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Abstract

This thesis develops threat assessment algorithms to improve the safety of the deci-
sion making of autonomous and human-operated vehicles navigating in dynamic and
uncertain environments, where the source of uncertainty is in the predictability of the
nearby vehicles’ future trajectories.

The first part of the thesis introduces two classes of algorithms to classify drivers
behaviors at roads intersections based on Support Vector Machines (SVM) and Hid-
den Markov Models (HMM). These algorithms are successfully validated using a large
real-world intersection dataset, and can be used as part of future driver assistance sys-
tems. They are also compared to three popular traditional methods, and the results
show significant and consistent improvements with the developed algorithms.

The second part of the thesis presents an efficient trajectory prediction algorithm
that has been developed to improve the performance of future collision avoidance and
detection systems. The proposed approach, RR-GP, combines the Rapidly-exploring
Random Trees (RRT) based algorithm, RRT-Reach, with mixtures of Gaussian Pro-
cesses (GP) to compute dynamically feasible paths, in real-time, while embedding the
flexibility of GP’s nonparametric Bayesian model. RR-GP efficiently approximates
the reachability sets of surrounding vehicles, and is shown in simulation and on nat-
uralistic data to improve the performance over two standard GP-based algorithms.

The third part introduces new path planning algorithms that build upon the tools
that have been previously introduced in this thesis. The focus is on safe autonomous
navigation in the presence of other vehicles with uncertain motion patterns. First,
it presents a new threat assessment module (TAM) that combines the RRT-Reach
algorithm with an SVM-based intention predictor, to develop a threat-aware path
planner. The strengths of this approach are demonstrated through simulation and
experiments performed in the MIT RAVEN testbed. Second, another novel path
planning technique is developed by integrating the RR-GP trajectory prediction al-
gorithm with a state-of-the-art chance-constrained RRT planner. This framework
provides several theoretical guarantees on the probabilistic satisfaction of collision
avoidance constraints. Extensive simulation results show that the resulting approach
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can be used in real-time to efficiently and accurately execute safe paths.
The last part of the thesis considers the decision-making problem for a human-

driven vehicle crossing a road intersection in the presence of other, potentially errant,
drivers. The proposed approach uses the TAM framework to compute the threat
level in real-time, and provides the driver with a warning signal and the best escape
maneuver through the intersection. Experimental results with small autonomous
and human-driven vehicles in the RAVEN testbed demonstrate that this approach
can be successfully used in real-time to minimize the risk of collision in urban-like
environments.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Motivation

Safety in transportation is becoming increasingly important because of the growing

volume of traffic both on the roads and in the air [1, 2].

Taking advantage of recent improvements in sensors such as infrared, cameras, and

radars, active safety features such as lane departure warning, adaptive cruise control,

and blind-spot warning, have become widely deployed in automobiles to reduce road

accidents [3, 4]. These active safety systems assess the level of perceived threat and

take a range of actions from simple warnings to full interventions to minimize the risk

or severity of collisions [5]. But road safety remains a serious public economical and

health issue [6]. In 2008, road accidents in the United States caused 37,261 fatalities

and 2.35 million injuries, leading to an estimated societal cost of 230 billion US dollars

[7]. In the aviation field, traffic alert and collision avoidance systems (TCAS) have

significantly reduced mid-air collisions for commercial airlines over the last thirty years

[8]. More recently, Automatic Dependent Surveillance-Broadcast (ADS-B) technology

has been developed to improve aircraft situational awareness by enabling procedures

not available with current TCAS systems, such as receiving detailed weather reports

and traffic information of all surrounding aircraft [9]. However, conflict detection

and collision avoidance still present several challenges for aviation safety [10, 11].

For example, in Naval Aviation, mid-air collisions are still among the top-five causes
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for Class-A accidents, ones that involve fatalities, destroyed aircraft, or two million

dollars or more of property damage [12]. Furthermore, as unmanned aerial vehicles

(UAV) will be sharing the airspace with commercial and military aircraft, new detect,

sense and avoid (DSA) technologies must be developed [13]. Similarly, autonomous

cars will be navigating urban roads and interacting with other drivers and pedestrians,

requiring new capabilities for anticipating and avoiding accidents [14, 15].

To tackle these challenges, both manned and autonomous vehicles (cars and air-

craft) will require improved situational awareness to enable better collision detection

and avoidance strategies through enhanced communication and trajectory prediction

capabilities [16]. While developing communication technologies is not the focus of this

thesis, it is an active area of research in both ground and air domains [17, 18]. The

other major challenge that these systems must address is the uncertainty in predicting

the intents and future trajectories of the surrounding vehicles [19–22].

Consider for example the difficult driving task of negotiating a traffic intersection

safely. An estimated 45 percent of injury crashes and 22 percent of roadway fatalities

in the US are intersection-related [23]. A main contributing factor in these accidents

is the driver’s inability to correctly assess the danger involved in such situations [24].

Therefore, future advanced driver assistance systems (ADAS) must include new risk

assessment algorithms for intersections, one of the most dangerous road scenarios due

to the difficulty in predicting incoming drivers’ trajectories [25].

Similar problems must be addressed for the Next Generation Air Transportation

System (NextGen). This initiative aims to increase the safety and capacity of air

transport operations. To achieve these goals, new conflict detection algorithms must

be developed to allow tighter separation distances, which will require improved tra-

jectory and intent prediction algorithms [26].

To address these challenges, several new algorithms have been developed in this

thesis, and their contributions are summarized in the following section.
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Figure 1-1: Threat Assessment Architecture.

1.2 Outline and Summary of Contributions

This thesis develops threat assessment algorithms to improve the safety of the decision

making process in dynamic and uncertain environments. The focus is on the uncer-

tainty in predicting the other vehicles’ intents and trajectories. To deal with different

sources and types of uncertainties in prediction, the thesis introduces the threat as-

sessment architecture (Figure 1-1). Several algorithms implementing the components

of the architecture are introduced and demonstrated through simulations, hardware

experiments and real traffic data testing and validation. The contributions of each

chapter in this thesis are summarized below.

• Chapter 2 develops solution approaches for the behavior classification compo-

nent, tailored for road driving. More specifically, the main contribution of this

chapter is two novel algorithms that model the behavior of drivers at road in-

tersections using Support Vector Machines (SVM) and Hidden Markov Models

(HMM) [27, 28]. The merits of these algorithms are demonstrated through real-

traffic validation using a large naturalistic intersection dataset collected through

the US Department of Transportation Cooperative Intersection Collision Avoid-

ance System for Violations (CICAS-V) initiative. Their performances are also

compared to those of three popular traditional methods, and the results show
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significant improvements with the developed algorithms in terms of classifica-

tion accuracy and false warning rates.

• Chapter 3 presents a solution approach that combines the intention prediction

and trajectory generator components of the threat assessment framework. The

main contribution is an efficient trajectory prediction algorithm that has been

developed to improve the performance of future collision avoidance and detec-

tion systems [29]. The main idea is to embed the inferred intention information

of surrounding agents into their estimated reachability sets to obtain a prob-

abilistic description of their future paths. More specifically, the proposed ap-

proach combines the recently developed rapidly-exploring random trees (RRT)

based algorithm, RRT-Reach [30], with mixtures of Gaussian Processes. The

resulting approach, denoted as RR-GP, has RRT-Reach’s benefits of computing

trajectories that are dynamically feasible by construction, and the flexibility

of GP’s nonparametric Bayesian model, therefore efficiently approximating the

reachability sets of surrounding vehicles. A demonstrative simulation on a car-

like vehicle illustrates the advantages of the RR-GP approach, and highlights

its advantages over two other GP-based algorithms. Another contribution of

this chapter is the validation of the RR-GP approach on real-traffic data from

the CICAS-V project.

• Chapter 4 develops path planning algorithms for autonomous vehicles navigat-

ing in unpredictable and dynamic environments. These algorithms embeds two

different implementations of the threat assessment architecture to extend the

capabilities of well established path planners in order to handle the uncertainty

in predictability.

The first contribution is a new threat-aware planning approach that is applied

to the closed-loop RRT (CL-RRT) path planning framework [31], used by the

MIT team in the 2007 DARPA Grand Challenge [32]. The novelty is in the

threat assessment module that consists of an intention predictor and a threat

assessor, which augments the host vehicle’s path planner with a real-time threat
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value representing the risks posed by the estimated intentions of other vehicles.

The strengths of this approach are demonstrated through simulation and ex-

periments performed in the RAVEN testbed facilities.

Another contribution is the integration of RR-GP algorithm (See Chapter 3) in

a state-of-the-art probabilistic path planning approach (CC-RRT), to extend its

formulation to handle dynamic objects with uncertain intents [33]. CC-RRT is

a state-of-the-art chance-constrained path planning approach based on rapidly-

exploring random trees [34]. CC-RRT explicitly incorporates probabilistic con-

straint satisfaction in its formulation while maintaining the computational ben-

efits of sampling-based algorithms. With RR-GP embedded in the CC-RRT

framework, theoretical guarantees are demonstrated for linear systems, though

the extension to nonlinear systems is also considered. Extensive simulation re-

sults show that the resulting approach can be used in real-time to efficiently

and accurately execute safe paths.

• Chapter 5 presents an implementation of the threat assessment framework (Fig-

ure 1-1) for the decision-making problem of a human-driven vehicle crossing a

road intersection in the presence of other, potentially errant, drivers. The main

contribution is a novel threat assessment module, which combines an intention

predictor based on support vector machines with an efficient threat assessor

using RRT-Reach, a novel sampling-based reachability algorithm [30]. This

module warns the host driver with the computed threat level and the corre-

sponding best escape maneuver through the intersection. Through experimen-

tal results with small autonomous and human-driven vehicles in the Aerospace

Controls Laboratory RAVEN’s testbed, we demonstrate that this threat as-

sessment module can be used in real-time to minimize the risk of collision in

urban-like environments. This chapter also includes another game-theoretic

formulation that extends RRT-Reach to a dual exploration-pursuit mode that

considers the worst-case scenario of errant drivers that are capable of causing

intentional collisions [35].
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Chapter 2

Behavior Classification

The ability to classify driver behavior lays the foundation for more advanced driver

assistance systems. In particular, improving safety at intersections has been identi-

fied as a high priority due to the large number of intersection related fatalities. This

chapter focuses on developing algorithms for estimating driver behavior at road in-

tersections and validating them on real traffic data [27, 28]. It introduces two classes

of algorithms that can classify drivers as compliant or violating. They are based on

i) Support Vector Machines (SVM) and ii) Hidden Markov Models (HMM), which

are two very popular machine learning approaches that have been used successfully

for classification in multiple disciplines. However, existing work has not explored

the benefits of applying these techniques to the problem of driver behavior classi-

fication at intersections. The developed algorithms are successfully validated using

naturalistic intersection data collected in Christiansburg, VA, through the US De-

partment of Transportation Cooperative Intersection Collision Avoidance System for

Violations (CICAS-V) initiative. Their performances are also compared to those of

three traditional methods, and the results show significant improvements with the

new algorithms.
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2.1 Introduction

The field of road safety and safe driving has witnessed rapid advances due to improve-

ments in sensing and computation technologies. Active safety features like anti-lock

braking systems and adaptive cruise control have been widely deployed in automo-

biles to reduce road accidents [3]. However, the US Department of Transportation

(DOT) still classifies road safety as “a serious and national public health issue.” In

2008, road accidents in the US caused 37,261 fatalities and about 2.35 million injuries.

A particularly challenging driving task is negotiating a traffic intersection safely; an

estimated 45 percent of injury crashes and 22 percent of roadway fatalities in the

US are intersection-related [23]. A main contributing factor in these accidents is the

driver’s inability to correctly assess and/or observe the danger involved in such situ-

ations [24]. This data suggests that driver assistance or warning systems may have

an appropriate role in reducing the number of accidents, improving the safety and

efficiency of human-driven ground transportation systems. Such systems typically

augment the driver’s situational awareness, and can also act as collision mitigation

systems [30].

Research on intersection decision support systems has become quite active in both

academia and the automotive industry. In the US, the federal DOT, in conjunction

with the California, Minnesota, and Virginia DOTs and several US research universi-

ties, is sponsoring the Intersection Decision Support (IDS) project [24, 36], and more

recently the Cooperative Intersection Collision Avoidance Systems (CICAS) project

[37]. In Europe, the InterSafe project was created by the European Commission to in-

crease safety at intersections. The partners in the InterSafe project include European

vehicle manufacturers and research institutes [25]. Both projects try to explore the

requirements, tradeoffs, and technologies required to create an intersection collision

avoidance system, and demonstrate its applicability on selected dangerous scenarios

[24, 25].

This research is focused on developing algorithms that infer driver behaviors at

road intersections, and validating them using naturalistic data. The resulting algo-
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Figure 2-1: Red light violation at signalized intersection. Adapted from
www.drivingschool.ca.

rithms can be applied to either vehicle-based systems or infrastructure based sys-

tems. Inferring driver intentions has been the subject of extensive research. For

example, Ref. [38] introduced a mind-tracking approach that extracts the similarity

of the driver data to several virtual drivers created probabilistically using a cognitive

model. Ref. [39] used graphical models and Hidden Markov Models to create and

train models of different driver maneuvers using experimental driving data.

More specifically, the modeling of behavior at intersections has been studied using

different statistical models [40–46]. These studies showed that the stopping behavior

depends on several factors including driver profile (e.g., age and perception reac-

tion time), yellow-onset kinematic and geometric parameters (e.g., vehicle speed and

distance to intersection). Ref. [42] developed red light running predictors based on

estimating the time to arrival at intersections and the different stop and go maneu-

vers. It used speed measurements at two discrete point sensors. But the performance

of their approach is limited by the complexity of the multidimensional optimization

problem that must be solved. Closely related to the focus of this chapter is the

work presented in Refs. [45, 46]. Ref. [45] discusses the use of time to intersection
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(TTI ) and its advantages over time to collision (TTC ) for intersection safety systems.

Ref. [46] developed different warning algorithms for signalized and stop intersections

based on the required deceleration parameter (RDP), TTI , and speed-distance re-

gression models. These algorithms will be used as a baseline for comparison in our

work since they have been widely used in the driver behavior classification literature,

and have also been validated on a large traffic dataset [47]. Note, however, that those

authors only consider simple relationships between the driving parameters, while the

algorithms developed in this work have the flexibility to combine many parameters

in the same model.

This chapter develops two novel classes of algorithms based on distinct branches of

classification in machine learning to model driver behaviors at signalized intersections.

It also successfully validates these algorithms on a large naturalistic dataset. First, it

describes the driver behavior inference problem and the different factors involved in

the decision making. Then, it introduces the two classes of algorithms, a discrimina-

tive approach based on Support Vector Machines (SVM), and a generative approach

based on Hidden Markov Models (HMM), along with the traditional approaches that

they are compared to. Next, it describes the implementation process of the different

algorithms. Finally, it evaluates their performance on intersection data collected in

Christiansburg, VA as part of the DOT Cooperative Intersection Collision Avoidance

System for Violations (CICAS-V) initiative [37].

2.2 Problem Statement

Consider an intersection controlled by a traffic signal as shown in Fig. 2-1. As a vehicle

approaches the intersection, the objective is to predict from a set of observations

whether the driver will stop safely if the signal indicates to do so. Drivers who do not

stop before the stop bar are considered to be violators, while those who do stop are

considered to be compliant. Naturally, drivers behave differently, and the variation

in the resulting observations must be taken into account in the classification process.

The ability to classify drivers lays the foundation for more advanced driver assis-
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Table 2.1: Classification categories

Classification: Classification:

Compliant Violating

Actual: Compliant True Negative False Positive

Actual: Violating False Negative True Positive

tance systems. In particular, these systems would be able to warn drivers of their own

potential violations as well as detect other potential violators approaching the inter-

section. Integrating the classifier into a driver assistance system imposes performance

constraints that balance violator detection accuracy with driver annoyance.

This requirement can be encoded in terms of signal detection theory (SDT), which

provides a framework for evaluating decisions made in uncertain situations [48]. Table

2.1 shows the mapping between classifier output and the SDT categories. To meet

this performance constraint, the classifier must maximize the number of true positives

(to correctly identify violators) while maintaining a low ratio of false positives (to

minimize driver annoyance).

An underlying assumption for this classification is the availability of communi-

cation or sensing infrastructure to provide the observations needed to classify the

driver’s behavior and enable the detection of traffic signal phase. Vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication systems would provide ex-

actly this functionality and are an active area of research [18, 49]. Alternatively,

onboard sensors could be used to make these observations, especially when warning

drivers of their own impending violations [14, 15].

While several scenarios could be considered for this problem, this work focuses on

the case consisting of one host vehicle and several target vehicles. The goal is to is

to warn the host vehicle when any of the target vehicles is predicted not to comply

with the traffic lights. To further specify the problem, the following assumptions are

made:

• The host vehicle has the right of way and is compliant. Only the target vehicles

that do not have the right of way are considered in the problem; the other ones
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(i.e., with right of way) are ignored. In other words, the focus is on warning

compliant drivers from the danger created by other potentially violating drivers.

An implicit assumption is the existence of V2V and V2I systems to detect the

traffic signal phase, and to share position, speed, and acceleration information

among vehicles.

• The host vehicle is warned at twarn only when a target vehicle is classified as

violating. Fig. 2-2 illustrates the different warning-related variables. twarn cor-

responds to the time when a target vehicle’s estimated time to arrive at the

intersection, also known as time to intersection (TTI) [50], reaches TTImin sec-

onds, or when the distance of a target vehicle to the intersection equals dmin

meters, whichever condition happens first. The time and distance thresholds

are chosen such that the host driver has enough time to react to the warning. A

detailed analysis of the choice of TTImin and dmin is presented in Section 2.5.2.

• The target vehicles are tracked as early as possible, but their classification as

violating or compliant is based on measurements taken in the Tw time window

(Fig. 2-2). Different values of Tw are analyzed in the developed algorithms;

larger Tw brings a longer measurement “memory” at the expense of an ad-

ditional computation requirement. A large Tw might also include irrelevant

measurements when the vehicle is very far from the intersection. Finally, note

that a target vehicle that stops in or before the Tw window is directly labeled

as compliant.

2.3 Algorithms

Classifying human drivers is a very complex task because of the various nuances and

peculiarities of human behaviors [51]. Researchers have shown that the state of a

vehicle driver lies in some high dimensional feature space [52].

Basic classification is traditionally performed by identifying simple relationships

or trends in data that define each class. This includes using techniques such as model
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Figure 2-2: Target vehicle approaching intersection. Classification is performed in
the Tw time window, and warning is potentially sent to host vehicle at twarn measured
as the expected time to reach the intersection. In some cases the time corresponding
to dmin can be larger than TTImin.

fitting and regression to identify classification criteria [53]. However, by only consid-

ering simple relationships, these approaches are limited in their ability to accurately

classify complex data where the classes may be defined by a variety of factors. To

overcome this limitation, two approaches to classification have been developed in the

machine learning community.

Discriminative approaches, such as support vector machines (SVM), are typically

used in binary classification problems, which makes them appropriate for the classi-

fication of compliant vs. violating drivers. SVMs have several useful theoretical and

practical characteristics [54]. We highlight two of them: 1) training SVMs involves

an optimization problem of a convex function, thus the optimal solution is a global

one (i.e., no local optima), 2) the upper bound on the generalization error does not

depend on the dimensionality of the problem.

Classification is often also performed using generative approaches, such as HMMs,

to model the underlying patterns in a set of observations and explicitly compute the

probability of observing a set of outputs for a given model [55]. HMMs are well suited

to the classification of dynamic systems [39], such as a vehicle approaching an intersec-

tion. The states of the HMM define different behavioral modes based on observations,

and the transitions between these states captures the temporal relationship between

observations.

33



2.3.1 Traditional Methods

This section presents three notable techniques from the literature for classifying

drivers based on simple relationships between observations: static TTI [50], static

RDP [45], and speed-distance regression [46]. These algorithms are widely used and

provide a baseline for the performance analysis in Section 5.5.4.

Static TTI

One of the most intuitive approaches to classification is to use the vehicle’s time to

intersection (TTI ). It is thought that this type of temporal property is what humans

use to decide whether a vehicle will be compliant [56]. The vehicle’s TTI is defined

simply as

TTI =
r

v
(2.1)

where v is the vehicle’s current speed and r is its distance to the stop line. For this

classifier, the TTI value is computed when the vehicle’s deceleration crosses some

predefined threshold, indicating the onset of braking. Then the driver is classified as

a violator if TTI < TTI req, where TTI req is the time given for a driver to stop safely

after the onset of braking [50]. This static parameter can be adjusted to change how

conservative the algorithm is in its classifications.

Static RDP

Other work has used a classifier based on a required deceleration parameter (RDP)

[45, 46]. This parameter gives the deceleration needed for the vehicle to stop safely

given its current distance and speed. It is defined as

RDP =
v2

2rg
(2.2)
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where r and v are as defined above and g is the gravitational acceleration constant.

For a given RDP threshold, RDPwarn, a warning distance is computed as

rwarn =
v2

2RDPwarn

(2.3)

The vehicle is then classified as a violator if at any time r < rwarn, i.e., if its required

deceleration is greater than the selected RDP threshold.

Speed-Distance Regression

Another more complex classification strategy is based on fitting regression curves

[46, 57]. The approach takes a set of speed and distance measurements from vehicles

that are known to be compliant, discretizes the speeds, and collects the distance

measurements at each speed into a set of bins based on percentiles. A regression

curve of the form

rwarn = avb + c (2.4)

is then fit for each bin. These speed-distance regression (SDR) curves attempt to

identify relationships between speed and distance that can discriminate between com-

pliant and violating drivers. For a given curve (corresponding to a certain percentile

of compliant driver trajectories), the vehicle is classified as a violator if at any time

r < rwarn, i.e., if it is closer to the stop line than expected for a compliant vehicle at

its current speed. Selecting a curve corresponding to higher percentile bins yields a

more conservative classifier.

The version of this algorithm in Ref. [46] includes two additional layers that declare

a vehicle to be compliant if its deceleration is below some fixed threshold (e.g., due to

braking) or if its velocity is below some fixed threshold (e.g., to permit rolling stops).

However, only the deceleration layer is considered here as rolling stops are typically

not associated with signalized intersections.
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Figure 2-3: The SVM-BF Architecture.

2.3.2 SVM-BF

The first developed algorithm, denoted as SVM-BF, combines SVM and Bayesian fil-

tering. The core of the algorithm is the SVM, a popular supervised machine learning

technique based on the margin-maximization principle [54]. SVM has been success-

fully applied to several applications including text categorization, bioinformatics and

database marketing [58]. It has also been used recently in the active safety research,

including lane departure warning systems [51] and driver distraction detection al-

gorithms [59]. This work develops a novel architecture that combines SVM with a

Bayesian filter (BF) that enables it to perform well on the driver behavior classifi-

cation problem. The following sections introduce the architecture of the SVM-BF

algorithm, and provide additional theoretical and practical details about each of its

components.

SVM-BF Architecture

The architecture of the SVM-BF algorithm is shown in Fig. 2-3. At the beginning

of each measurement cycle inside the Tw window, the SVM module (Section 2.3.2)

extracts the relevant features from the sensor observations. It then outputs a single

classification (violator vs. compliant) per cycle to the Bayesian filter (BF) component

(Section 2.3.2). Then, at the end of the Tw window, i.e., at time twarn, the BF uses

the current and previous SVM outputs to estimate the probability that the driver is

compliant. Using a threshold detector, the SVM-BF outputs a final classification at

twarn specifying whether the driver is estimated as violator or compliant. To speed

up the convergence of the BF, a discount function is added to the SVM-BF designed
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to de-emphasize earlier classifications in Tw, and therefore put more weight on the

measurements of the vehicle that are closer to twarn.

SVM Component

This section gives a brief introduction to SVMs and their implementation in the

SVM-BF framework. The reader is encouraged to refer to Ref. [60] for a detailed

description of SVM.

Given a set of binary labeled training data {xi, yi}, where i = 1, . . . , Ntr, yi ∈

{−1, 1},xi ∈ <d, Ntr is the number of training vectors, and d is the size of the input

vector, a new test vector z is classified into one class (y = 1) or the other (y = −1),

by evaluating the following decision function

D(z) = sgn

[
Ntr∑
i=1

αiyiK(xi, z) +B

]
. (2.5)

K(xi,xj), known as the kernel function, is the inner product between the mapped

pairs of points in the feature space, and B is the bias term [60]. α is the argmax of

the following optimization problem

max
α

W (α) =
Ntr∑
i=1

αi −
1

2

Ntr∑
i,j=1

αiαjyiyjK(xi,xj) (2.6)

subject to the constraints

Ntr∑
i=1

αiyi = 0 αi ≥ 0, (2.7)

Appropriate kernel selection and feature choice are essential to obtaining satisfac-

tory results using SVM. Based on experimenting with different kernel functions and

several combinations of features, the best results for this problem were obtained using

the Gaussian radial basis function and combining the following three features: range

to intersection, speed, and longitudinal acceleration. At each measurement cycle, the

output of the SVM block is a classification y = +1 (compliant) or y = −1 (violator).
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This output is then fed into the Bayesian Filtering component (Section 2.3.2) which

uses additional logic before making a final classification.

Bayesian Filtering Component

The Bayesian filter (BF) component views the outputs of the SVM component as sam-

ples of a random variable y ∈ {violator, compliant}, that is controlled by a parameter

θ such that

p(y = compliant|θ) = θ. (2.8)

The parameter θ is unknown. It represents the probability that the driver belongs to

the compliant class. The role of the BF component is to compute the expected value

of θ given a sequence of previous outputs from the SVM component.

To infer the value of the hidden variable, a standard Bayesian formulation is

used [61]. We choose a beta distribution prior for θ, which is a function of some

hyperparameters a and b,

beta(θ|a, b) =
Γ(a+ b)

Γ(a) + Γ(b)
θa−1(1− θ)b−1, (2.9)

where Γ(x) is the gamma function [61]. The values of a and b have an intuitive inter-

pretation; they represent the initial “confidence” given for each class, respectively. In

other words, they reflect the number of observations corresponding for each behavior,

which were accumulated in previous measurement cycles.

Given a sequence of SVM outputs y = [y1, . . . , yN ], the posterior distribution of

θ, p(θ|y), is computed by multiplying the beta distribution prior by the binomial

likelihood function given by

bin(m|N, θ) =

(
N

m

)
θm(1− θ)N−m (2.10)

where m and l represent the number of SVM outputs corresponding to y = compliant

and y = violator, respectively. Variable N is the total number of SVM classifications,
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N = m+ l. By normalizing the resulting function, we obtain

p(θ|y) =
Γ(m+ a+ l + b)

Γ(m+ a) + Γ(l + b)
θm+a−1(1− θ)l+b−1 (2.11)

The expected value of θ given the sequence y, which is the output of the Bayesian

filter component, can then be simply expressed as

E(θ|y) =

∫ 1

0

θp(θ|y)dθ =
m+ a

m+ a+ l + b
(2.12)

Discount Function

To improve the accuracy of the expected value computed in Equation 2.12, earlier

classifications in the Tw window should be given less weight compared to later ones.

The following discount function achieves the desired purpose:

dk = CN−k, with d0 = CN (2.13)

where k = 1 . . . N is the index of the SVM output in the Tw window, N represents the

index of the last output in Tw, i.e., at time twarn, and C is a constant discount factor,

0 < C ≤ 1, used to discount exponentially the weight of the output at time k. Note

that C = 1 is equivalent to no discounting. The value of C affects the performance

of the SVM-BF significantly. Section 2.5.4 investigates different values for C in the

search for the best combination of the SVM-BF parameters. The variables m and l

also need to be indexed by k, where mk and lk are the binary outputs of SVM at step

k, and mk + lk = 1. Given these changes, Equation 2.12 can be rewritten as

E(θ|y) =

N∑
k=1

dkmk + d0a

N∑
k=1

dkmk + d0a+
N∑
k=1

dklk + d0b

(2.14)

where a and b are the same hyperparameters defined in Equation 2.9.
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Figure 2-4: The HMM-Based Classification Architecture.

Threshold Detector

Given E(θ|y), the SVM-BF algorithm outputs the final classification based on the

threshold detector specified value τS. The driver is classified as compliant if E(θ|y) >

τS, otherwise it is classified as violating. A large threshold value τS is equivalent to

a more conservative algorithm (catching more violators) but at the expense of an

increased number of wrong warnings (i.e., false positives). The choice of the value of

τS is analyzed in Section 2.5.4.

Sliding Window

An extension to the original SVM-BF algorithm is the introduction of a sliding win-

dow over the features, which proved to be essential in improving the performance

of the SVM-BF on the road traffic data. To elaborate, each feature consists of the

means and variances of the last K different measurements. This change replaces

the individual measurements (range, velocity, and acceleration) with their means and

variances computed over the window. This addition indirectly adds time dependency

to the sequence of outputs of the SVM component without affecting computation

times, thus improving the SVM-BF model. The choice of the value of K is analyzed

in Section 2.5.4.

2.3.3 HMM-based

An alternative approach is based on the idea of learning generative models from a set

of observations. Hidden Markov Models (HMMs) have been used extensively to de-
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velop such models in many fields, including speech recognition [55], and part-of-speech

tagging [62]. The application of HMMs to isolated word detection is particularly rel-

evant to the task of driver classification. In isolated word detection, one HMM is gen-

erated for each word in the vocabulary and new words are tested against these models

to identify the maximum likelihood model for each test word [55]. HMMs have also

been used to recognize different driver behavior, such as turning and braking [39].

This motivates the use of HMMs in this work to detect patterns that characterize

compliant and violating behaviors.

HMM-based Architecture

Suppose two sets of observations are available: one known to be from compliant

drivers and the other from violators. Each set of observations can be considered an

emission sequence produced by an HMM modeling vehicle behavior. Using the EM

algorithm (Section 2.3.3), two models, λc and λv, are learned from the compliant

driver and violator training data, respectively. Then, given a new sequence of obser-

vations, z, the forward algorithm (Section 2.3.3) is used with λc and λv to estimate

the probability that the driver is compliant. As in the SVM-BF algorithm, a threshold

detector (Section 2.3.3) uses this result to output a final classification, labeling the

driver as either violating or compliant. Again, this classification occurs at twarn based

on the observations from the Tw window. Fig. 2-4 summarizes this architecture.

HMMs and the Forward Algorithm

This section provides a brief introduction to HMMs and the forward algorithm as a

technique for determining how well a model fits a set of observations. Please refer to

Ref. [55] for additional details on HMMs and the forward algorithm.

An HMM λ(T , t, e) consists of a set of n discrete states and a set of observations

at each state, as shown in Fig. 2-5. At any given time k, the system being modeled

will be in one of these states, qk = si, and the transition probability matrix T gives

the probability of transitioning to any other state at the next timestep, qk+1 = sj.
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Figure 2-5: Basic HMM λ(T , t, e) with n = 3 states, transition probabilities Tij, and
emissions ei.

Specifically,

Tij = P (qk+l = sj | qk = si). (2.15)

The probability of the system starting in each state is given by the initial state

distribution t, where ti = P (q1 = si). Due to these probabilistic transitions, the

current state is typically not known. Instead, a set of observations are assumed to

be available. The probability of a state si emitting a certain observation zk is given

by ei(zk). The emission distribution for each type of observation is assumed to be

Gaussian with unique mean (µi) and variance (σ2
i ) for every state si. This design

decision ensures that each state corresponds to one specific mode of driving, which

is characterized by a set of observations normally distributed around some typical

values (specified by the means and variances).

A common task with HMMs is determining how well a given model λ(T , t, e) fits

a sequence of observations x = x1, . . . , xK . This can be quantified as the probability

of observing x given λ, P (x | λ). The forward algorithm is an efficient method for
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computing this probability [55], and is defined as follows. Let αi(k) be given by

αi(k) = P (x1, . . . , xk, qk = si | λ), (2.16)

which is the probability of observing the partial sequence x1, . . . , xk, and having the

current state qk at time k equal to si, given the model λ. Then the forward algorithm

is initialized using the initial state distribution t

αi(1) = tiei(x1), i = 1, . . . , n. (2.17)

The probability of each subsequent partial sequence of observations for k = 1, . . . , K−

1 is given by

αj(k + 1) =

[
n∑
i=1

αi(k)Tij

]
ej(xk+1), i = 1, . . . , n. (2.18)

Upon termination at k = K, the algorithm returns the desired probability,

P (x | λ) =
n∑
i=1

αi(K). (2.19)

EM Algorithm for HMMs

These observations can also be used to learn an HMM that captures the behav-

ior of the underlying system. A standard technique for doing so, the Expectation-

Maximization (EM) algorithm, is summarized below. The complete algorithm is

detailed in Ref. [63].

Given a set of N observation sequences (training data), x1, . . . ,xN , the EM algo-

rithm computes the maximum-likelihood estimates of the HMM parameters, i.e.,

λ∗(T , t, e) = arg max
λ

P (x1, . . . ,xN |λ(T , t, e)). (2.20)

To do so, it uses the forward algorithm, as defined earlier, as well as the backward
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algorithm [55], which is defined similarly to the forward algorithm. Let

βi(k) = P (xk+1, . . . , xK | qk = si, λ), (2.21)

be the probability of observing the rest of the partial sequence of observations at time

k, for k ≤ K. Then the backward algorithm follows as

βi(K) = 1 (2.22)

βj(k) =
n∑
j=1

Tijej(xk+1)βi(k + 1). (2.23)

Using the terms αi(k) from the forward algorithm and βi(k) from the backward

algorithm, the probability of being in state si at time k given the observations x

is given by

γi(k) = P (qk = si | x, λ) =
αi(k)βi(k)∑n
i=1 αi(k)βi(k)

. (2.24)

Then the probability of being in state si at time k and sj at time k + 1 is given by

ξij(k) = P (qk = si, qk+1 = sj | x, λ)

=
αi(k)Tijej(xk+1)βj(k + 1)∑n

i=1

∑n
j=1 αi(k)Tijej(xk+1)βj(k + 1)

. (2.25)

From these terms, the parameters of an updated HMM λ are computed with the
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following update equations

ti = γi(1), (2.26)

Tij =

∑K−1
k=1 ξij(k)∑K−1
k=1 γi(k)

, (2.27)

µi =

∑K
k=1 γi(k)xk∑K
k=1 γi(k)

, (2.28)

σi =

∑K
k=1 γi(k)(xk − µi)2∑K

k=1 γi(k)
. (2.29)

These maximum-likelihood estimates reflect the relative frequencies of the state tran-

sitions and emissions in the training data.

Repeating this procedure with λ replaced by λ is guaranteed to converge to a

local maximum [63], i.e., as the number of iterations increases, P (x1, . . . ,xN |λ) −

P (x1, . . . ,xN |λ) → 0. The resulting λ is the maximum likelihood model λ∗(T , t, e).

Since the EM algorithm is only guaranteed to converge to a local maximum, several

sets of random initializations can be tested to reduce the effects of local maxima on

the final model parameters.

