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Abstract 
 
Soil sites have a profound effect on ground motion during earthquakes due to their low wave 
speeds, layered structure, and nonlinear constitutive relationship.  Measurements of nonlinear soil 
response under natural conditions are critical to understanding soil behavior during earthquakes. 
Currently, quantitative measurements of nonlinear soil response are derived from laboratory 
experiments on small samples.  In this paper, we extend laboratory methods for measuring 
nonlinear soil response to field-scale.  We observe the in situ, nonlinear response of a natural soil 
formation using measurements obtained immediately adjacent to a large vibrator truck.  The 
source generates a steady-state wavefield in the soil formation at a range of discrete source 
frequencies and amplitudes.  Accelerometers within the source provide an estimate of the source 
output to the soil, and an array of 4 accelerometers adjacent to the source record the wavefield at 
1.5 m spacing.  We develop a homodyne analysis to extract the steady-state amplitude at each 
discrete source frequency and amplitude without contamination from source harmonics.  Steady-
state amplitude ratios are computed between the receivers and the source, and between adjacent 
receiver pairs within the array.  Both sets of amplitude ratios show dramatic decreases in peak 
frequency as the source amplitude is increased.  These peak frequency shifts are qualitatively 
similar to the nonlinear soil response observed for laboratory samples under resonance 
conditions.  Amplitude ratios between adjacent receiver pairs suggest the nonlinear soil response 
persists across the receiver array and is not limited to the source-soil contact region.  The 
magnitudes of the observed peak shifts appear to depend on their frequency, a proxy for depth, 
which is consistent with the confining pressure dependence of soil nonlinearity observed in 
laboratory experiments.  Future work will include measurements of steady-state phase velocities 
across the array to better understand the nature of nonlinear wave propagation within natural soil 
formations. 

 

1.  Introduction 

As many populated areas and infrastructure are located on soils, particular emphasis has 

been placed on predicting earthquake ground motion at soil sites.  Two key factors contribute to 

ground motion amplification at soil sites: soil structure and nonlinear constitutive relationship.  

The layered structure of soil deposits often contain strong impedance contrasts, such as the soil-

rock interface or the water table, which trap seismic energy near the surface.  Reverberations 



 

within the soil column can significantly amplify ground motion at one or more resonance 

frequencies of the soil formation [Williams et al., 2000].  When large ground motion is expected, 

the amplitude dependent strength of the soil formation (nonlinearity) must be included in ground 

motion predictions.  Many observations have shown that the amplification at soil sites can shift to 

lower frequencies during large earthquakes compared to small earthquakes [Field et al., 1997; 

Field et al., 1998, Beresnev and Wen, 1996; Bonilla et al., 2005]. 

Quantifying the nonlinear response of natural soils is generally achieved through 

laboratory experiments on small soil samples (generally a few centimetres in diameter) [Hardin, 

1972; Seed, 1986].  Laboratory observations on soil samples have shown that the soil 

microstructure begins to ”soften” when dynamic strains exceed about 10-6 at ambient pressure 

conditions whereby the soil dynamic modulus and quality factor (Q) decrease in proportion to 

amplitude [Hardin, 1972; Johnson and Jia, 2005].  Furthermore, laboratory measurements have 

shown the amplitude dependence of soil modulus and Q within the large-strain regime is strongly 

dependent on confining pressure, grain-size, and water content [e.g., Hardin, 1972; Johnson and 

Jia, 2005], which can vary greatly in natural soil deposits.  Currently, there is a near complete 

reliance on laboratory experiments to quantify the nonlinear behaviour of soils [Stokoe et al., 

2001].  However laboratory experiments cannot reproduce boundary conditions representative of 

in situ conditions within a natural soil formation, particularly at the scale of seismic wavelengths.   

