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Abstract

The response of grooved composite laminates to out-of-plane contact loading is
examined using numerical modeling through the consideration of contact pressure and
stresses within the laminate, with particular focus on the area local to the groove.
Finite element analysis is employed via ABAQUS, a commercial finite element mod-
eling software. The indentor is modeled as a rigid body, and the validity of this
approximation is assessed through comparison with a deformable, linear elastic in-
dentor. The influence of ply angle is investigated through consideration of a family
of [±0/0113s laminates for values of 6 of 15*, 300, 450, and 60', along with a quasi-
isotropic [i45/0/90]lios and a crossply [0/90120s configuration, all using T700/2510
graphite/epoxy. The linearity of the response is investigated, and two loading config-
urations are studied and compared: a two-dimensional, cylinder-loaded configuration,
and a three-dimensional, sphere-loaded configuration. Results show that the Hertzian
contact model for isotropic bodies cannot be used to determine contact pressure due
to an inability of that model to analytically determine the appropriate contact length.
The basic form of the contact pressure curve is similar to the Hertzian model, but
with significant local variations superposed due to stiffness variation, particularly in
the longitudinal direction, due to ply orientation angle. Thus, if the contact length
is supplied, the Hertzian model can be a valid overall approximation. Total vertical
load magnitude is determined to be a primary factor in the response, as it deter-
mines contact length, and thus the distribution of contact pressure and the form of
the stress field. The response is found to vary with significant nonlinearity with re-
spect to applied load due to the relationship with contact length. The rigid body
approximation of the steel indentor is deemed sufficiently accurate to capture the
overall behavior, due to the high difference in stiffness between the steel indentor
and the through-thickness stiffness of the composite. There is significant variation
between the two-dimensional models and the three-dimensional models, particularly
in determining the magnitude of the response. However, the two-dimensional model
is sufficient to observe trends, and could be of use in preliminary design and analysis,
although the full three-dimensional model is required to accurately determine the
response in the final analysis, largely due to important issues of variation along the
groove. In general, stress behavior is dependent on the laminate and the particular
stress, with stress fields between laminates showing some similar trends, but also high
variability depending on the composition of the laminate.

Thesis Supervisor: Professor Paul A. Lagac6
Title: Professor of Aeronautics and Astronautics and Engineering Systems
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Chapter 1

INTRODUCTION

Carbon-fiber/epoxy composites, a material in which aligned carbon fibers are

embedded in an epoxy matrix, are seeing increased use in aircraft and space systems.

This is primarily due to the high strength-to-weight and stiffness-to-weight ratios of

the material, and the ability to highly tailor structures to the expected loading. In

aerospace applications, where the weight on a system is at a premium, the weight

savings of a light but strong and/or stiff material can greatly increase performance.

For example, recently aerospace companies have been leveraging these composites

to construct the next generation of lightweight aircraft, such as the Boeing 787 and

the Airbus A350-XWB. In these applications, where composite materials make up as

much as 80% of the airframe structure by volume, but only 50% by weight, the weight

savings lead to greatly increased fuel efficency [1, 2, 3]. This efficiency is an enticing

prospect for airlines looking to buy new aircraft in an era of greatly increased fuel

prices.

However, widespread adoption of these materials has been relatively slow. Despite

being around for nearly half a century, these materials are only recently finding large

scale adoption on major jet airliners. This is mostly due to the complexity of designing

an advanced composite structure. The response of these materials is often much more

difficult to predict, compared to the standard aluminum structure, due to some unique

properties and a gap in the understanding of some of the fundamental behavior. First,

the composite formed from aligned carbon fibers and epoxy is orthotropic, thereby
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having a different response depending on the direction in which the material is loaded.

This is in contrast to an isotropic material, like most metals, that are uniform in

response irrespective of the direction in which they are loaded. Second, carbon-

fiber/epoxy composites are primarily used in a laminate form, allowing a given layer

of aligned fibers to stiffen a structure in a specific direction. These layers can then be

stacked at varying angles to form a structure that is uniquely designed to withstand

a very specific loading. This is ideal for aircraft designers as it utilizes a material

effectively to create as light a structure as possible for a given performance. However

the individual layers of a laminated composite, which can be aligned at any particular

angle, can have complex interactions. These interactions, at the most basic level, are

due to the orthotropic nature of the individual composite plies. The plies, which are

potentially aligned in many different directions, can all respond in very different ways

when subjected to a single loading. This generates a complex interaction between

the layers of a full-scale structure. In order to understand these interactions, and the

overall response of the structure to a given load, a detailed structural analysis must

be performed. For most complex aerospace structures, this analysis is beyond what

is possible with a closed-form, analytical solution.

As with all materials, there are some compromises when using a composite ma-

terial. While these composites are good at carrying a load in the plane of the plies,

they are less effective at carrying other loads. Carbon-fiber/epoxy composites are

primarily used in a laminated form, allowing the layers of aligned fibers to stiffen a

structure in a specific direction. This design makes laminated composites very ef-

fective at transmitting loads in the plane of the laminate, along the direction of the

aligned fibers. However there are some applications that also place a structure in a

transverse, out-of-plane, loading, applying a load to the laminate perpendicular to

the composite plies and orthogonal to all the fibers. In this scenario, the material is

much worse at transmitting load compared to a metal structure. The metal struc-

ture is equally strong in all directions, whereas the aligned nature of the composite

structure makes it stronger in some directions at the expense of strength in other

directions. An aligned carbon-fiber epoxy composite that is equally effective in all
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three dimensions, and cost effective, has yet to be designed.

Out-of-plane loading of composites has been studied at length. These types of

loads put a structure at the greatest risk due to the low strength of the material

in that transverse direction. As such, the response of a structure to this loading

needs to be understood. Most of the work in this area is focused on short time-frame

loadings such as impact or quasi-static loading. These represent studies of real world

events such as debris impact, arms fire, and bird strikes on composite plates, such as

an aircraft skin. There has been relatively little work done on analyzing composite

structures that are intended to take a sustained static transverse contact load. This

is mostly because few such composite structures exist.

There are a few composite structures designed to take a transverse load that

would benefit from further analysis and understanding, for example the telescoping

spar designed by Sahr et al [4]. This spar is designed for use in the spanwise morphing

wing of a roadable aircraft, what is essentially a flying car, in which the wings are

stored in the roof of the vehicle in a telescoping fashion. The spar for this wing is

composed of two composite tubes, used for their weight savings in a structure that

primarily sees a bending load. These tubes are encircled by grooves and are connected

to each other by steel ball-bearings that allow the tubes to extend or retract in a

rolling manner within one another, along with the rest of the wing. The steel balls

would then be responsible for transmitting the lifting load from one section of wing

to the other, acting perpendicular to the composite tube. Such a wing design is not

only useful for a flying car concept, but also has other potential applications such

as compact wings on unmanned aerial vehicles (UAV) and spanwise morphing wings

on fixed-wing aircraft. This design and its loading represent a complex structural

interaction. The steel balls will load the grooved composite tubes transversely in

a mechanism that has not been studied and is little understood. It represents a

combination of two difficult analyses, a composite structure under transverse loading,

and an introduction of load through the contact of two bodies. Individually, these

mechanisms have been studied in detail, but combined represent a new avenue for

research.
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The technology to model and investigate such structures exists, and has recently

advanced to a level capable of producing meaningful results. Since the 1980's, en-

gineers have used the finite element method to model structures via computer. As

computing power has increased, so has the ability to model composite structures

in even greater detail. It is now possible to computationally model individual plies

within a composite structure to observe the stress and strain at increasingly small

lengthscales, where it is impossible or impractical to do so in the lab with a real

structure. In addition, a set of tools exist that enable the computational modeling

of contact between two bodies, developed in part to enable analysis of the transverse

impact events, as described above.

Through this work, the basic understanding of the basic response of a grooved

composite structure to a contact loading from a steel ball bearing is sought. This

represents a case that can be applied to an application such as that described above,

of the telescoping composite spar concept as described. Previous initial work [5,

6] has been done on understanding the underlying principles in the response of a

grooved structure to out-of-plane loading, and this work makes use of the conclusions

reached in that research. The purpose of this investigation is to determine the major

factors and trends that describe the contact pressure between the loaded steel ball

and the composite groove, and the resulting stress distribution within the composite

laminate.
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Chapter 2

PREVIOUS WORK

Carbon-fiber composites, while generally strong and tailored to loading in the

plane of the laminate, are not usually designed to carry sustained transverse loads,

normal to the fiber direction. Thus, little prior work specific to that structural situa-

tion has been done. Fortunately, work in other areas, specifically low-velocity impact

and quasi-static indentation, can be applied to the current investigation. Modeling of

the contact pressure between two bodies was initially developed for use in optics, but

can be applied to use in composites and indentation, and by extension, transversely

loaded grooved composites. Quasi-static indentation was developed as a means to

study low-velocity impact and the resulting damage, but its static nature lends itself

to application in sustained static loading and the response of composites. Finally,

two previous investigations from the current line of research lay the foundation for

the investigation of the transverse loading of grooved composites.

2.1 Contact Modeling

Initial work in the contact of two curved bodies was done by Heinrich Hertz in 1881

[7]. Hertz developed an analytical approximation for contact pressures and areas for

contact between two linear elastic isotropic bodies with constant radii of curvature.

Hertz assumed an elliptical contact area, the parameters of which are dependent on

the materials involved and the shapes of the interacting bodies. The matching con-
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tact stress is now referred to as a Hertzian Pressure Distribution, the parameters

of which depend on the shape of the interacting bodies and the magnitude of the

applied load. Willis extended the theory of Hertz to apply to anisotropic bodies [8],

requiring the implementation of a Fourier Transform and the numerical evaluation

of the final contour integrals. This was not a complete analytical solution, but re-

mains applicable to numerous contact situations. This includes particular transverse

isotropic materials, such as carbon-fiber/epoxy composites. Willis' work not only

provides a contact pressure distribution between two bodies, but also the consequent

force-deflection equation or "Contact Law". For a transverse isotropic half-space this

equation was found to follow a 3/2 power law form.

Yang and Sun verified Willis' contact law with static load testing, investigating the

loading behavior of glass/epoxy and graphite/epoxy composite laminates [9]. Good

correlation with Willis' 3/2 power law was found for loading of the composites, though

unloading was found to follow a 5/2 power law due to damage developed during the

loading cycle. Tan and Sun applied Willis' power law for static contact loading to a

numerical low-velocity impact model of graphite/epoxy composites, and found good

correlation with experimental low-velocity impact testing [101.

Work by Keer and Miller [11], and Sankar and Sun [12] investigated the pressure

distribution for indentation of a finite orthotropic layer in bending, as opposed to the

solution for a semi-infinite anisotropic half-space developed by Willis. They found

that, for small ratios of contact length to plate thickness, the Hertzian distribution

is an accurate approximation of the pressure between the two bodies. However at

larger ratios, the pressure distribution took on a saddle shape as the plate began to

conform to the semi-spherical indentor, lowering the contact pressure near the center

of contact. Wu and Yen extended this investigation to look specifically at laminated

composite plates in bending {13]. For lower loadings, the pressure distribution again

took on the familiar semi-elliptical shape of the Hertzian distribution. At higher

loadings, a similar saddle shape was found, primarily in the more compliant transverse

direction. This finding converged with the theory that the saddle shape is created

when the surfaces in contact have a similar radius of curvature in the deformed state,
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due either to high load or low stiffness. For example, a low-stiffness simply-supported

beam loaded by a contacting body in the center of the span will assume the radius

of curvature of the indentor due to a curving of the beam around the indentor from

deformation due to the load. The lower the stiffness or higher the load, the greater

the deformation and thus the greater the region of the beam where the radius of

curvature matches the radius of curvature of the indentor.

2.2 Quasi-Static Composite Indentation

Work in static contact loading of composites is rare, but the response of composites

to impact is a heavily studied area, as composites are particularly susceptible to

impact damage. Response to low-velocity impact, a specific subcase of impact events,
and static loading were long considered to be intuitively similar. In the late 1980's and

early 1990's, various researchers conducted numerous studies to determine the extent

of these similarities using laminated composites [14, 15, 16, 17]. They found that

impact behavior, as measured by damage size, energy absorption, and load-deflection

curves, was similar to the static response. It was concluded that static indentation

tests can be used to represent low-velocity impact events when considering equivalent

maximum transverse forces. Further testing was conducted on a broad range of

specimens by Nettles and Douglas at NASA's Marshall Space Flight Center with

similar findings and conclusions, further verifying the procedure [18]. The work on

this topic led to the establishment of an ASTM testing standard to use quasi-static

indentation testing to measure the impact resistance of a laminated composite [19].

Static testing meant to simulate low-velocity impact is considered quasi-static and

is performed as a method to analyze the damage from a low-velocity impact while

being able to precisely control the load and displacement achieved but neglecting the

dynamic effects essential to higher velocity impacts. This controlled set-up allows

tests to be stopped or paused before failure to examine damage at various stages of

loading. Much of the work done in quasi-statics is performed using a laminated plate

and a spherical steel indentor.
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Analytical studies were initially used to predict the laminate response to quasi-

static loading. Popular methods primarily investigated the elastic response regime,

and used simplifying assumptions such as symmetry, or smeared material properties

to simplify the analysis to a manageable but mathematical level. This technique was

useful for determining locations of maximum stress, and thus the locations with the

highest probability of failure. Cairns and Lagace provided an analytical approach to

solve for deflections and strains in the elastic range for a homogeneous orthotropic

plate subjected to a lateral loading through a Hertzian distribution, and found good

correlation with experimental data [20]. Using this method, it was found that the

classical plate solution was recovered at a normalized plate radius of 0.4 from the

point of contact. Sankar investigated a similar case and considered a circular plate

with transversely isotropic layers [21]. Interlaminar shear stresses were calculated via

the finite difference method. In this investigation, the maximum interlaminar stress

was found at a radial distance normalized by the indentor radius of 0.90 to 0.95.

Numerical simulation of contact loading allows for the solution of problems out-

side of immediate purview of Hertzian mechanics, specifically complex geometries

and complex material substrates, such as laminated composites. With the increased

availability of computational resources, the response of a material to rigid contact in-

dentation loading could be studied numerically using finite element analysis as early

as 1985 by iteratively using imposed displacements on surface nodes conforming to the

shape of the indentor [22]. This technique was later applied to quasi-static impact of

composites using the assumption of a quasi-isotropic uniform medium [23], and later

to laminated composites [24]. As contact computation developed further, it became

possible to model not just rigid indentors, but also elastic indentors. Faulkner et al

[25] conducted the first real comparison of models with rigid indentors to models with

deformable indentors. A ceramic-steel substrate was the material being indented. It

was found that the differences in response of the medium due to the indentor type,

rigid or deformable, could be of significance.

Recently, contact modeling has been used extensively to simulate the response of

composites to both static and dynamic loadings using commercial FEA software that
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specializes in such analysis, such as Abaqus [26, 27, 28]. Tita at al [26] developed a

custom material definition for use with the finite element solver ABAQUS that al-

lowed a more accurate simulation of the failure mechanisms of composite laminates in

low-velocity impact test. Johnson et al [27] worked to develop a material degradation

model to include the effects of damage from impact in their finite element model in

ABAQUS, specifically attempting to more accurately model delamination. This in-

vestigation employed a discretized indentor and modeled contact using a small sliding

approximation used when the movement between two contacting bodies is negligible.

Creating a finite element model with the desired mesh size and a reasonable run time

was found to be a particular obstacle for this dynamic analysis due to the high mesh

density needed near the point of contact. Rizov [28] investigated the response of a

laminated sandwich structure to static indenting. A two-dimensional model with a

vertical plane of symmetry at the contact point and an increased mesh density near

the contact point was used to model the laminate, with the indentor modeled as a

rigid body. Good agreement was found with comparable test data.

2.3 Grooved Composites

The behavior of grooved composites has seen relatively little study. The little re-

search that has been conducted with grooved composites focuses primarily on specific

designs for particular applications. For example, Hoppel et al. [29] studied buttress

grooves, a structure typically used to transmit shear loads, using composites. The

work focused on investigating the strength of a single groove, and determining an

optimized laminate configuration that would maximize the ability of the structure to

carry shear loads. Montay et al. [30] investigated creating grooves in composites as

a method to determine the residual stresses from the manufacturing process. The

flat-bottomed groove in this work is drilled incrementally, allowing the composite to

deform between increments to reach a new equilibrium due to the removal of the

groove material. Using the compliance method, the deformation that occurs provides

information about the residual stresses previously carried by the removed material.
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Stress gradients could be studied due to the incremental approach to material removal.

Neither the groove nor the laminate were loaded in this scenario.

However, more relevant studies regarding grooved composites under load have also

been done. Bastien [5, 31] performed the initial analytical investigation of grooved

composites with a transverse loading, looking first at grooved composites with a uni-

form loading along the length of the groove, dubbed a cylindrical loading. Studies

were performed using finite element analysis on primarily two-dimensional isotropic

bodies, and these results were then compared to a baseline, quasi-isotropic composite

laminate, and to a three-dimensional model. The three-dimensional model retained

the two-dimensional loading distribution, as if the grooved composite were loaded by

a a cylindrical indentor running the length of the groove. He performed a parametric

investigation on the effect of groove depth, plate thickness, and loading angle, as well

as an investigation of the effect of various boundary conditions. It was concluded

that the response consisted of three primary parts: 1) a global response due to the

structural configuration and loading, 2) a local response due to the removal of ma-

terial for the groove, and 3) a response due to the specifics of load introduction. In

comparing the laminate and isotropic configurations, Bastien found the response to

be similar in the body of the material, but with high strain gradients around the

face of the groove. This is due to the varying stiffness of each ply around the groove

and the uniform applied stress distribution, leading to an unrealistic, non-uniform

displacement around the groove. In comparing two- to three-dimensional results, it

was found that two-dimensional models were a good match to the response in the

three-dimensional model except for edge effects in the region a half-plate-thickness

from the edges in the width direction.

Experimental work observing the behavior of grooved composites to out-of-plane

contact loading was performed by Kobayashi [6]. In establishing a testing methodol-

ogy, he noted the need to use a rigid backface support to isolate the particular effects

of transverse loading of the groove. In these experiments, loads were applied through

a cylindrical indentor running the length of the groove in an attempt to get a con-

sistent stress distribution through the width. Kobayashi noted two distinct failure
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modes. Mode A was described as a delamination failure originating near the groove

bottom. In mode B, which was only observed in quasi-isotropic layups, a vertical

crack runs from near the bottom of the groove to a delamination failure near the

midplane of the composite. In analyzing the load-displacement data, a knee, or bend,

was observed as the point at which the curve deviated from its initial linear shape

[6].

The analytical work conducted on the contact mechanics of curved bodies is of

limited use to investigations of grooved laminates, as these methods cannot account

for the piecewise-varying stiffness encountered around the groove of a grooved lami-

nate. Work in grooved composites are rare, and much research is focused on specific

configurations and applications, or grooves that are not loaded. The majority of

previous work conducted in out-of-plane contact loading of composites is primarily

focused on low-velocity impact events, and the damage from such events. While little

of this research focuses on composite structures designed to carry out-of-plane load-

ing, these investigations have produced a number of procedures and computational

tools of use in modeling such structures. The work that has been conducted in load-

bearing grooved composites has laid a solid foundation of information about the sys-

tem through analytical investigations of isotropic systems and preliminary analysis of

laminate systems. However, these previous investigations relied on a two-dimensional

applied pressure loading scenario which may or may not accurately capture the re-

sponse in the true three-dimensional case. The experimental laboratory testing of

grooved composites has similarly yielded a great deal of information about this con-

figuration, but such tests cannot resolve the response of the laminate at the ply level,

only at the laminate level.

It is in response to these issues that the current investigation is focused. The

previous investigations justify further research to determine the details of the local

loading introduced by the steel ball-bearing indentor to the grooved laminate. In the

current work, the local details of the contact loading of grooved composites are studied

numerically using tools developed primarily for indentation and low-velocity impact
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studies. The response is investigated through finite element analysis, a process that

can resolve stresses and pressure at the ply level. Procedures used in the analytical

method by Bastien [5] are adopted in this work, and improved upon with regard to

the modeling of contact.
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Chapter 3

OBJECTIVES &

METHODOLOGY

This work seeks to further the understanding of the response of grooved compos-

ite laminates to transverse loading by a spherical indentor by building on previous

work and findings in the field. Particular attention is paid to the loading interaction

between the indentor and the grooved laminate, and the local response of the lam-

inate near the groove. The goals and objectives for this work are outlined herein.

An overview of the methodology followed in the achievement of these objectives is

presented along with a description of the geometry, laminates, loads, and boundary

conditions to be used in this work.

3.1 Overall Objectives

The primary objective of the present work is to study the response of grooved

laminated composites to contact loading through a round indentor, with particular

focus on the area local to the groove. In this work "conformal contact loading" is used

and is defined as a loading situation in which the groove is forced to conform to the

geometry of the indentor through deformation, or the groove and the indentor jointly

deform to conform to a new common geometry. This kind of loading is in contrast

to an applied force, traction, or pressure loading in which the body of interest is
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arbitrarily deformed at the point of loading according only to the applied load. The

focus is on the response local to the groove, as this is the primary region of interest.

The local loading situation of a grooved composite is the primary aspect that makes

this structural configuration unique, and is the least studied and understood aspect

of the configuration.

There are three sub-objectives to the primary objective. First, the linearity of

the response across designated load levels is to be assessed. This is investigated by

studying the response at varying load levels. Linearity in the response would allow

testing at a single load and allow a scaling of stresses and strains, simplifying analysis.

However the contact conditions, and the increase of contact surface area as load

increases, can cause nonlinearity. Second, the effect of ply angle and orthotropy on

the response is to be assessed. This is studied by examining a family of laminates with

a variable ply angle, a cross-ply laminate, and a quasi-isotropic laminate. Laminated

composites offer a unique ability to tailor the material properties to the loading

condition. Examining multiple layups should give an indication as to the manner in

which various laminates respond to the loading, and could potentially aid in selection

of an efficient layup in future applications. Third, the stress response across the

laminates is assessed, in particular the locations of maximum stress. This should

allow for some measurable comparison in the response due to the various changes

studied, and also provide locations of probable areas for failure initiation in physical

implementations.

In order to aid in the accomplishment of the primary objective and the sub-

objectives, there are three additional supporting objectives. First is the assessment

of whether a Hertzian load distribution represents a good approximation to the more

accurate conformal contact loading that is the focus of the current work. The Hertzian

distribution has been used as the load application method in previous work by Bastien

and was imposed as a precalculated pressure distribution on the groove surface [5].
An applied pressure distribution such as the Hertzian distribution would run more

quickly in a finite element model, and if accurate, would provide a much quicker solu-

tion. However, several assumptions are made in calculating the Hertzian distribution
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to fit the grooved laminate configuration that do not hold for laminated composites

in general, primarily the assumption of isotropy in both contacting bodies. A second

supporting objective is to assess the effectiveness of modeling the indentor as a rigid

body, as compared to modeling it as a linear elastic solid, in conformal contact load-

ing. The transverse stiffness of the laminate is significantly less than that of a steel

indentor, with the implication that the rigid body assumption should be reasonably

accurate. In addition, if the assumption holds, the modeling of a rigid indentor should

conserve computational resources, as compared to modeling the indentor as a linear

elastic solid. However, previous work indicates that the elasticity of the indentor

could be of significance [25]. Finally, this work examines the loading of the groove by

a cylindrical indentor, essentially a two-dimensional problem, and the loading of the

groove by a spherical indentor, a fully three-dimensional problem, and a comparison

of the response in each case is made with an assessment of the ability of the cylin-

drical case to represent a two-dimensional slice of the spherical case. Previous work

by Bastien [5] initially made this assumption, but the plane strain condition used to

work in the two-dimensional space is a questionable assumption, as the stresses in

the three-dimensional case have not been shown to be constant through the width of

the laminate. However, if the two-dimensional analysis does yield an accurate slice

of the three-dimensional case, this would also conserve computational resources and

allow for a more detailed finite element mesh and faster solutions.

3.2 General Approach

This investigation is focused on resolving stress gradients and contact pressure

variations in grooved composite laminates. These variations are likely to occur across

small lengthscales, on the order of a ply thickness, due to the laminated nature of

the body. For example, where the indentor contacts the grooved surface, the stiffness

changes around the circumference of the groove are anticipated to cause corresponding

changes in contact pressure. These stiffness changes are due to the laminated nature

of the material, with the groove spanning several plies of varying orientations, and
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hence varying stiffness in the contact direction. In addition, stiffness changes from

ply to ply due to varying ply angles are likely to affect stresses and strains on the

ply scale. With these scale considerations in mind, experimental testing using strain

gauges would be of only limited use in such an investigation as current technology

for strain gauges and optical strain mapping could not report stresses or contact

pressures at the necessary lengthscales. An analytical solution would be ideal, as it

would yield the continuous stress and strain distribution for the entire space of the

laminate. However, as discussed in Section 2.1, a closed-form, analytical solution

for the contact pressure across the cut face of an orthotropic laminate has yet to be

found and is beyond the scope of the current work. The numerical solution of a finite

element model is the next best approach.

The finite element model requires a sufficiently high density of nodes and elements

in order to report stress and strain changes at the lengthscales necessary, while still

having a manageable computational run time. For this work, the commercial finite

element software ABAQUS is used to set up and analyze the model. ABAQUS

provides a well-developed body contact algorithm and iterative solver that is necessary

for this investigation. This is key, as the current work investigates the use of an

indentor in applying load to the groove, in contrast to previous work in which load

was introduced via a pressure distribution with a Hertzian shape [5].

3.3 Laminates and Geometry

One of the benefits of laminated composite materials is the ability to adapt a

structure to different loadings and geometries through the use of different laminate

configurations. The key to this adaptability is the ply structure of the material and

the ability to vary ply angles to change the stiffness and strength of the material

as desired to best suit a given situation. This leads to many different combinations

of ply angles, or layups, even for composites that utilize the same base materials.

This presents a challenge for composites, as each individual combination of layup

and configuration must be analyzed independently, with results from one not being
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directly applicable to another. While it would be impossible to model and compare

every possible layup, this work investigates a number of different laminates that,

through their variability, give a broad view of the trends involved in contact loading

of grooved composites.

Regarding materials, two different carbon fiber/epoxy combinations are studied.

The first, an AS1/3501-6 graphite/epoxy composite is used for a direct comparison

to previous work [5]. The second, a Toray Composites T700/2510 graphite/epoxy

composite composes the majority of the models and is used to relate this investigation

with a parallel experimental effort using the same materials [32]. Properties for these

two materials are provided in Table 3.1.

Seven total layups are studied, with a summary of the laminates provided in Ta-

ble 3.2. The initial layups studied explore the quasi-isotropic case, as one of the

most common and multi-purpose layups in use. Comparison to previous work [5]
necessitates a [0/±45/ 9 0]15s layup of AS1/3501-6. A second, thinner, quasi-isotropic

case of a [±45/0/90os layup of T700/2510 is studied to examine the quasi-isotropic

response in comparison to other laminates of the same material and similar laminate

thickness. The quasi-isotropic case also represents a combination of individual char-

acteristics seen in the other laminates with angled, lateral, and transverse plies all

present in a common working layup. A laminate family is also studied to indepen-

dently observe the effects of changing ply angle using a [±0/0113s layup of T700/2510.

Values of 0 of 15', 300, 450, and 600 are considered. Finally, to observe the maximum

effects of ply mismatch, a cross-ply [90/020s layup of T700/2510 is studied. These

T700/2510 laminates were chosen in conjunction with a parallel experimental effort

for convenient comparison [32].

The configuration under study consists of a rectangular brick of composite material

two inches in length by one inch in width, as shown in Figure 3.1. These dimensions

are based on those developed in previous work by Kobayashi in determining test

methods and specimens for grooved composites in the laboratory setting [6]. Analysis

by Bastien determined that these lengths were sufficient such that edge effects did not

adversely affect stress results [5]. The thickness range of the laminates was determined
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Table 3.1 Unidirectional ply properties for AS1/3501-6 and T700/2510
graphite/epoxy composite materials

Property AS1/3501-6 T700/2510

Ei [Msi] 19.0 18.2

E2 [Msi] 1.54 1.22

E3 [Msi] 1.54 1.22

G12 [Msi] 0.870 0.613

G 13 [Msi] 0.870 0.613

G23 [Msi) 0.566 0.399

V1 2  0.280 0.309

Vi3 0.280 0.309

V23 0.540 0.596
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Table 3.2 Summary of laminates considered

Material

AS1/3501-6

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

Layup

[0/±45/90]15S

[±15/0]13s

[±30/0]13S

[±45/0]13S

[±60/0]13S

[90/.0]20s

[±45/0/90] 1os

Thickness [in]

0.625

0.450

0.450

0.450

0.450

0.462

0.462

- 45 -



based on previous work [5, 6], and in coordination with an parallel experimental effort

[32]. The exact thickness of a laminate is dependent on the number of plies involved in

the layup multiplied by the ideal ply thickness, as cited in the material specification

sheet of the manufacturer. For the laminates studied, the various thicknesses are

0.45-inches for the 78-ply layups, 0.46-inches for the 80-ply layups, and 0.63-inches

for the 120-ply layup. Based on the findings of previous work, these thicknesses should

be sufficient to isolate the local effects of loading on the groove without significant

influence from boundary condition effects. A semi-circular groove of radius 0.125-

inches runs though the width of the block with the center of the groove coincident

with the mid-length line of the top surface.