As with the choice of features in the SVM, the observations used for the HMM

can have a dramatic impact on its performance. After testing several combinations of

observations, the following five parameters were identified to give the best results in

terms of high detection accuracy and low false positive rates: range to intersection,

speed, longitudinal acceleration, TTI , and RDP . In addition, the observations can

be normalized to remove any bias introduced by differences in the order of magnitude

of the observations.

It is interesting to note that TTI and RDP were not included in the SVM feature

set since they did not a bring noticeable advantage for the SVM classification results.

One explanation is the RBF kernel used in the SVM maps the feature space to an

infinite dimensional space and is therefore flexible enough to learn the variations in

its features (range, speed, and acceleration) without the need for additional derived

ones. On the other hand, the HMM algorithm learns the transition matrix directly
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from the features, and therefore could benefit from adding extra ones.

Threshold Detector

Using the EM algorithm, two models, λc and λv, are learned from the compliant driver

and violator training data, respectively. Then, given a new sequence of observations,

z, the forward algorithm [55] is used with λc and λv to find the posterior probability

of observing that sequence given each model, P (z | λc) and P (z | λv). The prior over

the models is assumed to be uniform, P (λc) = P (λv) = 0.5, since nothing is known

beforehand about whether the driver is compliant or violating. Then the likelihood

ratio

P (z, λc)

P (z, λv)
=
P (z | λc)
P (z | λv)

> e−τH (2.30)

determines whether the driver is more likely to be compliant or violate the stop bar

and assigns the corresponding classification. Note that this ratio is typically computed

using log probabilities, which introduces the e term in Equation 2.30. The threshold

τH can be selected to adjust the conservatism of the classifier and is discussed in

greater detail in Section 2.5.5.

Since states have one emission distribution per observation, each state in the

HMM represents a coupling between specific ranges of values for each observation. It

is this coupling and the transitions between different coupled ranges that allows the

HMM-based classifier to distinguish between compliant drivers and violators.1

2.4 Data Collection and Filtering

The roadside data used in this chapter was collected as part of the Cooperative In-

tersection Collision Avoidance System for Violations (CICAS-V) project [37]. The

1In practice, the probability of the state self-transition in the HMM was seen to be much higher
than the probability of transitioning to another state, which means that keeping additional state
history should not have a noticeable impact on the model. It also reinforces the Markovian assump-
tion.
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Figure 2-6: Satellite image of the Peppers Ferry intersection (US 460 and Peppers
Ferry Rd, Christiansburg, Montgomery, Virginia 24073) taken from Google Earth.
CICAS-V data from vehicles at Peppers Ferry intersection were used to test the
algorithms presented in this chapter.

CICAS-V project collected data on over 5,500,000 approaches across three intersec-

tions. In this work, the data from the Peppers Ferry intersection at U.S. 460 Business

and Peppers Ferry Rd in Christiansburg, VA (See Fig. 2-6) was used to evaluate the

algorithms, providing a total of 3,018,456 car approaches. The method of collection

is detailed in Ref. [64]. A brief description is given below.

At the Peppers Ferry intersection, a custom data acquisition system was installed

to monitor real-time vehicle approaches. This system included four radar units which

identified vehicles, measured vehicle speed, range, and lateral position at a rate of

20 Hz beginning approximately 150 m away from the intersection, a GPS antenna to

record the current time, four video cameras to record each of the four approaches,

and a phase-sniffer to record the signal phase of the traffic light. These devices col-

lected data on drivers who were unaware of the experiment as they moved through
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the intersection. The information from these units then underwent post-processing

including smoothing and filtering to remove noise such as erroneous radar returns. In

addition, the Geometric Intersection Description (GID), a detailed plot of the inter-

section accurate to within 30 cm, was used to derive new values such as acceleration,

lane id, and a unique identifier for each vehicle. This information on each of the car

approaches was then uploaded onto a SQL database [65], which was used to obtain

the data analyzed in this work.

The data was further processed at the Aerospace Controls laboratory at MIT for

the purposes of this research. Microsoft SQL Server 2008 Developer Edition was used

to filter individual trajectories from the data collected in the CICAS-V project. To

maintain tractable offline runtimes for the learning phases of the algorithms, the first

300,000 trajectories out of the 3,018,456 car approaches were extracted. They were

classified as compliant or violating based on whether they committed a traffic light

violation. Violating behaviors included drivers that committed a traffic violation at

the intersection, defined as crossing over the stop bar after the presentation of the red

light and continuing into the intersection for at least 3 m within 500 ms. Compliant

behaviors included vehicles that stopped before the crossbar at the yellow or red light.

Out of the extracted trajectories, 1,673 violating and 13,724 compliant trajectories

were found and then used in the classification algorithms.

2.5 Implementation

This section highlights the several decisions made in implementing the different al-

gorithms introduced in Section 2.3. First, Section 2.5.1 describes the training and

testing procedures used for data validation, and the rationale that motivates them. It

also introduces an analysis tool that is frequently used to compare algorithm perfor-

mance against parameter choice. Then, Section 2.5.2 discusses the parameters that

are common to all the algorithms. More specifically, it explains the values of the

variables affecting the warning timing and the maximum driver annoyance levels. Fi-

nally, Sections 2.5.3, 2.5.4, and 2.5.5 detail the choice of parameters that are specific
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to the traditional, SVM-BF, and HMM algorithms, respectively.

2.5.1 Training/Testing Approaches

Using the trajectories selected from the CICAS-V database as described in Section 2.4,

the algorithms are tested in pseudo-real-time, i.e., by running them on the trajectories

of the database as if the observations of the target vehicle were arriving in real-time.

The observations from each trajectory are downsampled from 20 Hz to 10 Hz to

reduce the computational load. The training and testing are performed using two

different approaches: 1) Basic generalization test (Section 2.5.1), and 2) m-Fold Cross-

Validation (Section 2.5.1). Both approaches aim at evaluating the generalization

property of the algorithms.

To evaluate the results of these tests, the receiver operation characteristic (ROC)

curve is used to display the true positive and false positive rate of each set of algorithm

parameters [48]. The curve is generated by varying a parameter of interest (or set

of parameters), which is referred to as the Beta parameter in the SDT terminology

[48]. Each point on the ROC curve then corresponds to a different value of the Beta

parameter. The choice of Beta for each algorithm is detailed in its respective section

below.

Basic Generalization Test

The first approach is a straightforward test of generalization. This consists of training

the algorithms on a randomly selected subset that is some small fraction p of the data,

and testing on the remaining 1 − p. This approach demonstrates the generalization

property (or lack thereof) of the algorithms. This property is essential for any warn-

ing algorithm to perform successfully when deployed on driver assistance systems,

especially given the number of vehicles encountered in everyday driving. The value

of p is chosen to be 0.2. The total number of trajectories used for this approach

is 10,000 compliant and 1,000 violating. In other words, 2,000 compliant and 200

violating trajectories are used in the training phase, while the testing phase consists
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Table 2.2: Cumulative Population Percentile vs. Driver Response Time [66]

Response Population

Time (s) Percentile

1.0 45%

1.6 80%

2.0 90%

Table 2.3: Minimum TTI (TTImin) and Minimum Distance (dmin) Pairs

TTImin (s) dmin (m)

1.0 6.25

1.6 10.0

2.0 12.5

of 8,000 compliant and 800 violating trajectories.

m-Fold Cross-Validation

The second approach uses the standard m-fold cross-validation technique for testing

generalization [53]. This involves randomly dividing the training set into m disjoints

and equally sized parts. The classification algorithm is trained m times while leaving

out, each time, a different set for validation. The mean over the m trials estimates

the performance of the algorithm in terms of its ability to classify any given new

trajectory. The advantage of m-fold cross-validation is that, by cycling through the

m parts, all available training data can be used while retaining the ability to test on

a disjoint set of test data. A total of 5,000 compliant and 1,000 violating trajectories

are used in the m-fold approach with m = 4. First, each algorithm is run once on this

data with the same ratio of training and testing data, producing a classifier with fixed

parameters. This classifier is then tested using the m-fold cross-validation approach.
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2.5.2 Shared Parameters

Minimum Time Threshold (TTImin)

For each trajectory, as shown in Fig. 2-2, the final output of the algorithms is given

at time twarn, which is computed as

twarn = min
(
TTImin, t(dmin)

)
(2.31)

In other words, twarn corresponds to the time when the estimated remaining time for

the target vehicle to arrive to the intersection is TTImin seconds, or when the distance

to the intersection equals dmin meters, whichever happens first.

The choice of TTImin is important. It represents the amount of time the host ve-

hicle is given to react after being warned that a violating target vehicle is approaching

its intersection. Choosing one single mean value for TTImin provides little information

about the performance of the warning algorithms for response times away from the

mean. Instead, we base the choice of TTImin on the cumulative human response time

distribution presented in Ref. [66]. This distribution answers the following question:

given a specific driver response time, what is the percentage of population that is

able to react to a potential collision? The larger TTImin, the bigger the percentage

of population to react on time to the warning. But a larger TTImin is expected to

lead to a worse performance of the warning algorithms because the final classification

would be given earlier and after fewer measurements. To address this problem, the

different algorithms were developed and evaluated for three different values of TTImin

summarized in Table 2.2. They are 1.0 s, 1.6 s, and 2.0 s, corresponding to 45%, 80%,

and 90% of the population, respectively. Therefore, the engineer deciding which al-

gorithm to implement has a clearer understanding of the tradeoffs for each choice.

Note that the host vehicle is assumed to be at rest or moving with a negligible speed

in this analysis. This is typically the case at twarn, the time where it is warned of the

target vehicle possible violation.
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Minimum Distance Threshold (dmin)

The dmin distance plays the role of a safety net. In most intersection approaches,

the TTImin condition happens first. But for some cases where the target vehicle

approaches the intersection with a low speed, the TTImin condition is met too close

to the intersection. The dmin condition ensures that such cases are captured, and the

warning (if needed) is given with enough time for the driver to react. For TTImin of

1.6 s, dmin is chosen to be 10 m. This is equivalent to situations where vehicles cross

the dmin mark with speeds lower than 6.25 m/s or 22.5 km/h, consistent with the low

speed assumption. For TTImin of 1.0 s and 2.0 s, dmin is scaled to 6.25 m and 12.5 m,

respectively. These values are summarized in Table 2.3. Note that in the case of a

warning, the driver will have a period of time larger than TTImin to react, ensuring

that the percentage of drivers responding on time to the warning is consistent with

Table 2.2 numbers.

Maximum FP Rate

Warning algorithms must take into consideration driver tolerance levels, i.e., they

should try to ensure that the rate of false alarms is below a certain “annoyance” level

that is acceptable to most drivers. In this work, the maximum false positive rate

is chosen to be 5% in accordance with automotive industry recommendations [46].

Therefore, the developed algorithms are designed and tuned under the constraint of

keeping false positive rates below 5%, while trying to maximize true positive rates.

2.5.3 Traditional Algorithm Parameters

Static TTI

The static TTI algorithm has two key parameters: the safety threshold TTI req and

the deceleration threshold that indicates the onset of braking. The TTI req parameter

is a natural choice for controlling how conservative the classifier should be and thus

is used as the Beta parameter for the ROC curve analysis. Values for TTI req were

selected between 1.0 and 10.0 seconds. The onset of braking is taken to be the time
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Figure 2-7: Regression curves used as decision thresholds for the SDR algorithm.

at which the vehicle’s deceleration is less than −0.075g. Earlier work has shown that

this is a realistic threshold for identifying brake activation [47]. In the event that a

vehicle never crosses this threshold (i.e., does not brake), the classification is instead

performed at twarn.

Static RDP

The static RDP algorithm is also very straightforward. The only adjustable param-

eter is the warning threshold RDPwarn. So this is taken as the Beta for the ROC

curve, with values ranging from 0.01g to 3.0g.
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Speed-Distance Regression

For the SDR classifier, several regression curves must first be fit to a set of observations

from compliant drivers. Each curve models some percentage of compliant driver

behaviors, and the choice of these percentages determines the classification thresholds.

Fig. 2-7 shows one such set of curves. The bottom curve corresponds to 0%, that is,

none of the measurements from the compliant driver training data were below this

curve. The top curve corresponds to the 80th percentile of compliant drivers. The

other curves cover the range, with a higher density of curves at lower percentages to

allow for more precise threshold selection. Each choice of curve for the classification

threshold is treated as a Beta parameter for the ROC analysis.

2.5.4 SVM-BF Parameters

There are four key parameters for the SVM-BF classifier: the Tw window size, the

discount factor C, the decision threshold τS, and the sliding window size K (See

Section 2.3.2). The threshold variable is selected as the Beta parameter as it was

introduced specifically to tune the performance of the algorithm. Models with Tw

varying from 5 to 15 observations were considered, while C varied from 0.5 to 1.0

and K ranged from 3 to 10 measurements. All combinations of these parameters

were tested, and Fig. 2-8 shows the ten combinations that produced the highest

rates of true positives while maintaining a false positive rate below 5% for one basic

generalization test. The results for this test (see Section 5.5.4) were obtained using the

best combination of parameters in Fig. 2-8: Tw = 15, K = 7, C = 0.9, and τS = 0.9.

The hyperparameters a and b in Equation 2.9 are set both to 0.5, specifying no bias

towards either behavior. These values could be changed to reflect a bias towards one

driving behavior if the system is given prior knowledge of the target driving history.

2.5.5 HMM Parameters

There are three key parameters for the HMM-based classifier: the number of states

in the HMM, the Tw window size, and the decision threshold τH. As in the previous
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Figure 2-8: Ten best parameter combinations for the SVM-BF classifier with corre-
sponding true positive rates for a basic generalization test with TTImin = 1.6 s and
dmin = 10 m.

methods, the threshold is selected as the Beta parameter. The number of states

determines how many different modes the HMMs can capture, and as a result, the

range of behaviors that can be classified accurately. However, increasing the number of

states also increases the complexity of the model and the risk of overfitting the training

data. Models with between 6 and 15 states were considered, while Tw was varied from

10 to 20 observations. All combinations of these parameters were tested, and Fig. 2-9
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shows the ten combinations that produced the highest rates of true positives while

maintaining a false positive rate below 5% for one basic generalization test. The

results for this test (see Section 5.5.4) were obtained using the best combination of

parameters in Fig. 2-9: Tw = 15, 8 states, and τH = 54.4. Recall that τH defines a

threshold on the likelihood ratio (Section 2.3.3) and is distinct from τS, which is a

threshold on the probability of being classified as compliant (Section 2.3.2). Monte

Carlo testing was used to learn multiple models for each set of parameters in order

to reduce the effects of local minima on the algorithm.

2.6 Results

This section presents the results of the traditional and the developed SVM-BF and

HMM-based algorithms described in Section 2.3. The algorithms were implemented

in MATLAB using the LIBSVM toolbox [67] for SVM-BF and the PMTK toolkit

[68] for the HMM-based classifier. Although these classifiers rely on more complex

techniques than the traditional methods, most of the computational complexity is in

the offline training phase. In fact, the time complexity of the testing phase of the

SVM-BF algorithm is O(NtrTwd) [69], while that of the HMM algorithm is O(n2Twd)

[70]. Note that n, the number of states in the HMM, is typically much smaller than

Ntr, the number of training vectors in the SVM-BF. However, in practice, Ntr is

replaced by the number of support vectors, which is significantly smaller, leading to

comparable run times for both algorithms.

For online classification of a new trajectory, the computation time for the testing

phase must be small. For the results presented below, the SVM-BF algorithm has an

average run-time of 5 ms per trajectory evaluation, while the HMM-based classifier

averages 2 ms per trajectory evaluation. These tests were run on a 2.5 GHz quad-core

computer, but transitioning to an embedded implementation, rather than a MATLAB

implementation, would greatly speed up the computation, allowing it to be run on

less powerful hardware while retaining these small runtimes.

Figs. 2-10, 2-11, and 2-12 show the ROC curves for the five algorithms described
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Figure 2-9: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for a basic generalization test with TTImin = 1.6 s
and dmin = 10 m

above. The algorithms were tested with both the basic generalization test and the

m-fold cross-validation test (e.g., compare Fig. 2-10(a) and Fig. 2-10(b)). Each test

also considered three different decision thresholds: TTImin = 1.0 s, 1.6 s, and 2.0 s

(e.g., compare Fig. 2-10(a) vs. Fig. 2-11(a) vs. Fig. 2-12(a)). These values of TTImin

are also coupled with dmin = 6.25 m, 10.0 m, and 12.5 m (refer to Section 4.1.2).

The parameters used in the SVM-BF and HMM-based algorithms for each test were

chosen according to the procedure explained in Section 2.5.1. They are summarized
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in Appendix A. The inset in each plot shows the region of interest around a false

positive rate of 5%, while the precise true positive rates at this point are detailed in

Table 2.4.

As these results illustrate, both the SVM-BF classifier and the HMM-based clas-

sifier out-perform the traditional methods by a significant margin in each set of tests.

Although there is a difference between the true positive rates of the SVM-BF and

HMM-based classifiers, this difference is consistent across tests, typically in the range

of 5-7%. In contrast, the performance difference between these new approaches and

the leading traditional one (RDP) increases with TTImin. For example, in the basic

generalization tests, the SVM-BF algorithm has roughly 10% higher true positive

rates than the static RDP algorithm for a TTImin of 1.0 s. However, as this decision

time is increased to 1.6 s and 2.0 s, the difference between SVM-BF and static RDP

grows to nearly 18% and 21%, respectively (See Table 2.4). The m-fold tests exhibit

a similar pattern. This reflects the fact that making a decision earlier, i.e., with a

larger TTImin, is a more challenging problem. The ability to perform well with larger

TTImin is of practical importance in order to provide an earlier warning to the driver.

As Figs. 2-10, 2-11, and 2-12 illustrate, the SVM-BF algorithm produces the

highest rate of true positives while keeping the false positive rate at 5%. This follows

from the fact that the SVM algorithm uses convex optimization to perform accurate

binary classification. With the radial basis kernel, it is able to capture the nuances

characterizing each class of driver behavior. Note that ROC curves for SVM-BF

are densely computed for false positive rates less than 5%, as this is the area of

interest. The HMM-based classifier also yields a higher rate of true positives than the

traditional methods because it is a rich model that couples observations into modes

(states) that characterize driver behavior. The state transitions also capture the time

dependencies that are inherent in the evolution of driver behavior while approaching

an intersection. However, the HMM-based classifier does not perform as well as the

SVM-BF classifier as it is trying to fit general models to two sets of behaviors that

may include a few drastic outliers. In contrast, the SVM is only trying to find the

separating boundary or hyperplane between these two models.
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There are also several interesting trends in the traditional methods. The RDP -

based classifier appears to be much more accurate than the other two methods across

all the test combinations. Since RDP can be thought of as an effort-based parameter,

it provides richer information than the observations used in the other two traditional

algorithms.

Although the TTI -based classifier may resemble how humans classify approaching

vehicles, the results also show that it does not perform well. This is in part due to

the fact that the decision is made at the onset of braking. In general, the onset of

braking occurs well before TTImin, so the challenge of correctly classifying a vehicle

is comparable to classifying a vehicle with a large TTImin. This is reflected in the

nearly identical TTI curves in Figs. 2-10, 2-11, and 2-12.

The SDR classifier exhibits a unique behavior as TTImin is varied. For low TTImin,

it outperforms the TTI algorithm. However, as TTImin increases, performance drops

severely and is unable to reach a false positive rate of 5% for any choice of the threshold

curve (e.g., compare Fig. 2-10(a) and Fig. 2-12(b)). Thus the SDR algorithm does

not yield a true positive rate for TTImin of 1.6 s and 2.0 s, as indicated in Table 2.4.

In much of the existing literature, classification is performed when the driver

arrives at the intersection, i.e., with TTImin = 0.0 s. This is the case in Ref. [46],

which shows very accurate classification using the SDR algorithm. Since this is a less

challenging scenario, most other algorithms, including the SVM-BF and HMM-based

classifiers, would also see a substantial performance improvement. However, since the

objective is to provide an early warning, TTImin must be selected to be larger than

the typical driver response time, as described in Section 2.5.2.

The general trends observed with these traditional methods are also consistent

with the behaviors observed in previous work [46]. This ensures the new algorithms

developed in this work are evaluated accurately against the baseline performance set

by these traditional methods.

The basic generalization and m-fold cross-validation tests show the consistent im-

provement the SMV-BF and HMM-based algorithms provide in classifying a new set

of trajectories. This validates the two approaches and demonstrates the flexibility
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Table 2.4: True positive rates for each algorithm for 5% false positives

Generalization Tests

TTImin Algorithm
TP (%) TP (%)

(Basic) (m-Fold)

1.0 s

SVM 83.4 85.4

HMM 77.3 80.0

RDP 73.1 71.1

TTI 29.0 30.0

SDR 64.8 61.0

1.6 s

SVM 71.1 76.5

HMM 64.5 65.2

RDP 53.5 52.3

TTI 31.4 30.6

SDR - -

2.0 s

SVM 65.2 66.1

HMM 58.6 61.6

RDP 44.6 44.9

TTI 32.3 31.5

SDR - -

embedded in their design. Furthermore, the ROC analysis and testing of multiple

TTImin values gives the designer or engineer the flexibility to select the parameters

that best match the requirements for any real-world implementation of these algo-

rithms.

It is worth nothing that the bias introduced due to training and testing on the

same intersection is limited due to 1) the large number of trajectories and equiv-

alently drivers included, and 2) an expected similar trend of how drivers approach

intersections independently of intersection geometry or location.
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2.7 Conclusion

This chapter introduced two new approaches for classifying driver behaviors at road

intersections. The first one, denoted SVM-BF, combines a Support Vector Machines

classifier with a Bayesian filter, to discriminate between compliant drivers and vio-

lators based on vehicle speed, acceleration and distance to intersection. The second

one, an HMM-based classifier, uses the EM algorithm to develop two distinct Hid-

den Markov Models for compliant and violating behaviors. To optimize safety while

respecting driving acceptance levels, the algorithms were designed to maximize true

positive rates while keeping false alarm rates below the 5% threshold. The two al-

gorithms were successfully validated on more than 10,000 intersection approaches

collected in Christiansburg, VA as part of the US Department of Transportation

CICAS-V initiative. The performance of the algorithms were also compared to three

popular traditional approaches consisting of a TTI-based, an RDP-based, and an

SDR-based algorithm. The results of several generalization tests showed consistent

and significant improvements with the developed algorithms, ranging from a mini-

mum of 10% increase in true positive rates to more than 20% increase when issuing

a warning 1 and 2 seconds in advance, respectively.

For real application, the choice would be the SVM-BF algorithm because it was

the top performer algorithm for all the performed tests. In practice, the algorithm

could be implemented in the vehicle as part of a driver assistance system, or/and on

future intelligent intersection infrastructure. A driver assistance system would have

different set parameters for the SVM-BF algorithm each associated with a different

number of intersection classes (e.g., urban vs. rural). When the vehicle approaches an

intersection, the system will find the most likely intersection class and then perform

the classification. If the SVM-BF is is implemented on the intersection infrastruc-

ture, the parameters will be learnt from previously observed intersection approaches,

and could also include different subsets corresponding to more specific characteristics

(e.g., day vs. night).
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(a) ROC curves for 10000/1000 at TTImin = 1.0 s
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(b) ROC curves for 5000/1000 m-fold at TTImin = 1.0 s

Figure 2-10: ROC curves for all five algorithms at TTI min = 1.0 s with insets showing
area of interest around 5% false positives
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(a) ROC curves for 10000/1000 at TTImin = 1.6 s
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(b) ROC curves for 5000/1000 m-fold at TTImin = 1.6 s

Figure 2-11: ROC curves for all five algorithms at TTI min = 1.6 s with insets showing
area of interest around 5% false positives
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(a) ROC curves for 10000/1000 at TTImin = 2.0 s
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(b) ROC curves for 5000/1000 m-fold at TTImin = 2.0 s

Figure 2-12: ROC curves for all five algorithms at TTI min = 2.0 s with insets showing
area of interest around 5% false positives

64



Chapter 3

Trajectory Prediction

This chapter presents an efficient trajectory prediction algorithm [29, 33] that has

been developed to improve the performance of future collision avoidance and de-

tection systems. The main idea is to embed the inferred intention information of

surrounding agents into their estimated reachability sets to obtain a probabilistic de-

scription of their future paths. More specifically, the proposed approach combines the

recently developed RRT-Reach algorithm [30] and mixtures of Gaussian Processes.

The resulting approach, denoted as RR-GP, has RRT-Reach’s benefits of comput-

ing trajectories that are dynamically feasible by construction, and the flexibility of

GP’s nonparametric Bayesian model, therefore efficiently approximating the reacha-

bility sets of surrounding vehicles. A demonstrative simulation on a car-like vehicle

illustrates the advantages of the RR-GP approach, and highlights its performance by

comparing it to two other GP-based algorithms. Another contribution of this chap-

ter is the validation of the RR-GP approach on real-traffic data from the CICAS-V

project.

3.1 Introduction

Future collision avoidance (CA) and conflict detection (CD) systems must handle

increasingly complex scenarios including both unmanned and manned vehicles inter-

acting in uncertain and possibly hostile environments. A key challenge is inferring
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threats posed by the surrounding agents through prediction of their future motion.

For example, future advanced driver assistance systems (ADAS) could include new

risk assessment algorithms for intersections, one of the most dangerous road scenarios

due to the difficulty in predicting incoming drivers’ trajectories [25]. Another exam-

ple is the Next Generation Air Transportation System (NextGen), which has the goal

of increasing the safety and capacity of air transport operations but will require the

development of new conflict detection algorithms that can tolerate tighter separation

distances and an increasing number of aircraft flying in the National Air Space [26].

A key component for such threat assessment systems is a trajectory prediction

algorithm (TPA) that estimates the future states of the target vehicles ; these vehicles

move in the vicinity of the host vehicle that has the threat assessment system onboard.

The output of the TPA along with the knowledge of the current path of the host

vehicle are fed into a threat assessment algorithm, which computes an estimate of the

threat incurred by the host vehicle if it follows its intended path. A collision warning

system uses the output of the threat assessment algorithm to warn the host vehicle

about the risk of its path, while a collision mitigation system takes over the control

of the vehicle and apply an escape maneuver that reduces the threat of collision.

A major challenge in trajectory prediction algorithms is caused by the different

sources of uncertainties in dynamic environments. They can be classified into two

different categories of uncertainties: 1) environment sensing (ES), and 2) environment

predictability (EP) [22]. While the ES type deals with the uncertainty due to the

imperfection of sensor measurements or incomplete knowledge of the environment

configuration, the EP type is concerned with the uncertainty in the future state of

the environment. The focus of this work is on the EP uncertainty. Even with the

assumption of the existence of perfect sensors and complete knowledge of the current

state environment, predicting long-term trajectories of mobile agents remains very

difficult. For instance, when approaching a road intersection, an agent could follow

different sets of paths corresponding to different underlying intents (e.g., right turns

versus straight paths), in addition to traversing its paths with varying speeds and

headings. Modelling these variations is impossible when only relying on perfect state
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information.

Modelling the evolution of target vehicles can be classified into three main cat-

egories: 1) worst-case, 2) pattern-based, and 3) dynamic-based approaches. In the

worst-case approach, the target vehicle is assumed to be actively trying to collide

with the host vehicle [35, 71, 72]. The predicted trajectory of the target vehicle is the

solution of a differential game where the target vehicle is modelled as a pursuer and

the host vehicle as an evader. This solution is conservative so it is typically limited

to short time-horizons in collision warning/mitigation problems to keep the level of

false positives below a reasonable threshold [10]. In the pattern based approach, the

vehicles are assumed to move according to typical patterns across the environment.

These patterns are learned by observing the targets in the environment. There are

two main techniques that fall under this category: a) discrete state-space, and b)

clustering based [21]. In the discrete state-space technique, the motion model is typ-

ically based on Markov chains: the object state evolves from one state to another

according to a learned transition probability [73]. In the clustering based technique,

previously observed trajectories are grouped into different clusters. Each cluster is

then represented by one trajectory prototype [74]. Given a partial path, prediction

is then performed by finding the most likely cluster, or computing a probability dis-

tribution over the the different clusters. Both pattern based techniques have been

popular in solving long-term prediction problems for mobile agents [21]. Finally, the

dynamic based approach predicts the motion of the vehicle by typically estimating

the current state of the vehicle and propagating it in the future assuming a fixed

mode of operation. This prediction typically uses a continuous Bayes filters such as

the Kalman Filter or its variations [75]. A popular extension in the target tracking

literature is the Interacting Multiple Model Kalman Filter (IMM-KF). It uses avail-

able observations to update a bank of Kalman Filters and then find the filter closest

to the current mode of operation of the vehicle [76]. Since they are only based on the

dynamic model of the vehicle and its current state, dynamic based approaches are

mainly suitable for short-term motion prediction. They typically perform poorly in

long term prediction of trajectories due to their inability to model future changes in
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control inputs or take into consideration other external factors such as obstacles.

Since the focus of this work is on long-term prediction of typical trajectories of ve-

hicles navigating in cluttered environments, a clustering-based approach is followed.

Although learning a dynamic obstacle motion pattern model from training data re-

duces the need for expert knowledge, there still exists a need to choose a class of

models for the motion patterns. If the choice is a model class that is too simple, such

as linear trajectories, the variety of motion patterns encountered would not be cap-

tured. On the other hand, if the pick is an extremely sophisticated model class with

many parameters, large amounts of data would be needed, which can be costly or

impossible to collect in real world domains [77]. Existing work showed that a specific

clustering-based technique which is a Bayesian nonparametric approach to modeling

motion patterns is well-suited to modeling dynamic obstacles with unknown motion

patterns [77, 78]. This nonparametric model, a mixture of Gaussian process (GP),

generalizes well from small amounts of data and allows the model to capture complex

trajectories as more data is observed. This work augments the GP predictions with a

new approach based on closed-loop rapidly-exploring random trees (CL-RRT) [31] to

generate dynamically feasible and collision-free trajectories that improve the accuracy

of trajectory prediction results.

Section 3.2 first describes the problem statement. Then, Section 3.3 reviews of

the motion model [77], which is used in Section 3.4 with the CL-RRT algorithm

to as the main components of the RR-GP algorithm. Finally, results showing the

performance of RR-GP are presented in Section 3.5 in a simulated environment with

a human-driven target vehicle.

3.2 Problem Statement

The focus of this work is on the problem of predicting the position of a target vehicle

moving according to a set of motion patterns in a complex environment cluttered with

obstacles. The goal is to develop an efficient mechanism for prediction that is suitable

for real-time applications while achieving high long-term prediction accuracy. There
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Figure 3-1: Architecture of the Trajectory Prediction Algorithm (TPA).

are two main potential applications for the developed algorithm. The first is improved

navigation for autonomous vehicles where the prediction algorithm would extend the

collision avoidance capabilities of a probabilistic path planner. The second potential

application is better threat assessment systems for driver collision warning detection.

In fact, a main motivation for this work is the road intersection threat assessment

problem [30]; the trajectory prediction algorithm would improve the estimation of

threat of dangerous vehicles approaching an intersection.

Figure 3-1 shows the high level architecture of the proposed solution. The input

of the Trajectory Prediction Algorithm (TPA) is sensor measurements of the target

vehicle, and its output is a distribution over future trajectories of the target vehicle.

The first component of the TPA is the Intention Predictor that uses the current and

previous sensor measurements, along with a set of typical motion patterns, to pro-
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duce an intent distribution which is given to the trajectory generation component.

Using the intent information, a dynamic model of the target vehicle, and a map of the

environment, the trajectory generator outputs a set of predicted trajectories with dif-

ferent probabilities of occurrence. To limit the scope of the problem to uncertainty in

environment predictability (EP), the sensors measurements are assumed to be noise-

free despite the motion pattern representation being robust to noisy measurements.

Additionally, the map of the environment, typically a road network, is assumed to be

available a priori. The next section introduces the motion model used in the intent

predictor.

3.3 Motion Model

The motion model formulation is based on earlier work by Joseph et al. [77–79]. It is

reproduced in this section for the reader’s convenience.

3.3.1 Motion Pattern

A motion pattern is defined as a mapping from positions to a distribution over ve-

locities. Given an target vehicle current position (xt, yt) and a trajectory derivative

(∆xt
∆t
, ∆yt

∆t
), at time t, its predicted next position (xt+1, yt+1) at time t+∆t is expressed

as (xt + ∆xt
∆t

∆t, yt + ∆yt
∆t

∆t). Thus, modeling trajectory derivatives is equivalent to

modeling trajectories. But it has several advantages including 1) being unaffected to

the lengths and discretizations of the trajectories, and 2) allowing clustering of tra-

jectories sharing same characteristics represented by their flow fields, i.e., trajectory

derivatives, as for example trajectories starting from different locations and ending

in a single one.

3.3.2 Mixtures of Motion Patterns

A finite mixture model specifies a prior probability p(b1), p(b2), . . . , p(bM) for each of

its M motion patterns b1, b2, . . . , bM . Then, under the mixture model, the probability
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of the ith observed trajectory ti is expressed as

p(ti) =
M∑
j=1

p(bj)p(t
i|bj). (3.1)

Note that throughout this chapter t without a superscript refers to the time, while

t with a superscript refers to a trajectory, where the superscript is an index of the

trajectory among all trajectories belonging to a specific motion pattern. Also, since

we are interested in vehicles traveling along a known road network we can assume the

number of motion patterns, M , is known a priori.

The motion model is defined as a mixture of weighted motion patterns [77, 78].

Each motion pattern is modeled as a pair of Gaussian pocesses that map (x, y) posi-

tions to distributions over velocities ∆x
∆t

and ∆y
∆t

. The weight on each motion pattern

is its probability of occurrence. This work assumes that the trajectory in the train-

ing data are labeled with their corresponding motion pattern. This is a reasonable

assumption for several domains of interests (e.g., road intersections) where the road

network is known and the different set of patterns is distinguishable during a pre-

processing step. A clustering technique could also be used to compute the number

of Gaussian Processes using Dirichlet Processes [77] or K-clustering along with the

Expectation-Maximization (EM) algorithm [80].

The probability of trajectory ti given motion pattern bj, p(t
i|bj), is specified by the

choice of motion model. It represents the distribution over trajectories for a specific

mobility pattern.

A simple example of distribution over trajectories is that of a linear model with

Gaussian noise, but this approach cannot capture the dynamics of the variety expected

in this work. Another common approach are discrete Markov models, but these

are not well suited to model mobile agents in the types of real-world domains of

interest here [79, 80]. In particular, they have an inherent limitation related to the

decision of the state discretization. To capture the variety of trajectories that might be

encountered, an expressive representation (a fine discretization) is necessary, resulting

in a model that requires a large amount of training data. In real-world domains where
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collecting a large data set is costly, or impossible, these models are prone to over-

fitting. A coarser discretization can be used to prevent over-fitting, but then the

approach is unable to accurately capture the agent’s dynamics. This works uses

Gaussian processes (GP) as the model for motion patterns. Although GP’s have a

significant mathematical and computational cost, they provide a natural balancing

between generalization in regions with sparse data and preventing under-fitting in

regions of dense data [81]. Related work has also highlighted the advantages of using

Gaussian Processes over traditional discretion-based techniques [80, 82, 83].

