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Abstract

A method for the spatial tagging of images is proposed. With each image, the location, direction
vector, aspect ratio, and view angle of the camera are recorded. These variables correspond to
those used in the process of traditional three-dimensional rendering, and are sufficient to charac-
terize the viewing transform performed by the camera. Because of this correspondence, spatially
tagged photographs or frames of video may be treated as two-dimensional perspective renderings
of their subjects. To demonstrate an application which uses spatial information, several frames of
video of a building on the MIT campus were tagged with spatial data as they were generated, and
then put through an inverse rendering process to create a three-dimensional database of video
textures. The database was used to generate textured renderings of the object from arbitrary view-
points.
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Introduction

This paper describes an experiment that uses spatially tagged images to add textured surfaces to a
polygonal computer graphic model of a real object. Images are tagged by recording the location,
direction vector, aspect ratio, and view angle of the camera. This same information is used to
characterize the viewing model in the computer graphics rendering process, and allows the scanned
images to be mapped onto the surfaces of the model.

There are two fields of related work that bear mention here: methods for recovery of depth infor-

mation from two-dimensional images, and methods for defining spatial correspondences between
two-dimensional images and three-dimensional spaces.

Recovering depth information for an image
When a two dimensional image is created by traditional photographic methods, depth information

about the scene is lost. Various methods have been developed for recovering this information.

Some methods involve recording the information at the time the image is created, and some at-

tempt to infer the depth information from the content of the image by using various vision tech-

mques.

Bove has developed a camera which records depth information for video images by using a depth-

sensing camera [Bove 1988]. Both Bove and Pentland [Pentland 1987] have demonstrated the use

of focusing information to determine depth. Pentland [Pentland 1988] and Brooks and Horn

[Brooks & Horn 1985] have explored the use of lighting and shading cues to produce depth

models. Stereographic methods have also been developed to recover depth information from two

spatially similar images [Richards 1983].

The approach described in this paper is not primarily concerned with recovering depth information

from flat images. Instead, its related goal is to explore the integration of those images into a

three-dimensional computer model. It presumes the existence of a model which represents a real

scene, and uses two-dimensional photographs of the scene to generate textured surfaces for the

model.

Using this approach, the camera's imaging process is reversed, and the texture values appearing in
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the photographs are projected backwards from the camera's point of view onto the surfaces of the

scene's computer model. From the point of view of recovering depth information, it could be said

that the model provided the depth information necessary to transform the two-dimensional images

into three-dimensional ones. In another sense, the polygonal model is being "textured" or

"painted" by using the spatially tagged images as sources for textural data.

Three-dimensional models and spatial correspondence

The question of spatial corresondence between the images of objects and models of the objects was

addressed by Naimark in his work with developing a system for projecting images so that the

location of the reconstructed image is determined by the precise location of the camera when the

image was originally made [Naimark 1979]. The system allowed Naimark to create the illusion of

objects whose images remained stationary in the user's environment while the projector that was

producing them rotated.

Lippman's development of the Aspen Movie-Map resulted in a system in which varying sorts of

data about an entire town were "accessed spatially, where the particular organization corresponds

to the physical layout of real space." [Lippman 1980, p. 32] In the Aspen project, photographic

images of the fronts of various buildings in Aspen, Colorado were mapped onto the corresponding

faces in a polygonal database of the city. As one viewed the database, the two-dimensional images

of the buildings appeared in their proper locations with respect to the model, providing

photographic cues within the visual context of a solid polygonal model.

Eihachiro Nakame has explored the spatial correspondence between computer models of proposed

buildings and the sites onto which those buildings will be placed [Nakame 1986]. Computer

montage methods were used to create realistic renderings of buildings in new environments by the

combination of photographic and computer-generated components into the same scene.

To demonstrate an application which uses spatial information, several frames of video of a building

on the MIT campus were tagged with spatial data as they were generated. These images were put

through an inverse rendering process to create a three-dimensional database of video textures. The

database was used to generate textured renderings of the object from arbitrary viewpoints.
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Describing the Spatial Attributes of Images

What is needed to completely describe the spatial attributes of an image? To answer this question,

we will look at three-dimensional rendering methods used in traditional computer graphics applica-

tions. For a thorough discussion of this topic, the reader is referred to [Foley & Van Dam 1982].