For the purpose of this study, two coordinate systems are used in referencing

points of interest, as illustrated in Figure 3.2. The primary rectangular coordinate

system has its origin at the geometric center of the composite block, midway through

the length, midway through the width, and at the midplane through the thickness.

The 1-direction, or xl-axis runs parallel to the length, the 2-direction, or x2-axis, runs

parallel to the width, and the 3-direction, or X3-axis, is perpendicular to the plane

of the plies, running through the thickness. It also becomes convenient to discuss

locations on or near the groove. For this purpose, a secondary coordinate system

is used, with rotational coordinate, <, and a radial coordinate, r, with an origin

at the center of curvature of the groove. The 0' point is the center of the groove

bottom, while the 90* point is the upper edge of the groove along the top surface

of the composite. In the three-dimensional case, this coordinate system is combined

with the x2 coordinate to form a cylindrical coordinate system sufficient to describe

locations in three dimensions.

3.4 Loading and Boundary Conditions

A key differentiating feature of the current work is the use of contact modeling.

Previous efforts have used an applied pressure distribution on the groove face to

introduce load. This approach can encounter problems when the pressure is applied
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Dimensions of grooved laminated configuration studied.
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Figure 3.2 Diagram of (top) primary coordinate system, and (bottom) cylindrical
coordinate system at the groove.
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to a surface with variable stiffness, such as the groove face of the current work [5].
Whereas a continuous pressure distribution in such a case will cause a discontinuous

strain distribution around the groove face, a modeled indentor will force a conformal

deformation in the groove, leading to a continuous strain distribution. This is much

closer to the reality of the grooved composite/ball bearing configuration.

The size of the indentor is based on previous work. Radial ball bearing systems,

such as the one under investigation, typically have a groove radius to ball diameter

ratio between 0.51 and 0.53 [33]. As the ball and groove here represent a load transfer

mechanism, the ideal match would see a smaller groove radius to ball diameter ratio

in order to maximize contact area and minimize high point stresses. As such, this

work employs a ratio of 0.51. With a given groove radius of 0.125 inches, this yields

an indentor diameter of .245 inches, thus an indentor radius of 0.1225 inches. The

indentor is modeled as AISI M7 steel, a high modulus, high strength steel with the

material properties given in Table 3.3. This is as similar as possible to the steel used

in parallel experimental efforts, when previous work found that softer steel would

permanently deform under grooved contact loading [6, 32].

Two different loadings are investigated. The first is the case of a cylindrical in-

dentor acted on by a distributed line load, as shown in Figure 3.3. The second is

the loading case of a spherical indentor acted on by a point load, as seen in Figure

3.4. The cylinder-loaded model has been used in previous work to represent a two-

dimensional slice of the spherical indentor case, specifically a slice going through the

point of maximum contact [5]. It has been found that the configuration of cylin-

der loading can be modeled in two dimensions as plane strain and will give accurate

representation of this case, neglecting edge effects found when modeled in three di-

mensions. The three-dimensional sphere-loaded model is more plainly representative

of the grooved composite and ball bearing interaction. Since three-dimensional anal-

ysis of this problem has not been performed previously, it remains to be seen whether

the two-dimensional case is truly representative of the three-dimensional case, and

determining the applicability of the two-dimensional case is a sub-objective of the

current work. It is also important to determine whether the steel indentor can be
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Table 3.3 Material properties for AISI M7 Steel

Property Value

Young's Modulus [Msi] 30.5

Shear Modulus [Msi) 12.0

Poisson's Ratio 0.270
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modeled as a rigid body, or must be modeled as a linear elastic solid. This comparison

is primarily performed in the two-dimensional modeling as this places fewer demands

on computational resources. The results of the comparison are carried over into the

three-dimensional modeling.

For the case of cylindrical loading, selecting the load to be applied has its own set

of issues. Using preliminary data from a parallel experimental effort, an attempt was

made to select loads well within the linear region of the load-displacement data of the

experiments [32]. It was also desired that the loading produce a contact area similar

to that studied in previous work by Bastien [5], and a similar contact area to the

case of spherical loading. With this as criteria, and based on preliminary numerical

studies, with a preference toward round numbers, a maximum load of 5000 lb/in

was selected. Making use of the incremental nature of the finite element solution

for the contact problem, incremental loads up to the determined maximum loads are

analyzed to determine whether the response of the composite to loading is linear or

nonlinear. For the case of spherical loading, previous analysis by Sarh [4] estimates

the maximum contact force observed between a single ball bearing and the grooved

composite spar in the telescoping wing design to be 300 pounds. This load meets

the requirements imposed on the case of cylindrical loading, namely to be within the

linear response region of the load-displacement data in a parallel experimental effort

[32], and likely to produce a similar contact area to previous finite element analysis

in work by Bastien [5]. As such, the load of 300 lb was selected as the primary load

for the three-dimensional case. As in the case of the cylindrical loading, smaller,

incremental loads are also studied to determine whether the response is linear or

nonlinear.

Previous work [5, 6] found that the boundary conditions of the configuration of a

transversely loaded grooved composite have a significant effect on the response. As

discussed in Chapter 2, the structural response of a grooved plate is composed of three

key items: the global response due to the overall structural configuration and loading,

the local response due to the removal of groove material, and the local response due

to the specifics of the load introduction. For simply-supported, fixed-free, and fixed-
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Figure 3.3 Illustration of cylindrical loading.
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Figure 3.4 Illustration of spherical loading.
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fixed boundary conditions, the response is dominated by the effect of the overall

loading configuration. In order to isolate and study the response of the composite

to the local details of transverse loading of the groove, the best boundary condition

supports the bottom surface of the laminate across its entire surface, allowing no

vertical motion or rotation about that plane, designated the rigid backface condition.

These boundary conditions eliminate the aspect of the response due to the global

loading configuration in order to more easily study the response of interest due the

local loading of the groove by the indentor. Previous work by Kobayashi [6] found

that the rigid backface was the best boundary condition for laboratory testing of

grooved composites under contact loading, and parallel experimental work by Jeffrey

[321 follows these same conclusions and uses the rigid backface condition in testing.

In addition, previous analysis of grooved composites by Bastien [5] used the rigid

backface condition, though other boundary conditions were investigated with isotropic

bodies. The consistency of boundary conditions across these studies thus allows for

a more direct comparison between those works and this current work. All models in

this work progress with the rigid backface boundary condition.
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Chapter 4

MODEL

The focus of the current work is to investigate the response of a grooved lami-

nated composite to transverse contact loading. As discussed in the previous chapter,

the approach taken makes extensive use of finite element modeling to simulate the

structural response to this loading situation. A computational method is needed to

resolve contact pressure that defines the load on the grooved composite and the stress

gradients within the structure on lengthscales on the order of a ply thickness. The

laminated nature of the body and the variable material properties of the plies due

to ply orientations make this kind of behavior likely. The finite element method is a

well-known, widespread approach to structural simulation and analysis, and provides

a platform for studying this configuration. The finite element program ABAQUS,

versions 6.8 and 6.9, is used for pre-processing, analysis, and post-processing, in con-

junction with MATLAB for some additional post-processing visualization. Technical

information in this chapter is drawn from the extensive ABAQUS documentation li-

brary [34, 35, 361. The set-up and formulation of the finite element models used in

this investigation are described in the following sections. An in-depth description of

the finite element method and contact mechanics is not given, as these have been well

studied and documented in previous work. The focus is on the rationalization for the

methods selected, and a sufficient description of all models and settings that would

allow creation of a similar or identical model in future work.
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4.1 Contact Model

The transfer of load to the laminated composite through an indentor is a ma-

jor focus of this work. Thus, the contact model employed in ABAQUS bears some

detailing. In order to isolate the effects of load pressure from the indentor, a fric-

tionless formulation was used between the groove surface and the indentor surface.

This allows for the analysis of the contact problem in isolation, and is a good way

to first study the basic principles of grooved composite contact loading. In addition,

modeling the friction involved would add another layer of complexity to the system,

and would require further experimental investigation of the properties of frictional

contact between an indentor and the open face of a cut laminated composite.

The first step in generating a contact model in ABAQUS is to determine the two

surfaces that are interacting, and define one of them to be the "master" surface and

the other to be the "slave" surface. This definition is not arbitrary. The master

surface should be on the body that undergoes the most motion and is the stiffer

of the two bodies. The slave surface should be on the more deformable of the two

bodies, and should have a finer mesh than the master surface. For this investigation,

the indentor is always defined as the master surface, and the groove in the composite

laminate is always defined as the slave surface. This is based on the laminate being

the more stationary body of the two, and being the more compliant of the two as

well, particularly in the through-thickness direction in which the loading is primarily

acting.

A tracking method must be selected that determines the manner by which ABAQUS

tracks nodes and elements on the master and slave surfaces in order to determine

whether contact has occurred, and, if so, help determine the appropriate contact

pressure. ABAQUS has two options for the tracking method. The first is "Small

Sliding", considered for cases where the movement between the two surfaces is small

relative to the element size (less than one element length). The other is "Finite Slid-

ing". This is the more general formulation, and is used for cases where relative motion

between the two surfaces is larger, but finite. The models used in this investigation
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employ the "Finite Sliding" formulation. Although sliding is likely to be small, the

elements involved are also quite small, so the motion relative to the element size could

be significant. Selecting the "Finite Sliding" formulation results in the automatic gen-

eration of contact elements on the slave surface. These elements have zero stiffness,

are invisible to the user, and connect the master surface to the slave surface. The

primary purpose of these elements is to construct a measure of the distance between

the two surfaces at all points where contact may occur. Once surfaces are in contact,

these elements are used to determine "overclosure", and the relative shear sliding.

"Overclosure" is a measure of the distance between the master and slave surfaces and

is defined as the distance a point on the slave surface penetrates through the master

surface. Overclosure is used to determine the pressure between the two contacting

bodies.

A contact discretization scheme is selected, in which the kinematic data from the

selected tracking method determines the displacements and pressures involved in the

contact situation. ABAQUS features two contact discretization methods and each

of these uses a different method of contact constraint enforcement to determine the

displacements and contact pressures associated with the contact condition. The first

is a traditional "Node-to-Surface" discretization. This method treats the slave sur-

face as a set of nodes and the master surface as a fully defined surface. Contact

only occurs if the nodes on the slave surface come in contact with the master sur-

face. Specifically, each node on the slave surface interacts with a small corresponding

region on the master surface, so that each contact condition involves a single slave

node and multiple corresponding master nodes. The contact is measured along the

normal to the master surface. "Node-to-Surface" discretization employs a "Direct

Method" of contact constraint enforcement. In such a case, when contact occurs,

slave nodes are constrained to lie exactly on the master surface. Computationally,

Lagrange multipliers are used to enforce the contact condition on the slave nodes

using a hard pressure-overclosure relationship, as shown in Figure 4.1. The hard

pressure-overclosure relation is defined as having zero pressure until the two surfaces

are in contact, at which point the pressure can take on any positive value, but over-
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closure cannot be positive. This means there can be no pressure between the two

surfaces until they are touching, and once touching, they cannot overlap. This rela-

tion minimizes penetration of slave nodes through the master surface, since negative

overclosure (surface overlap) is not possible at any given slave node, and does not

transfer tensile stresses between the two contacting surfaces, since contact pressure

cannot be negative. The "Node-to-Surface" discretization has two potential prob-

lems. Because the slave surface is defined only as disconnected nodes, the master

surface could penetrate the slave surface in the region between nodes, depending on

the curvature of the bodies, as illustrated in Figure 4.2. This is only a problem when

the master surface has a significantly finer mesh than the slave surface and the radii of

curvature of the two surfaces are highly dissimilar. This point-based contact method

can also generate highly concentrated contact pressures when two discretized surfaces

are used in contact.

The second surface discretization scheme is "Surface-to-Surface" discretization.

This method enforces contact in a more average sense over the slave surface, as

compared to the discrete point contact used in the "Node-to-Surface" scheme. This

is done in an attempt to address the weaknesses of the other method. In this method,

contact is considered between a local group of slave nodes and the corresponding local

points on the master surface. The contact direction is based on the average normal in

the local region of the slave surface. The contact constraint in this scheme is enforced

by the linear penalty method, and Lagrange multipliers are not used. In the linear

penalty method, the pressure-overclosure relationship is not the "hard" relation, but

a linear approximation of the hard relation, as shown in Figure 4.3, that accounts

for the local averaging method used on the slave surface. Like the hard relation, this

approximation cannot take on negative pressure values. However, some overlap is

possible, and the pressure between the two surfaces is determined by this overlap. The

relationship between contact pressure and overlap is linear with a slope ten times the

linear material stiffness in order to penalize and discourage, but not rule out, overlap.

The result is a discretization scheme in which no large penetration of the slave surface

by the master surface can occur (though small local overlaps are possible), and in
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Figure 4.1 Plot of the hard pressure-overclosure relation used in the "Node-to-
Surface" contact discretization.
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Figure 4.2 Illustration of a potential pitfall of the "Node-to-Surface" method in
failing to capture contact between nodes when using a coarse mesh and
opposite curvature directions.
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Plot of the linear penalty approximation of the hard pressure-overclosure
relation used in the "Surface-to-Surface" contact discretization.
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which contact stresses are more evenly distributed when used with two discretized

surfaces. Large peaks or valleys that might appear when using "Node-to-Surface"

discretization are smoothed out by the averaging contact method of the "Surface-

to-Surface" discretization. This leads to a more accurate determination of contact

pressure that is not as dependent on the particular finite element discretization and

mesh employed to model the surfaces. However, this method also requires significantly

more computational power to include the multiple averaging constraint equations for

each local node group. The usefulness of this method is also limited when one of

the surfaces is already smooth and not discretized, as in an analytical body, as the

contact stresses are already relatively smooth.

In this investigation, "Node-to-Surface" discretization is used when an analyti-

cal rigid body is employed to model the indentor. The smooth surface of the rigid

body prevents pressure spikes common using this discretization with two discretized

surfaces. This method is likely the more accurate method to use in this case as the

groove surface, which is discretized as a series of points connected by linear lines, is

a curved surface in reality. Modeling this surface as a set of points that lie on the ac-

tual curves, and having those points interact with the indentor body, with a radius of

curvature closer to that of the groove, should present a more accurate result. Finally,

this method is the less computationally intensive of the two, while generating similar

results for this case. When the indentor is modeled as a discretized linear elastic

body, the "Surface-to-Surface" contact discretization is used. While this is a more

computationally intensive method, it was found to give smoother contact pressures

for the two discretized surfaces in this particular case.

4.2 Finite Element Models

The finite element models used in the current work are constructed in ABAQUS/CAE,

a graphical front-end interface for constructing ABAQUS models. To create a finite

element model in ABAQUS/CAE, the geometry is first defined, then settings for

the finite element mesh are defined. Using these settings, ABAQUS will then auto-
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matically generate a finite element mesh to match the geometry and mesh settings.

The following subsections detail the type of finite elements used, the geometry of

the laminate and indentor models, the mesh seeds that determine node placement on

edges, and the mesh controls that define the form of mesh generation within a body.

For many of these parameters, there are considerable differences between the two-

dimensional and three-dimensional models, so these cases are frequently discussed

individually.

4.2.1 Elements Used

The ABAQUS finite element library contains a number of unique finite element

formulations, each suited to a different task, and each named in accordance with its

characteristics. Elements types are first classified based on what is being modeled,
solids versus fluids, for example. Next, the dimensionality of the element is considered,

whether the model is intended to be two-dimensional or three-dimensional, or is to

use the plane strain or plane stress assumptions, for example. The number of nodes

required per element comes next, with a higher number of nodes generally representing

higher order elements. For example, quadrilateral elements can come in 4-node first-

order, linear form, or an 8-node second-order, quadratic form. Last come any special

considerations for the model at hand. Generally, the models in this work utilize

continuum, displacement-based elements, used for modeling solids. Only first-order

elements are used in both the three-dimensional and two-dimensional models due to

concerns over computational cost and accuracy of the contact model. All elements

are isoparametric, meaning elements can be reshaped or distorted within reason to

fit the required geometry without affecting the results.

The two-dimensional models, representing the cylinder-loaded system as described

in Section 3.4, utilize the CPE4R element in ABAQUS. This is a continuum, plane

strain, 4-node, linear, quadrilateral, isoparametric, reduced integration element. Since

the two-dimensional models represent a plane strain slice through a cylinder-loaded

composite plate, an element type that supports plane strain modeling was needed.

Linear elements were selected over quadratic elements since quadratic elements can
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occasionally cause inaccurate contact behavior related to the loading of the mid-edge

nodes.

The three-dimensional models, representing the sphere-loaded system as described

in Section 3.4, utilize the C3D8R element in ABAQUS. This is a continuum, three-

dimensional, 8-node, linear, hexahedral, isoparametric, reduced integration element.

An element type was needed that supported three-dimensional stress analysis. This

particular element type was selected because hexahedral elements are preferable to

tetrahedral elements, which can artificially stiffen a system in some cases, and because

second-order quadratic elements can cause inaccurate contact behavior related to the

loading of the mid-edge and mid-face nodes.

4.2.2 Meshing Settings

All finite element models were meshed, that is mapped with nodes and finite

elements, using automatic meshing routines in ABAQUS/CAE, the front-end software

for model creation and visualization in the ABAQUS software suite. There are a

number of settings that largely define the form of the mesh generated by the automatic

meshing routine. The model must first be broken into appropriate geometric sections

that define boundaries of sections of finite element mesh based on regions of different

material properties and mesh density in a model. "Mesh seeds" are then applied to

the edges of each geometric section, and mesh controls are assigned to the body of

each section. A "mesh seed" on an edge tells the meshing program to put a node

on every point in the seed, and thus defines the concentration of elements along the

edge. Mesh controls determine how elements are formed on surfaces and in volumes

that lie between edges, since mesh seeds cannot be defined in this open space.

Mesh seeds can be defined in ABAQUS in one of three ways, by element size, by

number of elements on an edge, or using a biased concentration method. The element

size method will seed node points along an edge at a given repeating distance, yielding

elements with edges of the desired size. This method allows for good explicit control

over the size of elements. The element number method divides the length of the edge

being seeded by the number of desired elements and seeds the nodes such that the
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length of the edge is constructed of the desired number of elements. This method is

useful in generating meshes with a specific number of elements, but where element

size is indirectly determined by the length of the edge being seeded and the number of

elements used. The biased concentration method is a variation on the element number

method and requires three parameters as input to seed an edge: a bias parameter,

a bias direction, and the number of desired elements. This creates a seed with the

desired number of elements, but with those elements preferentially clustered in the

desired direction and at the specified bias ratio, where the bias ratio is defined as

the size of the largest element in the seed divided by the size of the smallest element.

This method allows the concentration of elements toward one end of an edge or region

with smaller elements near a point of interest, and larger elements farther away.

Mesh control methods are defined for each section or volume, and are used to

determine how the automatic mesh generator fills in the space between the edges

where the mesh seeds are defined. There are three types of mesh control methods

in ABAQUS: "Free Meshing", "Structured", and "Swept". In the "Free Meshing"

method, a mesh is generated in an unstructured fashion to fill complex topologies

with well-formed elements that are sized based on the mesh seeds on the boundaries

of the section. The "Structured" mesh control applies predefined mesh topologies to

well-defined geometric regions, creating regularly structured, grid-like meshes. This

method is only applicable for certain basic section shapes. The "Swept" mesh control

method is only applicable for three-dimensional models, and uses a two-dimensional

mesh pattern from one face of a three-dimensional volume and repeats this pattern

through the thickness of the volume. The two-dimensional mesh pattern is generated

on the front face of the volume using the "Free Meshing" method, and this pattern

is then extruded perpendicular to the original surface and broken up at intervals by

a mesh seed parallel to the direction of the extrusion to generate a three-dimensional

mesh until the opposite surface of the volume is reached. This technique requires a

volume that is a three-dimensional prismatic extrusion of a two-dimensional shape.

Three factors determined the mesh seeds and mesh controls used in the models for

this work. The first factor is that previous experience with such models by Bastien
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was considered [5]. In that work, a minimum element edge size of 0.02 inches was

determined to be sufficient to accurately capture stresses that occurred in the work

using a convergence criterion for the stresses and strains in the model. Bastien also

performed preliminary work in determining that finer mesh densities, with elements

on the order of 0.01 inches, were required in the region near the groove, but a coarser

mesh, with elements on the order of 0.04 to 0.17 inches, could be allowed farther from

the groove, approximately two groove radii away or greater. This variety in mesh

density was accomplished through the appropriate sectioning of separate meshing

regions. This allows a higher concentration of elements in regions of interest without

needlessly increasing the computational costs by having lots of elements in regions

with low stresses and stress gradients.

The second factor is that primary items of interest in this work are the contact

pressure on the groove surface and the stresses local to the groove. Previous work

gave an indication that the contact pressure in this work should vary from ply-to-ply,

due to the ply-to-ply variation in strains due to an applied stress state in those models

[5]. To account for this possibility, it is necessary to have elements on the scale of a

ply thickness or smaller to capture these potential stress features. For the laminates

used here, the ideal ply thickness is approximately 0.006 inches. However, elements

should not be so small so as to be on the order of a fiber diameter. This is because

this work uses a smeared material property model for the ply properties, ignoring the

separate properties of the fibers and matrix of the composite, and instead treating a

ply as a uniform medium. Having elements on the order of a fiber diameter would

invalidate this mode and would require additional micromodeling considerations to

model the fibers and matrix individually. The average diameter of a carbon fiber

is approximately 0.0002 inches. This puts the ideal element edge length somewhere

between 0.0002 and 0.0060 inches.

The third factor is that the computational cost plays a significant role when a

large number of models needs to be analyzed. Computational cost per finite element

grows nonlinearly, so creating a model that can be run in a reasonable amount of

time requires a balance with the lengthscale fidelity desired.
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Taking into consideration these three factors, mesh seeds and mesh controls were

applied to the models in the work based largely on trial and error in an attempt to

balance the lengthscale fidelity desired with a reasonable computational cost. The

specific settings that were found to achieve that balance in each model are described

in the subsequent subsections for each of the different models considered.

4.2.3 Two-Dimensional Models

The two-dimensional models have three different sets of dimensions due to the

selected layups resulting in three different numbers of plies for the laminates. The

[±/0]13s laminates have 78 plies. The models for these cases are 2 inches in length

and 0.45 inches in thickness, with a semi-circular groove with a radius of 0.125 inches

cut out centered halfway along the upper surface. The models for the [t45/0/90]1os

and [9 0 /0]20s laminates are also 2 inches in length, but are slightly thicker at 0.462

inches due to the two additional plies. A semi-circular groove with a 0.125-inch radius

is again cut out centered halfway along the upper surface. As the two-dimensional

models are plane strain in nature, the width dimension along the X2-axis is not given

and should be considered infinite. These configurations share a common mesh seed

and mesh control method.

For creation of the finite element mesh, the two-dimensional models are divided

into sections that define individual plies in order to account for the laminated nature

of the configuration. This ensures that when the finite element mesh is generated, the

ply boundaries are clear, flat, and straight in the mesh, and that appropriate material

properties can be applied to each individual ply based on the layup angle of that ply.

In the region near the groove, these ply boundaries end at the physical face of the

groove. To control element density, the models are divided into three meshing regions

that encompass multiple plies, as illustrated in Figure 4.4. Region 1 is the region

local to the groove, from the top surface of the laminate, to the laminate midplane,

with edges 0.25 inches from the center of the groove on either side. Since previous

work has shown this to be the region with some of the highest stress gradients, and

since the primary goal of this work is to study the effect of contact groove loading
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local to the groove, this region features the highest element density. Region 2 is

immediately under Region 1 and runs from the laminate midplane to the bottom

surface of the laminate, and has edges 0.25 inches on either side of the center of the

groove, just as Region 1 does. Stress gradients in this region are expected to be

smaller than in Region 1, but larger than in Region 3. Thus, due to computational

cost considerations, this region has a lower mesh density than Region 1, but a higher

mesh density than Region 3. Region 3 consists of two disconnected blocks that make

up the remainder of the model. Previous work [51 has shown that stress and strain

gradients in this region are quite low, with stresses dropping off quickly as one moves

away from the groove in the 1-direction. As such, the element density in this region

can be low to reduce computational cost without compromising the integrity of the

model.

Region 1 is the primary area of interest. For mesh seeding purposes, it features

four types of edges: the edge at the top of the laminate, the groove face, the ply

boundaries, and the vertical (parallel to X3-axis) edges of the region. An illustration

of the mesh seeding applied to Region 1 is presented in Figure 4.5. As previously

discussed, the groove face is the region where the largest stress gradients are expected,

with features likely to be on the order of a ply thickness or potentially smaller. In

addition, a major objective of this work involves capturing and describing the contact

pressure distribution between the laminate and the indentor. In order to capture

these features, an element size mesh seed was placed on the groove face, with a

desired element size of 0.001 inches (0.17tp1.). This size is sufficient to place at least

6 elements through the thickness of each ply on the groove face, and one element

approximately every 0.50 around the groove. This should be sufficient to give an idea

of how the pressure changes from ply to ply, and even within a ply, without generating

elements on the microscale order of a fiber diameter. The horizontal edges in this

region, including the top edge of the laminate and the ply boundaries, determine

the internal discretization of the laminate. In order to capture potential variation

within a ply, it is desirable to have at least three elements through the thickness of

each ply. An element size mesh seed was used on these edges with a desired element
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size of 0.002 inches (0.35tp1i), yielding three elements through the plies on average.

Smaller seeds were found to generate too many elements with a high computational

cost, while larger seed sizes were found to generate too few elements through the

thickness of each ply. The vertical edges in this region connect Region 1 to Region 3.

As such, these edges represent a transition from the high mesh density of Region 1 to

the low mesh density of Region 3. As is subsequently discussed, the goal for Region 3

is to have a minimum of two elements through the thickness of a ply. As such, these

vertical edges are defined with the required element size mesh seed of 0.003 inches

(0.52tpl.). The "Free Mesh" meshing control is used in Region 1 due to the unique

geometry presented by the rounded edges of the groove. This meshing method yields

an average element edge length of 0.002 inches (0.35ti.) and places three elements

through the thickness of each ply, on average. The resulting mesh in this region is

shown in Figure 4.6.

Region 2 is a region with a medium mesh density, reflecting the expectation of

low, but non-negligible, stress gradients in this region. Region 2 features three types

of edges: the ply boundaries, the bottom edge of the laminate, and the vertical edges

of the region. An illustration of the mesh seeding applied to Region 2 is presented

in Figure 4.7. All edges in this region have the same mesh seed applied. This is an

element size seed of 0.003 inches (0.52tpi,). This mesh seed was selected due to the

desire to have two elements through the thickness of each ply. Some stress variation

is expected in this region, especially from one ply to the next. Stress variation within

a ply is considered less likely due to the lower stress gradients expected, so the con-

figuration of three elements per ply as used in Region 1 is not required. The vertical

edges retain the same mesh seed as seen in Region 1 and Region 3, which is the same

0.003 inch (0.52t,,) element size seed. A "Free Mesh" meshing control is used in

Region 2. This yields an average element edge length of 0.003 inches (0.52t,1 .) and

places two elements through the thickness of each ply. The resulting mesh for Region

2 is shown in Figure 4.8.

Region 3 is the farthest from the groove and the loading, and the mesh in this

region is thus coarser. This region has five types of edges: the top edge of the laminate,

- 70 -



0.5 in

s: 0.002

s: 0.003

s: A 002'

S: 0.001

s: 0.002

s: 0.003

s: 0.002

s = element size mesh seed
(all values in inches)

Illustration of mesh seeds in Region 1 for two-dimensional finite element
models.

