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WAVENUMBER FILTERING BY MECHANICAL STRUCTURES

by

Nathan C. Martin II

Submitted to the Department of Mechanical Engineering on
January 15, 1976 in partial fulfillment of the require-
ments for the Degree of Doctor of Philosophy.

ABSTRACT

The response of membranes and plates to a random pressure field

is interpreted to reveal the inherent wavenumber filtering character-

istics of such structures. These spatial filtering characteristics

are described by defining wavenumber filter shape functions which are

obtained from spatial transforms of the normal mode shapes. Numerical

calculations of the wavenumber filter shapes |Am(k)12 of typical beam
modes are presented for a variety of boundary conditions. Detailed

measurements of selected mode shapes were made for a rectangular

membrane and two rectangular plates with different edge conditions.

This mode shape data was then transformed numerically to obtain
typical wavenumber filter shapes for the structures. These measured

wavenumber filter shapes compare favorably with theoretical predictions;
however, the presence of small amounts of non-resonant response in

the measured mode shapes obscures the true high wavenumber behavior of

the resulting wavenumber filter shapes.

These spatial filtering concepts were applied to the measurement

of the low wavenumber components of wall pressure fluctuations under

a turbulent boundary layer. The resonance characteristics of the

membrane and plates were determined experimentally, and structural

response measurements were made with the structures mounted in a test

section wall of a low turbulence subsonic wind tunnel. Special

quieting measures were taken to reduce acoustic contamination of the

data. Estimates of both acoustic and convective ridge contamination

were made and used to correct the data. Data was obtained for

momentum thickness Reynolds number from 5000 to 11,000 for a smooth

wall at zero pressure gradient. In the non-dimensional wavenumber-

frequency range described by k36* - 0, 0.18 < ki6* < .88 and
0.8 < W6*/U, < 5.1, typical low wavenumber spectrum levels were about

36 dB below convective ridge levels at the same reduced frequency.

The data levels are shown to be about 10 dB higher than measurements

obtained by Jameson; however, both sets of data do exhibit a similar

dependence on w6*/U,.

Thesis Supervisor: Patrick Leehey
Title: Professor of Applied Mechanics
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1. INTRODUCTION

The primary impetus for investigating the wavenumber filtering

characteristics of mechanical structures is the need to better

understand the vibratory response of such structures to wall pressure

fluctuations created by the turbulent boundary layer. Problems

dealing with such turbulence induced vibrations are encountered both

in high speed aircraft and marine applications. However, the main

thrust of this research has been in areas more closely related to

marine applications. Some of the more critical marine applications

are those dealing with the vibratory response of sonar related

structures. In many practical sonar applications there are operating

ranges over which turbulent boundary layer wall pressure fluctuations

are important contributors to system noise levels.

The need to make more reliable estimates of structural response

has made it necessary to better understand the characteristics

of the wall pressure fluctuations. This has led several

investigators, including Blake [1] and Burton [2], working in the

M.I.T. low turbulence wind tunnel, to measure wall pressure statistics

for various wall conditions and pressure gradients. Such

measurements have typically been made by using pairs of small

flush-mounted pressure transducers and have adequately defined

the dominant components of the wall pressure fluctuations. These

dominant components are the pressure disturbances which are

convected downstream at a major fraction of the free stream velocity.
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However, in most marine applications the free stream velocity

is low, and the frequencies of interest are often comparatively

high. For such situations, the characteristic spatial scales

(X = U c/f) of the convecting pressure disturbances are much smaller

than the corresponding wavelengths of free bending waves in typical

marine structures. As a result, the convective excitation is

very inefficient at producing a vibratory structural response. A

more efficient excitation would be wall pressure fluctuations

whose characteristic spatial scales were long enough to match the

structural wavelengths. Thus, the need to more accuratly predict

and analyze structural response to turbulent boundary layer

wall pressure fluctuations has led investigators to attempt to

measure the low wavenumber (i.e.: long wavelength) components of

the wall pressure fluctuations. Unfortunately, these low wavenumber

components do not contribute significantly to total wall pressure

spectra. Thus, the existing experimental data is inadequate for

accurate determination of these low wavenumber components.

To overcome these difficulties it has been necessary to

construct spatial (wavenumber) filters which respond well at low

wavenumbers while rejecting convective components at higher

wavenumbers. Several approaches have been utilized. Maidanik

and Jorgensen [3] have shown that an array of flush-mounted pressure

transducers could be used as a spatial filter. Blake and Chase 14]

and then Jameson [5] used this approach to measure the low
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wavenumber spectrum beneath a plane turbulent boundary layer. Other

investigators have chosen to utilize the dynamic characteristics

of continuous mechanical systems to obtain spatial filtering.

Aupperle and Lambert [6] described analytically the wavenumber

filtering action of beams, and they have also applied similar

approaches to the prediction of acoustic radiation from plates

excited by turbulence [7]. In a more recent experiment,

Jameson [8] has used a rectangular plate with clamped edges as a

wavenumber filter.

The measurement of these low wavenumber wall pressure

components is a very difficult task. The spectral levels of these

components are so low that the possibility of contamination of

the data by acoustic or convective ridge excitation must always be

carefully evaluated. Such evaluations require a knowledge of the

way in which the structure responds to excitations at different

wavenumbers (i.e.: the wavenumber filtering characteristics of

the structure). It is certainly possible to estimate analytically

the response of the structure to high and low wavenumbers. Chase 19]

has discussed appropriate techniques as applied to transducer

response, and Jameson [8] estimated the convective response of his

clamped plate.

Such analytic estimates are certainly useful; however, for

the experimental situation it is equally important to verify
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that the physical structures utilized in the experiment perform

in a manner consistent with the analysis. Thus, one of the major

objectives of this research program has been to determine

experimentally the wavenumber filtering characteristics of real

mechanical structures. These same structures are then used to

measure the low wavenumber wall pressure spectrum beneath a plane

turbulent boundary layer.

The presentation of the research divides itself naturally

into two major parts. Chapters two, three and four deal in detail

with the wavenumber filtering behavior of mechanical systems.

The concept of the wavenumber filter shape, jA (k) 2, is shown to

come from a normal mode analysis of structural response to random

pressure excitations. Both analytical and numerical techniques

2
for evaluating A m(k) 1 are discussed and results are presented

for several ideal structures. The utility of Am (k) 2 in predicting

structural response to acoustic, convective, and low wavenumber

excitations is also demonstrated. Finally, experimental techniques

for measuring jA (k) 12 via mode shape measurements are discussed

and typical results are presented.

Chapter five, six and seven represent the application of

these spatial filtering characteristics to the measurement of

the low wavenumber components of the turbulent boundary layer wall

pressure fluctuations. The nature of the experimental program is
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outlined, and the low wavenumber results are discussed. Estimates

of acoustic and convective response levels are made based on the

results of the first phase of the research.
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2. ANALYSIS OF THE WAVENUMBER FILTERING
BEHAVIOR OF MECHANICAL STRUCTURES

The objective of this discussion is to present several analytic

results which are helpful in understanding the wavenumber filtering

behavior of typical mechanical structures. Much of the discussion

2
deals with the wavenumber filter shape function, A m(k) . From a

modal analysis of structural response to random pressure excitation,

it will be shown that IAm(k)12 describes the spatial filtering

characteristics of the structural modes just as the frequency

response function |H(w) 12 describes the frequency filtering

characteristics. Several analytical techniques will be used to

explore the behavior of IAm(k) in various wavenumber domains.

2.1 Response of Membranes or Plates to a Random Pressure Field

This analysis considers the response of two dimensional,

rectangular structures (plates and membranes) to excitation by

a random pressure field. This pressure field is assumed to be

stationary in time and homogeneous in space. The following

assumption regarding the dynamics of the structures will also be

used:

(1) Damping: The modal damping factor (n mn) used in the

analysis represents the total damping of the structure. It thus

includes radiation damping as well as structural damping. This

total damping is assumed to be sufficiently small so that modal

overlap is negligible.
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(2) Fluid Loading: Modal coupling effects due to fluid

loading are assumed to be negligible. However, the added mass

effect of the fluid loading can easily be considered by including

the modal added mass in the total modal mass density. In the

experiments considered later this correction is significant only

for the membrane.

The geometric configurations of the membrane and plate

structures are shown in Figure 2.1. Both structures are

characterized by dimensions L1 and L3 as well as a uniform mass

per unit area G. In addition the membrane is characterized by a

uniform tensile force per unit length T, and the plate is

characterized by its flexural rigidity D. The transverse

displacement w(x,zt) represents the response of the structure

when excited by a normal random pressure field p(x,z,t) and

subjected to a uniform damping force per unit mass 3w/3t. The

governing dynamic equation is

32W 3w l
+ 6 - + - A w(x,z,t) = - p(x,z,t) (2.1)

3t2  3t a y

where A is a linear differential operator in the spatial variables

such that A w(x,z,t) = - T V2w(x,z,t) for membranes, (2.2)

and A w(x,z,t) = D 74 w(x,z,t) for plates. (2.3)

Since p(x,z,t) is considered to be a random process with

zero mean which is both time stationary and homogeneous in space,
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its Fourier transform p(x,z,w) is a random process defined by the

quadratic mean integral,

p(x,z,t) = {p(x,z,w)ei t
Similarly, w(x,z,t) = f w(x,z,w)e iWt

do.

dw.

Thus in the frequency domain, the membrane version of equation (2.1)

becomes

{2 2
{V+ k }w (x,z) Z= W) p (x, z'W),

1/2
(2.4)

where c = [T/G]l/2 is the membrane wave speed, and k is defined for

complex w by

1 2 1/2
k= - [ - iSw]c

(k -+ as
c

o + m)

with a branch cut for Re(w) = 0, 0 < I M(W) < 3.

plate version of equation (2.1) now becomes

Similarly the

4 41
{V - k } w(x,z,L) = - . p(xz,), I

where k is defined for complex o by

k , 2 . 1/4 (k o- as
k 12 = W -I~o ,( s

(2.5)

oIW -* m0),

with a branch cut for Re(o) = 0, 0 < I M(W) <

For the undamped free vibration of such a structure there

exists a set of normal modes fmn (x,z) and eigenvalues omn which
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together satisfy the boundary conditions and the equation

{A - ao } f (x,z) = 0 (2.6)
mn mn

An appropriate normalization for the orthogonal functions fm(x,z)

is to require

L L3

J J f (x,z) f jk(xz) dxdz = 6mnk, (2.7)

0 0

where 6. is the Kronecker Delta Function. For example, the solution
m3

of this eigenvalue problem for the membrane with zero displacement

at the boundaries yields

f (x,z) = 2[L L 1 1/2 sin sin nTz (2.8)
mn 1 3 L1  L3

W2 + . (2.9)
mn G L F- L3,

For the situation of small damping and negligible modal coupling

it is reasonable to express the solution to equation (2.4) or

(2.5) as an infinite sum of these same normal modes. Thus,

w(x,z,o) = E E a (w) f (x,z) (2.10)
m=l n=l

When equation (2.10) is substituted into equation (2.4) and (2.5),

the orthogonality of the normal modes can be used to yield

1

a (W) = P (W), (2.11)

mn

where the modal pressure Pmn (w) is defined by
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L1 L 3

P )mn = 0 p(x,z,W) fmn(x,z) dxdz. (2.12)

Equation (2.10 and (2.12) can now be combined to give

00 CO 1
w(x,z,w) = E E P wC) f (x,z). (2.13)

m=1 n=1 Y[w2 _ 2  mn mn
mn

This displacement response spectral density can therefore be determined

from

S w(x,z,w) = E[w(x,z,w)w*(x,z,w)](dw)

(2.14)
00 00 f (x,z) f (x,z)

= Ek mn E[P, (w)P* (w)](dw),
j,k=1 m,n=l 2 WZW 2 -i W)(W2_W 2 +i o) jk mn

jk mn

where E[ ] denotes an expectation and P* denotes the complex
in

conjugate of Pmn'

The notation of equation (2.14) results from considerations

of the definition and existence of spectral representations of

random processes. For example, Cramer and Leadbetter [20] have

shown that for a stationary random process (t), a spectral

representation of the form
00

f itw di w((t) = Jei dC(o)

exists in the quadratic mean sense. Also the process E(t) has a

spectral distribution function F(w) and a spectral density f(i)

related by

F(W) = E[ C(w) 2

dF(W) = f(M)dw = E[IdC(W) I2 .and
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It is assumed that a similar generalized density function for

dC(w) exists for infinitesimal do, in which case dC(w) = g(w)dw

so that

f(W) = E g(W)2(do)

The modal pressure term in equation (2.14) depends upon the

degree of spatial matching between the pressure field and the

normal modes of the structure. To more clearly reveal this effect,

equation (2.12) is used to obtain

E[P (w)P* (w)](dw)
L L3 LL jk (2.15)

S fjk (x 1 f(x 2,z2)E[p(xzW)P*(x.z2w)](dw)dx dz dx 2dz2
0 0 0 0

Since the pressure field is assumed to be homogeneous in space,

E[p(x,z 1 ,W)p*(x 2iz 2iW)](dw) p (r ,r 3 'W)

where r = x1 - x2 and r3 = z1 - z2 '

The cross-spectral density of the wall pressure @ (r1 ,r3 ,w) is the

Fourier transform of the wavenumber-frequency spectrum (k ,k3'

That is,

(C -i~k r + k r3
$ (r ,r3' f p(k,k, )e dk dk3 (2.16)

p 13 J p131 3* 2.16
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Thus equation (2.15) can be expressed as

E[P. (w)p* (w)] (do) =
jk mn

fr F (k ,k 3 )F* (k ,k ) (k ,k ,w)dk dk , (2.17)
mn 1 j k 1 3 p 1 3 1d, 3217

where F (k1 ,k3) is a two-dimensional spatial transform of the

normal mode shape and is defined by

L1f 3  i (k x + k z)
F (k ,k3 ) = ff (x,z)e 1 dxdz. (2.18)

0 0

Equation (2.17) can now be used in equation (2.14) to yield

0 00 f. (x,z) f (x,z)
S (xzi) = 3k mn

w j,k=l m,n=1 02 [W 2W 2 -i W][W2-W 2 +ico]
jk mn

x F (k ,k 3)F k(ktk3 p(k1,k3) dkldk (2.19)

-00o

Equation (2.19) includes the effects of modal coupling as well

as the direct modal responses. In a significant number of practical

applications it is possible to neglect the modal coupling terms.

For example, Dyer's criterion [10] suggests that the coupling terms

can be neglected if the correlation lengths of the pressure field

are significantly less than the corresponding dimensions of the

structure. This situation implies that @ (k1 ,k3 'w) is approximately
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constant in k and k3, and therefore the k and k3 integrals in

equation (2.19) vanish due to the orthogonality of the mode shapes

unless (j,k) = (m,n). Even when Dyer's criterion is not applicable,

it is often possible to neglect the modal coupling terms if we

restrict our consideration to resonant response. In this case, the

requirement is that the damping must be sufficiently small so that

modal overlap is negligible. When this is true, the frequency

dependent terms in equation (2.19) render the coupling terms

negligible.

It is perhaps of interest to note that in the turbulent

boundary layer experiments described later in this thesis both the

membranes and plates are long thin structures. As a result, Dyer's

criterion can only strictly be applied to the k integration.

However, the experimental work is concerned only with measurements

at resonance, and the modal spacing is sufficiently greater than the

modal bandwidth so that modal overlap is negligible. Thus it is

appropriate to ignore coupling terms and express the displacement

spectral response as

Sw (xz,w) (2.20)

0 o f (x,z) 0r
E E mn IF (k ,k 3)|

2  (k1,k ,o)dkldk .
m=1 n=l CT (W 2 )2+(S)2] _

It should be noted that the frequency dependent portion of this

equation is just the modal frequency response IHmn(W) 2 That is,
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IH (W))1 = (2.21)
IM r2Iaw2_ 2 )2+(W)23*

mn

Equation (2.20) can be interpreted as the basic input-output

relationship describing the response of a rectangular plate or

membrane to a random pressure field. It indicates that the modal

displacement response of the structure at a given point depends on

2
the frequency response H (W)I , the degree of matching between

the response point (x,z) and the mode shape f mn(x,z), and the spatial

(wavenumber) matching between the pressure field and the 2-dimensional

wavenumber filter shape IFmn(k,k 3 12. The total response is then

the sum of the individual modal responses. However, if only the

resonant frequencies of the structure (w mn) are to be considered,

then the resonant mode response dominates and equation (2.20)

becomes
(2.22)

S (x,z,w) = f2 (x,z) H (W )12 1jF (k, ) 12 (kik , )dk dk.
w mn mn mn mn mn 1l 3 p 13 mn 1 3

In an experimental sense equation (2.22) can be used to

relate the pressure excitation to the vibratory response if the modal

characteristics IHmn(mn)1 2 and IFmn(k ,k3 )12 can be determined

accurately. Since at resonance

H (W )1 = 1 1 (2.23)
nn nn (GW ) (anoz
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the evaluation of IH (W )1 2 requires only a determination of

the total damping and surface density associated with the modes

under consideration. One of the major goals of the thesis effort

has been to explore analytical and experimental methods for

evaluating the wavenumber filter shape IFmn(k,k) 12. The next

discussion will explore the basic analytic behavior of this

wavenumber filter shape function.

