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Abstract

If singly scattered seismic waves illuminate the entirety of a subsurface structure of interest, standard methods can
be applied to image it. It is generally the case, however, that with a combination of restricted acquisition geometry
and imperfect velocity models, it is not possible to illuminate all structures with only singly scattered waves. We
present an approach to use multiply scattered waves to illuminate structures not sensed by singly scattered waves. It
can be viewed as a refinement of past work in which a method to predict artifacts in imaging with multiply scattered
waves was developed. We propose an algorithm and carry out numerical experiments, representative of imaging of
the bottom and flanks of salt, demonstrating the effectiveness of our approach.

1 Introduction
Imaging with multiples was first proposed in a Kirchoff framework for water column multiples in (Reiter et al.,
1991). In recent years imaging with surface-related multiples has garnered a great deal of attention (Guitton, 2002;
Berkhout & Verschuur, 2006; Muijs et al., 2007a; Muijs et al., 2007b). In these methods, primaries are used as a
source function for imaging with surface-related multiples directly. As was done in (Malcolm et al., 2007) to estimate
image artifacts, these techniques could be extended to apply to internal multiples by performing similar procedures at
depth. Through interferometric imaging, in particular for VSP data, additional work has been done on imaging with
multiples. An overview of this work is given in (Schuster et al., 2004; Jiang et al., 2007); in this case the multiples
are turned into primaries through interferometry and then standard migration techniques are applied. Several other
examples exploiting these ideas are given in (Jiang, 2006; Vasconcelos et al., 2007). To our knowledge this is the first
demonstration of imaging from beneath a complicated geologic structure using surface data. The work of (Youn &
Zhou, 2001) could certainly generate similar results, but their method is significantly more computationally intensive
and requires prior knowledge of the location of the deeper reflector in multiple generation, which our method does not.

In this paper, we introduce a method of including multiply scattered waves in one-way wave equation based migra-
tion. The method has the potential to improve, in particular, images of the base of salt and of near-vertical structures
such as salt flanks or faults. Our approach extends the work of (Malcolm & de Hoop, 2005) by including illumination
in a series representation that models the data as a superposition of different phases. By explicitly including illumina-
tion in the series we identify those multiples which carry information about regions of the subsurface not illuminated
by singly scattered waves.

Imaging with multiply scattered waves based on a one-way wave equation, requires a “multi-pass” approach rem-
iniscent of the generalized Bremmer series (de Hoop, 1996). Turning waves can, in principle, also be accounted for
in such an approach (Xu & Jin, 2006; Zhang et al., 2006); see also (Hale et al., 1991). In the multi-pass approach,
starting at the surface (or top), waves are first propagated downwards and then stored at each depth; in the second
“pass”, starting at the bottom, reflection operators derived from the image (formed in the first pass) are applied to the
stored fields and the results are propagated, accumulatively, back upwards. With each pass an additional scatter is
incorporated on both the source and receiver side. Although turning waves could be incorporated in such a framework,
they can be incorporated in the one-way wave equation more naturally by introducing proper curvilinear coordinates
(and the associated Riemannian metric (Stolk & de Hoop, 2007)).
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The approach proposed in this paper integrates elements of (Jin et al., 2006; Xu & Jin, 2007), who developed a way
to image near-vertical structures with doubly scattered waves, with (Malcolm & de Hoop, 2005), who developed the
inverse generalized Bremmer coupling series. Here, we modify this series to incorporate illumination effects to arrive
at a method to generate partial images with different orders of multiply scattered waves. The final image is then con-
structed from these partial images (cf. Figure 1). The inverse generalized Bremmer coupling series combines aspects
of the Lippmann-Schwinger equation driven inverse scattering series developed by (Weglein et al., 1997; Weglein
et al., 2003) with the generalization of the Bremmer series (Bremmer, 1951) developed by (de Hoop, 1996). Stan-
dard migration techniques typically take into account only the first term of these respective series, which is the single
scattering assumption ubiquitous in seismic imaging. Our general interest is imaging with “underside” reflections; the
numerical results shown in this paper focus on internal multiples.

A method for imaging with surface-related multiples (primarily triply scattered waves) has been proposed by
(Berkhout & Vershuur, 1994; Berkhout & Verschuur, 2006). They transform surface-related multiples into primaries
with the “sources” at the surface reflection points; this approach is expanded upon by (Guitton, 2002). Elastic-wave
surface reflections were also used by Bostock et al. (Bostock et al., 2001) but then in the setting of teleseismic waves
and passive sources. Exploiting the information in internal multiples, as is done here, has not been investigated to
the same extent, although (Jiang, 2006; Vasconcelos et al., 2007) show examples using seismic interferometry in
which internal multiples are converted into primaries with a different acquisition geometry and then used in standard
imaging techniques. Further details on interferometric imaging particularly focusing on the inclusion of surface-
related multiples in imaging are found in e.g. (Schuster et al., 2004; Jiang et al., 2007). On a global scale, (Revenaugh
& Jordan, 1991) has used information contained in reverberations between discontinuities in the mantle to further
constrain these discontinuities, through a 1D inversion procedure.

Although we focus primarily on triply scattered waves, doubly scattered waves are also included in our theoretical
framework. These waves have been utilized in the context of imaging near-vertical structures. They are referred to
as “duplex”, or “prismatic” waves, and were first discussed by (Bell, 1991), directly followed by (Hawkins, 1994),
who discussed their influence on dip moveout (DMO) algorithms. Prismatic reflections have been exploited in a ray-
theoretical framework, also in the context of travel time tomography, by several authors (Bell, 1991; Broto & Lailly,
2001; Marmalyevskyy et al., 2005; Cavalca & Lailly, 2005; Cavalca & Lailly, 2007). Bell (1991) describes a method
by which the location of a vertical reflector is optimized by reducing the travel time of the doubly scattered waves to
an equivalent primary reflection. Marmalyevskyy (Marmalyevskyy et al., 2005) uses a Kirchoff method to carry out
the imaging in which a near-horizontal reflector is picked and the reflection off this interface is included in the Green’s
function used in Kirchoff migration. A mathematical analysis of imaging with doubly scattered waves, related to the
approach of Marmalyevskyy, has been carried out in(Nolan et al., 2006) for a radar problem. In (Broto & Lailly, 2001;
Cavalca & Lailly, 2005; Cavalca & Lailly, 2007) the authors use the picked travel times of doubly scattered waves as
part of a traveltime tomography procedure. The goal of their work is to provide an inversion framework that accounts
for regions where the forward map for (modeling of) a particular event is “undefined”. They choose the exploitation
of doubly scattered waves as these waves are often recorded at only a subset of the receivers. In this case, primaries
and doubly scattered waves are used in a joint inversion for both the velocity model and reflector locations; the doubly
scattered waves are included by first identifying them as doubly scattered waves and then minimizing a travel time
misfit between the computed (via raytracing) and true traveltimes.