- 71 -

Figure 4.5



0.5 in

Figure 4.6 Typical finite element mesh in Region 1 for two-dimensional finite ele-
ment models.
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the bottom edge of the laminate, the ply boundaries, the vertical boundary between

Regions 1 and 2 (parallel to the X3-axis), and the vertical free edges. An illustration of

the mesh seeding applied to Region 3 is presented in Figure 4.9. The top edge of the

laminate, the bottom edge of the laminate, and the ply boundaries share a mesh seed,
all using the biased method with a bias ratio of 4.0, and 16 elements per edge. This

creates elements of the minimum required size of 0.02 inches (3.5tpy) near the groove,

while allowing the elements to become larger near the free edges. These settings were

largely adopted from previous work by Bastien [5] on isotropic grooved structures,

which used an identical bias ratio, but with 8 elements per edge. However, the

elements used in that work were 8-node, second-order elements, each with a mid-edge

node, meaning the number of nodes along the section edges are consistent with the

current work, which uses 4-node first-order elements. These mesh seed settings also

meet the minimum size requirement near the groove while not generating too many

elements in consideration of computational cost. The vertical boundaries between the

Regions and the free vertical edges also share a common mesh seed setting, with both

using an element size mesh seed of 0.003 inches (0.52tp,y). This setting comes from

a desire to have at least two elements through the thickness of each ply in order to

capture any stress variation within the ply, though little is expected this far from the

groove. The "Structured Mesh" meshing control is used for this region in order to lay

out a well-structured mesh with a grid format to match the well-defined rectangular

shape of the region. This yields gradually longer elements as distance from the groove

increases, and a constant number of two elements through the thickness of each ply.

The resulting mesh for Region 3 is shown in Figure 4.10 and the full mesh for the

laminate is shown in Figure 4.11.

The model for the [0/±45/90]15s laminate is slightly different than all other lam-

inates investigated, as it is designed to more closely match that used in the previous

work by Bastien [5]. That model is 6.25 inches in length and 0.625 inches in thick-

ness, with a semi-circular groove with a 0.125 inch radius centered halfway along the

upper surface. The major distinctions of this model are the increased length, and

increased thickness of the laminate. As compared to the 78- and 80-ply models of
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Illustration of mesh seeds in Region 3 for two-dimensional finite element
models.
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Figure 4.10 Typical finite element mesh in Region 3 for two-dimensional finite ele-
ment models.
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Figure 4.11 Typical complete two-dimensional finite element model of the grooved
composite laminate.
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the [±0/0]13s, [±45/0/90]1os and [9 0 /0]20s laminates, these differences only require

a change in the mesh seeds of Region 3, since Region 3 is comparatively longer in

[0/± 4 5 / 90]15s model. Since the mesh seeds along the horizontal edges in Region 3 are

defined by the bias method, the size of the elements is dependent on the number of

elements defined to be on the edge. With longer edges in Region 3, using an identical

mesh seed for this model as the other models would generate long, distorted elements

in Region 3. Consequently, the mesh seed along the horizontal edges in Region 3 are

modified for the [0/t45/90]1ss laminate model to have a biased seed with a bias ratio

of 8.0, and 24 elements per edge. The mesh seeds on the free vertical edges in Region

3 remain the same as in the other models, and have an element size mesh seed of 0.003

inches (0.52tply). As in the other models, this results in the creation of a mesh with

the desired two elements through the thickness of a ply. The "Structured" meshing

control is again used for this region. The results are similar to other models, with

gradually lengthening elements as distance from the groove increases and a constant

2 elements through the thickness of each ply. In the [0/±45/90]15s model, meshing

methods for Regions 1 and 2 remain the same as the mesh seeds in these regions are

defined by element size and are not adversely affected by the change in dimensions of

the laminate in this model.

Two different indentor models are used to apply load in the present work: a rigid

body indentor, and a linear elastic indentor. The rigid indentor is defined as an

analytical rigid body with motion defined by a single point, known as the "Reference

Node", to which all loads and displacements are applied. The surface of the indentor

is defined in reference to this "Reference Node". Analytical rigid bodies in ABAQUS

are defined as a series of lines or curves defining the surface of the body. They are

beneficial to contact modeling because their surfaces are smooth, in comparison to

discretized surfaces, thus providing a smoother application of contact pressure. Rigid

bodies are also less computationally costly. In the two-dimensional models using a

rigid indentor, the rigid body is defined as a circle with a radius of 0.1225 inches. The

motion of the indentor is constrained to translate only in the 3-direction to ensure

centered load application to the laminate. These boundary conditions, as well as the
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loading, are applied through the "Reference Node".

For the two dimensional models using a steel indentor, the model of the indentor

is defined as a circle with a radius of 0.1225 inches. The indentor is defined by two

surfaces, the top half surface, and the bottom half surface. The top surface of the

indentor is less of a concern for this model, though this is where the initial load

is applied, but the stress distribution in the indentor is not of interest, nor will it

participate in any contact behavior of interest. Thus, a coarser mesh can be used for

the top surface than for the lower surface. The lower surface of the indentor is in

contact with the grooved surface of the laminate. Thus, a finer mesh is desired to

model the curved surface of the indentor as accurately as possible, and to transmit

the contact force as realistically as possible. For reasons related to contact modeling

and discussed in the following section, the mesh of the indentor should be slightly

coarser than the mesh of the groove face of the laminate. Thus, the bottom face of

the indentor is covered by an element size mesh seed of 0.0015 inches. For the top

of the indentor, an element size mesh seed is used as well. It is desirable to have a

larger seed on the top of the indentor to yield a coarser mesh to save computational

resources. After some preliminary trial and error, it was determined that too large

of a mesh seed on the top surface distorted the internal mesh of the indentor. An

element size mesh seed of 0.01 inches was found to produce a good balance between

a coarse mesh and well-formed elements.

The indentor was split into two equal sections through the vertical centerline.

This creates a vertical boundary through the center of the indentor, ensuring that

the interior of the mesh has nodes lying along this vertical line for use in defining

the boundary conditions necessary to keep the motion of the indentor purely vertical.

The line splits the indentor symmetrically, but the automatic mesher in ABAQUS

does not create a symmetric mesh across this line, so it would not accurately be

described as a line of symmetry. A "Free Meshing" mesh control is used for the whole

of the indentor. The mesh seeding applied to the indentor is presented in Figure 4.12

and the resulting mesh is shown in Figure 4.13. The nodes on the centerline of the

indentor is constrained to only move in the 3-direction, and the full load is applied
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to the top-most center node of the indentor.

4.2.4 Three-Dimensional Models

The cost of computation for the three-dimensional models is considerably higher

than the two-dimensional models due to the increased number of elements required

to model the third dimension, and the increase in degrees of freedom from three to six

(three translation and three rotation). In order to moderate the cost of computation,

a plane of symmetry in the 2-3 plane that runs parallel to the groove across the width

of the laminate is employed for the three-dimensional models, as shown in Figure

4.14. This formulation is not ideal because it produces stress concentrations near the

plane of symmetry in angled plies. This is due to the mathematical formulation of

the symmetry condition that ensures that there is no movement in the 1-direction,

and that there are no rotations along the 2- and 3- directions, forcing the plane of

symmetry to remain planar and immobile. This is an accurate formulation for 0' and

900 plies, and for isotropic materials. However, due to the resultant stress in angled

plies, this condition creates stress concentrations when applied to angled plies. This

is a result of the directionality of the orthotropic nature of the material properties for

these plies and having coefficients of mutual influence.

A simple investigation was conducted to estimate the effect of the plane of sym-

metry, consisting of a quasi-isotropic [0/±45/904s laminated plate, with no groove,

in simple tension applied in the 1-direction. Two finite element models were created,

one modeling the full plate, and one modeling half the plate with a 2-3 plane of sym-

metry. In the half-plate model with a plane of symmetry, the longitudinal stresses,

o1, at the plane of symmetry in the ±450 plies decreased by an average of 31.9%

from the full plate value. Stresses in the 0' and 900 plies consequently rose by 5.1%

and 17.2%, respectively, to balance the load across the cross-section of the laminate.

Stresses within 5% of the full plate value are recovered within 3.5 ply thicknesses of

the plane of symmetry, and stresses within 1% are recovered within 6 ply thicknesses.

No such variation in stresses was observed for a [0/90]8s laminate with identical load-

ing, with no noticable change in stress at the plane of symmetry. The loading of this
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Figure 4.12 Illustration of mesh seeds on the linear elastic indentor in the two-
dimensional finite element models.
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Figure 4.13 Finite element mesh of the linear elastic indentor for two-dimensional
finite element models.
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simple longitudinal tension case is clearly different than the unique loading presented

in the grooved composite model, but similar principles still apply. Thus, this gives a

sense of the potential higher end error for the stresses local to the plane of symmetry.

While these stress concentrations are not ideal, this plane of symmetry remains the

best solution for analysis accuracy without doubling the number of elements in the

model, which would make the computational cost prohibitive.

The three-dimensional models have two slightly different sets of dimensions re-

sulting from the difference in the number of plies for the different laminates. The

models are both 1 inch in length and 1 inch in width with a semi-circular groove with

a radius of 0.125 inches centered halfway along the upper surface. The [±0/0113S

laminates have 78 plies, giving a thickness of 0.450 inches. The [±45/0/90]ios and

[90/0]20S laminates have 80 plies, and thus are slightly thicker at 0.462 inches due to

the two additional plies. These configurations share a common mesh seed and mesh

control method.

For creation of the finite element mesh, the three-dimensional models are divided

into sections that define individual plies in order to account for the laminated nature

of the configuration, as for the two-dimensional models. This ensures that when the

finite element mesh is generated, the ply boundaries are clear, flat, and straight in

the mesh, and that appropriate material properties can be applied to each individual

ply based on the layup angle of that ply. In the region near the groove, these ply

boundaries end at the physical face of the groove. To control element density, the

models are divided into three meshing regions that encompass multiple plies, as shown

in Figure 4.14. The goal in dividing the laminate in this manner is to concentrate

elements in the region of interest near the point where the indentor contacts the

laminate, and where stress gradients are expected to be highest. This is similar

to the two-dimensional case, with additional considerations for the variation in the

2-direction.

Region 1 is the area most local to contact, running from the center of the groove,

at xi equal to 0, to two groove radii away at xi equal to 0.25 inches, similar to the

two-dimensional case. In the 2-direction, Region 1 extends a groove radius away from
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the origin along the X2-axis in either direction. This makes the region 0.25 inches wide

from x 2 equals -0.125" to +0.125". Region 1 runs the full thickness of the laminate

in the 3-direction. Region 2 is the area local to the groove, but away from the point of

contact, and comprises two disconnected volumes, both going from the groove center

at x1 equal to 0 to two groove radii away at a value of xi equal to 0.25 inches. Both

sections of Region 2 run the full thickness of the laminate. While one runs from an X2

value of +0.125 inches to the laminate edge at x 2 equal to +0.5 inches, the other is

the mirror image from x2 equal to -0.125 inches to X2 equal to -0.5 inches. Region

3 is the main body of the laminate away from the groove, and runs away from the

groove from two groove radii from the center of the laminate at an xi value of +0.125

inches to the free edge of the laminate at x1 equal to +1.0 inches. This region runs

the full width of the laminate, and the full thickness of the laminate.

The location of the boundary between Regions 1 and 3 is carried over from the two-

dimensional case. The boundary between Regions 1 and 2 was determined such that

all contact would occur within Region 1, requiring the region to span the indentor

diameter in the 2-direction in the worst case scenario. Additionally, Region 1 is

intended to capture the majority of the stress gradients in the response. The width of

Region 1 was expanded slightly to a groove diameter, or a groove radius on either side

of the origin along the x2-axis, to make the boundaries consistent with the geometry

and terminology of the laminate, independent of the indentor size. Regions 2 and 3

are intended to capture any additional stress behavior beyond the area of contact,

and stress gradients in these regions are expected to be low, based on previous two-

dimensional work [5].
Due to concerns about the computational cost of the three-dimensional model,

the finite element mesh is particularly tailored in order to be able to show appropri-

ate resolution of stress and contact pressure gradients, while minimizing the number

of elements. The goal is to achieve a balance between a good concentration of el-

ements near regions of high stress and large stress gradients, while minimizing the

computational cost. These models stress the available computational resources far

more severely than the two-dimensional models. The primary area of interest, as
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Figure 4.14 Illustration of meshing regions for three-dimensional finite element mod-
els.
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in the two-dimensional models, is the groove face, and the area near the point of

contact. It is again desirable to have multiple elements through the thickness of

each ply in this location in order to capture any potential contact pressure variation

from ply to ply, and even within each ply. Near areas of interest, at least two ele-

ments should be present through the thickness of the laminate. The three or four

elements through the thickness used in the two-dimensional models are not feasible

in the three-dimensional models due to computational costs. Similarly, away from

areas of interest, a coarser mesh should suffice. One element through the thickness

of each ply can suffice in these locations, as the two elements through the thickness

seen in the two-dimensional model are again not feasible due to computational costs.

An extensive trial and error method was used to arrive at the mesh seeds and exact

values used. These numbers are based partially on the guidelines discussed, partially

on limiting the number of elements to a manageable size, and partially on generating

a regular, well-formed mesh.

Regions 1 and 2 share a common mesh cross-section in the 1-3 plane, perpendicular

to the groove. This two-dimensional mesh plane is swept through the width of the

laminate in the 2-direction to form a three-dimensional mesh. The mesh seeding used

for this common cross-section is presented in Figure 4.15. The edges composing the

groove face have element size mesh seeds. The element size along the groove through

the top nine plies, where contact is not expected, is 0.003 inches (0.52tp1y). The

element edge length through the rest of the groove face is 0.0011 inches (0.19tpi.).

This is a variation from the two-dimensional model necessary to reduce the number

of elements while not substantially reducing the resolution of the contact pressure

distribution. Starting from the top surface of the laminate and running nine plies

deep, the horizontal edges and ply boundaries have a biased mesh seed with a bias

ratio of 3.0, and 20 elements, placing a greater concentration of elements near the

groove, with elements ranging in size from 0.0034 inches (0.59tp1 y) to 0.01 inches

(1.73tply). Continuing through the laminate to the bottom of the groove, the ply

boundaries then have an element size mesh seed of 0.0037 inches (0.64tply). This

value was arrived at through trial and error in an attempt to avoid a malformed mesh
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in this region. From the bottom of the groove to the laminate midplane, the ply

boundaries again have a biased mesh seed with a bias ratio of 3.0, and 50 elements,

placing a greater concentration of elements near the plane of symmetry, with elements

ranging in size from 0.0027 inches (0.47tply) to 0.0082 inches (1.4tpiy). From the

laminate midplane to the bottom face of the laminate, ply boundaries have a seed

that generates a slightly coarser mesh, with a biased mesh seed with a bias ratio of

2.0, and 28 elements, resulting in elements ranging in size from 0.0062 inches (1. ltply)

to 0.012 inches (2.1tpI.). The vertical edges of Regions 1 and 2 have an element size

mesh seed, and more explicitly define the number of elements through the thickness

of each ply. From the top of the laminate to nine plies deep, the edge length is 0.01

inches (1.73tp1y), yielding one element per ply in sections where stresses and stress

gradients are expected to be low. From ten plies deep to the laminate midplane,

the edge length is 0.003 inches (0.52tply), yielding two elements per ply. And from

the laminate mid-plane down to the bottom face of the laminate, the element edge

length is 0.01 inches (1.73tp1 y), again yielding one element per ply. The resulting mesh

cross-section is shown in Figure 4.16.

The cross-section described is swept along the 2-direction through Region 2 with

the "Swept Mesh" mesh control. The sweep through the region is controlled by placing

mesh seeds on the edges running in the 2-direction defining the region boundary and

the ply boundaries. The seed is a biased mesh seed with a bias ratio of 6.0, and 7

elements, with a higher element concentration toward the point of contact at X2 equal

to 0, resulting in elements ranging in size from 0.018 inches (3.1tp1 y) to 0.11 inches

(19tp,). This seed was arrived at mostly through trial and error optimization and is

constrained by requirements to match the element size at the boundary with Region

1, and to minimize the number of elements used in this region. The same cross-

section is swept along the 2-direction through Region 1 at a higher element density.

A biased mesh seed with a bias ratio of 17.0, and 24 elements is used, with the higher

concentration of elements toward the point of contact at X2 equals 0, resulting in

elements ranging in size from 0.0009 inches (0.16tiyt) to 0.015 inches (2.6tply). This

seed generates a very large number of elements, and thus was also subject to trial
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Figure 4.15 Illustration of mesh seed cross-section in the 1-3 plane for Regions 1
and 2 for three-dimensional finite element models.
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Figure 4.16 Typical finite element cross-section for the 1-3 plane, swept in the 2-
direction through Regions 1 and 2 of the three-dimensional finite ele-
ment models.
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and error optimization. The size of the elements near the point of contact needed

to be on the order of 0.001 inches in order to match the element size seed on the

groove face in the 1-3 plane, and to maintain a similar element size for the largest

anticipated contact width of 0.01 inches on either side of the center of contact at the

x1-axis. The number of elements needed to be minimized within these constraints.

Region 3, which is farthest from the groove and center of contact, features a

single coarse mesh cross-section that is defined in the 1-2 plane and swept through

the thickness of the laminate. The settings for this region are largely adapted from

prior work done by Bastien [5]. Edges running in the 1-direction are seeded with a

biased mesh seed with a bias ratio of 8.0, and 8 elements, clustering elements closer to

the groove, and coarsening the mesh toward the free edge. This biased seed results in

elements ranging in size from 0.027 inches (4.7tp1.) to 0.21 inches (36tply). The edge

of the laminate farthest from the groove has an element size mesh seed of 0.16 inches

(27tp1y). Mesh seeds on the edges defining the boundary between Regions 1 and 3 and

Regions 2 and 3 retain the mesh seed described for those regions. This region has a

"Swept Mesh" mesh control with the direction of sweep being through the thickness

of the laminate along the 3-direction. An illustration of the mesh seeding used for

sweeping the mesh in Regions 1 and 2, and the mesh seeding used for Region 3, is

presented in Figure 4.17. The resulting mesh, as viewed from the top, is shown in

Figure 4.18, and a full isometric view of the mesh for the three-dimensional model is

shown in Figure 4.19.

In the three-dimensional model, the indentor is a rigid sphere. Three-dimensional

analytical rigid bodies in ABAQUS are defined as a series of lines or curves that can

either be extruded or revolved to define the surface of a body. They are beneficial

to contact modeling because their surfaces are smooth, in comparison to discretized

surfaces, thus providing a smoother application of contact pressure. Rigid bodies are

also less computationally costly, since they are not deformable and hence contribute no

degrees of freedom to the analysis system. The indentor used in the three-dimensional

modeling is a sphere with a radius of 0.1225 inches. This sphere is defined as an

analytical rigid body with a corresponding "Reference Node", used to define the
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Figure 4.17 Illustration of mesh seed cross-section in the 1-2 plane for Regions 1, 2
and 3 for three-dimensional finite element models.
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Figure 4.18 Typical three-dimensional finite element model of the top surface, show-
ing the mesh in Region 3 swept in the 3-direction, and the seedings for
the 2-direction sweep through Regions 1 and 2.
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motion of the body and its surface. Constraints are placed on the motion of the body

ensuring only motion in the 3-direction. These boundary conditions, as well as the

loading, are applied through the "Reference Node".

A list of all finite element models created for this work, both two-dimensional and

three-dimensional, are provided in Table 4.1. This list details the dimensionality of

the model (two-dimensional or three-dimensional), the material and laminate used,
and the indentor type (rigid body or deformable linear elastic).

4.3 Finite Element Analysis

Since the focus of this work is the response of a grooved composite to a static

contact load, the described models were run using a nonlinear, static stress analysis.

The formulation is required to be nonlinear due to nonlinearities in the contact area

and with regard to the contact pressure distribution. For example, the contact area

is known to increase nonlinearly with load in isotropic contact [7]. A similar nonlin-

earity is expected here, although the specifics will likely differ due to the orthotropic

and laminated nature of the material. The use of contact in this model requires an

incremental increase of the load applied to the indentor. The increment levels for

the two-dimensional case were the default levels for ABAQUS. The increment levels

in the three-dimensional case were assigned to minimize the computational time, as

the complete model is solved for every iteration. Thus, controlling the number of

iterations can decrease the solution time. The iteration load levels for both the two-

dimensional and three-dimensional cases are shown in Table 4.2. Loads are given as

ratio of applied load to maximum load.

At each of these stepwise increments, a series of equilibrium iterations are per-

formed by ABAQUS in order to determine the pressure distribution over the whole

set of nodes in contact using force and moment equilibrium. These iterations within

each increment are solved using Newton's Method to obtain final equilibrium within

each increment. Severe Discontinuity Iterations are also performed by ABAQUS in
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Table 4.1 Summary of all finite element models created for the current work
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Model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Dimensionality

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Two-dimensional

Three-dimensional

Three-dimensional

Three-dimensional

Three-dimensional

Three-dimensional

Three-dimensional

Material

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

AS1/3501-6

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

AS 1/3501-6

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

T700/2510

Laminate

[±15/0]13s

[±30/0]13S

[±45/0]13S

[±60/0113s

[90/0]20S

[±45/0/90]1os

[0/±45/90]15S

[±15/0]13S

[±30/0113S

[±45/0]13S

[±60/0]13S

[90/0]20S

[±45/0/90]1 os

[0/±45/90]15S

[±15/0]13s

[±30/0]13S

[±45/0]13s

[±60/0]13S

[90/0]20S

[±45/0/90]1 ios

Indentor

Rigid

Rigid

Rigid

Rigid

Rigid

Rigid

Rigid

Elastic

Elastic

Elastic

Elastic

Elastic

Elastic

Elastic

Rigid

Rigid

Rigid

Rigid

Rigid

Rigid



Table 4.2 Load increment levels for two-dimensional and three-dimensional cases,
given as ratio of applied load to maximum load

Increment Load Increment Ratio

2-D Case 3-D Case

1 0.1 0.2

2 0.2 0.4

3 0.35 0.6

4 0.575 0.8

5 0.9125 1.0

6 1.0 -

Maximum Load 5000 lb/in 300 lb
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contact situations. These iterations are a form of equilibrium iteration that track

abrupt changes in the stiffness matrix of the system, such as new nodes coming into

contact, and thus being applied with a contact constraint. These iterations continue

until there are no further severe discontinuities, at which point normal equilibrium

iterations resume. Once equilibrium is achieved, the next load increment is started.
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Chapter 5

RESULTS

The response of a structure is determined primarily by the material, the load-

ing, and the boundary conditions. In this investigation, the material and boundary

conditions are predetermined, but the specifics of the loading are determined by the

contact condition with the indentor. This makes the contact pressure distribution of

particular interest, as this pressure is not predetermined, and cannot be determined

analytically. The various distributions of contact pressure, as determined through

finite element analysis, are examined through a series of contact pressure plots that

show how contact pressure changes around the groove, and from one ply to the next.

The structural response of the laminate to this loading is examined through the stress

distributions. The primary stresses of interest are o-1, o-33, and 0'13 , which are the

primary stresses available in two-dimensional modeling in the 1-3 plane. When pre-

sented, these stresses are normalized by the applied loading. The stress distributions,

as determined by the finite element analysis of this work, are shown through the use

of isostress plots. These are contour plots that connect points of equivalent stress

through the laminate. Isostress lines are plotted at intervals of regular value of stress

and are labeled to indicate the magnitude and sign (compression or tension) of stress.

Tightly packed isostress lines indicate a high stress gradient.

- 99 -



5.1 Cylinder Loading - Rigid Indentor

The first set of results presented are from the models of a grooved composite

laminate transversely loaded by a rigid cylindrical indentor. In this case, the models

are two-dimensional plane strain, representing a slice of a laminate and indentor

that are infinitely long in the 2-direction. A rigid body represents the indentor due

to the high stiffness of the steel indentor relative to the transverse stiffness of the

laminate. A load of 5000 lb/in is applied to the rigid indentor in the 3-direction. The

load is transfered to the grooved composite. The composite is constrained with a

rigid backface boundary condition, as described in Chapter 4. Seven laminates were

studied in this configuration. A single laminate of AS1/3501-6 in a [0/t45/ 9 0]15s

layup is used to compare results from loading with a rigid indentor to loading with a

Hertzian pressure distribution done in previous work [5]. Four laminates of T700/2510

in [±0/0113s layups are used to study the effects of varying ply angle in the laminate.

A laminate of T700/2510 in a [90/ 0120s layup is used to study the effects of ply

mismatch, and a T700/2510 layup of [±45/0/ 9 0]1os is used to examine the essential

quasi-isotropic case.

5.1.1 Contact Pressure

The term "contact pressure" refers to the pressure that results on the surface of

the groove from the loaded rigid body. It is this pressure distribution, along with

the global boundary conditions of the laminate, that determines the response of the

laminate. This contact pressure cannot be analytically determined for a laminated,

orthotropic grooved surface using methods currently available. The use of a numerical

method allows the pressure distribution to be determined with relative accuracy.

However, there is a limitation for this method since the contact pressure is only

computed at the nodes of the finite element model, and is defined as piecewise linear

between these points. It is possible that the actual pressure distribution could reach

peaks or troughs between nodes, and thus this model could miss that type of extreme

behavior. Thus, as discussed in Section 4.2, it was important in constructing the
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model to have a high node density on the groove surface to minimize the potential

of missing small features characterized by high gradients in the pressure distribution

and maximize resolution of the curve.

The following plots of contact pressure show the contact pressure along the vertical

axis, with the angle around the groove, #, on the horizontal axis. The angle around

the groove, #, can be easily mapped to xi and X3 coordinates using the geometry of

the groove with the equations:

xi = rg * sin # (5.1)

t
X3 = - - rg * cos # (5.2)2

where rg is the groove radius, and t is the laminate thickness. The displayed contact

pressure has been normalized by the applied load. This load is noted for each figure

in the figure caption. The primary load under investigation for the two-dimensional

case is 5000 lb/in, with lesser loads being used to study the linearity or nonlinearity

of the response. This gives stress and pressure results with units of [psi/(lb/in)]. Ply

boundaries are indicated in the plots by light gray dashed lines, and ply angles are

given along the top of the figure.

For the family of T700/2510 laminates used for examination of ply angle, [t0/0113s,

the contact pressure distributions are presented in Figures 5.1, 5.2, 5.3, and 5.4 for

ply angles, 0, of 150, 300, 450, and 60', respectively. The contact pressure distribution

for the cross-ply T700/25010 laminate, [90/0]20s, is shown in Figure 5.5. The con-

tact pressure distribution for the quasi-isotropic T700/2510 laminate, [±45/0/90]ios,

is shown in Figure 5.6. The contact pressure distribution for the quasi-isotropic

AS1/3501-6 laminate, [0/+45/90]i5s, is shown in Figure 5.7. The maximum normal-

ized contact pressure, p* , and its location, #p, along with the maximum contact

angle, #cntad, are listed in Table 5.1 for all the laminates above.

The contact pressure data exhibit some features common to all the laminates

examined. The maximum pressure occurs near the bottom of the groove, always

within the lowest ply in the groove, and generally at a groove angle, #, of 2.10 or

lower, with the one exception being the [±60/0]13s laminate. In all cases, contact
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Figure 5.1 Normalized contact pressure for two-dimensional T700/2510 [±15/0]13s
laminate model loaded at 5000 lb/in.
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Figure 5.2 Normalized contact pressure for two-dimensional T700/2510 [±3 0/0]13S
laminate model loaded at 5000 lb/in.
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Figure 5.3 Normalized contact pressure for two-dimensional T700/2510 [i 4 5/0]13s
laminate model loaded at 5000 lb/in.
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Figure 5.4 Normalized contact pressure for two-dimensional T700/2510 [t60/0]i3S
laminate model loaded at 5000 lb/in.
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Figure 5.5 Normalized contact pressure for two-dimensional T700/2510 [90/0]20s
laminate model loaded at 5000 lb/in.
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Figure 5.6 Normalized contact pressure for two-dimensional T700/2510
[±45/O/9O]los laminate model loaded at 5000 lb/in.

- 107 -



+45
0

-451

90

000

0

90,

0

0;
0

0
45 +45
O 101

-45
90

+4
14

-0
90

o 05 +45 +45
0 0 '-4 9-45

90 9Q

0'
0 15 30 45 60 75 90

Angle Around Groove [degrees]

* Note: All pressures normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.7 Normalized contact pressure for two-dimensional AS1/3501-6
[0/±45/90]15s laminate model loaded at 5000 lb/in.
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Table 5.1 Maximum normalized contact pressure, p*C_, and its location, Op, along
with maximum contact angle, #contact, for two-dimensional models with
rigid indentor loaded at 5000 lb/in.