In this paper, we describe a field-scale experiment designed to measure the nonlinear 

response of a natural soil formation.  A large vibrator truck is used to generate a steady-state 

wavefield in the soil formation across a broad range of frequencies and amplitudes.  We collect 

measurements of the source output and 3-components of ground motion within a small array 

immediately adjacent to the source.  The same vibrator truck was used in experiments described 

in Lawrence et al. [2008].  In that work experiments were conducted at a different location and 



 

the analysis was focused on measurements of surface wave phase velocities.  Here we measure 

nonlinear soil behaviour by examining changes in steady-state amplitude ratios between receiver 

pairs as the source amplitude is increased.  We develop a homodyne analysis to measure the 

steady-state amplitudes at each frequency and amplitude while removing contamination from 

harmonics, which can be significant for vibrator truck sources [Lebedev and Beresnev, 2004; 

Solodov & Beresnev, 2006].  Steady-state amplitude ratios between adjacent receiver pairs help 

discriminate nonlinearity of the soil formation from source and near-source effects.  

We focus this study on the development of new experimental and data analysis procedures 

for measuring nonlinear soil response.  First, we describe the site, instrumentation, and source 

protocol used in the experiment.  Then, we present the raw data and give a description of the 

homodyne analysis.  This is followed by the results, discussion and conclusions. 

 

2.  Experiment 

2.1 Site Description 

We conducted a field experiment at the Capitol Aggregates Test site near Austin, Texas 

where 11-m of young, unconsolidated point bar sediments overlie a soft shale (point bars are 

deposits formed along the inside of a river bend).  The site was selected primarily because of 

extensive site characterization work previously conducted by Kurtulus et al. [2005].  Near-surface 

soils consist of predominately non-plastic silt with intermittent silty sand, based on borehole soil 

samples.  Results from the Spectral Analysis of Surface Waves (SASW) method provided the S-

wave velocity profile shown in Figure 1a [Kurtulus et al., 2005].  S-wave velocities generally 

increase with increasing depth, and several impedance contrasts (interfaces between layers) are 

present at depth (Figure 2b). 



 

 
Figure 1 – a) S-wave velocity versus depth for the test site modified from Kurtulus et al. [2005] 
and b) The location of source and receivers at the test site.  Map view and depth profile are at the 
same scale.  Map view shows outline of base plate (black square), source accelerometers (red 
circles), and receiver accelerometers (solid black circles).  Depth profile shows the source 
location (large black rectangles) and receiver pads (small black rectangles).  Horizontal lines 
show locations of impedance contrasts at depths of 2-m, 4.5-m, 7-m (water table) and 11-m.   
 
 
2.2 Instrumentation 

 Figure 1b shows the location of the source and receivers at the test site.  The source is a 

large vibrator truck, ‘T-Rex’, developed and maintained by the Network for Earthquake 

Engineering Simulation Program of the National Science Foundation [Stokoe et al., 2004].  The 

source has a maximum vertical force output of approximately 267 kN (27.2 metric tons) and 

couples to the ground via a 2x2 m plate.  A function generator controls the frequency and 

amplitude of the source.  Two accelerometers built into the source estimate the force output 

delivered to the ground.  The function generator input to the source (Sin) and the corresponding 

force output delivered by the source to the ground surface (Sout) are recorded for analysis. The 



 

raw recordings of Sin and Sout are in units of voltage, which we converted to units of acceleration 

(m/s/s) using calibration parameters provided by the truck operator.  While the source can shake 

either vertically or horizontally, we only consider vertical shaking in this experiment. 

 The near-source wavefield was recorded using four receivers, R1-R4, with increasing 

distance from the source as shown in Figure 1b. The array extends along a N-S line from the 

source and was placed as close as possible to the source to record the largest amplitudes of 

ground motion.  The receivers were Kinemetrics three-component accelerometers (K2) designed 

for large accelerations (> 2g). Each receiver was anchored to a concrete pad with diameter of 

approximately 0.35 m (much smaller than wavelengths).  The concrete density was designed to 

match the soil density and each pad was of equal dimension within a few centimeters.  The 

accelerometers have a flat response in the frequency band of interest; however, we converted 

each receiver recording from counts to units of acceleration (m/s/s) using calibration constants 

provided by the manufacturer. 