3.3.3 Gaussian Process Motion Patterns

An agent trajectory is observed as a set of discrete measurements along its continuous

path through space. These measurements are interpolated using a Gaussian process

(GP) that places a distribution over functions [81]. Gaussian process non-parametric

models are extremely robust to unaligned, noisy measurements. Furthermore, they

are well-suited for modeling the continuous paths underlying potentially non-uniform

time-series samples of the agent’s trajectories.

Two quantities must be computed inside the summation of Eq. (3.1) to determine

the likelihood of each behavior, p(bj). The first term is the prior probability of motion

pattern bj. After observing an agent’s trajectory ti, the posterior probability of the

motion pattern is

p(bj|ti) ∝ p(ti|bj)p(bj) (3.2)

where p(ti|bj) is the probability of trajectory ti under motion pattern bj. This distri-

bution, p(ti|bj), is computed by

p(ti|bj) =
Li∏
t=0

p

(
∆xt
∆t

∣∣∣∣xi0:t, y
i
0:t, {tk : zk = j}, θGPx,j

)
·p
(

∆yt
∆t

∣∣∣∣xi0:t, y
i
0:t, {tk : zk = j}, θGPy,j

)
(3.3)

where Li is the length of trajectory i, zk indicates the motion pattern trajectory tk

is assigned to and θGPx,j and θGPy,j are the hyperparameters of the Gaussian process for

motion pattern bj.
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A set of mean and covariance functions specifies each GP motion pattern. The

mean functions are written as E[∆x
∆t

] = µx(x, y) and E[∆y
∆t

] = µy(x, y), and they

are both implicitly initialized to zero everywhere (for all x and y) by the choice of

parametrization of the covariance function. This encodes the prior bias that the

target vehicle is expected to stay in the same place if no any additional knowledge

is given. The covariance function of the x-direction is denoted by Kx(x, y, x
′, y′),

which expresses the correlation between trajectory derivatives at two positions, (x, y)

and (x′, y′). Given locations (x1, y1, .., xk, yk), the corresponding trajectory derivatives

(∆x1

∆t
, .., ∆xk

∆t
) are jointly distributed according to a Gaussian with mean {µx(x1, y1), ..,

µx(xk, yk)} and covariance Σ, where the Σij = Kx(xi, yi, xj, yj). This work uses the

standard squared exponential covariance function

Kx(x, y, x
′, y′) = σ2

x exp

(
−(x− x′)2

2wx2
− (y − y′)2

2wy2

)
+ σ2

nδ(x, y, x
′, y′) (3.4)

where δ(x, y, x′, y′) = 1 if x = x′ and y = y′ and zero otherwise. The exponential

term above encodes that similar trajectories should make similar predictions and the

length-scale parameters wx and wy normalize for the scale of the data. The σn-term

represents within-point variation (e.g., due to measurement or process noise); the

ratio of σn and σx weights the relative effects of noise and influences from nearby

points. θGPx,j refers to the set of hyperparameters σx, σn, wx, and wy associated with

motion pattern bj (each motion pattern has a separate set of hyperparameters).

For a GP over trajectory derivatives trained with tuples (xk, yk,
∆xk
∆t

), the predic-

tive distribution over the trajectory derivative ∆x
∆t

∗
for a new point (x∗, y∗) is given

by

µ∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y )−1 ∆X

∆t
(3.5)

σ2
∆x
∆t

∗ = Kx(x
∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x

∗,y∗)

where the expression Kx(X, Y,X, Y ) is shorthand for the covariance matrix Σ with

terms Σij = Kx(xi, yi, xj, yj), with {X, Y } representing the previous trajectory points.
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The equations for ∆y
∆t

∗
are equivalent to those above, using the covariance Ky.

3.3.4 Estimating Future Trajectories

As summarized in Section 3.3.3, the Gaussian process motion model places a Gaussian

distribution over trajectory derivatives (∆x
∆t
, ∆y

∆t
) for every position (x, y). While this

provides a distribution over the agent’s next location, for longer term predictions this

distribution over next position must be used to produce a distribution over the future

trajectories. Unfortunately, the distribution over future trajectories can be computed

in closed form, so instead, the approach is to draw trajectory samples and use these

sampled trajectories as a trajectory distribution.

To sample a trajectory from a current starting location (x0, y0), first a trajectory

derivative (∆x0

∆t
, ∆y0

∆t
) is sampled to calculate the agent’s next location (x1, y1). Starting

from (x1, y1), the trajectory derivative (∆x1

∆t
, ∆y1

∆t
) is sampled to estimate its next

location (x2, y2). The process is then repeated until the trajectory is of the desired

length L. The entire sampling procedure is then repeated from the current location

(x0, y0) multiple times to obtain a set of future trajectories the agent may take. Given

a current location (xt, yt) and a given motion pattern bj, sampling K time steps in

the future is done using

p(xt+K , yt+K |xt, yt, bj)

=
K−1∏
k=0

p(xt+k+1, yt+k+1|xt+k, yt+k, bj)

=
K−1∏
k=0

p

(
∆xt+k+1

∆t
,
∆yt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj)

=
K−1∏
k=0

p

(
∆xt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj) p(∆yt+k+1

∆t

∣∣∣∣xt+k, yt+k, bj)

=
K−1∏
k=0

N
(
xt+k+1;µ

j,
∆xt+k+1

∆t

, σ2

j,
∆xt+k+1

∆t

)
N
(
yt+k+1;µ

j,
∆yt+k+1

∆t

, σ2

j,
∆yt+k+1

∆t

)
(3.6)

where the parameters from the Gaussian distribution are calculated using Eq. (3.5).

When this process is done online, the trajectory’s motion pattern bj will not be known

74



directly. Given the past observed trajectory (x0, y0), ..., (xt, yt), the distribution can be

calculated K time steps in the future by combining Eq. (3.1) and Eq. (3.6). Formally,

p(xt+K , yt+K |x0:t, y0:t)

=
M∑
j=1

p(xt+K , yt+K |x0:t, y0:t, bj)p(bj|x0:t, y0:t) (3.7)

=
M∑
j=1

p(xt+K , yt+K |xt, yt, bj)p(bj|x0:t, y0:t) (3.8)

where p(bj|x0:t, y0:t) is the probability of motion pattern bj given the observed portion

of the trajectory and p(xt+K , yt+K |xt, yt, bj) is given by Eq. (3.6). The progression

from Eq. (3.7) to Eq. (3.8) is based on the assumption that, given bj, the trajectory’s

history provides no additional information about the future location of the agent.

Please refer to the authors’ previous work [77, 79] for further discussion and analysis

of the motion model implementation and performance.

3.4 RR-GP Trajectory Prediction Algorithm

Section 3.3 outlined the approach of using GP mixtures to model mobility patterns

and its benefits over other models. However, in practice, GPs suffer from two inter-

connected shortcomings: their high computational cost and their inability to embed

static feasibility or vehicle dynamical constraints. Since GPs are based on statistical

learning, they are unable to model prior knowledge of road boundaries, static obsta-

cle location, or dynamic feasibility constraints (e.g., minimum turning radius). Very

dense training data may alleviate this feasibility problem by capturing, in great detail,

the environment configuration and physical limitations of the vehicle. Unfortunately,

the computation time for predicting future trajectories using the resulting GPs would

suffer significantly, rendering the motion model unusable for real-time applications.

To handle both of these problems simultaneously, this section introduces a spe-

cific implementation of the TPA architecture (Section 3.2), denoted as RR-GP (See

Figure 3-2). This novel approach augments RRT-Reach, a reachability based method
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Figure 3-2: RR-GP High Level Architecture.

which creates dense, feasible trajectories from sparse samples, with the GP mixture

model. RRT-Reach is an extension of the closed-loop rapidly-exploring random tree

(CL-RRT) algorithm to compute reachable sets of moving objects in real-time [32].

RRT-Reach was also successfully used in a novel threat assessment module for driver

assistance systems at intersections [30]. Refer to Chapter 4 for more details about

the original RRT-Reach algorithm.

RR-GP is based on two main components: 1) a rapidly-exploring random tree

(RRT), and 2) a GP-based mobility model. For each GP-based pattern bj, j ∈

{1, . . . ,M} as defined in Section 3.3, and the current position of the target vehicle,

the RR-GP uses an RRT-based technique to grow a separate tree of trajectories that

follows bj while guaranteeing dynamical feasibility and collision avoidance. More

specifically, it is based on the closed-loop RRT (CL-RRT) algorithm [31], which grows

a tree by randomly sampling points in the environment and simulating dynamically
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feasible trajectory towards them. CL-RRT was successfully used by the MIT team

in the 2007 DARPA Grand Challenge [31]. CL-RRT samples inputs to a controller

rather than the vehicle itself, allowing the generation of smoother trajectories more

efficiently than traditional RRT algorithms. Unlike the original CL-RRT approach,

the RR-GP tree is not used to create paths leading to a goal location, but instead

each tree is grown toward regions corresponding to a learned mobility pattern bj of

the target vehicle (See Figure 3-3). RR-GP is also different from the RRT-Reach

algorithm in that it does not approximate the complete reachability set of target

vehicle. RRT-Reach is a more conservative approach that could be useful when no

information regarding typical patterns is provided. Finally, note that throughout

this chapter bj is sometimes referred to as an intent, since each mobility pattern

corresponds to a different intentional motion pattern.

3.4.1 Single Tree RR-GP Algorithm

In RR-GP, it is assumed that the target vehicle has car-like dynamics, more specif-

ically a bicycle dynamical model [84]. Another assumption is that the parameters of

the model are available but its inputs are unknown; they represent the commands

that the target vehicle applies to follow trajectories generated by RR-GP. The tar-

get vehicle inputs are approximated by the outputs of a pure-pursuit (PP) low level

controller [85] that computes a sequence of commands towards samples generated

from the GP. Note that the RR-GP algorithm can be easily modified to handle other

dynamical models and low level controllers. Another interesting observation is that

the unmodeled process noise in the dynamical model is indirectly considered in both

the GP and RRT-Reach components. In the GP component, σn in Equation 3.4

could model the process noise, while the closed-loop RRT in RRT-Reach is robust to

unmodelled process noise [31].

Every time Algorithm 1 is called, a tree denoted as TGP is initialized with a root

node at the current target vehicle position (x(t), y(t)). Variable tGP , which is used

for time bookkeeping in the expansion mechanism of TGP , is also initialized to t+ ∆t,

where t is the current time, and ∆t is the GP sampling time interval. Variable gp is
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Figure 3-3: Simple RR-GP Illustration (M = 1). RR-GP grows a tree (in brown)
using GP samples (orange dots) sampled at ∆t intervals for a given motion pattern
or intent b. The green circle represents the actual size of the target vehicle. The
resulting tree provides a distribution of predicted trajectories of the target at δt� ∆t
increments.

initialized to the learned GP mobility pattern b. Finally, variable K specifying the

number of time steps in the GP sampling is initialized to 1. At each step, only nodes

belonging to the time bucket tGP −∆t are eligible to be expanded. They correspond

to the nodes added at to the previous tGP . Initially, the root node is the only node

added to time bucket corresponding to initial time t. To grow TGP , first a sample

xsamp is taken from the environment (line 3) at time tGP +∆t, or equivalently K time

steps in the future using Eq. (3.6). The nodes nearest to this sample, which were

added in the previous step (i.e., belonging to time bucket tGP −∆t), are identified for

tree expansion in terms of some distance heuristics (line 4). The algorithm attempts

to connect the nearest node to the sample using a straight line reference path; this

path is then tracked using the propagation function of a PP controller for steering

and a Proportional-Integral controller for tracking the velocity obtained from the GP
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Algorithm 1 RR-GP, Single Tree Expansion

1: Initialize tree TGP with node at (x(t), y(t)); gp ← GP motion pattern b; tGP ←
t+ ∆t; K ← 1; nsuccess ← 0; ninfeas ← 0

2: while tGP − t ≤ Th do
3: Take sample xsamp from gp, K time steps in the future using Eq. (3.6), and

variance heuristics if necessary
4: Among nodes added at tGP − ∆t, identify N nearest to xsamp using distance

heuristics
5: for each nearest node, in the sorted order do
6: Extend TGP from nearest node using propagation function until it reaches

xsamp

7: if propagated portion is collision free then
8: Add sample to TGP and create intermediate nodes as appropriate break
9: Increment successful connection count nsuccess

10: else
11: Increment infeasible connection count ninfeas and if limit is reached goto

line 18
12: end if
13: end for
14: if nsuccess reached desired target then
15: tGP ← tGP + ∆t; K ← K + 1; nsuccess ← 0; ninfeas ← 0
16: end if
17: end while
18: return TGP

prediction [31]. The actual resulting path is dynamically feasible and is checked for

collisions. Since the TGP is trying to generate typical trajectories that the target

vehicle would follow, only a simulated trajectory that reaches the sample without a

collision is kept, and its corresponding node is added to the tree (line 8). Intermediate

nodes may be inserted occasionally to help faster future expansion. The new node

and intermediate nodes are added to the current tGP time bucket. When the total

number of successful connections nsuccess is reached, tGP is incremented by ∆t and K

is incremented by 1 (line 15).

Several heuristics have been used in Algorithm 1. RR-GP keeps tracks of the to-

tal number of unsuccessful connections ninfeas at each iteration. When ninfeas reaches

some predetermined first threshold, the variance of the GP for the current iteration

is temporary grown to capture a broader class of paths (line 3). This heuristic is

typically useful to generate feasible trajectories when GP samples are close to obsta-
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cles. For example, in Figure 3-3, variance of gp was increased at tGP = t+ 5∆t. But

if ninfeas reaches a second and final predetermined threshold, RR-GP “gives up” on

growing the tree, and returns TGP . This situation usually happens when the mobility

pattern b has a low likelihood and is generating a large number of GP samples in

infeasible areas of the environment. The nearest node selection chooses between a

cost-to-go metric and a path optimization metric that is based on estimated total

path length [86]. Nodes that result in an infeasible trajectory are marked as unsafe

and avoided in future node selections. These heuristics, along with the time bucket

logic, facilitate efficient feasible trajectory generation in RR-GP.

The nodes and edges of the resulting RR-GP are post-processed to produce a

fine time-parametrized distribution of the target vehicle future positions. Since the

RR-GP tree is grown at a higher rate compared to the original GP learning phase,

the resulting distribution is generated at δt << ∆t sec increments δt is the low-

level controller rate. The result is a significant improvement of the accuracy of the

prediction without a deterioration of the computation times (Section 3.5).

3.4.2 Multi-Tree RR-GP Algorithm

This section introduces the Multi-Tree RR-GP Algorithm that extends Algorithm

1 to handle multiple motion patterns for the target vehicle. A key feature of the

Multi-Tree RR-GP is its computation of the probability of each single tree based on

previous measurements of the target vehicle, which removes infeasible patterns and

results in a better prediction than traditional GP approaches (Section 3.5).

The length of the prediction problem is T seconds, and the prediction time horizon

is Th seconds. The value of Th is problem specific, and depends on the time length of

the training data. For example, in a threat assessment problem for road intersections,

Th will typically be in the order of 3 to 6 seconds [30]. The RR-GP algorithm updates

its measurement of the target vehicle every dt seconds. This value is chosen such that

it ensures that the inner loop (lines 6-9) of the Algorithm 2 reaches completion before

the next measurement update. Finally, the time period of the low-level controller is

equal to δt seconds. A low δt signifies a higher precision of the predicted trajectories,
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Algorithm 2 RR-GP, Multi-Tree Trajectory Prediction

1: Inputs: GP motion pattern bj; p(bj(0)) ∀j ∈ [1, . . . ,M ]
2: t← 0
3: while t < T do
4: Measure target vehicle position (x(t), y(t))
5: Update probability of each motion pattern p(bj(t)|x0:t, y0:t) using Eq. (3.2)
6: for each motion pattern bj do
7: Grow a single T jGP tree rooted at (x(t), y(t)) using bj (Algorithm 1)
8: Using T jGP , compute means and variances of predicted distribution

(x̂j(τ), ŷj(τ)),
∀τ ∈ [t+ δt, t+ 2δt, . . . , t+ Th]

9: end for
10: Adjust probability of each motion pattern using dynamic feasibility check (Al-

gorithm 3)
11: Propagate updated probabilities backwards and recompute p(x̂(τ), ŷ(τ)) ∀τ ∈

[0, δt, . . . , t] if any motion pattern probability was updated
12: p(x̂(τ), ŷ(τ))←

∑
j p(x̂j(τ), ŷj(τ))×p(bj(t)|x0:t, y0:t) ∀τ ∈ [t+δt, t+2δt, . . . , t+

Th] using Eq. (3.8)
13: t← t+ dt
14: end while

but can slightly affect computation times. A suitable range of δt is 0.02 s to 0.1 s for

the problems of interest.

The input of the Algorithm 2 is a set of GP motion patterns and the initial

probability distribution over the motion patterns. This prior probability of each

motion pattern is proportional to the number of of trajectories belonging to it. In

line 4, the position of the target vehicle is measured. Then, the probability that the

vehicle trajectory belong to each of the M motion patterns is updated using Eq. (3.2).

Recall that the measurements are assumed to be noise-free. For each motion pattern

(in parallel), line 7 grows a single-tree RR-GP rooted at the current position of the

target vehicle using Algorithm 1. Then, in line 8, the means and variances of the

predicted positions of the target vehicle (x̂(t), ŷ(t)) are computed for each time step τ

where τ ∈ [t+ δt, t+ 2δt, . . . , t+Th] using position and time information of the nodes

and edges of the single-tree output. This process can be parallelized for the different

motion patterns since there is no information sharing between the growth operation

of the different single RR-GP trees.
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Algorithm 3 Dynamic Feasibility Adjustment

1: Inputs: GP motion pattern bj; T jGP trees ∀j ∈ [1, . . . ,M ]
2: for each motion pattern bj do
3: if T jGP tree ended with infeasibility condition then
4: p̃(bj(t))← 0
5: else
6: p̃(bj(t))← p(bj(t))
7: end if
8: end for
9: for each motion pattern bj do

10: if
∑

j p̃(bj(t) > 0 then

11: p(bj(t))← p̃(bj(t))∑
j p̃(bj(t)

12: end if
13: end for

In line 10, the probability of each motion pattern is adjusted using Algorithm 3,

which zeros the probability of each pattern that ended in an infeasible region (line 4).

This modification helps the RR-GP algorithm converge in practice to the more likely

patterns faster by incorporating the dynamic feasibility into the probability compu-

tation of the motion patterns (See Section 3.5). The dynamic infeasibility for each

motion pattern bj is detected in line 3 of Algorithm 3 by checking if ninfeas reached its

limit while during the growth of T jGP tree. Line 11 of Algorithm 3, recomputes the

probability for each motion pattern to reflect the changes in Line 4. This probability

update is key to an earlier and therefore better prediction of the intent of the target

vehicle, leading to better trajectory prediction results (see Section 3.5.2). In the event

where all RR-GP trees end with an infeasible condition, the probability values are

not adjusted in order to conserve the second axiom of probability i.e., sum of the

intent probabilities equals to one. This infeasibility case should rarely happen since

the assumption is that the target vehicle actually follows one of the typical patterns.

Then, if any of the motion pattern probabilities was altered, line 11 of Algorithm 2 re-

computes the probability distribution of the positions of the target vehicle (x̂(t), ŷ(t))

for all time ∀τ ∈ [0, δt, 2δt, . . . , t]. This step is called the backward propagation (BP),

as it propagates the effects of the updated likelihoods to the previously computed

position distributions.
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Finally, Line 12 of Algorithm 2 combines the position prediction from the different

single-tree RR-GP output into one distribution by incorporating the updated motion

pattern probabilities bj into the position distribution of the target vehicle. This

computation is performed for all time τ where τ ∈ [t+δt, t+2δt, . . . , t+Th], resulting

in a probabilistic distribution of the future trajectories of the target vehicle that is

based on a mixture of GPs.

Figure 3-4 demonstrates the dynamic feasibility and collision avoidance features of

the RR-GP approach on a simple example consisting of two motion patterns belong-

ing to left and right paths around a single obstacle. Training and testing procedures

of RR-GP scenarios are explained in detail in Section 3.5. In this illustration, the

test trajectory belongs to the left motion pattern. At time t = 0 s (Figure 3-4(b))

the target vehicle is pointing upwards and the RR-GP outputs two trees using Algo-

rithm 2, one for each GP motion pattern. At current time t = 1 s (Figure 3-4(d)) the

vehicle has moved upwards and slightly rotated left. As in every step, RR-GP up-

dates the likelihoods (Figure 3-7) of each motion pattern using Equations 3.2 and 3.3,

and generates two new dynamically feasible trees. Figure 3-4(d) shows the updated

RR-GP output trees after receiving this second measurement. Simply due to the for-

ward movement and slight left rotation, RR-GP is starting to find more feasible left

trajectories than right trajectories (this can be seen by comparing the trajectories as

they pass the bottom left and bottom right corner of the obstacle). Finally, at time

t = 2 s (Figure 3-4(f)), the vehicle has more clearly turned to the left; the RR-GP

algorithm returns an incomplete right tree reflecting that all connections to grow the

tree further along the right motion pattern failed. This trajectory did, in fact, go

left as detected by RR-GP. It is also worth noticing that the GP samples were not

all infeasible at t = 2 s (Figure 3-4(e)). Furthermore, simple interpolation techniques

would not have been able to detect dynamic infeasibilities, highlighting the impor-

tance of the dynamic model embedded in the RRT-Reach component of the RR-GP

algorithm. Note that Figures 3-4(b), 3-4(d), and 3-4(f) show how the predicted left

trees are dynamically feasible and only grown to collision free regions which is key to

better predictions.
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Figure 3-4: Snapshots of the GP samples (left column) and dual-tree output (right
column) of the RR-GP algorithm on a test trajectory following the left GP motion
pattern. They illustrate RR-GP’s dynamic feasibility and collision avoidance features.
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Figure 3-5: Multiple Tree RR-GP Illustration. RR-GP grows six trees corresponding
to six different motion patterns of the target vehicle. A likelihood value is also
computed for each tree. The trees and the likelihood values are updated in real-time
with every new observation of the position of the target vehicle.

Figure 3-5 shows the trajectories generated by RR-GP in a scenario involving

six different motion patterns. One pattern consists of the vehicle navigating above

all obstacles from the top. Another intent corresponds to navigating above the first

obstacle, then in between the middle obstacles, and finally below the last obstacle.

The mobility patterns were learned using synthetic training trajectories, and used

in Section 4.2.4 in the testing of a probabilistic motion planner enhanced with the

RR-GP algorithm to plan safe paths in uncertain environments.

The next section demonstrates the Multi-Tree RR-GP Algorithm on a simplified

example that highlights the benefits of the developed approach. It also provides a

detailed comparison of the algorithm performance versus two other GP-based tech-

niques.
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3.5 Simulated Environment with Human-Operated

Target Vehicle

To highlight the advantages of the RR-GP algorithm discussed in Section 3.4, Al-

gorithm 2 is applied on an example scenario consisting of a single target vehicle

traveling in an environment with a single fixed obstacle. Recall that our purpose

behind augmenting the motion model’s predictions with the RRT component was to

both overcome the performance loss due to having to use sparse training data for

real-time planning as well as only allowing feasible trajectory predictions. The goal

of the example is to compare the performances of the RR-GP approach against two

baseline algorithms; they both use GP mixtures, but while one is given sparse train-

ing data (Sparse-GP), the other one is fed with dense training data (Dense-GP). The

performance metrics are both accuracy and computation time. The intuition is that

augmenting the GP mixture model with the RRT-Reach algorithm should achieve

similar runtime to the sparse GP mixture while maintaining (or even exceeding) the

performance of the dense GP mixture. Note that the RR-GP algorithm is trained

with the identical data as Sparse-GP, and is therefore equally ”sparse”.

3.5.1 Setup

The trajectories were manually generated by driving a car-like vehicle in a simulated

urban environment described in Ref. [32]. The vehicle uses the iRobot Create soft-

ware platform [87] with a skid-steered vehicle modified in software to emulate the

traditional automotive steering obeying the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(3.9)

where (x, y) is the rear axle position, v is the forward speed, θ is the heading, L is the

wheelbase equal to 0.33 m, a is the forward acceleration, and δ is the steering angle

(positive counter-clockwise). The state of the vehicle is s = (x, y, θ, v) ∈ S, while the
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input is u = (δ, a) ∈ U , including the constraints amin ≤ a ≤ amax and |δ| ≤ δmax,

where amin = −0.7 m/s2, amax = 0.4 m/s2, and δmax = 0.6 rad. The vehicle follows

two motion patterns, i.e., M = 2 in Eq. 3.1. Starting from its initial location, the

vehicle is either driven to the left of the obstacle or to its right. A total of 30 (15 left,

15 right) trajectories were driven, and data were collected at 50 Hz (Figure 3-6).

Given the training trajectories, two GP motion patterns were learned according

to Eqs. (3.2), (3.3), (3.4), and (3.5). Both the RR-GP and Sparse-GP use data that

were downsampled to 1 Hz. On the other hand, the Dense-GP was trained with 2 Hz

data. A higher rate could have been also used, but doubling the density of the data

is sufficient to highlight the differences between the algorithms, given the dimensions

of the scenario and the maximum speed of the vehicle.

The test data consists of 90 withheld trajectories (45 left, 45 right) generated in

the same manner as the training data. In testing, the algorithms received simulated

measurements from the test trajectories at one second intervals, i.e., dt = 1s in

Algorithm 2. For each time step, Sparse-GP, Dense-GP, and RR-GP are run using

the current state of the target vehicle over a time horizon Th = 8s.

In the RR-GP implementation, the control time step is δt = 0.1 s, while the GP

samples are produced at ∆t = 1 s. The limits of successful and infeasible connections

per ∆t (lines 9,11 Algorithm 1) are 30 and 150, respectively. We follow Ref. [19] in

calculating prediction error as the root mean square (RMS) difference between the

true position (x, y) and mean predicted position (x̂, ŷ). The mean is computed using

Eq. 3.8 for the Sparse-GP and Dense-GP techniques, and the multi-tree probabilistic

distribution for the RR-GP approach. The predictions errors are averaged for all the

90 trajectories at each time step, and summarized in the following section.

3.5.2 Simulation Results

This section presents the simulation results of the RR-GP algorithm that were ob-

tained in our scenario and compares its performance in terms of the prediction accu-

racy and computation time with both Sparse-GP and Dense-GP. To highlight one of

the key features of the RR-GP algorithm, two variations are implemented: 1) RR-GP
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Figure 3-6: Training trajectories generated in the simulated road environment accord-
ing to two motion patterns. The black circle (middle) bottom represents the target
vehicle, and the arrow inside the circle represents its heading. The orange arrows
point in the direction of each pattern (left and right).

without the backward propagation feature (BP), and the full RR-GP which includes

it. RR-GP w/o BP is identical to Algorithm 2, except Line 11 (the BP step) is

removed.

Motion Pattern Probabilities

Figure 3-7 shows the average probability (over 90 trajectories) of the correct mo-

tion pattern given the observed portion of path followed by the target vehicle. It is

computed in RR-GP (w/ BP), Sparse-GP (1Hz), and Dense-GP (2Hz) as function

of time. In intervals of dt = 1 s, each algorithm receives a new measurement of

the target vehicle, it updates the probability of the different motion patterns. While

Sparse-GP and Dense-GP only use Eq. (3.2) to update these probabilities, RR-GP

algorithm embeds additional logic for dynamic feasibility (See Algorithm 3). The

motion pattern that the target vehicle actually follows is labelled “correct”. Figure

3-7 shows the the average values of this probability for the different algorithms. Table
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Table 3.1: Average Probability of Correct Motion Pattern (over 90 tests)

PPPPPPPPPAlg.
Time(s))

0 1 2 3

RR-GP 0.922 0.935 1.0 1.0

GP(1Hz) 0.5 0.633 0.995 1.0

GP(2Hz) 0.5 0.665 0.988 1.0

3.1 summarizes these probabilities for the different algorithms for the first three time

steps. Note that average probability corresponding to RR-GP w/o BP is the same as

RR-GP w/ BP.

At time t = 0 s, Sparse-GP and Dense-GP’s likelihoods are based on the size

of the training data of each motion pattern. Since they are equal, the probability

of the correct motion pattern is 0.5. On the other hand, RR-GP algorithm using

its collision check and backward propagation (Lines 10-11 of Algorithm 2) is able to

improve its “guess” of the correct motion pattern from 0.5 to more than 0.92. At time

t = 1 s, using its observation of the previous target position, the three algorithms

have improved their results for the correct motion pattern likelihood. But RR-GP

probability of 0.93 is still significantly better than both Sparse-GP and Dense-GP,

which are 0.63 and 0.66, respectively. After three seconds have elapsed, i.e., at t = 3 s,

the probability of the correct motion pattern for all algorithms have approached 1.0,

after they have received three observations and therefore updated their likelihoods

three times. It is worth noticing that the differences between the Sparse-GP and

Dense-GP plots are not significant; the main advantage of the Dense-GP over Sparse-

GP is in the prediction accuracy as illustrated in the next section.

Prediction Errors

Figure 3-8 shows the performance at different times of the scenario of the four al-

gorithms, Sparse-GP, Dense-GP, RR-GP w/o BP, and the full RR-GP (w/ BP), in

terms of the RMS of the prediction error between the true value and the predicted
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Figure 3-7: Average probability (over 90 trajectories) of the correct motion pattern
for RR-GP (w/ BP), Sparse-GP (1Hz), and Dense-GP (2Hz) algorithms as function
of time. For example, the values at t = 1 s represent the probability of the correct
motion patterns after the target vehicle has actually moved for one second on its
path.

mean position of the target vehicle.

At the start of each test, when time t = 0 s (Figure 3-8(a)), the four algorithms

are initialized with the same likelihood values for each motion pattern. This is seen in

Sparse-GP and Dense-GP plots which are almost identical. RR-GP (w/o BP) has also

a similar performance from t = 0 s until t = 4 s, because no dynamic infeasibilities or

collisions with obstacles happen in this time range. Starting t = 5 s, the prediction

of RR-GP (w/o BP) improves significantly compared to the GP algorithms since the

algorithm is able to detect infeasibility of the wrong pattern, and therefore adjust

the trajectory prediction. In other words, the target first encounters the obstacle

around t = 5 s. The full RR-GP algorithm, denoted as RR-GP (w/ BP) in Figure

3-8, displays the best performance. Using the backward propagation feature, its
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prediction accuracy shows significant improvement over that of RR-GP (w/o BP),

mainly between t = 1 s and t = 5 s, by embedding the knowledge of the dynamic

infeasibility into the probability computation of each pattern, therefore improving

the accuracy of the earlier portion of the prediction. This led to a reduction of RMS

prediction errors by a factor of more than 2.4 over the GP-only based algorithms at

t = 8 s.

After one second has elapsed (Figure 3-8(b)), the vehicle has moved to a new

position and the likelihood values of each motion pattern have been updated (Figure

3-7). The probability of the correct motion pattern computed using Eq. 3.2 has

slightly increased, leading to lower errors for all three algorithms. But as in figure 3-

8(a), a trend is seen for the four algorithms; the performance of the RR-GP (w/ BP)

algorithm is consistently and significantly better than both Sparse-GP and Dense-

GP. Its performance is also better than RR-GP (w/o BP) in the time range prior to

the collision detection, i.e., t = 2 s till t = 5 s. The improvement in the accuracy

of the RR-GP algorithms comparatively to Sparse-GP and Dense-GP is mainly due

to a better likelihood computation (Figure 3-7) resulting from the likelihood update

logic introduced in the RR-GP algorithms. Another interesting observation is that

Dense-GP performs slightly better than Sparse-GP especially between t = 5 s and

t = 8 s. In fact, it is 7% better at t = 8 s. This can be explained by a more accurate

GP model due to more training data in the GP learning phase.

Generally, after three seconds have elapsed, the probability of the correct motion

pattern has approached 1.0 (Figure 3-7), which explains the decreased level of predic-

tion error among the four algorithms (Figure 3-8(c)). The target value has moved to

areas where dynamic feasibility and collision checks are not significant due to the neg-

ligible weight of the likelihood of the wrong motion pattern prediction. Equation 3.8

then simplifies to p(xt+K , yt+K |xt, yt, bj∗), where j∗ is the index of the correct motion

pattern, and thus the prediction accuracy is only related to the position distribution

of the correct motion pattern. This explains why Sparse GP and both RR-GP varia-

tions show a very similar accuracy, since their position distributions are based on the

same sparse data. On the other hand, Dense-GP, due to more dense data, is the best
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performer as expected with RMS errors 1.5 times smaller than the other algorithms

at t = 8 s.

To further highlight the performance of RR-GP algorithm, Figure 3-9 presents

the box plots [88] of the average difference, over the 90 test trajectories, between

the prediction errors of Sparse-GP (1Hz) and the full RR-GP (w /BP). The box

plots, also known as the Box-and-Whisker plots, conveniently display the Q1 = 25th

and Q3 = 75th percentile (the top and bottom of the blue boxes), along with the

medium value (the red horizontal bar) of these errors differences. The length of

the whisker (dashed black vertical line) is W = 1.5, such that data are considered

outliers if they are either smaller than smaller than Q1 −W ∗ (Q3 − Q1) or larger

than Q3 + W ∗ (Q3 − Q1). These box plots are directly related to the RMS in 3-8.

In addition, they provide an insight on the the distribution of these errors of the

algorithms.

At t = 0, Figure 3-9(a) shows the improvement of the RR-GP (w/ BP) over

Sparse-GP consistently increase over time to reach a 2.5 m difference at t = 8 s.

After further analysis of the individual trajectories, we found that the outliers are

the test trajectories that were dynamically feasible at t = 0 s to follow any of the

two motion patterns. In these few cases, RR-GP does not have an advantage over

the Sparse-GP, leading to no error difference. But in the majority of the tests, as

shown by the whisker lengths and box sizes, RR-GP (w/ BP) significantly reduced

the prediction error.

At t = 1 s, Figure 3-9(a) presents the error difference after the target vehicle has

moved for 1 s. A similar trend to Figure 3-8(b) can be seen. The median of the

difference grows with the time steps, but its magnitude slightly decreases, reaching

2.1 m difference at t = 8 s. There are fewer outliers, but equivalently, the length of

the whiskers are longer to include similar cases described at t = 0.

Finally, at t = 3 s, the target vehicle has moved for 3 s, and the differences

between the RR-GP (w/ BP) and Sparse-GP are not statistically significant for the

same reasons discussed previously (See discussion for Figure 3-8(c)).
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Figure 3-8: Average position prediction errors (over 90 trajectories) for Sparse-GP
(1Hz), Dense-GP (2Hz), and the two variations of RR-GP algorithm at different times
of the example.
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Figure 3-9: Box plots of the difference of prediction errors (for the 90 test trajectories)
between Sparse-GP (1Hz) and the full RR-GP algorithm at different times of the
example.
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Computation Times

Table 3.2 summarizes the average computation times per iteration of the three algo-

rithms over the 90 testing paths. Both RR-GP variations have identical computation

times, so only one computation time is shown for RR-GP. Note that the implemen-

tation uses the GPML MATLAB toolbox [81], and these tests were run on a 2.5 GHz

quad-core computer.