Laminate Pressure

PCma OP #contact
Material Layup psi [e [deg]

(lbin)) [deg] [deg]

T700/2510 [±15/0]13s 6.09 1.6 48.0

T700/2510 [±30/0]13s 6.12 1.6 48.4

T700/2510 [±45/0]13s 6.16 1.6 48.9

T700/2510 [±60/013s 6.30 13.8 49.7

T700/2510 [90 /0120s 6.22 2.1 49.3

T700/2510 [±45/0/ 9 0]1os 6.07 2.1 49.7

AS1/3501-6 [0/± 4 5/ 9 0]15S 6.48 1.4 48.2
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ends at a groove angle, #, between 480 and 500. Contact is deemed to have ended

when contact pressure, pc drops to zero. In all laminates, pressure increases within

0' plies, and decreases within 90' plies. The behavior is only apparent for # locations

greater than 22.50. For lower values of #, the behavior is the opposite, with pressure

decreasing in 0' plies and increasing within 900 plies. For all cases, the greater

the difference in ply angle between adjacent plies, the greater the change in contact

pressure between the plies. The angle around the groove, #, at which the pressure is

applied also has an effect on the relative change in pressure between adjacent plies of

different angle. It is important to consider that the direction in which load is being

applied to a composite ply is dependent on the angular location, #, of the ply in the

groove. Plies near the bottom of the groove will see a primarily vertical loading, while

plies higher on the groove will see a combination of vertical and longitudinal loading.

The laminates also exhibit bumpiness in the contact pressure near the bottom of

the groove. This is a region where contact pressure does not vary greatly with # on

average, and ply angle stays consistent for larger areas of the groove face. As such,

there is no physical reason for these bumps in the contact pressure. They are most

likely artifacts of the finite element discretization and contact algorithm employed in

the modeling. These bumps range in amplitude from 0.05 to 0.19 psi/(lb/in), or 0.8%

to 3.1% of the maximum pressure.

Examining contact pressure data specifically from the [±0/]13s laminates, a few

trends are apparent. As the ply angle, 0, increases, the maximum contact pressure,

p,max increases. Similarly, as 0 increases, the groove angle at which contact ends,

#contact, increases. The [0/]13s laminates also clearly show that the difference in

pressure between 00 plies and other plies depends on the difference in orientation

angle between the plies, as measured by 0, with the pressure difference increasing as

0 increases.

For the [±15/0]13s laminate, the pressure distribution is mostly smooth, with a

few small bumps of negligible size. Pressure changes from ply to ply are not particu-

larly apparent. For the [±30/0]13s laminate, the pressure distribution remains largely

smooth, with one smaller increase in pressure to a local maximum of 5.06 psi/(lb/in)
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on the 0* ply at # equal to 35.60. For the [±4 5 / 0)13s laminate, the pressure distribu-

tion takes on two peaks of increased pressure on the 0' plies near # locations of 350

and 470, and a slight trough of decreased pressure on the 00 ply near a value of # of

18'. A local maximum of 5.28 psi/(lb/in) exists near the 0/-45' ply boundary at

an angular location, #, of 38.30, and another of 2.22 psi/(lb/in) near the +45/0* ply

boundary at # equal to 47.10. For the [±60/0]13s laminate, two prominent pressure

spikes are evident in 00 plies. A large spike of pressure occurs near the 0/-60' ply

boundary, reaching 5.65 psi/(lb/in) at # equal to 38.30. A smaller pressure spike of

2.58 psi/(lb/in) exists near the +60/00 ply boundary at a value of # of 47.1*. Smaller

peaks and a small decrease in contact pressure are also evident in the 00 ply near the

bottom of the groove from a value of # of 14.20 to 22.60.

The contact pressure distribution for the cross-ply T700/2510 laminate, [9 0/0]20s,

shows a more erratic behavior in contact pressure. Near the bottom of the groove,

contact pressure slowly decreases in the 00 ply from an angular location, #, of 0* to

14.20 , then has a small increase in the 900 ply from # equal to 14.2' to 22.6', reaching

a local maximum of 6.08 psi/(lb/in) at a value of # of 17.00. As # increases, contact

pressure sharply rises in 0' plies and sharply drops in 900 plies. Local maxima tend

to occur near the 0/900 ply boundaries, reaching 5.93 psi/(lb/in) at # equal to 28.7',

5.81 psi/(lb/in) at 37.90 , and 4.39 psi/(lb/in) at 45.80. Local minima occur at the

90/0' ply boundaries, with pressure reaching 5.43 psi/(lb/in) at # equal to 23.10, 4.52

psi/(lb/in) at 34.3*, and 2.88 psi/(lb/in) at 42.40.

For the quasi-isotropic T700/2510 laminate, [±45/0/90]10s, the contact pressure

exhibits a generally continuous behavior through the +/-45* plies, with a tendency

to decrease sharply within 900 plies, and to increase sharply in 00 plies. Two local

minima occur at the 90/00 ply boundaries, reaching 4.88 psi/(lb/in) at a value of #
of 29.20 and 1.69 psi/(lb/in) at # equal to 46.20. Two local maxima occur, one at the

0/-45' ply boundary up to 5.49 psi/(lb/in) at # equal to 33.80 and the other in the

00 ply at # equal to 47.1' at a value of 2.59 psi/(lb/in).

For the quasi-isotropic [0/±45/90115s layup of AS1/3501-6, the contact pressure

distribution presents a few smaller pressure spikes near the bottom of the groove at
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a value of # of 00, likely due to the discretization and contact computation method

used. The pressure curve exhibits a local peak up to 6.04 psi/(lb/in) at the 0/90' ply

boundary at a # value of 33.60, and three smaller local maxima of 6.26 psi/(lb/in) at

# equal to 16.10, 4.05 psi/(lb/in) at 38.60, and 2.61 psi/(lb/in) at 45.4'. Pressures

through the other plies remains relatively smooth along the rest of the groove.

5.1.2 Stress Response

The isostress plots of results from the two-dimensional models are used to investi-

gate the response of the grooved laminate to loading from a cylindrical indentor. The

finite element models represent the full length of the laminate, as described in Section

4.2.3. While the full length of the laminate was modeled, results are presented only

for the one half-length of the laminate with positive values of xi because stress results

are expected to be symmetric for this case. Results are expected to be symmetrical

about the X3-axis because the factors that affect response (geometry, material prop-

erties, loading conditions, and boundary conditions) are symmetric about that axis.

The only asymmetries that might arise can be attributed to the only asymmetry in

the problem model: the finite element discretization. While the finite element mesh

is similar on each side of the x3-axis, elements are not exactly mirrored, so small

asymmetries may arise in the response due to this difference. Due to the intended

symmetry of the problem, results for the models are presented only for values of x1

greater than or equal to 0.0 to maximize visibility of the isostress plots. Since only

half of the model is presented, maximum stress values are always shown at positive

xi or # locations, even though in some cases a maximum stress value may have been

found at a negative xi location or negative groove angle, #, due to the discretization

asymmetries discussed above. The stress value is simply shown at its corresponding

positive xi location or # angle.

The isostress plots of normalized longitudinal extensional stresses, oij, for the

T700/2510 [t0/]13s laminates are shown in Figures 5.9, 5.10, 5.11, and 5.12 for

0 equal to 15', 300, 450, and 600, respectively. The isostress plot for the cross-ply

T700/2510 [90/0)20s laminate is presented in Figure 5.13. The isostress plot for the
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quasi-isotropic T700/2510 [±45/0/90]lios is shown in Figure 5.14. Results for o-*i for

the AS1/3501-6 [0/±45/90]15s model are shown in Figure 5.15. The maximum tensile

and compressive o-* stresses, along with their locations in the cylindrical coordinate

system of the groove, are shown in Table 5.2. These maximum values and locations are

also shown on each isostress plot. As discussed previously, all stresses are normalized

by dividing stress by the applied load, yielding a result in units of [psi/(lb/in)] for

the two-dimensional case.

The o isostress plots share some similar characteristics for all of the laminates.

All laminates share a similar format to the overall stress field, and this is reminiscent

of the comparable stress fields in previous work on grooved isotropic materials [5].

There are three primary zones of stress for on, as illustrated in Figure 5.8, and

the distinction between these regions is most easily seen in the isostress plot for the

[±15/0]13s laminate in Figure 5.9. Moving counterclockwise from the bottom of the

groove, Zone 1 extends vertically from the bottom of the groove to the back face of the

laminate and is primarily in tension, Zone 2 extends diagonally from the groove wall

into the body of the laminate and is primarily in compression, and Zone 3 extends

from the upper portion of the groove wall to the top face of the laminate and is

primarily in tension. All laminates investigated also show higher o* stresses in the

00 plies, since these plies are stiffest in the 1-direction. The isostress plots for all

laminates also show a great deal of segmentation along the ply boundaries due to the

greatly varying stiffness in the 1-direction which is dependent on the ply angle. In

general, the greater the ply angle, the lower the stiffness of the ply in the 1-direction

as the fiber direction deviates farther from the 1-direction. Thus, for all laminates,

the difference in stress between neighboring plies is dependent on the difference in

orientation angle of those plies, with a greater difference in angle resulting in a greater

difference in stress.

Examining the [±/0]13S laminate series, a few trends are notable through the

range of 0 values modeled. First, as 0 increases and the 0 ply angles diverge from the

1-direction, the entire laminate becomes more compliant in the 1-direction. This has

the effect of putting greater load on 0* plies, as they retain stiffness in the 1-direction.
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Stress Magnitude [psi(Ibin)]
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.9 Isostress plot of oui for a portion of the two-dimensional T700/2510
[±15/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.10 Isostress plot of o-*, for a portion of the two-dimensional T700/2510
[±30/013s laminate model with rigid indentor loaded at 5000 lb/in.

- 116 -



Stress Magnitude [psi/(Iblin)]
0 0.5 1

0.1 0.2 0.3 0.4

X, [in]

* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.11 Isostress plot of o for a portion of the two-dimensional T700/2510
[±45/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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Stress Magnitude [psi/(lblin)]
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.12 Isostress plot of o-*i for a portion of the two-dimensional T700/2510
[±60/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.13 Isostress plot of ou for a portion of the two-dimensional T700/2510
[90/0]20s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.14 Isostress plot of o-* for a portion of the two-dimensional T700/2510
[±45/0/ 9 0]ios laminate model with rigid indentor loaded at 5000 lb/in.
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Figure 5.15 Isostress plot of o* for a portion of the two-dimensional AS1/3501-6
[0/± 4 5 / 90115s laminate model with rigid indentor loaded at 5000 lb/in.
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Table 5.2 Maximum magnitudes of normalized stress values, on, and locations in
cylindrical coordinates for two-dimensional models with rigid indentor
loaded at 5000 lb/in.

Laminate Tensile Compressive

0 b-' OT T 40c *
ai 4Or C rc

Material Layup ___' g d [in][(ibin)| [deg] [in] ((lb/in)] [deg]

T700/2510 [±15/0]13s 1.99 48.4 0.126 -2.29 43.7 0.142

T700/2510 [±30/10]13s 1.84 48.4 0.125 -2.78 43.7 0.142

T700/2510 [t45/0]13s 4.14 1.1 0.137 -3.50 43.7 0.142

T700/2510 [±60/0]13s 7.17 0.4 0.139 -4.53 44.3 0.143

T700/2510 [90/0]20s 8.52 0.7 0.125 -4.16 44.3 0.143

T700/2510 [±45/0/ 9 0]1os 6.50 1.3 0.133 -4.43 43.4 0.149

AS1/3501-6 [0/±45/ 9 0]15s 4.11 0.3 0.170 -3.81 42.8 0.147
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Thus, as 9 increases, o* increases in the 00 plies, and decreases in the ± plies. In

Zone 1, stresses in ± plies first decrease, then switch from tension to compression

as 9 increases. This results in alternating bands of tension and compression in Zone

1. In Zones 2 and 3, o{* stresses decrease so as to be negligible as 9 increases. As

a result of this trend, the maximum tensile and compressive o-*1 stresses increase in

magnitude as 0 increases. The maximum compressive stress, o-, remains relatively

stable in Zone 2 across all values of 0. The maximum tensile stress, oi, shifts from a

location in Zone 2 near the groove face for the [±15/0]13s and [±30/0]13s laminates, to

a location in Zone 3 in a 00 ply beneath the groove for the [±45/0]13s and [±60/0]13s

laminates.

The o- isostress field for the [90/0120s laminate shows the same trends found

for the other laminates as presented. The results align particularly well with the

[±9/0]13S laminates with high 9 values, and generally represent an extension of that

trend. Stresses are higher in the 0' plies. Zone 1 exhibits a similar banded stress

characteristic to the [±6 0/0]13s laminate, with regions of tension in the 00 plies and

regions of compression in the 90* plies, but with greater stress magnitudes in the

compressive mode than are observed in the [±6 0/0]13s case.

The two quasi-isotropic laminates combine the characteristics seen in the [±0/0]13s

and [90/0]20s laminates. Higher stresses are apparent in the 00 plies. Zone 1 again

shows a banded appearance with alternating tensile and compressive regions, with

the 00 plies in tension and the 900 plies in compression. In Zones 2 and 3, the ±450

plies show reduced, but non-negligible, stresses, while the stresses in the 900 plies

drop more significantly.

The normalized through-thickness extensional stress, oi, isostress plots for the

[±/0]13s laminates are shown in Figures 5.16, 5.17, 5.18, and 5.19 for 0 equal to 150,

300, 450 , and 600, respectively. The o 3 isostress plot for the [9 0/0]20s cross-ply lami-

nate is shown in Figure 5.20. The ors isostress plot for the T700/2510 quasi-isotropic

[±45/0/90]1os is given in Figure 5.21. The 33 isostress plot for the AS1/3501-6

[0/±45/90]15s laminate is presented in Figure 5.22. Table 5.3 shows the values and

locations of the maximum tensile and compressive a,*, stresses for all the above lam-
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inates. These values and locations are also shown on each isostress plot.

The o* stress distributions are very similar for all laminates investigated, with

only minor variations due to material and layup changes. All stress fields are com-

posed of two regions: a large region of compressive stress originating along the bottom

of the groove and continuing to the laminate back face, and a much smaller region of

tensile stress of lesser magnitude on either side of the groove. The large compressive

region begins beneath the groove where the indentor presses down on the laminate,

and the stress decreases in magnitude and concentration as x3 decreases. This repre-

sents a spreading out of the applied vertical force from the small area of contact with

the indentor on the groove, to the larger area of the laminate backface. The maximum

compressive stress, o-, is relatively consistent across all laminates, ranging from -6.04

to -6.50 psi/(lb/in), with a very consistent location on the bottom of the groove face.

The small tensile region generally extends along a region on the groove face ranging

from an angular location, #, of 45' to 75'. These tensile stresses drop off rapidly as

one moves into the laminate and away from the groove. The maximum tensile stress,

o', varies across the laminates, but ranges from 1.75 to 2.33 psi/(lb/in). The location

is consistently between # equal to 48.00 and 50.90. Finally, for os, ply-to-ply behavior

between dissimilar plies is much more continuous than in the o* stress fields, since

stiffness in the 3-direction does not vary significantly with ply angle.

Examining the [±0/0]13s laminates, a few trends are notable. In the main region

of compressive stress, as 0 increases, stresses generally increase nearer the vertical

axis at x1 equal to 0, and decrease farther from x1 equal to 0, leading to an increased

stress gradient near the vertical center line. These changes are very small, but most

noticeable in the shrinking range of the -0.5 and -1.0 psi/(lb/in) isostress lines, and ex-

pansion of the -2.0 and -3.0 psi/(lb/in) isostress lines when comparing the [±15/0]13s

and [±60/0]13s laminates. The small region of tensile stress decreases in size and

intensity slightly as 0 increases. For example, the +0.5 psi/(lb/in) isostress line has

an angular range from a value of # of 45.3' to 76.2' for the laminate with 0 equal

to 15', while for the laminate with 0 equal to 60', it has a range from # equal to

47.5' to 74.4'. As 0 increases, the magnitude of the maximum compressive stress,
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.16 Isostress plot of or33 for a portion of the two-dimensional T700/2510
[i15/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.17 Isostress plot of os for a portion of the two-dimensional T700/2510
[±30/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.18 Isostress plot of 03*3 for a portion of the two-dimensional T700/2510
[±45/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.19 Isostress plot of 03*3 for a portion of the two-dimensional T700/2510
[±60/013s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.20 Isostress plot of oU for a portion of the two-dimensional T700/2510
[90/0]20s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.21 Isostress plot of o-33 for a portion of the two-dimensional T700/2510
[±45/0/90]los laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.22 Isostress plot of oa for a portion of the two-dimensional AS1/3501-6
[0/±45/90]15s laminate model with rigid indentor loaded at 5000 lb/in.
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Table 5.3 Maximum magnitudes of normalized stress values, o0s, and locations in
cylindrical coordinates for two-dimensional models with rigid indentor
loaded at 5000 lb/in.

Laminate Tensile Compressive

o b #T rT pC rc
Material Layup _ r [i

(il/in)] [deg] [in] bi ] [deg] [in]

T700/2510 [t15/0]13s 2.33 48.0 0.125 -6.04 1.1 0.125

T700/2510 [t 30/0]13s 2.25 48.4 0.125 -6.08 1.1 0.125

T700/2510 [±45/0113s 2.03 48.9 0.125 -6.14 1.1 0.125

T700/2510 [t60/0]13s 1.75 49.7 0.125 -6.19 1.1 0.125

T700/2510 [90/0]20s 1.97 49.7 0.125 -6.05 1.2 0.125

T700/2510 [±45/0/90]1os 1.90 49.7 0.125 -6.04 1.2 0.125

AS1/3501-6 [0/±45/ 9 0]15s 1.97 50.9 0.125 -6.50 1.3 0.125
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oh, increases slightly from 6.04 to 6.19 psi/(lb/in), a 2.5% increase. The location of

o* is identical for all [±/0 1 13s laminates. Conversely, as 0 increases, the maximum

tensile stress, og, decreases from 2.33 to 1.75, a 24.9% decrease. The location of o}

is fairly consistent on the face of the groove, but the angular position, <T, increases

slightly as 0 increases.

The stress distributions for the [90/0]20s and [±45/0/90]10s T700/2510 laminates

are very similar to those for the [±/0]13s laminates and have similar maximum ten-

sile and compressive stresses. The isostress plot for the quasi-isotropic [0/±45/90]15s

AS1/3501-6 laminate is very similar to the quasi-isotropic T700/2510 case. The

AS1/3501-6 [0/ t 45 / 9 0 ]15s laminate is thicker than the T700/2510 [±45/0/90]10s

laminate, thus the isostress plot appears slightly different near the bottom of the

laminate, for example, the -2.0 psi/(lb/in) isostress line does not extend to the lam-

inate backface in the AS1/3501-6 laminate. In addition, the maximum compressive

stress for this laminate is higher than for any of the T700/2510 laminates, as this

material is slightly stiffer in the 3-direction.

The normalized shear stress, U*, isostress plots for the [±0/0113s laminates are

shown in Figures 5.23, 5.24, 5.25, and 5.26 for 0 equal to 15', 300, 450, and 600,

respectively. The c* 3 isostress plot for the [90/0]20s laminate is shown in Figure 5.27.

The o*3 isostress plot for the quasi-isotropic T700/2510 laminate of [±45/0/90]ios is

shown in Figure 5.28. For the AS1/3501-6 quasi-isotropic [0/ ± /4 5 /90]15s laminate,

the c* 3 isostress plot is provided in Figure 5.29. Maximum values for o*3 in each of

the laminates and the associated angular locations are provided in Table 5.4. These

maximum values and locations are also shown on each isostress plot.

The distribution of normalized shear stress ois shares some core characteristics

among the laminates under investigation. The isostress plots show two identical lobe-

shaped regions of shear stress, one on either side of the X3-axis, positive for x1 values

greater than 0, negative for x1 values less than zero. While these regions of shear

stress are mirror images in shape and magnitude, they are opposite in sign due to the

conventions of shear stress signing. A shear stress is positive if the direction of the

force is positive on a positive element face. Since the deformation on either side of
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.23 Isostress plot of o-*3 for a portion of the two-dimensional T700/2510
[±15/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.24 Isostress plot of Us for a portion of the two-dimensional T700/2510
[±30/0]13S laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.25 Isostress plot of o-1 3 for a portion of the two-dimensional T700/2510
[±4 5/0]i3s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.26 Isostress plot of ois for a portion of the two-dimensional T700/2510
[±60/0]13s laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.27 Isostress plot of o-s for a portion of the two-dimensional T700/2510
[90/0]2os laminate model with rigid indentor loaded at 5000 lb/in.
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Figure 5.28 Isostress plot of o3 for a portion of the two-dimensional T700/2510
[t45/0/90]ios laminate model with rigid indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.29 Isostress plot of o-* for a portion of the two-dimensional AS1/3501-6
[0/±45/90]15S laminate model with rigid indentor loaded at 5000 lb/in.
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Table 5.4 Maximum magnitudes of normalized stress values, 03, and locations in
cylindrical coordinates for two-dimensional models with rigid indentor
loaded at 5000 lb/in.

Laminate Shear

o* Os rs
Material Layup ,S [in]

(lbin) deg] [in]

T700/2510 [i15/0)13s 2.81 43.2 0.125

T700/2510 [±30/0]13S 2.67 38.8 0.125

T700/2510 [±45/0]13S 2.69 38.8 0.125

T700/2510 [±60/0113S 2.78 38.8 0.125

T700/2510 [90/0120S 2.75 45.8 0.125

T700/2510 [±45/0/90]ios 2.49 42.2 0.126

AS1/3501-6 [0/±45/90]15s 2.74 35.1 0.127
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the groove is a mirror of the other, the two sides will have opposite shear stress signs.

These regions of shear stress originate along the sides and bottom of the groove and

continue down and out diagonally into the laminate. Isostress lines do not touch the

laminate top face or back face.

Examining the stress data for the [±/0]13s laminates, some trends are apparent.

The isostress plots show a more jagged distribution for the shear stresses as 0 increases,

with the narrower parts of the isostress curve corresponding to the 00 plies, meaning

shear stress tends to decrease in 00 plies relative to the ±0 plies as 0 increases.

The maximum normalized shear stress, os., always occurs on the face of the groove,

although the location varies slightly. For the [±/0i1s laminate, the maximum shear

stress occurs in a +15' ply. For all other laminates in this series, the maximum shear

stress occurs at an identical location between a -0 and 00 ply. At the location of

maximum shear stress for the other [i0/0]i 3s laminates, the [±15 /0]13s laminate has

a shear stress of 2.66 psi/(lb/in), a minimum for the laminate series. This implies that

the natural location for the maximum shear stress is at a # location of approximately

43.20. A decrease in the shear stiffness of t0 plies decreases the stress in this location

and shifts the maximum to a nearby 0' ply. Overall, maximum shear stress is at a

maximum for the [±15/0]13S laminate, and at a minimum for the [±30/0]13s laminate,

although the location of o*u changes between these laminates, as mentioned. Shear

stress then continuously increases as 0 increases.

The U*3 isostress plot for the [90/0]20s laminate also exhibits isostress lines with

a jagged appearance. Above the bottom of the groove, ripples of higher stress occur

at the 0/90-degree ply boundary, and below the bottom of the groove the ripples of

higher stress occur at the 90/0-degree ply boundary.

The O*3 distribution for the quasi-isotropic T700/2510 [±45/0/90]ios laminate

is largely consistent with the characteristics found in the other laminates, and does

exhibit some waviness in the isostress lines between plies. Below the bottom of the

groove, isostress lines shrink in along the 0/90' ply boundary, above the bottom of the

groove, isostress lines shrink in along the -45/0* ply boundary, meaning shear stresses

are generally lower in those regions. The AS1/3501-6 quasi-isotropic [0/±/45/90]15s

- 142 -



laminate shows longer isostress lobes in the negative 3-direction than the other lami-

nates. However, it should be noted that this laminate is thicker than the others, and

this may have some effect on the extent of the shear stress distribution with consid-

eration for the rigid backface boundary condition. Above the laminate mid-plane,

stresses are higher in the 900 plies, and lower in the 00 plies. Below the laminate

mid-plane, the stresses are higher in the ±450 plies.

5.1.3 Effect of Load Magnitude

In order to determine the linearity of the response of a grooved laminate to a con-

tact load, the response is examined for the quasi-isotropic [±45/0/90]lios T700/2510

laminate at a lower load level. While all laminates were modeled at the same various

load levels, the quasi-isotropic laminate is chosen as it has characteristics of all lam-

inates examined, having 0', angled, and 900 plies. The maximum load examined in

the two-dimensional cases is 5000 lb/in. To examine the effect of changing the load,

the contact pressure and stress response is examined at 1000 lb/in, or twenty percent

of the maximum load.

The contact pressure distribution for the quasi-isotropic laminate loaded at 1000

lb/in is shown in Figure 5.30. The contact press distribution for the same laminate at

the higher load of 5000 lb/in is overlaid for comparison. Contact is maintained to an

angular position, #, of 30.10 for the loading of 1000 lb/in, as compared to 49.7 for the

loading of 5000 lb/in. The maximum contact pressure of 11.18 psi/(lb/in) occurs at #
equal to 0.70 for the loading of 1000 lb/in, as compared to 6.07 psi/(lb/in) at # equal

to 2.10 for the loading of 5000 lb/in. Most notable is that the contact pressure relative

to the applied load in the 1000 lb/in case is nearly twice as high as for the 5000 lb/in

loading, while the contact area is significantly smaller. This indicates linear scaling of

the response by the applied load would be highly inaccurate, and speaks to the nature

of the nonlinearity of the response. The shape of the distribution is generally smooth,

and exhibits no discernible trends based on the ply angle contacted. However, due to

the smaller contact area, the number of plies available for comparison are low, as only

three plies are contacted. There is also a lack of substantial contact on the 00 plies,
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which see the largest increases in contact pressure at the higher loading. It cannot

conclusively be stated to what degree the local ply angle has an effect on the local

contact pressure.

The normalized longitudinal extensional stress a* is shown in Figure 5.31. The

stress distribution shows the general characteristics common to ou in the other lam-

inates and load levels, but with higher normalized stresses and stress gradients. Zone

1, the region immediately under the groove, is primarily in tension in the 0* plies,

and in compression in the neighboring 900 plies. In Zone 2, a lobe of compressive

stress is to the side of the groove, extending away from the bottom of the groove

and down toward the bottom of the laminate, with the compressive stresses primar-

ily concentrated in the 0' plies. In Zone 3, tensile stress extends out and up to the

top face of the laminate, with stresses primarily concentrated in the 0' plies. Of the

three zones of stress seen in the ol isostress plots, Zones 2 and 3 are larger at the

1000 lb/in loading than they are for the 5000 lb/in loading, while Zone 1 is slightly

smaller. There is also more overlap between the zones for the 1000 lb/in loading. For

the 1000 lb/in loading, the maximum tensile stress, o, is 8.57 psi/(lb/in) and occurs

beneath the groove in a 00 ply at an angular location, #, of 1.11', at a radius, r, of

0.156 inches, as compared to a o of 6.50 psi/(lb/in) at a location of # equal to 1.30,

and r equal to 0.133 inches, for the 5000 lb/in loading. For the 1000 lb/in loading,

the maximum compressive stress, o, is -7.09 psi/(lb/in) and occurs on the bottom

of the groove in a -45' ply at an angular location, #, equal to 1.170 on the groove

face, as compared to a o value of -4.43 psi/(lb/in) at a location of # equal to 43.4*,

and r equal to 0.149 inches, for the 5000 lb/in loading.

The isostress plot for the normalized through-thickness extensional stress, u*, for

the quasi-isotropic [±45/0/ 9 0]15s T700/2510 laminate at the lower 1000 lb/in load is

shown in Figure 5.32. The stress distribution shares a similar basic form with the 0 33

distribution in other laminates at the higher load. The region beneath the groove is

in compression, with a high stress gradient near the groove and near the X2-axis. In

this region, maximum normalized stresses and stress gradients are greater than they

are at the higher loading. This implies that at a lower load, the laminate is carrying
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Figure 5.30 Normalized contact pressure for two-dimensional T700/2510
[±4 5 /0/90]ios laminate model loaded at 1000 lb/in and 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.31 Isostress plot of o7i for a portion of the two-dimensional T700/2510
[±45/0/90]los laminate model with rigid indentor loaded at 1000 lb/in.
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a higher proportion of the load in a narrower space, particularly along the xl-axis.

