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1. abstract

Due to present computational limitations, migration by the one-way wave equation remains
an integral tool in seismic exploration. For the realistic interpretation of common image point
gathers, it is necessary that migration be free from artifacts from caustics and turning waves.
In order to permit situations where turning waves occur, we perform our migration on specially
chosen curvilinear coordinates where waves do not travel horizontally. We present an imple-
mentation of the curvilinear one-way wave equation using a rational approximation and discuss
its application in migration velocity analysis, as well as transmission and reflection tomography.

2. Introduction

In migration of reflected data and migration velocity analysis (MVA), it is vital that common
image gathers are free from artifacts due to caustics and turning waves. Downward continuation
of surface data using one-way wave propagation methods does not allow for the possibility of
wavefronts traveling horizontally or overturning. If we wish to investigate situations where
turning waves occur, such as overturned faults or salt flanks while still taking advantage of fast,
accurate one-way propagators, we must carry out our migration in a curvilinear coordinate
system. We define curvilinear coordinates suited to a particular tectonic or geological setting
based on a pseudodepth direction in which the waves of interest propagate, as opposed to using
coordinates generated by the rays associated with propagation (Sava and Fomel, 2005). The
hyperbolic one-way wave equation can then be derived in the new coordinate system starting
from the variation principle, then cast into a computationally efficient thin-slab propagator
based on the rational approximation.

In addition to general application to migration problems, we develop our propagator specifi-
cally with differential semblance velocity analysis in mind. Analysis using wave-equation angle
transform annihilators as the semblance criteria (de Hoop et al., 2006) has the advantage that
it can be used to estimate the reflection coefficient induced by the background velocity, and
remains artifact free in the presence of caustics. To expand its applicability, a curvilinear angle
transform has been developed (Stolk and de Hoop, 2007) in order to allow for MVA in the
presence of turning waves as well as caustics.

The generalization of the one-way wave equation into curvilinear coordinates makes it pos-
sible, furthermore, to apply our fast, accurate propagation method to a broad suite of seismic
techniques. The ability to handle turning waves makes it possible to use the same computational
framework for problems ranging from transmission tomography from local microseismicity to

1



reflection tomography using underside and free surface reflections. A change of coordinates
also makes it possible to apply migration methods to global seismology problems where the
curvature of the Earth cannot be ignored.

Transforming the one-way wave equation

In order to take advantage of fast, accurate one-way propagators, we require that the waves
travel nowhere horizontally before encountering a scattering point. To accommodate situations
such as salt flank reflections or turning waves in strongly heterogeneous media, we transform
the one-way wave equation into curvilinear coordinates.

The curvilinear coordinate system is denoted by x̃ = x̃(x, z), z̃ = z̃(x, z). The pseudodepth
coordinate, z̃ is required to be orthogonal to the other coordinates. The Riemannian transfor-
mation metric is given by

(1) g̃il =
∂(x, z)j

∂(x̃, z̃)i
δjk

∂(x, z)k

∂(x̃, z̃)l

where we sum over repeated indices. The inverse metric is given as g̃il. To obtain an accurate
acoustic wave equation in this coordinate system, the transformation begins at the variational
formula. The wave equation is derived, as in Stolk and de Hoop (2007), by transforming
the action functional into curvilinear coordinates according to the Riemannian metric and
perturbing it to find the Euler-Lagrange equations.

After transforming into the frequency domain, we define the curvilinear wavefield as Ũ(x̃, z̃, ω) =
U(x(x̃, z̃), z(x̃, z̃), ω). We write the resulting wave equation as a first-order system in z̃. With

α = ρ−1g̃33
∣∣∣∂(x,z)
∂(x̃,z̃)

∣∣∣:
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∂

∂z̃
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∂z̃

)
=

(
0

f
∣∣∣∂(x,z)
∂(x̃,z̃)
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)

where

(3) A =
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0 α−1

κ
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∣∣∣+ ω−2 ∂
∂x̃
ρ−1
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∂x̃

0

)
This allows us to derive the one-way wave equation by finding the eigenvectors of the system.

The result is a transformation of variables (Ũ ,−iω−1α∂Ũ
∂z̃

) → (Ũ+, Ũ−) such that the upgoing

and downgoing constituents of the wavefield, Ũ+ and Ũ−, conserve acoustic power flux. The
one-way wave equation is then

(4)
∂

∂z̃
Ũ± ∓ iωΓŨ± = f±

where the pseudodifferential vertical slowness operator, defined as the square root of the A

operator, Γ = (A
1/2
12 A21A

1/2
12 )1/2 (with c−2 = ρκ) is given by

(5) Γ =

√
c−2g̃33 + ω−2

∂

∂x̃
g̃11g̃33

∂

∂x̃



In order to ensure the correct amplitude for one-way propagation, the subprinciple symbol
should also be included. For the purposes of this abstract, we will consider one-way propagation
in two dimensions, but the derivation extends easily to three dimensions.

