change is unlikely to be a robust

mechanism for regulating an essential cell cycle event. Additionally, microarray studies

have shown that few genes are cell cycle regulated by replication-induced change in

chromosome copy number [15].

Chromosome segregation and polar maturation

The third possibility is the successful segregation of newly replicated origins to opposite

poles. This is a good candidate for an event that regulates swarmer pole maturation and

the activation of CtrA. During cell cycle progression, the cell poles undergo remodeling

and dynamically associate with different proteins at different cell cycle stages. In the

swarmer cell, the origin is tethered to the swarmer pole by a complex of proteins. ParB

directly binds to the parS sequence approximately 8 kb to the left of the origin of
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replication. ParB also binds MipZ and tethers the origin to an oligomeric network of

PopZ at the swarmer pole (Fig. 5.2) [16, 17]. During the G1-S transition, the swarmer

pole sheds its external structures and grows a stalk, becoming the stalked pole. Internally,

the tether between PopZ and the parS/ParB/MipZ complex is broken; this can be seen on

live-cell microscopy as a loosening of a CFP-tagged ParB focus from the pole [18].

During this process of stalked pole maturation, PopZ also recruits regulatory factors, such

as SpmX and DivJ [18], which are instrumental in driving further cell cycle progression.

Then, replication initiates and the parS/ParB/MipZ complex moves rapidly to the new

pole [19-21]. This movement is driven by an interaction between ParB and ParA that

stimulates ATP hydrolysis by ParA and ensuing retraction of the ParA filament. TipN at

the new pole anchors ParA [22, 23]. Concomitant with chromosome segregation, PopZ

accumulates at the new pole, where it captures the segregating parS/ParB/MipZ complex

[16, 17]. CckA, DivL, and PleC also accumulate at the new pole around this time. CckA

arrives at the new pole after arrival of the origin and likely interacts with PopZ [14], and

PleC requires PodJ localization at the new pole [24], but the nature of these localizing

interactions is unclear. The colocalization of CckA and DivL at the new pole upregulates

CckA kinase activity [1, 25], which is required for the reaccumulation and reactivation of

CtrA. Given the complexity of cell cycle-dependent polar remodeling and its importance

for proper cell cycle progression, it makes sense that a simple signal such as the arrival of

the origin at the new pole might serve as a "checkpoint" to set off further recruitment of

proteins to the new pole.
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Figure 5.2. Mechanics of chromosome segregation in Caulobacter. In G1, ParA (green)
associates with TipN (yellow) at the new pole while ParB (red) tethers the origin-proximal region
to PopZ (blue) at the old pole. In S phase, replication initiates. In complex with newly replicate
parS, ParB latches onto ParA-ATP and stimulates ParA ATP hydrolysis. Upon hydrolysis, ParA
becomes a monomer, allowing ParB to pull the chromosome up the shortening ParA filament,
toward the new pole. At the new pole, ParB is tethered to PopZ. TipN then moves to the division
site in preparation to mark the new pole upon cell division. Figure adapted from [16, 17, 22, 23]

Previous data showed that a dominant negative allele of ParA (ParA(K20R)) delays the

arrival of the origin to the new pole but does not delay CckA localization to the swarmer

pole; this prompted the authors to discount chromosome segregation as a regulatory step

for new pole maturation [14]. However, these experiments were done in populations of

cells, where origin movement was not correlated to CckA localization timing within the

same cell. Additionally, the authors used MipZ-YFP as a marker for the segregating

origin. MipZ interacts with the origin through ParB, which also interacts with ParA;

therefore, it is possible that ParB binding to parS or MipZ might be disturbed when

ParA(K20R) is produced at high levels. To improve upon these experiments and more

carefully examine the relationship between chromosome segregation and swarmer pole

maturation, we could use the TetR-YFP fluorescent repressor-operator system to mark

the origin. This heterologous system should not interact with any native proteins.

Additionally, we can observe CckA and DivL localization and origin segregation within
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the same cell, to better characterize the timing of origin segregation with that of CckA

and DivL localization.

Another tool for investigating the connection between chromosome segregation and polar

maturation is the hdaA overexpression strain. When HdaA is overproduced at high levels,

some cells replicate and segregate their chromosomes partially such that an origin does

not reach the new pole while other cells replicate and segregate both origins to the pole

for a short while before the two origins collapse back together (Chapter 4) (Fig. 5.3). If

successful segregation of the origin to the new pole triggers some polar maturation event,

CckA localization should occur in only that population of cells, but should not occur in

those cells that replicate but do not segregate properly. If cells that replicate and never

segregate their chromosomes to the poles also exhibit timely CckA localization to the

new pole, then segregation most likely does not contribute to new pole maturation. In

addition to investigating DivL and CckA localization, it will be informative to examine

the localization of TipN, PodJ, and PopZ at the new pole to better understand what step

of polar maturation is affected in cells that cannot replicate.
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Figure 5.3. Segregation defect in cells that overexpress hdaA. (A) Bar graphs quantifying
replication (left) and segregation (right) events in cells that harbor the fluorescent repressor-
operator system and overexpress hdaA. All cells had a single chromosome when hdaA
overexpression was induced. An initiation event was counted if two fluorescent foci could be
detected at any point during a 6-hour timelapse movie. Partial segregation was counted if the two
origins remained separated for more than 12 minutes. Segregation to the poles was counted if
one of the two origins reached the new pole. (B) Representative timelapse images of the
segregation patterns observed in cells quantified in part A. Top row, arrowheads indicate
observable initiation events. Middle row, arrowhead indicates partial segregation of the two
origins. Bottom row, arrowhead indicates segregation of the origin to the new pole.

A chromosome segregation checkpoint

The idea of a checkpoint that links a replication-associated event with downstream cell

cycle and division events has been validated in other systems, particularly in yeast. The

spindle assembly checkpoint, which is conserved from yeast to mammals, ensures the
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fidelity of chromosome segregation in both mitosis and meiosis (reviewed in [26, 27]). If

spindle assembly is defective, then a mitotic checkpoint complex containing Mad2,

Mad3, Bub3, and Cdc20 directly binds to and inhibits the anaphase-promoting complex,

a ubiquitin ligase that is required for chromosome segregation and cytokinesis [27]. This

checkpoint is thought to monitor the attachment of chromosomes to the mitotic spindle as

well as the tension across sister chromatids generated by the microtubules. This tension is

generated when sister chromatids properly attach to microtubules emanating from

opposite poles of the mitotic spindle [28, 29]. Only after all sister chromatids have

achieved this bi-orientation, can the anaphase-promoting complex in concert with Cdc20

polyubiquitinate the securin protein, ultimately resulting in securin degradation,

activation of the separase, proteolytic cleavage of cohesins, and separation of the sister

chromatids [28, 30]. If the sister chromatids are not properly lined up and bi-oriented and

the spindle checkpoint fails to be activated, as in a MAD3-deletion strain, chromosome

segregation will not occur properly, resulting in cells that exhibit polyploidy or

aneuploidy, and ultimately cell death.

Many of the spindle checkpoint genes were identified in screens looking for mutants that

bypassed the mitotic arrest of wild-type budding yeast cells in the presence of spindle

poisons [31, 32]. In Caulobacter, high overexpression of hdaA causes a segregation

defect and an arrest in the cell cycle with an inability to reactivate CtrA, suggesting the

presence of a checkpoint. Therefore, screening for mutants that bypass this checkpoint

and regain motility should yield information about which proteins participate in this

checkpoint.
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