Our approach requires neither the explicit identification of multiply scattered waves nor the manual location of
near-horizontal reflectors. (Including certain reflectors in the velocity model in reverse-time migration to incorporate
multiple scattering has been considered in (Mittet, 2006); similar ideas are suggested in (Youn & Zhou, 2001).)

Brown and Guitton (Brown & Guitton, 2005) employ a forward scattering series to model the data in a least-squares
fitting strategy. Each (surface-related) multiple is assigned to its own contrast function (image). They separate source-
and receiver-side multiples. Regularization operators are incorporated to suppress cross talk between the different
contrast functions during the least-squares inversion; these operators are designed to boost the cross talk and are added
as a penalty term so that the resulting optimization promotes solutions with minimal cross talk. One regularization
operator example is the annihilator described in (Stolk & de Hoop, 2001; Stolk & de Hoop, 2006) applied in the
image-gather domain to the outcome of the wave-equation angle transform. In our approach we rely on the range of
the single scattering operator, which can be characterized by annihilators of the data (de Hoop & Uhlmann, 2006).
Brown and Guitton also consider a regularization operator that extracts the cross talk by applying the imaging operator
for a particular multiple to an estimate of a different multiple the estimate of which is determined by modeling data
from the contrast functions (in the current iteration) with the associated multiple scattering operator. Our subtraction
procedure is reminiscent of this design, except that it is carried out in the data domain rather than the image domain.
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Figure 1: Assimilation of partial images. Examples of “topside” reflection (singly scattered waves, left), “underside”
reflection (triply scattered waves, left) and “prismatic” reflections (doubly scattered waves, right) considered in this
paper. The deep reflector (not drawn) will be assumed to appear in the image of the first pass.

This procedure is computationally intensive, however, and so we approximate it with particular pseudodifferential
cutoffs tied to the imaging conditions associated with doubly, triply, etc, scattered waves, to implement our approach.
These are reminiscent of the imaging condition used in reverse-time migration (Biondi & Shan, 2002; Xie & Wu,
2006), derived from directional wavefield decomposition.

The paper is organized as follows. We first review the basic structure of multiple scattering operators in the
context of inverse scattering. We then introduce the notion of illumination decomposition. In Section 3 we discuss
the formation of images with multiply scattered waves, making use of the illumination decomposition, and propose
a corresponding algorithm. We carry out numerical experiments demonstrating the effectiveness of our approach in
Section 4.

2 Multiple scattering: Image artifacts and illumination

2.1 Directional decomposition
We consider acoustic wave propagation, governed by the system of equations

∂z

(
u

∂zu

)
=
(

0 1
−A 0

)(
u

∂zu

)
+
(

0
−f

)
, (1)

where
A = A(z, x, ∂x, ∂t) = ∂2

x − c(z, x)−2∂2
t , (2)

u is the particle displacement, and f is the source density of injection rate; x denotes the “horizontal” coordinates,
t is time, and z is the “depth” coordinate. The velocity c is assumed to be a smooth function. In n-dimensional
seismics, x = (x1, . . . , xn−1), n = 2, 3. To facilitate the decomposition of the wavefield into constituents that have
been scattered a specific number of times, we split the wavefield into up- and down-going components, as in the
development of the Bremmer series decomposition (de Hoop, 1996); the analysis can be found in (Stolk & de Hoop,
2006). We introduce a z-family of decomposition operators, Q(z), with

U :=
(

u+

u−

)
= Q(z)

(
u

∂zu

)
,

(
f+

f−

)
= Q(z)

(
0
−f

)
, (3)

that diagonalize system (1) according to

Q(z)
(

0 1
−A 0

)
Q−1(z) =

(
iB+ 0
0 iB−

)
. (4)

The operators B± are pseudodifferential operators (locally but not globally), and are often referred to as the single-
square-root operators; for “true-amplitude” applications, their sub-principal symbols have to be taken into account.
(For an introduction to the notion of wavefront sets and the calculus of pseudodifferential operators, see (Sjöstrand &
Grigis, 1994).) There are several different choices possible for the “normalization” of Q(z). We choose the vertical
power flux normalization because in this normalization the operators B± are self-adjoint, and the diagonal entries
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of the coupling operator, Q(z)∂zQ(z)−1, are of lower order and can be neglected in leading-order “true-amplitude”
applications. In this normalization, the decomposition operators take the form

Q(z) = 1
2

(
Q∗

+(z)−1 −HQ+(z)
Q∗
−(z)−1 HQ−(z)

)
, (5)

where the Q±(z) are pseudodifferential operators, and H is the Hilbert transform in time. System (1) transforms, upon
suppressing the down-up coupling, into a system of one-way wave equations,

∂z

(
u+

u−

)
=
(

iB+ 0
0 iB−

)(
u+

u−

)
+
(

f+

f−

)
, (6)

for the downgoing field, u+, and the upgoing field, u−. From (3) we find that u(z, .) = Q∗
+(z)u+(z, .)+Q∗

−(z)u−(z, .),
while f±(z, .) = ± 1

2HQ±(z)f(z, .). We introduce the Green’s functions, G±, for the one-way wave equations; we
denote the corresponding solution operators, that is, one-way propagators, by the same symbols. Here, the evolution
coordinate is z. We then form the matrix