3. Rational approximation propagator

From a number of numerical approximations of the square root operator, we proceed via the
rational approximation for its high angle accuracy and extendibility to three dimensions. We
generalize the method of van Stralen et al. (1998) for use in curvilinear coordinates. Using
the rational approximation, we seek to express the square root operator as the quotient of
two polynomials. For the desired angular accuracy, we extend the series in the numerator
to the second degree and the series in the denominator to the first degree. Defining Ξ ≡
−g̃−1

33
c
ω2

∂
∂x̃
g̃11g̃33

∂
∂x̃
c, we have the self-adjoint

Γ =

√
g̃33

c

√
1 + Ξ

1√
c

≈
√
g̃33

c

(
1 + [1 + β3Ξ]−1[β1Ξ + β2Ξ2]

) 1√
c

(6)

We find the coefficients to be β1 = 1/2, β2 = 1/8, β3 = 1/2. The computational cost of
the resulting algorithm is primarily due to the inversion of one tridiagonal matrix and one
5-diagonal matrix. We add additional accuracy at no additional cost by using an implicit
implementation of the approximate Laplace operator.

(7) 〈Ξ〉 = (1 + a∆x̃2Ξcent)
−1Ξcent

where Ξcent is the central difference discretization of Ξ in x̃. From the Taylor expansion, the
value a = 1/12 is found. Next, in order to further improve computational accuracy and reduce
discretization artifacts, we shift Γ into the comoving frame of reference. With τ equal to the
integral of slowness between the boundary and depth of propagation, Γ becomes:

(8) Γ ≈ eiωτ
√
g̃33

c
[1 + β3〈Ξ〉]−1 [β1〈Ξ〉+ β2〈Ξ〉2

]√1

c
e−iωτ

With this approximation of the square root equation, we develop a thin slab propagator.
The product integral solution of Eq. (4) can be approximated with another (1,1) rational
approximation, which leads to a Crank-Nicholson finite difference scheme, accurate up to order
∆z̃3.

Ũ(x̃, z̃ + ∆z̃) ≈ e−iω∆z̃Γ(x̃,z̃+ 1
2

∆z̃)Ũ(x̃, z̃)

≈ 1− iω∆z̃β4Γ

1 + iω∆z̃β4Γ
Ũ(x̃, z̃)

(9)

To further improve the angular accuracy of propagation, β1, β2, β3, β4, and a can be op-
timized. Denoting γ as the symbol of the square root slowness operator, we minimize the
differences between the slowness operator and the group slowness of the approximate operator,
γgroup, and the difference between the group slowness and phase slowness, γphase. Numerical
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Figure 1. Comparison of dispersion curves for rational approximation (dashed)
versus optimized parameters (solid), with α as the pseudodifferential symbol of
Ξ. The optimized curve plots on top of the exact curve, demonstrating the high
angular accuracy. Plotted in polar coordinates with θ = 0.

anisotropy is given by γgroup − γ and γphase − γgroup gives the numerical dispersion. The opti-
mized coefficients are β1 = 0..486, β2 = 0.349, β3 = 0.841, β4 = 0.529 and a = 0.114. Figure 1
shows the effect of the optimized parameters on the shape of the dispersion curve compared to
the analytically determined parameters.

Further improvements can be made in the suppression of approximation artifacts caused by
postcritically propagating modes if we allow the parameters and frequency to be complex. This
results in an amplification factor that is near unity for less than the critical value and tapers
off beyond it.

3.1. Perfectly matched layers. To prevent nonphysical reflections from the boundaries of
the computational grid, it is necessary to use an absorbing boundary condition. Perfectly
matched layers (PML) based on Collino (1997) were put into place on both x̃ boundaries. The
PML is achieved by complexifying the Laplacian operator in the region where damping occurs.

(10) Ξ→ −g̃−1
33

c

ω2

iω

iω + σ

∂

∂x̃
g̃11g̃33

iω

iω + σ

∂

∂x̃
c

where σ(x̃) = 0 in the freely propagating medium and is determined to create the weakest
reflection. Figure 2 demonstrates the results of the propagator with perfectly matched layers
on polar coordinates, x̃ = r =

√
x2 + z2, z̃ = θ = arctan( z

x
).



Figure 2. Overturning wave in the wavespeed model shown in ??. Rays and
wavefront are projected on top of the wave, demonstrating the accuracy of prop-
agation in overturning coordinates. Distances are in meters.