As expected, the Sparse-GP has the lowest computation time, while the RR-GP

algorithm ranks second with times well below 1 s, which are suitable for real-time

application as shown in Section 4.2.4. Out of the 0.69 s of RR-GP computation time,

an average 0.5 s is spent in the RR-GP tree generation while the remaining 0.19 s is

used to generate the GP samples. On the other hand, the Dense-GP had an average

computation time of roughly 2.3 s, which is significantly worse than the other two

approaches.1 This is expected since GPs scale poorly with the training data size

due to the matrix inversion operations in Eq. 3.5. In fact, the time complexity of

the GP algorithms is O(|X|3K), where |X| is the size of training data points, and

K is the number of time step predictions in the future [81]. On the other hand,

the time complexity of RR-GP is O(|X|3K + NicK), where Nic corresponds to the

maximum allowed number of infeasible connections per time step (line 11 of Algorithm

Algorithm 1). Moreover, the dominant factor in both computational complexities

is |X|3, which explains the significant increase in computation time for Dense-GP

compared to both Sparse-GP and RR-GP. The lengthy computation times of Dense-

GP makes it useless for any typical real-time implementation. Finally, it is worth

noting that the computation times of Dense-GP violate the assumption that the

GP algorithm can update its prediction of the target vehicle during the dt = 1 s

measurement cycle (Section 3.5.1). If dt is adjusted to 2.3 s for Dense-GP tests, the

prediction accuracy will decrease due to slower and fewer updates of the probabilities

of the different motion patterns.

In summary, this simulated environment with a human-driven target vehicle showed

1This increase in computation time is even more significant with a denser GP algorithm trained
using 5Hz data. Its average computation time per iteration is found to be more than 35 s.
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Table 3.2: Average Computation Times Per Iteration (over 90 Trajectories)

Algorithm Comp. Time (s)

Sparse-GP (1 Hz) 0.19

Dense-GP (2 Hz) 2.32

RR-GP 0.69

that the RR-GP algorithm performed consistently better than the Sparse-GP and

Dense-GP in the long-term prediction of the target vehicle. When the approaches

compared in this section are used in combination with a planner in this type of

domains, we often desire to take actions at frequencies approaching 10 Hz. It is im-

portant to highlight that the RR-GP can output predict trajectories at arbitrarily

high output frequency, which is significantly higher than both the Sparse-GP (1Hz)

and the Dense-GP (2Hz). While we could augment the comparison approaches with

some form of interpolation technique, our approach systematically guarantees colli-

sion avoidance and dynamic feasibility of the trajectory predictions. Another feature

of the RR-GP algorithm is its efficient computation time (Table 3.2), which is low

enough to be suitable for real-time implementation in collision warning systems or

probabilistic path planners for autonomous systems.

3.6 Validation on Road Traffic Data

This section validates the developed RR-GP algorithm on road traffic data col-

lected through the Cooperative Intersection Collision Avoidance System for Viola-

tions (CICAS-V) project [37]. The CICAS-V data consists of a large database of

intersection approaches in different US cities. This work, as in Chapter 2, uses tra-

jectories gathered at the Peppers Ferry intersection (U.S. 460 Business and Peppers

Ferry Rd in Christiansburg) to verify the developed RR-GP algorithm and compare

its performance to two GP-based algorithms.

This section is structured as follows. First, Section 3.6.1 reviews the data collection
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and selection process. Then, Section 3.6.1 describes the training procedures for the

RR-GP and the two GP-based algorithms. Finally, Section 3.6.3 presents the results

of the tests by summarizing prediction accuracy and running times.

3.6.1 Data Collection and Selection

The method of collection of the roadside data is briefly presented in Section 2.4. A

detailed description can be found in Ref. [64]. In the Aerospace Controls laboratory,

vehicle trajectories collected at the Peppers Ferry intersection were classified as pro-

ceeding left, right, or straight based on a combination of the trajectory ID and the

lane ID extracted from the CICAS-V database. The final lane of the vehicle was used

to determine its final direction. The trajectories were then filtered based on whether

the vehicle stopped or not. This resulted in six different classifications on the basis of

turning and stopping. This work focused on the non-stopping trajectories, which were

further filtered to remove erroneous instances that showed discontinuities in either po-

sitions or velocities. Finally, it selected trajectories that were longer than 80 m and

lasted more than 8 s. Note that data points further than 90 m from the intersection

were ignored. Figure 3-10 shows a satellite image of the Peppers Ferry intersection

taken from Google Earth (http://www.google.com/earth/index.html), along with

some of the trajectories selected from the CICAS-V database for the validation of the

RR-GP and GP-based algorithms.

3.6.2 Training Procedure

This work uses the full RR-GP (Algorithm 2) which showed the best performance

in the simulation example results (Section 3.5). RR-GP algorithm is compared to

two GP-based approaches, Sparse-GP and Dense-GP, that are trained with different

amount of data. Sparse-GP is provided with 45 trajectories in the training phase,

equally distributed between the three intersection approaching patterns (left, right,

straight). The RR-GP algorithm is given the same number of trajectories as Sparse-

GP. On the other Dense-GP is trained with 135 trajectories, also equally divided
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Figure 3-10: Satellite image of the Peppers Ferry intersection adapted from Google
Earth. CICAS-V trajectories of vehicles at Pepper’s Ferry intersection were used to
test the algorithms presented in this section. 45 instances are shown as black lines
superimposed on the intersection image.

between the three patterns. The trajectories are all downsampled from the original

20 Hz rate to 1 Hz. Therefore, unlike the simulated example (see Section 3.5.1), the

density of training data for Dense-GP is due to the number of training trajectories

rather than the rate to which the trajectories are downsampled.

3.6.3 Testing Results

The test data consists of 120 trajectories (40 left, 40 right, 40 straight) selected in

the same manner as the training data. In testing, the algorithms received simulated

measurements from the test trajectories at one second intervals, i.e., dt = 1 s in

Algorithm 2. For each time step, Sparse-GP, Dense-GP, and RR-GP are run using
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the current state of the target vehicle over a time horizon Th = 6 s.

In the RR-GP implementation, the control time step is δt = 0.1 s, while the GP

samples are produced at ∆t = 1 s. The limits of successful and infeasible connections

per ∆t (lines 9,11 Algorithm 1) are 15 and 75, respectively. The vehicles are assumed

to obey the standard bicycle model (Eq. 5.7). Ideally, the parameters of the model of

the each vehicle should be estimated in real-time to obtain the best performance. But

since the database does not provide any information about the vehicle parameters,

this work uses the values from the MIT Land Rover LR3 car that participated in the

2007 DARPA Grand Challenge [31]. They are amin = −6.0 m/s2, amax = 2.8 m/s2,

δmax = 0.54 rad, and L = 2.9 m. The RR-GP algorithm also requires the location

of the infeasible regions of the environment. These regions were visually estimated

using the road geometry in Figure 3-10. They are then approximated using several

rectangles with different orientations (See Figure 3-11).

As in Section 3.5.2, the prediction errors are defined as the root mean square

(RMS) difference between the true position (x, y) and mean predicted position (x̂, ŷ).

The mean is computed using Eq. 3.8 for the Sparse-GP and Dense-GP techniques,

and the multi-tree probabilistic distribution for the RR-GP approach. The predictions

errors are averaged for all the 120 trajectories at each time step.

Illustration

Figure 3-11 illustrates the RR-GP approach on a test trajectory belonging to the left

turn motion pattern (See Section 3.6.3). It shows the GP samples (left column), and

the multi-tree output (right column). The GP samples are identical to the outputs

of Sparse-GP, since RR-GP and Sparse-GP use the same training data. The current

position of the vehicle is shown as a blue ×. The motion patterns are shown in red

(right), green (straight), and blue (left). The probability of each pattern is reflected

by the saturation of its color. A saturation of 1 gives a colorful red, green, or blue,

while a saturation of 0 turns any color into white. The probabilities of the motion

patterns are written as the vector pmp = (pleft, pright, pstraight). Note that the naming

of the pattern is relative to the heading direction of the vehicle.
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At time t = 0 s, Sparse-GP predicts that the future trajectory of the target vehicle

has an equal likelihood of following any of the tree motion patterns (Figure 3-11(a)),

i.e., pmp = (0.333, 0.333, 0.333) as it is also apparent from the similar saturation

levels of the colors. On other hand, the RR-GP algorithm is able to detect, using

its dynamic feasibility check, that the right pattern is infeasible (Figure 3-11(b)).

Using its backward propagation logic, it finds pmp = (0.5, 0, 0.5), which results in

a significantly smaller prediction error. In fact, the true pmp = (1, 0, 0). It is worth

noticing that the left and straight patterns are similar when the vehicle is far from the

intersection (as can been seen in the training data in Figure 3-10). At time t = 1 s,

Sparse-GP prediction evolves to pmp = (0.337, 0.558, 0.105) slightly favoring the right

turn motion pattern, which is the incorrect one. This can be seen in Figure 3-11(c)

where the red trajectories have the most saturated color. On the other hand, RR-GP

algorithm predicts again that the right motion pattern is infeasible, and estimates

that pmp = (0.768, 0, 0.232), leading to an improved trajectory prediction 3-11(d). It

is only at t = 4 s that Sparse-GP predicts that the left motion pattern is the most

likely one (Figure 3-11(e)) with pmp = (0.973, 0.0183, 0.087), while RR-GP computes

an even better probability estimate, pmp = (0.991, 0, 0.009) (Figure 3-11(f)).

This section illustrated the RR-GP’s advantage over a GP-based algorithm on a

single test trajectory. The following section will compute the prediction errors for the

entire testing dataset.

Prediction Errors

Figure 3-12 shows the performance at different times of the the Sparse-GP, Dense-GP,

full RR-GP algorithm, in terms of the RMS of the prediction error between the true

value and the predicted mean position of the target vehicle. After 1 s has elapsed

(Figure 3-12(a)), the RR-GP algorithm has the lowest average RMS error. It is 1.6 and

1.8 times smaller than the Dense-GP and Sparse-GP errors at t = 6 s, respectively.

As explained in detail in Section 3.5.2, the improvement of the RR-GP algorithm is

due to the novel likelihood computation that is based on both the dynamic feasibility

of the RRT-Reach trees and the back propagation technique. The magnitude of the
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(a) t=0 s (b) t=0 s

(c) t=1 s (d) t=1 s

(e) t=4 s (f) t=4 s

Figure 3-11: Snapshots of the GP samples (left column) and multi-tree output (right
column) of the RR-GP algorithm on a vehicle trajectory that follows the left turn
motion pattern at the Peppers Ferry intersection. The position of the vehicle is shown
as a blue ×. Rectangles (with blue borders) represent infeasible regions.
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Figure 3-12: Average position prediction errors (over 120 trajectories) for Sparse-GP,
Dense-GP, and the full RR-GP algorithm at different times of the real-traffic tests.

102



Table 3.3: Average Computation Times Per Iteration (over 120 Trajectories)

Algorithm Comp. Time (s)

Sparse-GP 0.25

Dense-GP 1.07

RR-GP 0.44

RMS errors of the three algorithms decreases after 2 s. It continues to decrease after

3 s, due to the likelihood updates that occur every time a measurement of the target

is received. After 3 s has elapsed (Figure 3-12(c)), the gap between the RMS errors

of RR-GP algorithm and the GP-based algorithm becomes smaller, but the ratio of

the errors does not change significantly. In fact, the RR-GP average RMS error is

still 1.6 and 1.7 smaller than the Dense-GP and Sparse-GP errors, respectively, at

t = 6 s. These results demonstrate that the RR-GP algorithm shows a significantly

better prediction accuracy on the road traffic data compared to both Sparse-GP and

Dense-GP algorithms.

Computation Times

Table 3.3 summarizes the average computation times per iteration of the three algo-

rithms over the 120 testing paths. As expected, the Sparse-GP has the lowest average

computation time, while the RR-GP algorithm ranks second with average times be-

low 0.5 s. Both computation times are suitable for real-time implementation with a

dt = 1 s measurement cycle. On the other hand, the Dense-GP has an average com-

putation time of slightly over 1 s. This is expected since GPs scale poorly with the

training data size due to the matrix inversion operations in Eq. 3.5. Despite longer

computation times with Dense-GP, the deterioration in the times is not as apparent

as in Section 3.5. This is due to the fact that the real-traffic trajectories are more

scattered than the simulated trajectories due their limited number, leading to sparser

matrices and thus more efficient matrix inversions. For larger training dataset, it is

expected, as in Section 3.5, that the Dense-GP computation times will further in-
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crease compared to Sparse-GP and RR-GP. Finally, these results confirm that the

RR-GP algorithm running times are suitable for real-time implementation.

3.7 Conclusion

This chapter presented a novel approach to improve the trajectory predictions of

agents with uncertain intentions for collision avoidance (CA) and conflict detection

(CD) systems. It combined the RRT-Reach algorithm with a Gaussian Process (GP)

mixture model. RRT-Reach predicts the trajectories using a sampling-based reach-

ability algorithm that incorporates vehicle and environment constraints. The GP

mixture, a nonparametric Bayesian model, captured the distribution over a wide

range of possible target agent motion patterns. The resulting RR-GP algorithm,

ensures that the predicted trajectories are both feasible by construction and prob-

abilistically weighted to reflect the typical motion patterns of the agents. RR-GP

was compared against two GP-based algorithms trained with sparse and dense data,

respectively. It was shown to outperform both GP algorithms in prediction accuracy,

while still achieving computation times that are suitable for real-time implementa-

tion. This was first verified using a simulation example of a human-operated target

vehicle. Then, traffic data from intersection approaches collected through the CICAS-

V project demonstrated the effectiveness and superiority of the RR-GP approach in

accurately predicting future trajectories in a real-world example.
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Chapter 4

Safe Motion Planning with

Uncertainty in Predictability

This chapter introduces new path planning algorithms that build upon the tools

that have been introduced previously in this thesis. The focus is on navigation in

environments with uncertainty in predictability, where the autonomous vehicle plans

trajectories in in the presence of other vehicles with unknown future intentions /

destinations.

To tackle this problem, Section 4.1 proposes a new threat-aware path planning

approach that augments existing path planners with an efficient threat estimation

of other vehicles in the environment [32]. This computation is performed in a novel

threat assessment module that consists of a behavior classifier based on Chapter 2

along with an efficient reachability-based algorithm. The strengths of this approach

are demonstrated through simulation and experiments performed in the MIT RAVEN

testbed [89].

Section 4.2 extends the reachability component of Section 4.1 to include prob-

abilistic knowledge of the typical motion patterns followed by other vehicles in the

environment [33]. This knowledge is computed is based on a trajectory prediction of

their motion, computed using the RR-GP algorithm introduced in Chapter 3. RR-

GP is integrated with a state-of-the-art probabilistic path planner [34] that explicitly

incorporates probabilistic constraint satisfaction in its formulation. Theoretical guar-
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antees are demonstrated for linear systems, though the extension to nonlinear systems

is also considered. Simulation results show that the resulting approach can be used

in real-time to efficiently and accurately execute safe paths.

4.1 Threat-aware Path Planning

This section considers the path planning problem for an autonomous vehicle in an

urban environment populated with static obstacles and moving vehicles with uncer-

tain intents. We propose a novel threat assessment module, consisting of an intention

predictor and a threat assessor, which augments the host vehicle’s path planner with

a real-time threat value representing the risks posed by the estimated intentions of

other vehicles. This new threat-aware planning approach [32] is applied to the CL-

RRT path planning framework, used by the MIT team in the 2007 DARPA Grand

Challenge. The strengths of this approach are demonstrated through simulation and

experiments performed in the RAVEN testbed facilities.

4.1.1 Introduction

Whether driving on highways or navigating in the middle of a battlefield, intelligent

vehicles must be able to quickly and robustly compute motion plans in very uncertain

worlds. The sources of this uncertainty may be internal, i.e., incomplete or imperfect

knowledge of the vehicle model, or external, i.e., incomplete or imperfect knowledge of

the environment, and may be present either in sensing or in predictability [22]. This

section addresses problems involving uncertainty in predictability, and in particular

the intentions of the other vehicles within our vehicle’s world.

To make meaningful predictions of other vehicles’ intentions, a smart vehicle

should be able to gather information from the environment to build models approx-

imating those intentions. It is not safe to assume that all drivers obey all “rules of

the road,” as many collisions occur when this is not the case, but classifying all other

vehicles as hostile would be overly conservative. The information gathered by our ve-

hicle might include onboard camera images, radar-based measurements of surrounding
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objects, or messages intercepted or shared on some communication channels.

The vehicle planner must be able to address the uncertainty in each vehicle’s fu-

ture state and actions, or at a higher level, the behavior / intent governing those

actions. Existing path planners typically rely on a priori information to generate

trajectories, applying reactive maneuvers or replanning as needed to correct the path

online and maintain feasibility. However, uncertainty in object predictability is typ-

ically not considered explicitly in the global path planner. Instead, moving vehicles

are often assumed to follow known trajectories or policies, which the planner reacts

to locally. While full probabilistic representation of the environment is possible, such

as with POMDPs [90, 91], the corresponding solution techniques are computation-

ally intractible for real-time path planning problems of even modest complexity or

dimension.

The main motivation of this work is the set of challenges faced by autonomous

vehicles in the 2007 DARPA Grand Challenge (DGC) [16], which involved navigat-

ing an outdoor urban environment in the presence of other vehicles while obeying

all traffic regulations. One of the main challenges of this race was negotiating traffic

intersections, where several vehicles were involved in collisions or near-collisions. Sev-

eral explanations have been offered for these occurrences, but the one that motivated

this work is the inability of the autonomous vehicles to anticipate the intent of other

vehicles [16]. With some knowledge of those intentions, the motion planner could

incorporate the risk posed by those vehicles when considering potential trajectories,

improving safety.

Recent work ([92–94]) has presented different approaches to embed the threat

posed by the other vehicles in the planned trajectories of an autonomous vehicle.

Ref. [92] presented a hierarchical framework that combines multiple layers of predic-

tion for moving objects to improve their estimated locations. While it demonstrates in

simulation for a specific scenario (lane changing example), Ref. [92] does not address

more general scenarios, and no hardware validation is provided. Ref. [93] introduced

an approach that embeds the traffic situation into the trajectories of an autonomous

vehicle to improve their safety. Each traffic participant is represented by a stochastic
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reachability set based on a separate Markov chain. While Ref. [93] states that the

intensive computations of the reachability sets are preformed offline, it is unclear how

these computations could cover all road scenarios and general dynamical models of

the vehicles. Finally, Ref. [94] developed a formal hybrid control approach to guaran-

tee safety in the presence of a human-driven vehicle in a roundabout testbed. In the

presented experiments, the human operator was instructed to accelerate or decelerate

at a specific decision point to force the creation of unsafe sets. While the formal safety

guarantees are important, the practical implementation of the developed approach is

yet to proved for more general intersection encounter cases, and more involved human

models.

This section introduces a new framework for autonomous vehicles which enables

path planning algorithms to explicitly incorporate both obstacle uncertainty and the

corresponding risk posed to the vehicle. A threat assessment module, consisting of an

intention predictor and a threat assessor, augments the host vehicle’s path planner

with a real-time threat value for each potential trajectory, reflecting the risks posed

by the estimated intentions of other vehicles. The strengths of this approach are

demonstrated through simulation and experiments performed in a city-like testbed in

the MIT RAVEN facility [89].

4.1.2 Problem Statement

Consider the autonomous system denoted by HV ,

ṡ(t) = f(s(t), u(t), t), (4.1)

where s is the state and u is the control input; we have that s is constrained to the

state space S, s ∈ S, while u is contstrained to the control space U , u ∈ U . Our

objective for safe motion planning is to minimize some desired cost functional over

the duration of the motion,

L = Ψ(s(tf ), tf ) +

∫ tf

t0

Γ(s(t), u(t), t)dt, (4.2)
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subject to the vector of component-wise constraints

C(s(t), u(t), t) ≤ 0. (4.3)

Of the many constraints C might include, we are interested in those necessitating

collision avoidance with N other vehicles, denoted here as OV i, i = 1 . . . N . These

can typically be written in the form

min
t0≤t≤tf

‖ps(t)− pri(t)‖ > ε ∀i = 1 . . . N, (4.4)

where ri(t) is the state of vehicle i at time t, ps(t) is the position vector corresponding

to s(t), pri(t) is the position vector corresponding to ri(t), ε is the minimum allowed

distance between the HV and the OVs, and tf = t0 +Th where Th is the time horizon

of interest. We say that HV is in collision with OV i if the tuple (ps(t), pri(t)) enters

the closed “collision” set Ωi,

Ωi = {ps(t) | ‖ps(t)− pri(t)‖ ≤ ε}. (4.5)

In uncertain and/or non-cooperative environments, ri(t) is typically not available

for the HV . For HV to maintain guaranteed safety, some mechanism must be able to

identify the input sequence u(t) which yields a feasible path for all possible realizations

of ri(t), i = 1 . . . N . In the event that no such path exists, the same mechanism should

select u(t) in order to minimize some threat level. Here we define the threat level

Ti for vehicle i as inversely proportional to tci , the earliest possible time of collision

between HV and OV i:

Ti =
1

tci
, tci = inf{t | (ps(t), pri(t)) ∈ Ωi}. (4.6)

Equation (4.4) thus cannot typically be guaranteed at all times, so this constraint

is instead converted to a penalty in the objective function. We define the new cost
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functional

J = L+ w · sup
i∈1...N

Ti, (4.7)

where L is defined in (4.2), Ti is the threat level defined in (5.3), and w is a user-

selected weighting factor representing the tradeoff between safety and optimality. The

constraints (4.4) are then removed from (4.3), yielding

C̄(s(t), u(t), t) ≤ 0. (4.8)

Problem Definition (Threat-Aware Dynamic Motion Planning): Given

a state space S, a control space U , an initial state s0 ∈ S and a final state sf ∈ S,

compute the control input sequence u(t), t ∈ [0, tf ], tf ∈ [0,∞) that minimizes (4.7)

subject to the constraints (4.1) and (4.8).

4.1.3 Threat-Aware Planner

Several global path planners, including sampling-based planners, use the philosophy

that collision detection should be done in a “black box” which decouples the host

vehicle’s path planning from any specific geometric or kinematic obstacle models

[84]. This work proposes that threat assessment should be done in a similar “black

box” framework, providing planners with a quantitative threat metric to identify safer

paths during trajectory generation. This threat assessment considers the unknown

intentions of moving OVs, which may present a collision risk for the HV .

High-level TAM Architecture

The proposed architecture features a threat assessment module (TAM, Figure 4-1),

consisting of an intention predictor (IP) and a threat assessor (TA). The IP uses

observations taken by the HV of the OVs to make predictions of their intentions.

Instead of using low-level reasoning to predict future trajectories, the IP uses higher-

level logic and learning to provide the planner with predicted future intentions, key

to earlier and more accurate prediction of future collisions. The TA then converts
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Figure 4-1: High-level architecture of the TAM. The inputs of the TAM are the
measurement history z of the OVs and the candidate control sequence u generated
by the HV planner. The IP computes the intention vector b for each OV , used by
the TA to identify the threat level T .

this prediction into a set of potential paths for the OV , and returns a threat value

that a candidate trajectory u(t) (or equivalently, s(t)), t ∈ [t0, tf ] for HV incurs in

the vicinity of these potential paths. As a result, the planner generates paths that

are threat-aware by construction, thus improving the vehicle’s reactive behavior.

Several distinct representations have been proposed to model intentions for hu-

mans and autonomous systems; here we adopt the Ecological Recogniser architecture

introduced by [95]. Using the language of [95], the HV is the recognising agent, while

each OV is an intending agent. We follow the abstract definition that these intentions

are directly responsible for the actions executed by the intending agents. Intentions

may be desired plans (e.g., following a straight path) or other high level intentional

states (e.g., not following the rules of the road). Let the M -vector bi denote the

intention vector of OV i; the jth entry bji corresponds to the belief OV i is operating

under the jth intention. The cost functional (4.7) is then modified to embed the

intention information,

J = L+ w · sup
i

∑
j

bjiTij, (4.9)

where Tij is the threat value of the trajectories followed by OV i as a realization of its

jth intention; note that i ∈ {1 . . . N} and j ∈ {1 . . .M}.
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Agent Model

Each agent is modeled using the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(4.10)

where (x, y) is the rear axle position, v is the forward speed, θ is the heading, L

is the wheelbase, a is the forward acceleration, and δ is the steering angle (positive

counter-clockwise). The state of the vehicle is s = (x, y, θ, v) ∈ S, while the input

is u = (δ, a) ∈ U , including the constraints amin ≤ a ≤ amax and |δ| ≤ δmax. Each

admissible control sequence u : [0, tf ] 7→ U is piecewise constant.

In the work that follows, we make several assumptions to constrain the focus

on the uncertainty in the prediction of obstacles or other agents. We assume that

the current states and models of the HV and the OVs are perfectly known by the

HV within a detection radius (Section 4.1.5), and that all sensor measurements are

noise-free. Additionally, the path planner is provided with a complete map of the

environment a priori, excluding any dynamic obstacles or agents.

4.1.4 Developed Algorithms

This section describes the implementation of the IP and TA components of the TAM

and the resulting threat-aware path planner, using closed-loop rapidly exploring ran-

dom trees (CL-RRT), into which they are embedded.

Intention Predictor (IP)

The Ecological Recognizer architecture [95] that the IP adopts has two key compo-

nents: a pattern matcher and a reasoning module. The pattern matcher is a classifier

that is trained offline to recognise different possible intentions by observing agent

states, and operates online by giving a continuous estimate of the intentions over

time. The reasoning module filters these estimates of intentions, along with knowl-

edge of previous encounters with the agent, to give a final estimate of the intention
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vector b.

Here we are interested in estimating the intentions of human vehicles in urban envi-

ronments, specifically near intersections. This Ecological Recognizer implementation

is based on an approach previously developed and demonstrated in simulation [96]

for classifying agent intentions using support vector machines (SVM) and Bayesian

filtering (BF). The human driver intention classification problem is very complex, due

to the various nuances of human behaviors. SVM is suitable for the IP because it has

been shown to be both robust and efficient for classification problems [54], such as

lane-change detection [51].

The IP design consists of an SVM combined with a Bayesian filter that uses the

SVM outputs over a specific time period to compute the intention vector b. SVM-BF

also includes a threshold detector, such that the final vector b is a unit basis vector

specifying the most likely intention according to the threshold value [96]. Based on

experimenting with different combinations of kernel functions and features, the best

results were obtained using the Gaussian radial basis function and combining the

following three features: 1) the relative distance between the OV i and the entrance

of the intersection it is approaching, 2) the speed of the OV i, and 3) the longitudinal

acceleration of the OV i. Note that the SVM-BF algorithm is only activated when

the distance between the OV i and the HV is within some detection radius, and both

vehicles are approaching the same intersection.

Threat Assessor (TA)

The threat-aware CL-RRT planner (Algorithm 7) incorporates the computation of a

threat value for each candidate trajectory it generates, given knowledge of the current

OV states. We propose an approach, detailed in Algorithm 4, that combines a fast

sampling-based reachability method with intention prediction information provided

by the IP to efficiently estimate the threat level. The threat assessor has a finite time

horizon, limiting the HV lookahead horizon for possible future OV paths, in order

to focus computation on imminent threats. The choice of horizon length is domain-

specific, but should allow the HV sufficient time to react in a dynamic environment.
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Algorithm 4 Intention-based Threat Assessment

1: Ti ← 0 ∀i
2: for each agent OV i do
3: Reach-Set ← Compute-Intention-Reachability (bi)
4: for each intention ej with probability bji do
5: Ti ← Ti + bji · Compute-Threat(Reach-Set ,OV i, ej)
6: end for
7: end for
8: return maxi=1...N Ti

Algorithm 5 Compute-Threat (Reach-Set, OV , e)

1: for each path pathk in Reach-Set ending in region of intention e do
2: tk ← compute earliest time of collision of pathk with HV within time horizon

Th
3: Tk ← 1

tk
4: end for
5: return maxk Tk

The Threat-Assessor algorithm (Algorithm 4) begins by calling the Compute-

Intention-Reachability (CIR) subroutine, discussed below, to create the reachability

set for eachOV i. The resulting sets are biased based on the perceived intentions of the

OVs. For each intention ej of each OV i, Algorithm 5 is called to compute the threat

incurred by the HV trajectory in the region reached by the paths corresponding to

ej. Note that the earliest time to collision is converted into a threat value using (5.3)

(line 3 of Algorithm 5). This value is weighted by the probability bji provided by the

IP. Finally, the threat is computed as the maximum value of all threats created by

each OV i (line 8 of Algorithm 4).

The CIR algorithm (sometimes referred to as the RRT-Reach algorithm) is also

based on the CL-RRT algorithm, but uses the resulting tree only for simulation of

the different possible paths of a OV (which is not controlled by the operator). No

best path is selected, but rather the entire RRT-Reach tree is biased towards regions

corresponding to the learned intentions of the OVs. This biasing is achieved by

devoting a portion of the tree samples to regions corresponding to the intention ej,

with remaining samples being taken uniformly throughout the environment. The

algorithm also includes time-parametrization extensions (introduced in [30, 35]) that
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Algorithm 6 Compute-Intention-Reachability

1: Measure current vehicle state and environment
2: repeat
3: Take biased sample for input to controller using bias from intention probability

vector b
4: repeat
5: Update time range in time heuristics
6: Find list of nearest neighbors using time range
7: Sort list using distance heuristics
8: for each sorted node do
9: Call propagation function

10: if propagated portion is collision free then
11: Add sample to Tree break
12: end if
13: end for
14: until timestamp reaches time horizon and no collision free portion was found
15: until time limit for growing tree is reached
16: return Tree

tailor the RRT algorithm to the efficient computation of intended paths by the OVs.

• First, since we are interested in both approximating the vehicle’s fixed-horizon

reachability set and checking for collision between moving vehicles, a “times-

tamp” has been explicitly added to the state of the vehicle to track the time

along each generated trajectory. While propagating, if the timestamp reaches

the time horizon tf , where tf = t0 + Th, the propagation is interrupted and the

current portion of the trajectory is checked for feasibility. Also, when searching

for nearest neighbors, the algorithm skips any node with a timestamp already

equal to tf .

• Second, a time-based heuristic is introduced in the nearest neighbor selection;

only neighbors with a timestamp lying in a specified time range are eligible to

be considered in the nearest neighbor calculation. This time range is initialized

to [troot, troot + tincrement], and the k-nearest neighbors inside this time range

are considered for feasibility check. If none of them leads to the creation of a

feasible path, the time range is increased to [troot + tincrement, troot +2× tincrement],

and so on, until a feasible path is found, or the time range reaches tf , in which
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case the sample is ignored, and a new sample is taken. Simulation results have

suggested that the use of such heuristics can result in better approximation of

the natural expected paths of the OVs.

• Finally, we note that RRT-Reach does not include a completeness guarantee

on the reachability set; there may be some feasible trajectories which are not

included when work on constructing the reachability set is completed. How-

ever, the problem of computing the full reachability set in real-time is compu-

tationally intensive when subject to complex dynamics and complex, dynamic

environments. The RRT-Reach algorithm is designed to rapidly approximate

the reachability set and improve the approximation with more available time,

regardless of the current problem complexity.

Threat-Aware CL-RRT Planner

In this section, we present a global threat-aware planner which builds on the CL-

RRT implementation developed for MIT’s Talos vehicle in the 2007 DGC competi-

tion [31]. The CL-RRT algorithm extends the rapidly-exploring random tree (RRT)

algorithm [84, 97], which grows a tree of dynamically feasible trajectories by ran-

domly sampling points toward which the tree is extended. The CL-RRT algorithm

adds a path-tracking control loop in the vehicle prediction model, such that sampling

takes place in the reference input space rather than in the vehicle input space. The

algorithm thus maintains the exploration bias of traditional RRT algorithms, while

allowing for generation of smooth trajectories more efficiently. Furthermore, because

the RRT algorithm is sampling-based, the quality of the planning tree and resulting

paths are scalable with the available computational resources. Please refer to Ref. [31]

for a detailed description of the CL-RRT planner, and Ref. [14] for an explanation of

the planner integration in the Talos system architecture.

The proposed threat-aware planner is shown in Algorithm 7. The main addition

is the threat computation in lines 6 and 10. This computation calls Algorithm 4 to

efficiently calculate the threat of colliding with the possible paths of the other OVs
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(Section 5.4.2). Whereas the original CL-RRT heuristic identifies nearest nodes based

on path duration (in the Dubins sense), we extend this heuristic to also include the

threat value (line 6). In line 10, the threat along the edge to a new node is computed

and stored at the new node. The best path is then chosen in accordance with the

cost defined in (4.9) (line 15 of Algorithm 7), which includes both the total time to

the goal and the threat along the trajectory. These modifications embed the threat

computation in the CL-RRT trajectory generation, leading to the selection of safer

paths which are threat-aware by construction.

Another related addition is the use of threat propagation logic. First, the root

node is initialized to have zero threat. When adding a new node, if the path from

the selected node (initially the root) to the new node incurs a non-zero threat (com-

puted using Algorithm 4), then an intermediate node is created at the location of

the earliest collision, and both the intermediate node and the new node inherit the

computed threat value. Note that if a node with a non-zero threat value is chosen

to be expanded, the new node inherits that value and no new threat computation

is required. The rationale is that the threat value does not decrease along an edge

connecting a node with non-zero threat to its child (recall (5.3)). A useful property

of the threat heuristic is that it is admissible: it underestimates the “true” cost. This

is due to the sampling-based nature of the CIR algorithm, which underapproximates

the earliest time of collision, as well as the assumption that children nodes inherit

the threat value of their parent if the value is non-zero. Before choosing a best path,

the threat values of the tree are updated from the bottom up (i.e., starting from the

leafs) by reassigning each parent’s threat value to be the minimum of the threat of

its children, and so on, until the root is reached.

4.1.5 Experimental Results

This section presents experimental results which validate the effectiveness of the

threat-aware CL-RRT algorithm, augmented with the TAM, in enabling an autonomous

vehicle to successfully identify and avoid an errant human-driven vehicle under real-

world uncertainty. These results focus on the challenging task of avoiding collisions
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Algorithm 7 Threat-Aware CL-RRT
1: repeat
2: Measure current vehicle states and environment
3: Propagate states by computation time limit
4: repeat
5: Generate sample for the input to controller
6: Sort nodes in tree using threat and time heuristics
7: for each sorted node do
8: Form controller input by drawing line from node to sample, then propagate

9: if propagated portion is collision free then
10: Compute threat of propagated portion to tree break
11: end if
12: end for
13: until time limit is reached
14: Choose best path and repropagate from current states
15: if repropagated trajectory is infeasible then
16: Remove infeasible portion from tree and go to line 15
17: end if
18: Send best path to controller
19: until vehicle reaches target

at intersections, in particular with errant drivers who do not observe a stop sign and

enter the intersection out of turn.

First, a brief overview of the experimental infrastructure is provided. Next, we

present a subset of hardware results showing the interaction between an errant human

driver and an autonomous vehicle at intersections; additional experiments can be

viewed at http://hdl.handle.net/1721.1/64737 [98] or at http://acl.mit.edu/

IROS10TAM.mp4.