2.2 The Wavenumber Filter Shape

The two-dimensional wavenumber filter shape function

F (k1,k3) 2 is the squared magnitude of the two-dimensional spatial

transform of the normal mode shape as indicated in equation (2.17).

This implies that |F n(ki, k3 2 is a modal characteristic; that is,

the exact variation of IF mn(k k3) 1 in (kyk 3 ) should be somewhat

different for each mode just as the mode shape is different for

each mode. Also since the details of the mode shape f mn(x,z) are

dependent on the boundary conditions, it is reasonable to expect

that the behavior of the wavenumber filter shape will also depend

to some extent on the boundary conditions.

In many cases the normal mode shape f mn(x,z) is easily separated

into an x-dependent term and a z-dependent term. This is certainly

true for the membrane mode shapes of equation (2.8). This

separation of variables is also analytically exact for plates

having any two opposite sides simply supported. Even for the case

of the fully clamped plate, a separation of variables technique using
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clamped beam functions is often used as a reasonable approximation

to the mode shape since an exact solution is unobtainable in closed

form 11l]. To take advantage of this separation of variables, let

f (x,z) = gm (x)h n(z). (2.24)

Substitution of equation (2.24) into equation (2.18) yields

L L
1 ik x (3 ik z

F 13(kik = gm(x)e dx h (zWe dz. (2.25)

0 0

It is now convenient to define

L
fl ik x

Am(k) - gm(x)e

0 (2.26)

A (k 3 ) = L h (z)e dz.

0

With these definitions the two-dimensional wavenumber filter shape

F (kk 3)1 
2 can be expressed in terms of one dimensional filter

shapes as

IF (kk 3 )1
2 = A m(k )12 A n(k3 )

2 . (2.27)

For simplicity, the remaining analysis will focus on the behavior

of the one dimensional wavenumber filter shape functions. Once the

one dimensional filter shapes are determined, the two-dimensional

behavior is given by equation (2.27).

Some basic insight into the behavior of the wavenumber filter

shape JA (k) 2 can be obtained easily by making some analytic
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observations based on the defining equations (2.26). For example,

from equation (2.24) and the orthogonality relationship of

equation (2.7) it is apparent that

L 1L3

g2 (x)dx = 1 and I h2 (z)dz = 1 (2.28)
j m ) n

0 0

If we now consider the integral, IAm(k)j 2dk, we can apply

Parseval's formula for integrals to obtain

00 L{A (k)1 2dk = 2Tr g2 (x)dx = 21T

0

Thus the total area under a curve of IAm(k)1 z vs. k is the same for

all modes. It also follows from equation (2.26) that IAm(k)1 2 =

SAm(-k) 2. Since the wavenumber filter shape is thus an even function

of k,

A (k)12dk = 7T. (2.29)

0

At very low wavenumbers (k + 0) equation (2.26) can be expanded

in powers of k to give

L L

A (k) = gm(x)dx + ik x g (x)dx -

0 0
L

- k2  x2 g (x)dx + 0(k3 ). (2.30)
2m

0
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This expansion indicates that the very low wavenumber behavior of

Am (k) 2 is governed by the "average" or large scale behavior of

the entire mode shape.

To determine the high wavenumber behavior (k -+ 00) of I A m(k) 2

we can apply the well known technique of repeated integration by

parts to equation (2.26)

-_ L -- L
11 ikx Lk

A (k) = -- g W (x)eikx g'(x)e +
m ik m F2 - 0 -0

g" (x) e + 0 (2.31)
(ik) 3 m [ik] 4

The implication of equation (2.31) is that the high wavenumber behavior

of A (k) 12 is governed by the lowest order derivative of the mode

shape which is non-zero at the boundary. This is directly analagous

to Chase's result [9] for the high wavenumber response of a

rectangular pressure transducer.
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3. WAVENUMBER FILTER SHAPES FOR SOME IDEALIZED STRUCTURES

In this chapter analytical and numerical approaches for

evaluating the one-dimensional wavenumber filter shape JAm(k) 2 are

discussed. These techniques are then applied to the determination

of A m(k) 12 for beams with various boundary conditions.

3.1 Analytical Evaluation of Wavenumber Filter Shapes

When a closed form solution for the mode shape gm(x) is known,

it is possible to obtain the wavenumber filter shape JA m (k) 2 by

performing the integration of equation (2.26). The difficulty of

such an approach naturally depends upon the complexity of the mode

shape. It is helpful to nondimensionalize the spatial variables on

the length of the structure so that

k = kL and x = x/L. (3.1)

As a result of the mode shape normalization of equation (2.28), the

one-dimensional mode shape g (x) has dimensions of [L] 1 2 , and

1/2
its spatial transform A (k) therefore has dimensions of [L] .

m

The corresponding non-dimensional mode shape G m(x) and non-dimensional

transform A (k) arem

- 1/2 -1 /2
G (x) = [L] - g (x) and A (k) = A Ck)/[L] (3.2)
m m m m

In terms of these non-dimensional variables, equation (2.26) becomes

A (k) = G (x)e i dx. (3.3)

0
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The definition of the non-dimensional wavenumber filter shape

function |A (k) 2 follows from equation (3.2) as

m

Am (k)j2 IA (k)1 2/L (3.4)
m m

Several different idealized structures have sinusoidal mode

shapes of the form

G (x) = 2 sin k x, 0 < x < 1 (3.5)

where k = m7. This one-dimensional mode shape is valid for strings
m

with fixed ends and for simply supported beams. It is also

valid as the separable non-dimensional component of the mode shape

for membranes and simply supported plates. The integral obtained

by substituting equation (3.5) into equation (3.3) is well known

and yields = k

A M(k) = K 1 - (-1) e .(3.6)
k - k2-
m

Thus the non-dimensional wavenumber filter shape Am (k) 2 for such

a sinusoidal mode shape is

~24 k

A (k )|2 = l (-1)m Cos k.(3.7)
m k2 - k 2) 2

m

Figure 3.1 shows typical plots of [A (k)12 for m = 1 and m = 11

which for convenience have been plotted for kL > 0 only. These

wavenumber filter shape plots are characterized by a strong major
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lobe near the characteristic wavenumber k with side lobes of
m

gradually decreasing amplitude away from k . For the m = 1 mode
m

the major lobe of 1AI (k)12 is centered about k = 0 with a peak

value of 1A (0) 2 = 8/72, and the equivalent rectangular bandwidth is

Ak = 73/4. For the m = 11 mode and indeed for all modes with
e

m > 1, the two major lobes of |A (k) 12 are located at k = + m7
m

with a peak value of 1A (m)1 2 = 1/2 so that the equivalent

rectangular bandwidth of IA (k)12 is A = 27 (Figure 3.1).
mn e

Another frequently encountered set of mode shape representations

are the beam mode shapes.

G (x) = A sin k x + B cos k x +
m m in in m

C sinh k x + D cosh k x, (3.8)
m m m m

where the subscripted coefficients are evaluated by considering

the boundary conditions and the normalization of equation (2. 28).

For plates with two opposite sides simply supported the classical

mode shape solution [11] is similar to equation (3.8) in the

direction between the two non-simply-supported ends. In principle,

it is possible to evaluate the wavenumber filter shapes for such

structures by performing the integration indicated by equation (3.3).

However, even though the necessary integrals are well known, the

resulting expressions for JAm (k)12 are quite complicated and require

a great deal of algebraic manipulation to achieve a compact form.

In most cases it is probably easier to evaluate Im (k

numerically.
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Aupperle and Lambert {6] have succeeded in obtaining an

expression for the wavenumber filter shape [A (~j) |2 for a beam

clamped at both ends. Their result is valid for m > 3 and has

the following form when the variables are nondimensionalized

according to equations (3.1) and (3.4).

- 2
8 k2

m 1- - - -
[1 -2 + k 2m m

2
sin(k - k)/2 sin(k + k)/2

m- / + ] (3.9)
(k m -k) (km + k)

where km ( m + 1/2)Tr for m > 3. Figure 3.2 shows a typical plot

for k > 0 of this clamped beam wavenumber filter shape for m = 9.

The major lobes are located at k = + k + (m + 1/2)Tr with a peak

value of

A (km)I2 - 1 [1 + (-1)m/kM]2/[l - 1/k]. (3.10)

Thus the equivalent rectangular bandwidth of the entire wavenumber

filter shape is
-- - 2

Ake = 27r Fl s/B1 + _). (3.11)

For large k both the peak and bandwidth values for the clamped beam

wavenumber filter shape approach the corresponding values for the

wavenumber filter shape of a sinusoidal mode shape as given by
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equation (3.7). This means that for the higher order modes, the

major lobe characteristics for wavenumber filter shapes IA (k)|2
m

due to either sinusoidal or clamped beam mode shapes are essentially

equivalent.

3.2 Analytical Evaluation of High Wavenumber Behavior

When it is possible to obtain |A (k) 12 by performing the
m

integration of equation (3.3), the resulting expressions can be

used to evaluate |A (k) j2 for all k. In some situations only
m

the high wavenumber behavior of I A (k) |2 may be needed, and form

such cases another analytic approach is useful. In chapter 2

a series expansion for A (k) was obtained (equation (2.31)) which
m

is valid for large k. By evaluating the first non-zero derivative

of the mode shape gm(x) at the boundaries, it is possible to use

equation (2.31) to obtain an approximate expression for IAm (k) 12

which is accurate for k >> k
m

As an example consider the beam clamped at both ends. The

boundary conditions are g (0) = gm(L) = g' (0) = g' (L) = 0, and

the non-dimensional mode shape is

G (x) = [(cosh k x - cos k x) - E (sinh k x - sin k x)], (3.12)
m m m m mm

where for m > 3, k ~ (m + 1/2)Tr and m ~£ 1. From this equation

we obtain

G" (0) = (-)m+l G" (1) = 2k 2  (3.13)
m m m
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If equation (2.31) is non-dimensionalized on L and the above values

for the various derivatives are applied, the resulting approximation

for A (k) is
m

-i 2 k2 7_-
Am(k) -i 11 + (-l) me ik O (3.14)

Thus, the high wavenumber approximation for the wavenumber filter

shape of a clamped beam is given by

8km m

1A(k)1 2 ~ + (-1) cosk. (3.15)
m ~ k6

In order to compare this result to the exact expression of

equation (3.9), it is helpful to apply appropriate trigonometric

identities to equation (3.9) to obtain

A (k ) 2
m

2 (3.16)

8 k-
- [k -4 -2 (1 - cos k)-(-1)mk km sin k + km 2(1 + COS k)

(1 - 1~ k - k -- -

m L-

for m > 3 and km ~ (m + 1/2) 7r. The approximate result certainly

matches the leading order behavior of equation (3.16) for large k.

The envelope of peak values of the side lobes of IA () |2 which
m

are predicted by equation (3.15) have been plotted on the actual

m = 9 mode shape in Figure 3.2. Such comparisons indicate that

for m > 5 and k /k > 3 values of 10 log 1Am k) |2 computed from
m m

equation (3.15) will fall within 0.5 dB of the exact level. Thus
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it is possible to obtain an accurate analytic approximation for

the high wavenumber behavior of lA (k)2 without performing the
m

laborious integrations and algebraic manipulations required to

obtain the complete analytic representation.

3.3 Numerical Evaluation of Wavenumber Filter Shapes

If the non-dimensionalized mode shape G m(x) is known

analytically or available as a set of measured data, it is possible

to determine the non-dimensionalized wavenumber filter shape

I mk) 2 for a given value of k by numerically integrating

equation (3.3). Equation (3.3) can be rewritten as

A (k) = G (x) cos k x d x + i G (x) sin kxdx, (3.17)
0 0

where k = kL and x = x/L. It is now convenient to define

R (k) I G (x) cos k x d x,
m 0o m

(3.18)

I (k) = G (x) sin kxdx.

Once these two integrals are evaluated, the value of |Im k)2 is

easily obtained as

A (k)12 = R (k) 2 + I (k) 2. (3.19)

Since it is often desirable to evaluate the wavenumber filter

shape Im(k) 2 for large values of k, the numerical techniques

used to evaluate R m(k) and I (k) must be capable of handling rapidly

oscillating integrands in an effecient manner. One excellent technique
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for such situations is the Filon quadrature 112]. This quadrature

is based on Simpson's rule, and therefore requires that the interval

be divided into an even number 2n of equal parts of length h.

The applicable formulas are obtained from Filon's results [121 as

R (k) = h [aG m (1) sin k + S 2 + YS 1 ],

(3.20)

I (k) = h {a[G (0) - G (1) cos k] + S + yS }
m mn m 4 3'

where a, 6, and y are functions of e = kh given by

1 1 2 .2
= + cose sine - sn e,

= 2[(1 + cos 2e)/6 2 - 2 sin cos6], (3.21)

1 1
Y= 4 ( sine - - cose),

and the partial sums Sl , 2' S3 ' S4 are

n

S, = Gr x 2r-) cos k x 2 r-l'
r=1

n

S3 = Z Gr 2r-1) in k x2r-l'
r=1

(3.22)
n

S = E G (x ) cos k x -- [G (0) + G (1) cos k],
2 r 2r 2r 2 r r

r=0

n 1 1

S = Z G (x ) sin k x - - G (1) sin k,
4 r 2r 2r 2 r

r=0
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where xr = rh. It should be noted that for small 6 C( < .11 the

formulas of equation (3.21) become numerically inaccurate and the

following series expansions are useful:

263 26l 267

45 315 4725

262 2 2 64 26' 4e8

= 2 + 2 - - + -- - + ... , (3.23)

15 105 567 22275

4 202 e4 66 e8

3 ~ 15 270 11340 997920

The formulas of equations (3.20) thru (3.23) are easily

programmed to permit computer evaluation of IT (Ik)2 from eitherm

experimental mode shape data or closed form analytic mode shapes.

The principal advantage of this method is that it is accurate

even at large k since the limitations on accuracy due to sampling

considerations apply only to the mode shape G m(x) and not to

the entire integrand of equation (3.18). Numerical evaluations of

10 log A (k) 12 for sinusoidal mode shapes can be compared to

the exact result of equation (3.7) to check the accuracy of the

numerical methods. Such evaluations indicate that the accuracy

of the Filon-Simpson method is still within 0.5 dB at wavenumbers

k up to k ~ 3N where N is the total number of sample intervals

for the mode shape G (x). If, on the other hand, a standard

Simpson's rule method is used to calculate the integrals, the

error in 10 log lAm(k) 1 2 reaches 0.5 dB at k ~ N.
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3.4 jA (k) 12 for Beams with Various Boundary Conditions

As an example of the utility of numerical techniques for

evaluating wavenumber filter shapes, I A ( | will be evaluated

for beams with various combinations of free, simply-supported,

and clamped boundary conditions. The following five combinations

will be considered:

1. F-F beam, ends free at both x = 0 and x = L.

2. C-F beam, clamped at x = 0 and free at x = L.

3. S-S beam, simply supported at both x = 0 and x = L.

4. C-S beam, clamped at x = 0 and simply supported at x = L.

5. C-C beam, clamped at both x = 0 and x = L.

Expressions for both mode shapes and eigenvalues are available in

various references [11, 13] for these five conditions and are

listed in Appendix A. For higher order modes the computation of

the mode shapes as listed in Appendix A becomes inaccurate near

x = 1 due to the very large values of the hyperbolic terms. It

is therefore necessary to manipulate the mode shape equations into

forms more suitable for computation. For example, the clamped

beam mode shape of equation (A8) can be rearranged as

sin k sinh k (1-x) sin k (1-x)
G m mx

sinh k sinh k sinh k
m)m m (3.24)

cosh k x sinh k x sin k xs m - m - n m m
Cos k x - sin k + Cos k +m m . -m-

,sinh km sinh k m tanh k
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In this form, none of the terms have values larger than 1 even for

very large k . With the mode shapes manipulated into forms
m

similar to equation (3.24) it is possible to obtain double precision

mode shape values accurate to four decimal places even for modes

as high as m = 30.

Typical numerical results for the wavenumber filter shapes

for these 5 boundary conditions and m = 5 are plotted in Figures 3.3

thru 3.7. These values were calculated using the numerical

techniques described in Section 3.3. Since IA (k)|2 = j (_-k3)|2m m

only the levels for k > 0 have been plotted. As can be seen from

these plots, all five cases exhibit major lobes at their

characteristic wavenumbers k . These major lobes are all nearly
m

identical with peak values of 10 log IA (k)l2 ranging from -3.0
m

to -3.4 dB and wavenumber bandwidths between nulls of approximately

4'n. In all five cases the wavenumber filter shapes also exhibit

a side lobe structure. However, when the boundary conditions

are not the same at each end, the nulls between the side lobes

are not as deep. The peak amplitudes of the side lobes decrease

with increasing separation of k from the characteristic non-

dimensional wavenumber k . However, the exact behavior of this sidem

lobe decay is different for each set of boundary conditions.