 

2.3 Source Protocol 

 We use a source protocol developed to measure the nonlinear response of materials in the 

laboratory termed Nonlinear Resonance Ultrasound Spectroscopy (NRUS) [Johnson et al., 1996].  

First, the source is stepped through many discrete frequencies while the input voltage to the 

source is held constant at its lowest level.  In this experiment, the source follows a step-sweep 

with M=201 discrete frequencies beginning at 50-Hz (f1) and decreasing with frequency step-size 

of 0.2-Hz (df): 

€ 

fm = f1 − (m −1)*Δf ,    m = 1, . . . , M     [1]. 

The step-sweep decreases in frequency as a function of time to a minimum frequency f201 = 10Hz.  

The source was held at each frequency for 40 cycles so that the source shakes longer at low 



 

frequencies than high frequencies.  This assures steady-state conditions are reached at each 

discrete frequency in the step-sweep.   

The step-sweep is repeated for a total of N=11 source input voltages beginning with an 

input voltage of 0.2-V (A1) and a step-size of 0.2-V (ΔA) as follows:  

€ 

An = A1 − (n −1)*ΔA ,    n = 1, . . . , N     [2]. 

Based on this source protocol, we obtain 11 step-sweep time signals for the source and receivers.  

Every step-sweep time signal records a steady-state wavefield at each source frequency fm. 

 

3.  Data  

In this section we present examples of the step-sweep time signals recorded for the source 

and receivers during the experiment. All recorded step-sweep time signals (source and receivers) 

have a time sampling, Δt, of 0.005 sec.  Figure 3 shows a comparison of step-sweeps at several 

values of input voltage (An) for the source input (Fig. 2a) and source output (Fig. 2b).  We show 

only every other input voltage to highlight the structure of the time signals (the step-sweep time 

signals not shown are very similar to those for adjacent input voltages).  Each source input step-

sweep maintains constant amplitude across the entire step-sweep band (fm) as expected for the 

function generator.  The source output shows significant variation across the step-sweep band, 

particularly at low frequencies (large step-sweep times).  At small input voltages, the source 

output amplitude decreases as the source frequency decreases (step-sweep time increases).  At 

large input voltages, the source output shows some variation across the step-sweep band but is 

relatively constant.  The digitizer clipped the source output time signal at the largest input voltage 

(A11) for over half the step-sweep frequency band.  While the clipping was undesirable from a 



 

data quality standpoint, it did allow us to verify the instrument calibration constants provided by 

the source operator.  

The step-sweep time signals for the Z, N-S, and E-W components of each receiver are 

shown in Figures 4-6.  We observe a clear difference between the receiver step-sweep time signals 

and the step-sweep time signals for the source output in Figure 3.  For a given input voltage, the 

receiver step-sweep time signals have smaller peak amplitudes than those for the source output. 

All receiver components have more pronounced peaks in amplitude as compared to the source 

output.  The Z and N-S components share similar variations in amplitude as a function of source 

frequency (step-sweep time), input voltage, and distance from the source.  Conversely, the E-W 

components have the smallest amplitudes and show different variations in amplitude as compared 

to the Z and N-S components.  The E-W component of R1 is different than the other E-W 

components due to its proximity to the corner of the source plate.  In general, the vertical and 

radial components share similar characteristics; therefore, we focus the remainder of the analysis 

on the Z and N-S components of each receiver. 

The complex nature of the source complicates the interpretation of nonlinear soil response 

from direct observations of peaks within the step-sweep time signals.  Vibrator trucks are well 

known to generate significant harmonic amplitudes, particularly at their low-frequency limit where 

coupling becomes inefficient [Solodov & Beresnev, 2006].  Filtering each step-sweep time signal 

to include only frequency components within the step-sweep band (10 Hz – 50 Hz) will not 

eliminate harmonic contamination of the amplitudes because every source frequency at or below 

25 Hz produces at least one harmonic within the step-sweep band. Therefore, we develop a more 

elaborate analysis technique to obtain the steady-state amplitude for each fundamental frequency 

in the step-sweep. 