Hardware

Hardware demonstrations were performed in the Real-time indoor Autonomous Ve-

hicle test ENvironment (RAVEN) [89], a testbed which uses motion-capture cameras

to provide high-fidelity vehicle state data. We have constructed a representative road

network within the RAVEN testbed, including many intersection types and road signs,

to emulate a realistic driving environment (Figure 4-2).

All vehicles in this experiment use the iRobot Create platform [87], a skid-steered
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vehicle, modified with a software wrapper to emulate traditional automotive steering

(5.7). Each experiment consists of 1 or 2 autonomous vehicles and 1 human-driven

vehicle. The autonomous vehicles are controlled through an off-board wrapper which

receives waypoints from the threat-aware CL-RRT software (See following section)

and steers using pure pursuit [99]. The human-driven vehicle is controlled through

a wireless steering wheel [100], including acceleration and brake pedals. A human

driver may steer their vehicle through simple visual inspection, or via an onboard

dual-camera (Figure 4-2) interface which emulates the first-person driving perspective

(Figure 5-4). This interface includes a real-time “GPS” display, which guides the

driver through an intended sequence of waypoints.

Software

The planning software consists of two primary modules, discussed below. The nav-

igator module accesses an abstract representation of the road network and selects

sequences of waypoints, yielding the current goal location for the vehicle. The CL-

RRT motion planning module then uses local knowledge of the environment (e.g.,

obstacles, terrain, and other agents), including the TAM, to plan dynamically feasi-

ble paths to this goal.

The navigator module leverages a sparse representation of the RAVEN road net-

work (Figure 4-4), constructed using the Route Network Data File (RNDF) speci-

fication from the 2007 DGC [101]. The RNDF provides a sparse representation of

the traversible road network, including the location, size, and connectivity of lane

segments and “zones” (e.g., parking lots). Intersections in this road network are de-

fined implicitly via the exit-entrance connections between lane/zone endpoints. The

diagram at bottom-right in Figure 4-3 shows the RNDF for our RAVEN road net-

work, constructed from a simple .txt file. Intended as a sparse representation of the

traversible road network, the RNDF embeds details about road segments in the form

of lane count, individual lane width, and interlane divider types.

As the RNDF represents the traversability graph, an A∗ implementation is used

to select the shortest-distance waypoint path in the graph between the current and
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Figure 4-2: The road network used for experiments. In this image, both a human-
driven vehicle (front-left) and autonomous vehicle (back-right) are approaching a
four-way, stop-sign intersection.

Figure 4-3: Human interface for the human-driven vehicle, including real-time navi-
gation and visual feedback.
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desired waypoints, respecting lane directionality constraints [14]. As the vehicle

(whether human or autonomous) approaches each intermediate or desired waypoint,

the navigator selects the next waypoint on the list as the new target. An arbitrary

list of desired waypoints is provided for each vehicle; the ultimate objective is to ob-

serve the vehicles’ interactions at intersections. The selection of this desired waypoint

need not be structured; for example, the vehicle could randomly sample a waypoint

in the network, plan a route, and repeat the process upon successfully arriving. The

navigator may also access a Mission Data File (MDF), another adaptation from the

DGC. The MDF specifies an ordered list of checkpoints the vehicle must visit.

The threat-aware CL-RRT algorithm (Algorithm 7) is implemented as an offboard,

multi-threaded Java application, designed to support arbitrary vehicle and environ-

ment models in both simulation and hardware. The CIR algorithm [30] is embedded

in this offboard planner as a separate thread which runs asynchronously for each OV .

Over fixed time intervals (2s), the algorithm grows a new reachability tree based on

the current OV position in RAVEN. At the end of each time interval, the reachability

tree is relayed to the host RRT thread, which then relays it to the TA algorithm (Sec-

tion 5.4.2). Figure 4-4 shows the planner-view display of the developed application,

while Figure 4-2 is a picture of the RAVEN testbed used for the experiments. Finally,

Figure 4-3 shows the human interface for the human-driver vehicle that includes a

real-time GP-like navigator and visual feedback (front and back views).

Results

The results below demonstrate the threat-aware closed-loop RRT algorithm in the

context of stopping at intersections. In each experiment, one human-driven vehicle

and one or two autonomous vehicles are navigating through the RAVEN road net-

work simultaneously. The human driver may choose to not stop at an intersection and

instead enter it out of turn, violating the rules of the road. We assume that all inter-

sections have stop signs in each direction, but this assumption could be modified in the

RNDF to allow other configurations. The human driver’s intent is classified as either

good or errant, based on whether or not they correctly approach the intersections.
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Figure 4-4: Planner-view of the RAVEN road network for the host vehicle (blue
chevron, path history in blue). The host uses the CL-RRT tree (brown edges, green
nodes) to identify the best known path (red edges, black nodes) to the current way-
point (purple). This path should avoid all obstacles (black boxes), the human-driven
vehicle (green circled chevron) and, if active, their reachability tree (yellow edges, or-
ange nodes). The other autonomous vehicle is represented as the car-sized rectangle
at bottom-center.

The objective of the autonomous vehicle(s) is then to not only avoid all collisions,

but also minimize the risk of collision with an errant human driver in intersections.

In the experiments, the time horizon of the RRT-Reach is 6 s. The parameters in

the agent models are: amin = −0.7 m/s2, amax = 0.4 m/s2, and δmax = 0.6 rad. The

maximum velocity of the vehicles is also set to 0.4 m/s to increase the interaction

time between the vehicles at intersection encounters.

The human-driven vehicle is perceived to be a threat if three conditions are sat-

isfied: (1) the IP module has classified the drivers’ behavior as errant; (2) the errant

driver is within the host vehicle’s detection radius (Figure 4-4); and (3) both vehicles

are approaching the same intersection. In this case, the autonomous vehicle is to

avoid that vehicle’s reachability tree constructed by the CIR algorithm; otherwise

the reachability tree is not an active constraint.

Over the course of this experiment set, 20 intersection encounters occurred: 10
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(a) Scenario 1, Part 1 (b) Scenario 1, Part 2

(c) Scenario 1, Part 3 (d) Scenario 2

Figure 4-5: Zoomed-in display view of two interactions between an autonomous vehi-
cle (detection radius in black) and a human-driven vehicle in an intersection. Figures
(a)-(c) show snapshots of a scenario in which the human-driven vehicle is classified
as errant; in Figure (d), the human-driven vehicle is classified as good. Note that the
reachability tree darkens if the driver is perceived to be a threat.

with one autonomous vehicle in the network, and 10 with two autonomous vehicles

in the world. Of these encounters, only one resulted in a collision; in this case, the

human-driven vehicle aggressively approached the autonomous vehicle, which had

already stopped to avoid it.

Figure 4-5 demonstrates two particular scenarios in which the human-driven vehi-

cle interacts with an autonomous vehicle at an intersection. In Scenario 1 (Figure 4-

5(a)-(c)), both vehicles are attempting to enter the same lane, with the human-driven

vehicle approaching from the left and making a right turn, and the autonomous ve-

hicle approaching from the right and making a left turn. This scenario is known as a

Left Turn Into Path (LTIP) [102]. The autonomous vehicle arrives first and, observ-

ing (through the IP) that the human driver is decelerating (therefore classified as a
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good driver), plans a path through the intersection (Figure 4-5(a)). After entering

the intersection, however, the IP module detects the human driver accelerating, as if

it will enter the intersection out of turn. The IP module classifies this behavior as

errant, and thus the TA module seeks to minimize the corresponding threat level T .

Though the autonomous vehicle cannot avoid the reachability tree’s outer reaches, it

does avoid the inner nodes (where the time to collision is lower) by quickly coming to

a stop (Figure 4-5(b)). Once the errant driver is no longer a threat, the autonomous

agent finishes crossing the intersection (Figure 4-5(c)). Figures 4-6 and 4-7 show

snapshots of the sequence of events through a video camera view, a planner-view and

a navigator-view of the RAVEN road network and the vehicles.

In Scenario 2 (Figure 4-5(d)), the autonomous driver is making a left turn, while

the human-driven vehicle is crossing the intersection (from left to right in the figure).

Here, the human-driven vehicle has correctly come to a stop at the intersection, and

the IP module has classified it as a good driver. Unlike Figure 4-5(b), the autonomous

driver then proceeds through the intersection, perceiving that the human driver is

likely to obey the rules.

Another set of scenarios involves two autonomous vehicles navigating in the road

network vehicles using the threat-aware CL-RRT in the presence of a possibly errant

human-driven vehicle. The behavior of the human-driven vehicle and the objective

of the autonomous vehicles are identical to the one-autonomous experiment case.

Furthermore, for simplicity, the autonomous vehicles follow the rules of the road, and

have safe intents, so they did not have to run the threat assessment on each other.

They avoid collision (if they are on the same lane) by not coming to within 0.5 car-

lengths of each other. Figure 4-8(a) shows a snapshot of the video at the beginning

of the two-autonomous vehicle experiment, while Figure 4-8(b) captures a video shot

of the three vehicles.

Figure 4-9 demonstrates a particular scenario involving one of the autonomous

vehicles and the human driven-vehicle. It is known as the Left Turn Across Path /

Opposite Direction (LTAP/OD). It is one of the most dangerous and fatal intersection

encounter [23, 102]. The autonomous vehicle is approaching from the right, and
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arrives first to the intersection. Before proceeding into the intersection, it detects

(through the IP) that the human-driven vehicle approaching from the left is not

decelerating (to stop at the intersection), and therefore plans a stopping maneuver

(through the TA) to minimize the threat level T (Figure 4-9(a)). Once the errant

driver is no longer a threat, the autonomous agent finishes crossing the intersection

(Figure 4-9(b)).

The described scenarios along with additional experiments can be viewed at http:

//hdl.handle.net/1721.1/64737 [98] or at http://acl.mit.edu/IROS10TAM.mp4.
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(a) Scenario 1, Part 1

(b) Scenario 1, Part 2

Figure 4-6: RAVEN road network view of an interaction between an autonomous
vehicle and a human-driven vehicle in an intersection. A video camera a view (upper
left), a message box (lower left), a planner-view (upper right), and a navigator-view
(lower right) illustrate the Left Turn into Path (LTIP) intersection encounter where
the human-driven vehicle disobeyed the precedence rules, and the autonomous vehicle
avoided the accident using the threat-aware CL-RRT planner.

126



(a) Scenario 1, Part 3

(b) Scenario 1, Part 4

Figure 4-7: RAVEN road network view of an interaction between an autonomous
vehicle and a human-driven vehicle in an intersection. A video camera a view (upper
left), a message box (lower left), a planner-view (upper right), and a navigator-view
(lower right) illustrate the Left Turn into Path (LTIP) intersection encounter where
the human-driven vehicle disobeyed the precedence rules, and the autonomous vehicle
avoided the accident using the threat-aware CL-RRT planner.
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(a) Initial Configuration

(b) View of all three vehicles

Figure 4-8: RAVEN road network view of for the two autonomous and one human-
driven vehicle experiment. A video camera a view (upper left), a message box (lower
left), a planner-view for autonomous vehicle 1 (upper right), a planner-view for au-
tonomous vehicle 2 (lower right). In each planner view, the other autonomous vehicle
is represented as a car-sized rectangle, while the human-driven vehicle is shown as a
green circle chevron.
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(a) Part 1

(b) Part 2

Figure 4-9: RAVEN road network view of an interaction between an autonomous
vehicle and a human-driven vehicle at an intersection in the three vehicle experiment.
Autonomous vehicle 1 avoids the threat of the human-driven at an as an LTAP/OD
encounter.
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4.1.6 Conclusion

This section introduced a new approach for path planning in urban environments

subject to uncertainty in the intentions of other vehicles. This work combines an

intention predictor (IP) and a threat assessor (TA) to create a threat assessment

module (TAM), embeddable in path planning algorithms, which runs efficiently and

is suitable for real-time implementation. The IP uses high-level logic based on the

Ecological Recogniser, while the TA uses sampling-based techniques to efficiently

compute reachable future paths for surrounding vehicles. Using TAM applied to

the CL-RRT planner, an autonomous vehicle can successfully identify and avoid an

errant driver in realistic intersection scenarios, as demonstrated successfully through

hardware results.
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4.2 Probabilistically Safe Collision Avoidance

This section presents a real-time path planning algorithm which can guarantee prob-

abilistic feasibility for autonomous robots subject to process noise and an uncertain

environment, including dynamic obstacles with uncertain motion patterns [33, 103].

The algorithm incorporates chance-constrained rapidly-exploring random trees (CC-

RRT), using chance constraints to explicitly incorporate probabilistic constraint satis-

faction in the formulation while maintaining the computational benefits of sampling-

based algorithms. The key contribution of the work is the integration of RR-GP

path prediction algorithm (Chapter 3). With RR-GP embedded in the CC-RRT

framework, theoretical guarantees can be demonstrated for linear systems, subject

to Gaussian uncertainty though the extension to nonlinear systems is also consid-

ered. Simulation results show that the resulting approach can be used in real-time to

efficiently and accurately execute safe paths.

4.2.1 Introduction

To operate safely in stochastic environments, it is crucial for agents to be able to

plan in real time in the presence of uncertainty. Indeed, the stochasticity of such

environments often precludes the guaranteed existence of safe, collision-free paths.

Instead, this work considers probabilistically safe planning, in which paths must be

able to satisfy all constraints with a user-mandated minimum probability.

A major challenge in utilizing trajectory prediction algorithms is addressing the

multiple sources of uncertainty in the environment, often classified between environ-

ment sensing (ES) and environment predictability (EP) [22]. Under this partition, ES

uncertainties are attributable to imperfect sensor measurements and/or incomplete

knowledge of the environment, while EP uncertainties, the focus of this work, con-

sider the typically limited knowledge of the future state of the environment. While

probabilistic planning frameworks can readily admit dynamic obstacles, such objects

are often very difficult to model in real-world domains. For example, for a car to

reliably traverse a busy intersection, it must have some understanding of how other
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vehicles typically cross that intersection. Even with the assumption of the existence of

perfect sensors and complete knowledge of the current state environment, predicting

long-term trajectories of other mobile agents remains a very difficult problem.

In Chapter 3, we surveyed several existing techniques for long-term trajectory

prediction, and concluded that pattern-based approaches, despite some existing limi-

tations, are typically the most suitable solution. There are two main techniques that

fall into this category: a) discrete state-space, and b) clustering-based [21]. In dis-

crete state-space techniques, the motion model is typically based on learned Markov

chains, while clustering-based techniques group previously-observed trajectories into

clusters which are each represented by a trajectory prototype.

Both classes of pattern-based approaches have been popular in solving long-term

prediction problems for mobile agents [21, 82]. However, discrete state-space tech-

niques can suffer from over-fitting or under-fitting problems due to space discretiza-

tion issues, while this is not the case for clustering-based techniques. In our previous

work [77, 78], we presented a Bayesian nonparametric approach to modeling motion

patterns that is well-suited to modeling dynamic obstacles with unknown motion pat-

terns. This nonparametric model, a mixture of Gaussian process (GP), generalizes

well from small amounts of data and allows the model to capture complex trajectories

as more data is seen. However, in practice, GPs suffer from two interconnected short-

comings: their high computational cost and their inability to embed static feasibility

or vehicle dynamical constraints. To handle both of these problems simultaneously,

recent work introduced the RR-GP algorithm, a trajectory prediction solution us-

ing Bayesian nonparametric reachability trees [29]. Its benefits on both prediction

accuracy and computation time over the original GP algorithm make it well suited

for real-time applications in prediction problems with poorly understood trajectory

patterns. The algorithm presented in this section has similarities with [82], which

uses Gaussian processes to model moving obstacles in an RRT path planner. How-

ever, unlike this work, [82] relies solely on Gaussian processes, which can lead to

less precise prediction, especially when available data is sparse. RR-GP also embeds

dynamic feasibility and prior knowledge of the environment, leading to better results
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than GP-only approaches. Finally, the planner in [82] uses heuristics to assess the

safety of generated paths, while the planner developed in this section uses a principled

approach to achieve probabilistic safety.

This section presents a real-time path planning framework which guarantees prob-

abilistic feasibility for autonomous agents subject to both process noise and an un-

certain environment, particularly dynamic obstacles with uncertain motion patterns.

The planning framework chosen for this work is chance-constrained RRTs (CC-

RRT) [34], based on the chance constraint formulation of [104] for linear systems

subject to Gaussian uncertainty. CC-RRT uses chance constraints to evaluate the

risk of constraint violation at each timestep, embedding uncertainty directly within

the planner. This approach maintains the benefits of sampling-based algorithms,

particularly the fast identification of feasible solutions for complex motion planning

problems. While several apparoaches have been previously proposed for path planning

with probabilistic constraints, our approach does not require the use of MILP/SOCP

optimizations [104, 105] or particle-based approximations [106–108], each of which

can severely limit real-time applicability.

The CC-RRT algorithm has been demonstrated to effectively and efficiently guar-

antee probabilistic feasibility, even in the presence of dynamic obstacles, as long as

the future state distributions are known [34]. This is effectively integrated here with

the RR-GP algorithm, which can provide a likelihood and state distribution for each

possible behavior of a dynamic obstacle at each future timestep. The CC-RRT for-

mulation is revisited for the case of dynamic obstacles modelled via RR-GP, showing

that probabilistic feasibility can still be guaranteed. Simulation results demonstrate

the effectiveness of this approach in enabling agents to avoid dynamic threats with

high likelihood.
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4.2.2 Problem Statement

Consider a discrete-time linear time-invariant (LTI) system with process noise,

xt+1 = Axt +But + wt, (4.11)

x0 ∼ N (x̂0, Px0), (4.12)

wt ∼ N (0, Pwt), (4.13)

where xt ∈ Rnx is the state vector, ut ∈ Rnu is the input vector, and wt ∈ Rnx is

a disturbance vector acting on the system; N (â, Pa) represents a random variable

whose probability distribution is Gaussian with mean â and covariance Pa. The i.i.d.

random variables wt are unknown at current and future time steps, but have the

known probability distribution (4.13) (Pwt ≡ Pw ∀ t).

There are also constraints acting on the system state and input. These constraints

are assumed to take the form

xt ∈ Xt ≡ X − Xt1 − · · · − XtB, (4.14)

ut ∈ U , (4.15)

where X ,Xt1, . . . ,XtB ⊂ Rnx are convex polyhedra, U ⊂ Rnu , and the − operator

denotes set subtraction. The set X defines a set of time-invariant convex constraints

acting on the state, while Xt1, . . . ,XtB represent B convex obstacles to be avoided.

For each obstacle, the shape and orientation are assumed to be known, while the

placement is uncertain. This is represented as

Xtj = X 0
j + ctj, ∀ j ∈ Z1,B, ∀ t, (4.16)

ctj ∼ p(ctj) ∀ j ∈ Z1,B, ∀ t, (4.17)

where the + operator denotes set translation and Za,b represents the set of integers

between a and b inclusive. In this model, X 0
j ⊂ Rnx is a convex polyhedron of known,
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fixed shape, while ctj ∈ Rnx is a possibly time-varying translation, represented by

the probability distribution p(ctj). This can be used to represent dynamic obstacles

whose future state distributions are known, as is done in Section 4.2.4.

The primary objective of the planning problem is to reach the goal region Xgoal ⊂

Rnx in minimum time, while ensuring the constraints (4.14)-(4.15) are satisfied at

each time step t ∈ {0, . . . , tgoal} with probability of at least psafe. In practice, since

there is uncertainty in the state, we assume it is sufficient for the distribution mean to

reach the goal region Xgoal. A secondary objective may be to avoid some undesirable

behaviors, such as proximity to constraint boundaries.

Note that we are assessing probabilistic feasibility of the constraints at each time

step, rather than over the entire path. Because the uncertainty at each timestep is

correlated, due to the dynamics (4.11)-(4.13), one cannot approximate the probabil-

ity of path feasibility by assuming independence and multiplying the probabilities

of feasibility at each timestep. Instead, assessment of path feasibility requires the

evaluation of a complex nested integral, necessitating the use of approximate solu-

tions even under the assumption of Gaussian uncertainty. While such approximations

do exist [108, 109], they require significant computation for most problems of inter-

est. For the applications being considered, real-time identification of feasible paths

is paramount; thus in this work we focus on feasibility at each timestep, using the

efficient assessment of risk affored by CC-RRT [34]. Because the constraints are made

more restrictive as the lower bound on probabilistic feasibility is increased, a posi-

tive correlation is expected between feasibility at each timestep and feasibility of the

whole path; this is shown to be the case in Section 5.5.4.

Motion Pattern

We define a motion pattern as a mapping from locations to a distribution over veloc-

ities (trajectory derivatives).1 Given an agent’s current position (xt, yt) and a trajec-

tory derivative (∆xt
∆t
, ∆yt

∆t
), its predicted next position (xt+1, yt+1) is (xt + ∆xt

∆t
∆t, yt +

1The choice of ∆t determines the scales we can expect to predict an agent’s next position well,
making the trajectory derivative more useful than instantaneous velocity.
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∆yt
∆t

∆t). Thus, modeling trajectory derivatives is equivalent to modeling trajectories.

In addition to being blind to the lengths and discretizations of the trajectories, mod-

eling motion patterns as flow fields rather than single paths also allows us to group

trajectories sharing key characteristics: for example, a single motion pattern can cap-

ture all the paths that an agent might take from different starting points to a single

ending location.

Mixtures of Motion Patterns

The finite mixture model2 defines a distribution over the ith observed trajectory ti.

This distribution is written as

p(ti) =
M∑
j=1

p(bj)p(t
i|bj). (4.18)

where bj is motion pattern j and p(bj) is its prior probability. Since we are interested

in vehicles traveling along a known road network we can assume the number of motion

patterns, M , is known a priori.

Motion Model

The motion model is defined as the mixture of weighted motion patterns (Eq. 4.18).

Each motion pattern is weighted by its probability and is modeled by a pair of Gaus-

sian processes mapping (x, y) locations to distributions over trajectory derivatives

∆x
∆t

and ∆y
∆t

. The motion model has been previously presented in [29, 78, 110] and

reviewed in Chapter 3.

4.2.3 RR-GP Trajectory Prediction Algorithm

Section 4.2.2 outlined the approach of using GP mixtures to model mobility pat-

terns. In practice, GPs suffer from two interconnected shortcomings: their high

computational cost and their inability to embed static feasibility or vehicle dynamics

2Note that throughout the section a t with a superscript, such as ti, refers to a trajectory and a
t without a superscript is a time value.
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constraints. Very dense training data may elevate this feasibility problem by cap-

turing, in great detail, the environment configuration and physical limitations of the

vehicle. Unfortunately, the computation time for predicting future trajectories using

the resulting GPs would suffer significantly, rendering the motion model unusable for

real-timeapplication.

To handle both of these problems simultaneously, we developed RR-GP, a trajec-

tory prediction solution using Bayesian nonparametric reachability trees [29]. RR-GP

augments RRT-Reach [32], a reachability based method which creates dense, feasible

trajectories from sparse samples using the GP mixture model (See Section 3.4).

High Level Architecture

Figure 4-10 shows the high level architecture of the RR-GP solution approach. RR-

GP is based on two main components: 1) an intent predictor based on the GP

mixture model (Section 4.2.2) and 2) a trajectory generator based on the RRT-Reach

algorithm. The Intention Predictor uses the history of sensor position measurements

(x0:t, y0:t), along with a set of typical GP motion patterns bj, j ∈ {1, . . . ,M}, to

produce an intent distribution which is given to the trajectory generation component.

Using the intent information, a dynamic model of the target vehicle, a map of the

environment, and a sparse distribution of the future positions of the target vehicle,

the trajectory generator uses closed-loop RRT (CL-RRT) [31] to grow a separate tree

of smooth trajectories for each motion pattern, that embeds dynamical feasibility and

collision avoidance to them. The resulting trees produce an improved probabilistic

prediction of the future trajectories of the target vehicle. Note that to limit the

scope of the problem to uncertainty in predictability, the sensors measurements are

assumed to be noise-free despite our motion pattern representation being robust to

noisy measurements.
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Figure 4-10: RR-GP High Level Architecture.

4.2.4 CC-RRT with Integrated RR-GP

This section integrates the model for uncertain, dynamic obstacles established in pre-

vious sections into a probabilistic planning framework, CC-RRT, to identify trajecto-

ries which can probabilistically avoid those obstacles. First, the CC-RRT formulation

is reviewed under the assumption that each obstacle’s uncertainty is modeled by a

single Gaussian; the simple extension to the multi-Gaussian formulation yielded by

RR-GP follows.

Review of Online CC-RRT [34]

In this section, the uncertainty of each obstacle is assumed to be represented by a

single Gaussian:

ctj ∼ N (ĉjt, Pcjt) ∀ j ∈ Z1,B, ∀ t. (4.19)
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Given a sequence of inputs u0, . . . , uN−1, under the assumptions of linear dynamics

and Gaussian uncertainty, the distribution of the state xt (represented as the random

variable Xt) can be shown to be Gaussian [104]:

P (Xt|u0, . . . , uN−1) ∼ N (x̂t, Pxt) ∀ t ∈ Z0,N ,

where N is some time step horizon. The mean x̂t and covariance Pxt can be updated

implicitly using the relations

x̂t+1 = Ax̂t +But ∀ t ∈ Z0,N−1, (4.20)

Pxt+1 = APxtA
T + Pw ∀ t ∈ Z0,N−1. (4.21)

To ensure that the probability of collision with any obstacle on a given time step

does not exceed ∆ ≡ 1− psafe, it is sufficient to show that the probability of collision

with each of the B obstacles at that time step does not exceed ∆/B. [104] The jth

obstacle is represented through the conjunction of linear inequalities

nj∧
i=1

aTijxt < aTijcijt ∀ t ∈ Z0,tf , (4.22)

where nj is the number of constraints defining the jth obstacle, and cijt is a point

nominally (i.e. cjt = ĉjt) on the ith constraint at time step t; note that aij is not

dependent on t, since the obstacle shape and orientation are fixed. To avoid all

obstacles, the system must satisfy B disjunctions of constraints at each time step,

nj∨
i=1

aTijxt ≥ aTijcijt ∀ j ∈ Z1,B, ∀ t ∈ Z0,N . (4.23)

For each obstacle – consider the jth one below – it is sufficient to not satisfy any

one constraint in the conjunction (4.22). Thus, the probability of collision is lower-

bounded by the probability of satisfying any single constraint:

P (collision) ≤ P (aTijXt < aTijcijt) ∀ i ∈ Z1,nj
. (4.24)
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To prove the probability of collision with the jth obstacle does not exceed ∆/B, it is

thus sufficient to show that

nj∨
i=1

P (aTijXt < aTijCijt) ≤ ∆/B, (4.25)

where Cijt = cijt + (cjt − ĉjt) is a random variable.

Next, a change of variables is made to render the problem tractable for path

planning algorithms. For the ith constraint of the jth obstacle at time step t apply

the change of variable

V = aTijXt − aTijCijt; (4.26)

it can be shown [34] that the mean and covariance for V are

v̂ = aTijx̂t − aTijcijt, (4.27)

Pv =
√
aTij(Pxt + Pcjt)aij. (4.28)

With this change of variables, the probabilistic constraint can be shown to be equiv-

alent to a deterministic constraint, [104]

P (V < 0) ≤ ∆/B

⇔ v̂ ≥ γ ≡
√

2Pverf−1

(
1− 2

∆

B

)
,

where erf(·) denotes the standard error function. Using this, the constraints (4.23)

are probabilistically satisfied for the true state xt if the conditional mean x̂t satisfies

nj∨
i=1

aTijx̂t ≥ bij + b̄ijt ∀ j ∈ Z1,B, ∀ t ∈ Z0,N , (4.29)

where b̄ijt = γ represents the amount of deterministic constraint tightening necessary

to ensure probabilistic constraint satisfaction.

Whereas the traditional RRT algorithm incrementally grows a tree of states which
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are known to be feasible [97], the chance constrained RRT (CC-RRT) algorithm

grows a tree of state distributions which are known to satisfy an upper bound on

probability of collision. Furthermore, the CC-RRT algorithm can leverage a key

property of the RRT algorithm – trajectory-wise constraint checking – by explicitly

computing a bound on the probability of collision at each node, rather than simply

satisfying tightened constraints for a fixed bound. In particular, the Online CC-RRT

approach [34] leverages the relationship in (4.29) to compute the exact probability of

satisfying each individual constraint for a given distribution N (x̂, Px) – an operation

which is possible due to iterative constraint checking in the RRT algorithm. The key

to the Online CC-RRT approach is the relationship

P (V < 0) =
1

2

(
1− erf

[
v̂√
2Pv

])
, (4.30)

which has been shown [34] to be derived from (4.29). Again consider the ith constraint

of the jth obstacle at time step t, using the change of variables (4.26). Let ∆ijt(x̂, Px)

denote the probability that this constraint is satisfied for a Gaussian distribution with

mean x̂ and covariance Px; using (4.30),

∆ijt(x̂, Px) =
1

2

1− erf

 aTijx̂t − aTijcijt√
2aTij(Pxt + Pcj)aij

 (4.31)

Now define

∆t(x̂t, Pxt) ≡
B∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt). (4.32)

This term provides an upper bound on the probability of a collision with any obstacle
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at time step t [34]:

P (collision) ≤
B∑
j=1

P (collision with obstacle j) (4.33)

≤
B∑
j=1

min
i=1,...,nj

P (aTijXt < aTijCijt)

=
B∑
j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt) = ∆t(x̂t, Pxt)

Thus, for a node/timestep with state distribution N (x̂t, Pxt) to be probabilistically

feasible, it is sufficient to check that ∆t(x̂t, Pxt) ≤ 1− psafe.

The CC-RRT algorithm consists of two main routines, a tree expansion step which

incrementally adds probabilistically feasible nodes to the tree, and an execution loop

which periodically chooses the cost-minimizing path in the tree; see [34] for more

details.

RR-GP Integration

Suppose the jth obstacle is one of the dynamic obstacles modelled using RR-GP

(Section 3.4); that dynamic obstacle may follow one of k = 1, . . . , b possible behav-

iors. At each timestep t, and for each behavior k, the RR-GP algorithm provides a

likelihood δk and Gaussian distribution N (ĉkjt, P
k
cjt

) for the uncertainty distribution

of the obstacle if following that behavior. Thus, the overall state distribution for this

obstacle at timestep t is given by

ctj ∼
b∑

k=1

δkN (ĉkjt, P
k
cjt

). (4.34)

At each timestep, the probability of collision with dynamic obstacle j can be

written as a weighted sum of the probabilities of collision for the dynamic obstacle j
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under each behavior, using δk as the weights:

P (collision with obstacle j)

=
b∑

k=1

δkP (collision with obstacle j, behavior k).

Comparing with (4.33), a dynamic obstacle with uncertain behaviors can actually be

modelled as b separate obstacles, each with its own Gaussian uncertainty, with the

modification that each such term is weighted by δk. The existing CC-RRT framework

can be used by treating each behavior’s state distribution as a separate obstacle, so

long as the resulting risk is scaled by δk. Thus the existing guarantees of probabilistic

feasibility [34] still hold under this modification.

Finally, we note that the guarantees presented in this section only hold under

the assumptions of linear dynamics and Gaussian uncertainty. Modifications are

possible to alleviate these assumptions [109], though this may yield an increase in

computational load (particularly if the uncertainty is non-Gaussian).

4.2.5 Simulation Results

This section presents simulation results which demonstrate the effectiveness of the

RR-GP algorithm in predicting the future behavior of an unknown, “hostile” vehicle,

allowing the CC-RRT planner to design paths which can safely avoid it. As the

probabilistic safety bound psafe is increased at each timestep, the algorithm selects

more conservative paths, which are more likely to reach the goal without colliding

with any obstacles, but may require additional path length/time to do so. By placing

the bound sufficiently high, however, the planner can design paths which consistently

guide the host vehicle out of unsafe situations with high likelihood.

This section is organized as follows. First, the software infrastructure used to

generate these results is explained. Three sets of simulation results then follow. The

most thorough results consider a vehicle in an intersection scenario, where the agent

must cross an intersection while avoiding another vehicle which is approaching the
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intersection at a right angle without stopping. In this case, the host vehicle is modeled

as a double integrator, such that the theoretical CC-RRT results still hold. In the

second scenario, the host vehicle must navigate across a complex obstacle field; in this

case, the hostile vehicle may follow as many as six different behaviors. Two versions

of this scenario are presented – in the first version, a double integrator must travel to

a sequence of fifty waypoints while avoiding a continuously-moving dynamic obstacle,

while in the second version, a nonlinear Dubins vehicle must exchange positions with

the dynamic obsatcle.

Infrastructure

The path planning algorithms in this work have been implemented using a multi-

threaded, real-time Java application, executed on a 2.53GHz quad-core laptop with

3.48GB of RAM. The “hostile” vehicle’s trajectories, both for GP training and sim-

ulated motion, were pre-generated by having a human operator manually drive the

vehicle in simulation with a steering wheel, in a manner consistent with each behavior.

The hostile vehicle dynamics are based on the iRobot Create skid-steered platform; a

software wrapper imposes rate limits in acceleration and wheel speed differences, such

that the vehicle emulates traditional automative dynamics at a maximum speed of

0.4 m/s. During each trial, one of these paths is randomly selected as the trajectory

for the hostile vehicle.

Intersection Scenario

Consider a ground vehicle operating in a constrained, two-dimensional environment

(Figure 4-11(a)). This environment is a representative road network designed to

emulate a real-world driving environment, and is based on a layout previously set up

in hardware ([30]) in the RAVEN testbed ([89]). The road network is 11.2 × 5.5 m2

in size, and is capable of accommodating multiple intersection types.

Consider a ground vehicle operating in a simple road network (Figure 4-11). In

this scenario, which assumes left-hand traffic, the objective of the host vehicle is to

go straight through the intersection at bottom-center of Figure 4-11, reaching a goal
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(a) Environment used in the intersection scenario. The objective of the
host vehicle (orange circle) is to reach the goal position (green circle)
while avoiding all static obstacles (black) and the dynamic hostile vehicle
(magenta diamond). The blue curves indicate the possible trajectories
followed by the hostile vehicle. All objects are shown at true size; the
grey lines are lane markings, which do not serve as constraints.

(b) Representative screenshot of planner in operation. The CC-RRT
tree is in green; the host vehicle’s path history and current path are
in orange. The blue paths indicate the paths predicted by the RR-GP
algorithm for each possible behavior, including 2−σ uncertainty ellipses;
more likely paths are indicated with a brighter shade of blue.

Figure 4-11: Environment and display output used for the intersection scenario.

location 6 meters ahead on the opposite side. However, to get there, the host vehicle

must successfully avoid a hostile vehicle, which incorrectly believes that right-hand

traffic rules are in effect and thus is traveling in the wrong lane. There are three

possible behaviors for the hostile vehicle as it enters the intersection: (a) left turn,

(b) right turn, and (c) straight.
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The vehicle is modeled as a double integrator:
xt+1

yt+1

vxt+1

vyt+1

 =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1




xt

yt

vxt

vyt



+


dt2

2
0

0 dt2

2

1 0

0 1


 uxt

uyt

+

 wxt

wyt

 ,

where dt = 0.1s, subject to avoidance constraints X (including velocity bounds) and

input constraints

U = {(ux, uy) | |ux| ≤ 4, |uy| ≤ 4}.