Computer graphic rendering systems often use the metaphor of the rendering program as a camera

creating an image of its model world. We imagine the renderer is a camera that can be arbitrarily

positioned in space. Not only can it move to any location, it can also point in any direction, and

use any angle of view. This process is known as a view transformation.

The goal of computer rendering, then, is to place the camera, and render that part of the world

which the camera "sees".

Thus, an analogy can be drawn between the view transformation performed in traditional three-

dimensional computer rendering systems and the view transformation performed by a physical

camera. From this comparison a set of variables sufficient to describe the spatial attributes of a

photographic image can be determined. These variables describe the location of the camera, its

orientation, its angle of view, and the shape of the image.

Location. To specify the location of an object in three-space, three independent values are re-

quired. In a computer environment, the Cartesian values x, y, and z are often used, and are taken

with respect to some origin. In some cases, other coordinate systems may be more useful, for

instance Earth based coordinates of latitude, longitude, and elevation could be used.

Either an absolute or relative coordinate system may be chosen. In the experiment presented here,

a local coordinate system based on Cartesian coordinates was used, but the origin of that system

was determined with respect to the Earth's Latitude-Longitude system. This way, all data recorded

for the project could be obtained using a project-based system, simplifying the process greatly, and

if needed, the appropriate mathematical transformations could be applied to relate the model to a

universally-accepted reference point.

Orientation. There are three more degrees of freedom that specify a camera's orientation.
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Specifying a direction vector for the camera constrains two of these degrees, and specifying the

camera's rotation about this vector constrains the third. Traditionally, pitch and yaw are used to

specify the direction vector, and roll is used to specify the camera's rotation about this vector.

For this experiment, determining pitch and yaw without special equipment was difficult. However,

it was comparatively easy to determine the location of any point in the environment by using

architectural plans. So, instead of recording pitch, roll, and yaw for each image, the precise point

at which the camera was aimed was recorded instead. This point was termed the lookat point. The

vector between the camera and the lookat point defined the pitch and the yaw. Roll was con-

strained to 0. Pitch and yaw were determined by the following equations:

pitch = sin-1 ((z;ook - Zcamera) / dist)

yaw = tan-1(cos(yaw), sin(yaw))

where

cos(yaw) = (Ylooka - Ycamera) / (dist * cos(pitch))

sin(yaw) = (xi1o0  - xcamera) / (dist * cos(pitch))

and

dist = the distance from the camera to the lookat point.

Aspect ratio. Most imaging devices produce rectangular images, so only one variable is needed to

describe the image shape: the aspect ratio. This is defined as the ratio of an image's width to its

height. A square frame would have an aspect ratio of 1; 35mm film has an aspect ratio of 1.5;

NTSC video has an aspect ratio of 1.33; and so on. Generally, this number is a constant with

respect to any given camera.

The images in this experiment were generated with a 35mm camera, so their aspect ratio was 1.5.

View angle. The angle of view of a camera is a function of the length of the lens and the camera's
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format. For a camera with a fixed length lens, the view angle is constant. For cameras that can

change lenses or that have a zoom lens, this value may vary with each image the camera produces.

In the world of computer graphics, the angle view of a camera is the angular width of the view

frustum which is defined in the view transformation process.

For this experiment, angle of view was taken with reference to the horizontal width of the camera's

frame. Since only a single lens was used, this value stayed constant for all of the images.

The Experiment

Choosing a subject

The Wiesner Building at MIT, which houses the Media Laboratory and the Albert and Vera List

Visual Arts Center, was chosen as a subject for the experiment. The building was accessible and

interesting. Unobstructed views were possible, for the most part, because large open spaces sur-

round the building on two sides. It would be fairly easy to create a wireframe model from plans of

the building because it was fairly geometric in design, with easily determined three-dimensional

coordinates.

In determining the spatal data for the experiment, it was assumed that accuracies as close as 1%

would be needed for any subject. Clearly, using a building as a subject allowed for this needed

accuracy.