 



 

 
Figure 3 – Step-sweep time signals for the source input (left panels) and source output (right 
panels).  Top panel corresponds to the lowest input voltage to the source (A1) with successive 
lower panels corresponding to input voltages of A3, A5, A7, A9, and A11, respectively.  The x-axis of 
each panel is the step-sweep time in seconds.  The y-axes of all panels are in units of m/s/s and the 
range in y-axis values increases with increasing input voltage as labeled. 
 

 
Figure 4 – Z (vertical) components of receivers: R1 (left-most panels) with R2, R3, and R4 
moving from left to right. Top panels show the lowest input voltage (A1) with successive lower 
panels corresponding to input voltages of A3, A5, A7, A9, and A11, respectively.  The x-axis of each 
panel is the step-sweep time in seconds.  The y-axes have units of m/s/s and the labels denote 
range in y-axis values.  Each step-sweep time signal has its mean value removed. 
 



 

Figure 5 – N-S (radial) components of receivers: R1 (left-most panels) with R2, R3, and R4 
moving from left to right. Top panels show the lowest input voltage (A1) with successive lower 
panels corresponding to input voltages of A3, A5, A7, A9, and A11, respectively. The x-axis of each 
panel is the same as Figure 4.  The y-axes have units of m/s/s and the labels denote range in y-axis 
values.  Each step-sweep time signal has its mean value removed. 
 

Figure 6 – E-W (transverse) components of receivers: R1 (left-most panels) with R2, R3, and R4 
moving from left to right.  Top panels show the lowest input voltage (A1) with successive lower 
panels corresponding to input voltages of A3, A5, A7, A9, and A11, respectively. The x-axis of each 
panel is the same as Figure 4. The y-axes have units of m/s/s and the labels denote range in y-axis 
values.  Each step-sweep time signal has its mean value removed. 
 



 

4.  Homodyne Analysis  

In this section, we describe the homodyne analysis used to extract the steady-state 

amplitude at every source frequency within a step-sweep time signal.  Homodyne processing is 

common in many different areas of electronics, physics and acoustics where it is used to amplify a 

single frequency component within noisy signals (such as in a lock-in amplifier).  We develop a 

discrete version of the homodyne to separate the steady-state amplitude at each source frequency 

within a step-sweep time signal from the unwanted harmonic amplitudes generated by the source. 

We describe the homodyne analysis as it applies to a step-sweep time signal, X(ti), where 

the subscript i refers to each time sample.  The first step in the homodyne analysis is to define a 

time window vector, xw, which contains a subset of J time samples from the wth window location 

within X(ti) 

€ 

xw = X(t j )      for j = w,…, w +J     [3]. 

Note that the time window vector slides across the step-sweep time signal with each xw beginning 

at a time value of tw within X(ti).  The duration of each time window vector, T, is constant 

€ 

T = (J −1)*Δt      [4]. 

In general, T should be smaller than the time spent at the largest source frequency (in this 

experiment 40/f1) so that the time window vectors can resolve each discrete frequency step. 

Next, a discrete homodyne is applied to every xw to measure its amplitude at each source 

frequency, fm.  We construct a pair of orthonormal basis vectors for every fm 

€ 

Im = cos(2π fmt j )  for j = 1,…, J     [5] 



 

€ 

Qm = sin(2π fmt j )  for j = 1,…, J     [6] 

with each basis vector having J time samples (the same as xw).  We use the Gram-Schmidt 

process to make each basis vector pair orthonormal such that Im and Qm satisfy the following 

conditions: Im • Qm = 0, Im • Im = 1, Qm • Qm = 1 with  denoting the inner product.  Then, we 

project each basis vector pair onto xw to measure its RMS amplitude at each fm as follows: 

€ 

RMSm,w =
2
J
 

 
 
 

 
 xw • Im( )2 + xw •Qm( )2[ ]      [7]. 