G =
(

G+ 0
0 G−

)
, (7)

which is the down/up solution operator for the diagonal system (6).
To develop the scattering equations and formulate the inverse scattering problem, we decompose the velocity

model into a background model c0(z, x), which is smooth and assumed to be known, and a contrast, δc(z, x), which
is to be determined. The contrast defines the perturbation,

δA = 2c−3
0 δc ∂2

t (8)

of A in (2). With c0 playing the role of c in the directional decomposition above, this naturally leads to the introduction
of

V (z) = Q(z)
(

0 0
−δA(z, .) 0

)
Q(z)−1, (9)

cf. (4). We then introduce V̂ according to V = V̂ ∂2
t . While neglecting the down-up coupling in the background

model, the directional decomposition facilitates the identification of different orders of multiply scattered waves. The
total scattered field is written in the form(

δu
∂zδu

)
= Q(z)−1

(
δu+

δu−

)
, δU =

(
δu+

δu−

)
, (10)

cf. (3). The equation for δU then reads (Malcolm & de Hoop, 2005, (41)),

(I − ∂2
t GV̂ ) δU = ∂2

t G(V̂ U), (11)

which has the form of a Lippmann-Schwinger equation (Lippmann & Schwinger, 1950; Lippmann, 1950), or equiva-
lently

(I − ∂2
t GV̂ ) (U0 + δU) = U. (12)

2.2 Recursions: Forward and inverse scattering
Starting from (11) we can now set up a recursion to generate multiply scattered waves:

δU1 = ∂2
t G(V̂ U), δUm = ∂2

t G(V̂ δUm−1), m = 2, . . . ,M (13)

so that
∑M

m=1 δUm generates δU . (As compared with the generalized Bremmer coupling series, G(V̂ ∂2
t . ) can be

identified with K . in (de Hoop, 1996); the second-order time derivative, however, requires additional care in the
analysis.) Clearly, m counts the order of scattering; here, we consider M = 3. In a surface seismic experiment,
ignoring free-surface effects, we can set the up-going source f− = 0 (at z = 0), while one observes the upcoming
wave constituent, Q∗

−(0) δu−(0, ., ., .); we model data, d, upon subjecting this constituent to a further restriction to the
acquisition geometry.
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To develop a framework for inverse scattering, we rewrite (12) according to (Malcolm & de Hoop, 2005, (49)-(50))
as

∂2
t GV̂ (U + δU) = δU.

The reconstruction of the contrast is initiated by expanding V̂ into the sum V̂ =
∑M

m=1 V̂m. In the actual process,
the equation above, and the recursion below, need to be subjected to a restriction to z = 0 after applying Q∗

−(z). The
reconstruction is usually driven by the single scattering operator derived from δU1 in (13) using all the data; that is,

δU = ∂2
t G(V̂1U), (14)

−∂4
t G(V̂1G(V̂1U)) = ∂2

t G(V̂2U), (15)

−∂6
t G(V̂1G(V̂1G(V̂1U)))− ∂4

t G(V̂1G(V̂2U))− ∂4
t G(V̂2G(V̂1U)) = ∂2

t G(V̂3U), · · · (16)

Here, we assume full illumination through the single scattering operator appearing on the right-hand sides of equations
(14)-(16). In other words we have thus far assumed that V̂1 is determined everywhere from equation (14) in which case
multiply scattered artifacts are estimated from (15) and (16). If the data acquisition only results in partial illumination,
however, we can complement this illumination by higher-order terms appearing on the left-hand sides of (15)-(16).
For example, the illumination of V̂2 is the same as of V̂1 allowing the detection of artifacts; locally, where V̂1 has
not been illuminated through (14), one can fill in “holes” by moving the corresponding contribution from the left-
hand side in equation (15) to the right-hand side of equation (14). Indeed, the left-most terms in (15)-(16) can generate
contributions that are effectively of first (or second) order, the other two terms on the left-hand side of (16) can generate
contributions that are effectively of second order, etc. This approach is discussed in detail in the following subsection.

2.3 Illumination decomposition

In many configurations, there are regions where V̂ cannot be reached by singly scattered waves. Multiply scattered
waves may serve as a remedy for these illumination gaps. To analyze this possibility, we introduce the illumination
decomposition,

V̂1 = V̂ ′
1 + V̂ ′′

1 + V̂ ′′′
1 + . . . , (17)

where V̂ ′
1 is the part of the model that has been illuminated by the recorded singly scattered data, V̂ ′′

1 is the part of
the model that is first illuminated by the doubly scattered data, V̂ ′′′

1 is the part of the model first illuminated by triply
scattered data, and so on. In the further analysis, we assume that the wavefront sets (see (Sjöstrand & Grigis, 1994) for
definitions) of V̂ ′

1 , V̂ ′′
1 , V̂ ′′′

1 , . . . have no points in common. We proceed with a construction to image regions where
singly scattered waves do not illuminate the structure of interest; such a construction was carried out for surface-related
multiples in (Berkhout & Verschuur, 2006).

Substituting (17) into the expansion for V̂ yields

V̂ = V̂ ′
1 + V̂ ′′

1 + V̂ ′′′
1 + · · ·+

M∑
m=2

V̂m. (18)

We note that the illumination decomposition pertains to the higher order terms, V̂2, V̂3, . . . , associated with the arti-
facts, as well. Indeed, the artifact prediction is complicated by this decomposition.