Related work at the Media Laboratory has explored the use of spatial correspondence techniques

similar to those developed in [Nakame 1986] to generate sequences of motion video in which a

computer rendered model of a building was rendered over images of an empty site [Purcell 1987].

The choice of an architectural subject was especially pertinent to research already being conducted

at MIT.



Page 6

Choosing a coordinate system

As mentioned earlier, a Cartesian system based on a local origin was chosen. The axes of the

system were chosen to line up with the main structural lines of the Wiesner Building, so that the x,

y, z origin was at one comer of the building, on the ground at the level of the plaza surrounding the

building.

The choice of directions for the x, y, and z axes was a bit more complicated. Since the database

was to be rendered using the Hewlett-Packard Starbase graphics library [Hewlett-Packard 1985],

the handedness of the coordinate system was chosen to match the one used by Starbase: a left-

handed one. Since by convention, the z direction is often the upward direction, it was decided to

make z go up, away from the Earth, and x and y were placed so that the majority of the building

was located in the first x-y quadrant, resulting in coordinates that had mostly positive numerical

values. This resulted -in an x axis that increases eastward, and a y axis that increases southward

with respect the the building site.

Making a polygonal model of the subject

A polygonal model of a three-dimensional object is nothing more than a description of a set of

polygons in three-space that represent the outer surfaces of the object. A representation convention

for polygonal objects has been developed at Ohio State University [Crow 1982]. In the OSU

standard, polygonal objects are represented as a set of points and a set of faces, where faces are

defined as ordered lists of the points composing them. The OSU standard format unfortunately

does not encourage human-readable files, so it was enhanced for this project to include comments

and blank spaces at arbitrary locations in the files. This extended OSU format was used to create

the polygonal model of the Wiesner Building.

To make a polygonal model, plans of the building were first obtained. Then, the points located at

interesting positions on the surface of the building were assigned unique numbers, and entered into

the description file for the building. Next, each face of the building was described as a sequence of

numbered points and added to the description file. Care was taken to define each face with its

points listed in a counterclockwise direction around the perimeter of its "front" side. This way,

rendering programs can reliably determine the front side of each face, and generate shaded solid

models of the building using only the polygonal data.
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Rounded portions of the building were approximated by modeling each 90-degree curved section

of the building as three flat faces. If a more advanced representation system had been in use, these

curved sections might have been represented as curves, but for the purposes of this experiment, flat

approximations to curved surfaces were adequate.

Finally, a parser was written to read the data file that was created. Two applications were

developed to view the data by moving around the model in real time, one that allowed a user to

examine wireframe views of the model, and one that rendered the model with solid, shaded faces.

Extensions were written to allow for fly-by style animations of the scene to be generated inter-

actively by the user. These applications were particularly helpful in verifying the correctness of the

data files. Figure 1 shows two views of the Wiesner Building polygonal model using each of these

programs.

Fireframe and solid views of the model.
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Obtaining spatially tagged images
An advantage of the Wiesner building as a subject is that its entire exterior is composed of white

tiles with dark grid lines between them. This fact made the determination of lookat points excep-

tionally easy; in most cases, they could be recorded by visual inspection. Additionally, the plaza

around the building is covered with tiles that are laid in even increments of feet and inches, which

made the measurement of positions around the building easy and accurate.

As each image was taken, its spatial attributes were recorded in a field notebook: the x, y, z

position of the camera, and the x, y, z values of the lookat point. As mentioned above, the view

angle and aspect ratio were known constants since a single camera with a fixed lens was used.

A 35mm camera with an architectural ground glass and tripod was used to create the images,

because it afforded easy positioning, and easy determinination the precise center of the image. A

video camera was also tested, but the unreliability of the electronic viewfinder caused the task of

centering the image to be all but impossible.

All of the images were converted into NTSC video, digitized, and then translated into RGB

(Red/Green/Blue) format. Each image was then corrected to its original 1.5 aspect ratio, which had

been lost during the NTSC stage, and finally combined with its view description file to produce 23

spatially tagged video images.