A small lobe of tensile stress is on either side of the groove, along the groove face

approximately midway up. For the 1000 lb/in loading, the maximum tensile stress,

o4, is 2.14 psi/(lb/in), and occurs along the groove face in a 0' ply at an angular

location, #, of 30.10, as compared to the o% value of 1.90 psi/(lb/in) at the location

on the groove surface of # equal to 49.7' for the 5000 lb/in loading. For the 1000

lb/in loading, the maximum compressive stress, o*, is -11.1 psi/(lb/in), and occurs

at the bottom of the groove on the groove face at a value of # of 1.170, as compared

to the o-* value of -6.04 psi/(lb/in) at the location on the groove surface of # equal

to 1.20 for the 5000 lb/in loading.

The isostress plot for the normalized shear stress, ois, for the quasi-isotropic

[±45/0/ 9 0]15s T700/2510 laminate at the lower 1000 lb/in load is shown in Figure

5.33. The shear stress occurs in symmetric lobes on either side of the groove, orig-

inating from the sides and bottom of the groove and extending down and out into

the laminate, similar to the o1a distribution at the higher load. The isostress lines

exhibit some waviness showing higher shear stress in the ±450 plies. For the 1000

lb/in loading, the maximum shear stress, o-*, is 4.52 psi/(lb/in) and occurs in a 00 ply

on the groove face at # equal to 29.20, as compared to the o* value of 2.49 psi/(lb/in)

at the location on the groove surface of # equal to 42.20 for the 5000 lb/in loading.

While the form of the stress distribution remains the same, normalized shear stresses

are higher than they are at the higher load by as much as 82%.

5.2 Cylinder Loading - Elastic Indentor

The following results address the effect of changing the indentor from a rigid body

to a linear elastic steel body in the two-dimensional, cylinder loaded case. Intuitively,

this method would be a more realistic way to model the indentor, since the indentor

under investigation is a stiff steel, but is still a deformable material. However, the

use of a linear elastic model for the indentor requires the implementation of a finite

element discretization for the indentor. Thus, the indentor surface is no longer per-
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Figure 5.32 Isostress plot of oUs for a portion of the two-dimensional T700/2510
[±4 5/0/90]ios laminate model with rigid indentor loaded at 1000 lb/in.

- 148 -

0 0.5 1

1E1I
0.20

0.15

0.10

0.05

x

-0.05

-0.10

-0.15

-0.20

0.4



0 0.5 1

ELI
0.20

0.15

0.10

0.05

x
-0.05

-0.10

-0.15

-0.20

Stress Magnitude [psi/(lb/in)]
92 A R R

0 0.1 0.2 0.3
X, [in]

* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.33 Isostress plot of o13 for a portion of the two-dimensional T700/2510
[i45/0/90]1Os laminate model with rigid indentor loaded at 1000 lb/in.
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fectly smooth or round. The linear elastic implementation in this case also requires

roughly twice the computational time compared to the same models with rigid body

indentors. This is due partially to the increased number of elements in the solution

from the discretization of the indentor, and partially due to the change in contact

formulation that the discretized indentor requires, as discussed in Section 4.1. The

following sections provide the results for the quasi-isotropic T700/2510 [±4 5 /0/ 9 0]1Os

laminate using a linear elastic indentor. While the effect of the indentor change was

examined on all of the laminates, this quasi-isotropic laminate showcases most of the

effects seen in the other models. A loading of 5000 lb/in is imposed on the linear

elastic indentor.

5.2.1 Contact Pressure

The pressure distribution between the loaded indentor and the laminate groove

for the representative case of the quasi-isotropic T700/2510 [i45/0/90]ios is shown

in Figure 5.34. The contact pressure from the rigid indentor model is presented for

comparison. Pressures have been normalized by the total load on the indentor of 5000

lb/in for both cases.

Contact is maintained to an angular position, #, of 51.20. The maximum normal-

ized pressure, p*_, is 6.11 psi/(lb/in), occurring near the bottom of the groove at

# equal to 0.70. For comparison, the maximum normalized pressure, p*cma, for the

model with a rigid body indentor is 6.07 psi/(lb/in), a difference of 0.7%, and occurs

at a similar location of # equal to 2.10, and has contact angle, #contat, of 49.7', a

difference of 2.9%. The contact pressure distributions from the elastic indentor share

the same trends as the pressure from the rigid body counterpart, with pressure rising

in the 00 plies and falling in the 900 plies. The pressure distribution from the elas-

tic indentor is characterized by a small jagged oscillation that is superposed on the

overall trend of the pressure and is most apparent near the bottom of the groove and

in areas where the pressure distribution should be otherwise smooth. This variation

takes on a maximum peak-to-peak amplitude of approximately 0.2 psi/(lb/in), or

about 3.3% of the local contact pressure. The wavelength of this jagged oscillation
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appears to be related to the element size, as the wavelength is consistently three el-

ements lengths, approximately 0.003 inches, implying the origin of this oscillation is

related to discretization issues. The region of greatest variation from the rigid body

case is at higher values of #, particularly in the 0' ply at # equal to 46.20, where

the difference in pressure from the linear elastic case to the rigid body case is closer

to 12%. In this region, pressure is increasingly acting more in the 1-direction and

less in the 3-direction. The indentor will encounter higher stiffness in the 1-direction,

particularly in the 0' plies, due to the directional fibers of the composite, decreasing

the ratio of the stiffness of the indentor to the stiffness of the ply, and decreasing

the accuracy of the rigid body assumption. Thus the primary difference between the

model with the rigid body indentor and model with the linear elastic indentor occurs

near the end of contact, at angles of # around 450 or greater. Even these differences

are small.

5.2.2 Stress Response

The stress response for the T700/2510 [±45/0/90]los is presented as the charac-

teristic case for the use of an elastic indentor, as compared to a rigid indentor. The

stress magnitudes are normalized by the applied load of 5000 psi/(lb/in). Results for

the elastic indentor model are presented and results for the rigid indentor are over-

laid for comparison. For all stresses investigated, the stress distributions are nearly

identical between the loadings from the rigid body and linear elastic indentors. In

some cases, the rigid body results may not be visible as they are coincident with the

linear elastic case. The normalized longitudinal extensional stress, oi, is shown in

Figure 5.35. The maximum tensile stress, og, is 6.67 psi/(lb/in) and occurs in a 00

ply beneath the groove at an angular location, #, of 0.41' at a radial distance from

the groove center of curvature, r of 0.133 inches. The maximum compressive stress,

O-, is -4.54 psi/(lb/in) and occurs in a 00 ply at # equal to 45.0', r equal to 0.153

inches. Compared to the results from the rigid indentor, this is a 2.6% increase for o-

and a 2.5% increase for o*. These stresses occur at similar locations in both models,

as in the rigid body model, 4* occurs at # equal to 1.3', and r equal to 0.133 inches,
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and o- occurs at # equal to 43.4', and r equal to 0.149 inches.

The normalized through-thickness extensional stress, os, is shown in Figure 5.36.

The maximum tensile stress, oi, is 1.90 psi/(lb/in) and occurs at an angular location

of # equal to 50.6' on the groove surface. The maximum compressive stress, o-, is -

5.99 psi/(lb/in) and occurs at the bottom of the groove at # equal to 0.680. Compared

to the model loaded with a rigid indentor, this represents an identical value for o;,
and a decrease of 0.8% for o-. These stresses occur at similar locations in both

models, as in the rigid body model, of4 occurs at # equal to 49.7* on the groove

surface, and o- occurs at # equal to 1.2* on the groove surface.

The normalized shear stress, os, is shown in Figure 5.37. The maximum shear

stress, o-S, is 2.47 psi/(lb/in), and occurs at an angular position of # equal to 41.90 on

the groove face. Compared to the model loaded by a rigid indentor, this represents

a decrease in shear stress of 1.6%. These stresses occur at similar locations in both

models, as in the rigid body model, o-* occurs at # equal to 42.2*, and r equal to

0.126 inches, just under the groove surface.

5.3 Sphere Loading

The three-dimensional model was used to investigate the response of a grooved

laminate to loading from a spherical indentor, as detailed in Section 4.2.4. This case

is a more complete representation of the grooved composite tube loaded in contact

with ball bearings. The case under investigation is a simplification that examines

a small section of grooved composite material and a single ball indentor. Due to

computational expense, this model uses a vertical plane of symmetry running the

length of the groove at the 2-3 plane, and models the indentor as an analytical rigid

body. Results from the two-dimensional models presented in the previous section

indicate that the assumption of a rigid indentor has a negligible effect on results, as

compared to a linear elastic indentor. The laminates studied in the three-dimensional

models are the [±/013s laminate series (0 equal to 15', 30*, 450, and 60'), the cross-

ply [9 0/0]2os laminate, and the quasi-isotropic [±45/0/90]1os laminate. All these
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.35 Isostress plot of ot* for the two-dimensional T700/2510 [±45/0/ 9 0]lios
finite element model with elastic indentor loaded at 5000 lb/in.
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Figure 5.36 Isostress plot of o for the two-dimensional T700/2510 [±45/0/90]10s
finite element model with elastic indentor loaded at 5000 lb/in.
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* Note: All stresses normalized by applied load, and given in units of [psi/(lb/in)].

Figure 5.37 Isostress plot of U13 for the two-dimensional T700/2510 [±45/0/90}ios
finite element model with elastic indentor loaded at 5000 lb/in.
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laminates are composed of the T700/2510 material.

5.3.1 Contact Pressure

Loading of the grooved laminate configuration is applied via load on a spherical

rigid body indentor. This indentor then contacts and transfers load to the laminate.

The distribution of the pressure exerted by the indentor on the laminate is defined

as the contact pressure distribution. Contact pressures are normalized by the total

applied load. This is similar to the method used for the two-dimensional models,

except that the load is in units of [lb] in this case, whereas the two-dimensional case

requires loading units of [lb/in], since those models are infinite in the 2-direction.

The primary maximum load under investigation in this loading scenario is 300 lbs,

as discussed in Section 3.4. For these three-dimensional models, contact pressure re-

sults are presented in two formats. The first is a contour plot of the contact pressure

distribution on the surface of the groove, with angle around the groove, #, in degrees

on the horizontal axis, and the X2-coordinate in inches as the vertical axis. Contour

lines run along points of equal pressure and are presented at intervals of 25 psi/lb.

A contour for 0 psi/lb is also presented and represents the furthest extent of contact

between the laminate and the indentor. The maximum normalized pressure is noted

and its location is presented in the contour plots. The second format is a pressure

plot versus angle around the groove, #, with the angle on the horizontal axis, and

the normalized contact pressure, p*, on the vertical axis, similar to the contact pres-

sure plots in the two-dimensional case. Cuts through the pressure distribution are

presented for intervals of x2 through the contact region. These cuts are shown for X2

equal to 0.0, 0.005, 0.010, and 0.015 inches for all cases. This plotting format presents

a more detailed picture of how the pressure distribution changes with #, and allows

direct comparison with the two-dimensional case. Ply boundaries are denoted in each

plot type with dashed gray lines and associated ply angles are noted at the top of

each figure. Both of these plotting formats are limited by the discretization of the

laminate, as pressure can only be calculated at finite element nodes and interpolation

between nodal values is linear.
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The normalized contact pressure, p* , contour plots for the [t0/0]13S laminates are

presented in Figures 5.38, 5.40, 5.42, and 5.44 for 0 equal to 15', 30', 450, and 600,

respectively. The other presentation of the normalized contact pressure at constant

values of x 2 is given in Figures 5.39, 5.41, 5.43, and 5.45 for 0 equal to 15', 300,

450, and 600, respectively. The contour plot of the normalized contact pressure for

the cross-ply [90/0]20s laminate is shown in Figure 5.46, and the other presentation

showing the pressure at constant values of X2 is presented in Figure 5.47. The contour

plot of the normalized contact pressure for the quasi-isotropic [±45/0/90]10s laminate

is given in Figure 5.48, and an alternate view showing pressure at constant values

of x2 is presented in Figure 5.49. The maximum contact pressure for each laminate,

along with its location, is presented in Table 5.5.

The contact pressure distributions in the three-dimensional case generally form

an elliptical footprint in the presented contour figures. As with an ellipse, the shape

and extent of the contact area in the contour plots is defined by the extent of the

semi-major axis, ac, and semi-minor axis, bc, as indicated by the most extreme point

of contact along the #-axis and X2-axis, respectively. Note that although #, and

hence ac, is an angle with units of degrees, it is treated as a "contact length" to the

extent that an ellipse could be mathematically formulated using this variable to fit

the contour plots presented on the #-X2 axes. Also note that ac can be converted

to an actual contact are length, Lc, that measures the length of contact around the

curve of the groove in the 1-3 plane in inches, with rg also in inches, through the

equation:

LC = rg * ac * (5.3)
180

where rg is the radius of the groove. However, it is more convenient and intuitive

to speak of the contact length as the angle around the groove, #, to which contact

is maintained, also defined as #contac. The contact area for all laminates studied is

similar, with all laminates having a semi-major axis, ac, of approximately 54', and a

semi-minor axis, bc, of 0.017 inches. These contact area parameters for each laminate

are detailed in Table 5.5.
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.38 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [±15/0]13s laminate model loaded at 300 lb.
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Figure 5.39 Normalized contact pressure plots at given values of x2 for the three-
dimensional T700/2510 [±15/ 0]13s laminate model loaded at 300 lb.
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.40 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [±30/0]13s laminate model loaded at 300 lb.
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Figure 5.41 Normalized contact pressure plots at given values of x2 for the three-
dimensional T700/2510 [±30/ 0]13s laminate model loaded at 300 lb.
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Normalized Contact Pressure [psi/Ib]
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Figure 5.42 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [±4 5/0]13s laminate model loaded at 300 lb.
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Figure 5.43 Normalized contact pressure plots at given values of x 2 for the three-
dimensional T700/2510 [i45/0]13s laminate model loaded at 300 lb.
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Normalized Contact Pressure [psi/Ib]
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.44 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [±60/0]13s laminate model loaded at 300 lb.
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.45 Normalized contact pressure plots at given values of x 2 for the three-
dimensional T700/2510 [±60/013s laminate model loaded at 300 lb.
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.46 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [9 0/0]20s laminate model loaded at 300 lb.
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Figure 5.47 Normalized contact pressure plots at given values of X2 for the three-
dimensional T700/2510 [90/0120s laminate model loaded at 300 lb.

- 168 -

90' 901 90 90 90

9 0 0 1 0 0 01 I
i 1 1 1 1 11 01 O I 10 !1

of000 1 go
x 0 0

j 0i 1 1 01 1 1 11 oi

1 1 1 1 I I X2 '=iOi

X2 01

X2 = OL0151 Ii

a/)0

C,,-0

a)
N

0z

50



Normalized Contact Pressure [psi/Ib]
o 25 50 75 10012515017520022525027

x

0 15 30 45 60 75
Angle Around Groove [degrees]

* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.48 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [t45/0/90]IOs laminate model loaded at 300 lb.

- 169 -

90



4500 0 0 0 0

1+45 45 ,45 +451 +45 +45
0 0 1 1 1l0o I 1 10 1 lo 1 101 1 1 lo0

-45 i- 45 1 45 i-45 1-45 -45'
400 0 0

90 90 90 90 9
i t1

350

2 300Ct)

C,)

o 0 0

d- 150
0a 2 1

z 100 i I II x2=0 15

50

0 15 30 45 60 75 90

Angle Around Groove [degrees]

* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.49 Normalized contact pressure plots at given values of x2 for the three-
dimensional T700/2510 [i45/0/9]10s laminate model loaded at 300 lb.
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Table 5.5 Maximum normalized contact pressure, p*_, and its location and extent
via defined elliptical parameters, ac and bc, for three-dimensional models
loaded at 300 lb

Laminate Contact Pressure

p~7a #P -x2 , ac bc
Material LayupPC. O X2 ac b

[psi/lb] [deg] [in] [deg] [in]

T700/2510 [±15/0]13s 287 15.2 0.0 54.2 0.017

T700/2510 [t30/0]13s 297 21.7 0.0 53.7 0.017

T700/2510 [±45/0]13s 313 12.7 0.0 53.7 0.017

T700/2510 [±60/0]i3s 324 12.7 0.0 53.7 0.017

T700/2510 [9 0/0]20s 328 2.5 0.0 53.7 0.017

T700/2510 [45/0/90]ios 325 33.8 0.0 53.7 0.017
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In addition to a similar contact area shape, all laminates studied share other

behavior characteristics. Generally, the change of pressure between plies is related

to the difference in ply angle between those plies. For example, pressure increases

in 0* plies and decreases in 900 plies. In addition, the change in pressure from one

ply to a neighboring ply can be a sharp, discontinuous change, in contrast to the

behavior seen in the two-dimensional case, where pressure changes between plies

are comparatively smooth. This can best be seen by contrasting the behavior of the

[±45/0/ 9 0]1os laminate in the two-dimensional case, shown in Figure 5.6, to the three-

dimensional case, shown in Figure 5.49. However, as with the two-dimensional case,

the magnitude of the pressure change is dependent on the difference in angle between

the two plies, and the #-coordinate, with higher pressure changes coming from greater

angle differences, and at greater values of #. These effects can compound for a high

difference in ply angle at a high value of # yielding an even greater difference in

contact pressure between the plies. Finally, all results share a degree of node-to-node

variation and jaggedness apparent in the plots, most likely due to discretization of the

laminate, and the numerical contact model used. These jagged variations are typically

on the order of 4% of the local contact pressure in magnitude, but can be as high

as 8%, and span between 10 to 20 on the face of the groove, or 0.002 to 0.004 inches

of arc length (2 to 4 elements). Particularly within a ply, there are no geometric

features to suggest that the contact pressure distribution should be anything but

smooth. In contrast, contact pressure between dissimilar plies could be expected to

be discontinuous at the interface due to the material change at the ply boundary, and

the modeling of such as an abrupt change.

Of note, in the three-dimensional case, some asymmetries are apparent in the con-

tact pressure distributions for any laminate with angled plies. The crossply [9 0/0]20s

laminate is the only laminate to show no asymmetries about the x1-axis or #-axis.
The asymmetry across the x1-axis is most pronounced in angled plies, appears in the

contact pressure contour plots as a lateral shift in the pressure contours biased toward

the angle direction. For example, +45' plies tend to have greater pressure at positive

values of x2, whereas -45' plies tend to have greater pressure at negative values of X2.
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These pressure distributions also become more asymmetric in these angled plies as the

angle around the groove, #, increases. The degree of asymmetry is shown in Figure

5.50 by plotting the contact pressure along a constant value of #, showing variation

in pressure in the 2-direction, and overlaying the pressures for positive values of X2

and negative values of X2. This comparison is presented for two different +450 plies

in the [±45/0/90]1os laminate, at values of # of 21.20 and 42.4'. In this example,

the maximum variation due to asymmetry at the value of # of 21.2' is 7.6%, and at

the value of # of 42.40, the maximum variation due to asymmetry is 16.6%. Values

for other laminates are similar, and vary depending on the ply angle and the groove

angle, as discussed. These variations are small, but not insignificant. These trends

indicate the cause of the asymmetry is the presence of coefficients of mutual influence

in angled plies, by which extensional strains cause shear strains, and the lack of this

behavior in the [90/0]20s laminate supports this assertion.

Some further trends are apparent in examining the [±0/0]13S laminates. For all of

these laminates, the contact area remains similar, and the semi-major and semi-minor

axes of the elliptical area do not change appreciably. However, there is a noticeable

increase in pressure near the center of contact, and a decrease in pressure near the

periphery of the contact area, as the value of 0 increases. This is noticeable on the

contour plots in the narrowing of the contact area in X2 from # equal to 15' to 450.

It can also be seen in the decrease in the contact pressure curve at X2 equal to 0.015

inches as 0 increases. A similar decrease is notable in the pressure curve for X2 equal

to 0.01 inches at higher values of #. The increase in pressure toward the center of

contact is evident for lower values of # in the pressure curves for X2 equal to 0.0 and

0.005 inches.

The cross-ply [9 0/0]20s laminate shows the same trends found for the other lam-

inates as presented. The results align particularly well with the [±/0]13s laminates

with. high values of 0, and generally represent an extension of that trend. However, it

is notable as being the only contact pressure distribution which is symmetric about

the x1-axis or #-axis. It also has a high maximum contact pressure, comparable with

the [±6 0/0]13s and quasi-isotropic laminates. The quasi-isotropic laminate generally
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* Note: All pressures normalized by applied load, and given in units of [psi/lb].

Figure 5.50 Normalized contact pressure asymmetry versus distance, x2, in two
+450 plies at values of # of 21.20 and 42.4' for the three-dimensional
T700/2510 [±45/0/90]ios laminate model loaded at 300 lb.
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amalgamates characteristics from each of the laminates studied, carrying aspects of

the [±0/0113s laminate in the behavior of the angled ±450 plies and some aspects of

the [90/0]20s laminate in the behavior of the 00 and 900 plies. The maximum contact

pressure here is high, similar to the [±60/0]13s and cross-ply laminates.

5.3.2 Stress Response

The stress response of the laminate for the three-dimensional case is shown using

isostress plots of section cuts through the laminate to best show the extent of various

stress fields. The locations of these section cuts depends on the stress field under

investigation. A section cut through a constant value of xi of 0, while valuable in

theory, is not used due to the effect of interference from the plane of symmetry detailed

in Section 3.4. Due to the concentration of stresses in the region local to the groove,

the isostress plots show restricted views of the laminate instead of the full laminate

width and length in order to maximize visibility of the isostress lines. The xi-section

cuts show the full height of the laminate, but restrict the visible range in x2 from

-0.2 to +0.2 inches. The x2-section cuts show the full height of the laminate, but

restrict the visible range in x1 from 0.0 to +0.4 inches. Stresses are normalized by the

applied load, in this case 300 lb, and are presented in units of [psi/lb]. Isostress lines

connect points of equal stress at values of ±5, ±10, and ±20 psi/lb, and at higher

stress magnitudes at intervals of ±20 psi/lb up to stress values of ±180 psi/lb.

Isostress plots for the normalized extensional longitudinal stress, o*1, for the

T700/2510 [±15/0]13s laminate are shown in Figures 5.51 and 5.52 for the xi-section

cuts at 0.05, and 0.10 inches, respectively. Perpendicular section cuts are shown in

Figures 5.53 and 5.54 for values of x 2 of 0.0 and 0.02 inches, respectively. Isostress

plots for o* for the T700/2510 [±30/0]13s laminate are shown in Figures 5.55 and 5.56

for the xi-section cuts at 0.05, and 0.10 inches, respectively. Perpendicular section

cuts are shown in Figures 5.57 and 5.58 for values of x 2 of 0.0 and 0.02 inches, respec-

tively. Isostress plots for o* for the T700/2510 [t45/0]13s are shown in Figures 5.59

and 5.60 for the xi-section cuts at 0.05, and 0.10 inches, respectively. Perpendicular

section cuts are shown in Figures 5.61 and 5.62 for values of X2 of 0.0 and 0.02 inches,
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respectively. Isostress plots for o* for the T700/2510 [±60/0]13s laminate are shown

in Figures 5.63 and 5.64 for the xz-section cuts at 0.05, and 0.10 inches, respectively.

Perpendicular section cuts are shown in Figures 5.65 and 5.66 for values of X2 of 0.0

and 0.02 inches, respectively. The isostress plots for o-*{ for the cross-ply [90 /0]20s

T700/2510 laminate are shown in Figures 5.67 and 5.68 for the x1 -section cuts at 0.05,

and 0.10 inches, respectively. Perpendicular section cuts are shown in Figures 5.69

and 5.70 for values of X2 of 0.0 and 0.02 inches, respectively. The isostress plots for o*

for the quasi-isotropic [±45/0/ 9 0]ios T700/2510 laminate are shown in Figures 5.71

and 5.72 for the xz-section cuts at 0.05, and 0.10 inches, respectively. Perpendicular

section cuts are shown in Figures 5.73 and 5.74 for values of X2 of 0.0 and 0.02 inches,

respectively. The maximum tensile stresses, oi, and the respective locations for each

laminate are given in Table 5.6. The maximum compressive stresses, o*, and the

respective locations for each laminate are given in Table 5.7.

The response exhibited in the o- stress field is the most complex of the stress

fields examined here. Stress magnitude as well as sign is highly dependent on location

and ply angle. Neighboring plies of differing angle can frequently have similar stress

magnitudes, but opposite signs. Stress within a ply can shift from tension to com-

pression to tension again, all across small length scales. Behavior of plies of similar

angle and location can also change from one laminate to another as the overall stress

configuration changes with the overall structural stiffness. Despite these complexi-

ties, the laminates in the three-dimensional case share general characteristics with the

two-dimensional case, so terminology adopted for the two-dimensional case is used

here as well in an attempt to clarify the picture.

There are three primary zones of stress in the laminate, as previously shown

in Figure 5.8. Moving counterclockwise around the groove from the bottom of the

laminate, Zone 1 extends from the bottom of the groove to the bottom of the laminate

and contains alternating plies and regions in tension and compression. Zone 2 extends

diagonally from the groove wall into the body of the laminate and is primarily in

compression. Zone 3 extends from the upper portion of the groove wall to the top face

of the laminate and is primarily in tension. The maximum tensile stresses, o4, occur
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.51 Isostress plot of o*1 for a section cut at a value of xi of 0.05 inches in
the three-dimensional T700/2510 [±15/0]13s laminate model loaded at
300 lb.

- 177 -



5
0 10 20

r~I

C',x

0.20

0.15

0.10

0.05

0

-0.05

-0.10

-0.15

-0.20

Stress Magnitude [psilb]

-0.2 -0.1 0 0.1 0.2

x2 [in]

* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.52 Isostress plot of o7 for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±15/0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.53 Isostress plot of o* for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±15/0]13s laminate model loaded at 300
lb.
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Figure 5.54 Isostress plot of o{* for a section cut at a value of X2 of 0.02 inches in
the three-dimensional T700/2510 [il5/0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.55 Isostress plot of oix for a section
the three-dimensional T700/2510
300 lb.

cut at a value of x1 of 0.05 inches in
[±30/0]13s laminate model loaded at
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Figure 5.56 Isostress plot of o-i for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 {i30/0]13s laminate model loaded at

300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.57 Isostress plot of o for a section cut at a value of x 2 of 0.0 inches in the
three-dimensional T700/2510 [±30/0]13s laminate model loaded at 300
lb.
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Figure 5.58 Isostress plot of o-*1 for a section cut at a value of X2 of 0.02 inches in
the three-dimensional T700/2510 [i30/0]13s laminate model loaded at
300 lb.
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Figure 5.59 Isostress plot of on for a section cut at a value of z1 of 0.05 inches in
the three-dimensional T700/2510 [±45/0]13s laminate model loaded at
300 lb.
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Figure 5.60 Isostress plot of oa for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±45/0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.61 Isostress plot of o*, for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [t45/0]13s laminate model loaded at 300
lb.
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Figure 5.62 Isostress plot of o for a section cut at a value of X2 of 0.02 inches in
the three-dimensional T700/2510 [±4 5 /0]13s laminate model loaded at
300 lb.
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Figure 5.63 Isostress plot of o for a section cut at a value of x1 of 0.05 inches in
the three-dimensional T700/2510 [±60/0]13s laminate model loaded at
300 lb.
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Figure 5.64 Isostress plot of o* for a section cut at a value of x1 of 0.10 inches in
the three-dimensional T700/2510 [t60/0]i3s laminate model loaded at
300 lb.
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Figure 5.65 Isostress plot of o- for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±60/0]13s laminate model loaded at 300
lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.66 Isostress plot of o for a section cut at a value of x 2 of 0.02 inches in
the three-dimensional T700/2510 [±60 /0]13s laminate model loaded at
300 lb.
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Figure 5.67 Isostress plot of o for a section cut at a value of x of 0.05 inches
in the three-dimensional T700/2510 [9 0/0]20s laminate model loaded at
300 lb.
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Figure 5.68 Isostress plot of o7* for a section cut at a value of xi of 0.10 inches
in the three-dimensional T700/2510 [90/0120s laminate model loaded at
300 lb.
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Figure 5.69 Isostress plot of o1 for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [90/0120S laminate model loaded at 300
lb.
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Figure 5.70 Isostress plot of u for a section cut at a value of X2 of 0.02 inches
in the three-dimensional T700/2510 [90/0]20s laminate model loaded at
300 lb.
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Figure 5.71 Isostress plot of o* for a section cut at a value of xi of 0.05 inches in
the three-dimensional T700/2510 [±45/0/90]IOs laminate model loaded
at 300 lb.
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Figure 5.72 Isostress plot of oix for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±45/0/90]los laminate model loaded
at 300 lb.
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Figure 5.73 Isostress plot of o* for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0/90]10s laminate model loaded at
300 lb.
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Figure 5.74 Isostress plot of o{* for a section cut at a value of x2 of 0.02 inches in
the three-dimensional T700/2510 [±45/0/901'os laminate model loaded
at 300 lb.
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Table 5.6 Maximum magnitudes of tensile normalized stress values, on, and loca-
tions in cylindrical coordinates for three-dimensional models loaded at 300
lb

Laminate Tension

Material LayuprT X2T

[psi/lb] [deg] [in] [in]

T700/2510 [±15/0]13s 101 3.6 0.125 0.017

T700/2510 [±30/0]13s 112 14.2 0.125 -0.017

T700/2510 [±45/0]13s 141 0.0 0.139 -0.014

T700/2510 [±60/0]13s 147 14.2 0.125 -0.017

T700/2510 [90/0]20s 244 0.0 0.125 0.0

T700/2510 [±45/0/90]1os 102 5.1 0.127 0.012
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Table 5.7 Maximum magnitudes of compressive normalized stress values, ou, and
locations in cylindrical coordinates for three-dimensional models loaded
at 300 lb

Laminate Compression

O #c rc X2c

Material Layup [psi/lb] [deg] [in] [in]

T700/2510 [±15/0]13s -179 39.1 0.134 -0.002

T700/2510 [±30/0]13s -224 39.1 0.134 0.0

T700/2510 [±45/0]13s -260 37.8 0.132 0.0

T700/2510 [±60/0]13s -279 37.8 0.132 0.0

T700/2510 [9 0/0]20s -257 39.1 0.139 0.0

T700/2510 [±45/0/90]ios -264 39.1 0.134 0.0
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beneath the bottom of the groove in Zone 1 in 00 plies. The maximum compressive

stresses, o, occur along the groove face in Zone 2 at a consistent angular location,

#, between 37.8 and 39.10.