We adapt the recursion in (14)-(16), by accounting for illuminating the contrast with multiply scattered waves.
With the aid of (18), equation (14) becomes

δU = ∂2
t G(V̂ ′

1U) + ∂4
t

[
G(V̂ ′

1G(V̂ ′′
1 U)) + G(V̂ ′′

1 G(V̂ ′
1U))

]
+ ∂6

t

[
G(V̂ ′

1G(V̂ ′′′
1 G(V̂ ′

1U))) + G(V̂ ′
1G(V̂ ′

1G(V̂ ′′′
1 U))) + G(V̂ ′′′

1 G(V̂ ′
1G(V̂ ′

1U)))

+ G(V̂ ′′
1 G(V̂ ′′′

1 G(V̂ ′
1U))) + G(V̂ ′

1G(V̂ ′′
1 G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′

1G(V̂ ′′
1 U)))

+ G(V̂ ′
1G(V̂ ′′′

1 G(V̂ ′′
1 U))) + G(V̂ ′′

1 G(V̂ ′
1G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′′

1 G(V̂ ′
1U)))

+G(V̂ ′′
1 G(V̂ ′′′

1 G(V̂ ′′
1 U))) + G(V̂ ′′

1 G(V̂ ′′
1 G(V̂ ′′′

1 U))) + G(V̂ ′′′
1 G(V̂ ′′

1 G(V̂ ′′
1 U)))

]
+ . . . (19)
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Figure 2: Illustration of some of the terms from equation (19); (a) is singly scattered waves, (b) doubly scattered (from
the second set of brackets), (c)-(g) are triply scattered contributions from the third bracketed term. In our formulation
(c) and (d) are admitted while (e), (f) and (g) are not.
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Figure 3: Using multiply scattered energy allows the full illumination of an object of interest from surface data. Here
we illustrate both the data that are used in the imaging and the resultant images. In (a) through (d) we show snapshots
of the wavefield, with time increasing from (a) to (d), as the data are generated. The annotations on the plots highlight
different phases used in imaging; ‘D’ is the direct (downgoing) wave, ‘R’ is reflected (upcoming) from the lower
reflector and ‘T’ is transmitted through it, ‘CR’ is the constituent reflected from the cube and ‘CT’ is the constituent
transmitted into it, ‘DS1’ and ‘DS2’ are the doubly scattered waves off the left vertical edge of the cube and ‘TS’ is
the underside reflection. In all plots the solid lines mark the positions of reflectors. In (e) we show an image, made
assuming constant background velocity, of the cube structure; the vertical edges are imaged with doubly scattered
waves (‘DS1’ and ‘DS2’ in (d)) and the bottom with triply scattered waves (‘TS’ in (d)). In (f) and (g) we show that
imaging with triply scattered waves – and a constant background velocity – locates the reflector at the correct depth
(in (f)), whilst imaging from above, shown in (g), naturally places the reflector at the wrong depth. The traces in (f)
and (g) are stacks of images at the base of the cube; the solid line marks the correct reflector location.
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which is then subjected to the restriction to the acquisition geometry in the plane z = 0. We note that equation (19)
closely resembles a Born scattering series. The key difference, however, is that we have replaced what would ordinarily
be a single contrast V with three disjoint contrasts V̂ ′

1 , V̂ ′′
1 and V̂ ′′′

1 defining the different illumination characteristics
of multiply scattered waves. Naturally, equations (15)-(16) are affected by this refinement, and more intricate artifact
contributions occur. This equation is illustrated in Figure (2) which shows the first-order term (primary in (a)), the first
of the two second-order terms (prismatic reflections in (b)), the two dominant third-order terms (multiples in (c) and
(d)). The bottom row of this figure shows three third-order scattering terms which are included in equation (19) but
will not be included in our algorithmic construction in the following section.

Down-up reduction. We simplify (19) following a seismic experiment. Considering typical scattering ray geome-
tries in combination with a realistic acquisition geometry, we omit contributions that arise in the reconstruction of V̂ ′′′

1

using V̂ ′′
1 (see Figure 2 (e), (f)) – these are less likely to appear in the data. Contributions described by Figure 2 (g) are

likely to violate our assumptions concerning the wavefront sets of V̂ ′
1 and V̂ ′′′

1 . Out of the remaining contributions in-
volving V̂ ′′′

1 , the first term is most likely to play a role in practice (see Figure 2 (c) and (d)). We define the components
of V̂ as

V̂ =

(
V̂++ V̂+−
V̂−+ V̂−−

)
. (20)

We then assume that the effect of the free surface has been removed, the source is a down-going wave

U =
(

G+f+

0

)
(21)

and that we record only the up-going wavefield δu− at the surface z = 0. With these assumptions, applying Q∗
−(0),

we obtain the data equation

d = RQ∗
−∂2

t G−

[
(V̂ ′

1)−+ + ∂2
t (V̂ ′

1)−+ G+ (V̂ ′′
1 )++ + ∂2

t (V̂ ′′
1 )−− G− (V̂ ′

1)−+

+∂4
t (V̂ ′

1)−+ G+ (V̂ ′′′
1 )+− G− (V̂ ′

1)−+

]
G+f+, (22)

where R stands for the restriction to z = 0 and d represents the reflection data. We have suppressed the further
restriction to the acquisition geometry in our notation, however, we assume in the sequel that the acquisition geometry
consists of a set of sources, s, each with an associated set, Σs, of receivers. The terms in this equation can be identified
in Figure 3. We will make use of equation (22) in imaging by a bootstrapping argument. We note that the second
and third terms on the right-hand side account for “prismatic” reflections and that these two terms are reciprocal. The
focus of this paper is the extension of standard imaging techniques that address the first term on the right-hand side to
include the fourth term, thus making use of “underside” reflections. However, we will also briefly address the second
and third terms in the discussion.