This choice of dynamics was made to ensure that the dynamics are still linear, such

that the theoretical guarantees ([34]) are available; the subsequent example considers

nonlinear dynamics. To emphasize the impact of the hostile vehicle’s uncertainty, the

host vehicle’s own dynamics are assumed deterministic: wxt ≡ wyt ≡ 0. The vehicle is

simulated and executed in closed-loop, using the controller

uxt = −1.5(xt − rxt )− 3(vxt − rvxt ),

uyt = −1.5(yt − ryt )− 3(vyt − r
vy
t ),

where (rxt , r
y
t ) is the reference position and (rvxt , r

vy
t ) is the reference velocity; the

reference rt is moved continuously between waypoints at a fixed speed of 0.35 m/s.

The hostile vehicle dynamics are based on the iRobot Create platform [87], a

2-wheeled, skid-steered vehicle with near-instant acceleration. When pre-generating

trajectories (Section 4.2.5), a software wrapper imposes rate limits in acceleration
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and wheel speed differences, such that the vehicle emulates traditional automative

dynamics at a maximum speed of 0.4 m/s.

In the CC-RRT algorithm, the tree capacity is limited to 1000 nodes, with a replan

time interval of 0.5s. In Algorithms 1-2, Th = 8s and ∆t = 1s, though the vehicle

dynamics are simulated at 10 Hz. The limits of successful and infeasible connections

per ∆t (lines 9 and 11, Algorithm 1) are 20 and 100, respectively. The RR-GP

algorithms are called once every 1.0 seconds, each time giving Algorithm 2 a total of

0.3 seconds to grow its trees. If the time limit is reached, the algorithm is terminated

without reaching the time horizon Th.

A total of 400 trials were performed, consisting of 50 trials each for eight different

algorithms:

• Naive RRT: nominal RRT (no chance constraints) in which hostile vehicle is

ignored; this sets a baseline for the minimum expected likelihood of safety

• Nominal RRT: nominal RRT in which hostile vehicle is treated as a static

obstacle at its most recent location

• Velocity-Avoidance RRT: nominal RRT in which the future position of the

hostile vehicle is predicted by propagating its current position based on its

current velocity and heading

• CC-RRT (5 cases): CC-RRT Algorithm with psafe = 0.5, 0.8, 0.9, 0.99, or 0.999

Each trial differs only in the path followed by the hostile vehicle and the random

sampling used in the RR-GP and CC-RRT algorithms; the sequence of hostile ve-

hicle paths is consistent across all sets of 50 trials. Four quantities were measured

and averaged across these trials: the percentage of trials in which the vehicle safely

reaches the goal; the average duration of such paths; the average time to generate an

RRT/CC-RRT tree node; and the average time per execution of Algorithm 2.

Table 4.1 presents the averaged results over the 50 trials for each case. Note that

in all five cases using CC-RRT, the host vehicle safely navigates the intersection with
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Table 4.1: Simulation Results, Intersection Scenario
Algorithm psafe % to Path Time per Time per

Goala Duration, sb Node, msc RR-GP, sd

Naive RRT – 38% 10.01 (0.11%) 0.611 –

Nominal RRT – 46% 10.90 (8.96%) 0.662 –

Velocity-Avoidance RRT – 74% 11.14 (11.4%) 0.948 –

CC-RRT 0.5 92% 11.52 (15.2%) 1.610 0.598

CC-RRT 0.8 88% 11.65 (16.5%) 1.620 0.598

CC-RRT 0.9 92% 11.69 (16.9%) 1.620 0.590

CC-RRT 0.99 96% 12.51 (25.1%) 1.537 0.592

CC-RRT 0.999 100% 12.84 (28.4%) 1.492 0.587

a Number of trials where system executed a path to goal without colliding with any obstacles.
(Recall that psafe refers to feasibility for a single time step, whereas this entry corresponds to
feasibility across the entire path.)
b Percentage is average increase in path duration relative to minimal-time (obstacle-free) path,
10.0s. Only paths which reach goal are included.
c Cumulative time spent growing the CC-RRT tree, divided by number of nodes generated.
d Time spent in Algorithm 2.

a much higher likelihood than any of the cases not using chance consrtaints. Fur-

thermore, the CC-RRT results demonstrate the clear trade-off between overall path

safety (in terms of percentage of trials which reach the goal) and average path dura-

tion when using CC-RRT. As psafe is increased from 0.5 to 0.999, the percentage of

safe trajectories generally increases (with the one exception of psafe = 0.5), culminat-

ing with the host vehicle using CC-RRT with psafe = 0.999 reaching the goal safely

in all fifty trials.3 On the other hand, as psafe is increased and the planner becomes

more conservative, the average degree of suboptimality of the safe trajectories also

increases.

Figure 4-12 sheds some light on how different values of psafe affect the types of

paths chosen by the planner. In this particular trial, trial # 25, the hostile vehicle

ultimately makes a left turn through the intersection, and would collide with the

host vehicle if it did not deviate from an initial shortest-path trajectory. The RR-

GP algorithm is initially undecided whether the hostile vehicle is going straight or

turning left (as indicated by the shading on the predicted trajectories in Figures 4-

3Note that since psafe is a bound on feasibility at each timestep, rather than over an entire path,
it does not act as a bound on the percentage of paths which safely reach the goal - though a positive
correlation between the two is expected.
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12(a) through 4-12(d)); by t = 6 seconds it has confirmed the vehicle is turning left

(Figures 4-12(e) and 4-12(f)). When psafe = 0.8, the planner selects a path with the

minimum perturbation needed to avoid the hostile vehicle’s most likely trajectories

(Figure 4-12(a); note that 2−σ uncertainty ellipses are shown). As the hostile vehicle

closes in on the intersection (Figures 4-12(c) and 4-12(e)), the host vehicle continues to

hedge that it can cross the intersection safely and avoid the hostile vehicle’s approach

from either direction, and thus does not modify its plan. In contrast, when psafe =

0.999, the planner selects a larger initial perturbation to maintain the host vehicle’s

distance from the hostile vehicle (Figure 4-12(b)). After several RR-GP updates,

the host vehicle demonstrates a much more risk-averse behavior, by loitering outside

the intersection (Figures 4-12(d) and 4-12(f)) for several seconds before making its

approach. Ultimately, the host vehicle using psafe = 0.8 reaches the goal (Figure

4-12(g)) before the host vehicle using psafe = 0.999 (Figure 4-12(h)). In realistic

driving scenarios, the most desirable behavior is likely somewhere between these two

extremes.

Returning to Table 4.1 for Naive RRT, we see that by ignoring the hostile vehicle,

the time-optimal path is almost always achieved, but that a collision takes place in

a majority of trials, with collisions occurring in most instances of the hostile vehicle

going straight or left. (Naive RRT can be thought of as the limiting case for CC-RRT

as psafe → 0). In some instances, the Nominal RRT algorithm is able to maintain

safety by selecting an alternative trajectory when the hostile vehicle’s current posi-

tion renders the host vehicle’s current trajectory infeasible (Figure 4-13); however,

the overall likelihood of safety is still quite low. In many cases, the hostile vehicle

collides with the host vehicle from the side, such that a replan is not possible. Of

the nominal RRT algorithms, the velocity-avoidance RRT algorithm performs the

most competitively with CC-RRT, with 74% of trials yielding a safe trajectory. Since

the hostile vehicle always starts by driving to the left, the host vehicle responds in

nearly all trials by immediately perturbing its own path, based on the assumption

that the hostile vehicle will go straight through the intersection (Figure 4-14(a)).

This contributes to the larger average path duration obtained by velocity-avoidance
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(a) psafe = 0.8, t = 2 seconds (b) psafe = 0.999, t = 2 seconds

(c) psafe = 0.8, t = 4 seconds (d) psafe = 0.999, t = 4 seconds

(e) psafe = 0.8, t = 6 seconds (f) psafe = 0.999, t = 6 seconds

(g) psafe = 0.8, t = 11 seconds (h) psafe = 0.999, t = 11 seconds

Figure 4-12: Representative screenshots of the RR-GP and CC-RRT algorithms dur-
ing trial #25 of the intersection scenario, for two different values of psafe. The host
vehicle’s path history and current path are in orange. The blue paths indicate the
paths predicted by the RR-GP algorithm for each possible behavior, including 2− σ
uncertainty ellipses; more likely paths are indicated with a brighter shade of blue.

RRT compared to the other nominal algorithms in Table 4.1). However, in many

instances, velocity-avoidance RRT is still unable to respond to rapid changes in the
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(a) t = 2 seconds (b) t = 7 seconds

(c) t = 8 seconds (d) t = 9 seconds

Figure 4-13: Representative screenshots of the nominal RRT algorithm during trial
#14 of the intersection scenario. The host vehicle plans a direct path to the goal
(Figures 4-13(a) and 4-13(b)) until the hostile vehicle crosses the path, rendering it
infeasible (Figure 4-13(c)); the host vehicle then replans around the hostile vehicle
(Figure 4-13(d)).

(a) t = 2 seconds (b) t = 6 seconds

Figure 4-14: Representative screenshots of the velocity-avoidance RRT algorithm
during trial #5 of the intersection scenario. In this trial, the hostile vehicle turns
right and ultimately collides with the host vehicle.

hostile vehicle’s heading, such as when the hostile vehicle turns right (Figure 4-14(b)).

Finally, we note that the average time to either generate an RRT node or call

RRGP is largely independent of psafe for CC-RRT. There is a modest increase in av-

erage time per node when moving from naive or nominal RRT to velocity-avoidance

RRT (scales by a factor of 1.5) or CC-RRT (scales by a factor of 1.5), though previ-
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Figure 4-15: Environment used in the complex scenario, including possible behaviors
for the hostile vehicle (at goal on right); see Figure 4-11 for legend.

ous work has demonstrated that this increases scales well with environment complex-

ity ([34]).

Complex Scenario

This next case increases the complexity of the scenario, with more obstacles and more

possible behaviors for the target vehicle (Figure 4-15. This environment is the same

size as the previous one, with rearranged obstacles; as the target vehicle moves from

one side of the environment to the other, it may display as many as six possible

behaviors, corresponding to whether each of the four obstacles is passed by the target

vehicle on its left or right. Furthermore, by design the target vehicle has a higher

maximum speed than the host vehicle, meaning that the host vehicle is at risk of

being overtaken from behind if its path is not planned carefully. Two versions of

this scenario are presented. In the first version, a double integrator must travel to a

sequence of fifty waypoints while avoiding a continuously-moving dynamic obstacle;

all CC-RRT theory still holds in this case. In the second version, a nonlinear Dubins

vehicle must exchange positions with the dynamic obsatcle; representative screenshots

of these trials are presented.
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Linear Dynamics Example: Consider the use of the same double integrator

used in the results in Section 4.2.5; the same dynamics and controller are used, but

in this case the reference movement speed is increased from 0.35 m/s to 0.6 m/s. Due

to the increased number of behaviors and more complex environment, the Gaussian

process formulation is more challenging for this scenario than in Section 4.2.5; as a

result, several of the parameters in Algorithms 1-2 have been modified to improve

performance. Here, the limits of successful and infeasible connections per ∆t (lines 9

and 11, Algorithm 1) are 10 and 100, respectively. The RRGP algorithms are called

once every 1.25 seconds, each time giving Algorithm 2 up to a full second to grow

trees for each behavior, with the time horizon Th increased from 8 seconds to 12

seconds. Both vehicles have a radius of 0.2m and start at zero velocity.

The objective of this scenario is to demonstrate the ability of the CC-RRT al-

gorithm, using RR-GP dynamic obstacle data, to exhibit safe driving behavior for

long-duration missions. The same eight algorithms used in Section 4.2.5 are again

used here; however, rather than performing 50 trials, each algorithm is used to guide

the host vehicle through a continuous sequence of 50 waypoints. The host vehicle

starts on the left side of the room, and each subsequent waypoint is among a set

of four, located near each of the room’s 4 corners. The host vehicle is given the

next waypoint as soon as the current waypoint is reached; consecutive waypoints are

required to be on opposite sides of the room, with respect to the room’s long axis.

While the host vehicle completes this sequence, the hostile vehicle moves continuously

back and forth between the left and right ends of the room, each time selecting one

of the six possible behaviors and one of the four pre-generated trajectories for that

behavior (Figure 4-15).4 Note that both the sequence of waypoints and hostile vehicle

behaviors are consistent across all algorithms.

If the host vehicle collides with each the hostile vehicle or an element of the

environment, the mission continues; however, the hostile vehicle is penalized for this

collision by being re-set back to its last reached waypoint. This allows the trial for each

4When the hostile vehicle moves from left to right, the trajectories shown in Figure 4-15 are
reflected across the room’s short axis.

153



Table 4.2: Simulation Results, Complex Scenario
Algorithm psafe # Mission Time per Time per

Collisionsa Duration, sb Node, ms RR-GP, s

Naive RRT – 13 737.1 0.731 –

Nominal RRT – 20 819.5 0.812 –

Velocity-Avoidance RRT – 4 766.3 1.421 –

CC-RRT 0.5 6 821.2 5.112 0.665

CC-RRT 0.8 8 818.9 5.596 0.654

CC-RRT 0.9 2 811.7 4.343 0.635

CC-RRT 0.99 4 820.5 5.142 0.643

CC-RRT 0.999 6 834.1 4.693 0.639

a Number of collisions which took place over a single trial. Collisions which take place within 0.5
seconds of each other are not counted as separate collisions.
b Total time required for host vehicle to reach 50 waypoints; note that the vehicle is reset to its last
reached waypoint each time a collision takes place.

algorithm to be performed as a single, continuous simulation, while also providing a

figure of merit which factors in both path duration/length and risk of collision.

Four quantities were measured and averaged for each algorithm: the total time

required to reach all 50 waypoints, including collision time penalties; the number of

collisions which take place; the average time to generate an RRT/CC-RRT tree node;

and the average time per execution of Algorithm 2.

Table 4.2 presents the results for each algorithm. A key trend in these results is

that as psafe increases, both the number of collisions and mission duration tend to

decrease, reach minimum values at psafe = 0.9, then actually increase beyond that

value. For lower values of psafe, the host vehicle is willing to execute trajectories with

a significant amount of risk, by bringing the vehicle closer to the dynamic obsatcle,

and thus collisions are more probable. Even though the resulting trajectories selected

by the planner will be shorter than for larger values of psafe, the time penalties for

collisions actually result in an overall longer mission duration. On the other hand,

for higher values of psafe, the planner is more likely to mark a path as probabilisti-

cally infeasible for small amounts of risk, causing the vehicle to come to a stop at

the conclusion of its probabilistically feasible path. This is typically a desirable be-

havior; however, the hard example (Figure 4-15) features many narrow corridors and

a dynamic obstacle whose top speed exceeds the planner. In this case, coming to a
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stop may actually increase the risk of collision, particularly if the host vehicle stops

in the path of the hostile vehicle (whose trajectory ingnores the host vehicle’s current

position).

As a result, the most desirable behavior is achieved using CC-RRT with psafe = 0.9,

with only 2 collisions taking place over a sequence of 50 waypoints. Two aspects of

the complex scenario tend to increase the likelihood of collision across all algorithms,

such that 100% safety becomes unreasonable for this scenario. First, when the hos-

tile vehicle changes direction, the RR-GP prediction environment changes rapidly

(compare Figures 4-16(e) and 4-16(f) with Figures 4-16(g) and 4-16(h)), and the host

vehicle may not be able to react quickly enough if nearby. Second, the host vehicle

may find itself in a corridor being pursued by the hostile vehicle; since the hostile

vehicle has a larger maximum speed, a collision may become inevitable.

Figure 4-16 demonstrates how CC-RRT can exhibit complex, robust avoidance

behavior for large values of psafe in order to remain risk-averse. In each trial, the

agent’s first task (shown in the figure) is to move from the left side of the room to the

waypoint at bottom-right; the shortest path is to move along the bottom of the room.

The hostile vehicle’s trajectory takes it to the left of the first and last obstacles, and

down the central corridor. When the first RR-GP update is performed, there is little

data available to infer which way the hostile vehicle is going, and thus all six behaviors

are equally likely. For psafe = 0.8, the planner selects a complete trajectory which

reaches the goal (Figure 4-16(a)). Even though this would lead to a head-on collision

for one of the behaviors, the likelihood of that behavior being active is roughly 1 in

6, an acceptable risk for psafe = 0.8 (< 5/6). On the other hand, when psafe = 0.999,

the planner is not willing to select a trajectory with crosses the hostile vehicle’s path

for any possible behavior. Instead, it selects a partial path behind one of a central

obstacles, the location which brings it closest to the goal without being in any of the

hostile vehicle’s possible paths (Figure 4-16(b)).

As the mission progresses, the hostile vehicle’s path is revealed to go through

the central corridor. For psafe = 0.8, this was not the behavior that risked a head-on

collision, so it continues on its initial trajectory (Figures 4-16(c) and 4-16(e)), reaching

155



the goal state quickly (Figure 4-16(g)). On the other hand, when psafe = 0.999,

the agent holds its position behind the obstacle until the hostile vehicle has passed

through the central corridor (Figure 4-16(d)); once the hostile vehicle has passed

by, the identifies a new trajectory which reaches the goal (Figure 4-16(f)), though it

arrives at the goal significantly later than if a lower value of psafe were used (Figure

4-16(h)).

Observing the nominal RRT results in Table 4.2, it is clear that neither Naive RRT

nor Nominal RRT can provide a sufficient level of safety for the host vehicle, with a

double-digit number of collisions occurring in each case. On the other hand, Velocity-

Avoidance RRT is quite competitive with CC-RRT. Though it does not achieve the

minimum number of collisions obtained by CC-RRT for psafe = 0.9, velocity-avoidance

RRT still only has 4 collisions, as well as a mission duration significantly shorter than

any of the CC-RRT trials. Since the trajectories executed by the hostile vehicle are

relatively straight, with few sharp turns (especially compared to Section 4.2.5), the

forward propgation done in this case actually tends to be a good prediction, allowing

the host vehicle to make a rapid response when needed.

Concerning runtimes, it is observed that the average runtime needed to generate

a tree node using CC-RRT is larger than the average runtime for nominal RRT, by a

factor which is larger than the one observed in Section 4.2.5. Nonetheless, the runtime

per node averages only 5ms, meaning many hundreds of nodes can be generated every

second. Coupled with the fact that the RR-GP update averages a fraction of a second

(about 0.65s), the CC-RRT algorithm with RR-GP is clearly amenable to real-time

implementation for this more complex example.

A video showing an autonomous vehicle navigating the complex scenario using

CC-RRT with Integrated RR-GP (for psafe = 0.999) is available at http://acl.mit.

edu/rrgp.mp4.

Nonlinear Dynamics Example: For this scenario, the host vehicle is modeled

as nonlinear car dynamics with a fixed speed v = 0.4 m/s, half that of the target
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(a) psafe = 0.8, t = 1 seconds (b) psafe = 0.999, t = 1 seconds

(c) psafe = 0.8, t = 8 seconds (d) psafe = 0.999, t = 8 seconds

(e) psafe = 0.8, t = 9 seconds (f) psafe = 0.999, t = 9 seconds

(g) psafe = 0.8, t = 15 seconds (h) psafe = 0.999, t = 15 seconds

Figure 4-16: Representative screenshots of the RR-GP and CC-RRT algorithms as the
host vehicle approaches the first waypoint in the complex scenario, for two different
values of psafe.
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vehicle:

xt+1 = xt + (dt)v cos θt + wxt ,

yt+1 = yt + (dt)v sin θt + wyt ,

θt+1 = θt + (dt)
v

Lw
tan δt + wθt ,

where dt = 0.1s, (x, y) is the vehicle position, θ is the heading, Lw = 0.2 m, and

δt ∈ [−π/4,+π/4] is the steering angle input. The host vehicle and target vehicle

are to swap positions; the host vehicle must move from left to right, while avoiding a

collision with a faster-moving dynamic obstacle moving in the opposite direction.

The vehicle is controlled in closed-loop using the nonlinear steering controller

δt = −Ky tan−1(ey)−Kθeθ,

where Ky = Kθ = 1, eθ is the difference in headings between the vehicle and waypoint,

and ey is the lateral distance between the vehicle and waypoint (as projected onto the

waypoint heading). In this scenario, the vehicle must contend with both uncertainty

in the dynamic obstacle and process noise, where the covariance on the disturbance

wt = (wxt , w
y
t , w

θ
t ) is

Pw =


5× 10−5 0 0

0 5× 10−5 0

0 0 2× 10−4

 ,

with zero localization error (Px0 = 0). In this version, the RR-GP algorithms are

called once every 1.25 seconds, each time giving Algorithm 2 a total of 1 second to

grow trees for each behavior, with Th again set to 12 seconds.

Figure 4-17 demonstrates the operation of the developed algorithms for a typical

trial using the nonlinear dynamics, with psafe = 0.99. In these figures, the current

RRT tree at each timestep is shown, including 2− σ uncertainty ellipses. Note that
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the uncertainty ellipses are generally aligned with the direction of motion, consistent

with the existence of heading angle process noise [109].

When the simulation is initialized, all possible behaviors are perceived as equally

likely (Figure 4-17(a)). The host vehicle initially selects a path guiding it forward a

small amount toward the goal, awaiting a path to be identified in the tree which is

both probabilistically feasible and brings it closer to the goal (Figure 4-17(b)). Three

seconds later, two distinct features are clear in the RRT tree (Figure 4-17(c). A

portion of the tree near the host vehicle would bring it directly toward the goal, but

does not reach the goal – the path is terminated prematurely due to the path becoming

probabilistically infeasible, when the target vehicle reaches the central corridor. On

the other hand, a longer path is found through the lower corridor which reaches the

goal, since RR-GP has indicated the likelihood of any behavior passing through that

corridor is virtually zero. The host vehicle selects this path, and is able to safely

proceed toward the goal without interacting with the target vehicle again (Figure

4-17(d)). The host vehicle safely reaches the goal despite uncertainty both in its own

motion and in the motion of a dynamic obstacle.

Perhaps most importantly, RR-GP is able to update its six behavior trajectory

predictions in an average time of 0.80 s. This demonstrates the ability of RR-GP to

use Gaussian processes to generate a complex set of generalizable trajectory predic-

tions while operating in real-time.

4.2.6 Conclusion

This section has developed a real-time path planning framework which allows au-

tonomous agents to safely navigate environments while avoiding dynamic obstacles

with uncertain motion patterns. The developed solution combines chance-constrained

rapidly-exploring random trees [34], with RR-GP, Bayesian nonparametric reachabil-

ity trees [29], resulting in a probabilistic path planning formulation that guarantees

probabilistic feasibility and is suitable for real-time implementation. Simulation re-

sults have demonstrated the effectiveness of the integrated approach in achieving high

levels of vehicle safety for a variety of dynamics, environments, and behaviors, with
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(a) t = 0 s (b) t = 1.5 s

(c) t = 4.5 s (d) t = 6 s

Figure 4-17: Demonstration of the CC-RRT algorithm with RR-GP applied to a
representative trial in the complex, nonlinear scenario. Uncertainty ellipses for the
host vehicle’s process noise are indicated by 2 − σ uncertainty ellipses on the RRT
tree.

modest increases in path duration and computational load.
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Chapter 5

Threat Assessment Algorithms and

Application to Road Intersections

While the previous chapter developed algorithms to improve the safety of autonomous

vehicle navigation, this chapter focuses on solution approaches that assist human

drivers in urban environments. More specifically, it considers the decision-making

problem for a human-driven vehicle crossing a road intersection in the presence of

other, potentially errant, drivers [30]. Our approach relies on a novel threat assess-

ment module, which combines an intention predictor based on support vector ma-

chines (Chapter 2) with an efficient threat assessor using rapidly-exploring random

trees. The threat assessment module was introduced in Chapter 4, and is extended

in this chapter to provide a threat warning to assist human drivers at road inter-

sections. The module warns the host driver with the computed threat level and the

corresponding best escape maneuver through the intersection. Through experimental

results with small autonomous and human-driven vehicles in the Aerospace Controls

Laboratory RAVEN testbed, we demonstrate that this threat assessment module can

be successfully used in real-time to minimize the risk of collision in urban-like environ-

ments. This chapter also includes another game-theoretic formulation that extends

the developed reachability algorithm to a dual exploration-pursuit mode to consider

the worst-case scenario of errant drivers capable of causing intentional collisions [35].
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5.1 Introduction

The field of road safety and safe driving has witnessed rapid advances due to improve-

ments in sensing and computation technologies. Active safety features like anti-lock

braking systems and adaptive cruise control have been widely deployed in automo-

biles to reduce road accidents [3]. However, the US Department of Transportation

(DOT) still classifies road safety as “a serious and national public health issue.” In

2008, road accidents in the US caused 37,261 fatalities and about 2.35 million injuries.

A particularly challenging driving task is negotiating a traffic intersection safely; an

estimated 45 percent of injury crashes and 22 percent of roadway fatalities in the

US are intersection-related [23]. A main contributing factor in these accidents is

the driver’s inability to correctly assess and/or observe the danger involved in such

situations [24].

This data suggests that driver assistance or warning systems may have an appro-

priate role in reducing the number of accidents, improving the safety and efficiency

of human-driven ground transportation systems. Driver assistance systems can be

classified into two categories: infrastructure-based systems, such as intelligent vehi-

cle highway systems (IVHS), and vehicle-based systems, such as car-to-car (C2C)

communications [111]. Vehicle-based systems are expected to become available more

quickly on commercial vehicles, compared to their infrastructure-based counterparts

[112]. Such systems typically augment the driver’s situational awareness and can also

act as collision mitigation systems. This research is focused on threat assessment

algorithms that can be applied to vehicle-based systems.

Research on intersection decision support systems has become quite active in both

academia and the automotive industry. In the US, the federal DOT, in conjunction

with the California, Minnesota, and Virginia DOTs and several US research univer-

sities, is sponsoring the Intersection Decision Support (IDS) project [24]. In Europe,

the InterSafe project was created by the European Commission to increase safety at

intersections. The partners in the InterSafe project include European vehicle manu-

facturers and research institutes [25]. Both projects try to explore the requirements,
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tradeoffs, and technologies required to create an intersection collision avoidance sys-

tem, and demonstrate its applicability on selected dangerous scenarios [24, 25].

Several measures have been proposed to characterize the threat level of dynamic

road situations. These approaches typically measure collision risk by time-to-collision

(TTC) and its variants [14], such as headway time [113] or required deceleration [114].

However, these measures are tailored to frontal collision warning systems, where the

unpredictable dangerous driver is leading the host driver, and cannot typically be

applied to intersection scenarios where the dangerous driver may approach from a

variety of angles. Model Predictive Control (MPC) techniques have been also used

to compute the threat level [115, 116]. However, their formulation limits them from

considering other vehicles with uncertain behaviors. Other approaches have consid-

ered safety assessment for more general road scenarios using Monte Carlo techniques

[117–119], but their computational burden prevents them from real-time implementa-

tion. Recent work has proposed new techniques for assessing, in real-time, the threat

at intersections. But they are typically limited to straight crossing path scenarios

[120], or assume deterministic future trajectories for the other vehicles and simplistic

driver models [121, 122].

This section proposes a new approach for threat assessment at intersections that

addresses several of the limitations of the current approaches. More specifically, it

considers the problem of assisting human drivers with negotiating busy intersections

in the presence of possibly errant drivers with uncertain intentions. It proposes a

novel design for a threat assessment module, which combines a learning-based inten-

tion predictor with an efficient sampling-based threat assessor to compute the threats

of errant drivers in real-time. This threat data is used to evaluate the safety of sev-

eral possible escape paths, which may be proposed to the human driver if evasive

maneuvers are warranted. The approach is demonstrated through experimental re-

sults demonstrating its effectiveness on different intersection scenarios in the MIT

RAVEN testbed [89].
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5.2 Problem Statement

We now define the road intersection threat assessment problem that is analyzed in

this section.

Definition 1 (Intersection Threat Assessment Problem) Consider a host ve-

hicle HV approaching an intersection involving one or more other possibly errant

vehicles OVs; compute the escape maneuver u∗ that minimizes the threat level T that

the HV incurs over a fixed time horizon Th.

In this work, we assume the region of interest is localized to a finite volume around

the host vehicle, called the active region and represented by a detection radius. This

assumption bounds the number of vehicles affecting decision making, and partially

represents the limitations of the sensors and wireless communications systems likely

to be installed on the vehicles (Section 5.3.2).

We consider HV to be safe if it avoids colliding with all other vehicles, denoted

here as OV i, i = 1 . . . N . This constraint can typically be written in the form

min
t0≤t≤tf

‖ps(t)− pri(t)‖ > ε ∀i = 1 . . . N, (5.1)

where s(t) and ri(t) are the states of HV and OV i at time t, respectively, ps(t) is

the position vector corresponding to s(t), pri(t) is the position vector corresponding

to ri(t), ε is the minimum allowed distance between the HV and the OVs, and

tf = t0 +Th. We say that HV is in collision with OV i if the tuple (ps(t), pri(t)) enters

the closed “collision” set Ωi, whose boundary is given by the scalar equation

‖ps(t)− pri(t)‖ = ε. (5.2)

In typical (i.e. uncertain and/or non-cooperative) driving scenarios, the future

trajectories ri(t), t ∈ [t0, tf ] of the OVs are not known bythe HV . Moreover, some

realizations of ri(t) may cause (5.1) to become infeasible for every admissible escape

maneuver. Let u : [t0, tf ] 7→ U denote the set of all admissible control sequences.

To maximize the safety of HV , we compute the admissible escape maneuver u∗ that
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minimizes the threat level T , defined below, for all possible realizations of ri(t),

i = 1 . . . N .

Definition 2 (Threat Level) Define the threat level Ti(u) corresponding to vehicle

OV i and time parametrized escape maneuver u(t) as inversely proportional to tci, the

earliest possible time of collision:

Ti(u) =
1

tci(u)
,

tci(u) = inf{t | (ps(t), pri(t)) ∈ Ωi}.
(5.3)

The threat level T corresponding to escape maneuver u(t) is then defined as

T (u) = max
i∈1...N

Ti(u). (5.4)

Definition 3 (Best Escape Maneuver) The best escape maneuver u∗ is defined

as

u∗ = arg min
u∈U
T (u). (5.5)

Note that in (5.3), ps(t) is generated by the escape path u(t).

5.3 Solution Approach

The proposed threat assessment provides assistance to the host vehicle HV in nav-

igating dynamic environments populated by multiple other vehicles with uncertain

intentions. The approach is demonstrated in intersection scenarios, but can be gen-

eralized to arbitrary road geometries. The assessment is computed in a threat assess-

ment module (TAM) that is designed as a black box (Figure 5-1), allowing it to be

easily incorporated in a driver assistance system. The TAM presented in this work is

an adaptation of the architecture developed in Ref. [32] and presented in Section 4.1

to generate safe trajectories for autonomous vehicles. high-level architecture of the

TAM is
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Figure 5-1: High-level architecture of the Threat Assessment Module (TAM). The
inputs of the TAM are the measurement history z of the OVs and the set of control
escape sequences U generated for the HV . The IP computes the intention vector b
for each OV , used by the TA to identify the threat level T and best escape maneuver
u∗.

5.3.1 High-level Architecture

The TAM consists of two main components, an intention predictor (IP) and a threat

assessor (TA). The IP incorporates high-level reasoning in modeling the intentions

of the OVs, and uses observations to make a prediction of future behaviors. Such

a predictor might, for example, classify the threat posed by other vehicles based

on whether or not their modeled intentions conform to “typical” driving behavior

[96, 123]. The TA converts this prediction into a set of potential paths that the OV is

likely to follow. The threat level can then be evaluated for each candidate HV escape

maneuver, in order to identify the best escape maneuver.

Several distinct representations have been proposed to model intentions for hu-

mans and autonomous systems; here we adopt the Ecological Recogniser architecture

introduced by Ref. [95] and shown in Figure 5-2. Using the language of the figure,

the HV is the recognising agent, while each OV is an intending agent. It is implicitly

assumed that the list of intentions fully partitions the space of all possible behaviors

for the intending agents. We will also follow the abstract definition that these inten-

tions are directly responsible for the actions or activities executed by the intending

agents [95]. Intentions may be desired plans (e.g., following a straight path) or other

high level intention states (e.g., not following the rules of the road).

Let theM -vector bi denote the intention vector ofOV i; the jth entry bji corresponds
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Figure 5-2: The intentional behavior of the Intending Agent and the intention recog-
nition of the Recognizing Agent. Adapted from Ref. [95].

to the belief OV i is operating under the jth intention. The definition of the threat

level (5.4) is modified to embed the expectation of each vehicle’s threat over all

possible intentions,

T (u(.)) = max
i∈1...N

( ∑
j∈1...M

bjiTij(u(.))

)
(5.6)

where Tij is the threat value of the trajectories followed by OV i as a realization of its

jth intention.

5.3.2 Agent Model

Each agent is modeled using the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(5.7)

where (x, y) is the rear axle position, v is the forward speed, θ is the heading, L

is the wheelbase, a is the forward acceleration, and δ is the steering angle (positive

counter-clockwise). The state of the vehicle is s = (x, y, θ, v) ∈ S, while the input is

u = (δ, a) ∈ U , including the constraints amin ≤ a ≤ amax and |δ| ≤ δmax.
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In the work that follows, we make several assumptions to constrain the focus on

uncertainty in the prediction of obstacles or other agents. We assume that the current

states and models of the HV and the OVs are perfectly known by the HV within the

active region, and that all sensor measurements are noise-free. While this assumption

is somewhat unrealistic, the addition of estimation filters on noisy measurements

should have a minimal effect on the TAM architecture. The focus of this chapter is

on the planning subproblem, rather than sensing. Additionally, the TAM is provided

with a complete map of the environment a priori, excluding any dynamic obstacles

or agents. Finally, the number of escape control functions of the HV is assumed

to be finite. Since the HV typically follows the rules of the road, it is reasonable

to predefine some typical escape maneuvers that a “good” host driver might follow,

e.g., maximum braking or an increase in throttle.

5.4 Developed Algorithms

This section describes the implementation of the different components of the TAM,

tailored specifically for the road intersection problem. The IP component is based

on the Ecological Recogniser architecture presented in Ref. [95]. The TA compo-

nent combines knowledge of the intentions produced by the IP and domain-specific

information of the environment to quickly propagate reachable paths for the mov-

ing vehicles using a reachability-based algorithm. Then, for each admissible escape

maneuver, it evaluates the threat generated by these paths. It finally returns the

maneuver with the lowest threat level over all vehicles. The result is an intention-

reasoning TAM that runs efficiently and is suitable for real-time implementation.

5.4.1 Intention Predictor (IP)

The IP translates observations that HV makes of the other OVs into a prediction of

their intentions. Instead of using low-level reasoning to predict future trajectories, the

IP uses higher-level logic to provide the TAM with predicted future intentions, which

is key to more timely and accurate prediction of collisions. Each intention can then
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be translated to a richer set of future paths that exploit domain-specific knowledge

using the TA (Section 5.4.2).