In Zone 1, the primary driver of stress is most likely the Poisson's effect from

high compressive strains in the 3-direction from the indentor. In this zone, positive

angled plies are in compression towards positive values of X2, and in tension towards

negative values of x2 . For negative angled plies, this trend is reversed, with the plies in

compression towards negative values of x2 and tension towards positive values of X2.

These regions are not evenly split at the centerline of x2 equal to zero. There is some

overlap, with the compressive regions most frequently being larger, and the tensile

regions tending to shrink and even disappear as ply angle increases. Behavior of the

0' plies in Zone 1 is dependent on the laminate. These plies generally have a region

of compressive stress near the X3-axis, and roughly symmetric regions of tension on

either side of the x3-axis. The relative sizes and intensities of these compressive and

tensile regions in the 0* plies is the factor that is dependent on the laminate. In

the [±15/0]13s laminate, the 0' plies in this zone are almost entirely in compression,

whereas, in the [90/0120s laminate, these plies are almost entirely in tension. The

rest of the laminates fall along this spectrum of behavior with the split of tension

and compression, as described, of varying ratios depending on the laminate. Stresses

in this zone are largest in magnitude immediately beneath the groove, and decrease

in intensity toward the laminate backface. The highest stresses are in the 0' plies

immediately beneath the groove.

In Zone 2, the primary driver of stress is most likely the lateral forces applied by

the indentor pushing apart the walls of the groove. This zone is in compression. In

X2, this zone is localized to the area of contact near X2 equal to 0.0. In x1 , this zone

extends from the lower half of the groove, where contact occurs, horizontally out into

the laminate toward positive values of xi and down toward the laminate backface.

The exact angle and dispersion of stress depends on the particular laminate. In

this zone, stress is concentrated in the 00 plies for all laminates investigated. The

magnitude of stress in other plies in this region is proportional to the stiffness of that
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ply in the 1-direction. The stresses of the largest magnitude in this zone are along

the groove face, particularly in the 0* plies.

In Zone 3, the primary driver of stress is the stiffness of the laminate as a structure

balanced against the deformation of the local region of indentation. This zone is

primarily in tension, and wraps around Zone 2 to either side in the 2-direction and

above in 3-direction. Stresses in this zone are carried primarily in the 00 plies, while

the magnitude of stress in the other plies in this zone is proportional to the stiffness

of that ply in the 1-direction. The stresses of largest magnitude in this zone are on

the groove face, close to Zone 2 and the area of contact.

Examining the [±0/0]13s laminates, a few trends are notable. In Zone 1, the 0'

plies change from being primarily in compression for 0 equal to 150, to being primarily

in tension as 0 increases to 60'. The ±0 plies change from being almost equally in

tension and compression at a 0 value of 15', to being entirely in compression as 0

increases to 600. In Zone 2, stresses decrease in ± plies, and increase in 0* plies as

0 increases. In Zone 3, there is not a significant change as 0 changes. Overall, the

magnitude of the maximum tensile stress, oa, increases by approximately 37% from

101 psi/lb to 147 psi/lb as 0 increases from 150 to 600. The maximum compressive

stress, oh, increases in magnitude by 43% from -179 psi/lb to -279 psi/lb as 0 increases

from 15' to 600.

Isostress plots for the normalized through-thickness extensional stress, 0-3, for the

[±15/0]13s laminate are provided in Figures 5.75 and 5.76 for the xi-section cuts at

0.05 and 0.10 inches, respectively. A perpendicular section cut is shown in Figure 5.77

for a value of X2 of 0.0. Isostress plots for ois for the [±30/0]13s laminate are shown

in Figures 5.78 and 5.79 for the x1-section cuts at 0.05 and 0.10 inches, respectively.

A perpendicular section cut is shown in Figure 5.80 for a value of X2 of 0.0. Isostress

plots for o33 for the [±45/0]13s laminate are shown in Figures 5.81 and 5.82 for the

x1-section cuts at 0.05 and 0.10 inches, respectively. A perpendicular section cut is

shown in Figure 5.83 for a value of X2 of 0.0. Isostress plots for 0-s for the [±60/0]13s

laminate are presented in Figures 5.84 and 5.85 for the x1 -section cuts at 0.05 and

0.10 inches, respectively. A perpendicular section cut is shown in Figure 5.86 for a
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value of X2 of 0.0. Isostress plots for c 33 for the cross-ply [90/0]20s laminate are given

in Figures 5.87 and 5.88 for the x1-section cuts at 0.05 and 0.10 inches, respectively.

A perpendicular section cut is shown in Figure 5.89 for a value of X2 of 0.0. Isostress

plots for 3 in the quasi-isotropic [±45/0/90]1os laminate are given in Figures 5.90

and 5.91 for the x1-section cuts at 0.05 and 0.10 inches, respectively. A perpendicular

section cut is shown in Figure 5.92 for a value of X2 of 0.0. The maximum tensile

stress, o4, for each laminate and its location relative to the groove is presented in

Table 5.8. The same data for the maximum compressive stress, a*, is presented in

Table 5.9.

In this three-dimensional, sphere-loaded case, the distribution of the normalized

through-thickness extensional stress, o*, is similar to the two-dimensional, cylinder

loaded case. In addition, the stress distribution is similar across all laminates studied,

with a nearly identical shape in each. There are two major features in this stress

distribution. The primary feature is a large region of compressive stress extending

from the bottom of the groove to the bottom of the laminate, concentrated local to

the area of contact, and expanding out in the 1-direction and 2-direction as depth

increases. The secondary feature is a smaller region of tensile stress along the upper

wall of the groove, concentrated adjacent to the area of contact and partially wrapping

around the primary region of compressive stress. For 0-s, there is almost no variation

within the stress distribution from ply-to-ply due to ply angle, thus the stress field

remains mostly continuous between the plies.

The primary compressive region of stress is concentrated beneath the area of

contact and is driven by the compressive strain from the loaded indentor. High com-

pressive stresses occur local to this region, but drop off quickly, particularly compared

to the two-dimensional case, leading to high gradients. As stress drops with distance

from the groove, the stress gradients also decrease. The maximum compressive stress

occurs on the groove face near the bottom of the groove, regardless of ply angle or

laminate.

The smaller region of tensile stress is wrapped around the upper end of the region

of compressive stress, along the upper groove wall. The stresses here are likely due
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Figure 5.75 Isostress plot of o7s for a section cut at a value of x1 of 0.05 inches in
the three-dimensional T700/2510 [±15/0113s laminate model loaded at
300 lb.
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Figure 5.76 Isostress plot of o3s for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±15/0]13s laminate model loaded at
300 lb.
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Figure 5.77 Isostress plot of o-3s for a section cut at a value of x 2 of 0.0 inches in the
three-dimensional T700/2510 [±15/0]13s laminate model loaded at 300
lb.
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Figure 5.78 Isostress plot of a* for a section
the three-dimensional T700/2510
300 lb.

cut at a value of x1 of 0.05 inches in
[±3 0/0]13s laminate model loaded at
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Figure 5.79 Isostress plot of o33 for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±30/0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.80 Isostress plot of o-s for a section cut at a value of X 2 of 0.0 inches in the
three-dimensional T700/2510 [±30/0]13s laminate model loaded at 300
lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.81 Isostress plot of o-33 for a section cut at a value of xi of 0.05 inches in
the three-dimensional T700/2510 [±45/0]13s laminate model loaded at
300 lb.
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Figure 5.82 Isostress plot of o3s for a section cut at a value of x1 of 0.10 inches in
the three-dimensional T700/2510 [±4 5 /0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.83 Isostress plot of o-s for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0]13S laminate model loaded at 300
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.84 Isostress plot of o-s for a section cut at a value of x1 of 0.05 inches in
the three-dimensional T700/2510 [±60/0]13S laminate model loaded at
300 lb.
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Figure 5.85 Isostress plot of o-3 for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±6 0/0]13s laminate model loaded at
300 lb.
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Figure 5.86 Isostress plot of o-3 for a section cut at a value of x2 of 0.0 inches in the
three-dimensional T700/2510 [±6 0/0]13S laminate model loaded at 300
lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.87 Isostress plot of o33 for a section cut at a value of xi of 0.05 inches
in the three-dimensional T700/2510 [9 0/0]20s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.88 Isostress plot of 33 for a section cut at a value of x1 of 0.10 inches
in the three-dimensional T700/2510 [90/0]20s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.89 Isostress plot of c 33 for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [90/0)20s laminate model loaded at 300
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.90 Isostress plot of o33 for a section cut at a value of x1 of 0.05 inches in
the three-dimensional T700/2510 [±45/0/90]1os laminate model loaded
at 300 lb.
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Figure 5.91 Isostress plot of U3 3 for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±45/0/ 9 0]ios laminate model loaded
at 300 lb.
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Figure 5.92 Isostress plot of als for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0/90]ios laminate model loaded at
300 lb.
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Table 5.8 Maximum magnitudes of tensile normalized stress values, 033, and loca-
tions in cylindrical coordinates for three-dimensional models loaded at 300
lb

Laminate Tension

U 4T rT X2T

Material Layup [psi/lb] [deg] [in] [in]

T700/2510 [±15/0113s 49 53.1 0.125 0.0

T700/2510 [±30/0]13s 45 52.2 0.125 -0.003

T700/2510 [±45/0]13S 39 50.7 0.125 -0.004

T700/2510 [t60/]13s 33 50.7 0.125 -0.004

T700/2510 [9 0/0]20s 36 52.2 0.125 -0.003

T700/2510 [±45/0/90]10s 36 50.7 0.125 -0.004
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Table 5.9 Maximum magnitudes of compressive normalized stress values, a, and
locations in cylindrical coordinates for three-dimensional models loaded
at 300 lb

Laminate Compression

0-c 4c rc .'c
Material Layup r X2c

[psi/lb] [deg] [in] [in]

T700/2510 [±15/0]13s -278 2.5 0.125 0.0

T700/2510 [±30/0]13s -289 2.5 0.125 0.0

T700/2510 [±45/0]13s -300 3.0 0.125 0.0

T700/2510 [±60/0]13s -313 10.2 0.125 0.0

T700/2510 [9 0/0]20s -319 1.0 0.125 0.0

T700/2510 [±4 5/0/90]ios -316 3.0 0.125 0.0
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to the elastic resistance of the laminate to the deformation from the indentor. While

the indentor depresses a local area of the laminate in the groove, the remainder of the

structure maintains the stiffness and position of the laminate topface, leading to the

tension between the two regions. The maximum tensile stress occurs in a relatively

consistent region between an angular location of # of 50.7' and 53.1' on the surface

of the groove.

There is little variation from laminate to laminate in the stress field of Ca, al-

though some differences are apparent on close examination of the [±0/0113s laminates.

Generally, as 0 increases, the compressive stresses increase, while the tensile stresses

decrease. The increase in compressive stress is apparent upon close examination of the

section cuts, particularly those at a value of xi of 0.05 inches and of X2 of 0.0 inches,

with the isostress lines slightly increasing in range across the 1-direction, increasing

in depth in the 3-direction, and slightly thinning in the 2-direction. The decrease in

tensile stress is apparent on examining the section cuts at a value of x1 of 0.10 inches

and of X2 of 0.0 inches. The maximum normalized compressive stress, o1-, similarly

increases by approximately 12% from -278 psi/lb to -313 psi/lb as 0 increases from

[t15/0]13s to [i 6 0/]13s. The maximum normalized tensile stress, oi, decreases by

approximatley -36% from 49 psi/lb to 33 psi/lb, as 0 increases from 15' to 60' in

the [±/0]13S laminates.

The distribution of normalized shear stress, o, for the [t15/0]13s laminate is

shown in Figures 5.93 and 5.94 for the section cuts at a value of x1 of 0.10 inches

and a value of X2 of 0.0 inches, respectively. Isostress plots for o* for the [t30/0]13s

laminate are shown in Figures 5.95 and 5.96 for the section cuts at a value of xi of

0.10 inches and a value of X2 of 0.0 inches, respectively. Isostress plots for o-*3 for

the [±45/0]13s laminate are shown in Figures 5.97 and 5.98 for the section cuts at

a value of xi of 0.10 inches and a value of X2 of 0.0 inches, respectively. Isostress

plots for o-*3 for the [±60/0]i3s laminate are presented in Figures 5.99 and 5.100

for the section cuts at a value of xi of 0.10 inches and a value of x2 of 0.0 inches,

respectively. Isostress plots for 0T3 for the cross-ply [90/0]20s laminate are shown in

Figures 5.101 and 5.102 for the section cuts at a value of x1 of 0.10 inches and a
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value of X2 of 0.0 inches, respectively. Isostress plots for ois for the quasi-isotropic

[±45/0/ 90]1os laminate are provided in Figures 5.103 and 5.104 for the section cuts

at a value of xi of 0.10 inches and a value of x 2 of 0.0 inches, respectively. Values

and locations for the maximum normalized shear stress, o-S, are given in Table 5.10

for all laminates studied. Locations for maximum shear stress are provided in the

cylindrical coordinate system of the groove.

The shape of the normalized shear stress distribution, U, is consistent across

all laminates. The shear stress is most likely driven by the shear strain caused by

the loaded indentor. The stress distribution consists of a single lobe of positive shear

stress extending into the laminate from the bottom and sides of the groove. The shear

stress is concentrated on the groove face along the area of contact and particularly

near an angular location, #, of approximately 400. The shear stress difference from

ply-to-ply is relatively small, resulting in a mostly continuous stress distribution for

most laminates investigated. It is apparent that the small difference in stress between

plies is dependent on the difference in angle between the plies, with greater angles

resulting in greater differences in stress. Generally, the smaller the ply angle, the

lower the shear stress.

Examining the [±0/0]13s laminates, a few trends are apparent. As mentioned

above, as 0 increases, the difference in stress between neighboring plies of different

angles increases. This is evident in the waviness of the isostress lines from one ply to

the next. Generally, as 0 increases, the maximum shear stress, oi, increases slightly

as well, with the exception of the [±15/0]13s laminate, which has a higher maxi-

mum shear stress than the [±30/0113S laminate. The change from least to greatest

maximum shear stress is approximately 8%. The location of maximum shear stress

remains relatively consistent across all laminates, lying on the face of the groove at

an X2 value of 0.0 and between an angular location, #, of 38.30 and 43.3'.

5.3.3 Effect of Load Magnitude

The linearity of the response is investigated by changing the magnitude of the

load applied to the indentor. As with the two-dimensional, cylinder-loaded case,
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.93 Isostress plot of o 3 for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±15/0]13s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.94 Isostress plot of ois for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±15/0]13s laminate model loaded at 300
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Figure 5.95 Isostress plot of ois for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [±30/0113s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.96 Isostress plot of ors for a section cut at a value of x 2 of 0.0 inches in the
three-dimensional T700/2510 [±30/0]13s laminate model loaded at 300
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.97 Isostress plot of ois for a section cut at a value of x1 of 0.10 inches in
the three-dimensional T700/2510 [±45/0]13s laminate model loaded at
300 lb.
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Figure 5.98 Isostress plot of o for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0]13s laminate model loaded at 300
lb.
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Figure 5.99 Isostress plot of oas for a section cut at a value of x of 0.10 inches in
the three-dimensional T700/2510 [t60/0]3is laminate model loaded at
300 lb.
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Figure 5.100 Isostress plot of o*3 for a section cut at a value of X2 of 0.0 inches in
the three-dimensional T700/2510 [±60/0]13s laminate model loaded at
300 lb.
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Figure 5.101 Isostress plot of cTi for a section cut at a value of xi of 0.10 inches in
the three-dimensional T700/2510 [90/0]20s laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.102 Isostress plot of on for a section cut at a value of x2 of 0.0 inches in
the three-dimensional T700/2510 [9 0/0]20s laminate model loaded at
300 lb.
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Figure 5.103 Isostress plot of o-s for a section cut at a value of xi of 0.10 inches in the
three-dimensional T700/2510 [i45/0/90]los laminate model loaded at
300 lb.
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* Note: All stresses normalized by applied load, and given in units of [psi/lb].

Figure 5.104 Isostress plot of o*3 for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0/90]1os laminate model loaded at
300 lb.
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Table 5.10 Maximum magnitudes of normalized shear stress values, o0i3, and loca-
tions in cylindrical coordinates for three-dimensional models loaded at
300 lb

Laminate Shear

ous #s rs X2s

Material Layup [psi/lb] [deg] [in] [in]

T700 [±15/]13s 95 43.3 0.125 0.0

T700 [±30/]13s 94 38.3 0.125 0.0

T700 [±45/0]13s 98 38.3 0.125 0.0

T700 [t60/0]13s 101 38.3 0.125 0.0

T700 [90/0]20s 99 46.2 0.125 0.0

T700 [t45/0/90]10s 90 33.8 0.125 0.0
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the contact pressure and stress response are studied at a lower load in an effort to

determine the linearity of the system. Since both contact pressure and stress results

are normalized by the applied load, results would be identical for a system of linear

behavior. Different results would indicate a nonlinear response. All laminates were

examined at various load magnitudes. However, the effect of load magnitude on

response is presented for only the quasi-isotropic T700/2510 [±45 /0/ 9 0]ios laminate.

The response of this laminate is characteristic of all of the laminates investigated,

allowing presentation of the response in 00, 900 and angled plies in one set of results.

The load used in this case is 60 lb, or 20% of the original load of 300 lb.

As with the previous three-dimensional results, the contact pressure is presented

in two figures: one is a contour plot illustrating the footprint of the indentor-laminate

contact, the other is a plot of contact pressure versus groove angle along constant se-

lect values of X2 . The contact pressure contour plot for the quasi-isotropic T700/2510

[±45/0/90]los laminate loaded at 60 lb is presented in Figure 5.105. Contour pressure

curves from the case of 60 lb loading are shown in Figure 5.106 at values of X2 of 0.0,

0.05, 0.10 and 0.15 inches. These are shown in black, and the same contact pressure

curves from the 300 lb loading are overlaid in gray. Note that for the contour plot, all

contour levels and color indicators are a factor of three larger than their counterparts

from the case of 300 lb loading, and in the pressure curve plot the curves along values

of X2 of 0.010 and 0.015 inches do not exist since there is no contact at these locations

in the case of the 60 lb loading.

For the case of 60 lb loading, the area of contact is much smaller, with much

higher normalized pressures, compared to the case of 300 lb loading. The maximum

normalized contact pressure, p* is 872 psi/lb, and occurs at an angular location,

#, of 1.5', along the X2 equals 0.0 centerline. This value is 268% of the maximum

normalized contact pressure of 325 psi/lb in the case of 300 lb loading, and in a differ-

ent location. Similarly, all normalized pressures in the distribution are significantly

higher and with higher gradients than in the case of 300 lb loading. This is most

likely due to the need to distribute the load from the indentor over a smaller contact

area. While the shape of the contact contours in the case of 60 lb loading remains a
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similar semi-ellipsoid, the area on the plot is much smaller, with a semi-major axis,

ac, of 37.00 and a semi-minor axis, bc, of 0.009 inches, as compared with the values

of 53.7' and 0.017 inches for ac and bc, respectively, in the case of the 300 lb loading.

This smaller contact area is due to the groove of the laminate conforming less to the

indentor because of the lower load.

The normalized longitudinal extensional stress, u*1, for the quasi-isotropic T700/2510

[±4 5 /0/ 9 0]los laminate loaded at 60 lb is shown in Figures 5.107 and 5.108 for the

x1-section cuts at 0.05 and 0.10 inches. The perpendicular X2-section cuts at 0.0

and 0.02 inches are shown in Figures 5.109 and 5.110. Little difference is seen here

in the behavior of each ply as compared to the case of 300 lb loading. The trends

outlined in Section 5.3.2 for the o*1 distribution still hold true, with three zones of

stress apparent. Zone 1 is beneath the groove and consists of alternating regions of

tension and compression. Zone 2 extends diagonally from the bottom of the groove

into the laminate from the area of contact and is in compression. Zone 3 extends

around Zone 2 in the 2-direction and in the 3-direction from the top of the groove

toward the top of the laminate and is in tension. Zones 1 and 2 are slightly closer in

the case of 60 lb loading than in the case of 300 lb loading, with Zone 3 extending.

This reflects the smaller contact area and higher concentration of relative load in that

smaller area close to the bottom of the groove. However, it is apparent that normal-

ized stresses of o-l in the case of 60 lb loading are larger than in the case of 300 lb

loading. This results in higher stress gradients, particularly local to the groove. The

maximum normalized tensile stress, o, is 210 psi/lb, or 206% of that for the case of

300 lb loading, and occurs on the groove face at an angular location, #, of 10.20, and

a location of X2 of -0.009 inches. The maximum normalized compessive stress, o, is

-828 psi/lb, or 313% of that of the case of 300 lb loading, and occurs on the groove

face at an angular location, 4, of 10.2', and a location of X2 of 0.002 inches.

The normalized through-thickness extensional stress, or , for the quasi-isotropic

T700/2510 [±45/0/ 9 0]ios laminate loaded at 60 lb is shown in Figures 5.111 and 5.112

for the x1-section cuts at 0.05 and 0.10 inches. The perpendicular x2-section cut at

0.0 is shown in Figure 5.113. The general form of the stress field at the 60 lb load
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Figure 5.105 Normalized contact pressure contour plots for the three-dimensional
T700/2510 [±45/0/90]1os laminate model loaded at 60 lb.
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Figure 5.106 Normalized contact pressure curves along given values of X2 for the

three-dimensional T700/2510 [±45/0/90]los laminate model loaded at
60 lb and 300 lb.
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Figure 5.107 Isostress plot of o* for a section cut at a value of xi of 0.05 inches in the
three-dimensional T700/2510 [±45/0/90]1os laminate model loaded at
60 lb.
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Figure 5.108 Isostress plot of o* for a section cut at a value of x1 of 0.10 inches in the
three-dimensional T700/2510 [t45/0/90]los laminate model loaded at
60 lb.
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5 Stress Magnitude [psi/Ib]
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Figure 5.109 Isostress plot of o{* for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0/90]lios laminate model loaded at
60 lb.
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Figure 5.110 Isostress plot of o-*1 for a section cut at a value of X2 of 0.02 inches in the
three-dimensional T700/2510 [±45/0/ 9 0]los laminate model loaded at
60 lb.
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again remains similar to the case of the 300 lb load. The stress distribution consists

of one large area of compressive stress under the groove, and a smaller lobe of tensile

stress along the groove wall and wrapping slightly around the area of compressive

stress. In comparison to the higher loading, the stress distribution for the 60 lb

loading shows a higher normalized stress and stress concentration in the compressive

area. This area is slightly larger at the bottom of the laminate, and slightly narrower

near the bottom of the groove, but the stresses near the base of the groove are much

higher with higher gradients than in the case of the 300 lb loading. The tensile area

of stress is significantly larger, making up for the shrinking of the compressive stress

area in this region, although tensile stress magnitudes are not significantly larger.

The maximum normalized tensile stress, oi, is 45 psi/lb, or 125% of that of the case

of the 300 lb loading, and occurs on the groove face at an angular location, #, of 35.20,

and a location of X2 of -0.003 inches. The maximum normalized compessive stress,

og, is -845 psi/lb, or 268% of that of the case of the 300 lb loading, and occurs on

the groove face at an angular location, #, of 1.00, and a location of X2 of 0.0 inches.

The normalized shear stress, o3, for the quasi-isotropic T700/2510 [±45/0/90]10s

laminate loaded at 60 lb is shown in Figure 5.112 for the xl-section cut at 0.10

inches. The perpendicular X2-section cut at 0.0 is shown in Figure 5.113. Again,

the general shape of the stress field remains similar as for the case of higher loading,

and the trends noted for the higher loading in Section 5.3.2 still hold. The stress

distribution has changed shape slightly, moving closer to the plane of x1 equal to

zero, in accordance with the shrinking contact area. This is most easily seen in the

cross-section of xi equal to 0.10 inches. In the case of 300 lb loading, this is near

the widest point of the stress distribution and the highest stresses. However, for the

60 lb loading, the stress in this area has decreased considerably due to the shift in

stress location. In general, the stress field extends farther into the laminate in the

2-direction and the 3-direction, and not as far in the 1-direction, as compared to the

case of 300 lb loading. The stresses and stress gradients are also higher than in the

case of 300 lb loading. The maximum normalized shear stress, o-, is -169 psi/lb, or

188% of that of the case of 300 lb loading, and occurs beneath the groove face at a
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Figure 5.111 Isostress plot of o33 for a section cut at a value of x of 0.05 inches in the
three-dimensional T700/2510 [±4 5 /0/ 9 0]los laminate model loaded at
60 lb.
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Figure 5.112 Isostress plot of or* for a section cut at a value of xi of 0.10 inches in the
three-dimensional T700/2510 [±45/0/90]ios laminate model loaded at
60 lb.
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Figure 5.113 Isostress plot of o3 for a section cut at a value of x2 of 0.0 inches in the
three-dimensional T700/2510 [±45/0/90]lios laminate model loaded at
60 lb.
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radius, r, of 0.131 inches, at an angular location, #, of 22.10, and a location of X2 of

0.0 inches.
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Figure 5.114 Isostress plot of o-* for a section cut at a value of xi of 0.10 inches in the
three-dimensional T700/2510 [±45/0/90]10s laminate model loaded at
60 lb.
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Figure 5.115 Isostress plot of 013 for a section cut at a value of X2 of 0.0 inches in the
three-dimensional T700/2510 [i45/0/ 9 0]ios laminate model loaded at
60 lb.
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Chapter 6

DISCUSSION

The primary goal of the current work is to examine the response of a grooved

composite laminate to out-of-plane conformal contact loading through the use of finite

element modeling, with particular focus on the area local to the groove. In addition,

the influence of ply angle and orthotropy is assessed across various laminates, and the

linearity of the response to the loading factor is studied to assess the importance of

these features in the modeling of grooved laminates. These objectives also necessitated

investigation into best modeling practices for grooved laminates. The contact pressure

determined in this work is compared to the Hertzian distribution used to model

contact in previous work [5]. The effectiveness of using a rigid body for the indentor

as an approximation to a linear elastic body is studied. The applicability of a two-

dimensional model to the full three-dimensional case is examined. These items are

discussed in this chapter, referencing the results obtained in the current investigation

and reported in Chapter 5.

6.1 Modeling Effects

In discussing the results from Chapter 5, it is important to note those effects or

limitations that arise due to the specific modeling techniques used in this investigation,

rather than due to any physical manifestation. Particularly, the use of finite element

modeling in this investigation, and the specific implementation used in the modeling
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of the current investigation, as detailed in Chapter 4, has a number of effects on

the observed results. These effects have three main origins: discretization of the

laminates using the finite element method, the contact model employed, and, in the

three-dimensional case, the boundary condition of symmetry.

