FLIGHT TRANSPORTATION LABORATORY REPORT R95-5

.

PRESENTATIONS FROM THE 1995 MIT/ INDUSTRY COOPERATIVE RESEARCH PROGRAM ANNUAL MEETING

MIT

1

Table of Contents

1

	<u>Page</u>
DFC, Dynamic Flow Control: A New Approach for Traffic Flow Management Gary Wong	t 1
EMSR Bid Price Control: Implementation and Revenue Impact Professor Peter Belobaba	17
Estimating Passenger Flows and Spill in the Presence of Yield Management Systems Andras Farkas	38
Schedule Planning and Operations Control Technologies for Surviving Competition in the Airline Industry Dr. Dennis Mathaisel	66
The Value of Revenue Management in a Competitive Airline Industry <i>Professor Peter Belobaba/John Wilson</i>	93
ASLOTS: Human-Centered Automation of Air Traffic Control Operations in the Terminal Area Husni Idris	113
LACAS: Freight Mode Choice Air Versus Ocean Transport Ray Ausrotas	140
MIT Cooperative Program in Education and Research with PT Garuda Indonesia/University of Indonesia Michael Clarke	163

DFC, DYNAMIC FLOW CONTROL A NEW APPROACH FOR TRAFFIC FLOW MANAGEMENT

MAY 1995

1-

Robert W. Simpson Fabien Fedida Gary K. Wong

Flight Transportation Laboratory, MIT

Overview

- Introduction
- Current Approach : Miles-In-Trails
- DFC, Dynamic Flow Control
- Results

-2-

Future Directions

Introduction

- <u>Problem</u>: Most aircraft arriving in a major airport experience unnecessary delays.
- Current approach, called Miles-In-Trail, is inefficient.

ပ္ပံ

- It requires a fixed separation distance between subsequent aircraft.

Disadvantage: It restricts drastic passing such that it does not efficiently take advantage of the fact that today's jet transports have a range of feasible cruising speeds.

Similar values are assigned to the other arrival airways. This fixed assignment is inefficient.

..

Algorithm for Optimal Assignment of Delay

If there is accurate updated information on:

1) current aircraft position and speeds

2) updated forecasts of enroute winds

3) current delays at the airport and forecasted acceptance rates

4) new flight plans and cancellations

5) limitations on air holds at destination

Then, we can quickly calculate a new Traffic Flow Plan (TFP) which minimizes the "Costs" of flow management. Costs are expressed in terms of weighted values of:

1) unnecessary delays,

2) fuel burn,

6-

3) traffic management workload

subject to a variety of operational constraints imposed by the Traffic Flow Manager

(eg., limited use of airholding, any cruise speed change is greater than .02 M, all speed changes are monotonic, TOD points within a given range)

The Traffic Flow Plan (TFP) provides;

1) new departure times for some aircraft

2) new cruising speeds for some aircraft (within their stated ranges)

3) planned airholds at every Entry Fix (no. of holding aircraft over time)

4) planned TOD points for all arrivals

RESEARCH PROGRESS

- we have created a IDFCS simulator in ANSI - C language (12000 lines of code) which contains a Least Cost Network Flow code from the OR Center

- we have a traffic generator for random arrival requests for aircraft of different types, from different origins, along different arrival paths, with varying forecast winds along route, etc. It will provide different rates of arrival over time against forecast variations in AAR.
- at any point in time, all aircraft are either on the ground or in the air proceeding inbound. Feasible traffic advisories can be found for all aircraft in TFP to optimize overall cost.
- the simulator exercises the dynamic flow algorithm every 15 minutes of simulator time
- we record the set of commands (GH, V, TOD, AH) given to each aircraft under different traffic scenarios, and the overall Traffic Management workload
- we determine the efficiency achieved in using the airport's AAR under dynamic changes in AAR (landing rate vs. AAR, and average delays incurred vs. TM workload)