3 Imaging with multiply scattered waves

3.1 Projections
We begin from the data equation (22). Our imaging strategy is as follows. We “project” d onto d1 in the range of the
single scattering operator,

d1 = RQ∗
−∂2

t G−((V̂ ′
1)−+(G+f+)), (23)

by minimizing ‖d − d1‖. In the process we reconstruct (V̂ ′
1)−+. This minimization differs from that used in (Brown

& Guitton, 2005) to regularize their iterative inversion problem in that we directly project onto the data, whereas their
regularization occurs in the image domain. In the context of our approach, we can introduce a penalizing term to the
“projection” that promotes contrast functions that differ from one another, consistent with the artifact identification

procedure of (Malcolm & de Hoop, 2005). From the estimate of (V̂ ′
1)−+, we then select a part, ( ˙̂

V 1)−+, of the recon-
struction of (V̂ ′

1)−+ to become a (or multiple) scatterer in the background model; these scatterers can be regularized
and enhanced with the aid of a curvelet-like transform and methods of `1 optimization. In contrast to reverse-time
methods (Mittet, 2006) and the method of Youn & Zhou (2001) this scatterer is not picked and included in the velocity
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model but is derived from the data themselves. Using ( ˙̂
V 1)−+, we form a “double” scattering operator by replacing

G− on the right-hand side of (23) by

G̃−+ · = ∂2
t G−(( ˙̂

V 1)−+(G+ · )). (24)

We proceed by “projecting” d− d1 onto d2 in the range of the “double” scattering operator,

d2 = RQ∗
−∂2

t G̃−+((V̂ ′′
1 )++(G+f+)), (25)

by minimizing ‖(d− d1)− d2‖. We reconstruct (V̂ ′′
1 )++, and then repeat this step with the reciprocal form,

d2 = RQ∗
−∂2

t G−((V̂ ′′
1 )−−(G̃−+f+)), (26)

and reconstruct (V̂ ′′
1 )−−. However, in the vertical acoustic power flux normalization, V̂−− = V̂++, whence we take

half the sum of the two double scattering reconstructions. Using ( ˙̂
V 1)−+, we form a “triple” operator by replacing

both G− and G+ on the right-hand side of (23) by G̃−+. We proceed with “projecting” d − d1 − d2 onto d3 in the
range of the “triple” scattering scattering operator,

d3 = RQ∗
−∂2

t G̃−+((V̂ ′′′
1 )+−(G̃−+f+)), (27)

by minimizing ‖(d− d1 − d2)− d3‖. From this, we obtain a reconstruction of (V̂ ′′′
1 )+−.

A natural concern is the separation of the ranges of the different scattering operators (i.e. isolating multiply
scattered waves). Indeed, an estimate of (V̂ ′

1)−+ made by approximating d1 with d will differ from the true V̂ , by
not only the illumination footprint of the acquisition geometry but also by artifacts from higher-order scattering (e.g.
internal multiples). An approach to attenuate these artifacts is discussed in (Malcolm & de Hoop, 2005), which can be
refined to account for the illumination decomposition introduced here. Moreover, the subtraction of data sets, d− d1,
(d − d1) − d2, and so on, with equations (23-27) is problematic as the resolution of d1, d2, . . . will differ from one
another.

The approach developed in this paper assumes that singly scattered waves illuminate structures only from above.
Where strong vertical gradients exist, however, this assumption can be violated as waves will turn allowing the illu-
mination of near-vertical reflectors (this is exploited in (Shan & Biondi, 2004; Xu & Jin, 2006; Zhang et al., 2006))
and, in extreme cases, even illuminating reflectors from below. In principle, we can accommodate these situations by
introducing curvilinear coordinates.

3.2 Imaging condition
We revisit the imaging condition from a reverse-time migration perspective, allowing Green’s functions in general
background models. For each source, the incident field can be written in the form

us(z, x̄, ω) = G+(z, x̄, ω, 0, s) (28)

assuming that f+(x, ω) = −δ(x− s). The backpropagated data are given by

uΣs(z, x, ω) =
∫

Σs

G−(0, r, ω, z, x) Q−,r(0)d(r, ω, s) dr; (29)

the subscript r in Q−,r signifies that the operator acts in the r, and not the s, variables. We note that the matrix
elements of the operator V̂ = V̂ (z) = V̂ (z, x,Dx, Dt), such as

V̂−+(z) · = HQ−(z) (−c−3
0 δc(z, ·) (Q∗

+(z) · )), (30)

which contain the contrast −c−3
0 δc, can be written in terms of their kernels, V̂ (z, x, x̄, ω). We denote the image

of V̂−+(z, x, x̄, ω) by I(z, x̄, x, ω). The imaging operator follows from the mapping d(r, t, s) 7→ I(z, x̄, x), where
I(z, x̄, x) is given by

I(z, x̄, x) =
1
2π

∫
I(z, x̄, x, ω) dω =

1
2π

∫ ∫
us(z, x̄, ω) uΣs(z, x, ω) ds ω2dω

ω→−ω=
1
2π

∫ ∫
us(z, x̄, ω) uΣs(z, x, ω) ds ω2dω, (31)

9



and the second representation is obtained by time reversal. Using that G+(z, x̄, ω, 0, s)Q+,s(0) can be identified with
Q∗
−,s(0)G−(0, s, ω, z, x̄), that is, reciprocity, the first representation attains the form used to image in the downward-

continuation approach. With the modeling equation (cf. (23))

d(r, ω, s) = Q−,r(0)∗ω2

∫ ∫ ∫
G−(0, r, ω, z, x)V̂−+(z, x, x̄, ω) G+(z, x̄, ω, 0, s) dx̄dx dz, (32)

we can then form the normal equations and solve the inverse scattering problem by methods of least squares.
A standard calculation shows that an image of −c−3

0 δc is obtained by setting, in (31), x̄ = x after replacing
us(z, x̄, ω) by Q+,x̄(z)∗us(z, x̄, ω) and replacing uΣs

(z, x, ω) by −HQ−,x(z)∗uΣs
(z, x, ω). We obtain a form re-

sembling a two-way wave imaging procedure, but us does not propagate any − constituents while uΣs does not
propagate any + constituents. If one were to use a two-way wave propagation procedure, one would filter out the re-
spective constituents by methods of directional decomposition prior to applying the imaging condition to be consistent
with the imaging procedure outlined above (Xie & Wu, 2006).