Back in the lab, the spatial data for each image was entered into a view description file. A parser

was written which converts view description files into a computer representation of the camera's

position. An example of a view description file is shown in Figure 2.
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% File: s5.view
% Purpose: The View from slide position 5

% This is a spot near the Henry Moore Sculpture

x 232 % camera x in feet.
y -104 % camera y in feet.
z 4.5 % camera z in feet.

% We're looking at a point in the center of the East Wall.

i 104 % x of the point being looked at
j -2 % y of the point being looked at
k 33.1 % z of the point being looked at

a 1.5 % aspect ratio: width to height: 35mm film
v 58 % view angle of the camera in degrees

Figure 2: A view description file.

The inverse rendering process

This section describes the inverse rendering process proposed by the author.

Given a set of images, and a set of faces, the inverse-rendering algorithm considers every possible

image/face pair <I, F> to determine if the face theoretically appears in the image. If it does, then

the image and all of its pixels are projected onto the plane of the face. Then, only the pixels which

fall within the face in question are kept, and added to the model's surface.

Running this algorithm for a polygonal model and a set of spatially tagged images of that model

will result in the maximal possible textural coverage of the model by the given set of images.

Potentially, the algorithm could be modified to discard pixels that get projected onto a location

which is already covered, and to avoid checking fully-covered faces at all.

Figure 3 shows a pseudocode description of the algorithm.
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for each image I in the set of images:
for each polygonal face F in the model:

if face F is not facing the camera, or F is obstructed,
then:

ignore F for this image.
else:

project the rectangular plane of I onto the plane of F.
for each pixel P in I:

project P into the plane of F.
if pixel P falls outside face F,

then:
discard P.

else:
add P to the model -- it is part of F's texture.

Figure 3: The inverse rendering algorithm.

The actual inverse rendering process

The algorithm given in the previous section is theoretical. In practice, it was modified greatly to

allow for limitations of hardware, memory size, disk space, and processor speed, and difficulty of

implementation.

First, the time and space orders of growth of the given algorithm are extremely large. The order of

growth is the number of images multiplied by the number of faces in the polygon, multiplied by the

number of pixels in each face.. In this experiment, there would have been approximately 2,000

image-face pairs to consider (approximately 20 images multiplied by approximately 100 faces).

Rather than consider every <I, F> pair, a subset of them was manually chosen. This was done by

inspecting each image visually and deciding which of the faces in the model would be most ap-

propriately textured by that face, and arranging the choices so that each face would not be textured

by more than one face. Faces that could not be adequately covered by any of the images were

ignored altogether. This way, the total number of <I, F> pairs was reduced to less than the number

of faces in the model.

One action performed by the algorithm is the determination of which pixels in an image I are part

of face F. This is effectively three-space scan conversion. There are two ways in which this

process might be performed. The first would be to use techniques similar to ray-tracing to see if

the line of projection of the pixel bnto the plane of F "misses" F, and to discard the pixel if it does.



Page 11

An alternative would be to render face F onto a flat projection, and use the projection of the face to

select the pixels in I that should fall in F. It was this second approach which was taken. By using a

manual process (which could also be automated), the pixels that were to be part of each candidates

for each face were selected from the base image by the creation of a binary mask, which eliminated

those pixels which clearly did not belong to the face in question.

In this way, the theoretical algorithm was reduced to the actual algorithm shown in Figure 4.

for each image/face pair <I, F>:
for each pixel P in I:

if pixel P is not in the face's mask,
then:

ignore P.
else:

project P into the plane of F.
add P to the model -- it is part of F's texture.

Figure 4: The inverse rendering algorithm that was used.

The algorithm for projecting each pixel in the image involves tracing the ray of light that created

the pixel back from the camera and onto the face from which the ray came. The two-dimensional

pixel is then assigned three-dimensional coordinates based on its location on the face.