Figure 6-4: Tab of Statistics vs. Time

				i n	<u> </u>	De	AHD	AHDA	AHDE	Egd	GDgd	SC	т	N	Nh1	Nh2	Ng	GHA	CSA
·····					00	0.0	00	0.0	00	0	0.0	0.0	0.0	7	0	0	5	0	1
	<u></u>	- in the	<u> </u>	1 0.0	0.0	0.0	00	0.0	0.0	0	0.0	0.0	00	21	0	0	18	0	1
	i i i i i i i i i i i i i i i i i i i		10	00	00	0.0	0.0	0.0	0.0	0	U.0	0.0	0.0	28	U	0	25	0	0
			0	-0.9	-09	00	0.0	0.0	0.0	U	0.0	10	52.5	35	0	0	32	0	<u> </u>
1 25	1	1	0	-0.8	-0.8	0.0	0.0	00	U.O	0	0.0	1.0	64.7	43	<u> </u>	<u> </u>	38		
1 5	0	0	0	0.0	0.0	00	0.0	U.O	0.0	0	0.0	00	0.0	57	()	0	47	0	<u> </u>
1.75	0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	69	<u> </u>				
2	1	1	θ	0.0	0.0	0.0	0.0	0.0	0.0	<u></u>	0.0	0.0	96.0			h	*		١
2 25	1	θ	1	0.0	00	0.0	0.0	0.0	0.0		0.0	0.0	871	97		F	77		
2 5	2	2	0	-0.1	-01	0.0	0.0	0.0	00		0.0	10	112.7	111	0	0	78	0	the second se
2 75	<u> </u>	1	L	-1).7	-06	-0.8	0.0	0.0	0.0		0.0	10	136.5	iiii	- Ü	0	75	0	12
3	·····		<u> </u>	-0.4	-08	-0.3	0.0	0.0			0.0	1.8	132.1	110	0	0	76	υ	10
3 25		2	- 7	-0.5	-0.3	-0.6	0.1	0.2	0.0		0.0	0.8	142.7	113	0	0	74	υ	20
				-11.6	-0.8	-0.8	0.0	0.0	0.0	0	0.0	2.0	139.7	118	0	0	71	0	24
3.75				-07	-0.5	.0.0	0.0	0.0	0.0	Ū	0.0	1.6	183.4	129	0	0	81	Ø	19
	<u> </u>	-	l	-0.9	.1.9	-0.7	0.1	0.0	0.1	0	0.0	1.2	160.9	128	0	0	78	0	22
h	<u>المجرمة</u>		١		-0.8	-1.5	0.1	0.0	0.1	0	0.0	14	148.4	126	υ	0	73	0	11
175	15	2	13	-07	-1.2	-0.7	0.2	0.3	0.2	U	0.0	1.6	162.2	126	0	0	70	0	19
	12	1	11	-0.8	-0.4	-0.8	0.2	0.1	0.2	U	0.0	2.8	205.2	123	0	0	72		22
5 25		1	3	0.0	-0.9	U.3	0.1	0.0	0.1	0	0.0	1.0	189.4	124	0	0	58		33
55	8	1	7	-0.6	0.0	-0.6	0.1	0.0	0.1	0	0.0	1.9	158.2	129			28		
5 7 5	11	4	7	-1.1	-0.3	-1.5	01	0.3	0.0	0	0.0	16	145.8	133					
0	14	2	12	-1.6	-0.6	-1.8	0.3	0.2	0.3	0	0.0	2.1	1/3.0	127			77	20	10
6 25	15	4	11	0.9	06	1.0	0.2	0.2	0.3		0.0	1.0	102.1	127		0	77	28	17
65	14	0	14	2.1	0.0	2.1	0.2	0.0	0.2		0.0	2.0	184.7	128		0	81	51	18
6 75	13	2	11	2.0	-0.2	2.4	0.2	0.1	0.2		0.0	1.9	167.5	124	0	0	83	49	25
	15	3	12	-1.9	-1.4	-2.0	0.2	0.2	0.2	0	0.0	1.3	176.1	130	1	0	88	60	19
7 25		0		07	0.0		0.5	1.7	0.5	0	0.0	1.9	137.8	128	0	0	89	47	13