In Figure 3.8 the decay in the amplitudes of the side lobes

is compared for all five sets of boundary conditions. To simplify

this comparison only the envelope of the side lobe peaks has been
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plotted for each case. As can be seen from Figure 3.8, the high

wavenumber decay of the side lobes is greatest for the clamped-

clamped beam and least for the free-free beam. Although the

differences in the low wavenumber decay of the side lobes are

not as dramatic as the high wavenumber decay, it is interesting

to note that the trend is reversed. For example, at k = 0 the

fully clamped beam has the highest level of 10 log IA (k)| 2
m

of -12.7 dB, the simply-supported beam is slightly lower at

-14.9 dB, and the clamped-free beam is lower still at -18.7 dB.

Although the above comparisons have been made for a

particular mode (i.e.: m = 5), the same behavior is also

characteristic of the higher modes. In fact the high wavenumber

behavior can be described analytically using the techniques of

Section 3.2. From equation (3.15) it is apparent that for

k >> k the envelope of the side lobe peaks of |A (k) 1 2 for a
m m

clamped beam should be given by

A (k) 2  ~ 16 k/k, k >> k . (3.25)

Similarly obtained expressions for the other four sets of boundary

conditions are:

a) Free-Free Beam

A (k)1 2  ~ 16/k2 , k k(3.26)
m peak m
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b) Clamped-Free Beam

A (k) 2 4/k , > k (3.27)
m peak m

c) Simply-Supported Beam

A (k) 2  ~8k2/k, k >k (3.28)
m peak m m

d) Clamped-Simple Beams

IA(k) 2 ~ 2k 2 [1 + 2/2 k /k]/k", k >> k (3.29)
m peak m m m

For k > 4km, the asymptotic limits given by equation (3.25) to

(3.29) agree with the curves of Figure 3.8 to within 0.6 dB.

The numerically obtained wavenumber filter shapes thus agree

well with the analytic estimates of high wavenumber behavior.

They have again shown the importance of boundary conditions in

determining the behavior of A (k) 12 at high wavenumbers (k > k ).m m

In addition, the numerical results indicate that the major lobe

behavior of Am (k)12 is relatively independent of the boundarym

conditions. The primary effect of boundary conditions upon the

major lobe is to shift the characteristic wavenumber km about

which the major lobe is centered. It is also observed that the

low wavenumber behavior of Am k) |2 is moderately dependent upon
m

the boundary conditions.
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3.5 Summary

In this chapter several techniques have been examined for

determing the wavenumber filter shapes of idealized structures.

All techniques require that at least some aspects of the mode shape

be known. A closed form result for A (k) 2 is possible in somem

cases by direct integration of equation (3.3); however, such an

approach is often laborious, and numerical integration techniques

may be more helpful. When only the high wavenumber behavior

of A (k)12 is desired, a simple asymptotic analysis can be used.
m

All three techniques show excellent agreement.
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4. EXPERIMENTAL METHODS FOR WAVENUMBER FILTER SHAPE DETERMINATION

In the last chapter it was demonstrated that it is possible to

determine analytically or numerically the wavenumber filter shapes

of an idealized structure once the normal mode shapes are known. Now

this chapter will deal with the problem of experimentally determining

the non-dimensional wavenumber filter shapes IA(k) 2 of real structures.m

The basic approach remains that of first determining the normal mode

shape g m(x) and thennon-dimensionalizing to obtain G m(x). Finally

the non-dimensional mode shape is integrated to obtain the wavenumber

filter shape lA (k) 2 for the desired values of k.
m

4.1 Equipment and Procedures for Mode Shape Measurements

The Filon-Simpson technique for numerically determining the

wavenumber filter shape was discussed in Section 3.3. This method

requires that the mode shape G m(x) be known at an even number of

equally spaced points along the length of the structure. The

measurement of the sampled mode shape Gm (x), i = ',,2... ,N and

the subsequent transformation to obtain the wavenumber filter shape

IA (k) 2 is directly analagous to the more common time-domain processm

of sampling a temporal signal f(t) and subsequently transforming to

obtain the frequency spectrum F(0). As a result of the close analogy

it is possible to apply directly many of the results of modern digital

sampling theory to this problem.

In time domain sampling the Nyquist frequency is an important

parameter which is related to the sampling interval At by fN = 1/2At.

In the process of digitization, frequency components in the data
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which lie above fN are reflected about fN and hopelessly confounded

with the frequency components below fN [14]. To prevent this

phenomenon, called aliasing, from occuring it is desirable to choose

At sufficiently small so that it is physically unreasonable for data

to exist above the corresponding cutoff frequency f N. This usually

means selecting fN to be about 1.5 to 2 times the highest frequency

of interest.

To consider the analagous space domain situation we must apply

the following rules of correspondence:

Time Domain Space Domain

a) t, time + x, distance

b) T, period + X, wavelength

c) w, radian freq. + k, wavenumber

Proper consideration of these rules leads to the analagous Nyquist

wavenumber kN defined by

kX = TF/Ax, (4.1)
kN

where Ax is the sampling interval. If there are N equally spaced

intervals in the total length L of the structure, then Ax = L/N and

the nondimensional Nyquist wavenumber kN = kNL is given by

kN = ITN. (4.2)

For best results N should be chosen so that kN is about twice the

maximum wavenumber of interest. Thus, for a fixed number of sample

intervals N, the desired range of wavenumber analysis would extend

as high as k = NT/2. The Filon-Simpson technique discussed in

Section 3.3 is compatible with this requirement since it retains

accuracy as high as k ~ 3N.
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The experimental setup used in the measurement of structural

mode shapes is diagrammed in Figure 4.1. The traversing mechanism

is a lathe bed with a screw-driven platform. The lead screw allows

positioning of the platform over an 11.5 inch range in increments

of 0.001 inch. The traversing range was extended to 22.5 inches by

attaching a two-position mounting fixture to the platform. This

fixture accurately located two transducer mounting positions with an

11.000 + .001 inch separation. Figure 4.2 shows the positioning of

sensors for measuring a membrane mode shape. Only the longitudinal

mode shapes were measured, and the traverse was aligned so that the

mode shape was measured along the longitudinal centerline of the

structure.

The value of the mode shape g (x.) at a given point x. on the

structure is determined from the ratio of the RMS response at x.

to the RMS response at a fixed point on the structure. Since only

odd modes were measured, the fixed sensor was positioned at the

center of the structure. Both transducers were non-contacting

optical displacement sensors manufactured by Mechanical Technology

Inc. The model KD-45A Fotonic Sensor was used for the fixed sensor

because it has superior set point stability. The model KD-38

Fotonic Sensor was used as the traversing sensor. Both units were

used with standard .109 inch diameter probes. As shown in Figure 4.1,

the two displacement signals are amplified with Ithaco low-noise

preamplifiers and bandpass filtered before being digitized and
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processed by an Interdata Digital Computer. The bandpass cutoff

frequencies were set one octave above and below the excitation

frequency in order to reduce the influence of extraneous acoustic

excitation (room background noise, etc.) on the measurement. The

computer was used to calculate the RMS signal level of each channel

over a 0.5 second interval and then to compute the ratio. At the

end of the test the data was punched on a paper tape to facilitate

further processing.

As indicated in Figure 4.1, the structures were acoustically

excited at a constant frequency. This level of excitation was

regulated to maintain a constant RMS displacement amplitude at the

fixed sensor. The exact nature of the excitation plays a critical

part in determining the quality of the measured mode shape. It is

important to maximize the response of the mode to be measured while

minimizing the response of all other modes. The first step in this

process is to drive the system at the resonant frequency of the

mode under consideration. The second step is to insure that the

excitation is spatially matched with the desired mode and less

well matched with the other modes.

Some initial mode shape measurements yielded poor results

because the structure was driven with essentially plane wave

excitation from a speaker suspended above the structure. This

plane wave excitation was much better coupled to the (1,1) mode

of the structure than to the (9,1) mode which was being measured.
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Thus, even though the (1,1) mode was non-resonant, its response

level was high enough to distort the measured mode shape. In all

later tests the structures were driven with the small area acoustic

drive shown in Figure 4.3. The drive opening was placed within

1/2 inch of the surface of the structure at a location corresponding

to an antinode of the desired mode (Figure 4.3). With this

arrangement certain other modes will also be spatially well

coupled to the excitation, but no other mode will be better coupled

than the desired mode.

Once the equipment was set up and all adjustments were made,

the actual data acquisition time was approximately 3 to 4 hours

for a 200 point mode shape. During the length of the test it was

often necessary to readjust slightly the excitation frequency in

order to keep the resonant response at its maximum possible level.

This was especially important for the plate mode shapes since the

resonance peaks were very narrow.

4.2 Membrane and Plate Construction

The membrane and plate structures that are described here

have been designed for the purpose of measuring the low wavenumber

components of turbulent boundary layer wall pressure spectra. Two

of the prime design requirements for this application are separation

of resonant modes and attenuation of the convective wall pressure

fluctuations. The combination of these two requirements naturally

suggests a long narrow structure. The length of the structure in
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the streamwise direction is an important factor in reducing the

response to convective excitation, and the large aspect ratio increases

the modal separation of the lower order modes.

The standard rectangular membrane was previously constructed by

another investigator from a 28 inch diameter mylar bass drum head which

was uniformly tensioned on a special bass drum frame. The uniformity

of tension was checked by exciting the circular membrane acoustically

with pure tones at its resonant frequencies. The Chladni patterns were

then observed by using a light dusting of fine sand to identify nodes.

The tension was considered sufficiently uniform when the experimental

Chladni patterns approximated the symmetrical patterns predicted by

theory. Once this state of tension was achieved, a 3/4 inch thick

plywood backing plate was cemented to the lower surface of the membrane.

This backing plate contained a rectangular shaped cut-out which was

lined with plexiglas (Figure 4.4). The plexiglas edges were used to

insure a sharply defined boundary for the resulting rectangular

membrane. The result of these preparations was a rectangular membrane

with the following physical characteristics:

a. Surface dimensions: L = 0.553 m, L3 = 0.051 m

b. Thickness: 2.16 x 10 4 m

c. Surface Density: 0.292 k /m2

The standard membrane was later modified in an attempt to

reduce its response to convective (i.e.: high wavenumber) turbulent

boundary layer excitation. The modification was quite simple,
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requiring only the addition of plasticene fillets along the two

short edges of the membrane (Figure 4.4). These fillets were of

0.5 inch radius and were intended to reduce the slope of the mode

shape near the upstream and downstream boundaries of the membrane.

The high wavenumber analysis presented in Section 2.2 indicates that

such modifications should reduce the levels of IA m) 12 for

k >> k . In Figure 4.5 experimental data is compared for the mode
m

shapes near the boundaries for the standard and modified membranes.

This data indicates that the modified membrane has a significant

reduction in the slope of the mode shape near the boundaries. The

presence of the plasticene also resulted in a slight increase in

damping for the modes of the modified membrane.

The basic designs of the two plate structures are shown in

Figure 4.6. The rectangular boundaries of each of the plates was

defined by a heavy steel frame. Since both plate designs required

clamped boundary conditions on at least two sides, the frame design

was chosen to provide a heavy, rigid support upon which the plates

could be mounted. The frames were constructed from 3/4" thick by

3" wide steel members which were machined to the required lengths

and bolted together (Figure 4.6). The total weight of each frame

was about 30 lbs., and the ratio of frame mass to plate mass was

nearly 200:1.

The plates were made from .034" thick aluminum sheet stock.

One plate design called for clamped edges on all four sides. This
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was achieved by epoxying the aluminum plate directly to the heavy frame

with a rigid formulation of Eccobond 45 epoxy. The second design

(designated the S-C-S-C plate) called for clamped boundary conditions

along the two long sides of the plate and simply-supported conditions

at the other two sides. To approximate simple supports, two vee-shaped

notches were milled into the plate as shown in Figure 4.6. The

depth of each notch was about .024" so that the ratio R of notch

depth to plate thickness was .7. The selection of R = .7 to

approximate simple supports was based on the experimental results

of Hoppmann and Greenspon [11, 15]. Their investigation of elastic

edge restraints included measurements of the effect of the notch

ratio R on the fundamental frequency of a square plate. This data

indicates that for R > .7 the fundamental frequency is within 5% of

thevalue for simple supports.

In order to achieve the clamped boundary conditions on the

other two sides, the notched plate was epoxied to its frame in

the same manner as the clamped plate. The effectiveness of the

notches in approximating simple supports is demonstrated in

Figure 4.7. This figure compares the experimentally determined

behavior of the plate mode shapes near the boundaries for the (9,1)

modes of both plates. Another indication of the effectiveness of

the boundary conditions is given by the location of the resonances.

For both plates the measured resonance frequencies of the (5,1)

modes were only about 10% lower than calculated values based on



-56-

data for ideal boundary conditions given by Leissa [11]. The slight

reduction in frequencies is most likely due to the difficulty in

achieving a true clamped boundary condition along the lateral sides.

Except for the stated differences in boundary conditions, the plates

had identical physical characteristics:

a) Surface Dimensions: L1 = .508 m, L= .0762 m

b) Thickness: 8.64 x 10~4 m

c) Surface Density: 2.37 k /m
g

4.3 Measured Mode Shapes of Membranes and Plates

Mode shape measurements were made on selected modes of all

four of the structures described in the previous section. Both

the membranes and the plates had sufficiently high aspect ratios

to insure that a large number of low order modes were well separated

in frequency. The modes of interest are the 1st order lateral

modes which have odd mode numbers for the longitudinal direction

(i.e.: the 5,1 mode, 7,1 mode, etc.). It is the longitudinal

mode shape which is critically important to the low-wavenumber

measurement program; thus, only the longitudinal mode shapes of

the structures have been measured.

The membrane mode shapes that were measured are shown in

Figures 4.8 to 4.10. The important characteristics of these measured

mode shapes are listed in Table 4.1. For ease of plotting, all

mode shape plots have been scaled so that their maximum absolute
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values are 1.0. The mode shape of the 11,1 mode of the standard

membrane is shown in Figure 4.8. The small scale spatial

fluctuations which are evident in this mode shape are due

primarily to the response of higher order non-resonant modes.

Repeated measurements at selected points of the mode shape indicate

that the mode shape measurement is repeatable to within 1%, while

many of the mode shape variations of Figure 4.8 range from 5 to 8%.

Thus the observed variations cannot be due merely to experimental

variability. Another indication of the presence of other modes

in the measured response is the relatively high response levels

(10 to 20%) at what should be the nodes of the 11,1 mode being

measured.

The reason for this noticeable presence of other modes is the

moderate level of damping (-n = .01) characteristic of this (11,1)

mode. This can be seen by considering the relative response of

two modes of a structure when excited at the resonant frequency

oL f the lower order mode. The modal displacement response is

given by equation (2.13). If we limit consideration to modes

which are equally well coupled to the excitation, then the modal

pressure P mn(W) is the same for each of the two modes. For purposes

of comparison, the displacement response wR of the resonant mode

is given by

w a
R 2~~

anL
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while the response wH of the higher order mode is stiffness controlled

so that

H 2 -

H L

where wL and wH are the resonant frequencies of the resonant mode

and higher order mode, respectively. The relative response is

-HI L (4.3)

wR HL2 _

Equation (4.3) shows that the relative influence of a higher

order non-resonant mode on the total response depends directly upon

the damping factor of the resonant mode. This means that the degree

of contamination of the measured mode shapes by non-resonant modes

increases as the damping increases. This can be observed qualitatively

from the mode shape data by comparing the (9,1) mode of the

modified membrane (Figure 4.9) to the (9,1) mode of the clamped

plate (Figure 4.11). The (9,1) mode of the modified membrane has

the damping factor n = .012, and the mode shape exhibits the small

scale variations typical of non-resonant contributions. On the other

hand, the (9,1) mode of the clamped plate has a significantly smaller

damping factor of 'n = .0031, and its mode shape is virtually free

of small scale variations.

The proceeding comparison is typical of the measured mode

shape data in general. The membranes had higher damping (Table 4.1),
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and thus the measured mode shapes exhibited non-resonant

contributions and poorly defined nodes. The plates (Figure 4.11 to

4.14) had much less damping, and their mode shapes exhibited well

defined nodes and much less small scale spatial variation.

The measured modes as plotted in Figures 4.8 to 4.14

have not yet been properly normalized for purposes of wavenumber

filter shape calculation. These measured mode shapes have been

presented in a non-dimensional form and scaled in magnitude so

that their maximum absolute values are all unity. However, the

accurate calculation of IA (k) 2 for these measured mode shapesm

requires that the mode shapes be normalized according to

equation (2.28). The appropriate normalizing constant Cm for

each mode shape was determined by integrating equation (2.28)

numerically for each set of data. These values are listed in

Table 4.1.

4.4 Wavenumber Filter Shapes from Measured Mode Shapes

After being properly normalized as discussed above, the

measured mode shapes of Figure 4.8 to 4.14 can be transformed

numerically as discussed in Section 3.3 to obtain the wavenumber

filter shapes IA (k) 12 of the measured modes. These measured
m

filter shapes can then be compared with theoretical predictions

for idealized structures. The results of these comparisons will

be used to predict the behavior of the remaining modes which

were not measured.
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Figures 4.15 through 4.21 show the wavenumber filter shapes

calculated from the measured mode shapes. In these figures

the calculated levels of 10 log IA (k)12 have been plotted for
m

k > 0. As expected, the plots are characterized by a major lobe

which peaks near the characteristic wavenumber k of the mode
m

and a series of side lobes at higher and lower wavenumbers. It

will be helpful to compare these measured wavenumber filter shapes

to those for the corresponding idealized structures. Both the

standard membrane and the S-C-S-C plate filter shapes will be

compared to A m(k)|2 for sinusoidal mode shapes as given by

equation (3.7). Also the filter shape for the clamped plate will

be compared to the clamped beam filter shape of equation (3.9).