Mathematically, the camera is positioned in the model space in its original position, and a two-

dimensional rectangle describing its original aspect ratio is generated. This rectangle is then run

through an inverse of the viewing transformation, producing a rectangle floating in three-space,

somewhere along the camera's view pyramid. Then, this rectangle and any pixels within it can be

easily projected onto the plane of any chosen face in the scene, simply by determining the plane in

which the face lies, and applying a formula to determine the intersection of the line of sight with

the plane.
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Viewing the texture database

Up to this point, discussion has been devoted to the projection of pixels into three-space, but not to

their subsequent viewing. Because the pixels are nothing more than dimensionless dots of color

whose original purpose was to appear as single points of glowing phosphor, surrounded by niegh-

boring pixels, the question of how to treat pixels that have been projected into three-space is an

interesting one.

Bob Sabiston of the Media Laboratory's Visible Language Workshop uses a method which takes

advantage of hardware-level color interpolation for arbitrarily-shaped polygons, in order to allow

the user to rotate a full color bitmap in three-space in real-time [Sabiston 1988]. The hardware that

implements this ability was originally designed for the purpose of Gouraud shading, in which

colors on the surface of polygons in a three-dimensional model are shaded by interpolating

smoothly between the values of the colors at the polygon vertices [Gouraud 1971]. This hardware,

produced by the Hewlett-Packard Corporation for its Series 300 workstations, proved useful for the

rendering stage of this experiment.

Rather than simply projecting individual pixels from the image, square "tiles" were projected

instead. Each tile is a square polygon which is assigned a different color at each of its corners --

one for each of four neighboring pixels. So, it was actually these tiles that were projected onto the

faces of the model. When a tile is smooth-shaded to interpolate between the pixel colors at its

vertices, the illusion of a continuous textured surface is created.

In the applications developed as part of this work, the rendering of faces consists of rendering all of

the tiles that have been projected onto it. The hardware smooth shading interpolates shades of

color between the common vertices of the tiles.
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Storing the database

Currently, the inverse rendering process is implemented as two phases. The first phase is the

creation of the three-dimensional textures, and the storage of the tiles on disk. In the second phase,

the database is rendered: the user chooses an angle of view for the scene, and then the application

places each precalculated tile in the appropriate position in the image.

Each tile is composed of four points, and each point has the floating-point values, x, y, z, and r, g, b

associated with it. This means that each tile requires 24 floating-point values of storage space, for

a total storage requirement of 96 bytes. The large size of the tiles was one of the chief arguments

against storing any more than a certain number of them at a given time, and severely limited the

size of the texture database, as well as the speed of rendering.

At 96 bytes per tile, a source image of 500x400 pixels requires over 18 megabytes of process

memory to manipulate all at once, and as much disk space just to store it. In order to allow images

as large as this, and whole databases of arbitrary size, an internal swapping system for tiled textures

was developed so that in-memory data structures could at the very least refer to a large number of

objects and access them from disk. In the end, then, the main limit on the storage space available

to the model generation program was the amount of disk storage space available on the machine.

For the development stages of the project, a workaround to the size problem was found by

downsampling the source image by factors of 4, 9, or 16, depending on the amount of space

reduction that was needed. Of course a loss of detail was noticeable with downsampled images;

however, the use of the interpolated textures did much to make even these downsampled images

visually adequate.

For the model that was finally generated, a swap space of about 100 megabytes of disk space was

available. This amount of space was adequate to allow for the texturing of a significant portion of

the surface area of the model, though not for all of its faces.
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Results and Evaluation

A finished image
Figure 5 shows an image that was generated as part of this experiment.

Figure 5: View of the textured model.

Database generation time and rendering time

The time required to perform the inverse-rendering to produce the database from the raw images

was broken down roughly into the following categories: about 15% reading the raw file from disk,

10% calculations, 75% writing the resulting data out to disk again. Clearly, a more powerful

machine with faster, larger disks and significantly more core memory could have cut the inverse

rendering times by orders of magnitude. Specialized hardware optimized for the purpose could

easily yield a few more orders of magnitude improvement.

The rendering time for the Gouraud-shaded pixel tiles was about 1,000 tiles per second, when the

majority of the tiles were small, and all of them were in memory on the host computer. Adding in

swapping time could increase the time required to render a single frame of the database to as much

as three minutes for a texture database with more than 20 megabytes of data. If enough disk space
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were available to hold a fully-textured database of the model, where all textures were sampled at

the maximum available resolution, rendering times could have been as long as 15 minutes per

image.