	8	+	÷	5.1	0.4	3.8	0.6	0.0	0.6	0	0.0	2.3	191.6	129	1	0	89	42	18
	l-ý-l			51	0.0	5.1	1.0	0.0	1.0	0	0.0	2.0	203.5	129	1	U	86	53	24
	l			54	0.0	5.4	04	0.0	0.4	0	0.0	2.9	208.7	133	U	0	91	8	16
*5		0	7	80	0.0	8.0	0.3	0.0	0.3	2	3.8	2.1	202.2	133	0	0	90	43	15
3 75		0	8	12.2	0.0	12.2	0.4	0.0	04	7	96	2.0	201.9	133			91	28	
	7	υ	7	18.9	00	18.9	2.5	0.0	2.5	7	12.6	2.3	202.3	135	2		86	18	18
9 25	8	2	6	15.4	78	17.9	3.2	1.7	3.7	6	7.8	2.4	155.6	140			82		
95	7	0	7	26.7	0.0	26.7	3.3	0.0	3.3	7	17.4	1.9	204.8	138					
9 75	8	1	7	13.8	12.2	14.0	3.1	1.6	3.3	7	4.0	2.0	180.3	142	L		71		
10	7	1	6	32.7	12.6	36.1	68		6.5	6	22.5	1.3	192.8	1143			65		28
10 25	14		13	35.9	5.8	38.2	0.6	1.2	0.5	12	30.3	2.7	210 1	130			68		17
10 5	15	0	15	23.8	0.0	23.8	<u></u>	0.0	1.1		35.5	2.4	228.3	123		1	57	0	24
10 75	15			43.7	0.0	43./		0.0	0.6	10	29.9	2.5	214.0	115	υ	2	55	0	24
h		<u>ل</u>	h	17.1	9.0	17 4	0.5	0.0	0.5	10	44.7	2.4	222.6	110	0	0	55	U	17
11 25				13.2	6.2	13.7	0.5	0.0	0.5	6	21.1	1.9	178.9	101	0	1	57	U	19
			him	0.1	0.0	0.1	0.3	0.0	0.3	0	0.0	2.0	172.5	98	0	0	59	U	10
12		- m	6	-02	0.0	-0.2	00	0.0	00	υ	0.0	1.0	187 3	104	0	1	60	0	10
12.25	15	1	14	-2.1	-2.6	-2.1	0.3	0.8	0.3	0	0.0	2.3	183.7	97	0	0	57		
12 5	11	1	10	0.3	0.1	0.3	0.2	0.7	0.2	0	0.0	2.1	154.0	91	0		53		<u></u>
12 75	5	0	5	-0.8	0.0	-0.8	0.0	0.0	0.0	0	0.0	14	192.6	97		0	54		12.
13	6	2	4	-07	-0.7	-0.8	0.0	0.0	00	0	0.0	1.2	152.2	100	<u> </u>		20		
13.25	10	0	10	0.5	0.0	0.5	0.4	0.0	04	0	0.0	1.2	170.5						
135	10	3	7	-0.6	-0.3	-0.7	0.2	0.2	0.2	0	0.0	1.3	107.4	43			52		;
13 75	9		8	-0.5	-0.3	-0.5	0.1	0.0	0.2		0.0	15	199.1	89			52		13
14	10	1	<u>ل</u>	-0.2	0.3	-02	0.2	0.0	0.1		0.0	1.1	160.1	90	- j	0	49		12
14 25	المشرا	4	<u> </u>	-0.4	-0.9	-0.4	0.1	0.0	00	0	0.0	1.4	123.8	91	0	0	45	U	16
14.5	<u>ا م</u> ينا	<u> </u>	Ļ.	-0.5	0.0	-0.0	0.0	0.0	0.2	ŏ	0.0	1.3	189.5	92	U	U	49	0	16
			٣	.04	0.0	-0.6	0.0	0.0	0.0	0	0.0	1.2	175 5	95	0	υ	49	U	6
Float Sum		.7	471	3594 0	73.1	1 1521 0	287.5	27.9	259.3	107	2606.1	884.4						490	939

:

- Scenario 2 -

.