For this investigation, displacement-based finite elements were used to model the

grooved composite laminate. The use of linear finite elements in this implementation

requires the discretization of the structure into individual elements, defined by a set

of nodes and the straight edges connecting them. Finite element analysis is then used

to calculate the displacements at the nodes for a given set of loads and boundary

conditions. These displacements are used by ABAQUS to calculate the stresses at

the nodes, which are then reported and output to MATLAB for viewing. Linear

interpolation was used to calculate and display stresses between nodes. This process

inherently limits the current analysis to determining the stresses at the nodes only,

and using linear approximations for the stresses between nodes. This means that

maximum stress magnitudes can only occur at nodes, as linear interpolation cannot

reach a maximum or minimum between two nodes. Thus, maximum stresses are

only approximations in both location and magnitude, and are limited in error by the

minimum distance between nodes in the region local to the maximum stress location.

For this investigation, the discretization of the laminates was performed as detailed

in Section 4.2. The distance between nodes, and hence the possible error in location of

maximum stress magnitudes, can be best determined by examining the mesh seeds for

the relevant region of the laminate in that section. For the two-dimensional models,

this distance is between 0.001 inches on the groove face, and 0.002 inches in the

body of the laminate in Region 1, the region where all maximum stress magnitudes

occur. For the three-dimensional models, this distance is between 0.0011 inches on

the groove face, and 0.0037 inches in the part of Region 1 where the maximum stress

magnitudes occur.

As discussed in Section 4.2, the discretization of the laminates did not employ

symmetry about any of the laminate planes, although the geometry of the grooved

laminate structure is symmetric across the 1-3 plane and across the 2-3 plane. While
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there is generally little effect from the lack of symmetry in the finite element mesh,

some small discrepancies are apparent, particularly in the locations and values of

maximum stresses. In the two-dimensional model, the geometry, as well as the mate-

rial properties, loading, and boundary conditions, are symmetric across the 2-3 plane.

This implies that the structural response should similarly be symmetric across this

plane. However, the finite element discretization is not symmetric. This generates

some small asymmetries in the structural response. For example, in the normalized

shear stress response, o3, for the T700/2510 [±45/0/90]los laminate, the maximum

shear stress magnitude should be identical on either side of the X3-axis due to sym-

metry. However, maximum shear stress magnitudes are 2.50 psi/(lb/in) for positive

xi, and 2.52 psi/(lb/in) for negative xi. This is a difference of 1.1%. Similar minor

differences in magnitude are seen for the other stress fields, and in the other lam-

inates investigated. While these differences are small, and perhaps negligible, they

arise from the asymmetry in the finite element discretization, and are not inherent to

the system.

Note that the asymmetries seen in the three-dimensional models are not a result of

the minor asymmetries arising from the asymmetric mesh. The material properties in

the three-dimensional case give rise to an asymmetry across the 1-3 plane due to the

inherent directionality of the orthotropic composite material. These asymmetries are

due specifically to material properties that appear in the three-dimensional models,

but not in the two-dimensional models, such as coefficients of mutual influence and

the Poisson's ratios involving the 2-direction. Thus, the asymmetries seen across this

plane in the three-dimensional case are due to actual physical asymmetries. The mod-

eling issues arising from the 2-3 plane of symmetry employed in the three-dimensional

finite element models is discussed in Section 6.7.

The two remaining effects due to modeling are discussed in the following sections,

as appropriate. General limitations arising from the contact models employed are

presented in Section 6.3, and specific limitations of the contact model implementation

in the case of the linear elastic indentor is presented in Section 6.5.
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6.2 Comparison to Hertzian Loading

Previous work in the modeling of grooved laminates [5] has used the Hertzian

method to approximate the pressure distribution between the laminate and the in-

dentor, since this is the foremost analytical method for determining the details of

contact between two curved bodies. Unfortunately, the Hertzian method can only

solve contact between two isotropic bodies. The extension by Willis to anisotropic

bodies is limited to anisotropic half-spaces, and cannot be used for the curved surface

of the groove with its piecewise defined orthotropic properties due to the laminated

nature of the material. Currently, the only method for defining contact between the

grooved laminate and the round indentor is the numerical method, for example the

finite element method used in this work. Even this method has its limitations, as

described in Sections 6.1 and 6.3.

For consistency, all finite element results for this comparison are presented for

the AS1/3501-6 [0/ ± 4 5 / 9 0]15s laminate, the same as that used in previous work

[5]. The Hertzian distribution is determined by three primary factors: the curvature

of the contacting bodies, the material properties of the contacting bodies, and the

applied load. The result is an ellipsoidal pressure distribution defined over x1 with

the parameters of maximum pressure, omax, and projected contact length along x1,

aH, given in the equation:

PC = omax 1 - 2 (6.1)
(aH

In order to compare the accuracy of the Hertzian distribution as implemented by

Bastien [5], a Hertzian distribution must first be generated following the method

used in that work which matches the applied load in this work. Following Bastien's

method, and using the same material properties and curvature values, a pressure

distribution for the 5000 lb/in loading was found to require a value of o-max of 43,700

psi, and a value of aH of 0.0728 inches.

The resulting Hertzian distribution is plotted along with the numerical contact

- 260 -



pressure determined via a two-dimensional finite element model for a rigid body

indentor in Figure 6.1. The differences between the two pressure curves are apparent.

The Hertzian distribution maintains contact to a much lower groove angle, 35.60, as

compared to the maximum contact angle of 48.20 from the numerical contact solution.

Due to the resulting smaller contact area, the pressure in the Hertzian distribution

must be higher near the bottom of the groove in order to maintain both the shape of

the curve and the same total load as the numerical result. The obvious discrepancy

between the Hertzian distribution and that from the numerical model implies that

the Hertzian distribution is a poor approximation of the contact pressure generated

in a true case of conformal contact loading. This particular distribution is inaccurate

due to the inaccurate contact angle.

Of the three inputs to determining the Hertzian distribution, the curvature of the

contacting bodies and the applied load are both accurate, as the geometry of the con-

figuration is explicit, and the applied load is defined. By process of elimination, this

leaves the material properties of the contacting bodies as the primary source of error

in this approximation. This is logical, as the Hertzian contact model requires both

contacting bodies to be modeled as isotropic bodies, whereas in this investigation, the

primary body under investigation is an orthotropic laminate. In order to approximate

the laminate as an isotropic body, Bastien [5] used an averaging method to determine

appropriate values of Young's modulus, Evg, and Poisson's ratio, ve'a. To do this,

the three Young's moduli from the single ply AS1/3501-6 properties were averaged,

yielding a value of Eg of 7.36 Msi, and the two in-plane Poisson's ratios, yielding a

value of v, of 0.28. It is these values that Figure 6.1 shows to be inaccurate.

In order to determine the best accuracy achievable with the Hertzian contact

model, an alternate formulation is used that bypasses the material properties, and

explicitly defines the projected contact length, aH, to be equal to the contact length

determined by the numerical model. The contact angle, #contact, in the numerical

case is 48.2' or a value of aH of 0.09317 inches in x1 . Maintaining the desired total

vertical load at 5000 lb/in, as per Equation 6.1, yields a maximum pressure, omax,

of 34,200 psi. The resulting ideal Hertzian pressure distribution using these derived
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values of aH and oma is plotted against the contact pressure distribution from the

numerical model in Figure 6.2 in order to directly compare the shapes of pressure

curves in the best case approximation. It should be noted that the vertical load is

identical for both contact models. The smooth curve of the Hertzian distribution is

a contrast to the more jagged form of the contact pressure in the numerical case.

The Hertzian distribution generally follows a similar shape to the contact pressure

distribution from the numerical model, but misses many of the finer points that arise

due to the varying stiffnesses of the laminated plies. This occurs, even in this case of

ideally matched contact lengths, because the Hertzian distribution assumes the body

under contact is uniformly isotropic, and therefore cannot account for the variation

in material properties between plies. Notably, the contact pressure near the bottom

of the groove is much lower in the 900 ply for the numerical contact distribution as

compared to the Hertzian model, but much higher in the 00 and 90' plies farther

along the groove wall near a value of # of 300.

In progressing along the groove wall at higher values of #, in the ±450 plies, the

contact pressure from the finite element model is higher than the Hertzian contact

pressure in the same location. This can be attributed to a simple cause. As discussed,

the Hertzian distribution assumes an isotropic body, but the laminated body is not

isotropic. More than that, on average, the stiffness of the composite material is

significantly lower in the 3-direction than it is in the 1-direction. Any ply angle lower

than 900 will raise the average stiffness in the 1-direction, and this laminate has a

large number of 00 and ±45* plies. This results in the laminate having a higher

stiffness in the 1-direction.

This principle can similarly be applied to the Poisson's ratio. No matter what

averaging process is used, the eventual need to have one Young's Modulus and one

Poisson's ratio to define the material of the contacted body for the Hertzian model

will eventually require some compromise in accurately portraying the contact pressure

for a laminate. As seen in this case, this means that the stiffness at the bottom of the

groove will be overestimated, where the low stiffness of the laminate in the 3-direction

rules, yielding too great a contact pressure in the Hertzian case. Farther up the groove
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wall, as stiffness in the 1-direction becomes more of a factor, the Hertzian distribution

will underestimate the average stiffness, yielding too low a contact pressure.

Crucially, by using the contact length found with the numerical model, the Hertzian

distribution shown will be the most accurate possible approximation using the Hertzian

form. In general, a solution of this accuracy cannot be determined a priori because

the contact length will not be known. Thus, most solutions using the Hertzian method

for grooved laminates must make a "best guess" approximation of the material prop-

erties in an attempt to find the most accurate contact length. As shown previously in

Figure 6.1, these approximations most often fail to determine the appropriate contact

length, which, as is discussed in Section 6.6, is a critical factor in determining the

contact pressure and the stress response of the laminate.

6.3 Contact Pressure

Contact pressure is a critical component of this investigation, as it represents the

details of the loading of the grooved laminate. This contact pressure, the pressure

applied by the loaded indentor to the grooved laminate, is determined numerically

via the finite element method using ABAQUS. Some trends are found in the contact

pressure distributions across all laminates and cases investigated by observing the re-

sults presented in Chapter 5. As seen in Section 6.2, the contact pressure distribution

from the numerical analysis is rarely smooth, unless the laminate plies are oriented in

a similar direction to give similar material properties along the entirety of the groove,

as in the case of the [±15/0]13S laminate. Generally, contact pressure increases in 00

plies, and decreases in 900 plies, with the change in contact pressure from one ply to

the next being dependent on the difference in angle between them. These ply-to-ply

variations are manifested as superpositions over the basic form of a semi-elliptical

pressure curve, reminiscent of the Hertzian distribution.

Before discussing contact pressure trends further, some particular effects that ap-

pear due to the discretization and contact model used in the current implementation

are discussed. Two contact models were used, one for the finite element models
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employing a rigid indentor, and another for the finite element models employing a

deformable, linear elastic indentor. Both contact models are subject to limitations

arising from the discretization of the laminate, and finite element basis of the models.

Thus, the contact pressure, as with the stresses in the laminate, can only be deter-

mined and applied at element nodes. In this case, these are the nodes on the groove

surface. The contact model employed for the rigid indentor, as described in Section

4.1, considers the indentor as a mathematically described smooth surface. However,

contact can still only occur at nodes on the laminate surface. Due to discretization

of that surface, some bumps and small ridges do occur in these contact pressure dis-

tributions, even within a ply. For example, this is noticeable in the two-dimensional

contact pressure distribution for the T700/2510 [60/]13s laminate in Figure 5.4

near the +600/00 ply boundary at a location of # of 15'. Similar features appear in

the other laminates as well. This is particularly apparent in many of the contact pres-

sure distributions from the three-dimensional models. These features tend to span on

the order of 1 to 20 on the face of the groove, or 0.002 to 0.004 inches of arc length

(2 to 4 elements), and represent a change in contact pressure as great as 8%. The

contact pressure curves from the two-dimensional models are less jagged than those

from the three-dimensional models, with the two-dimensional models generally seeing

less than 1% variation, with few exceptions. For example, the contact pressure curves

for the T700/2510 [±45/0/90]1Os laminate can be contrasted for the two-dimensional

model and the three-dimensional model in Figures 5.6 and 5.49, respectively. Ideally,

all contact pressure distributions should consist of smooth curves within each ply, as

there are no sharp features of geometry, material property, or loading at this length

scale to justify such sharp features within a ply. However, the contact pressure from

one ply to a neighboring ply would be expected to be discontinuous given the discon-

tinuous change in material properties due to the change in ply angle. The effects of

contact model used for the linear indentor are considered in Section 6.5.

The contact pressure is essentially determined by applying a given load to the

indentor, which in turn causes a displacement along the groove surface. This causes

stresses within the laminate equal to the contact pressure at the surface. This analysis
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cycle continues until equilibrium is achieved. The displacement of the nodes along the

face of the groove is continuous and follows the contours of the indenting body. This

is particularly true for the rigid indentor, although it applies to the elastic indentor

as well through a more complicated joint deformation of the indentor and the groove.

Since the surface of the groove must deform smoothly, following the geometry of the

stiffer indentor, the stiffness of a ply necessarily plays an important role in how much a

ply will resist that deformation. The higher the resistance to deformation, the greater

the magnitude of the corresponding contact pressure. The relevant stiffness of the

ply must be considered in the direction of the applied pressure, in this case normal

to the groove surface. Due to the orthotropic nature of the composite material, this

is not a trivial consideration, as the angle at which the pressure is applied changes

continuously around the groove, while the material orientation, and thus material

response, changes from ply to ply as well. Furthermore, in the three-dimensional

case, the additional modeling dimension creates complex coupling behavior due to

the presence of coefficients of mutual influence and out-of-plane Poisson's ratios. The

effects specific to the three-dimensional case are given further consideration in Section

6.7.

Generally, the stiffness of the material in the 3-direction is nearly identical for all

ply orientations, since the material is being rotated about the 3-axis. Thus, based

on this observation alone, the difference in contact pressure near the bottom of the

groove, at low values of the groove angle, #, would not depend significantly on ply

orientation. The stiffness of the material in the 1-direction varies significantly, and is

highly dependent on ply orientation. The lower the ply angle, the higher the stiffness

in the 1-direction, consistent with the direction of the carbon fibers in the composite

material. As the angle around the groove, #, increases, the stiffness of plies in the

1-direction becomes more of a factor as displacement from the indentor, and hence

the contact pressure, begin to act increasingly in the 1-direction. Thus, as # increases,

contact pressure begins to depend increasingly on the ply orientation.

This is not the only consideration in the complex system that results in the ob-

served contact pressures. The stiffness and response of the material beneath the
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groove surface, and even the stiffness of the entire structure, are likely to have some

influence on the contact pressure as well. Plies that lie beneath the ply in contact

offer some supporting stiffness, or potentially lack thereof, which in turn is likely to

have an effect on the apparent stiffness at the groove surface, and hence the contact

pressure. This stacking of plies, and the influence of subplies, can be likened to a

system of springs in series where the stiffness of the individual springs represents the

stiffness of various plies. This effect would be most evident, for example, where the

displacement of the indentor works at an angle to the groove on a given ply, as it

is not only the properties of that ply that determine the contact pressure. In these

cases, the contact pressure also depends to some degree on the ply beneath the ply

under consideration. This is illustrated in Figure 6.3. This is a likely cause of the

gradual increase or decrease in contact pressure in some plies. An example of such

is the gradual increase in pressure in the 0' ply in the quasi-isotropic T700/2510

[±45/0/ 9 0]1os laminate near a groove angle, #, of 300, as seen in Figures 5.6 and 5.49

for the two-dimensional case and three-dimensional case, respectively.

In this work, the effect of varying ply angles was investigated using the [±0/0]13s

laminate family with values of 0 of 15', 30', 450, and 60'. By comparing the contact

pressure distributions across the range of 0 values, it is possible to see a number of

trends. In contact pressure, the pressures on 0' plies increase as 0 increases, and the

maximum contact pressure increases as 0 increases as well. A visual comparison of the

contact pressure distribution for each value of 9 is presented for the two-dimensional

case in Figure 6.4, and in the three-dimensional case in Figure 6.5 along the center of

the laminate for an X2 value of 0.0. The maximum contact pressures can be compared

in Tables 5.1 and 5.5, respectively.

The overlaid comparison of the contact pressures also highlights some of the less

obvious effects of varying ply angle. It is clear that at low values of #, along the bottom

of the groove, contact pressure increases as 0 increases in both the two-dimensional

and three-dimensional cases. In the three-dimensional case, this happens regardless

of the ply angle. In the two-dimensional case, the pressure increases in ±9 plies

and decreases in 0' plies. At higher values of #, this trend changes, with contact
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Figure 6.3 Illustration of a region in which contact pressure is most likely to be
influenced by properties of the ply beneath the contacted ply.
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at 300 lb.
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pressure dropping in ± plies and increasing in 0' plies in both the two-dimensional

and three-dimensional cases.

The effects of ply angle on the contact pressure arise from two primary factors:

relative stiffness of the angled plies to the 0' plies, and overall "groove stiffness". This

concept of "groove stiffness" is defined as the resistance of the surface of the groove

to changes in geometry due to the applied loading. This behavior is a consequence of

the stiffness of the laminate in the 1-direction and the geometry of the configuration,

among other factors. As 0 increases, the relative stiffness of the angled plies in

the 1-direction and in shear drops considerably. This leads to the 0' plies taking

up considerable amounts of the load, particularly at higher groove angles, since the

stiffness of these plies is not changing, and is thus relatively higher. In addition,

as 0 increases, the overall stiffness of the grooved composite structure is dropping,

particularly the groove stiffness, which is dependent on the 1-direction stiffness of the

material, given its orientation. This causes the groove stiffness to decrease for greater

values of 9, allowing the indentor to spread the walls of the groove with less force, and

allowing the indentor to settle more fully on the bottom of the groove, and impose a

greater pressure there.

6.4 Stress Response

In this work, the stress response of the grooved laminate to contact loading is

investigated. The rigid backface boundary condition selected in Section 3.4 allows the

effects of the contact loading to be largely isolated from effects of boundary conditions

of the overall structural configuration. As a result, the stresses observed are a direct

result of the applied contact pressure. By examining the response of the various

laminates investigated, trends become apparent relating to the laminated nature of

the body, and the particular ply angles involved in the layup. Comparison of the

[±/0]13s laminates, with values of 0 of 150, 300, 450 , and 600, is particularly useful

in determining stress variations that are due to variations in ply angle. Three stresses

are examined in the results, the longitudinal extensional stress, on, the through-
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thickness extensional stress, C-33 , and the shear stress, o-13. In most cases, these

stresses have been normalized by the applied loading. Such stresses are denoted by

an asterisk: o7.

The trends in stress described in this section are presented with examples from

the two-dimensional finite element models, as these results are more intuitive. The

conclusions hold for the three-dimensional models as well, but additional effects from

the third modeling dimension make the discussed trends less obvious. This includes

coupling via the coefficients of mutual influence, and out-of-plane Poisson's ratios.

Further consideration for the difference between the two-dimensional case and the

three-dimensional case are given in Section 6.7.

The longitudinal extensional stress, ol, is the stress field most heavily influenced

by ply angle. An example of common behavior of this normalized stress field in the

simpler two-dimensional case in the quasi-isotropic [±45/0/90]ios laminate is shown

in Figure 5.14. All the laminates investigated in this work show a great deal of

variability in o-u from ply to ply. This ply-to-ply variation appears to be dependent

on the difference in ply angle between the neighboring plies. For example, in the

two-dimensional case, the [±15/0]13s laminate shows little variation from ply to ply

in Figure 5.9 as compared to the [±60/0]13s laminate, which shows larger variation

from ply to ply in Figure 5.12. In the two-dimensional case, it is also apparent that

neighboring positive and negative angled plies show a much more continuous stress

behavior from ply to ply, supporting the assertion that the stress variation is due

to ply angle, as positive and negative angled plies have identical material properties

for a given angle in the two-dimensional case. Most variation within a ply occurs

horizontally, and there is usually little variation vertically within a ply.

The variation in u- between plies is caused for the most part by the difference in 1-

direction stiffness between plies of various angles. For example, the stiffness of 0' plies

in the 1-direction is 18.8 Msi, while the stiffness of 90' plies in the 1-direction is 1.94

Msi. Thus, even with identical strains, the longitudinal stress will be higher in the 0'

plies. The effect of this decrease in stiffness of higher angled plies can also be observed

in the trends of the two-dimensional isostress plots of o-j for the [±0/0]isS laminates,
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shown in Figures 5.9, 5.10, 5.11, and 5.12 for values of 0 of 150, 300, 450, and 600,

respectively. As the ply angle, 0, increases, the laminates become more compliant

in the 1-direction, and thus these stresses decrease in the 0 plies while increasing

in the 00 plies. It is this behavior that leads to the high variation in maximum

normalized stresses amongst the laminates. The variation amongst the laminates for

the maximum normalized tensile stress, ou, is 1.99 psi/(lb/in) to 8.52 psi/(lb/in), or

330%, and the variation in the values of maximum normalized compressive stress, oU,

is 2.29 psi/(lb/in) to 4.43 psi/(lb/in), or 98%.

The ply-to-ply variations make picking out the details of the stress field of ou1

difficult. However, it is apparent that there are three primary stress zones, as shown

in Figure 5.8, that arise from various causes. Zone 1 is immediately beneath the

groove, and is mostly in tension. Stresses in this zone most likely arise from the

Poisson's effect from high compressive strains in the 3-direction from the indentor

coupled with stresses arising from differential equilibrium considerations. Zone 2 is

to the side of the groove, and is mostly in compression. Stresses in this zone most

likely arise from the component of pressure from the indentor that is applied to the

groove parallel to the 1-direction. Zone 3 extends from the upper wall of the groove,

from the point where contact with the indentor ends, to along the top of the laminate,

and is primarily in tension. Stresses in this zone most likely arise from the stiffness

of the laminate as a structure balanced against the deformation of the local region of

indentation, as no load is directly applied to this zone. Of these zones, Zone 1 tends

to have the highest tensile stresses, and Zone 2 tends to have the highest compressive

stresses. The boundaries of these zones of stress in the laminates are often muddled

due to the highly varying stresses from ply to ply.

The through-thickness extensional stress, 33 , remains very consistent across all

laminates investigated and is mostly continuous within a laminate, even from ply to

ply. This can be seen by comparing the normalized isostress plots of css from any

of the two-dimensional models in Figures 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21. The

variation between stress fields is so minor that most isostress plots of this stress field

are indistinguishable from one laminate to another. The variations between laminates
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become more obvious in the list of maximum stress magnitudes for o3*3 for each of

the laminates, given in Table 5.3. In this table, it can be seen that the variation

amongst all the laminates in the maximum normalized compressive stress, o, is

from 6.04 psi/(lb/in) to 6.19 psi/(lb/in), or 2.5%, and the variation in the maximum

normalized tensile stress, oa, is 1.75 psi/(lb/in) to 2.33 psi/(lb/in), or 33%.

The lack of variation in the o3 3 isostress plots is not surprising, since the material

stiffness in the 3-direction remains constant, regardless of ply angle. This explains

the lack of ply-to-ply variation within any given laminate, as well as the lack of

variation over the laminates as a whole. The variations that are apparent in the list

of maximum stress magnitudes is then most likely due to changes in the stiffness

of the overall grooved laminate configuration. For example, again considering the

[±0/0]13s laminates, as 0 increases, the stiffness of the laminate in the 1-3 plane of

modeling decreases since stiffness in the 1-direction decreases with increased ply angle,

and stiffness in the 3-direction remains constant regardless of ply angle. Thus, the

overall stiffness of the configuration decreases. This results in an increase in contact

pressure concentration at the bottom of the groove, as described in Section 6.3, and

thus an increase in compressive stress, o-33, beneath the groove. As the stiffness of the

structure decreases with increased ply angle, the stiffness of the upper surface of the

laminate decreases as well, and its ability to support the downward deformation of

the groove is limited, thus decreasing the tensile stress, o33, from the stretching of the

upper wall of the groove. However, as compared to the variation in the longitudinal

stress, a-l, the variation in the through-thickness stress, o-33 , is relatively minor.

The shear stress, 9 13 , also remains very consistent across all laminates investigated,

and is mostly continuous within a laminate, even from ply to ply. Small variations

between neighboring plies become more apparent as the orientation angle between

the plies increases. For example, in the [+15/0]13s laminate, the isostress lines for

a*3 are relatively smooth, as seen in Figure 5.23, whereas in the [±60/0]13s laminate,

the path of the isostress lines is significantly more variable, but not discontinuous, as

seen in Figure 5.26. A minor variation from laminate to laminate is also apparent in

the maximum shear stress magnitudes, o*, shown in Table 5.4, where the variation
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in o-* amongst all the laminates is from 2.49 psi/(lb/in) to 2.81 psi/(lb/in), or 12.9%.

The variations in shear stress from ply to ply and laminate to laminate is relatively

minor. For the most part, these variations are driven by the change in shear stiffness

in the 1-3 plane that are dependent on ply angle. Relative to changes in 1-direction

stiffness, these variations in shear stiffness are moderate. For example, shear stiffness

in the 0' plies is 0.613 Msi, while shear stiffness in the 90' plies is 0.399 Msi.

6.5 Effect of Elastic Indentor

The majority of the analysis in this work was conducted using a rigid body as an

approximation for a steel indentor. A second analysis was conducted using a more

physically accurate linear elastic body as an indentor in the two-dimensional case in

an effort to judge the validity of the rigid body approximation. The rationale behind

the rigid body approximation is that the stiffness of the high strength steel used in

the indentor is much greater than the stiffness of the carbon fiber composite laminate

in the through-thickness direction, by a factor of approximately 25. Thus, compared

to the laminate, the indentor is approximately rigid. However, this approximation

becomes less valid when comparing the stiffness of the indentor to the stiffness of

the composite along the axis of the fibers. In that case, the stiffness of the steel

only varies from the stiffness of the composite by a factor of 1.68. Thus, where the

indentor is pressing mostly in the 3-direction, near the bottom of the groove, the rigid

body approximation should be very good. However, as the angle around the groove

increases, such that more force is applied in the 1-direction, the approximation will

become less accurate. This analysis with a linear elastic indentor was conducted with

all of the laminates investigated, but results are presented here for the case of the

T700/2510 [±45/0/90]1os laminate, as this case is representative of findings from all

laminates studied.

Before discussing the results from the models with a linear elastic indentor, con-

sideration must be given to effects observed in the results that are due to the contact

model used in this implementation, rather than any physical manifestation. The
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analysis using the linear elastic indentor was initially thought to be the ideal solu-

tion, most similar to the physical reality of the configuration, since it modeled the

material properties of the indentor. There is a known drawback to this method, as it

requires the discretization of the indentor using the finite element method, and thus

compromises the accuracy of the geometry. The contact model employed for the de-

formable, elastic indentor allows for the discretization of both the groove surface and

the indentor, as described in Section 4.1. This method relies on matching nodes on

the indentor surface to nodes on the groove surface, and determining the appropriate

pressure the interaction of the two surfaces would generate on each node. However,

since both of the interacting surfaces are discretized, local pressure concentrations are

likely to occur. The contact scheme used with the deformable indentor, the "Surface-

to-Surface" contact scheme, is meant to more accurately distribute the load over the

nodes on the groove surface and minimize these local pressure concentrations. To

do this, smoothing settings were used through the contact scheme to minimize this

node-to-node variation in the form of averaging the impact on one node across many

other local nodes. However, these models still suffer from more error in the results

due to discretization than the models with rigid body indentors. This error takes

the form of jagged oscillations superposed on previously discussed trends in contact

pressure, and are a result of the discretization of both the groove surface and in-

dentor surface. It should be noted that any additional smoothing may lessen this

effect. However, this could potentially introduce inaccuracies from oversmoothing if

averaged over too large of an area. This would need to be addressed if there were

to be a desire to approach a more exact solution. While the jagged features seen in

this case appear to be similar to those found in the rigid body contact model and

discussed previously, their origin and details are different. The features in the contact

distribution for the deformable model are more abundant, occur at regular intervals,

and are larger in magnitude, as can be seen in the comparison presented in Figure

5.34. These jagged oscillations occur along the entire length of the contact pressure

distribution, and with magnitude of the variations of approximately 3% of the base

pressure and with a consistent wavelength of three element lengths, or a groove angle
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of approximately 1.4*, and are the result of the sharp features created on the faces of

the two ideally smooth bodies of the groove and the indentor due to the discretization

of these surfaces.