In summary, the homodyne analysis takes in a step-sweep time signal and produces a 2D matrix 

of amplitudes (RMSm,w): each column refers to the source frequency, fm, of the discrete homodyne 

and each row refers to the location of the time window vector, tw, within X(ti).   

We apply the homodyne analysis to each step-sweep time signal recorded during the 

experiment.  In all cases, we use T equal to 0.8 sec and apply a 0.05 sec cosine taper to each side 

of the time window vectors, xw.  Figure 7 shows the amplitudes from the homodyne analysis 

(RMSm,w) for Sin, Sout, and the Z component of R2 using step-sweep time signals at the lowest 

input voltage (A1).  For Sin, RMSm,w has only one set of peaks with constant amplitude that follow 

the exact source protocol described in section 2.3, as expected for the function generator.  

However, the RMSm,w for Sout and R2 are significantly more complex than that observed for Sin.  

The three additional sets of peaks in the RMSm,w of Sout and R2 correspond to higher harmonics of 

the source frequency (2*fm, 3*fm, and 4*fm).  For example, when the source is shaking at 10 Hz 

(f201) the last time window vectors of Sout and R2 show significant amplitudes at 20 Hz, 30 Hz, 

and 40 Hz.  By applying the homodyne analysis to small windows of the step-sweep time signal, 

we only follow the source protocol without contamination from the source harmonics. 



 

The final step in the homodyne analysis is to measure a (quasi) steady-state amplitude for 

every source frequency in the step-sweep by tracking the peak in each RMSm,w that corresponds to 

the source protocol.  For example, at the first source frequency (f1), we locate the time window 

vector within RMS1,w where the amplitude stabilizes, which occurs at the time window location tw 

= tpeak.  The define the window vector at steady-state with an index value peak such that the 

steady-state amplitude at f1 is 

€ 

SAS1 = RMS1,peak       [8]. 

By repeating this process for every fm, the homodyne analysis produces a steady-state amplitude 

spectrum (SAS) from a single step-sweep.  In essence, the SAS characterizes the steady-state 

response at a given input voltage to the source.  Recall from the source protocol that we generate 

11 different step-sweep time signals, one for each input voltage of the source, An.  Therefore, the 

final output of the homodyne analysis is a set of 11 steady-state amplitude spectra, SASn.  In the 

following section, we describe how the SASn for the source and receivers are used to measure the 

nonlinear response of the soil formation. 

Figure 7 – Homodyne analysis output, RMSm,w, for Sin (left), Sout (center), and the Z component of 
R2 (right) at the lowest input voltage (A1).  The x-axis of each panel is the location of the time 
window vector and the y-axis of each panel is the source frequency of the discrete homodyne as 
described in the text.  Each RMSm,w is normalized by its maximum value and has a scale that 
ranges from 0 (blue) to 1 (red). 

 



 

5.  Results 

In this section, we use the steady-state amplitude spectra to observe the nonlinear response 

of the source-soil system.  First, we show the source response as characterized by the SASn for the 

function generator input to the source (Sin) and the force output exerted by the source (Sout).  Then, 

we show receiver responses as described by the SASn for the Z and N-S components of each 

receiver.  Finally, we compute the soil response using two types of steady-state amplitude ratios to 

isolate the in situ, nonlinear response of the soil formation. 

 

5.1 Source Response 

Figure 8 shows the steady-state amplitude spectra at each input voltage, SASn, for Sin and 

Sout.  Each SAS for Sin is constant across all fm.  For all An, the SAS for Sout increase as fm 

increases.  At large An, the SAS for Sout show significant variability at large fm and fall off very 

rapidly below about 18 Hz.  At small An, the SAS for Sout are smaller than the SAS for Sin across 

all fm.  At large An, the SAS for Sout are larger than the SAS for Sin above about 30 Hz.  While Sin 

follows the source protocol, Sout has significant variations that depend on fm and An. 