Annex

A.1 Scenarios Notations

In this section, we present the data which was obtained from running the simulator under the scenarios described and analyzed in Chapter 4.

For each scenario, we present the statistics which are currently tracked within the simulator in figures entitled *"Tab of Statistics vs. Time"*. Let us explain, for one row -i.e. at a given time t- what they mean:

- *t* is the simulation time in hours.
- *E* is the number of aircraft which *exited* the Entry Fix, that is to say which entered the Terminal Area, between t 0.25 (i.e. t 15 minutes) and t.
- *Ea* is the number of "air-start" aircraft which exited the Entry Fix in the same period. An air-start aircraft entered the system while airborne.
- *Eg* is the number of "ground-start" aircraft which exited their Entry Fix between t-0.25 and t. A ground-start aircraft first made its request for arriving at the airport under congestion management as it was flying toward, or when it was already on the ground at an intermediate airport.
- *D* is the delay averaged over all aircraft (in min.) which entered the Terminal Area between t 15 minutes and t (that is to say averaged over E aircraft). This

delay is the total delay over the originally requested time; i.e. it is the difference between the Actual Exit Time (AET) and the Original Nominal Exit Time (ONET) from the Entry Fix.

- *Da* is the averaged delay (AET ONET) in minutes over all air-start aircraft (Ea) which entered the Terminal Area between t 15 minutes and t.
- *Dg* is the averaged delay (AET ONET) in minutes over all ground-start aircraft
 (Eg) which entered the Terminal Area between t 15 minutes and t.
- *AHD* is the Air Holding Delay (in min.) averaged over all aircraft which entered the Terminal Area between t - 15 minutes and t (that is to say averaged over E aircraft). For each aircraft, the holding delay is the difference between the Actual Exit Time (AET) and the Actual Arrival Time (AAT) at the Entry Fix.
- *AHDa* is the averaged holding delay (AET AAT) in minutes over all air-start aircraft (Ea) which entered the Terminal Area between t 15 minutes and t.
- *AHDg* is the averaged holding delay (AET AAT) in minutes over all groundstart aircraft (Eg) which entered the Terminal Area between t - 15 minutes and t.
- *Egd* is the number of ground-start aircraft which were issued a *ground delay* at their originating airport, and which *exited* the Entry Fix of the airport under congestion management between t 15 minutes and t.
- *GDgd* is the averaged Ground Delay (or ground hold) in minutes that those Egd aircraft endured.
- *SC* is the averaged number of *speed changes* (or speed advisories) that all aircraft which entered the Terminal Area between t 15 minutes and t were issued during their inbound flight.
- *T* gives an indication of the average time each of the E aircraft spent in the system, air holding not included. It is given in minutes.

- *N* is the number of aircraft in the system at update time t. It gives us an idea of the size of the problem which must be solved by the Dynamic Resolution Logic which is used.
- *Nh1* is the number of aircraft in air hold at Entry Fix 1 at update time t.
- *Nh2* is the number of aircraft in air hold at Entry Fix 2 at update time t.
- *Ng* is the number of aircraft on the ground awaiting takeoff at update time t.
- *Ngd* is the number of aircraft with an issued ground delay at time t (we keep track of Ngd only in Scenario 5).
- *GHA* is the number of Ground Hold Advisories which were issued to the fleet when Tupdate = t. Recall that IIDFC is exercised every 15 minutes in all those scenarios.
- *CSA* is the number of Cruise Speed Advisory which were issued to the fleet at time t.

The last row of the tab "Fleet Sum" gives the sum over time of E, Ea, Eg; the cumulative values (over time) of D, Da, Dg, AHD, AHDa, AHDg; the sum of all Egd; the cumulative value of GDgd (over all Egd aircraft); and the total number of GHA and CSA which were issued during the simulation. Thus, this line is used to give an overall rating on the scenario under consideration..