Although the modified membrane has no corresponding idealized

structures, its wavenumber filtering characteristics can reasonably

be expected to lie between those of the sinusoidal and clamped

beam mode shapes.

The major lobe characteristics of the measured wavenumber

filter shapes are nearly identical with those of their idealized

counterparts. The peak levels and bandwidths of these major lobes

are listed in Table 4.2. The peak levels of the measured filter

shapes agree with the corresponding ideal filter shapes to within

0.2 dB, and the equivalent bandwidths agree to within a Ak of 0.08.

The major lobe characteristics of the modified membrane seem to more

closely follow the clamped beam characteristics than the sinusoidal

mode shape characteristics.
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The high wavenumber behavior of the measured wavenumber

filter shapes requires a careful interpretation. For example,

|A (k).| for the (9,1) mode of the clamped plate as shown in
m

Figure 4.18. At wavenumbers just above the major lobe, this

wavenumber filter shape exhibits the expected pattern of side

lobes. The peak amplitudes of these side lobes decrease in

amplitude as k increases. Superimposed on the measured filter

shape is the envelope of side lobe peaks for an ideal (9,1) mode

of a clamped beam (Figure 4.18). The measured filter shape shows

excellent agreement with the clamped beam model for wavenumbers

up to k ~ 135. At higher wavenumbers the side lobe structure

changes, and the peak side lobe levels fluctuate randomly about

the -60 dB level.

The behavior of IA (k)|2 in this high wavenumber region
m

is of crucial importance to later estimates of response to convective

turbulent boundary layer excitation. Thus it is essential to

determine whether this observed high wavenumber behavior is truly

characteristic of the measured mode shape or is merely an

artifact due to other experimental factors. Detailed examinations

of the experimental mode shapes near the boundaries (Figures 4.5

and 4.6) show reasonable agreement with theoretical behavior.

For uniform structures this implies that the high wavenumber

behavior of the measured jA (k)12 should also agree with theoretical
m

predictions. To investigate the effects of structuralnon-uniformities
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on the behavior of A (C) 12, a W. K. B. technique was used to

determine the mode shapes of a string with non-uniform density.

It was observed from this analysis that the behavior of the

wavenumber filter shape was not significantly altered unless the

degree of nonuniformity was made quite large. While this does

not represent an exhaustive study of possible structural variations,

it does imply that small structural non-uniformities are not likely

to be important in determining the behavior of FA (k)j2. Since
m

none of the structures in this investigation exhibited any

significant non-uniformities, it is highly likely that the observed

high wavenumber behavior is, in reality, an artifact due to

experimental causes.

In Section 4.3 the effects of non-resonant modes upon the

measured mode shape were shown to be dependent on the damping of

the mode being measured. Since the non-resonant effects upon the

mode shape are a factor of 'n smaller than the resonant mode

response, we should expect that non-resonant effects upon the

resulting [Am (k) [2 are a factor of n 2 smaller than the major lobe

levels characteristic of the desired resonant mode. This implies

that at levels of 10 log IA (k) 2 which are 20 log n down from
m

the major lobe peak, it is possible that non-resonant effects are

influencing the behavior of the wavenumber filter shape.
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In each of the plots of the measured wavenumber filter shapes

(Figures 4.15 to 4.21), the level corresponding to 20 log rL

below the major lobe peak has been marked with an arrow. In each

case this level corresponds reasonably well withthe level at which

the side lobe structure begins to deteriorate. Thus the rather

odd behavior of the measured filter shapes at high wavenumbers

does not represent the true mode shape but is instead an artifact

due to the contamination of the measured mode shape by non-resonant

modes. The presence of this non-resonant effect represents an

experimental limitation on the use of measured mode shapes for

determining the high wavenumber behavior of IA (k) 1 for the
m

modes of real structures. However, in future experiments it may

be possible to decrease the importance of this limitation by

developing excitation techniques which are designed to spatially

match the desired mode only.

Another potentially limiting effect is the inherent

variance of the mode shape measurement. These random

experimental variations can be appropriately modeled as a random

spatial component of the mode shape. When the mode shape with its

random component is transformed to obtain the wavenumber filter

shape, this random component should yield a relatively flat "noise

floor" distributed over a wide wavenumber range. However, as

a result of the aliasing phenomenon discussed in Section 4.1, the
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random component is, in effect, distributed only over the wavenumber

range between the Nyquist wavenumbers kN = + 7N, where N is the

number of sample intervals. For the four plate experiments

the magnitude of this random component was determined by making

repeated measurements at selected points on the mode shape. In this

way the RMS amplitude of the random component was found to be less

than 1% of the amplitude of the mode shape. This implies a

maximum noise floor for 10 log IA (k)l2 of -71 dB. In both the

plate and membrane experiments, such limitations posed by the

experimental variance have proven to be less restrictive than

the previously discussed limitations due to non-resonant response.

Now that the measurement limitations have been defined,

it is possible to assess more reliably the side lobe behavior of

the measured wavenumber filter shapes. Consider first of all

the clamped plate filter shapes of Figures 4.18 and 4.19. In

Figure 4.18 the side lobe peak levels of the measured fA (k)I2m

for the (9,1) mode differ from the ideal clamped beam result by

no more than 1.5 dB until the non-resonant response region is

reached. For the (15,1) mode result of Figure 4.19 the measured

Am (JK) 2 is nearly identical with the clamped beam result for the

side lobes below the major lobe. For the high wavenumber side

lobes the difference between measured and idealized levels

increases somewhat at higher wavenumbers but the average trend of
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side lobe levels remains consistent until the level of non-resonant

response is reached. This excellent agreement leaves little

doubt that it is appropriate to approximate the spatial filtering

characteristics of this clamped plate by using clamped beam mode

shapes.

The measured wavenumber filter shapes for the S-C-S-C plate

are shown in Figures 4.20 and 4.21. The side lobe levels of

A (k) 2 for the (9,1) mode (Figure 4.20) lie about 2 dB above the
m

sinusoidal mode shape model for the lower side lobes and about 2 dB

below the sinusoidal result for the higher wavenumber side lobes.

In both side lobe regions the average trend of the side lobe levels

with changing k matches the sinusoidal model quite well. For

the (15,1) mode of Figure 4.21 the agreement between the

measured levels of A (k) 12 and the result for the sinusoidalm

model is even better than for the (9,1) mode. It would thus

appear that the machining techniques previously described have

adequately approximated simply-supported boundary conditions along

the two short edges of the plate, and the wavenumber filter shapes

given by equation (3.7) can be used to approximate the actual

spatial filtering characteristics of the S-C-S-C plate.

The wavenumber filter shapes for the two membrane structures

are shown in Figures 4.15 to 4.17. Unfortunately, the higher

membrane damping causes the region of non-resonant contamination
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to occur at higher levels than in the plate data. This means that

there are fewer uncontaminated side lobes available for comparison

to the idealized model. This is especially unfortunate for the

case of the modified membrane since its modifications were designed

to reduce the side lobe levels at high wavenumbers. The levels

of A (k) 2 for both membranes are compared to the wavenumber
m

filter shapes due to sinusoidal mode shapes. The side lobe levels

for the standard membrane (Figure 4.15) are reasonably well matched

with the sinusoidal result out to k ~ 125. Similarly, both of the

modified membrane filter shapes (Figure 4.16 and 4.17) have side

lobe levels which lie within about 2 dB of the sinusoidal mode

shape model until the non-resonant response region is reached.

It is not possible to determine from this data whether or not the

high wavenumber behavior of the modified membrane lies significantly

below the levels of the sinusoidal model. For later purposes of

estimating the structural response due to convective turbulent

boundary layer excitation, it is probably more advisable to

model both membrane configurations as having sinusoidal mode shapes.

The preceeding discussion of the measured wavenumber filter

shapes has led to the general conclusion that it is appropriate

to approximate the actual wavenumber filter shapes of these structures

by their corresponding idealized models. The justification for

this conclusion is based on the observed agreement between the

measured and theoretical behavior of I()12 in Figures 4.15
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through 4.21. Although the effects of non-resonant response have

made it impossible to determine the true behavior of the measured

wavenumber filter shapes at the highest wavenumbers, the

excellent agreement between the measured and theoretical behavior

of m(I)2 at lower wavenumbers strongly suggests that the high

wavenumber behavior would also agree with theoretical predictions.

In this investigation the interest in the high wavenumber

behavior of jA k) 2 resulted from the need to make accurate
m

estimates of structural response to convective wall pressure

fluctuations (Section 7.2). Such estimates require an accurate

model of jA (k)|2 near convective wavenumbers k = wL 1/U .m c lc

Typical values of k have been marked on the measured
c

wavenumber filter shape plots for the plates (Figures 4.18 through

4.21). For the two modes of the S-C-S-C plate, the measured

wavenumber filter shapes are well defined even at the convective

wavenumber. For the clamped plate modes, non-resonant effects

obscure the actual behavior of IA (k)12 near k ; however, them c

general trend of the data still suggests that a removal of non-

resonant effects would reval good agreement between theoretical

and measured wavenumber filter shapes near the convective wavenumber.

These observations provide further support for the conclusions

that the analytical models of Im (kg) 2 adequately representm

the spatial filtering characteristics of the structures that were

tested. Thus, it should be possible to use the appropriate analytical

nodels for I m(k)12 with confidence to estimate structural response.
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5. THE APPLICATION OF SPATIAL FILTERING TO TURBULENT

BOUNDARY LAYER WALL PRESSURE MEASUREMENTS

The analytical results of Chapter 2 have shown that the resonant

response of a structure excited by a random pressure field depends upon

both its frequency and spatial filtering behavior. Chapters 3 and 4 have

discussed in some detail the spatial filtering characteristics of real

and idealized structures. The present discussion will deal with the

application of these spatial filtering concepts to a specific experi-

mental situation, the measurement of the low wavenumber components of

turbulent boundary layer wall pressure fluctuations.

5.1 The Experimental Sources of Excitation

The objective of this phase of the experimental program is to

determine the spectrum levels of the low wavenumber components of wall

pressure fluctuations beneath a plane turbulent boundary layer. To

clarify what is meant by low wavenumber components it is helpful to

consider the distribution of wall pressure in both frequency and wave-

number. The wavenumber-frequency spectrum of wall pressure D@ (k ,k 3W)

was introduced in equation (2.16) as a Fourier transform of the cross

spectral density @ (r,r 3,w). The overall behavior of p (k ,k ,) is

governed primarily by the convection and decay of eddies in the boundary

layer. The convection process leads to high values of p(k ,k 3')

along a convective ridge defined by

k =W/ U (W),(51
c c

where U (M) is the convection velocity characteristic of the frequency
c
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being considered.

Figure 5.1 illustrates the wavenumber-frequency location of the

pressure fluctuations which are important to the low wavenumber measure-

ments. The frequency and wavenumber scales in Figure 5.1 have been non-

dimensionalized on the outer boundary-layer variables of displacement

thickness 6* and free stream velocity Um so that

o* = Wd*/U and k* = k 6* (5.2)
1 1

The three excitations of interest for this study are acoustic, low-wave-

number and convective pressure fluctuations. For most marine applica-

tions the sound speed co is much larger than the free stream velocity

U, so that the acoustic region is well separated from the convective

region (Figure 5.1). The low-wavenumber region of interest lies in a

wavenumber range (Figure 5.1) which is well below the convective region

(k U o/U but above the acoustic region. Resonant modes lying in this
1 Ii c

region can be described as having naturalfrequencies which lie above

hydrodynamic coincidence (o = kmc) but below acoustic coincidence

(o = k mcO).

The measured structural response at a given frequency o will be

the result of all three components of excitation, acoustic, convective

and low wavenumber. Since the goal is to measure the low wavenumber

components the spatial filtering characteristics of the structure must

be designed to discriminate against both the acoustic and convective

excitations. For the wavenumber filter shapes described in Chapter 4,

this discrimination is achieved when the characteristic frequencies o__
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and streamwise wavenumbers k of the structural modes lie in the desired
m

low wavenumber region. For example, the locations (w*,k*) of several
m m

modes of the S-C-S-C plate are indicated in Figure 5.1.

It is a reasonable physical assumption to model the total wave-

number-frequency wall pressure spectrum of the experimental situation as

a sum of statistically independent convective, acoustic and low wave-

number components. Thus,

@ (K,w) = 4 (K,w) .+ @ (JK,w) + @ (K,w) . (5.3)
p p acoustic p conv. p low k

Equation (5.3) can be used with equation (2.22) to obtain the total

structural response as a sum of convective, acoustic and low wavenumber

responses. To insure that the measured response is dominated by the low

wavenumber contribution, it is important to estimate the magnitude of

response due to acoustic and convective excitation. If the measured

response exceeds the predicted contaminating levels by a sufficient

amount, it is appropriate to use the measured data to determine the

actual magnitude of 4 (K,w) . The next three sections will develop
p low k

the necessary analytical relations between the excitation and response

for each type of excitation.

5.2 Structural Response to Low Wavenumber Excitation

In Chapter 2 the resonant response of a rectangular structure was

related to the wavenumber-frequency spectrum of the pressure excitation

by equation (2.22). Using equations (2.23) and (2.27), the relationship

becomes
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f2 (x,0z)
S n(x, z, W ) = A (k) 2 A (k ) |2 @ (k ,k ,w ) dk dk .
Sx mnw 2 JJ m I "n'3' p 1 3 nn 1 3

(5.4)

This equation forms the basis for evaluating the acoustic and convective

response as well as the low wavenumber response.

If the excitation I (K,W) is reasonably constant in the low wave-
p

number region, the integral of equation (5.4) will be dominated by con-

tributions from the major lobes of the wavenumber filter shapes,

A (k 1)
2 and A (k3 )1

2 . For the plates and membranes used in the low

wavenumber experiments, the modes of interest are the 1st order lateral

modes with odd longitudinal mode numbers (i.e.: the (7,1) mode, (11,1)

mode, etc.). Thus the lateral filter shape JAn (k3 )I2 is always evaluated

for n=l and has its major lobe centered about k =0. The major lobes of

the longitudinal mode shapes JA m(k1) 12 are located at the characteristic

wavenumbers k . For the structures used, the wavenumber bandwidths

are sufficiently narrow to allow the filter shapes to be approximated

by Dirac delta functions at k = k . Since JA f(k) 2dk = 2-r, the

approximations are

An (k3)12 = 27T6(k 3

(
A (k 1)12 = 7[6 (k -k ) + 6(k +k )]

The substitution of equations (5.5) into equation (5.4) yields
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272 2 (x, z)
Sw(x,z,o ) = 2 [ (k .O,w ) + ( (-k ,0,O )]. (5.6)

2 2 p m Iff p m mn
mn

For the plate experiments, it is the acceleration response which is

measured. Since S (x,z,w ) = w S (x,z,) ), the acceleration spectral
a mn mn w m

density at resonance is given by

22 (x,z)
S (x,z,w ) = I[G (k ,w ) + c (-k ,0,W )]. (5.7)
a mnn 2 p m inn p m in

mn

Equations (5.6) and (5.7) provide the basis for the experimental

measurements of c (K,w) in the low wavenumber region. Once the struc-
p

ture has been calibrated by determining its physical parameters and

resonance characteristics, it is possible to determine the level of the

excitation @ (K,w) from displacement or acceleration measurements. As

the equations indicate, there is no way to separate the component of

excitation at k = k from that at k = -k . Although it is probable

on physical grounds that 4 (-k ,O,W) << @ (k1 ,0,W) for k 1c* sufficiently

large, both will be retained by defining

P(k1 ,,OW) E @ (k1 ,0,w) + @ (-k ,0,W). (5.8)

In all experiments the response was measured at the center of the

structure. From analytic mode shapes it was found that for the odd

modes of a membrane

2 LyL3) 4 (5.9)

mnk2 2 L L3
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while for the (n=l, m odd) modes of the clamped and S-C-S-C plates

22 L 1 L3 )j5.044(51)
Mn 12 2 L 1L 3 '5 0

For the membrane experiment equations (5.6), (5.8), and (5.9) are com-

bined to determine the low wavenumber spectrum P(k ,0,W) from the

measured displacement spectra by

L L L L

P(k ,0,W ) = 1 3 C 2 2 1 , 3 , (5.11)
m mn 87 2  M 2 2 mn

Similarly, equations (5.7), (5.8) and (5.10) relate P(k ,0,O") to

measured plate acceleration spectra by

L L L L

P(k ,O,w ) - 1 3 ( 21, --S ) . (5.12)

m m 10.0972 mn a 2 2 m

5.3 Structural Response to Acoustic Excitation

The goal of this analysis is to provide a conservative (i.e.:

high) estimate of the structural response to pressure excitations in the

acoustic region (Figure 5.1). Available acoustic data will be in terms

of an acoustic frequency spectrum 5A (A) describing the acoustic back-

ground levels in the experimental facility. In order to use this infor-

mation, an appropriate model for the acoustic wavenumber-frequency

spectrum (A (kl,k 3W) must be developed for use in equation (5.4).