 



 

 

Figure 8 – Steady-state amplitude spectra at each input source voltage, SASn, for Sin (left) and Sout 
(right).  Each spectrum is color-coded with A1 having the lowest amplitudes (black squares at the 
bottom) and A11 having the highest amplitudes (red circles at the top). 
 

5.2 Receiver Response 

Figure 9 shows the steady-state amplitude spectra at each input voltage, SASn, for the Z 

component and N-S component of each receiver.  In general, the SASn for the receiver 

components are much smaller in amplitude than the SASn for Sout.  At the lowest input voltage, the 

SASn for the receiver components are similar in structure at all receivers.  However, at larger input 

voltages, the SASn are more complex and vary depending on receiver location and component.  

Peaks are observed in the SASn for the receivers, which become more distinct at further distances 

from the source.  The peaks in the SASn for the receivers occur at lower frequencies as the source 



 

input voltage increases.  However, we cannot interpret the soil response directly from the SASn for 

the receivers due to variations in source output. 

a)

b)

 

Figure 9 – Steady-state amplitude spectra at each input source voltage, SASn, for a) the Z 
component and b) N-S components of receivers R1, R2, R3, and R4 (from left to right).  Color 
scheme is the same as Figure 8. 
 

5.3 Soil Response 

We compute steady-state amplitude ratios to observe the soil response during the 

experiment, and to distinguish pervasive nonlinearity in the soil formation from localized 

nonlinearity at the source-ground contact.  As previously noted, amplitude ratios are commonly 

used to characterize nonlinear behavior in earthquake observations [Field et al., 1997].  The use of 



 

amplitude ratios to characterize nonlinear systems relies on a first order perturbation of the linear 

elastic constitutive equations.  This approximation is valid as long as incremental increases in 

source input voltage (ΔA) only produce small changes in the steady-state amplitude ratios.  In 

other words, we must be able to correlate peaks in the steady-state amplitude spectra between 

adjacent source input voltages (i.e. SASn to SASn+1).  If the SAS vary wildly between adjacent 

source input voltages, then we cannot observe systematic decreases in peak frequency as an 

indicator of nonlinear soil response. 

In addition, deriving SAS from only the fundamental source frequency (i.e. not including 

the harmonics into the homodyne analysis) to characterize the nonlinear response ignores the 

coupling between frequencies inherent within nonlinear constitutive relationships.  For example, 

neglecting the coupling between frequencies will affect the amplitude of the SAS, producing 

apparent attenuation because energy may be lost to other frequency components (e.g. higher 

harmonics).  However, an apparent attenuation of the SAS should not be problematic as long as 

we can still identify the peaks in the steady-state amplitude ratios between adjacent input voltages.  

 Two types of steady-state amplitude ratios are computed to observe the response of the soil 

formation.  First, we present the Receiver/Source amplitude ratios.  Then, we present the 

Receiver/Receiver amplitude ratios.  Each type of amplitude ratio is described in the following 

sections. 

 

5.3.1 Receiver/Source.  We divide the receiver amplitude spectra, SASn(R), by the source output 

amplitude spectra, SASn(Sout), to compute the Receiver/Source amplitude ratios, Gn(R;Sout), 

€ 

Gn (R;S
out ) =

SASn (R)
SASn (S

out )
      [9]. 



 

By removing the imprint of variable source output, peaks in the Receiver/Source amplitude ratios 

are due to the soil response between the source and each receiver.  A similar approach is typically 

used in the laboratory to derive the resonance modes of a sample with finite-dimensions [Guyer & 

Johnson, 1998].  

 Figure 10 and Figure 11 show the Gn(R;Sout) for the Z and N-S components, respectively.  

As the source input voltage increases, we observe a smooth change in the structure of the 

Receiver/Source amplitude ratios.  In general, the peak amplitudes of the Gn(R;Sout) for both 

components decrease to lower frequency as the source input voltage increases.  The peaks with the 

largest amplitudes (between 40-Hz to 50-Hz at the lowest source amplitude) decrease in frequency 

by as much as 35% as highlighted in Figure 8.   Although the peaks are broad, the Receiver/Source 

amplitude ratios show a clear dependence on source amplitude indicative of nonlinear soil 

response. 