The chosen Ecological Recogniser architecture [95] is applicable to our problem

because it is designed for an intelligent agent trying to recognize the intention of other

agents with access to their state data but not actions. Additionally, this architecture

can handle intentions which are not easily described by a simple set of rules, as can

be the case in this problem. The Ecological Recogniser architecture has two key

components, a pattern matcher and a reasoning module. The pattern matcher is a

classifier that is trained offline to recognize the different intentions by observing agent

trajectories, and operates online by continuously giving an estimate of the intentions

over time. The reasoning module filters these estimates of intentions, along with

knowledge of previous encounters with the agent, to give a final estimate of the

intention vector b.

Since the focus is on estimating the intentions of vehicles near intersections, we use

a specific implementation of the Ecological Recogniser that is based on an approach

previously developed and demonstrated in simulation [96] for classifying other agent

intentions using support vector machines (SVM) and Bayesian filtering. Even before

considering autonomous vehicles, the human driver intention classification problem is

very complex because of the various nuances of human behaviors. SVM is a suitable

method for the IP because it has been shown to be a robust and efficient approach

for classification problems [54], such as lane-change detection [51]. The IP design

consists of an SVM combined with a Bayesian filter that uses the SVM outputs over

a specific time period to compute the intention vector b. SVM-BF also includes a

threshold detector, so the final b vector is a unit basis vector specifying the most likely

intention according to the threshold value. The SVM-BF was trained using human

driving data collected in RAVEN [89]. For more details about the SVM-BF approach,

please refer to [96]. Based on experimenting with different kernel functions and several

combinations of features, the best results were obtained using the Gaussian radial

basis function and combining the following three features:

• the relative distance ∆x between the OV i and the entrance of the intersection
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it is approaching;

• the speed of the OV i;

• the longitudinal acceleration of the OV i.

The SVM-BF algorithm is only activated when the distance between the OV i and

the HV is within some danger radius, and both vehicles are approaching the same

intersection, which is representative of a limited computation budget and restricted

knowledge of the world.

Finally, note that the SVM-BF is presented in the context of intention prediction

rather than behavior classification (as in Chapter 2) because there is an implicit

assumption in this chapter that the choice of following the rules or not is intentional

rather than behavioral. In other words, the OVs consciously and intentionally decide

whether to be errant or not. They are not unconsciously following a behavior that

could be non-compliant.

5.4.2 Threat Assessor (TA)

The TA (Algorithm 8) computes a threat value of a candidate escape maneuver for the

HV given a knowledge of the current states of the OVs. It combines a fast sampling-

based reachability method with intention prediction information provided by the IP

(Section 5.4.1) to efficiently estimate the threat level. A similar version of the TA

algorithm that assumes worst-case behavior for the other drivers was developed in

Ref. [35]. The threat assessor has a finite time horizon, limiting the HV lookahead

horizon of the possible future paths of the other OVs, in order to focus calculations

on imminent threats. This choice is domain-specific, but it should be long enough to

allow the HV sufficient time to react in a dynamic environment. To obtain the best

escape maneuver u∗, the TAM calls Algorithm 8 for each each maneuver u in the set

of escape maneuvers, and returns the maneuver with the minimum threat level.

Algorithm 8 first calls the Compute-Intention-Reachability subroutine (Algorithm 9)

on line 3 to create the reachability set for each OV i. The resulting sets are biased
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Algorithm 8 Intention-based-Threat-Assessment (u)
1: Ti ← 0 ∀i
2: for each agent OV i do
3: Reach-Set ← Compute-Intention-Reachability (bi)
4: for each intention ej with probability bji do

5: Ti ← Ti + bji · Eval-Threat(Reach-Set ,OV i, ej , u)
6: end for
7: end for
8: return maxi=1...N Ti

based on the perceived intentions of the OVs. For each intention ej of each OV i,

Algorithm 10 is called to compute the threat incurred by the HV escape maneuver

u in the region reached by the paths that correspond to the intention ej. Note that

the earliest time to collision is converted into a threat value using (5.3) (line 3 of Al-

gorithm 10). This value is weighted by the probability bji provided by the IP. Finally,

the threat returned is computed as the maximum value of all threats created by each

OV i (line 8 of Algorithm 8). Note that, in practice, the computed reachability sets

for each OV i are saved between successive calls to Algorithm 1.

Algorithm 9, also referred to as the RRT-Reach algorithm, was presented in Sec-

tion 4.1 in the context for threat-aware motion planning and is reproduced in this

section for clarity. Algorithm 9 extends the rapidly-exploring random tree (RRT)

[84, 97] algorithm, which grows a tree by randomly sampling points toward which

dynamically feasible trajectories are simulated. In particular, it uses the closed-loop

RRT (CL-RRT) algorithm of Ref. [31], which samples inputs to a controller rather

than the vehicle itself. The algorithm thus maintains the exploration bias of tra-

ditional RRT algorithms, while allowing for generation of smooth trajectories more

efficiently. A key advantage of the RRT algorithm is the scalability of the planning

tree to use whatever computational resources are available.

Unlike traditional RRT approaches, the RRT-Reach tree is not used to identify

some path that reaches a goal location. Rather, the entire tree is analyzed to find

the maximum threat along each of the trajectories. The choice of samples is designed

to be biased towards regions corresponding to the learned intentions of the OVs. It

is done through sampling some percent of the time in regions corresponding to the
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Algorithm 9 Compute-Intention-Reachability (b)
1: Measure current vehicle state and environment
2: repeat
3: Take sample for input to controller using bias from intention probability vector b
4: repeat
5: Update time range in time heuristics
6: Find list of nearest neighbors using time range
7: Sort list using distance heuristics
8: for each sorted node do
9: Call propagation function

10: if propagated portion is collision free then
11: Add sample to Tree break
12: end if
13: end for
14: until timestamp reaches time horizon and no collision free portion was found
15: until time limit for growing tree is reached
16: return Tree

Algorithm 10 Eval-Threat (Reach-Set, OV , e, u)
1: for each path pathk in Reach-Set that ends in a region of intention e do
2: tk ← compute earliest time of collision of pathk with HV escape maneuver u within

time horizon Th
3: Tk ← 1

tk
4: end for
5: return maxk Tk

component ej of intention e. The remaining percent of the time is spent sampling

uniformly in the environment. Note that Algorithm 9 was presented in Section 4.1 in

the context for threat-aware motion planning, and is reproduced in this section for

clarity.

Algorithm 9 includes several additional extensions to the RRT approach intro-

duced in Ref. [31], based on time parameterization of the RRT tree. The extensions

tailor the RRT algorithm to the efficient computation of intented paths by the OVs.

Refer to Section 4.1 for more details.

5.5 Experimental Results

This section presents experimental results which validate the effectiveness of the TAM

in assisting human drivers approaching intersections in the presence of possibly er-
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rant drivers, subject to real-world uncertainty. These results verify that the TA can

accurately identify drivers who do not observe a stop sign and enter the intersection

out of turn, constituting a violation of the rules of the road. The results also show

that the IP is capable of providing the human driver with the correct course of action,

based on the intention and likely paths of the errant driver.

Including a human driver in the experiment helps to validate the TAM, since it will

ultimately be used to assist human drivers. For example, the response to TAM alerts

can be measured to determine the appropriate notification time. The autonomous

driver can also be used to emulate a variety of human driving behaviors acquired from

actual urban traffic data within the testbed.

The hardware results are presented after an overview of the experimental in-

frastructure, including testbed, hardware, and software. A video showing several

different experimental scenarios, including the results below, is available at http:

//acl.mit.edu/ITSC10TAM.mov and http://hdl.handle.net/1721.1/46720 [124].

5.5.1 Testbed

Hardware demonstrations were performed in the Real-time indoor Autonomous Ve-

hicle test ENvironment (RAVEN), a testbed designed for the rapid prototyping of

decision-making and control algorithms for unmanned aerial and ground vehicles [89].

Vehicle state data is collected using motion-capture cameras [125], which detect each

vehicle via a unique pattern of attached reflective dots. Many different configura-

tions can be tested with minimal setup effort, yielding high-fidelity state data for

potentially dangerous driving scenarios without risk of injury.

A representative road network was constructed within the RAVEN testbed, in-

cluding multiple intersection types and road signs, to emulate a real-world driving

environment for testing the TAM (Figure 5-3). The road network is 11.2 m× 5.5 m

in size, and is capable of accommodating multiple intersection types and as many as

10 vehicles running simultaneously.
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Figure 5-3: The road network constructed within the RAVEN testbed to test the TAM
algorithm. Here both a human-driven vehicle (front-right) and autonomous vehicle
(back-left) are approaching a four-way, stop-sign intersection. The rear-mounted
camera, one of two, is clearly visible on the human-driven vehicle.

5.5.2 Hardware Infrastructure

All vehicles in this experiment use the iRobot Create platform [87]. The vehicle

is a 2-wheeled, skid-steered vehicle with a maximum speed of 0.5 m/s and near-

instantaneous acceleration. A software wrapper imposes rate limits in acceleration

and wheel speed differences, such that the vehicle emulates traditional automative

dynamics (5.7).

Each experiment consists of one human-driven vehicle and one autonomous vehi-

cle. The human-driven vehicle is controlled through a wireless steering wheel [100],

including acceleration and brake pedals. The mapping of the steering and pedal

inputs to the vehicle motion has also been tuned to emulate traditional control of

an automobile, including turning, acceleration, and braking behaviors. The human

driver may steer their vehicle through direct visual inspection of the testbed, or via

a “virtual dashboard” interface which simulates the first-person driving perspective

(Figure 5-4). Two cameras mounted onboard the human-driven vehicle provide real-

time visual feedback in both the forward and rear directions (Figure 5-3), while a

world map “GPS” guides the driver through the desired sequence of navigation way-
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Figure 5-4: Human interface for the human-driven vehicle, including real-time video
feeds of the forward (left) and rear (top-center) directions of the vehicle, a dialog box
(top-right), and a world map “GPS” guiding the driver to their next waypoint.

points. The autonomous vehicle is controlled through an off-board planning software

(Section 5.5.3).

5.5.3 Software Implementation

The TAM is implemented across three software modules for the host vehicle. The

Intention Predictor classifies each driver according to the observed behaviors. The

Threat Assessor determines the likely paths of those vehicles based on the perceived

behaviors. Finally, if a vehicle poses a threat, the Escape Path module calculates

suitable evasive trajectories for the human driver and offers the best course of action

given the errant driver’s paths. A vehicle is perceived to be a threat if three conditions

are satisfied: (1) the IP module has classified the vehicle’s behavior as errant; (2) the

vehicle is sufficiently close to the host vehicle (within the black circle in Figure 5-5);

and (3) both vehicles are approaching the same intersection.

The Intention Predictor module accesses observations of the states of each vehicle

on the road network and provides these inputs to the classifier. Depending on the

high-level behaviors, the classifier determines the most probable intent of each vehi-

cle in the environment. In this work, classification is performed on an autonomous

vehicle; the same classification process is performed on a human-driven vehicle in
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Ref. [32].

The Threat Assessor module (Algorithm 8) predicts paths for each vehicle, based

on the perceived intentions, using the Compute-Intention-Reachability module (Al-

gorithm 9). This latter module is embedded in the external planner as a separate

thread which runs asynchronously for each vehicle OV i in the environment. Over

fixed time intervals (1 s), the algorithm grows a new reachability tree based on the

current OV position in the testbed. At the end of each time interval, the reachability

tree is relayed to the host vehicle thread, which then calls the Escape Path algorithm

(Section 5.4.2) if the threat conditions are met.

The Escape Path module (Algorithm 10) generates evasive maneuvers by simulat-

ing multiple possible actions of the human driver for sufficiently long time intervals

(here 6 s), and determining whether and/or when the resulting trajectories enter the

time-parameterized reachable set of the errant vehicle. In the current implementa-

tion, three possible actions are evaluated for the human driver – maintaining current

speed, maximum acceleration (up to 0.4 m/s), or maximum braking. Escape paths

are measured against the intention-reachability paths to determine the time to a po-

tential collision, with the minimum-threat escape maneuver identified via (5.5). If the

best escape maneuver requires acceleration or braking, the human driver is alerted to

do so; no alert is provided if the driven can safely maintain their current speed over

the prediction time horizon.

The autonomous vehicle is controlled via an offboard, multi-threaded Java imple-

mentation of the standard CL-RRT algorithm [31]. This is the same framework as

used for autonomous vehicles in Ref. [32], but without the threat-aware components;

only the human-driven vehicle is assessing the threat level of other vehicles. Instead,

the autonomous agent simply treats other vehicles as static obstacles to avoid. The

vehicle is controlled via pure pursuit steering control [99] and proportional-integral

speed control. When approaching each intersection, a weighted coin flip within the

autonomous vehicle logic determines whether or not the vehicle will properly decel-

erate and come to a stop.

A top-level navigator module is used in both vehicles’ software packages to provide
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Figure 5-5: Display representation of the RAVEN road network, including the host
vehicle (blue chevron; detection radius in black), autonomous vehicle (red chevron),
and reachability tree (brown edges, orange nodes). In this figure, the human driver
has been alerted to stop to avoid an imminent collision. See Figure 5-6 for a full
legend.

a sequence of geographic waypoints. The navigator module leverages a sparse repre-

sentation of the RAVEN road network, constructed using the Route Network Data

File (RNDF) specification from the 2007 DGC [101]. This representation includes the

location, size, and connectivity of lane segments and “zones” (e.g., parking lots); in-

tersections are implicitly defined by the exit-entrance connections between lane/zone

endpoints. An A∗ implementation is used to select the shortest-distance waypoint

path in the graph between the current and desired waypoints, respecting lane direc-

tionality constraints [14]. As the vehicle (whether human or autonomous) approaches

each intermediate or desired waypoint, the navigator selects the next waypoint on

the list as the new target. An arbitrary list of desired waypoints is provided for each

vehicle; the ultimate objective is to observe the vehicles’ interactions at intersections.

The diagram at bottom-right in Figure 5-4 shows the RNDF for the RAVEN road net-

work, constructed from a simple text file. Figure 5-5 shows the display representation

of the world used in the results below.

Given the geographic waypoint sequence, each escape path is constructed through

forward simulation of the vehicle model connecting these waypoints, in a manner
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similar to the RRT algorithm.

5.5.4 Results

The following results demonstrate the TAM providing a human driver with feedback

during a simultaneous intersection approach with another driver. In this hardware

demonstration, both the human-driven vehicle and autonomous vehicle are navigating

through the RAVEN road network simultaneously, following a random sequence of

waypoints. While the human driver is to respect all rules of the road, the autonomous

vehicle may choose to not stop at an intersection and instead enter it out of turn

(Section 5.5.3). In this case, the TAM should identify the autonomous driver as

errant based on observed behavior, and use the reachability tree to alert the human

driver if a corrective action is necessary.

Over the course of this experiment set, 20 intersection encounters occurred. Of

these encounters, only two resulted in a collision; in both cases the human-driven

vehicle did not react on time to the warning of the TAM algorithm, making the colli-

sion inevitable with the errant autonomous vehicle. An improved tactile or auditory

warning and a more involved model of the driver reaction time should improve the

response of the drivers, thus reducing the number of accidents.

Figure 5-6 shows four successive timesteps, or phases, of a representative scenario

where the human driver interacts with an autonomous driver at one of the RAVEN

intersections. Figure 5-7 shows the threat levels incurred by executing either the

“same speed,” “accelerate,” or “stop” escape maneuvers at each. In this scenario,

both the human and autonomous vehicles are attempting to enter the southbound

lane of the intersection: the human driver is approaching from the left and making a

right turn, while the autonomous vehicle is approaching from the right and making

a left turn.

The human driver reaches the intersection first, and has right-of-way to proceed

into the intersection (Figure 5-6(a)). The autonomous driver behavior is classified

by the IP as normal, and the TAM does not post any warnings because the au-

tonomous vehicle is outside the host vehicle’s detection radius. After stopping for
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 5-6: Zoomed-in display view of a representative interaction between the
human-driven host vehicle (blue chevron) and autonomous vehicle at an intersec-
tion; each figure shows a successive snapshot of this interaction. The autonomous
vehicle is classified in real-time as safe (green chevron) or errant (red chevron). If the
autonomous vehicle is perceived to be a threat, the reachability tree darkens, and the
outer ring around the host vehicle indicates the alert type (grey = maintain speed,
red = brake, green = accelerate). Escape paths are not shown.

several seconds, the human driver accelerates into the intersection, anticipating that

the autonomous driver will decelerate. However, the IP observes the autonomous

driver is actually accelerating into the intersection, and classifies the driver as errant

(Figure 5-6(b)). The TA module generates the autonomous driver’s reachability tree,

and the escape path module determines the threat of either proceeding at the same

speed, accelerating, or stopping. Since stopping minimizes the threat level (Figure 5-

7), the TAM alerts the human driver to stop. (Even though the reachability tree

does not reach the human-driven vehicle, the escape paths—which are not shown—

do intersect with the set.) As the autonomous driver continues to move, the human

driver stops within a few seconds, in response to the TAM’s recommendation (Fig-
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Figure 5-7: Threat levels for the possible escape paths during each phase of Figure 5-6.

ure 5-6(c)). Once the errant driver clears the intersection, the TAM determines that

all actions are safe, causing the alert to switch off (Figure 5-6(d)).

Figures 5-8 and 5-9 present snapshots of a hardware demonstration of a particular

scenario involving a human driven-vehicle and a possible errant autonomous driver.

It is known as the Left Turn Across Path / Opposite Direction (LTAP/OD). It is one

of the most dangerous and fatal intersection encounter [23, 102]. The human-driven

vehicle is approaching from the right, and arrives first to the intersection. Before

proceeding into the intersection, it detects (through the IP) that the autonomous-

driven vehicle approaching from the left is not decelerating (to stop at the intersection)

and violating the stop sign. The TAM warns the driver by suggesting (through the

TA) a stopping maneuver to minimize the threat level T (see the red outer ring

around the human-driven vehicle in Figure 5-8(a)). The human driver responds by

decelerating until coming to a full stop. The TAM then removes the warning as the

threat of the current maneuver (i.e., being stopped) is lower than the other escape

maneuvers (see the grey outer ring in Figure 5-8(b)). However, the human driver

decides to accelerate again, and the TAM recognizes the threat of the autonomous

vehicle which is still in the intersection. The TAM recommends again the stopping

maneuver (Figure 5-9(a)). The human driver comes to a stop again, and the the threat

caused by the autonomous vehicle vanishes (Figure 5-9(b)). This scenario shows how

the TAM detects in real-time the threat of an errant vehicle. It also demonstrates the
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TAM escape maneuvers suggestion for the human-driven vehicle dynamically changes

depending on the errant vehicle and the response of the human driver.

As mentioned above, a video showing several different experimental scenarios

along with detailed captions is available at http://acl.mit.edu/ITSC10TAM.mov and

http://hdl.handle.net/1721.1/46720 [124]. Finally, this work has been featured

on a TV documentary that highlights the latest high-tech research and technologies.

The documentary can be watched online at http://www.youtube.com/watch?v=w_

VWsaPEalA.

5.6 Pursuit-Evasion Formulation

This section introduces a formulation that extends the RRT-Reach algorithm to in-

clude a game-theoretic component. This formulation considers the worst-case scenario

of errant drivers capable of causing intentional collisions [35].

5.6.1 Problem Statement

To bound the number of vehicles affecting the decision making, the region of interest

is localized to a finite volume around the intersection, called the active region (See

Section 5.2). Every vehicle in the active region is assumed to be classified as either

predictable or errant by a classification algorithm [96], part of the onboard threat

assessment module. To simplify the problem, it is assumed that only two agents are

involved: an errant vehicle, modeled as a hostile agent which may not be following

the rules of the road; and a host vehicle, assisted by the threat assessment algorithm

to minimize the threat of an intersection collision. Each vehicle is modeled using

the standard nonlinear bicycle model defined in Section 5.3.2, where each admissible

control function u(t) is a piecewise constant function u : [0, Th] 7→ U , and Th is a

finite and fixed time horizon.

Game theoretic formulation of InP: The intersection threat assessment prob-

lem (hereafter referred to as InP) can be formulated as a perfect information zero-sum

differential game G with state constraints and free final time [126]. The formulation
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(a) Part 1

(b) Part 2

Figure 5-8: RAVEN road network view of an interaction between a a human-driven
vehicle and a possibly errant autonomous vehicle at an intersection in the three vehicle
experiment: Phases 1 and 2. Human-driven vehicle is warned of the threat of the
autonomous-vehicle at an LTAP/OD encounter.
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(a) Part 3

(b) Part 4

Figure 5-9: RAVEN road network view of an interaction between a a human-driven
vehicle and a possibly errant autonomous vehicle at an intersection in the three vehicle
experiment: Phases 3 and 4. Human-driven vehicle is warned of the threat of the
autonomous-vehicle at an LTAP/OD encounter.
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is similar to the one presented in Ref. [127]. Let subscripts 1 and 2 denote the errant

vehicle and host vehicle, respectively. If we let si(t) and ui(t) refer to the state and

control of vehicle i at time t, where i ∈ {1, 2}, then (5.7) can be represented as

ṡ(t) =

ṡ1(t)

ṡ2(t)

 =

f(s1(t), u1(t))

f(s2(t), u2(t))

 ,
s(0) = s0, t ∈ [0,∞).

(5.8)

The controls and states are assumed to satisfy the constraints

Ci(si(t), ui(t)) ≤ 0, i ∈ {1, 2}, (5.9)

Equation (5.9) may include obstacle avoidance constraints, bounds on controls, and

bounds on states.

The game terminates with a collision if the state of the game s(t) enters the closed

target set Ω, expressed as

‖(x1(tf ), y1(tf ))− (x2(tf ), y2(tf ))‖ ≤ ε, (5.10)

where ε represents the collision distance between the two vehicles, and the free final

time tf of G represents the time to collision

tf = inf{t|(s(t)) ∈ Ω}. (5.11)

The value tf = +∞ indicates the game terminated without a collision. The objective

of the host vehicle is to maximize the final time tf , while the objective of the errant

vehicle is to minimize it. Thus the payoff function of G is simply

J(s(t), u(t), t) = tf . (5.12)

Suppose that G admits a saddle point (γ∗1 , γ
∗
2) ∈ Γ1×Γ2 in feedback strategies. If
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both players execute their feedback saddle-point strategies, the value of the game is

V (s(t), t) = min
γ1∈Γ1

max
γ2∈Γ2

J(s(t), u(t), t) (5.13)

= max
γ2∈Γ2

min
γ1∈Γ1

J(s(t), u(t), t). (5.14)

Computing the feedback solutions requires solving the Hamilton-Jacobi-Isaacs equa-

tion [126]. Except for some simple cases, the solution quickly becomes intractable

[128]. Instead, open-loop representations of the feedback saddle-point strategies are

typically solved. The resulting solutions typically coincide with saddle-point solutions.

Please see Ref. [127] and references therein for more details. The above formulation

G can be solved using the technique of Ref. [129], which decomposes the problem into

two ordinary optimal control subproblems to be solved iteratively using nonlinear

programming. Examples including a car collision avoidance scenario were solved and

shown to converge to the solutions obtained by indirect methods. However, it involves

solving iteratively nonlinear programs which can be can be time-consuming, with the

performance heavily on the quality of the initial guess. Thus, it not a reliable method

to solve the InP in real-time.

This section proposes an approximate open-loop solution using sampling-based al-

gorithms, which can efficiently identify feasible solutions for complex motion planning

or reachability problems [84, 128, 130].

Sampling-based relaxation of InP game: To find an approximate solution of

G using sampling-based algorithms, we introduce the following two assumptions:

• The number of control functions (i.e., policies) of the host vehicle is finite.

Since the host vehicle typically follows the rules of the road, it is reasonable to

predefine some typical escape paths of a “good” host driver facing a dangerous

situation; and,

• The game G has a fixed time horizon Th (typically on the order of few seconds).

The value of Th should be long enough to ensure that the host vehicle has enough

time to execute its escape maneuver in the active region. It also limits the size
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of the problem by neglecting capture solutions outside the active region.

Then the sampling-based relaxation of the InP game will approximate the lower value

(5.14) of the open loop representation of the InP by solving

Ṽ (s(t), t) = max
u2∈Ũ2

min
u1∈Ũ1

J(s(t), u(t), t) (5.15)

≈ max
u2∈U2

min
u1∈U1

J(s(t), u(t), t), (5.16)

where Ui, i ∈ {1, 2} represents the set of admissible control functions for each vehicle,

and Ũ1 and Ũ2 are subsets of U1 and U2 respectively. Here Ũ1 is computed using

a sampling-based algorithm (Section 5.6.2) that is probabilistically complete, while

Ũ2 is a user-defined approximation of U2 that consists of a finite number of typical

control functions of an evader at an intersection.

5.6.2 Overview of the Approach

This section details the threat assessment algorithm, which computes the approxi-

mate sampling-based solution to the InP game (Section 4.1.2) for the host vehicle to

safely avoid an erratic driver. Central to this algorithm is the RRT-Attain subrou-

tine (Section 5.6.2), which efficiently approximates the reachability set for the errant

vehicle via time parametrization (Section 5.6.2). The tree uses biases for both explo-

ration and pursuit of the host vehicle, representing the errant vehicle’s “objective”

to minimize the collision time tf . The threat assessment algorithm then uses the

RRT-Attain tree to evaluate the safety of each available escape path (Section 5.6.2).

RRT-Attain Algorithm

To approximate the solution to the InP game, the RRT-Attain algorithm adds a

game-theoretical component to RRT-Reach (See Algorithm 9). The approach is called

RRT-Attain because it uses RRT to create trajectories for the pursuer to attain the

evader escape paths in minimum time. Both the pursuer (errant driver) and evader

(host driver) are assumed to have full knowledge of each other’s policies. The approach

186



utilizes this perfect information assumption through efficient, biased sampling in the

RRT-algorithm.

RRT-Attain operates in two modes, exploration mode and pursuit mode. It

chooses the exploration mode with probability Pexp, and the pursuit mode with prob-

ability Pexp. The more the environment is constrained, the higher the value Pexp

should be set. Algorithm 11 describes the flow of the RRT-Attain algorithm.

In the exploration mode (Algorithm 12), the algorithm explores the state space

by approximating the reachability set of the pursuer. As with the traditional RRT

algorithm, it generates a sample (line 1), uses some heuristic to sort the nodes (line 5),

attempts to propagate a trajectory from each node to the sample (line 7), and checks

for constraint violation (line 8). Note that Algorithm 12 is similar to RRT-Reach

(Algorithm 6). For more details about RRT-Reach, refer to Section 5.4.2.

In the pursuit mode (Algorithm 13), the algorithm uses the knowledge of the

escape paths of the evader (host vehicle) to bias the sampling towards the position of

the evader. This step starts by updating the position of the evader using the escape

timestamp (line 3), which increases every time the pursuit step is called. It then uses

this position as a sample for the pursuer tree to grow toward. In order to increase

its efficiency in capturing the evader, it checks if the pursuer has a chance to arrive

“on time” to the sample by computing the unconstrained minimum time from the

root to the sample using Dubins distance (line 4). If on-time arrival is not possible,

it throws the sample away, and moves to the next escape path sample. Otherwise,

it performs a propagation step (lines 7–17) similar to the one of Algorithm 12, but

with an additional condition in the neighbor selection process: neighbors must have

a timestamp smaller than the current escape timestamp to be selected, as capture is

otherwise impossible.

To incorporate these time-based decisions, a “timestamp” has been explicitly

added to the state of the vehicle to track the time along each generated trajectory.

While propagating (Algorithm 14), if the timestamp reaches Th, the propagation is

interrupted and the current portion of the trajectory is checked for feasibility. Also,

when searching for nearest neighbours, the algorithm skips any node with a times-
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Algorithm 11 RRT-Attain Algorithm

1: Measure current vehicle state and environment
2: repeat
3: Sample pmode uniformly from [0,1]
4: if pmode is less or equal to exploration bias Pexp then
5: Perform an exploration step (Algorithm 12)
6: else
7: Perform a pursuit step (Algorithm 13)
8: end if
9: until time limit for growing tree is reached

Algorithm 12 Exploration Step

1: Take sample for input to controller
2: repeat
3: Update time range in time heuristics
4: Find list of nearest neighbors using time range
5: Sort list using distance heuristics
6: for each sorted node do
7: Call propagation function using simulation of controller
8: if propagated portion is collision free then
9: Add sample to tree break

10: end if
11: end for
12: until timestamp reaches time horizon and no collision free portion was found

tamp already equal to Th. Unlike traditional RRT approaches, the RRT-Attain tree

is not used to identify some path which reaches a goal location. Rather, the entire

tree is analyzed to find the maximum threat along each of the trajectories (Algorithm

14). Thus in this case the “goal” is not some location, but in fact the vehicles being

in a state of collision. Finally, note that RRT-Attain does not include a completeness

guarantee on the reachability set; there may be some feasible trajectories which are

not included when work on constructing the reachability set is completed. However,

the problem of computing the full reachability set in real-time is computationally

intensive when subject to complex dynamics and complex, dynamic environments.

The RRT-Attain algorithm is designed to rapidly approximate the reachability set

and improve the approximation with more available time, regardless of the current

problem complexity.
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Algorithm 13 Pursuit Step

1: Update escape timestamp
2: for each escape path do
3: Set sample equal to escape path at current path time
4: if minimum unconstrained time to reach sample from root is less than escape

timestamp then
5: continue {continue to next escape path}
6: else
7: repeat
8: Update time range in time heuristics
9: Find list of nearest neighbors using time range and escape timestamp

10: Sort list using distance heuristics
11: for each sorted node do
12: Call propagation function using simulation of controller
13: if propagated portion is collision free then
14: Add sample to tree break
15: end if
16: end for
17: until timestamp reaches time horizon and no collision free portion was found
18: end if
19: end for

Time Parametrization

Simulation results (Section 5.6.3) have suggested that the use of time-parametrized

heuristics in the nearest node selection process (line 5 of Algorithm 12; line 10 of

Algorithm 13) can result in shorter paths and a more efficient approximation of the

InP minimization component. The heuristic acts as a suboptimal strategy for iden-

tifying time-minimal paths in the tree to new samples, resulting in a more realistic

reachability set for the errant vehicle.

The time heuristic consists of partitioning the nodes into incremental time ranges,

where the time of each node is measured from the root, and using only one range at

a time in the nearest node search. The time ranges are considered in order from

shortest time from root to longest time from root (line 4 in Algorithm 12; line 9 in

Algorithm 13). Using the list of nodes whose timestamp lies inside the current time

range, the nearest node function then uses the Dubins distance metric to compute

the k nearest neighbors (line 5 in Algorithm 12; line 10 in Algorithm 13). If none of
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the k neighbors generate a feasible trajectory, and the time range has not yet reached

the time horizon Th, the algorithm moves to the next-furthest time range and repeats

the cycle (line 12 in Algorithm 12; line 17 in Algorithm 13). Each nearest node search

is limited to a subset of the tree nodes, significantly reducing the complexity of this

calculation.benefit of the time heuristic.

Threat Assessment Algorithm

This section introduces the threat assessment (TA) algorithm used to solve the

sampling-based relaxation of the InP (See Algorithm 5). The inputs to the TA

algorithm are the reachability tree of the errant vehicle computed by RRT-Attain

(Algorithm 11), and a list of escape paths that the host driver could follow. These

escape paths can be learnt from statistical traffic data. For each escape path and for

each timestamp, the algorithm checks the distance between the escape path and each

node of the reachability tree with the same timestamp. If it finds that an escape path

is within a distance smaller than some safety threshold distance of the other vehicle,

it flags that escape path as unsafe, and stores the time of collision.

The TA algorithm generates a list of times of collision for each escape path, and

return the path(s) with the highest time. By doing so, the TA algorithm performs

the maximization operation in the InP value function Eq. 5.16. Note that since the

algorithm stops checking times beyond the time horizon, we tacitly assume that the

escape paths flagged “safe” have a time of collision equal to infinity. In practice, the

threat assessment could have a higher logic that decides to choose among the safest

paths that have a time of collision higher than some threshold. The following section

will illustrate the TA algorithm.

5.6.3 Illustration

In this section, the TA algorithm is illustrated for a rural stop-controlled intersection

scenario, known to have a high risk of collisions. Consider the problem of helping a

driver on a major road (e.g. a highway) avoid a collision with an errant driver on
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Algorithm 14 Threat Assessment Algorithm

1: Compute reachability tree of errant vehicle using RRT-Attain (Algorithm 11)
2: Obtain list of escape paths of host vehicle
3: repeat
4: for each escape path Ej flagged as safe do
5: for each node nk in the reachability tree with time stamp equal to ti do
6: if ‖nk − Ej(ti)‖ ≤ safety threshold then
7: Set collision time of Ej to ti and flag Ej as unsafe
8: break
9: end if

10: end for
11: end for
12: Increment time ti by ∆ti
13: until time ti equals Th or no more safe escape paths
14: return escape path(s) with highest collision time

a minor road (e.g. a rural road). As the errant driver approaches the major road,

he/she misses the STOP sign or (equivalently here) loses control of the vehicle. It thus

does not decelerate as expected, creating an unpredictable and dangerous behavior

for other drivers. The host vehicle is equipped with a classifier [96] which would

quickly flag the other vehicle as dangerous, and then launches the TA algorithm to

compute the risk of available escape maneuvers. This scenario deals with two main

classes of intersection accidents, straight crossing paths (SCP) and right-turn into

path (RTIP), which together account for more than 40% of light vehicle intersection

accidents [23].

The initial position and heading of each vehicle are shown in Figure 5-10. The

initial velocity is v1(0) = 1.5m/s for the errant vehicle and v2(0) = 2.0m/s for the

host vehicle, whose velocity is assumed constant. The RRT-Attain algorithm uses a

tree size of 2000 nodes with a time horizon of Th = 3 s, and relies on a pure-pursuit

controller [131] to control the steering motion of the errant vehicle in its propagation

step. The exploration bias is set to Pexp = 0.3. To make the problem even more

constrained, a small obstacle is added to the minor road around location (x,y) = (2.5,

0.5). It may represent some unexpected object that is obstructing part of the errant

driver’s road.

Figure 5-10 shows the output of the reachability tree generated by RRT-Attain
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Figure 5-10: TA Algorithm applied to the stop-controlled intersection. The tree
generated for the errant vehicle using RRT-Attain is shown, as well as four escape
maneuvers for the host vehicle. For each escape maneuver, the location of earliest
possible collision is marked ×.

along with the four possible escape maneuvers for the host vehicle: 1) decelerate with

acceleration a = −2.5 m/s2 until full stop, 2) keep moving straight with same initial

velocity, 3) turn right with same initial velocity, and 4) turn left with same initial

velocity. All four paths are dynamically feasible, and represent a subset of maneuvers

that the host driver would typically follow to minimize the risk of collision at an

intersection. Table 5.1 shows the results of the TA algorithm. Since Maneuver 4

has the highest time of collision, it is chosen as the recommended maneuver, and the

value of the game G is set to infinity.