4. Applications

4.1. Transmission tomography. Although we develop our propagator with migration veloc-
ity analysis in mind, the general framework has possible application to numerous exploration
problems. The generalization of the one-way wave equation on curvilinear coordinates makes
it possible to apply our propagation method to transmission studies. Using a polar coordinate
system with θ ranging from 0 to π, it is possible to model a large offset transmission survey.
In cases like this, it is vital to ensure the computational grid size at the outer radius meets
the Nyquist criterion. It may be prudent to carry out propagation on a variable-size grid with
sections of smaller dθ at greater radius. Regions requiring grid refinements could be determined
through wavefront construction. Similar methodology could be applied more easily to surveys
with surface sources and receivers at depth or crosshole surveys, as in figure 3. Although a
global scale crosshole experiment is implausible, the example illustrates the easy applicability
of our method to global seismology on a spheroidal Earth.

Passive seismics are becoming a useful tool in geophysical exploration. Using microseismicity
caused by local tectonism or reservoir-induced earthquakes, wave-equation transmission tomog-
raphy can be performed. Figures 4 shows sensitivity kernels for an overturning wave produced
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Figure 3. Transmission kernel for crosshole survey in elliptic coordinates, x̃ =
a cosh(x) cos(z), z̃ = a sinh(x) sin(z). Source (star) is recorded at four geophones
(black dots) at the left.

at depth and recorded at a single geophone at the surface. The formation of the kernel in polar
coordinates is achieved using the seismic adjoint method. The source function was correlated
with the second time derivative of the back-propagated data to determine the region of the
model that is sensitive to, in this case, changes in density. Using waveform mismatch as the
adjoint source, the model gradient can be determined for density and other acoustic parameters,
and a tomographic inversion can be performed (Tromp et al., 2005).

4.2. Migration velocity analysis. We develop our wave-equation angle transform for the
purpose of performing migration velocity analysis on reflection data recorded at the surface,
z̃ = 0. Figure 5 shows reflection data, d(x̃r, t, x̃s), being migrated in the pseudodepth coordinate
using the rational one-way propagator. The source function is propagated downward as well,
and the two are correlated, yielding the subsurface wavefield in midpoint-offset coordinates,
(x̃, h̃x, z̃, h̃z = 0), where the offset is contained on a level-set of the pseudodepth function.

For reflection tomography, instead of applying the normal imaging condition, I(x̃, z̃) = ũ(x̃−
h̃x

2
, x̃ + h̃x

2
, t, z̃)|h̃x=0,t=0, to the downward continued wavefield, a curvilinear angle transform,

A, is applied to create an image I(x̃, z̃, p̃). With this angle-transformed data, we can define
our semblance criteria. If the data has been migrated through an acceptable background
velocity, the common image-point gathers should be independent of p̃. We can therefore describe
curvilinear annihilators to evaluate whether the velocity model is acceptable for modeling the
observed data. The annihilator, W , is fundamentally

a derivative in p̃. For an acceptable background model, Wd = 0. Combined with its adjoint,
this will give us the criteria for evaluating model quality and allow us to optimize the model
by minimizing the effect of the annihilators on the data. The problem can then be cast as an
adjoint method problem and solved via conjugate gradient.
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Figure 4. (a) Wavespeed model with gradient in z. (b) Similar to wavespeed
model in (a) with a −1500m/s Gaussian lens added. (c) Density kernel for
shot/geophone pair in model (a). Note the appearance of the famous banana-
doughnut shape. (d) Sensitivity kernel for model in (b) demonstrating both
caustics and overturning rays. The development of the caustics causes the kernel
to distort.

5. Conclusion

We have developed a technique for one-way wave propagation on curvilinear coordinates
using a rational approximation. This approximation yields high angular accuracy with only
a few terms in the expansion, therefore allowing for accurate propagation at relatively low
computational expense. The generalization of the one-way equation extends the application of
migration and migration velocity analysis to a broad array of complex environments and survey
geometries.

References

Collino, F., 1997, Perfectly matched absorbing layers for the paraxial equations: Journal of
Computational Physics, 131, 164–180.

de Hoop, M. V., R. D. van der Hilst, and P. Shen, 2006, Wave-equation reflection tomography:
annihilators and sensitivity kernels: Geophysical Journal International, 167, 1332–1352.

Sava, P. and S. Fomel, 2005, Riemannian wavefield extrapolation: Geophysics, 70, 45–56.
Stolk, C. C. and M. V. de Hoop, 2007, Curvilinear wave-equation angle transforms: Caustics,

turning rays, absence of kinematic artifacts: Presented at the 77th Annual Meeting, Society
of Exploration Geophysicists, Tulsa, Oklahoma.

Tromp, J., C. Tape, and Q. Y. Liu, 2005, Seismic tomography, adjoint methods, time reversal
and banana-doughnut kernels: Geophysical Journal International, 160, 195–216.



500 1000 1500 2000

0

500

1000

1500

2000

x (m)

z 
(m

)

Downward continued reflection data

 

Figure 5. Reflection data generated with a full-wave finite difference program
is downward continued in curvilinear coordinates as the first step towards migra-
tion velocity analysis. Waves from a surface source pass through a Gaussian lens
then are reflected at a scatterer (red box) before being recorded at geophones
(black circles).
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