However, the source-soil contact region most likely dominates the nonlinear soil response 

of the Receiver/Source amplitude ratios.  In general, the receiver amplitudes are much smaller than 

the source output amplitudes as indicated by the peak values of the Gn(R;Sout), which range from 

15-25% for all receiver components.  This suggests a large amount of energy does not make it 

from the source-soil contact to the receiver array.  This apparent attenuation is much larger for all 

receiver components below about 20 Hz presumably due to less efficient coupling and increased 

harmonic generation. 



 

  

Figure 10 – Receiver/Source amplitude ratios, Gn(R;Sout) for the Z component of receivers R1-R4  
are shown from left to right, respectively.  The input voltage increases upwards with the bottom 
panels showing the amplitude ratios at the lowest input voltage (black) and the top panels showing 
the amplitude ratios at the highest input voltage (red).  The y-axis tick marks are at 0.1 and 0.2 as 
shown in the upper left corner and they are the same for each panel.  Dashed black line highlights 
the shift in peak frequency for R3. 
 



 

 

Figure 11 – Receiver/Source amplitude ratios, Gn(R;Sout) for the N-S component of receivers R1-
R4  are shown from left to right, respectively.  The panels are arranged identical to Figure 10. 
Dashed black line highlights the shift in peak frequency for R3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
a) 

 
b)

 
 
Figure 13 – Receiver/Source amplitude ratios for A1 (black), A6 (blue), and A11 (red).  a) Z 
components and b) N-S components of receivers R1-R4 are shown from left to right, respectively. 
 

5.3.2 Receiver/Receiver. We divide the amplitude spectra from a receiver farther from the source, 

SASn(R[X+1]), by the amplitude spectra from a receiver closer to the source, SASn(R[X]), to 

compute the Receiver/Receiver amplitude ratios, Gn(R[X+1];R[X]), 

€ 

Gn (R[X +1];R[X]) =
SASn (R[X +1])
SASn (R[X])

      [10] 

where X refers to the receiver pair being analyzed.  For example, when X=1 we divide the 

amplitude spectra of R2 by the amplitude spectra of R1. 

Figure 14 and Figure 15 show the Gn(R[X+1]; R[X]) for the Z and N-S components, 

respectively. The Receiver/Receiver amplitude ratios show a similar decrease in peak frequency as 



 

the input voltage increases for both components.  The changes in the Receiver/Receiver amplitude 

ratios as a function of input voltage are dramatic for high frequencies, but much smaller for 

frequencies below 20 Hz as highlighted in Figure 16.  We do not observe the falloff at low 

frequencies observed for the Receiver/Source amplitude ratios.  The Receiver/Receiver amplitude 

ratios are generally above 1.0 at the lowest input voltages.  At large input voltages, the 

Receiver/Receiver amplitude ratios are generally at or below 1.0 and tend to falloff as the source 

frequency increases.  We note that the anomalously high values of the Gn(R2;R1) are a result of 

R1 being close to the corner of the source plate so it’s N-S amplitude spectra are relatively small. 

 

Figure 14 – Receiver/Receiver amplitude ratios, Gn(R[X+1];R[X]) for the Z component of 
receiver pairs (R2;R1), (R3;R2), and (R4;R3) are shown from left to right, respectively.  The input 
voltage increases upwards with the bottom panels showing the amplitude ratios at the lowest input 
voltage (black) and the top panels showing the amplitude ratios at the highest input voltage (red).  
The y-axis tick marks are at 0.5, 1.0, and 1.5 as shown in the upper left corner and they are the 
same for each panel.  Dashed black line highlights the shift in peak frequency for R3/R2. 