One typically modifies the imaging operator derived from I(z, x, x), in accordance with the common-source based
normalization with the incoming wave amplitude (Claerbout, 1971),

I(z, x) :=
∫

Is(z, x) ds, I(1)
s (z, x) =

1
2π

∫
1

|us(z, x, ω)|2
us(z, x, ω) uΣs

(z, x, ω) dω. (33)

This modification can be refined in accordance with a common-source (asymptotic) true-amplitude imaging condition:

I(2)
s (z, x) =

1
2π

∫
1

|us(z, x, ω)|2
n∑

j=0

(Aj(z, x, ∂x, ω)us)(z, x, ω) (Aj(z, x, ∂x, ω)uΣs)(z, x, ω) (−iω)−1S(ω)dω, (34)

where A0(z, x, ∂x, ω) = iωc0(z, x)−1, A1(z, x, ∂z, ∂x, ω) = ∂z , and Aj+1(z, x, ∂z, ∂x, ω) = ∂xj , j = 1, . . . , n− 1;
S(ω) = ω−2 if n = 2. This common-source imaging condition is obtained upon substituting asymptotic ray rep-
resentations for the Green’s functions. The operators Aj compensate, asymptotically, for the Jacobian following a
transformation of coordinates such that Gel’fand’s plane-wave expansion for the δ function can be applied. These
operators also annihilate wave constituents that propagate from the source at (0, s) towards (z, x). Fletcher et al.
(Fletcher et al., 2006) introduce an ad hoc, directionally damped non-reflecting wave equation for reverse-time migra-
tion. Essentially, our asymptotically true-amplitude imaging condition accomplishes the task of damping naturally.

Following the common-source least-squares formulation, leads to the modification

I(3)
s (z, x) =

[ ∫
|us(z, x, ω)|2ω4dω

]−1 1
2π

∫
us(z, x, ω) uΣs

(z, x, ω) ω2dω; (35)

essentially the gradient (image) is scaled with (an estimate of) the diagonal of the Hessian (Plessix & Mulder, 2004);
see also (Shin et al., 2001). This approach can be extended to a least-squares formulation for all sources and receivers.
In this case, the division in equation (35) may become unstable near zeros of us. Several options for regularizing this
computation are given in (Vivas et al., 2008); in particular, they suggest replacing |us(z, x, w)|2 in the denominator
with ∫

|us(z, x, ω)|2dx (36)

in regions where |us(z, x, ω)|2 is below some threshold. In a slightly different context, (Plessix & Mulder, 2004) give
four options for rapidly computing the diagonal of the Hessian in a stable way.

So far, we have considered the imaging and (least-squares) reconstruction of (V̂ ′
1)−+ according to (23). We can

immediately generalize the procedure to the other reconstructions. For example, to reconstruct (V̂ ′′′
1 )+−, one replaces

G− and G+ both by G̃−+. We note that the computation of the latter operator makes use of the prior reconstruction
of (V̂ ′

1)−+.
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Figure 4: (a) Shot record, with source s at 0.3 km (indicated by a triangle in (b)-(d)); ‘P’ marks the primary reflection
off the bottom reflector and ‘D’ marks the doubly scattered wave; (b) the field uΣs

at a depth of 0.3 km (the vertical
line indicates the fault location); (c) the field uΣs at a depth of 0.3 km subjected to left-right “dip” filtering, suppressing
the white ray in (g); (d) the field uΣs at a depth of 0.3 km generated from d− d1; (e) the field ũs at a depth of 0.3 km;
(f) the field ũs at a depth of 0.3 km subjected to left-right “dip” filtering; (g) image generated omitting the subtraction
procedure; (h) image generated with the filtering; (i) image generated with the subtraction procedure.
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3.3 Algorithm summary
The proposed algorithm can be summarized as follows:

1. we downward/forward propagate the “source” wavefield, us, and downward/backward propagate the “receivers”
wavefield, uΣs ;

2. we store both us and uΣs
at each depth;

3. we apply imaging condition (35) to obtain an estimate for −c−3
0 δc from V̂ ′

1 throughout the model;

4. with the estimate of −c−3
0 δc we form operators V̂−+, cf. (30), and apply these to us and uΣs at each depth;

5. we, accumulatively, propagate the outcomes of the previous step upward to form ũs (forward) and ũΣs (back-
ward); ũs is obtained from us upon replacing G+ by G̃−+, and ũΣs is obtained from uΣs upon replacing G−

by G̃−+;

6. we apply the imaging condition, using ũΣs
and us to estimate −c−3

0 δc from V̂ ′′
1 in accordance with (25), and

using ũΣs and ũs to estimate −c−3
0 δc from V̂ ′′′

1 in accordance with (27).

All computations are carried out in the frequency domain. In the above, we have omitted the subtraction, d − d1

for the imaging with doubly scattered waves, and d− d1 − d2 for the imaging with triply scattered waves. This is mo-
tivated by computational efficiency. The idea is to apply pseudodifferential cutoffs to the downward continued fields,
chosen in accordance with the reliable part of the background velocity model, prior to applying the imaging condition
to mimic the subtraction. One such cutoff is illustrated in Figure 4 for double scattering case. The representative
model consists of a vertical reflecting segment, and a deep, extended horizontal reflector. In (b) the backpropagated
field uΣs

is shown at a certain depth (300 m, here); clearly d1 (reflection off the bottom reflector) and d2 (“prismatic”
reflection) components are present. By applying a left-right separating “dip” filter (in (c)), the two components sep-
arate sufficiently to prevent constructive correlation with ũs, which is illustrated in (e) and is subjected to left-right
separating “dip” filtering as well (in (f)). For comparison, we show the outcome of the subtraction procedure proper in
(i). We note that the images obtained with filtering (in (h)) and with subtraction (in (i)) are very close to one another.
The effect of ignoring the subtraction altogether is illustrated in the image in (g).