This tab is followed by several plots:

¥

ŧ

- "Traffic Flow Management Advisories vs. Time" plots show GHA and CSA versus time.
- Plots entitled "Number of Holding Aircraft" show the time variation of the number of aircraft in air hold at entry fix 1 (Nh1), Entry Fix 2 (Nh2) and in ground hold (Ngd) versus time.

"Average Delay for Landed Aircraft" plots show the evolution of D, AHD and GHD versus time. GHD is the averaged Ground Hold Delay for all aircraft which landed between t - 15 minutes and t. Thus, it is given by:

$$GHD = \frac{Egd \times GDgd}{F}$$

• Plots entitled "Average Ground Delay of Landed Aircraft which were Ground Held" show the variation of GDgd versus time.

A.2 Scenario 1 Data and Plots

(See next page)

ŧ

Future Directions

Perform sensitivity analysis

5

- Reduce the number of ground hold advisories
- Reduce the number of cruise speed advisories
- Restrict speed changes to become monotonous
- Develop extensions of DFC concept

EMSR BID PRICE CONTROL: IMPLEMENTATION AND REVENUE IMPACTS

Professor Peter P. Belobaba MIT Flight Transportation Laboratory Cambridge, MA 02139

Presentation to AGIFORS YIELD MANAGEMENT STUDY GROUP

> Washington, DC May 1, 1995

OUTLINE

- 1. The O-D Control Problem
- 2 Obstacles to Network Optimization
- 3. "Value–Based" Class Control
- 4. EMSR Bid Price Concept
- 5. Dynamic EMSR Bid Price Control
- 6. Implementation in Existing Systems
- 7. Simulated Revenue Impacts

1. The O-D Control Problem

- Revenue maximization over a network of flight legs requires a combination of two strategies:
 - Provide increased availability to high revenue long-haul passengers, regardless of yield
 - (2) Prevent high-revenue long-haul passengers from taking seats away from high-yield shorter-haul passengers
- Studies have shown (1) to provide greater network revenue gain than (2), although revenue <u>maximization</u> requires both.

2. Obstacles to Network Optimization

- Practical and theoretical obstacles to "true" network optimization:
 - need to maintain data by itinerary (i) and class (k)
 - difficult to forecast accurately with small (i, k) values
 - LP solutions generate seat "allocations" to each (i, k)
- Several airlines have instead implemented "leg-based" bid price control:
 - data maintained by leg/bucket
 - forecasting and optimization by leg
 - dynamic evaluation of (i, k) revenue values relative to minimum acceptable "bid price"

3. "Value-Based" Bucket Control

- Value-based control concept:
 - Define booking buckets based on <u>revenue value</u>, regardless of itinerary(i) or "fare class" (k).
 - Seat availability for (i, k) depends on corresponding "<u>value bucket</u>" availability.
- Implementation of value-based control:
 - Aggregation of booking data from different (i, k) into "value buckets" with similar revenues.
 - Forecasting and optimization by value bucket on each leg independently.
 - Preference given to highest revenue (i, k), but "greedy" solution.

STRATIFIED BUCKETING BY ODF FARE VALUES

, , ·

•

۰.

ORIGINAL PUBLISHED FARES/CLASSES

.

PHX/DF	N	PHX/FR	A (via DFW)	PHX/MIA (via DFW)			
CLASS	FARE (OW)	CLASS	FARE (OW)	CLASS	FARE (OW)		
Y	\$520	Y	\$815	Y	\$ 750		
В	\$360	В	\$605	· B	\$480		
М	\$209	Q	\$470	M	\$270		
V	\$139	V	\$310	Q	\$225		
				V	\$195		

RE-FILED FARES BY ODF FARE VALUE

STRATIF.	REVENUE	MAPPING OF
BUCKET	RANGE	O-D MARKETS/CLASSES
Y	700 +	Y PHXFRA
		Y PHXMIA
B	500-699	B PHXFRA
		Y PHXDFW
M	330-499	B PHXMIA Q PHXFRA
		B PHXDFW
Q	200-329	V PHX FRA M PHXMIA
		Q PHXMIA M PHXDFW
V	0-199	V PHXMIA
		V PHXDFW

4. EMSR Bid Price Concept

- For any (i, k) on a flight leg, network revenue value is its fare, Fik, minus expected revenue displacement on connecting legs.
- Expected demand and revenue on leg j is summarized by expected marginal revenue function

 $\mathrm{EMR}_{j}(\mathrm{S}) = \frac{\delta R}{\delta \mathrm{S}}$

Value bucket demands and revenue values can be used to derive EMR_j(S).