Quality of interpolated video textures

Overall, the quality of the textures was quite high. The illusion of a continuous surface was

extremely strong, even once aliasing effects became noticeable. Figure 6 shows a detail of one

section of the wall. The figure shows a section of an image approximately 200 pixels across.

Figure 6: Quality of interpolated textures.

Unfortunately, the problem of aliasing of the textures along the edges was extremely noticeable.

This effect was caused by the aliasing effects that are inherent in increasing the size of digitized

images, but was particularly noticeable when jagged edges of textured surfaces were greatly in-

creased in size during the projection process. Figure 7 shows a detail of two edges demonstrating

different frequencies of jagged edges.
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Figure 7: Jagged edges of textured surfaces.

Accuracy and sources of error

The accuracy of the wireframe model of the building was extremely high, since the data was taken

from the plans for the building. The most inaccurate portions of the model occurred in rounded

portions of the building, since these portions were approximated with flat surfaces. The effect of

these approximations not was great enough, however, to cause significant aberration in the inverse-

rendering process.

As stated earlier in the paper, a large subject was chosen so that measuring the spatial location of

the camera would be subject to very small errors. This was indeed the case, as demonstrated by the

ability to very accurately replicate the real camera's views using computer renderings of the scenes.

Since the images for the experiment were generated from 35mm slides, the biggest source of error,

much larger than any other, was in the registration (vertical and horizontal alignment) of the

images during the photographing, slide mounting, and digitizing processes. When, the film is ex-

posed by the camera, it is difficult to guarantee that the image that hits the film has the same

framing as in the viewfinder. When the slides are placed in their mounts during processing, ac-
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curacy of registration is impaired once again, and finally, the digitizing process is also subject to

large errors in registration. These errors were visible when the texture for a face did not line up

perfectly with the face after the projection process had been completed. Figure 8 shows a detail of

a textured surface that is slightly rotated with respect to its face.

Figure 8: Registration error.

Another source of error arises from the fact that making images of the model is inherently subject

to the current weather and lighting conditions at the time. For our first batch of images, the

weather contiditons were bright and sunny, which caused problems with uneven lighting among the

faces of the building, as well as shadows on certain walls. One way to partially compensate for this

problem is to shoot the images on a day with uniformly-overcast skies, so that all surfaces are lit

evenly.

Probably the most significant problem with this process is that objects such as signs, poles, trees,

etc., which are not part of the wireframe model, may partially obstruct portions of the object when

the photographs are taken. This process then projects images of objects onto the surface of the

subject, as part of the three-dimensional texture. Flattened images of trees and power lines appear

as part of the textured model.
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Suggested improvements and enhancements

Since storage space was a problem for the system, it would be possible to sacrifice rendering speed

to save disk space. At the time a database is generated, a record of the view transformations could

be stored instead of the transformed textures themselves. This way, many of the calculations could

be cached, and the textures could be recalculated as necessary.

Conclusions

Spatial tagging of images is an effective way of describing an image in a three-dimensional con-

text. This fact has been demonstrated by the use of spatial information to retrieve texture infor-

mation from two-dimensional images made by real cameras, and then combining this information

with a corresponding three-dimensional computer model.

This experiment has illustrated one motivation for adding spatial attributes to images: the use of

video images in computer graphic modeling, but there is a whole array of potential applications for

spatially tagged film and video.

For instance, architects could use three-dimensional video models of buildings to be changed or

renovated and view the effects of the renovations or changes on a realistic model. Work at the MIT

Media Laboratory Film/Video Section is currently exploring the use of spatial data for moviemak-

ing, scene description, and camera motion description. Automated editing systems can also benefit

from the addition of spatial data to film sequences [Davenport 1988].

As we begin to see demand for film and video imagery which is more integrated with computer

environments, we will see attention turning to the development of a spatial encoding standard, and

to the creation of hardware and software tools to make spatial tagging of images commonplace.
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