The cutoff used to mimic the subtraction d− d1− d2 in the case of a typical triple scattering situation is illustrated
in Figures 5-6. The representative model consists of a shallow horizontal reflecting segment, and a deep, extended
horizontal reflector. To replace the subtraction of d1, a straightforward windowing procedure is applied as illustrated
in Figure 5. The windowing is carried out while the data are downward continued, by removing a window of time
before times where energy from multiples is expected. We use a time window that increases linearly with offset to
account for moveout. Figures 5 (b)-(e) show the data (uΣs

) at the depth of the upper reflector (segment); it is here that
applying the imaging condition should result in the imaging (from below) of this reflector. In Figure 5 (b) the data are
shown without the windowing procedure (which is applied on the way down and not at this point), so that the primary
from the lower reflector is still visible, resulting in an artifact in the associated image (in Figure 6 (a)). In Figure 5 (c)
the results of applying the windowing procedure are shown; despite the simplicity of this procedure, we note that the
artifacts are attenuated in image shown in Figure 6 (b). For comparison, in Figure 6 (c), we show the image obtained
with the subtraction procedure. In Figure 5 (e) we illustrate ũs at the depth of the upper reflector – no windowing
needs to be applied.

4 Numerical experiments: Imaging with underside reflections
In this and the next sections, we present several synthetic data examples to demonstrate the utility of the method dis-
cussed above. The data were generated using a 2D finite difference code; they were then filtered with a trapezoidal
filter with corner frequencies 10 and 50 Hz and 10 Hz roll-off. The sources and receivers are positioned on (differ-
ent) fixed grids. Table 1 summarizes the parameters used for each of the subsequent models used in the numerical
experiments.

A problem of current interest in sub-salt imaging is the location of the bottom of salt when the salt itself is non-
uniform. Multiples can illuminate these structures without passing through them, however, and so have the potential
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Figure 5: (a) Shot record, with source s at 5 km (indicated by a triangle in (b)-(e)); (b) the field uΣs at a depth of
1.5 km; (c) the field uΣs at a depth of 1.5 km subjected to time-windowing, suppressing primary reflections; (d) the
field uΣs at a depth of 1.5 km generated from d− d1(−d2); (e) the field ũs at a depth of 1.5 km.

model first r (km) ∆r (m) # receivers first s (km) ∆s (m) # sources
salt 0 20 650 2.0 100 80
fault 0 20 550 0 100 110

Table 1: Parameters used to generate the example synthetic data sets.
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Figure 6: (a) Image generated omitting the subtraction procedure; (b) image generated with the windowing; (c) image
generated with the subtraction procedure. The arrow indicates the depth of the bottom reflector.
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Figure 7: (a) Velocity model for the salt example; (b) shot record at s = 5.5 km; (c) difference between shot records
with and without inclusions.

to locate the salt bottom without first determining an accurate salt model. To test such a scenario, we developed a salt
model in which the salt contains sediment inclusions; we then study the influence of these inclusions on the location of
the bottom of salt both with singly and triply scattered waves. We generated data in two models: the ‘inclusion model’
and the ‘inclusion-free model’. The inclusion model is shown in Figure 7 (a); the inclusion-free model differs only
in the absence of the inclusions. Figures 7 (b) and (c) show, respectively, a typical shot record in the inclusion model
and the difference between this shot record in the inclusion and inclusion-free models illustrating just how significant
the inclusions are to the wavefield. Figure 8 shows two images, made with data generated in the inclusion model, one
using the inclusion model and the other using the inclusion-free model. If the inclusions are unknown, we observe that
the image of the base of salt deteriorates significantly, as expected.

In Figure 9 we confirm that the base of salt can be imaged with underside reflections, essentially, as successfully
as with topside reflections with realistic acquisition geometries if a good estimate of the salt body is known. However,
the main advantage of imaging with internal multiples is that they might reflect off the base and flanks of the salt
without passing through it, allowing imaging without knowing the structure of the salt. To test this, we restrict the
source/receiver locations to avoid waves that pass through the salt. This is illustrated in Figure 10 (a)-(c); in Fig-
ure 10 (a) the left flank of the salt is imaged using sources (whose range is denoted with the black line) and receivers
(whose range is denoted with the white line and extends to 0 off the edge of the plot) to the left of the salt body. This
restricts our wave paths to those illustrated in Figure 2 (d). In Figure 10 (b) the sources are to the left of the salt and
the receivers to the right, focusing on paths like those illustrated in Figure 2 (c); we observe that the base of salt is
well imaged. Figure 10 (c) shows a reconstruction of the lower half of the salt body formed by summing three images
made using different source/receiver geometries.

In Figure 11 we demonstrate the insensitivity of our procedure to errors in the velocity model. Figures 11 (a)-(c)
are analogous to Figures 10 (a)-(c) with the exception that the data were modeled in the inclusion model. These data
were still imaged using the inclusion-free model and yet the (partial) images remain of the same quality as those shown
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Figure 8: (a) Image based on primary reflections made with the correct velocity model using the model and data
illustrated in Figure 7 – the best image we can expect to make of the bottom of the salt; (b) image based on primary
reflections made with the inclusion-free velocity model.
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Figure 9: Imaging with underside reflections using offsets up to 6 km; the triply scattered waves propagate through
the salt. This image illustrates that, under idealized circumstances, underside reflections and topside reflections can be
used in a similar way in nontrivial structures.
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Figure 10: Imaging with underside reflections, using data generated in the model without inclusions; (a) left lower flank
of the salt imaged using sources (whose range is denoted with the black line) and receivers (whose range is denoted
with the white line and extends to 0 off the edge of the plot) to the left of the salt body – wave paths corresponding
with Figure 2 (d); (b) bottom of the salt imaged using sources to the left of the salt and receivers to the right, focusing
on paths like those illustrated in Figure 2 (c); (c) reconstruction of the lower part of the salt body formed by adding
(a), (b) and an image generated as in (a) but with sources and receiver to the right of the salt body.