For the experimental situation, the test structure is influenced

by acoustic waves propagating in the wind tunnel ducting (Figure 5.3).

It is the trace wavenumber k of these acoustic waves onto the plane of
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the structure which determines the spatial matching between the sound

wave and the structure. As illustrated in Figure 5.3, the largest pos-

sible value of k is realized by a plane acoustic wave travelling at

grazing incidence to the structure. In reality, several acoustic waves

may be propagating in various directions sothat the acoustic energy

represented by G (A) is distributed between k =0 (normal incidence) and

k = W- (grazing incidence). The resonant modes of interest for both
T co

the membranes and plates are acoustically slow (k > ), and therefore
m cO

the acoustic levels contribute to the response via the lower side lobes

of A (k)I2. Since the exact details of this wavenumber distribution

are not known, the model of A(k 1,k ,W) will be chosen to maximize the

acoustic response estimate for the n=l structural modes. The appropri-

ate model is simply the plane wave at grazing incidence so that

@ (k ,k ,W) = M () 6(k ) 6(k - ) , (5.13)
A 1 3 A 3 1 co

where the model has been scaled so that

SD A(k ,k3 ,)dk dk3 = A() (5.14)

The substitution of equation (5.13) into equation (5.4) yields

f2 (x,z)
S (xz,w ) = mn M ()A (0) 21A ( - )12. (5.15)
w ' mn acoustic (oTnw 2 ) 2  A n m C0

mn

Since n=1 for all modes of interest, JAn(0) 12 is at its maximum

level which for the membrane is
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1A1(0)12  8L3  (5.16)
Tr

while for the plates

2.
JA 1 (O) .692 L , (5.17)

due to the clamped boundary condition in the lateral direction. It is

also possible to evaluate the longitudinal filter shape at . However,

since the acoustic energy represented by D (o) is, in reality, distribu-

ted over a range of wavenumbers, it is more reasonable to use an average

value of A (k) J2 in the vicinity of k = 1 . For the membranes and
m 1 A co

the S-C-S-C plate, this local average is easily approximated from

equation (3.7) as

4k2L

A (k) 12= LJ1A (k) 12 =2(5.1
m avg. m avg. 2 -2 2

For the clamped plate, the average value of the longitudinal filter

shape is most readily obtained from the clamped beam representation of

equation (3.16) as

8)

8L k 2

IA(k1)l2a = L A (ki) 2 1 m 2+k ). (5.19)
m 1 avg. 1m 1avg. (1 k' _k4 m 1

m -m 1--

Recalling that the experimental situation deals with measurements
L L3

of the (n=l, m odd)modes at the point (x = , z = -), the final

estimates of acoustic response can be derived using equations (5.9),

(5.10) and (5.15) through (5.19). The results are as follows:

(A) Membrane Displacement Response,

S L P Q (W
1 3 , m A mn (5.20)

S ( o ) .= 13.02 2
w 2 2 mn acoustic 2 - 2 2 2

m A) mn

with km = m and k A =mn L/c.
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(B) S-C-S-C Plate Acceleration Response,

L L D ( )
l( 3 m A mn

S ( -- , -- , ) . = 14.0 , (5.21)
a 2 2 Fmn acoustic k2 )2 2 n 2

m A mn

with k mr and kA L/co -
m A inn

(C) Clamped Plate Acceleration Response,

L L k2+ k2 2W
l 3 m29 A m A mn (5.22)

Sw , , ) .= 27.9
a 2 2 mn acoustic 1 _ - k _ k 4 a 2

m Lm A I mn

with km (m + 1/2)7T and kA mnL /cO.

These results can be used to obtain useful estimates of the por-

tion of the structural response which is due to acoustic background

levels in the test facility. The predictions of response for the actual

tests are discussed in Section 7.1.

5.4 Structural Response to Convective Excitation

In order to make a similar estimate of the structural response to

the convective portion of the turbulent boundary layer wall pressure

excitations, it is necessary to have an appropriate model of the con-

vective wavenumber-frequency spectrum Oc (k ,k 3,o). One such model is

described in Appendix B. It is obtained by using the Corcos similarity

form [16] for the cross-spectral density @ (r,r 3,w). By using expo-

nential fits to measured data, it is possible to transform analytically

the model of D (r ,r ,w) to obtain the form of c (k ,k ,) given by
p 1 3 c 1 3

equation (B5) . This model is considered quite accurate at wavenumbers
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near the convective ridge (k R --- ). However, for reasons to be dis-
1 UcC

cussed in Section 7.4, this model overestimates the actual magnitude of

oc (k ,k 3w) in the low wavenumber region. As a result, estimates of

convective response based on this model would be unreasonably high.

However, the model of equation (B5) is quite useful as a guide in

determining both the maximum amplitude and wavenumber bandwidth of the

new model for @c (k k 3W)

The most important characteristic of the new model must be its

variation in k . Wills (18] observed that the k variation of his

wavenumber-frequency spectrum was reasonably approximated by a normal

distribution of the form

o 2
F(w/k 1U c exp[-( k - 1) 2/0.04]

l c

A similar variation with k1 will be assumed for the new model of

@ (k 1 ,k 3 1w). The exact details of the k variation are less important,

and the k3 variation will be modeled simply as a constant value over a

limited k3 bandwidth which is centered on k =0.

The transform result of equation (B5) indicates that D (k ,k ,o)
c 1 3

should have its maximum value at k =0 and k - . This maximum
3 1 U c

value is given by

( , 0, o) = .728 ( )VUco] (5.23)
c ro J

If one continues to use equation (B5) as a guide in determining the k3

bandwidth and normalizes the model so that

P(W) = Dc (klk3 ) dk1dk3 (5.24)
p Jjc 1 31w dkdk3
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then the following model is obtained:

A) For jk < Ak =
31 - 3= UC

UcU k1Uc 2
4 (K,w) = .728 M ( exp [-23.7( -1) (5.25)
c p 2

B) For Ik I > Ak =6TT
3 3 U00

(K,&) = 0
c-

Figure (5.2) illustrates both the k and k3 variations of this model.

Note that the amplitude of < (K,) has virtually vanished before the low

wavenumber region is reached.

To obtain an estimate of structural response, equation (5.25)

is substituted into equation (5.4) to yield

2
Uf U f (x,z)-

S (x,z , = .728 @ (w)--- I I0 ,z (5.26)
w mn conv. p mn mn GTn2 mn 3

k U
where I= JA (k )1 exp [-23.7( 1 C _)2]dk , (5.27)

1_ m 1 W
Ak

3

and 13 fAn(k3 2dk3

-Ak3

In the experimental program, the observed resonant modes were

those for which n=l, and Aj(k3) 12 is centered about k3 =0 (i.e.: see

Figure 3.1). Consideration of the experimental parameters (w, U and k3

also reveals that the region of integration indicated for I3 includes at

least the major lobe and the first side lobes of 1A1 (k3) 12 . This
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permits the approximation

I3 JTl(k3 '2 dk3 =2r

which is valid for all the data obtained in this study.

The evaluation of I according to equation (5.27) can be simpli-

fied by using the asymptotic analysis discussed in Sections 2.2 and 3.2.

According to this analysis the high wavenumber behavior of A m(k)12 is

governed by the first non-zero derivative of the mode shape at the

boundaries. It is valid to use such high wavenumber results since the

characteristic wavenumbers k of the actual modes lie well below the
m

corresponding convective wavenumbers kc = . As a result, the major
Uc

contributions to I occur in the wavenumber region (k > 3k m) where the

asymptotic analysis is quite accurate.

As was discussed in Section 4.4, the measured mode shapes

indicate that the streamwise wavenumber filter shapes Am(k1 )12 of the

actual membrane and plate structures are reasonably approximated by

ideal beam mode shapes. It is therefore appropriate to use the avail-

able analytic results for ideal clamped and simply supported beams to

evaluate I.

Equation (3.15) gives the high wavenumber approximation for the

non-dimensional wavenumber filter shapes lAm(k 1 2 of a clamped beam.

Since the exponential term in I varies slowly compared to the

(1 ± cos k L1) variation in A m(k) 12, it is possible to approximate

the (1 ± cos k L ) term by its average value of unity. Thus for pur-

poses of integration the following approximation will be used for the
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clamped plate case:

_k48k
A (k )2 m.(5.28)
m l g

For the S-C-S-C plate and the membranes, a sinusoidal mode shape result

is similarly used to yield

4k

IA (k )12  M (5.29)
m -4k

Consideration of the exponential term in I indicates that it

should be sufficient to integrate only over the range for which

kUc
1---1 < 0.58. To perform the integration it is useful to introduce

a new variable defined by

K-1= -l . (5.30)

WWL

With this change of variable the form of I for the clamped plate is

now

IlWL 1.+582

I 8k ( ) (K+1)-6 exp[-23.7K 2]dK , (5.31)
clamped m Uc -.58

while for the other structures

wL
I=41k (L ) )-I (K+1)~4 exp[-23.7K2]dK. (.5.32)

lsimple - m Uc .e[1

The integrals in equations (5.31) and (5.32) were evaluated numerically

and found to be 0.626 for the clamped case and 0.464 for the simply

supported case.

Using the above described results for I 1 and 13, it is now
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possible to complete the estimates of convective response. For struc-

Ll L3
tural response at the point (x = Ll, z -) the mode shape factors

2 2

are given by equation (5.9) or (5.10). The resulting estimates of con-

vective response are

A) Membrance Displacement Response

Li L3

Sw(2' 2' -(- mn)conv.

WL
- - 1

withk = mTr andk = ---.
m c U

c

U00 k 2 (W

=34.0 (o L 2 2'

mn 3 k (Trw )
C mn

B) S-C-S-C Plate Acceleration Response

L L
S (2 2' W )n

a 2 2 fmn conv.

-2
U k @ (W.

= 42.8( )( ) p mn,

mn L3 k (aT) 2
c mn

WL

with k =mf andk = .
mn cU

C) Clamped Plate Acceleration Response

L L -4

S ( ) Uo m p (wmn
a 2 2 mn conv. = 115.5( L ) (-s7) 2 ,

mnL3 k (nTl)
c mn

(iL
with k = (m + 1/2)7 and k = *

m c U
c

(5.33)

(5.34)

(5.35)
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As a result of their dependence on k , all three of the response
C

estimates are quite dependent upon the streamwise length (L1 ) of the

structure. This supports the use of long structural elements in test

programs where convective response is an undesirable contaminant. A

comparison of equations (5.34) and (5.35) shows that for modes with

similar characteristics the clamped plate will have less convective

- 2
response by a factor of (k /k ). In the actual plate experiments

m c

k /k ranged from 0.07 to 0.25, and the clamped plate would therefore
m c

be expected to have significatnly less convective response than the

S-C-S-C plate. The predictions of convective response for the actual

test situation are discussed in Section 7.2.
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6. The Experimental Program for Low
Wavenumber Measurements

The total measurement program involved the use of four different

rectangular structures; a clamped plate, a S-C-S-C plate, a taut

membrane, and a modified membrane. The construction details of these

structures were described in Section 4.2. The structures were

calibrated by determining the characteristics of the resonant

modes, and then the response spectra were measured with the

structures excited by a turbulent boundary layer.

6.1 Determination of Resonance Characteristics

In Section 5.2 the structural response was shown to be

related in a simple way to the low wavenumber wall pressure

excitation P(k1 ,O,W). Equations (5.11) and (5.12) express this

relationship for membranes and plates, respectively. In order to

determine the levels of P(k1 ,0,W) from the measured response, these

equations require a knowledge of the structural dimensions (L1 , L3

and modal resonance characteristics (G mn' n' W mn). The surface

mass density a has been included as a modal parameter because

fluid loading effects for the membranes cause the effective density

a to increase for the lower order modes. The surface density of

the plates was significantly greater than that of the membrane,

and thus added mass effects were insignificant for the plate experiments.



-83-

The basic physical characteristics of the structures are

given in Section 4.2. The remaining modal characteristics were

experimentally determined and served to calibrate the structural

modes. The first step in this calibration process was to identify

the modal patterns and resonance frequencies of the modes of

interest. To identify the modes, the structures were driven at

a single frequency by the small area acoustic drive (Figure 4.3).

When a resonant response was observed, the modal pattern was determined

by lightly dusting the structure with sand to produce Chladni

patterns. Using this technique it was possible to observe odd

numbered modes on the membrane from the (5,1) mode at 1185 Hz

to the (49,1) mode at 6005 Hz. For the plates the odd numbered

modes from the (3,1) mode to the (23,1) mode were identified.

For an ideal membrane the "in vacuo" natural frequencies

are related to the mode numbers by equation (2.9). However, the

effective surface density (j mn) of the membrane changes due to

added mass effects. This change in density manifests itself as

a change in the membrane wave speed (c mn). If this effective

wave speed is defined as

c2 =T/C, (6.1)
mn mn

then equation (2.9) can be rearranged to yield

c 2 - -/2
c =2f -m- + -n (6.2)
mn mn LL
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This equation allows the computation of values of c from
mtn

the measurements of resonance frequencies and modal patterns.

Figure 6.1 shows a plot of the computed values of membrane wave

speed (c ) from the actual data for the standard membrane. At

high frequencies this curve should approach asymptotically the

"in vacuo" wavespeed (c = /T/G). By using Figure 6.1 to select

this asymptotic value (c), it is possible to first compute T and

then use equation (6.1) to determine the effective surface density

G for each mode. The results of this procedure are listed in
mn

Table 6.1 for several modes of the standard membrane and in

Table 6.2 for the modified membrane.

The damping factors ( mn) for the structural modes of

interest were determined experimentally from decay rate measurements.

The experimental set-up for these tests is diagrammed in

Figure 6.2. All damping tests were made with the structures mounted

in the wind tunnel test section. The small area acoustic drive

was used to excite the structure at its natural frequencies, and the

vibratory response at the center of the structure was monitored.

For the membranes the displacement response was monitored with

an M.T.I. model KD-38 fotonic sensor, and for the plates the

acceleration response was monitored with a Wilcoxon model 91

accelerometer.
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After adjusting the drive level to achieve a reasonable

response signal, the excitation was shut off, and the resulting

decay transient was captured on a B & K model 7502 digital event

recorder (Figure 6.2). The decay transient was then played

back at a slower speed, and the decaying rms signal level was

recorded on a B & K model 2305 graphic level recorder. A typical

decay record is shown in Figure 6.2. The damping factor ( mn) is

determined by the equation

qmn = 1.833 R tan a/f , (6.3)

where R1 = recording rate/playback rate, a = decay angle, and

fmn = natural frequency (Hz). The equivalent rectangular bandwidth

of the mode can also be determined from

Af =T nf = 2.88 R tan a. (6.4)
mn 2 mn 1

The experimentally determined values of nmn and Afmn are listed

in Tables 6.1 and 6.3.

Damping measurements were also made with varying flow

velocities over the structures. No significant changes in damping

were observed as the flow speed was changed. Therefore, the

damping values that were determined under "no flow" conditions were

used for all calculations.
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6.2 The Wind Tunnel Facility

The experiments were carried out using the facilities and

equipment of the Acoustics and Vibrations Laboratory at M.I.T.

The low wavenumber measurements were made in the low-noise,

low-turbulence wind tunnel shown in Figure 6.3. The basic

construction characteristics of this tunnel have been described

by Hanson [19], and the boundary layer characteristics have been

determined by both Blake [1, 17] and Burton [2]. For the low

wavenumber measurements several special steps were taken to reduce

the background acoustic levels in the test section. These steps

included applying absorption and damping treatments to the blower

housing and opening the tunnel ducting behind the test section.

The final test section configuration is shown in Figure 6.4.

To allow normal boundary layer development under zero pressure

gradient conditions, the upstream tunnel ducting and the test

section were left in the standard "closed duct" configuration.

The downstream section of ducting was removed, however, and a

foam-covered collector was installed at the entrance to the diffuser

(Figure 6.4). The prime contributor to the acoustic background

levels was thought to be sound generated by unsteady flow in the

diffuser. Therefore, the downstream duct removal was designed

to allow part of this "diffuser noise" to propagate into the

surrounding room. The walls, ceiling and floor of this chamber

were lined with fiberglas and acoustic foam in order to provide

acoustic absorption.
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With the tunnel configuration as described above, the

free stream velocity could be adjusted from 10 to 50 m/sec. Using

a .040 inch diameter total head tube, mean velocity profiles

were measured at the center of the test section for free stream

velocities of 20, 29, 40, and 50 m/sec. A typical mean velocity

profile is shown in Figure 6.5. From these profiles, values of

displacement thickness 6*, momentum thickness 6, and shape

factor H were computed (Table 6.4). By fitting this same data to

a law-of-the-wall format (Figure 6.6), it was also possible to

calculate the friction velocity U . The boundary layer properties

thus determined (Table 6.4) are consistent with typical flat

plate values obtained by other investigators.

Each of the test structures was mounted in a fixture which

could be located as the bottom wall of the test section (Figure 6.4).

Each structure was oriented so that its long dimension was

parallel to the air flow, and the top surface of each membrane and

plate was carefully positioned to be flush with the test section

wall. Since each structure was centered in the test section,

the measured boundary layer parameters are characteristic of the

flow over the center of the structure.