The results of the analysis largely confirm the rigid body approximation. The

contact pressure results for the linear elastic indentor as compared to the rigid body

indentor for a two-dimensional laminate of T700/2510 [±45/0/9010s loaded at 5000

lb/in are shown in Figure 5.34. The comparison confirms that the results are largely

similar for low values of #, near the bottom of the groove up to a value of # of

approximately 400. In this region, the maximum difference in contact pressure is ap-

proximately 3%. There is increasing discrepancy as # increases above a value of 400

up to the end of the region of contact. In this region, the maximum difference is ap-

proximately 12%, but the load is also lower. Overall, these two pressure distributions

are very similar, despite the differences. The two pressure distributions follow the

same trends in ply-to-ply variation, and differences in pressure between the models

are minimal for the majority of the range of contact angle, averaging less than 1.4%

at values of # of 450 and below, and reasonable for the rest of the range, averaging less

than 8.8% from a value of # of 450 to #cotact equal to 51.20. The difference in total

contact angle from the rigid body model to the linear elastic model is similarly only

3%. These similarities are attributable to the ±450 and 90' plies within the laminate.

While the longitudinal stiffness of a unidirectional ply is much more comparable to

the stiffness of the steel indentor, only one in four plies approaches that stiffness. For

example, in the 1-direction, the stiffness of 450 plies is only 32% of that of a 0* ply,

and a 900 ply is only 10.3% as stiff as a 00 ply. In addition, none of the plies are loaded

directly along the 1-direction, but all more of a combination of the 1-direction and the

3-direction, as required by the normal to the groove surface. Thus, on average, the

approximation still holds, even at higher groove angles. It should be noted that the

variation should be expected to increase for even higher contact angles, and that the

variation is still greatest in the 00 plies. Thus, a stiffer laminate or a stiffer material

will further affect the validity of the rigid body approximation. Conversely, a lower

load, yielding a lower contact angle with the majority of contact near the bottom of
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the groove, should increase the validity of the rigid body approximation.

The difference in the stress response is a direct function of the difference in the con-

tact loading, all else (material, layup, boundary conditions) being constant between

the two models. The stress response can be compared by examining the isostress

plots, and the maximum compressive and tensile stresses, for the models with the

rigid indentor and the models with the linear elastic indentor. The normalized lon-

gitudinal extensional stress, o, is presented in Figures 5.14 and 5.35 for the models

with the rigid indentor and the linear elastic indentor, respectively. The normalized

through-thickness extensional stress, o33, is presented in Figures 5.21 and 5.36 for

the models with the rigid indentor and the linear elastic indentor, respectively. The

normalized shear stress, U13, is presented in Figures 5.28 and 5.37 for the models

with the rigid indentor and the linear elastic indentor, respectively. The maximum

compressive and tensile stresses for each of these stress fields and the percentage dif-

ference between the two is summarized in Table 6.1. The locations of maximum stress

are shown in the preceding figures and variation in these locations between the two

model types is minimal, with the maximum difference in angular location being 1.60

and the maximum difference in radial location being 0.004 inches.

As can be seen from a comparison of the isostress figures, the stress fields for

both the model with the rigid indentor and the model with the linear elastic indentor

are nearly identical. It should be noted that the first isostress lines on all plots

represent the smallest increases in stress, representing increases of only 0.5 psi/(lb/in),

compared to the 1.0 psi/(lb/in) of the higher isostress lines at stresses of 1.0 psi/(lb/in)

and greater. Thus, the positions of the 0.5 psi/(lb/in) isostress lines are particularly

susceptible to small variations in stress. The largest differences between the two

models are seen in the plots for uli, particularly in the 0' plies. Even here, the

variation in the position of isostress lines tends to be on the order of one element

length, or approximately 0.002 inches. Stresses are not consistently greater or less,

but the difference depends on location and ply. For example, the table of stresses

shows that the maximum tensile stress increases, while the maximum compressive

stress decreases. The isostress plots for the stress fields of o3 and ois are nearly
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Table 6.1 Maximum normalized stress values for two-dimensional models of a
rigid body indentor and of a linear elastic indentor on the T700/2510
[±45/0/90]10s laminate loaded at 5000 lb/in.

Indentor Model

Stress Type Elastic Rigid % Difference
[psi/(lb/in)] [psi/(lb/in)]

Tensile o-1 6.67 6.50 -2.5%

Compressive o-a 4.32 4.43 2.5%

Tensile 0-33  1.90 1.90 0.0%

Compressive o-3 3  5.99 6.04 0.8%

Shear o-1 3 2.42 2.49 2.9%
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identical between the two models, with isostress lines being coincident, or nearly so,

in all cases. This same trend can be seen in the maximum stresses where the tensile

stress of o3 is identical in both cases, while the compressive stress is slightly lower in

the model of the linear elastic case. The shear stress sees a more significant decrease

in stress, but still only of 2.9% in the model of the linear elastic case as compared to

the model of the rigid case.

Overall, the rigid body approximation is deemed sufficiently accurate to model

the steel indentor in the current work. There are some discrepancies between the

results from the model of the rigid body case as compared to the model of the linear

elastic case, but these discrepancies are are small, most frequently less than 3%. The

difference in the stress response of the laminate between the two indentor models

is negligible, and difficult to discern even when overlaid. However, there is also

some question as to the accuracy of the linear elastic model as implemented here.

As discussed previously, the contact model employed to handle the two discretized

surfaces resulted in a jagged oscillation in the contact pressure. This variation in

smoothness likely introduces other minor inaccuracies into the models that utilize

the linear elastic indentor, specific to this implementation. Given this, the minimal

variation in stress and contact pressure between the two models, and the significantly

higher computational cost of using a discretized linear elastic indentor, the rigid

body indentor is seen as a suitable engineering approximation. Thus, the rigid body

indentor was used in the majority of the models in this work.

6.6 Effect of Load Magnitude

The effect of load magnitude on the response of the grooved laminate was inves-

tigated by applying various loadings to the indentor and examining the effects on

the contact pressure distribution and the stress fields. Although this investigation

was conducted using all of the laminates investigated, results for this discussion are

presented for the quasi-isotropic T700/2510 [±45/0/90]1os laminate as a representa-

tive case. Since results of the contact pressure and all of the stresses are normalized
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by the applied load, yielding units of [psi/(lb/in)] in the two-dimensional case and

[psi/lb] in the three-dimensional case, the effect of the load magnitude on the re-

sponse is easily seen. In both the two-dimensional case and three-dimensional case,

two primary loadings are compared: a full load, P, and a lower loading that is 20%

of the magnitude of the full load. For the two-dimensional case, these loads are 5000

lb/in for the full load and 1000 lb/in for the lower load, with the results presented in

Section 5.1.3. For the three-dimensional case, the loads are 300 lb for the full load

and 60 lb for the lower load, with the results presented in Section 5.3.3. The nu-

merical contact solution requires establishing contact at incremental load levels, and

the contact pressures for these additional loads are presented here as well to show

the continuation of the trends established in the results shown in Chapter 5. A plot

comparing normalized contact pressure at additional loadings for the two-dimensional

case is presented in Figure 6.6. A plot comparing normalized contact pressure along

the centerline of X2 equal to 0.0 at additional loadings for the three-dimensional case

is presented in Figure 6.7. Footprints of the contact area at these same loadings are

shown in Figure 6.8.

The contact pressure distributions for the two loadings are compared in the two-

dimensional case in Figures 5.30 and 6.6, and in the three-dimensional case in Figures

5.106 and 6.7. In both instances, it is apparent that the magnitude of the load has a

profound effect on the response. If the response of the laminate was linearly scalable

by the magnitude of the load, the contact pressure curves would be coincident since

they are normalized by the applied loading. This is clearly not the case for either the

two-dimensional or three-dimensional cases. The primary cause of this nonlinearity

is the variability in contact area. As increasing load is applied, the rigid indentor

causes the laminate to conform to the indentor as it is pressed into the laminate

to an increasing degree such that contact area increases. This behavior occurs due

to the curved nature of the surfaces that allow for an increasing area of contact as

indentor descends, and the laminate deforms. Complex behavior, such as pinching

of the indentor by the groove walls, will affect the contact area as well. Nonlinear

behavior such as this makes accurately predicting the contact area inherently difficult.
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model of T700/2510 [±45/0/90]1Os laminate loaded at 20%, 40%, 60%,
80%, and 100% of the maximum load of 300 lb.
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The contact pressure comparisons at the various load levels illustrate the impor-

tance of the contact area, or contact angle, in determining the form of the contact

pressure distribution. Lower contact areas focus the applied load in a smaller area.

As these comparisons are normalized by the applied load, this increase in relative

pressure near the bottom of the groove is apparent in the lower loads. As the loading

increases, the contact area increases, allowing the load to spread out. This results

in lower relative pressures near the bottom of the groove. Note that these changes

do not represent decreases in pressure, only normalized pressure. Actual pressure

does increase across the range of the groove angle, #, as load increases. However,

these comparisons show that the relative increase of pressure towards the center of

the groove is significantly lower than the increase in pressure at higher values of #.
It should also be noted that variation in the contact pressure distributions due to

ply angle appears to become more defined as load increases. This behavior is likely

due to the increase in contact area, which places a higher loading on plies higher up

the groove wall, where the variation in the apparent stiffness of the plies is greater

due to a greater portion of the load being applied in the 1-direction. Thus, this

behavior would only become apparent at loadings that produce contact at higher

groove angles. In addition, the changing loads emphasize that the pressure in any

given ply also depends on the overall trend of the contact pressure. Thus if the

global trend of the contact pressure is decreasing to near zero within a ply, the higher

stiffness in that ply may not have as large of an apparent effect. For example, this

behavior is seen in the three-dimensional case in the 00 ply near a value of # of 300

at the 0.2P load, or in the 00 ply near a value of 450 at the 0.6P load.

The stress response also is nonlinearly dependent on the applied load. In the

two-dimensional case, the stress responses for the stress fields of o, o1, and o3

are shown in Figures 5.14, 5.21, and 5.28, respectively, for the laminate loaded at

5000 lb/in, and in Figures 5.31, 5.32, and 5.33, respectively, for the laminate loaded

at 1000 lb/in. A summary of the maximum normalized stresses for the case of the

1000 lb/in load and the case of the 5000 lb/in load is provided in Table 6.2. In the

three-dimensional case, the stress responses for o* are shown in Figures 5.71, 5.72,
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5.73, and 5.74 for the laminate loaded at 300 lb, and in Figures 5.107, 5.108, 5.109,

and 5.110 for the laminate loaded at 60 lb. The stress responses for o3 are shown

in Figures 5.90, 5.91, and 5.92 for the laminate loaded at 300 lb, and in Figures

5.111, 5.112, and 5.113 for the laminate loaded at 60 lb. The stress responses for

ois are shown in Figures 5.103 and 5.104 for the laminate loaded at 300 lb, and in

Figures 5.114 and 5.115 for the laminate loaded at 60 lb. A summary of the maximum

normalized stresses for the case of the 60 lb load and the case of the 300 lb load is

provided in Table 6.3.

In the two-dimensional case, it is apparent that the extent of all three normalized

stress fields is slightly larger at the lower load, by approximately 9% on average. In

addition the maximum normalized stresses are much greater at the lower load, by

between 12.6% and 83.8%, with much greater stress gradients near the high stress

areas. Those stresses that had maximum values at off-axis locations generally have

those locations shifted closer to the x3-axis, and closer to the point of contact. These

changes reflect the more concentrated loading seen in contact pressure distributions of

the lower loads, where a higher percentage of the load is applied in a smaller area near

the bottom of the groove. In the three-dimensional case, the normalized stress fields

generally range across a greater distance in X2, by approximately 12% on average, and

across a reduced distance in x1 at the lower load case as compared to the full load,

by approximately 6% on average. The maximum normalized stresses are higher by

between 25% and 214%, and the stress gradients are higher at the lower load across

all stress fields as well, as in the two-dimensional case. These differences also reflect

the way the footprint of the contact area from the indentor changes as load changes.

As load increases, contact area increases by approximatley three times more in the

1-direction, or in the angle around the groove, #, than it does comparatively in the

2-direction. In both the two-dimensional and three-dimensional models, the largest

impact on stress is seen in the compression and shear values, with the maximum

normalized stresses in compression being much higher in the lower loading, by 60-

84% in the two-dimensional model and by 167-214% in the three-dimensional model.

These results also fit well with the more concentrated loading area seen at the lower
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Table 6.2 Maximum normalized stress values for two-dimensional models of
T700/2510 [±45/0/ 9 0]1os laminate loaded at 1000 lb/in and 5000 lb/in

Load

Stress Type 5000 lb/in 1000 lb/in % Difference
[psi/(lb/in)] [psi/(lb/in)]

Tensile all 6.50 8.57 31.8%

Compressive oa 4.43 7.09 60.0%

Tensile O-33 1.90 2.14 12.6%

Compressive 033  6.04 11.1 83.8%

Shear o13 2.49 4.52 81.5%
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Table 6.3 Maximum normalized stress values for three-dimensional models of
T700/2510 [±45/0/90]1os laminate loaded at 60 lb and 300 lb

Load

Stress Type 300 lb 60 lb % Change
[psi/lb] [psi/lb]

Tensile o-l 102 210 106%

Compressive on1 264 828 214%

Tension o33  36 45 25%

Compression o33  316 845 167%

Shear o13 90 169 88%
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loading.

Overall, the results for the grooved composite are not a simple linear function of

the applied load. The results show the normalized contact pressures and normalized

stresses to be much higher at lower loads than at higher loads, indicating that the

stresses are proportionally higher at smaller loads, although the absolute value of the

stresses is still smaller at smaller loads. Moreover, the difference in scale of normalized

stresses between two different loadings is not consistent across all stresses within a

given laminate, indicating that no kind of scaling, linear or otherwise, is applicable

to the results. Thus, any accurate analysis of a grooved composite requires numerical

analysis at the load of interest to determine the appropriate response.

6.7 Comparison of Cylinder Loading and Sphere

Loading

Two major loading configurations were studied in this work: the two-dimensional

models representing loading from a cylindrical indentor, and the three-dimensional

models representing loading from a spherical indentor. The two-dimensional models

were originally envisioned as a simplified way to model the highest stresses from

the three-dimensional case. The thinking was that the two-dimensional model could

represent a slice of the three-dimensional model. Part of the focus of this work is

to determine whether or not this is actually the case. While all of the T700/2510

laminates were modeled in both two and three dimensions, the comparison herein

focuses on the quasi-isotropic T700/2510 [±45/0/ 90]los laminate as the representative

case.

Before continuing with the discussion of results from the three-dimensional model,

modeling effects particular to the three-dimensional model and this particular imple-

mentation must be examined. As described in Section 4.2, the three-dimensional

finite element models utilize a 2-3 plane of symmetry at the groove centerline. This

plane of symmetry was used because the computational cost of a model of the full
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laminate is prohibitively high. However, this solution is not ideal due to the lam-

inated nature of the structure. While the geometry of the structure is symmetric,

the material properties are not. The direction of the orthotropic angled plies cause

these to be particularly affected by the plane of symmetry due to the coefficients

of mutual influence. A simple model was used to investigate the effects of using

this plane of symmetry with a laminate. The investigation focused on a laminated

[0/±45/90]4s plate in pure in-plane tension in the 1-direction, perpendicular to the

plane of symmetry, with one model using the plane of symmetry, one modeling the

full laminate length. It was found that the longitudinal stresses, o, at the plane of

symmetry in the ±45' plies decreased by an average of 31.9% from the case of the

full laminate model. Stresses in the 00 and 90' plies consequently rose by 5.1% and

17.2%, respectively, to balance the load across the 2-3 cross-section of the laminate.

Stresses within 5% of the value in the full laminate model are recovered within 3.5 ply

thicknesses of the plane of symmetry, and stresses within 1% of the value in the full

laminate model are recovered within 6 ply thicknesses. No such change in stress was

observed at the symmetry boundary condition for a [0/90]8s laminate with identical

loading. The lack of coefficients of mutual influence in the 0' and 90' ply orientations

lead to no noticeable change in stress at the plane of symmetry. The loading of this

simple in-plane tension case is clearly different than the unique loading presented in

the grooved composite model, but similar principles still apply. This gives a sense of

the possible extent of the higher error for the stresses local to the plane of symmetry.

A comparison of the contact pressure in the two-dimensional and three-dimensional

cases is shown in Figure 6.9 loaded at 5000 lb/in and 300 lb, respectively. These pres-

sures in this figure are not normalized for this initial comparison, and the contact

pressure for the three-dimensional case is shown only along the centerline at X2 equal

to 0.0, as this is the slice location that the two-dimensional case was originally in-

tended to simulate. It is apparent that there is a significant issue of scale between the

two types of models. The contact pressure generated in the three-dimensional case is

much greater than the contact pressure in the two-dimensional case. As discussed in

Section 6.6, load magnitude has a significant effect on the contact pressure distribu-
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tion, most importantly affecting the contact area. As can be seen, despite the vastly

different loads, the contact lengths here are similar. However, the pressure values

generated are much higher in the three-dimensional case. The difference between the

two pressure distributions is essentially not of scale. This makes the two-dimensional

case a poor predictor of a slice of the three-dimensional case. Previous results have

indicated that increasing the load to scale up the magnitude of the pressure influences

the contact length nonlinearly, with the pressure at the center of contact changing

increasing at a significantly lower rate than at higher groove angles. This indicates

that the two sets of results may be irreconcilable, as increasing the loading of the

two-dimensional case to match the pressure magnitude of the three-dimensional case

would cause an overestimation of the contact length.

The same two-dimensional contact pressure, normalized by the loading of 5000

lb/in, is shown in Figure 6.10, along with a contact pressure curve along the centerline

at x2 equal to 0.0 from the three-dimensional model at a lower loading of 240 lb. This

value for the three-dimensional loading was chosen out of the various loadings that

were modeled for this investigation in order to best match the contact length in the

two-dimensional model loaded at 5000 lb/in. The three-dimensional contact pressure

curve is normalized by the integrated vertical force along this curve. This value can be

determined using an equation that determines the vertical component of the contact

pressure and integrates that component along the arc length of the groove:

P = Pc(#) * cos(#) * rg d# (6.2)

where P is the integrated vertical load, Pc is the contact pressure as a function of

groove angle, #, and rg is the radius of the groove. Using this equation, the integrated

vertical force along the curve was found to be equal to 14,600 lb/in. This was done

in an attempt to make a direct comparison to the two-dimensional case, which is

also essentially normalized by the integrated vertical force. This normalization yields

very similar curves for the two-dimensional and three-dimensional cases, and allows

for the most direct comparison between the trends in each. The three-dimensional
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contact pressure curve is much more jagged and is clearly more affected by the contact

discretization issues described in Section 6.3. At the base of the groove, the pressure

tends to be slightly higher in the two-dimensional case in the ±450 and 900 plies

by approximately 5%, and slightly lower in the 0' ply by approximately 10%. In

addition, pressure changes between neighboring plies tend to be a little sharper in

the three-dimensional case, and more gradual in the two-dimensional case. However,

despite the obvious similarities and minor differences between these two curves, the

fact remains that the three-dimensional curve represents nearly a three-fold greater

load compared to the two-dimensional model.

The other issue in this comparison deals with the stress response of the grooved

laminate to the various applied loadings. Here again in the three-dimensional case it

is appropriate to examine the stress distributions for the section cuts at X2 equal to 0.0

in order to effectively compare with the two-dimensional case. The normalized stress

distributions for o are shown in Figures 5.14 and 5.73 for the two-dimensional and

three-dimensional cases, respectively. The normalized stress distributions for 0's are

shown in Figures 5.21 and 5.92 for the two-dimensional and three-dimensional cases,

respectively. The normalized stress distributions for or* are shown in Figures 5.28 and

5.104 for the two-dimensional and three-dimensional cases, respectively. In all these

results, the stress fields look similar and carry many similar characteristics. However,

it is apparent that the stresses in the three-dimensional case are generally greater

in magnitude, with the stress gradients being much greater. This is consistent with

the observation that the three-dimensional case places a much greater relative load

in a comparable contact area. This results in increased stresses. A summary of the

maximum stresses in the two-dimensional and three-dimensional cases is presented

in Table 6.4. This shows that the influence of the model varies wildly depending

on the stress field, and between tension and compression. The stresses most greatly

influenced by the difference in three-dimensional modeling are the compressive aspects

of uln and 33, with these stresses being 72% and 68% less, respectively, in the two-

dimensional models. Comparing all the maximum stress magnitudes between the

two-dimensional and three-dimensional cases, there is little consistency to indicate
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Figure 6.10 Normalized contact pressure for the T700/2510 [±45/0/90]1os laminate
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results from one case could be scaled or converted in some way to match the results

for the other case.

The three-dimensional finite element models are suited to capture behavior in the

2-direction that the two-dimensional models miss. In the two-dimensional models,

any variation in stresses, strains, and contact pressure in the 2-direction are assumed

to be zero. However, there is actually substantial variation of contact pressure, pc, in

the 2-direction including in the integrated vertical force, as per equation (6.2). This

leads to a high gradient OPc/0 X2, as can be seen in the contact pressure contours

from the three-dimensional models in Figures 5.38, 5.40, 5.42, 5.44, 5.46, and 5.48.

This variation in contact pressure in the 2-direction must also effect a variation in

each of the stress fields in the 2-direction as well. There is further added complexity

to the stress response as effects from the gradient in contact pressure are combined

with the effects of coupling behavior of the orthotropic plies due to material behavior,

such as those of the coefficients of mutual influence, and the out-of-plane Poisson's

ratios. Consequently, the results of the three-dimensional models show that there

is substantial variation in the stress fields in the 2-direction. For example, isostress

plots from section cuts taken along constant values of X2 in the three-dimensional

quasi-isotropic T700/2510 [i45/0/90]los laminate model are shown in Figures 5.71,

5.90, and 5.103 for the o-*1, o-3, and ois stresses, respectively. The variation in

the 2-direction is particularly apparent in the stress field for oi*, as behavior is not

symmetric about the 1-3 plane, and various features only appear away from the

X3-axis. The stress fields for o3 3 and ois also show a large degree of variation in

the 2-direction, but for the most part, these stresses decrease continuously in the

2-direction. No major features in these stress fields would be missed in a section cut

at the X1 -X 3 plane, but the stress gradient in the 2-direction would not be captured.

However, it should also be noted that, for laminates studied here, the maximum stress

magnitudes in the three-dimensional cases largely occur in the X1 -X 3 plane, at values

of X2 of 0.0, or very close to it. This is illustrated in the summaries of maximum

stress magnitudes in Tables 5.6, 5.7, 5.8, 5.9, and 5.10.

The comparison of the two- and three-dimensional cases is a complex one. It is
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Table 6.4 Maximum stress values for the T700/2510 [±45/0/90]1os laminate via the
two-dimensional model loaded at 5000 lb/in and via the three-dimensional
model loaded at 300 lb

Model

Stress Type 3-D 2-D % Difference
[ksi] [ksi]

Tensile oa 30.6 32.5 6.21%

Compressive ou 79.2 22.2 -72.0%

Tensile c33 10.8 9.50 -12.0%

Compressive 33  94.8 30.2 -68.1%

Shear o-13 27.0 12.5 -53.7%
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clear there is no consistency between the two models regarding the load applied and

the contact length achieved. For any given contact length, the applied load seems to

be much greater in the three-dimensional case. This generally increases the relative

stresses and stress gradients in the laminate. In addition, behavior in the three-

dimensional case is missed in the two-dimensional case just through a simplifying

of the problem to a single plane, as is detailed in Section 5.3. Thus, it seems that

any analysis of the groove and a spherical indentor system must be conducted in

three-dimensions to accurately capture the behavior of the system. While the two-

dimensional model is useful for examining trends through quick analysis, it can only

reliably capture the actual stresses and strains of a system involving a cylindrical

indentor.
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Chapter 7

CONCLUSIONS AND

RECOMMENDATIONS

In this work, the response of grooved laminates to out-of-plane conformal contact

loading was examined using finite element analysis. This examination involves the

effect of ply angle and load magnitude on the contact pressure and stress response

of a grooved laminate. Modeling considerations were examined to determine the

effectiveness of the Hertzian distribution in approximating the contact pressure, the

effectiveness of a rigid body approximation for the indentor, and the use of a two-

dimensional model in approximating the full three-dimensional model.

The conclusions that can be drawn from this work are that:

1. The Hertzian method cannot be used to determine contact pressure in the case of

a grooved laminate due to an inability to accurately determine the appropriate

contact length analytically. In the best case scenario, an approximation could

be valid in cases where contact length is known. However, the Hertzian method

fails to apply an accurate continuous deformation around the groove and thus

fails to capture ply-to-ply variation in contact pressure.

2. The basic form of the distribution of contact pressure between the laminate

and indentor is similar in form to the Hertzian case, but with significant local

variations due to stiffness variation, primarily in the longitudinal direction, of
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the plies.

3. The change in pressure between neighboring plies is dependent on the difference

in the orientation angle of those plies and that effect on ply stiffness. This effect

becomes more pronounced as the groove angle, <p, increases, due to an increase

in the component of pressure applied along the longitudinal axis.

4. Contact pressure in stiff plies increases as stiffness of other plies in a laminate

decrease, implying the contact pressure depends not only on the local stiffness

of a ply, but also on the overall "groove stiffness," and the global stiffness of

the laminate configuration.

5. For indentor modeling used with composite laminates, the rigid body approxi-

mation of the steel indentor is sufficiently accurate to capture laminate behavior,

as compared to the case of a modeled linear elastic indentor, due to the large

difference in stiffness between the high-stiffness steel and the low stiffness of

the composite in the through-thickness direction. Differences in contact pres-

sure between rigid and linear elastic indentors are minimal, but are higher at

higher contact angles around the surface of the groove and in stiffer plies, where

increased longitudinal stiffness works against the rigid body approximation.

6. Total vertical load magnitude is a primary factor in laminate response to contact

loading, as it determines contact length, and thus the distribution of contact

pressure.

7. Response of a grooved laminate, in the form of contact pressure and stress field,

does not vary linearly with applied load due to the variation in the relation be-

tween load and contact length. Accurate analysis of the response of a grooved

composite requires numerical analysis at the load of interest in order to accu-

rately determine contact length and related area, and thus contact pressure and

stress response.

8. At lower loads, stresses and contact pressure are relatively larger, and more
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concentrated, due to the smaller contact length and related area, resulting in

higher relative stresses and stress gradients.

9. There is significant variation between the two-dimensional models and three-

dimensional models, particularly in determining the magnitude of the response.

The two-dimensional model fails to capture variation in the direction along the

groove, most importantly the variation of contact pressure, and the relationship

of load to contact length. This variation in loading along the groove carries over

to the stress response, where the effect is coupled with material effects due to the

orthotropic and directional properties of the laminate plies, such as coefficient

of mutual influence.

10. The two-dimensional model is sufficient to observe most trends in the stress field

for the three-dimensional case, and therefore could be of of use in preliminary

design work, such as selection of a laminate layup. However, a final analysis of

the three-dimensional sphere loading of a grooved composite requires full three-

dimensional modeling in order to accurately determine the response, specifically

the magnitudes of values.

11. Stress behavior is dependent on the laminate and the particular stress, with

stress fields between laminates showing some similar trends, but also high vari-

ability depending on the composition of the laminate. The through-thickness

stress field response has little dependence on the laminate being modeled, the

longitudinal stress is highly dependent on the laminate, and the shear stress is

moderately dependent on the laminate.

12. Finite element meshes that are symmetric should be utilized for cases where

the geometry is symmetric to minimize asymmetric variation due to discretiza-

tion. This variation is small, but can be eliminated through proper modeling

practices. In the case of a grooved composite, finite element meshes should be

symmetric about the plane running through the thickness and along the groove.

Based on the results of this investigation, recommendations for further research
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are that:

1. Full-length, three-dimensional models should be utilized to model the grooved

laminate, without the use of a plane of symmetry, in order to assess the influence

of the use of symmetry on the overall response of the groove laminate.

2. The use of nonlinear material behavior, accounting for plasticity and damage,

should be investigated in the modeling of grooved laminates, particularly for the

case of the three-dimensional, sphere-loaded model. High pressures and stresses

local to the point of contact are likely to cause nonlinear material behavior, and

the cumulative effects of damage at various loadings should be examined.

3. Effects of laminate properties, such as ply stacking sequence and ply thickness,

on the "groove stiffness" and the overall response of the laminate should be

assessed. Contact pressure appears to be highly dependent on ply angle and

groove angle, such that a sufficiently optimized laminate could minimize stress

gradients while maintaining a global laminate stiffness. To this end, the effect

of neighboring and sub-surface plies on the contact pressure should also be

assessed.

4. The influence of friction in the groove-indentor interaction, and the influence of

accurate modeling of friction between the two bodies on the laminate response

should be investigated.
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