17



(a)

0

1

2

3
de

pt
h 

(k
m

)

4 6 8 10
lateral position (km)

(b)

0

1

2

3

de
pt

h 
(k

m
)

4 6 8 10
lateral position (km)

(c)

0

1

2

3

de
pt

h 
(k

m
)

4 6 8 10
lateral position (km)

Figure 11: Imaging using the inclusion-free model as velocity model with underside reflections, using data generated
in the model with inclusions; (a) left lower flank of the salt imaged using sources (whose range is denoted with the
black line) and receivers (whose range is denoted with the white line and extends to 0 off the edge of the plot) to the
left of the salt body – wave paths corresponding with Figure 2 (d); (b) bottom of the salt imaged using sources to the
left of the salt and receivers to the right, focusing on paths like those illustrated in Figure 2 (c); (c) reconstruction of
the lower part of the salt body formed by adding (a), (b) and an image generated as in (a) but with sources and receiver
to the right of the salt body.
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Figure 12: (a) Velocity model for the fault model; (b) standard image based on primary reflections; (c) image based
on prismatic reflections (doubly scattered waves), taking the difference of the left and right scattered contributions; (d)
the sum of (b) and (c).

in Figure 10 where there were no inclusions. The images in Figure 11 (c) and Figure 8 (a) compare favorably.

5 Discussion
Multiply scattered waves have the ability to contribute useful information to seismic images. Because they can illu-
minate structures not easily illuminated by primaries, these waves allow us to image portions of the subsurface not
illuminated by singly scattered energy. By including the illumination footprint of the acquisition geometry from the
beginning of our, series based, data representation we are able to isolate the contributions from different orders of
scattering. Once these contributions are isolated it is possible to develop an algorithm to treat each order of multiple
scattering separately. It is important to note, however, that the resulting algorithms are quite similar and can in fact
be combined into one multiple-scattering imaging algorithm. We focused on the use of “underside” reflections, but
“prismatic” reflection are included in our approach as well.

Imaging with “prismatic” reflections. Along with subsalt imaging from below, the approach presented above also
allows the imaging of steeply dipping reflectors with doubly scattered waves in a manner similar to the one discussed
by (Jin et al., 2006; Xu & Jin, 2007). In a numerical experiment, here, we focus on imaging faults. The model, shown
in Figure 12 (a), consists of sedimentary layers with simple topography cut through by a fault structure. A standard
image based on primary reflections is shown in Figure 12 (b), in which the fault’s location is perhaps discernible
but it has not been imaged. This figure (in (c)) also shows the difference of two images made with doubly scattered
waves, one with waves reflected off the left side of the fault and the other with waves reflected off the right side of the
fault. This doubly scattered image is then added to the regular image resulting in an image where near-vertical and
near-horizontal structures are well resolved (in (d)).

Note that contrary to the sub-salt imaging example given in the previous section, in the fault imaging example

19



( ˙̂
V 1)−+ contains multiple reflectors. This emphasizes that the theory presented here does not require the identifica-

tion of a single multiple-generating interface but instead works with all interfaces imaged by a standard shot record

migration. In fact, including multiple reflectors in ( ˙̂
V 1)−+ introduces redundancy in as much as different multiples

of the same (third) order illuminate the same structure using different reflectors as the deep reflection point. This is in

addition to the usual redundancy over sources and receivers that is, of course, necessary to form ( ˙̂
V 1)−+ or (V̂ ′′′

1 )+−.

We have presented a computational and processing-based approach to image with multiply scattered waves. We
anticipate the key applications to occur in subsalt imaging, but incorporation of multiply scattered waves in migration
velocity analysis seems feasible along the same line of reasoning as in (Verschuur & Berkhout, 2007) for surface-
related multiples.
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Sjöstrand, J., & Grigis, A. 1994. Microlocal Analysis for Differential Operators: An Introduction. Cambridge:
Cambridge University Press.

Stolk, C. C., & de Hoop, M. V. 2001. Seismic inverse scattering in the ‘wave-equation’ approach. MSRI Preprint
2001-047 http://www.msri.org/publications/preprints/online/2001-047.html.

Stolk, C. C., & de Hoop, M. V. 2006. Seismic inverse scattering in the downward continuation approach. Wave Motion,
43(7), 579–598.

Stolk, C. C., & de Hoop, M. V. 2007. Curvilinear wave-equation angle transform: Caustics, turning rays, absence of
kinematic artifact. Pages 2180–2183 of: Expanded Abstracts. Society of Exploration Geophysicists.

Vasconcelos, Ivan, Snieder, Roel, & Hornby, Brian. 2007. Target-oriented interferometry — Imaging with internal
multiples from subsalt VSP data. SEG Technical Program Expanded Abstracts, 26(1), 3069–3073.

Verschuur, D. J., & Berkhout, A. J. 2007. Velocity model estimation using primaries and surface-related multiples.
SEG Technical Program Expanded Abstracts, 26(1), 2837–2841.

Vivas, F. A., Pestana, R. C., & Ursin, B. 2008. Stabilized least-squares imaging condition. SEG Technical Program
Expanded Abstracts, 27(1), ??

Weglein, A., Gasparotto, F. A., Carvalho, P. M., & Stolt, R. H. 1997. An inverse-scattering series method for attenu-
ating multiples in seismic reflection data. Geophysics, 62, 1975–1989.

Weglein, A., Araújo, F. B., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T., Corrigan, D., Foster, D. J., Shaw,
S. A., & Zhang, H. 2003. Inverse scattering series and seismic exploration. Inverse Problems, 19, R27–R83.

Xie, Xiao-Bi, & Wu, Ru-Shan. 2006. A depth migration method based on the full-wave reverse-time calculation and
local one-way propagation. SEG Technical Program Expanded Abstracts, 25(1), 2333–2337.

Xu, S., & Jin, S. 2006. Wave equation migration of turning waves. SEG Technical Program Expanded Abstracts,
25(1), 2328.

Xu, Shiyong, & Jin, Shengwen. 2007. An orthogonal one-return wave-equation migration. SEG Technical Program
Expanded Abstracts, 26(1), 2325–2329.

Youn, Oong K., & Zhou, Hua-wei. 2001. Depth imaging with multiples. Geophysics, 66(1), 246–255.

Zhang, Y., Xu, S., & Zhang, G. 2006. Imaging complex salt bodies with turning-wave one-way wave equation. SEG
Technical Program Expanded Abstracts, 25(1), 2323.

22