6.3 The Structural Response Measurements

After each structure was mounted in the wind tunnel test

section, the spectrum of displacement or acceleration response at

the center of the structure was measured at flow velocities of
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20, 29, 40 and 50 m/sec. For the membrane tests the displacement

response was measured with an M.T.I. model KD-45A fotonic sensor

using a .109 inch diameter probe. Since this device is an optical

sensor which does not contact the vibrating surface, it did not

cause loading problems on the membrane. For the plate measurements,

however, the acceleration response was measured with a Wilcoxon

model 91 accelerometer. This tiny device weighs only 0.2 grams

when used with its mounting base, and its loading effects on the

plate response were minimal. The actual loading corrections were

experimentally determined to be less than 2.0 dB for all modes

of interest, and these corrections were used to adjust the measured

acceleration spectra.

The displacement or acceleration signal was first amplified

with an Ithaco model 432 low-noise preamplifier and then filtered

with an Ithaco model 4212 band pass filter. Next, the signal

was analyzed on a Federal Scientific model UA-15A spectrum

analyzer, and a Federal Scientific model 1015 spectrum averager

was used to average 512 spectrum samples in order to minimize

errors due to random fluctuations. Finally, the averaged spectra

were recorded on a Mosely model 135C X-Y recorder.

Typical experimental acceleration or displacement spectra

for the four structures are shown in Figures 6.7 to 6.10. Only

the spectral levels at the resonant peaks are useful as measures
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of P(k1,0,W) as determined from equations (5.111 and (5.12). The

spectra shown in the figures were all obtained for a 0-5 kHz

analysis range so that the effective noise bandwidth was 16 Hz.

For most of the plate modes the modal bandwidths (Table 6.3)

were less than this analyzer bandwidth. This means that the

appropriate bandwidth correction for the spectral levels of the

resonant peaks must be based on the corresponding modal bandwidths

instead of the analyzer bandwidth. Additional plate spectra

were obtained for 0-2 kHz and 0-10 kHz analysis ranges with

effective noise bandwidths of 6.4 and 32 kHz, respectively. Spectral

levels obtained from the three ranges generally differed by less

than 2 dB after the appropriate bandwidth corrections were

applied, and the levels were averaged to obtain the final values.

For the standard membrane spectrum (Figure 6.7) distinct

resonant peaks can be observed which correspond to the odd numbered

modes ranging from the (5,1) mode to the (31,1) mode. At frequencies

below the (7,1) mode, frame interaction effects prohibit analysis

of the response, while at frequencies above the (27,1) mode the

response is too close to the instrumentation noise floor to be

accurately evaluated. It is also interesting to note that the

broad bump in the spectrum just below 4000 Hz is caused by the

appearance of the 3 rd. order lateral modes (i.e.: the 1,3 mode;

3,3 mode; etc.) with resulting modal overlap situation. The

modified membrane spectrum (Figure 6.8) exhibits similar
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characteristics except that its higher damping levels have slightly

reduced the spectrum levels of the resonant response so that more

of the higher order modes are obscured by the instrumentation

noise floor.

For both sets of membrane data the observed spectral levels

between resonances are reasonably close to the peak levels

(Figure 6.7 and 6.8). At high frequencies this background level

is due to the noise floor of the Fotonic sensor, while the rise

in the background level below 2000 Hz is consistent with predictions

of non-resonant behavior for these membranes. The displacement

spectrum used in equation (5.11) includes only the response of

the resonant mode. Thus, it was necessary to correct the measured

values of displacement spectra to compensate for the close

proximity of either the non-resonant response or the instrumentation

noise floor. These corrections ranged from 0.5 to 3 dB with the

largest corrections occuring for the higher order modes and low

flow speed tests. The corrected values of the experimental

displacement spectral density S (L1 /2,L 3 /2,fmn) = 47 Sw(L1 /
2 ,L3/2 ,Umn)

for the membrane tests are listed in Table 6.5. Data from the

20 m/sec run is not included since all of the peak levels were too

close to the instrumentation noise floor to yield reliable data.
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The clamped plate acceleration spectrum CFigure 6.91 exhibits

sharp resonances corresponding to the odd numbered modes ranging

from the (3,1) mode to the C21,1) mode. The fundamental mode

does not appear in a distinct form. Its response would be expected

to be severely limited by radiation damping, and it is also quite

likely that a modal overlap situation exists between the

fundamental and the (3,1) mode. Above 4000 Hz the 3 rd. order

lateral modes appear and create another modal overlap situation.

The intermediate modes (i.e.: the 5,1 mode through the 21,1 model

are not only well separated in frequency but have peak levels which

are well above the observed background levels (Figure 6.9). The

S-C-S-C plate acceleration spectrum (Figure 6.10) exhibits similar

behavior. For the S-C-S-C plate the response of the fundamental

is more clearly defined, and the 3 rd. order modes appear at a

slightly lower frequency as would be expected from analytic

predictions [11]. The useful modes, however, are still the (5,1)

mode through the (21,1) mode.

It is perhaps worthwhile to observe that some of the

interpretive problems associated with the membrane spectra have been

reduced in the plate spectra. The plate resonances have less

damping and are therefore better separated from the non-resonant

background levels. Also the measurement of acceleration rather

than displacement has an inherent advantage of greater signal levels
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at higher frequencies. As a result it was possible to obtain

useful plate data even at 20 m/sec flow speed, and background

level corrections were typically insignificant. The measured

levels of the experimental acceleration spectra

Sa (L1 /2, L 3/2, f ) = 4Tr sa (L1/2, L3/
2 ,Omn) from the two

plates are listed in Table 6.6.
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7. EVALUATION OF LOW WAVENUMBER DATA

The measured spectral levels discussed in Section 6.3 can

now be manipulated to yield experimental values of the wavenumber-

frequency spectrum of wall pressure P(k ,OI mn). First, however,

it is prudent to compare the measured response levels to estimates

of acoustic and convective response. Measured levels which lie

very close to the acoustic or convective response estimates should

be eliminated from the data. Also, data levels which only appear

to be partially influenced by acoustic or convective response can

be corrected to provide more realistic values. The corrected

data values can then be used with increased confidence to determine

the levels of P(k1 ,0,W). These measured low wavenumber levels

can finally be compared to corresponding convective ridge levels

and measurements made by other investigators.

7.1 Comparison with the Estimated Acoustic Response

In order to estimate the acoustic response for each structural

mode, it is necessary to measure the spectrum of background noise

4)(A) in the test section. A direct measurement is virtually

impossible since "pseudo-sound" effects would dominate the response

of microphones placed directly in the flow. Instead, a microphone

was located midway between the end of the test section and the

collector (Figure 6.4) so that it was just out of the air flow.
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A typical experimental spectrum of D A (f = A (w) measured at this

point is shown in Figure 7.1. A comparison of acoustic levels for flow

speeds ranging from 10 to 50 m/sec. indicates that the acoustic back-

ground levels are roughly proportional to the sixth power of the free

stream velocity.

The dominant source of the acoustic background levels seems to

be from the diffuser. Thus the test section acoustic levels should lie

below the measured levels. With a speaker positioned at the inlet to

the diffuser and the tunnel off, simultaneous acoustic measurements

were made in the test section and at the previous measurement point.

This data was used to correct the measured spectral levels of A (A) in

order to reflect more accurately the actual test section acoustic levels.

Once (A (A) is known, the remaining task is to determine the

response of the structures to acoustic excitation. Two approaches are

possible. The experimental approach consists of measuring the response

of each structure when known acoustic levels are created in the wind

tunnel test section. An analytical approach was previously presented in

Section 5.3. In both cases the resulting sensitivity of the structure

to acoustic excitation can be expressed as the ratio of the response

spectrum to the acoustic spectrum. For convenience these ratios are

defined by

L L

w w 2 2 acoustic A

(7.1)
L L

R (w) =S ( 1, L , 3/ ()
a a 2 2 acoustic A
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The analytic results of equations (5.20) through (5.22) are

easily rearranged to yield the following acoustic sensitivity ratios:

(A) Membranes,

13. 6k
R (w ) = (7.2)
w If -k2 k2 2 2 2

m A in

(B) S-C-S-C Plate,

14.0k2
m

R (w ) = (7.3)
a mnn ( 2 _ 72 )2 ( 2

m A mn

(C) Clamped Plate,
2

k+ k 2 - 2-

27.9 m A m(7.4)R (LL ) = K-~ (7.4)
a ran (( )2  1 _ 1 k4_

mn m m A

Once the resonance characteristics of the structures have been deter-

mined (Section 6.1), these ratios can be evaluated for each structural

mode of interest. Table 7.1 lists the calculated values of R or R
a w

for the four structures used in this program.

In the experimental approach a speaker was placed at the inlet

to the diffuser and was used to create a broadband sound field in the

wind tunnel test section. The sensitivity of each structural mode to

this acoustic excitation was then determined by measuring response

spectra for a fixed level of acoustic excitation. A one-inch B&K

microphone was flush mounted in the top of the test section in order to

monitor the acoustic level. The experimentally determined values of R

or R are compared to the corresponding analytic values in Table 7.1.
w
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Most of the measured ratios in Table 7.1 fall within 6dB of the

corresponding analytic estimates. Since several experimental difficul-

ties were encountered while conducting the acoustic response experiment,

it seems likely that much of the difference between the theoretical and

measured acoustic sensitivities is due to experimental inaccuracies.

However, for purposes of providing a conservative (i.e.: high) estimate

of acoustic response, the higher of the two values will be used.

Predicted levels of the acoustic contributions to plate and

membrane spectra were calculated using the acoustic sensitivities of

Table 7.1 and the measured acoustic levels GA (w). Figures 7.2 and 7.3

show typical comparisons between measured response spectral levels and

the predicted acoustic contributions. It should be noted that each data

point in these figures corresponds to a peak spectrum level at a given

resonance. The lines drawn between data points serve only to help

visualize trends in the data and do not imply a smooth spectrum shape

between data points.

As shown in Figures 7.2 and 7.3, the estimates of acoustic

response typically fall below but reasonably close to the measured

levels. In order to preserve the integrity of the data, data points

which fell within 4dB of the predicted acoustic levels were discarded.

For example, the comparison between the measured and predicted response

levels shown in Figure 7.2 indicates that the (9,1) mode data at 1480 Hz

should be discarded from the data taken at 40 m/sec. The remaining data

points are then corrected to eliminate the calculated acoustic or con-

vective contribution. These corrections ranged from a few tenths of a
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decibel to a maximum of about 2dB.

7.2 Comparison with the Estimated Convective Response

The response of membranes and plates to convective wall pressure

fluctuations was discussed in Section 5.4. As a result of this analysis,

equations (5.33) through (5.35) can now be used to estimate the convec-

tive response levels for the actual test situations.

All three of these response equations require that the single

point wall pressure spectrum @p (W) be known. Previous measurements of

wall pressure spectra in the same wind tunnel are shown in Figure 7.4.

These results were also reconfirmed by data taken in an earlier low wave-

number program using a test section configuation similar to the one used

in these tests. Since Blake's data [1] lies slightly higher than

Burton's [2] for the reduced frequencies of interest, the levels of G (w)
p

determined by Blake will be used for the response estimates. The higher

levels have been chosen in order to provide a conservative (i.e.: high)

estimate of convective response.

Using the data from Tables 6.1 through 6.3 and the known struc-

tural dimensions, levels of convective response were calculated for the

four structures at each flow speed. At a fixed frequency the convective

response for the membranes and the S-C-S-C plate exhibits a flow speed

dependence of (U )9 while for the clamped plate the dependence is (U,)11 .

These same speed dependences can be predicted from equations (5.33)

through (5.35) by using 5 (w) m O )4 . This means that, in general, the

convective response will become increasingly significant at the higher

flow speeds.
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Typical predicted levels of convective response are compared with

corresponding levels of acoustic response and the measured response in

Figures 7.2 and 7.3. For the standard membrane data of Figure 7.2, the

convective response is the more significant contaminant for the majority

of modes. On the other hand, Figure 7.3 shows that the convective

levels are relatively insignificant for the clamped plate data. Indeed,

the convective estimates of clamped plate response ranged from 10 to

30 dB below the measured levels, and the significant contaminant was

always the acoustic response.

As mentioned in the last section, the criterion for rejecting

data was that any measured data levels falling within4dB of either the

corresponding estimate of acoustic or convective response were discarded.

Based on this criterion, several data points for the S-C-S-C plate and

a few data points for the modified membrane were discarded. As might

have been suspected, most of the convectively contaminated data was from

the 50 m/sec runs.

A consistent effort was made to insure that both the estimates

of acoustic and convective response were biased toward higher levels.

The philosophy of this somewhat conservative approach was that it was

better to eliminate a few good data points than retain some doubtful

ones. However, a second use of the acoustic and convective response

estimates was to correct the measured data so as to eliminate the con-

tributions from sources other than the low wavenumber pressure fluctua-

tions. Since the acoustic and convective estimates were biased high, the

downward correction of the data may be slightly larger than required.

For this reason the data was only corrected for the closer of the two
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potential contaminants. A double correction would most likely increase

the error of the final result rather than decrease it.

As a result of this generally conservative approach, about one-

third of the measured data was discarded. The bulk of the discarded

data was from the S-C-S-C plate. The data that was retained was

corrected based on the closer of the two estimates of acoustic or con-

vective response. These corrections ranged from 0.3 to 2 dB. The

corrected response levels were then used to predict the levels of the

wavenumber-frequency spectrum P(k,0,o) as described in the following

section.

7.3 The Measured Low Wavenumber Levels of PO,0,W)

To obtain the values of the wavenumber-frequency spectrum of

wall pressure PGN, 0 ',), the corrected membrane and plate response levels

were used according to either equation (5.11) or (5.12). The results

of these computations are listed in Tables 7.2, 7.3 and 7.4. In order

to facilitate data comparisons by removing dimensional considerations,

this data has been non-dimensionalized on the outer variables of the

boundary layer. Thus, P(O 1 0,o) is non-dimensionalized on q
26*3/U ; where

q is the free stream dynamic head, 6* is the displacement thickness,

and U, is the free stream velocity. Similarly, non-dimensional fre-

quency o* and wavenumber k * are as defined by equation (5.2).

Each spectrum level in the Tables should be interpreted as an

average level of P(k ,k ,w) which is averaged over the wavenumber-

frequency domain that is characteristic of the corresponding resonant

mode. The frequency domain of each measured level is defined by the
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resonant frequency and equivalent bandwidth of its corresponding

resonant mode (Tables 6.1, 6.2, and 6.3). The wavenumber domain is

characterized by both a k3 and a k bandwidth. As discussed in Section

3.1 the k bandwidth for all four structures can be approximated as

21T
Ak -. Similarly, the k bandwidth is analytically defined as

1 1 3

Ak = for the membranes while numerical results for the plates give
3 4L3

9.09
Ak3  L . Thus the wavenumber bandwidths for the membranes are

3

Ak1 % 11.4 (meters)~', k3 % 152.6 (meters)

while for the plates they are

-1 -1
Ak1 ; 12.4 (meters) , k3 % 119.3 (meters)

Since only the 1st. order lateral modes were considered, each

wavenumber region is centered on k3 = 0 and ki = km. For the clamped

plate, the characteristic streamwise wavenumber is km (m + L/2)
m L1

miT
while for the other structures it is k = - . The values of k and w

m L1 m m

locate the positions of each data point. Therefore, the non-dimensional

values of these parameters have been included with the levels of

L = 10 log {P(k ,0,w)/(q 2 6* 3 /U )} in Tables 7.2, 7.3 and 7.4.

A comparison of levels of P(k 1,0,) for the standard and modified

membranes (Tables 7.2 and 7.3) reveals that most of the modified mem-

brane data represents the same wavenumber-frequency domain as similar

standard membrane data. Also the measured levels agree quite well for

the corresponding data points. This should not come as a surprise.

As discussed in Section 4.2 the purpose of the plasticene fillets added
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to the modified membrane was only to reduce convective response. Indeed

the measured membrane wavenumber filter shapes of Section 4.4 (Figures

4.15 to 4.17) show that the major lobe behavior of both membranes is

very close to that of the sinusoidal model. Thus, the two membranes

should yield similar results. In order to simplify the analysis and

plotting of the data, spectrum levels for the two membranes which des-

cribe the same wavenumber-frequency region have been averaged to yield

a common value.

The non-dimensional levels of P(k1 ,0,w) have been placed in their

respective wavenumber-frequency positions in Figure 7.5. The wavenumber-

frequency location of each piece of data is marked with an "X" for mem-

brane data and with a dot for plate data. The adjacent number indicates

the corresponding value of L = 10 log {P(k ,0,w)/(q26*3/U C)}. Although

it is difficult to make quantitative statements about the data from

Figure 7.5, some general observations are possible. First of all, the

agreement between the plate and membrane data appears to be good. Both

sets of data exhibit a strong decrease in L with increasing w*.
p

However, the trend of the data with changing wavenumber k *, is much

less clear. Any variation of the data with k * is certainly small and

is perhaps obscured by the overall variability of the data. The actual

dependence of the data on frequency and wavenumber will be explored in

greater detail in the following section.