• Approximation of displacement cost on any leg j is a function of EMR_j (A), where A is remaining available capacity.

EMSR Bid Price Concept (cont'd)

- EMR_l (S) curve based on <u>non-prorated</u> revenues in value buckets on each leg l.
- EMR(A) contains <u>aggregated</u> information about total fare value of seat A to the leg, not just network displacement cost:

 $EMR(A) = \overline{P}(A) * \overline{REV}$

where $\overline{P}(A) =$ probability of selling seat A

 $\overline{\text{REV}}$ = mean revenue of all ODFs on leg

- Network displacement cost on down-line leg j is less than EMR_j (A).
- The displacement cost on leg j can be approximated as:

$$DISP = EMR_{i}(A) * ODFACTOR$$

where:

0 < ODFACTOR < 1.0

EMSR Bid Price Concept (cont'd)

From above, network revenue value of (i, k) on Leg l is approximated by:

 $N_{ik\ell} = F_{ik} - [EMR_i(A) * ODFACTOR]$

where j is a down-line (or up-line) leg of itinerary (i, k)

• Accept a request for itinerary (i, k) if:

 $N_{ik\ell} \geq EMR_{\ell}(A)$

 $F_{ik} - [EMR_i(A) * ODFACTOR] \ge EMR_{\ell}(A)$

 $F_{ik} \ge EMR_{\ell}(A) + EMR_{i}(A) * ODFACTOR$

for all legs l in itinerary (i, k) which involve an upline/downline leg j.

 We are comparing the ODF fare to the minimum acceptable revenue value or "<u>bid</u> <u>price</u>".

5. Dynamic EMSR Bid Price Control

- Seamless CRS availability communication allows (i, k) requests to be evaluated by the selling airline on a real-time basis.
- Simple bid price calculations can be performed at time of request to determine seat availability for (i, k):
 - (i, k) assigned initially to a value bucket
 - when (i, k) request received, calculate:

 $EMR_{\ell}(A) + EMR_{j}(A) * ODFACTOR$

- seats available to (i, k) if:

 $F_{ik} \ge EMR_{\ell}(A) + EMR_{i}(A) * ODFACTOR$

on all relevant legs.

 Bid price increases for connecting (i, k) when demand/capacity is high on both legs — preference given to local passengers.

6. Implementation in Existing Systems

- Real-time EMSR bid price control possible in existing YM and CRS environments:
 - leg-based YM system provides updated EMR_l (A) values based on current forecasts
 - reservations system needs to store Fik tables and appropriate ODFACTOR(s)
- Requires seamless CRS (or control of most bookings):
 - at time of ODF request, compare Fik from market table to calculated minimum EMSR bid price.
 - possible to use maximum class booking limits as "safety net"
- Can be applied to yield-based classes, stratified buckets, or virtual buckets

7. Simulated Revenue Impacts

- Integrated airline yield management optimization/booking simulation routine developed at MIT:
 - actual airline hub scenario (25 legs in, 25 legs out)
 - approx. 600 itineraries; 6 fare types
 - interspersed bookings by class over
 15 periods prior to departure
 - 25 iterations of each "connecting complex," at different demand levels.
- We compared the revenue performance of:
 - (1) Leg-based EMSRb yield-based class control
 - (2) EMSRb "greedy" control of buckets stratified by total fare value
 - (3) Dynamic Leg Bid Price Control

Simulated Revenue Impacts (cont'd)