Note that some higher-order logic could be added to the TA algorithm. For

example, if any escape maneuver with time of collision exceeding 1 s were deemed
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Table 5.1: Summary of TA simulation results
Escape Description Time of Collision

1 Decelerate until stop 1.14 s
2 Keep going straight 0.88 s
3 Turn right 0.78 s
4 Turn left ∞

acceptable, then both maneuver 1 and 4 could be considered safe, as well. The choice

might also depend on other factors as the discomfort level of each maneuver. Finally,

in practice, the host vehicle is only warned if the threat of its current trajectory is

larger than some safety threshold, at which point it will be advised to follow the

escape maneuver with the lowest threat i.e., highest time of collision.

5.7 Conclusion

This chapter introduced a new approach for human driver assistance planning at road

intersections. It is based on combining an intention predictor (IP), threat assessor

(TA), and escape paths to create a threat assessment module (TAM) which runs

efficiently and is suitable for real-time implementation. The IP performs classification

on vehicle state information to determine threat levels via high-level logic, including

the Ecological Recogniser, support vector machines, and Bayesian filtering. The TA

performs efficient sampling-based reachability computations, via RRT, to identify

possible future paths of surrounding vehicles. Finally, the escape paths are evaluated

to maximize time to collision and thus minimize the threat level. The TAM has been

demonstrated and validated in the RAVEN testbed, using both human-driven and

autonomous vehicles. This chapter also presented another game-theoretic formulation

that extends RRT-Reach to a dual exploration-pursuit mode that considers the worst-

case scenario of errant drivers that are capable of causing intentional collisions. This

conservative formulation is tailored for scenarios where the errant driver is observed

to be following atypical maneuvers; the worst case approach then provides the safest

escape maneuvers for the host vehicle.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Behavior Classification at Intersections (Chapter 2)

Chapter 2 introduced two new approaches for classifying driver behaviors at road

intersections. The first one, denoted SVM-BF, combines a Support Vector Machines

classifier with a Bayesian filter, to discriminate between compliant drivers and vio-

lators based on vehicle speed, acceleration and distance to intersection. The second

one, an HMM-based classifier, uses the EM algorithm to develop two distinct Hid-

den Markov Models for compliant and violating behaviors. To optimize safety while

respecting driving acceptance levels, the algorithms were designed to maximize true

positive rates while keeping false alarm rates below the 5% threshold. The two al-

gorithms were successfully validated on more than 10,000 real-world intersection ap-

proaches. The results of several generalization tests showed consistent and significant

improvements with developed algorithms compared to three common approaches in

the active safety literature.

Trajectory Prediction (Chapter 3)

Chapter 3 presented a novel approach to improve the trajectory prediction of agents

with uncertain intentions for collision avoidance (CA) and conflict detection (CD)
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systems. It combined the RRT-Reach algorithm with a Gaussian Process (GP) mix-

ture model. RRT-Reach predicts the trajectories using a sampling-based reachability

algorithm that incorporates vehicle and environment constraints. The GP mixture, a

nonparametric Bayesian model, captured the distribution over a wide range of possi-

ble target agent motion patterns. The resulting RR-GP algorithm, ensures that the

predicted trajectories are both feasible by construction and probabilistically weighted

to reflect the typical motion patterns of the agents. It improves over traditional GP

approaches both in computation times and prediction accuracy. This was verified in

both human-operated simulation and real-world traffic data. This accurate real-time

prediction algorithm is an ideal candidate for future CA and CD systems.

Safe Motion Planning (Chapter 4)

Chapter 4 introduced two new path planning algorithms that build upon the tools

that have been introduced in Chapters 2 and 3, with a focus on safe autonomous

navigation in the presence of other vehicles with uncertain motion patterns. First,

it presented a new threat assessment module (TAM) that combines the RRT-Reach

algorithm with an SVM-based intention predictor, to develop a threat-aware path

planner. Using this planner, an autonomous vehicle can successfully identify and

avoid an errant driver in realistic intersection scenarios, as demonstrated through

various hardware results. Second, another novel path planning technique was devel-

oped by integrating the RR-GP trajectory prediction algorithm with a state-of-the-art

chance-constrained RRT planner. This framework provides several theoretical guar-

antees on the probabilistic satisfaction of collision avoidance constraints. Extensive

simulation results demonstrated that the resulting approach can be used in real-time

to efficiently and accurately execute safe paths.

Threat Assessment and Application to Road Intersections (Chapter 5)

Chapter 5 considered the decision-making problem for a human-driven vehicle cross-

ing a road intersection in the presence of other, potentially errant, drivers. The
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proposed approach uses the TAM framework that consists of intention predictor (IP)

and threat assessor (TA) components. The IP performed classification on vehicle state

information to determine threat levels via high-level logic that combines support vec-

tor machines and Bayesian filtering. The TA efficiently computes sampling-based

reachability sets, via the RRT-Reach algorithm, to identify possible future paths of

surrounding vehicles. Finally, the escape paths are evaluated to maximize time to

collision and thus minimize the threat level. Experimental results with small au-

tonomous and human-driven vehicles in the RAVEN testbed demonstrate that this

approach can be successfully used in real-time to minimize the risk of collision in

urban-like environments.

6.2 Future Work

Building on the contributions presented in this thesis, suggestions for future research

directions are outlined below.

When dealing with environments where the typical patterns of the target vehicle

are not well understood, the trajectory prediction algorithm should be extended with

an incremental learning phase that is performed online as more trajectories of the

vehicle are observed. A Dirichlet process (DP) prior [132] over the mixture of Gaussian

Processes (GP) could be used to avoid assumptions about the rigid structure of the

mobility patterns. Both the GPs and the DP ensure that the complexity of the

resulting mobility pattern model is robustly adapted, based on the available data

[79].

To implement the developed threat assessment algorithms on the roads, they have

to be integrated with different vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) communication paradigms [133, 134]. Furthermore, communication issues such

delays and packet loss should be formally accounted for. Future work is required to

extend the algorithms to be robust to the stochastic nature of these communication

systems.

Another line of research is the investigation of the human factors involved in
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the threat assessment design of driver assistance systems. While several studies have

compared the effectiveness of different warning mechanisms (e.g., tactile vs. auditory),

they have mainly focused on driver responses to forward collision warnings [135–137].

Following the recent findings presented in Ref. [138], future work has to consider

the driver response to warnings at different road intersection types and geometries.

Careful design is required to display the various threat levels and suggested escape

maneuvers of the developed threat assessment algorithms, in a way that maximizes

the benefits to the driver.
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Appendix A

Implementation Parameters for

Behavior Classifiers

This appendix presents the best parameter combinations for the SVM-based and

HMM-based classifiers introduced in Chapter 2.

More specifically, Figures A-1, A-2, A-3, A-4, A-5, A-6 show the best ten combi-

nations for the classifiers for the basic generalization tests presented in Section 2.6.

Similarly, Figures A-7, A-8, A-9, A-10, A-11, A-12 show the best ten combinations

for the m-fold cross-validation tests.
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Figure A-1: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the basic generalization test with p = 0.2, TTImin

= 1.0 s and dmin = 6.25 m
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Figure A-2: Ten best parameter combinations for the SVM-based classifier with cor-
responding true positive rates for the basic generalization test with with p = 0.2,
TTImin = 1.0 s and dmin = 6.25 m

201



1 2 3 4 5 6 7 8 9 10

0.65

0.7

T
P

 r
a

te

1 2 3 4 5 6 7 8 9 10
0.045

0.05

0.055

F
P

 r
a

te

1 2 3 4 5 6 7 8 9 10
10

15

T
w

1 2 3 4 5 6 7 8 9 10
5

10

15

#
 S

ta
te

s

1 2 3 4 5 6 7 8 9 10
0

50

100

τ
H

Best Parameters Ranked in Order

Figure A-3: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the basic generalization test with p = 0.2, TTImin

= 1.6 s and dmin = 10 m
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Figure A-4: Ten best parameter combinations for the SVM-based classifier with cor-
responding true positive rates for the basic generalization test with p = 0.2, TTImin

= 1.6 s and dmin = 10 m
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Figure A-5: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the basic generalization test with p = 0.2, TTImin

= 2.0 s and dmin = 12.5 m
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Figure A-6: Ten best parameter combinations for the SVM-based classifier with cor-
responding true positive rates for the basic generalization test with p = 0.2, TTImin

= 2.0 s and dmin = 12.5 m
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Figure A-7: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the m-fold cross-validation with m = 4, TTImin

= 1.0 s and dmin = 6.25 m
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Figure A-8: Ten best parameter combinations for the SVM-based classifier with cor-
responding true positive rates for the m-fold cross-validation with m = 4, TTImin =
1.0 s and dmin = 6.25 m
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Figure A-9: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the m-fold cross-validation with m = 4, TTImin

= 1.6 s and dmin = 10 m
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Figure A-10: Ten best parameter combinations for the SVM-based classifier with
corresponding true positive rates for the m-fold cross-validation with m = 4, TTImin

= 1.6 s and dmin = 10 m
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Figure A-11: Ten best parameter combinations for the HMM-based classifier with
corresponding true positive rates for the m-fold cross-validation with m = 4, TTImin

= 2.0 s and dmin = 12.5 m
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Figure A-12: Ten best parameter combinations for the SVM-based classifier with
corresponding true positive rates for the m-fold cross-validation with m = 4, TTImin

= 2.0 s and dmin = 12.5 m

211



212



Bibliography

[1] T. Perry, “In search of the future of air traffic control,” Spectrum, IEEE, vol. 34,
no. 8, pp. 18–35, 1997.

[2] D. Sperling and D. Gordon, Two billion cars: driving toward sustainability.
Oxford University Press, USA, 2009.

[3] W. D. Jones, “Keeping cars from crashing,” IEEE Spectrum, vol. 38, no. 9,
pp. 40–45, 2001.

[4] A. Eidehall, Tracking and threat assessment for automotive collision avoidance.
PhD thesis, Department of Electrical Engineering, Link
”opings universitet, 2007.

[5] Z. Sun and S. Chen, “Automotive active safety systems [introduction to the
special section],” Control Systems Magazine, IEEE, vol. 30, no. 4, pp. 36–37,
2010.

[6] R. Petzold, “Proactive Approach to Safety Planning,” Federal Highway Admin-
istration Public Roads Magazine, vol. 66, May/June 2003.

[7] “National Highway Traffic Safety Administration - 2008 Traffic Safety Annual
Asessment - Highlights.” http://www.nhtsa.dot.gov/. Online, Accessed 20-
July-2011.

[8] T. Arino, K. Carpenter, S. Chabert, H. Hutchinson, T. Miquel, B. Raynaud,
K. Rigotti, and E. Vallauri, “Studies on the Safety of ACAS II in Europe,”
tech. rep., 2002.

[9] E. Lester and R. Hansman, “Benefits and Incentives for ADS-B Equipage in the
National Airspace System,” Tech. Rep. ICAT-2007-2, Massachusetts Institute
of Technology, 2007.

[10] J. Kuchar and L. Yang, “A review of conflict detection and resolution modeling
methods,” IEEE Transactions on Intelligent Transportation Systems, vol. 1,
no. 4, pp. 179–189, 2002.

[11] M. Christodoulou and S. Kodaxakis, “Automatic commercial aircraft-collision
avoidance in free flight: The three-dimensional problem,” Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 7, no. 2, pp. 242–249, 2006.

213

http://www.nhtsa.dot.gov/


[12] “Real time Determination and Prediction of Aircraft Trajectories Using
Limited Sensor Data.” http://www.navysbir.com/n09_s/navst09-005.htm,
2009. Online, Accessed 20-July-2011.

[13] E. Frew and R. Sengupta, “Obstacle avoidance with sensor uncertainty for small
unmanned aircraft,” in Conference on Decision and Control, vol. 1, pp. 614–619,
IEEE, 2004.

[14] J. Leonard, J. P. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher,
E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson,
S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni,
K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and
J. Williams, “A perception-driven autonomous urban vehicle,” Journal of Field
Robotics, vol. 25, no. 10, pp. 727–774, 2008.

[15] S. Thrun, “What we’re driving at.” http://googleblog.blogspot.com/2010/

10/what-were-driving-at.html, October 2010. Google’s official press release
announcing the success of their driverless cars. Online, Accessed 20-July-2011.

[16] L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J. Leonard,
I. Miller, M. Campbell, D. Huttenlocher, A. Nathan, and F. R. Kline, “The
MIT - Cornell Collision and Why it Happened,” Journal of Field Robotics,
vol. 25, pp. 775 – 807, October 2008.

[17] E. Valovage, “Enhanced ads-b research,” Aerospace and Electronic Systems
Magazine, IEEE, vol. 22, no. 5, pp. 35–38, 2007.

[18] “Vehicle infrastructure integration consortium (VIIC).” http://www.

vehicle-infrastructure.org, 2010. Online, Accessed 20-July-2011.

[19] J. Yepes, I. Hwang, and M. Rotea, “New algorithms for aircraft intent inference
and trajectory prediction,” Journal of guidance, control, and dynamics, vol. 30,
no. 2, pp. 370–382, 2007.

[20] J. McCall, D. Wipf, M. Trivedi, and B. Rao, “Lane change intent analysis
using robust operators and sparse Bayesian learning,” IEEE Transactions on
Intelligent Transportation Systems, vol. 8, no. 3, pp. 431–440, 2007.

[21] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier, “Intentional motion on-
line learning and prediction,” Machine Vision and Applications, vol. 19, no. 5,
pp. 411–425, 2008.

[22] S. M. Lavalle and R. Sharma, “On motion planning in changing, partially-
predictable environments,” International Journal of Robotics Research, vol. 16,
pp. 775–805, 1997.

[23] National Highway Traffic Safety Administration, “Fatality analysis re-
porting system encyclopedia.” http://www-fars.nhtsa.dot.gov/Crashes/

CrashesLocation.aspx, 2010. Online, Accessed 20-July-2011.

214

http://www.navysbir.com/n09_s/navst09-005.htm
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
http://www.vehicle-infrastructure.org
http://www.vehicle-infrastructure.org
http://www-fars.nhtsa.dot.gov/Crashes/CrashesLocation.aspx
http://www-fars.nhtsa.dot.gov/Crashes/CrashesLocation.aspx


[24] B. Bougler, D. Cody, and C. Nowakowski, “California Intersection Decision
Support: A Driver-Centered Approach to Left-Turn Collision Avoidance System
Design,” tech. rep., UC Berkeley, 2008.

[25] K. Fuerstenberg and B. Rossler, “A new european approach for intersection
safetythe ec-project intersafe,” Advanced Microsystems for Automotive Appli-
cations 2005, pp. 493–504, 2005.

[26] H. Erzberger and R. Paielli, “Concept for next generation air traffic control
system.,” Air Traffic Control Quarterly, vol. 10, no. 4, pp. 355–378, 2002.

[27] G. S. Aoude, V. R. Desaraju, L. H. Stephens, and J. P. How, “Behavior Clas-
sification Algorithms at Intersections and Validation using Naturalistic Data,”
in IEEE Intelligent Vehicles Symposium, (Baden-Baden, Germany), June 2011.

[28] G. S. Aoude, V. R. Desaraju, L. H. Stephens, and J. P. How, “Driver behavior
classification at intersections and validation on large naturalistic dataset,” IEEE
Transactions on Intelligent Transportation Systems, 2011 (submitted).

[29] G. S. Aoude, J. Joseph, N. Roy, and J. P. How, “Mobile Agent Trajectory
Prediction using Bayesian Nonparametric Reachability Trees,” in AIAA In-
fotech@Aerospace, (St. Louis, Missouri), March 2011.

[30] G. S. Aoude, B. D. Luders, D. S. Levine, K. K. H. Lee, and J. P. How,
“Threat Assessment Design for Driver Assistance System at Intersections,” in
IEEE Conference on Intelligent Transportation Systems, (Madeira, Portugal),
September 2010.

[31] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-
time motion planning with applications to autonomous urban driving,” IEEE
Transactions on Control Systems Technology, vol. 17, pp. 1105–1118, September
2009.

[32] G. S. Aoude, B. D. Luders, D. S. Levine, and J. P. How, “Threat-aware Path
Planning in Uncertain Urban Environments,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, (Taipei, Taiwan), October 2010.

[33] G. Aoude, B. Luders, J. Joseph, N. Roy, and J. P. How, “Probabilistically Safe
Motion Planning to Avoid Dynamic Obstacles with Uncertain Motion Pat-
terns,” Autonomous Robots, 2011 (submitted).

[34] B. Luders, M. Kothari, and J. P. How, “Chance constrained RRT for probabilis-
tic robustness to environmental uncertainty,” in AIAA Guidance, Navigation,
and Control Conference, (Toronto, Canada), August 2010.

[35] G. S. Aoude, B. D. Luders, and J. P. How, “Sampling-Based Threat Assessment
Algorithms for Intersection Collisions Involving Errant Drivers,” in IFAC Sym-
posium on Intelligent Autonomous Vehicles, (Lecce, Italy), September 2010.

215



[36] C. Y. Chan and B. Bougler, “Evaluation of cooperative roadside and vehicle-
based data collection for assessing intersection conflicts,” in Intelligent Vehicles
Symposium, pp. 165–170, IEEE, 2005.

[37] M. Maile, F. A. Zaid, L. Caminiti, J. Lundberg, and P. Mudalige, “Cooperative
intersection collision avoidance system limited to stop sign and traffic signal
violations,” 2008. Midterm Phase 1 Report.

[38] D. D. Salvucci, “Inferring driver intent: A case study in lane-change detec-
tion,” in in Proceedings of the Human Factors Ergonomics Society 48th Annual
Meeting, pp. 2228–2231, 2004.

[39] N. Oliver and A. P. Pentland, “Graphical models for driver behavior recognition
in a smartcar,” pp. 7–12, 2000.

[40] T. Gates, D. Noyce, L. Laracuente, and E. Nordheim, “Analysis of driver be-
havior in dilemma zones at signalized intersections,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 2030, no. 1, pp. 29–
39, 2007.

[41] H. Rakha, I. El-Shawarby, and J. R. Sett, “Characterizing driver behavior on
signalized intersection approaches at the onset of a yellow-phase trigger,” IEEE
Transactions on Intelligent Transportation Systems, vol. 8, no. 4, pp. 630–640,
2007.

[42] L. Zhang, K. Zhou, W. Zhang, and J. A. Misener, “Prediction of red light
running based on statistics of discrete point sensors,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 2128, no. -1,
pp. 132–142, 2009.

[43] J. Bonneson and H. Son, “Prediction of expected red-light-running frequency
at urban intersections,” Transportation Research Record: Journal of the Trans-
portation Research Board, vol. 1830, pp. 38–47, 2003.

[44] N. Elmitiny, X. Yan, E. Radwan, C. Russo, and D. Nashar, “Classification
analysis of driver’s stop/go decision and red-light running violation,” Accident
Analysis & Prevention, vol. 42, no. 1, pp. 101–111, 2010.

[45] V. Neale, M. Perez, Z. Doerzaph, S. Lee, S. Stone, and T. Dingus, “Intersection
decision support: Evaluation of a violation warning system to mitigate straight
crossing path crashes (report no. vtrc 06-cr10),” Charlottesville, VA: Virginia
Transportation Research Council, 2006.

[46] Z. Doerzaph, V. Neale, and R. Kiefer, “Cooperative Intersection Collision
Avoidance for Violations: Threat Assessment Algorithm Development and
Evaluation Method,” in Transportation Research Board 89th Annual Meeting,
no. 10-2748, 2010.

216



[47] Z. Doerzaph, “Development of a threat assessment algorithm for intersection
collision avoidance systems,” 2007.

[48] D. McNicol, A primer of signal detection theory. Lawrence Erlbaum, 2004.

[49] “Car 2 Car Communication Consortium.” http://www.car-to-car.org, 2011.
Online, Accessed 20-July-2011.

[50] R. J. Kiefer, J. Salinger, and J. J. Ference, “Status of NHTSA’s Rear-End Crash
Prevention Research Program,” 2005.

[51] H. M. Mandalia and D. D. Salvucci, “Using Support Vector Machines for Lane-
Change Detection,” Human Factors and Ergonomics Society Annual Meeting
Proceedings, vol. 49, pp. 1965–1969, 2005.

[52] D. Wipf and B. Rao, “Driver Intent Inference Annual Report,” tech. rep., Uni-
versity of California, San Diego, 2003.

[53] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. Wiley-
Interscience, 2 ed., 2000.

[54] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-
Verlag, 1995.

[55] L. R. Rabiner., “A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition,” IEEE Trans., vol. 77, no. 2, 1990.

[56] A. Van der Horst, A time-based analysis of road user behaviour in normal and
critical encounters. PhD thesis, Delft University of Technology, 1990.

[57] H. Berndt, S. Wender, and K. Dietmayer, “Driver Braking Behavior during In-
tersection Approaches and Implications for Warning Strategies for Driver Assis-
tant Systems,” in Intelligent Vehicles Symposium, (Istanbul, Turkey), pp. 245–
251, IEEE, 2007.

[58] “SVM Application List.” http://www.clopinet.com/isabelle/Projects/

SVM/applist.html, 2006. Online, Accessed 20-July-2011.

[59] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver cognitive
distraction using support vector machines,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 2, pp. 340–350, 2007.

[60] C. Cortes and V. Vapnik, Support-vector networks, vol. 20. Springer, 1995.

[61] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, August 2006.

[62] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-of-speech
tagger,” in Proceedings of the third conference on Applied natural language pro-
cessing, pp. 133–140, 1992.

217

http://www.car-to-car.org
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://www.clopinet.com/isabelle/Projects/SVM/applist.html


[63] J. Bilmes, “A gentle tutorial on the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and hidden Markov models,” no. ICSI-
TR-97-021, 1997.

[64] Z. R. Doerzaph and V. Neale, “Data Acquisition Method for Developing
Crash Avoidance Algorithms Through Innovative Roadside Data Collection,”
in Transportation Research Board 89th Annual Meeting, no. 10-2762, 2010.

[65] M. Maile and L. Delgrossi, “Cooperative Intersection Collision Avoidance Sys-
tem For Violations (CICAS-V) For Avoidance Of Violation-Based Intersection
Crashes,” Enhanced Safety of Vehicles, 2009.

[66] S. McLaughlin, J. Hankey, and T. Dingus, “A method for evaluating collision
avoidance systems using naturalistic driving data,” Accident Analysis & Pre-
vention, vol. 40, no. 1, pp. 8–16, 2008.

[67] C. Chang and C. Lin, “Libsvm: a library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27,
2011.

[68] M. Dunham and K. Murphy, “pmtk3 - probabilistic modeling toolkit for mat-
lab/octave, version 3.” http://code.google.com/p/pmtk3. Online, Accessed
20-July-2011.

[69] M. Salem and S. Stolfo, “Detecting masqueraders: a comparison of one-class
bag-of-words user behavior modeling techniques,” Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications, vol. 1, no. 1,
pp. 3–13, 2010.

[70] M. Johnson, “Capacity and complexity of hmm duration modeling techniques,”
Signal Processing Letters, vol. 12, no. 5, pp. 407–410, 2005.

[71] T. Miloh and S. Sharma, Maritime collision avoidance as a differential game.
Institut fur Schiffbau der Universitat Hamburg, 1976.

[72] R. Lachner, “Collision avoidance as a differential game: Real-time approxima-
tion of optimal strategies using higher derivatives of the value function,” vol. 3,
pp. 2308–2313, 2002.

[73] Q. Zhu, “Hidden Markov model for dynamic obstacle avoidance of mobile robot
navigation,” Robotics and Automation, IEEE Transactions on, vol. 7, no. 3,
pp. 390–397, 2002.

[74] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning motion
patterns of people for compliant robot motion,” The International Journal of
Robotics Research, vol. 24, no. 1, p. 31, 2005.

[75] H. Sorenson, Kalman filtering: theory and application. IEEE, 1985.

218

http://code.google.com/p/pmtk3


[76] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple
model methods in target tracking: a survey,” Aerospace and Electronic Systems,
IEEE Transactions on, vol. 34, no. 1, pp. 103–123, 2002.

[77] J. Joseph, F. Doshi-Velez, and N. Roy, “A bayesian nonparametric approach to
modeling mobility patterns,” in AAAI, 2010.

[78] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian nonparametric
approach to modeling motion patterns,” tech. rep., 2011.

[79] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A bayesian nonparametric
approach to modeling motion patterns,” Autonomous Robots, vol. Accepted,
awaiting publication, 2011. Search and Pursuit/Evasion with Mobile Robots.

[80] M. Tay and C. Laugier, “Modelling smooth paths using gaussian processes,” in
Field and Service Robotics, pp. 381–390, Springer, 2008.

[81] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learn-
ing. The MIT Press, December 2005.

[82] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic navigation
in dynamic environment using rapidly-exploring random trees and gaussian
processes,” in Proceedings of the IEEE International Conference on Intelligent
Robots and Systems, pp. 1056–1062, 2008.

[83] S. Gan, K. Yang, and S. Sukkarieh, “3D Online Path Planning in a Continuous
Gaussian Process Occupancy Map,” in Australian Conference on Field Robotics,
2009.

[84] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[85] O. Amidi and C. Thorpe, “Integrated mobile robot control,” SPIE Mobile
Robots V, pp. 504–523, 1990.

[86] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile
autonomous vehicles,” AIAA Journal of Guidance, Control, and Dynamics,
vol. 25, pp. 116–129, January-February 2002.

[87] iRobot, “iRobot: Education & research robots.” Online http://store.

irobot.com/shop/index.jsp?categoryId=3311368.

[88] P. Velleman and D. Hoaglin, Applications, Basics, and Computing of Ex-
ploratory Data Analysis. Duxbury Press, 1981.

[89] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-
tonomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28,
no. 2, pp. 51–64, 2008.

219

http://store.irobot.com/shop/index.jsp?categoryId=3311368
http://store.irobot.com/shop/index.jsp?categoryId=3311368


[90] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Wash-
ington, “Planning under continuous time and resource uncertainty: A challenge
for AI,” in AIPS Workshop on Planning for Temporal Domains, pp. 91–97,
Citeseer, 2002.

[91] A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte, “Parametric
POMDPs for planning in continuous state spaces,” Robotics and Autonomous
Systems, vol. 54, no. 11, pp. 887–897, 2006.

[92] C. Schlenoff, R. Madhavan, and Z. Kootbally, “PRIDE: A Hierarchical, In-
tegrated Prediction Framework for Autonomous on-Road Driving,” pp. 2348–
2353, 2006.

[93] M. Althoff, O. Stursberg, and M. Buss, “Model-based Probabilistic Collision
Detection in Autonomous Driving,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 10, no. 2, pp. 299–310, 2009.

[94] R. Verma and D. D. Vecchio, “Safety in Semi-autonomous Multi-vehicle Sys-
tems: A Hybrid Control Approach,” IEEE Robotics and Automation Magazine,
2011 (Accepted).

[95] C. Heinze, Modelling Intention Recognition for Intelligent Agent Systems. PhD
thesis, Melbourne, Victoria: Defence Science and Technology Organisation,
2004.

[96] G. S. Aoude and J. P. How, “Using Support Vector Machines and Bayesian
Filtering for Classifying Agent Intentions at Road Intersections,” Tech. Rep.
ACL09-02, Massachusetts Institute of Technology, September 2009.

[97] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,”
Tech. Rep. 98-11, Iowa State University, October 1998.

[98] G. S. Aoude, B. D. Luders, D. S. Levine, and J. P. How, “Threat-aware Path
Planning in Uncertain Urban Environments [Attached Video],” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, (Taipei, Taiwan),
October 2010. http://hdl.handle.net/1721.1/64737.

[99] S. Park, J. Deyst, and J. P. How, “Performance and Lyapunov stability of a
nonlinear path-following guidance method,” Journal of Guidance, Control, and
Dynamics, vol. 30, pp. 1718–1728, November-December 2007.

[100] Microsoft, “Description of the Xbox 360 Wireless Racing Wheel.” http:

//support.microsoft.com/kb/927344?sd=xbox, 2011. Online, Accessed 20-
July-2011.

[101] DARPA, “Urban challenge: Route network definition file (RNDF) and mis-
sion data file (MDF) formats,” tech. rep., Defense Advanced Research Projects
Agency, March 2007.

220

http://hdl.handle.net/1721.1/64737
http://support.microsoft.com/kb/927344?sd=xbox
http://support.microsoft.com/kb/927344?sd=xbox


[102] W. Najm, J. Koopmann, and D. Smith, “Analysis of Crossing Path Crash
Countermeasure Systems,” in Proceedings of the 17th International Technical
Conference on the Enhanced Safety of Vehicles, (Amsterdam, The Netherlands),
2001.

[103] B. Luders, G. Aoude, J. Joseph, N. Roy, and J. P. How, “Probabilistically safe
avoidance of dynamic obstacles with uncertain motion patterns,” tech. rep.,
Massachusetts Institute of Technology, 2011.

[104] L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to optimal
robust path planning with obstacles,” in Proceedings of the IEEE American
Control Conference, pp. 2831–2837, 2006.

[105] G. C. Calafiore and L. E. Ghaoui, “Linear Programming with Probability Con-
straints – Part 1,” in American Control Conference, IEEE, 2007.

[106] L. Blackmore, “A probabilistic particle control approach to optimal, robust pre-
dictive control,” in Proceedings of the AIAA Guidance, Navigation and Control
Conference, 2006.

[107] L. Blackmore, “A probabilistic particle control approach to optimal robust pre-
dictive control,” in Proceedings of the IEEE American Control Conference, 2007.

[108] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A probabilistic
particle-control approximation of chance-constrained stochastic predictive con-
trol,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 502–517, 2010.

[109] B. Luders and J. P. How, “Probabilistic Feasibility for Nonlinear Systems
with Non-Gaussian Uncertainty using RRT,” in Proceedings of the AIAA In-
fotech@Aerospace Conference, (St. Louis, MO), March 2011.

[110] J. Joseph, F. Doshi-Velez, and N. Roy, “A bayesian nonparametric approach to
modeling mobility patterns,” in AAAI, 2010.

[111] Y. Zhao and A. House, “Vehicle Location and Navigation Systems: Intelligent
Transportation Systems,” Artech House, pp. 221–224, 1997.

[112] J. Hillenbrand and K. Kroschel, “A Study on the Performance of Uncooperative
Collision Mitigation Systems at Intersection-like Traffic Situations,” in Proceed-
ings of the IEEE Conference on Cybernetics and Intelligent Systems, pp. 1–6,
2006.

[113] A. Polychronopoulos, M. Tsogas, A. Amditis, U. Scheunert, L. Andreone, and
F. Tango, “Dynamic situation and threat assessment for collision warning sys-
tems: the EUCLIDE approach,” in Proceedings of the IEEE Intelligent Vehicles
Symposium, pp. 636–641, 2004.

221



[114] R. Karlsson, J. Jansson, and F. Gustafsson, “Model-based statistical tracking
and decision making for collision avoidance application,” in Proceedings of the
IEEE American Control Conference, vol. 4, 2004.

[115] S. Anderson, S. Peters, T. Pilutti, and K. Iagnemma, “An optimal-control-based
framework for trajectory planning, threat assessment, and semi-autonomous
control of passenger vehicles in hazard avoidance scenarios,” International Jour-
nal of Vehicle Autonomous Systems, vol. 8, no. 2, pp. 190–216, 2010.

[116] P. Falcone, F. Borrelli, J. Asgari, H. Tseng, and D. Hrovat, “Predictive ac-
tive steering control for autonomous vehicle systems,” IEEE Transactions on
Control Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.

[117] A. Broadhurst, S. Baker, and T. Kanade, “Monte carlo road safety reasoning,”
in Intelligent Vehicles Symposium, pp. 319–324, IEEE, 2005.

[118] S. Danielsson, L. Petersson, and A. Eidehall, “Monte carlo based threat assess-
ment: Analysis and improvements,” in Intelligent Vehicles Symposium, pp. 233–
238, IEEE, 2007.

[119] A. Eidehall and L. Petersson, “Statistical threat assessment for general road
scenes using monte carlo sampling,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 9, no. 1, pp. 137–147, 2008.

[120] J. Hillenbrand, A. Spieker, and K. Kroschel, “A multilevel collision mitigation
approachits situation assessment, decision making, and performance tradeoffs,”
IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 528–
540, 2006.

[121] Y. Liu, O. Ozguner, and E. Ekici, “Performance evaluation of intersection warn-
ing system using a vehicle traffic and wireless simulator,” in Intelligent Vehicles
Symposium, pp. 171–176, IEEE, 2005.

[122] M. Brannstrom, E. Coelingh, and J. Sjoberg, “Model-based threat assess-
ment for avoiding arbitrary vehicle collisions,” IEEE Transactions on Intelligent
Transportation Systems, vol. 11, no. 3, pp. 658–669, 2010.

[123] T. Kumagai, Y. Sakaguchi, M. Okuwa, and M. Akamatsu, “Prediction of driving
behavior through probabilistic inference,” in Proceedings of the Eighth Interna-
tional Conference on Engineering Applications of Neural Networks, pp. 8–10,
2003.

[124] G. S. Aoude, B. D. Luders, D. S. Levine, K. K. H. Lee, and J. P. How, “Threat
Assessment Design for Driver Assistance System at Intersections: Experiment
Video,” Tech. Rep. ACL11-03, Massachusetts Institute of Technology, April
2010. http://hdl.handle.net/1721.1/46720.

[125] Vicon, “Motion Capture Systems from Vicon.” http://www.vicon.com, 2011.
Online, Accessed 20-July-2011.

222

http://hdl.handle.net/1721.1/46720
http://www.vicon.com


[126] R. Isaacs, Differential games: a mathematical theory with applications to war-
fare and pursuit, control and optimization. Courier Dover Publications, 1999.

[127] H. Ehtamo and T. Raivio, “On Applied Nonlinear and Bilevel Programming
or Pursuit-Evasion Games,” Journal of Optimization Theory and Applications,
vol. 108, no. 1, pp. 65–96, 2001.

[128] V. Isler, D. Sun, and S. Sastry, “Roadmap based pursuit-evasion and collision
avoidance,” in Proc. Robotics, Systems, & Science, 2005.

[129] T. Raivio and H. Ehtamo, “On the numerical solution of a class of pursuit-
evasion games,” Advances in dynamic games and applications, p. 177, 2000.

[130] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability analysis
of continuous and hybrid systems,” Hybrid Systems: Computation and Control,
vol. 2993, pp. 142–156, 2004.

[131] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How, “Motion
Planning in Complex Environments using Closed-loop Prediction,” in Proceed-
ings of the AIAA Guidance, Navigation and Control Conference and Exhibit,
(Honolulu, Hawaii), August 2008.

[132] E. Fox, E. Sudderth, and A. Willsky, “Hierarchical Dirichlet processes for track-
ing maneuvering targets,” in 10th International Conference on Information Fu-
sion, pp. 1–8, IEEE, 2007.

[133] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communica-
tion protocols for enhancing highway traffic safety,” Communications Magazine,
vol. 44, no. 1, pp. 74–82, 2006.
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