7.4 Analysis of the Low Wavenumber Behavior of P(k ,0,W)

The low wavenumber data presented in Figure 7.5 covers a

reasonably wide range of reduced frequency o* and wavenumber k *. It
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should therefore be possible to make quantitative estimates of the depen-

dence of P(k ,0,w) on w* and k * in the measurement region. However, it

may be helpful first to compare the data to levels of the wavenumber-

frequency spectrum of wall pressure obtained from a convective ridge

analysis.

In Appendix B a convective model for @ (kik 31w) is developed by

Fourier transforming cross-spectral density data which has been adapted

to a Corcos model for o (r 1 r3 'w). In terms of non-dimensional variables

and spectra, the resulting model for @ (k1 *, k3 ' w*)/(q2 *3/U) is given

by equation (B6) and the peak levels at the convective ridge can be

determined from equation (B8). Figure 7.6 shows isocontours of

(k *,,o*) which were calculated using equation (B6) with k 3 =P

and Blake's data [17] for @ (w) and Uc(). It should be noted that

Blake's convection velocity measurements varied from Uc .76 U at

o* = .25 to Uc =-U0 at o* = 2.5.

The dashed region superimposed on the contour plot in Figure 7.6

indicates the region in k * and w* for which the experimental data was

obtained. If the -80 dB isocontour is extended into the measured data

region, it predicts a level of -80 dB at w* =2 and k1 * = .5. However,

the measured data levels (Figure 7.5) near this position are approxi-

mately -100 dB. Thus, the convective model represented by equation (B6)

does not accurately describe the low wavenumber components of the wall

pressure spectrum. It does, however, provide a good model for the con-

vective ridge levels.

The poor performance of the convective model at low wavenumbers
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may be due, at least in part, to a breakdown in the validity of the sim-

ilarity form of D (r ,r 3,) represented by equation (B2). Corcos [16]

has argued that the similarity assumption is valid as long as the

typical longitudinal wavelength is less than the thickness of the boun-

27
dary layer. Thus, the similarity assumption is valid for 86* > X -

or for k1 *> P 0.79. The low wavenumber region of interest in this

study lies principally below k * = .8. It is, therefore, reasonable to

expect that a convective model based on the similarity form would be

inaccurate in this region.

There are also experimental difficulties involved in obtaining

cross-spectral density measurements which are representative of pressure

fluctuations characterized by both low wavenumber and high frequency.

Appropriate data requires relatively high frequency measurements taken

with large transducer separations. Such experimental situations are

often limited by either the dynamic range of the test equipment or the

background noise levels in the wind tunnel. As a result, curve fitting

techniques such as those which led to equations (Bl) or even numerical

transform techniques must rely on matching data which is more charac-

teristic of convective fluctuations than low wavenumber fluctuations.

Of course the original purpose of the convective model of

equation (B6) was to obtain convective ridge levels of D (k,k 3,w) with

which to compare the measured data. Equation (B2) was used to calculate

convective ridge levels corresponding to the range of w* for the

measured data, and these convective ridge levels are compared to the

measured data in Figure 7.7 where they are plotted as the solid line.
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The measured low wavenumber levels are an average of 36 dB lower than

the corresponding convective ridge levels when the values are compared

at the same frequency w*.

The measured data in Figure 7.7 appears to vary slightly more

with frequency w* than the (w*)-2.7 dependence of the convective ridge

levels. To quantify the behavior of the data, a least squares analysis

was performed. Since the data plotted in Figure 7.7 indicates an

approximate straight line behavior with w*, the following least squares

model was formulated:

L p= C1 [ log W*] + C2[10 log k1*] + C 3  , (7.6)

where L = 10 log {P(k ,0,o)/(q2 *3/U )). Using standard least squares

techniques, the three coefficients were evaluated as

C1 = -3.65 , C 2 = 0.31 , C = -86.5

Thus the frequency dependence of the data is (w*) -3.6 while the wave-

number dependence is much less at (k1 *) 0.35. In fact the calculated

k1* dependence is so low that over the total range of k1* for the data

only a 2 dB change in L due to wavenumber would be indicated. The
p

standard deviation of the data from the calculated least squares fit

was 1.8 dB; thus it is not surprising that it is difficult to ascertain

a wavenumber trend in the data from the presentation of Figure 7.5. The

average value of 10 log k1 * for the data is -3.64. Using this value in

Equation (7.6), an approximate fit to the measured data was obtained

and plotted as a dashed line in Figure 7.7.
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7.5 Comparison with Previous Measurements

There is very little published data to which these low wave-

number measurements can be compared. Blake and Chase [4] obtained data

with a 4-microphone array, but their results were contaminated by the

acoustic background levels in the wind tunnel facility. After making

significant reductions in the acoustic levels and improving the 4-micro-

phone array, Jameson [51 obtained low wavenumber data in the region

k6 * .41 , 5 < < 8. This data was not acoustically contaminated,

but there was some uncertainty regarding possible convective contamina-

tion.

In a more recent test program, Jameson [8] has also made low

wavenumber measurements using rectangular plates as spatial filters.

Jameson's plates were .27 m by .18 m with the longer dimension aligned

with the flow. The design of the boundary conditions was similar to

that of the clamped plate described in Section 4.2. Jameson was able to

identify several distinct modes and use them to make measurements of

P(k ,k 3 ). Only one of these modes, the (7,1) mode, was centered on

k3 = 0 as were the membrane and plate modes of the current data; however,

since Jameson's data does not appear to show a strong k3 variation, it

seems appropriate to compare all of Jameson's data to the current data.

For purposes of comparison it is important to notice that

Jameson's definition [81 of ( (k11k3 1 ) differs slightly from the one

presented in equation (2.16). Proper comparison of data requires the

conversion

P(k ,k 3W) = (2) 3 (k ,k ,o)Jameson (7.7)
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Also Jameson does not report the values of 6* which apply to his test

situation. However, in earlier tests (5] in the same facility, a

typical value of 6* = .139 inches was reported. This value has been

assumed valid for comparative purposes.

In Figure 7.8 the current data is compared with results obtained

by Jameson using a 24 gauge steel plate. This data comparison (Figure

7.8) indicates that Jameson's data predicts low wavenumber levels of

P(k1 ,k3 ,o) which average about 10 dB below the levels obtained in this

investigation. However, his data does seem to suggest a dependence on

o* which is similar to the (W*)- 3-65 behavior exhibited by the current

data. All attempts at reconciling the differences between these two

sets of data have thus far been unsuccessful. The important questions

of possible acoustic or convective contamination of the current data

have been carefully evaluated. The measured response spectra do not

appear to be dominated by either convective or acoustic response levels.

Moreover, the analytic characterization of the wavenumber filters used

by Jameson appears to agree with those of this investigation.

Both sets of data do exhibit a significant amount of scatter.

This perhaps implies a need to find more appropriate sets of parameters

upon which to normalize the data. It is also possible that differences

in the nature of the boundary layers created by Jameson's wall jet

experiment and the modified closed jet experiment of this study have con-

tributed to the disagreement in the data. There were also other tech-

nical differences between the two experimental programs. For example,

Jameson's acceleration response measurements were made using a heavier
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accelerometer than the one used in this investigation, and thus loading

effects might be more significant. However, it has not yet been possible

to explain the difference in the data as resulting from any of the known

experimental factors.
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8. CONCLUSIONS AND RECOMMENDATIONS

Several general conclusions have been formulated during the

course of this research. Some of these conclusions pertain to

the wavenumber filtering behavior of mechanical structures while

others are more closely related to the application of spatial

filters to low wavenumber measurements. It has also been possible

to formulate guidelines for the design of spatial filters for use

in making low wavenumber measurements. These guidelines will be

presented as an aid to future investigations.

8.1 Conclusions Regarding Wavenumber Filtering

The following conclusions concerning the wavenumber filtering

behavior of both real and idealized structures have resulted

from this investigation:

1) The wavenumber filter shapes IAm(k)12 of both real

and idealized structures are dominated by a major response

region near the characteristic wavenumber k . This major

lobe is relatively insensitive to changes in boundary

conditions.

2) The high wavenumber behavior of IAm(k) 2 is

largely determined by the nature of the boundary conditions.

Simply asymptotic approximations can be used to predict

accurately the high wavenumber behavior of |Am (k)2

Typical numerical results for a variety of idealized
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structures have shown that such asymptotic approximations

for [A Ck). are accurate to within 0.6 dB for

wavenumbers k such that k > 4km

3) It is possible to determine experimentally the

wavenumber filter shapes A m(k)1 2 of the modes of an actual

structure from detailed measurements of the normal mode

shapes. The experimental procedure, however, is both

tedious and lengthly and requires the attainment of both

frequency and spatial matching of the excitation to the

desired resonant mode.

4) The accuracy of the measured wavenumber filter

shapes was limited by the presence of non-resonant

response in the measured mode shape. The major lobe

and low wavenumber side lobes of the measured |Am(k)[2

were relatively unaffected; however, the high wavenumber

behavior is drastically altered. Since the relative

magnitude of the non-resonant response decreases when the

modal damping is low, more accurate measurements of

the high wavenumber behavior of |Am(k) 2 are possible

for modes with small damping factors n.

5) The measured wavenumber filter shapes for the

standard membrane, S-C-S-C plate and clamped plate

were in close agreement with the corresponding analytic

predictions. As a result, the use of analytically
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determined wavenumber filter shapes in response estimates

should accurately predict the actual response of these

structures.

6) The effects of non-resonant response made it

impossible to determine whether or not the |Am(k)|2 for

the modified membrane possessed significantly reduced

side lobe levels at high wavenumbers. The major lobe

and low wavenumber behavior of Am k)12 agreed closely with

that of an ideal sinusoidal mode shape.

8.2 Conclusions Regarding Low Wavenumber Measurements

The primary results of the experimental program of low

wavenumber measurements are as follows:

1) In the non-dimensional frequency and wavenumber

region defined by 0.18 < k 1 6* < .88, k36* ~ 0 and

0.8 < s- < 5.1, the measured levels of the wavenumber-
UCO

frequency spectrum of wall pressure P(k1 ,0,w) are an

average of 36 dB below the corresponding convective

ridge levels at the same frequency.

2) A least squares analysis of the behavior of the

non-dimensional levels of P(k1 ,0, ) has indicated

the following wavenumber-frequency behavior in the

data region:

P(k ,0,o ) /(q 2 6*3/U) a (k*) 0 .31
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3) Careful evaluation of the current data indicates

that most of the measured response levels are too high

to be explained as due merely to acoustic or convective

ridge excitations. These contaminating levels were close

enough to require some correction of the data, but

only data with corrections of 2 dB or less was retained.

Thus, the resulting response data would appear to

represent directly the low wavenumber excitation.

4) For these experiments there are no significant

differences between the levels of P(k1 ,0, ) determined

from either membrane or plate data. Since the convective

response characteristics of the clamped plate are

significantly different from that of the membrane, the

good agreement between the levels of P(k1 ,0, ) strongly

supports the earlier conclusion that the data is not

contaminated by convective response.

5) The technique of transforming cross-spectral

density data using a Corcos model to obtain a measure

of the wavenumber-frequency spectrum p(K, W) yields

inaccurate results in the wavenumber frequency domain

of the measured low wavenumber data.

6) The levels of P(k ,O,w ) of this investigation are

approximately 10 dB higher than similar data obtained by

Jameson. The reason for this difference is not known.
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8.3 Guidelines for the Design of Wavenumber Filters

Future investigations of the low wavenumber levels of

c p(,k ,w) may well require the construction and use of new

structures as wavenumber filters. The purposes of this section

are to relate insights gained from experience with such measurements

and to suggest important steps in the design process.

Experience suggests that plates offer several advantages

over the use of membranes for low wavenumber measurements. Design

aids such as those collected by Leissa 1111] can be used to

determine the location of plate resonances, and the construction

problems are minimal. Plates,as compared to membranes, also

typically have less damping, longer stability of characteristics

and greater independence of fluid loading effects. The use of

small accelerometers for plate response measurements also

eliminates the inherent displacement transducer problem of poor

signal-to-noise ratios at higher frequencies. Because of its

superior convective ridge rejection, the clamped plate is likely

to be the best choice for future measurement situations.

The first step in the design process is to select the

material and dimensions of the plate so that the resonant

frequencies are well separated and properly located. To minimize

convective response, the streamwise length L of the plate should

be as long as possible. The width and thickness can then be
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selected to obtain the desired resonant frequencies. For a given

mode (m,n) with a characteristic streamwise wavenumber k , the

resonant frequency W should be high enough to insure that
mn

k << w /U = k yet low enough so that Iki > w/c = k . The
m mnn c c o A

resonant frequencies of the lower order modes for the plates used

in this investigation were only 10% lower than the values predicted

using data complied by Leissa [11]. This illustrates the

feasibility of using such design data to locate the plate resonances

in the desired wavenumber and frequency positions.

After the design of the wavenumber filter has been selected,

it is possible to estimate the potential danger of acoustic or

convective contamination. This evaluation requires estimates

of the total wall pressure spectrum, the boundary layer properties,

and background noise levels in the test facility. With this

information, the analytic results of Sections 5.2, 5.3 and 5.4

can be used to determine "equivalent" levels of P(k 1 ,k3 w) due to

acoustic or convective contamination. These equivalent levels

represent a sort of noise floor for the actual measurement of

P(k1 ,k31W).

Consider, for example, a clamped plate. The acoustic

response is given by equation (5.22). If this acoustic response

is used in equation (5.12), the equivalent acoustic level of

P(k ,0,w ) is obtained asm mn
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- -2
-- 2 ~~2 -2 2

P(k ,O cm ) . = .28 L L 3 (W ) C8.11
m' mn acoustic 1 3 1 - gg A mn

m m A

w L
- -mn l

where k = (m + 1/2) and k = . Similarly, the equivalent

convective level is obtained by substituting equation (5.35) into

equation (5.12) to yield

1.16 L U k
1 CO m

P(k ,0,ow ) l@ (w ), (8.2)
nm m convective -6 p mn

Mn c

w L
wee- 1

where k = . If the evaluation of P(k ,0,w ) .
c U in mn acoustic

c

and i1 n convective from these equations does not yield

non-dimensional levels of P(k1 ,0,w ) below the current measured

levels plotted in Figure 7.7, then any experimental measurements

using the design under consideration would be expected to be either

acoustically or convectively contaminated. To allow an adequate

margin of safety, the equivalent levels calculated from equations (8.1)

and (8.2) should lie at least 10 dB below the data in Figure 7.7.

Similar expressions for other types of structures can be

obtained from the results of Chapter 5. By evaluating the proposed

design of a wavenumber filter in this manner, many experimental

pitfalls can be avoided. Also if acoustic background level reductions

are required, this will be discovered early in the program, and

appropriate steps can be taken.