 

 

 

Figure 15 – Receiver/Receiver amplitude ratios, Gn(R[X+1];R[X]) for the N-S component of 
receiver pairs (R2;R1), (R3;R2), and (R4;R3) are shown from left to right, respectively.  The input 
voltage increases upwards with the bottom panels showing the amplitude ratios at the lowest input 
voltage (black) and the top panels showing the amplitude ratios at the highest input voltage (red).  
The y-axis tick marks are at 1.0 and 2.0 as shown in the upper left corner and they are the same for 
each panel.  Dashed black line highlights the shift in peak frequency for R3/R2. 
 

 

 

 

 

 

 

 

 



 

a)

 
b) 

 
 
Figure 16 – Receiver/Receiver amplitude ratios for A1 (black), A6 (blue), and A11 (red).  a) Z 
components and b) N-S components of receivers R1-R4 are shown from left to right, respectively. 
 

6. Discussion 

 In this study, we observe clear peaks in Receiver/Receiver amplitude ratios that decrease 

as source amplitude increases.  Lawrence et al. [2008] measured phase velocities across a similar 

type of receiver array using a similar source protocol.  They observe systematic decreases in 

phase velocities between receivers as source amplitude increases.  We are currently in the process 

of extracting phase measurements at steady-state using the homodyne analysis.  With steady-state 

amplitudes and phase velocities for the same experiment, we may better understand the 

propagation of nonlinear surface waves from vibrator trucks. 

 Lawrence et al. [2008] inverted the surface wave phase velocities to infer that near surface 

soils are predominately responsible for the nonlinear soil response.  These observations are 



 

consistent with laboratory experiments, which show an inverse relationship between confining 

pressure and the magnitude of the nonlinear response [Hardin & Drnevich, 1972; Johnson & Jia, 

2006].  Qualitatively, the Receiver/Receiver amplitude ratios show more dramatic changes at 

higher frequencies as the source amplitude increases (see Figure 16), which may be consistent 

with these observations.  Steady-state phase velocity measurements may confirm the depth 

dependence of the nonlinear soil response observed in this experiment. 

Numerical models have been developed that incorporate laboratory derived soil properties 

into their predictions of nonlinear site response during large earthquakes [Bonilla et al., 2005].  

These nonlinear site response models rely on a simple hysteretic soil model such as the extended 

Masing’s rules to describe nonlinear soil response and are limited to scenarios with 1D 

propagation of shear waves.  They do not incorporate more complex phenomena such as 

harmonic generation and nonlinear surface waves.  A primary limitation to developing more 

rigorous numerical models is the lack of quantitative observations of nonlinear soil response 

under natural conditions not possible in the laboratory, which we provide in this study.   

 

7. Conclusions 

  In this study, we describe a novel methodology for studying the in situ, nonlinear soil 

response of a natural soil formation using a vibrator truck and new processing methods.  We 

observe a clear nonlinear soil response in the near field of the vibrator truck using non-invasive 

measurements at wavelengths and amplitudes similar to those of actual earthquakes.  Amplitude 

ratios between adjacent receivers suggest that the nonlinear soil response extends beyond the 

source-soil contact region.  The magnitude of the nonlinear response we observe appears to be 

dependent on frequency, and therefore depth, which is consistent with observations from 

laboratory experiments and the work by Lawrence et al. [2008].  In the future, we plan to test this 



 

method at a site where previous nonlinear site response has been observed and may employ a 

lower frequency source to achieve frequencies closer to peak frequencies observed during 

earthquakes.  Quantitative observations of nonlinear soil response under natural conditions not 

possible in the laboratory (i.e. “open” system, seismic wavelengths, depth-dependent soil 

properties, etc.) provide critical data for testing current models of nonlinear soil response.  We 

hope such observations lead to a better theoretical description of nonlinear soil response that 

includes surface waves.  Ultimately, such advances may lead to the development of inverse 

methods for extracting nonlinear soil parameters from field-scale measurements like those 

presented in this study. 

 

8. Conclusions 

  This work was supported by a grant from DOE through the Los Alamos National 

Laboratory and by the ERL Founding Member Consortium. 
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