Mode fm, n Damping Ax No. of Normalizi:iq
Structure (mn) (z) D (inches) Intervals Constant

mn N Cm

Standard 11,1 1730 .010 0.07 310 1.543
Membrane

Modified 9,1 1590 .012 .110 198 1.524

Membrane
15,1 2156 .0035 .095 230 1.571

Clamped 9,1 1327 .0031 0.10 200 1.484

Plate
15,1 2430 .0017 0.10 200 1.504

S-C-S-C 9,1 1290 .0038 0.10 200 1.583

Plate
15,1 2410 .0020 0.10 200 1.517

TABLE 4.1 Characteristics of the Measured Mode Shapes



Peak Peak Equivalent
Mode Source of the Wavenumber Wavenumber Level Wavenumber
No. Filter Shape (dB) Bandwidth

m

Measured Clamped Plate 29.1 -3.2 5.88

Ideal Clamped Beam 29.8 -3.2 5.80

9 Measured Modified Membrane 28.4 -3.2 5.86

Ideal Sinusoidal Mode 28.3 -3.0 5.69

Measured S-C-S-C Plate 28.7 -3.2 5.69

Measured Standard Membrane 34.3 -3.1 5.73

Ideal Sinusoidal Mode 34.6 -3.0 5.69

Measured Clamped Plate 48.1 -3.1 5.71

Ideal Clamped Beam 48.7 -3.1 5.69

15 Measured Modified Aembrane 47.9 -3.2 5.81

Ideal Sinusoidal Mode 47.1 -3.0 5.68

Measu red S-C-S-C Plate 47.4 - 3.1 5.66

TABLE 4.2 Major Lobe Characteristics of A (k.)
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Damping Equivalent Effective
Mode Frequency Factor Bandwidth Density
(m,n) (Hz) I (,n) (Hz) (Kg/m 2 )

5,1

7,1

9,1

11,1

13,1

15,1

17,1

19,1

21,1

23,1

25,1

27,1

29,1

1185

1325

1480

1650

1840

2030

2240

2440

2655

2870

3095

3320

3550

.043

.020

.011

.010

.0081

.0077

.0083

.0065

. 0059

.0051

.0047

.0048

.0045

79.8

40.9

26.1

26.7

23.6

24.7

29.5

25.2

25.0

23.0

23.2

25.0

25.0
_________ I L I 'a

.439

.409

.390

.376

.364

.358

.348

.345

.341

.337

.333

.329

.326

TABLE 6.1 Experimentally Determined Characteristics
of the Standard Membrane
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Damping Equivalent Effective
Mode Frequency Factor Bandwidth Density
(m,n) (Hz) TI) (Hz) (Kg/m2 )

5,1 1200 .039 74.4 .426

7,1 1345 .019 40.4 .396

9,1 1510 .012 27.6 .375

11,1 1680 .011 28.5 .363

13,1 1880 .0095 26.7 .349

15,1 2075 .0085 27.6 .342

17,1 2285 .0089 32.0 .334

19,1 2495 .0081 31.6 .330

21,1 2720 .0066 28.3 .324

23,1 2935 .0067 31.1 .322

25,1 3170 .0063 31.4 .318

27,1 3370 .0064 34.1 .320

29,1 3605 .0061 34.3 .316

31,1 3840 .0054 32.7 .314

TABLE 6.2 Experimentally Determined Characteristics

of the Modified Membrane
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Damping Equivalent
Plate Mode Frequency Factor Bandwidth

Type (m,n) (Hz) Fao) (Hz)

3,1 805 .023 29.0

5,1 910 .0082 11.7

C-C-C-C 7,1 1070 .0089 14.9

Plate 9,1 1290 .0031 6.3

11,1 1585 .0049 12.2

13,1 1960 .0019 5.8

15,1 2405 .0017 6.4

17,1 2920 .0018 8.3

19,1 3500 .0019 10.4

21,1 4150 .0014 9.1

5,1 865 .022 29.4

7,1 1020 .015 23.8

9,1 1235 .0038 7.4

11,1 1520 .0045 10.8

S-C-S-C
Plate 13,1 1880 .0024 7.2

15,1 2325 .0020 7.3

17,1 2825 .0025 11.1

19,1 3395 .0019 10.0

21,1 4040 .0015 9.8

TABLE 6.3 Experimentally Determined Characteristics
of the Plates



Um6* 6 06*
U0Re . . -U/UmOm/sec R (inches) (inches) e

20 5.1 x 103 .218 .160 1.36 .037

29 7.0 x 10 .206 .151 1.36 .037

40 9.3 x 103 .199 .144 1.38 .037

50 1.1 x 104 .194 .143 1.36 .038

TABLE 6.4 Mean Properties of the Boundary Layers



Structure Mode 7,1 9,1 11,1 13,1 15,1 17,1 19,1 21,1 23,1 25,1 27,1 29,1

_ _ -~) - - - - - - -I I I -I-
fmn
(Hz)

1325 1480 1650 1840 2030 2240 2440 2655 2870 3095 3320 3550

U -190 -193 -193 -196 -197 -- -- -- -- -- --

29 m/sec I I

U40 = -181 -184 -184 -186 -190 -192 -193 -196 -196 -198 -200 --
40 m/sec

U =

50 rn/sec

mn
(Hz)

174 -177 -176 179 -182 183 -185 -188 189 191 -194

1 1 4 1-4 4 t I I I T

1345 1510 1680 1880 2075 2285 2495 2720 2935 3170 3370

193

3605

U0 = -190 -192 -195 -196 -198 -201 -- -- -- -- -- --29 m/sec I j j j
UO -180 -184 -183 -185 -190 -192 -193 -199 -195 -- -- --40 m/sec
UC=

50 m/sec
-174 -180 -178 -180 -184 -186 -188

_________________ I I I I I a

-192 -191 196 -197

TABLE 6.5 Measured Membrane Displacement Levels
All Levels Are dB re lm & 1 Hz

ro a

ro
m a)
w d4

ro a

ro
0 a)

:i :

-4

0



Itutr Mode 1 1 91 11 13,1 1511 17,1 190,1121,1

L1 lict1 (mnn) I___ I I I IIIII
fimn
(Hz)

910 1070 1290 1585 1960 2405 2920 3500 4150

U = -46 -51 -43 -53 -46 -49 -48 -51 -49
20 m/sec I I

U = -38 -42 -34 -44 -35 -39 -37 -42 -39
29 rn/sec ____________ ____________

U =

40 r/sec -28 -33 -24 -32 -26 -31 -30 -34 -33

U =

500r/e

f
mn

(Hz)

-21 27

a- I -- - - I - - a. I t a 1

865 1020 1235 1520 1880 2325

-25

2825

-28

3395

-26

4040

U = -54 -55 -50 -57 -51 -53 -58 -56 -56
20 r/sec I___ ________ ___ ___

U= -43 -46 -39 -46 -40 -43 -48 -45 -46
29 r/sec _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ucx -32 -38 -29 -35 -31 -32 -38 -37 -38
40 m/sec

U =
00 -26 -22 -28 -23 -25 -31 -30 -33

j~ ~~5 m/sJecI~nin 5

TABLE 6.6 Measured Plate Acceleration Spectral Levels
All Levels Are dB re lm/sec 2 and 1Hz

r-4

CDJ

H

rtJ

04 4-'

C-)

-) P

1 P4
U)
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TYPE MODE STANDARD MEMBRANE MODIFIED MEMBRANE
OF

DATA (m n) CALCULATED MEASURED CALCULATED MEASURED

7,1 -128 -132 -127 -129

9,1 -127 -124 -127 -132

11,1 -130 -126 -131 -130

13,1 -131 -130 -132 -140
CN

15,1 -134 -132 -135 -143

y 17,1 -137 -130 -138 -134

19,1 -138 -132 -139 -148
o 

21,1 -139 -140 -140 -134
o 4

23,1 -140 -139 -142 -150

25,1 -141 -134 -144 -147

27,1 -143 -139 -146 -145

29,1 -144 -133 -147 -147

TYPE MODE CLAMPED PLATE S-C-S-C PLATE

OF
DATA (m,n) CALCULATED MEASURED CALCULATED MEASURED

5,1 26 24 16 19

oP 7,1 22 18 15 18

9,1 29 26 25 31

11,1 23 23 22 22

o ClI
r- U 13,1 30 34 26 23

a)

15,1 30 31 27 36

17,1 29 34 24 16

4 19,1 27 31 26 32

r 21,1 30 -- 27 19

TABLE 7.1 Measured and Calculated Sensitivity to
Acoustic Excitation



U1 29 m/sec 40 m/sec

1.50 1.87 2.08 2.30 1.05 1.31 1.46 1.61

K 1* .280 .327 .386 .446 .201 .316 .373 .430

Lp (dB) -93 -98 -100 -99 -87 -92 -95 -97

U0 40 m/sec 50 m/sec

W* 1.78 1.93 2.10 2.28 2.45 2.63 .82 1.02

K * .488 .545 .603 .660 .717 .775 .196 .308

L (dB) -98 -98 -101 -99 -101 -101 -84 -86

_ _ - -- 
-I- - -

U 50 m/sec

W* 1.14 1.26 1.39 1.51 1.64 1.78 1.92 2.06

K * .364 .420 .476 .532 .588 .644 .700 .756

L (dB) -90 -93 -91 -93 -97 -95 -97 -99
P

TABLE 7.2 Measured Low Wavenumber Levels of P(k,0,W) From Standard Membrane Data,

Lp = 10 log (P(k 1 ,0,O)/q 26*3/U))



Ut 29 m/sec 40 m/sec

* 1.52 1.71 1.90 2.13 2.35 2.59 1.07 1.33 1.49 1.65

K 1* .208 .267 .327 .386 .446 .505 .201 .316 .373 .430

L (dB) -94 -98 -100 -100 -101 -103 -87 -92 -93 -98
P

Um 40 m/sec 50 m/sec

* 1.81 1.98 2.33 .83 1.04 1.16 1.42 1.55 1.82 2.38

*
K1  .489 .545 .660 .196 .308 .364 .476 .532 .644 .868

Lp (dB) -98 -97 -99 -85 -89 -93 -95 -96 -99 -97

TABLE 7.3 Measured Low Wavenumber Levels of P(k 1 ,0,w) From Modified Membrane Data,

Lp = 10 log(P(k1 10,w)/(q 6*3 /U) )



29
U~ 20 m/sec n/sec

1.78 3.28 4.92 1.58 1.86 2.25 2.76 3.41 4.18 5.08 2.13

K 1 .240 .445 .582 .188 .257 .325 .394 .463 .531 .600 .420

L (dB) -97 -108 -115 -94 -98 -98 -105 -105 -111 -110 -103
p IIII__

UO 29 m/sec 40 m/sec

3.20 1.21 1.46 1.80 2.22 2.72 3.96 2.24 .85 1.02 1.26

K .55 .243 .307 .372 .437 .501 .631 .531 .234 .297 .359

L (dB) -111 -93 -94 -100 -99 -104 -107 -105 --88 -88 -92

Um 40 m/sec 50 m/sec

1.55 1.91 2.31 2.78 .80 .98 1.21 1.49 1.81 2.17 2.57

K 1.422 .484 .547 .609 .290 .351 .412 .473 .534 .595 .655

L (dB) -93 -100 -98 -103 -83 -89 -87 -94 -97 -98 -99
P

TABLE 7.4 Measured Low Wavenumber Levels of P(K1,0,w) From Plate Data,

Lp = 10 log(P(K,0,w)/(q 6* /U,) }
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A) Membrane Geometry

B) Plate Geometry

FIGURE 2.1 Geometrical Considerations for the Rectangular
Structures
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max. level =-3.3 dB at k =k m 17.3
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FIGURE 3.3 Wavenumber Filter Shape for a Free-Free Beam (m = 5)



max. level = - 3.5 dB at k = k = 17.3
m

FIGURE 3.4 Wavenumber Filter Shape for a Clamped Free -Beam (m=5)
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max. level = - 3.0 dB at k = k = 15.7
m
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k = kL

FIGURE 3.5 Wavenumber Filter Shape for a Simply Supported Beam (m = 5)
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max. level = - 3.2 dB at k = k = 16.5m0
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FIGURE 3.6 Wavenumber Filter Shape for a Clamped-Simple Beam (m = 5)



max. level = -3.4 dB at k = k 17.3

FIGURE 3.7 Wavenumber Filter Shape for a Clamped Beam (m = 5)
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-20 \C-F supports
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FIGURE 3.8 A Comparison of the Decay of Side Lobe Peak Levels for Beams
With Various End Supports (m = 5)



Bandpass Low Noise Fotonic

.4 Filter Pre-amplifier Sensor

Bandpass Low Noise Fotonic

Filter Pre-amplifier Sensor

FIGURE 4.1 Experimental Setup for Mode Shape Measurements
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a. Fixed Sensor at Membrane Center

b. Traversing Sensor

FIGURE 4.2 Apparatus for Mode Shape Measurement
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a. Driver Positioned at Antinode of (9,1) Mode for Clamped Plate

b. View of Pipe Fitting Used to Reduce the Drive Area

FIGURE 4.3 The Small Area Acoustic Drive
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FIGURE 4.7 Detailed Plate Mode Shapes Near the Boundaries,
(9,1) Mode, x-x Clamped Plate, Q-0 S-C-S-C Plate,
'-. Idealized Clamped Beam.
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FIGURE 4.8 Measured Mode Shape: (11,1) Mode of Standard Membrane
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FIGURE 4.9 Measured Mode Shape: (9,1) Mode of Modified Membrane
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FIGURE 4.10 Measured Mode Shape: (15,1) Mode of Modified Membrane
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FIGURE 4.11 Measured Mode Shape: (9,1) Mode of Clamped Plate
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FIGURE 4.13 Measured Mode Shape: (9,1) Mode of S-C-S-C Plate
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kc = Typical Convective Wavenumber (U. = 40 m/sec)
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FIGURE 5.3 Geometrical Considerations for Acoustic
Response Estimates
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APPENDIX A

Mode Shapes and Eigenvalues for Beams with Various Boundary Conditions

The mode shapes listed here are normalized according to

equation (2.20) and are given in terms of the non-dimensional

spatial variables x = x/L and k = kL.

Free-Free Beam

The boundary conditions are g"(0)= g"' (0) = g"(1) = g"'(1) = 0,
m m m m

and the resulting normalized mode shape is

sinh k + sin k- - - - -m m- -- -
G (x) = cosh k x + cos kx - (sinh k x + sin k x) . (Al)

cosh k - cos k
m mi

The eigenvalues km are determined by the equation

cosh k cos km = 1, (A2)

Volterra [13] lists values of k (excluding the two k = 0 modes) of:m m

m km m km m km

1 4.7300408 3 10.9956078 5 17.2787596

2 7.8532046 4 14.1371655 m 5 (m + 1/2) T

Clamped-Free Beam

The boundary conditions are gm (0) = g' (0) = g" (1) = g"'(l) = 0,m m %

and the resulting normalized mode shape is

cosh k + cos k- -- -m m
G m(x) = cosh k x - cos k x - (sinh k x - sin k x) (A3)

sinh k + sin k
m m
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The eigenvalues are determined from

cosh k - cos k =-1. (A4)
m m

For this case Leissa {11] gives values of km of:

m km m km m km

1 1.8751041 3 7.8547574 5 14.1371684

2 4.6940911 4 10.9955407 m 5 (m - 1/2)1T

Simply-Supported Beam

The boundary conditions are g m(0) = g" (0) = gm(1) = g" (1) = 0,

and the resulting normalized mode shape is

G (x) = v2 sin kmx, (A5)
m m

where the eigenvalues km are given by km = m7r, m = 1,2,3....

Clamped-Simple Beam

The boundary conditions are g( 0) = g' (0) = gm(1) = g" (1) = 0,m m

and the resulting normalized mode shape is

1

G (x) = c k x - cos kx - (sinh k x - sin k x) . (A6)
m m m - mm

tanh km

The eigenvalues k are determined by the equationm

tanh km = tan k m (A7)

Volterra [13] gives the eigenvalues k as:
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m k m k m k
m m M

1 3.9266023 3 10.2101761 6 16.4933614

2 7.0685827 4 13.3517688 m>5 (m + 1/4)r

Clamped-Clamped Beam

The boundary conditions are g( 0) = g' (0) = gm(l) = g' (1) = 0,

and the resulting normalized mode shape is (A8)

cosh k - cos k
G (x) = cosh k x - cos kx- m (sinh k x - sin k)m F m m .m m

L m m [sinh k -- sin ksnm
1- m mJ

The determining equation for the eigenvalues k is identical with

equation (A2) so that the eigenvalues listed for the free-free beam

apply to the clamped beam case as well.
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APPENDIX B

A Convective Ridge Model of the Wavenumber-Frequency Spectrum of Wall
Pressure

There are two reasons for seeking a reliable estimate of the

levels of the wavenumber-frequency spectrum of wall pressure

p (k,w) at convective wavenumbers. First, it is helpful to have a

reference with which to compare the low wavenumber measurements.

Secondly, a convective estimate of 5 (K,w) is needed for purposes

of estimating the possible degree of convective contamination in the

measured response.

Measurements of single point spectra and cross-spectral

densities of wall pressure are both dominated by convective effects.

It should, therefore, be possible to manipulate such data to obtain

an estimate of 5 (K,w) which is valid at convective wavenumbers

(i.e.: k , w/U c). Blake [17] had previously obtained two point

wall pressure data in the same wind tunnel facility that was used

for the low wavenumber measurements. Some of Blake's data was

presented in the form of cross-spectral density functions @ (r ,r3'

By fitting exponential curves to his cross-spectral density data

Blake obtained [17]

-0.116(wrl/Uc)

p1p (Bl)
-1.2 (Wr3 /U.)

2. (,1r3 W) p
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where D (w) is the spectral density of wall pressure.
p

A similarity form is assumed for 0 (r ,r3 W) which differs

from that of Corcos 116] only in the argument of the B-function.

That is,

(r ,r 3,w)= Cw)'A - 'B[ e .iwr1/Uc (B2)
p 13 p U U

By using Blake's data from equation (Bl), equation (B2) becomes

@ (rl,r ,W) = D (w)e e e - (B3)
p 13 p

The wavenumber-frequency spectrum p (K,W) is related to the

cross-spectral density p(r,w) by the following transform relationship:

1 ( i(k1 r  + k3r3)
(k ,k3' (27r) 2 0pr,3,o/e dr dr3 . (B4)

If the similarity form of equation (B3) is substituted into equation (B4),

the required integrations can be performed analtyically to yield

.139 W2/r2U U

@ (ki,k3 W) -(w)c (B)
p l 1 p 1. 2wN2 .ll16w'- - _1 2 + k] + k -

UO L U UC 
U c

The form of equation (B5) indicates that 0 (k,k 3 1w) has its largest

values at (k3 = 0, k1 = W/Uc) thus exhibiting a convective ridge.
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Equation (B5) can be non-dimensionalized on outer variables

to obtain
CB6).

.139 Co* 2

' (k*,k*,w*) = c'(W*)
p 1 3 p 1 1.2w*) 2 + k3 *2](.116w*) 2 + (ak * - W*)21

where the non-dimensional variables are defined by

W* = o6*/U , a = a(w*) = U (o*)/UJ, k* = k.6* for i = 1,3
c 0 1 1 (B7)

@' (*) = (p (W)/(q 26*/U), D'(k*,k3 'w*) = p (kk 3  
2 6* 3/U,).

To obtain convective ridge values for comparison with the measured

low wavenumber levels, equation (B6) is used with k3 * 0 and

k * = W*/a to give

.728a
@'(k*= w*/a.,0,o*) = D' (w*) (B8)
p 2 p
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