- Fare stratification with "greedy" algorithm provided 2-4% revenue gains for average HUB load factors of 74-86%:
 - load factors increase because preference given to long-haul passengers
 - higher revenue gains simulated, but at extremely high demands and load factors
- Application of Leg Bid Price method to stratified buckets generated 1-3% in <u>additional</u> revenue gain:
 - average HUB load factors increased further (over stratified bucketing alone)
 - revenue gains consistent across scenarios of 30%, 50% and 70% average local demand by leg

Leg Bid Price on Stratified Buckets

Additional Revenue over "Greedy" Algorithm

Leg Bid Price on Stratified Buckets

Additional Gain over "Greedy" Algorithm

မ္မမ္မ

Simulated Revenue Impacts (cont'd)

- Incremental revenue gain of Leg Bid Price is sensitive to proper ODFACTOR value:
 - varies with average proportion of local demand and revenue on HUB network
 - also related to average load factor of HUB network
 - implementation possible with different ODFACTORS by HUB, date, demand level, etc.
- Greatest revenue gains from fare stratification and Leg Bid Price control <u>combined</u>:
 - nonetheless, Leg Bid Price method can be applied to yield-based classes
 - stratified bucketing alone provides an important revenue gain

-36-

Estimating Passenger Flows and Spill in the Presence of Yield Management Systems

Peter P. Belobaba and András Farkas MIT, Flight Transportation Laboratory

CORS Calgary, May 23, 1995

-38-

OUTLINE

- Motivation
- Estimating Spill for Fleet Assignment
- Use of Yield Management (YM) information in estimating Spill Costs
- Leg-Dependence in Spill Cost estimation
- Analysis of Leg-Dependence effects
- The influence of YM control strategies on Leg-Dependence effects
- Conclusions

Motivation:

- Yield Management (YM) systems set fare class booking limits (BL) given assigned capacity; this affects the passenger mix and total loads.
- Fleet assignment (FA) decisions based on demand forecasts
- Today the two optimization processes work independently:
 - . YM decisions influence demand inputs for FA
 - FA decisions (A/C capacities) have influence on the YM decisions

Fleet Assignment Problem

- The Fleet Assignment Problem is to match A/C to flight legs such that profits maximized
 - *Trade-off:* Spilled passengers on small aircraft vs. increased costs of large aircraft and empty seats
- Multicommodity Flow IP Models (Stochastic Demand)

 $\min \sum_{i \in Leg} \sum_{f \in Fleet} \cot_{f,i} * X_{f,i}$

-41-

s.t. balance, cover, size, hookup, etc. constraints

- cost_{f,i} includes all operating costs plus *spill costs*;
 X_{f,i} is a binary variable [0,1]
- Demand and revenue potentials are included in this single objective coefficient

Spill Cost Estimation -- State-of-the-Practice

Total flight leg demand is expressed as a single normal probability function (joint demand curve)

- *Vertical aggregation*: Aggregated over all fare classes of a flight
- Spill Cost = Estimated Spill * "average spill fare"

Estimating Total Spill for a Flight Leg Under YM

Under YM, spill is affected by:

- Demand and booking patterns by fare class
- Fare class booking limits determined by YM system
- The smaller the discount ratio, *d=low fare/high fare*, the more seats will be protected for higher fare classes, and the greater the impact of booking limits on spill.

Aggregation of fare classes (Vertical Aggregation Bias)

- Joint demand curve does not hold information about
 - -- fare class demand distributions
 - -- booking patterns over time
- More accurate spill estimates can be obtained from YM data and booking limits.

Exact formulation for calculating spill for a flight leg

Assuming that lower-valued fare classes book before higher valued fare classes.

Spill, Spill_c[0], is given by :

$$BL_{c}-S$$

$$Spill_{c}[S] = \int_{i=0}^{\infty} f_{c}(i)Spill_{c-1}[i+S]di + \int_{i=BL_{c}-S}^{\infty} f_{c}(i)\{i-(BL_{c}-S)+Spill_{c-1}[BL_{c}]\}di$$

$$Spill_{0} = 0.$$

 $Spill_c$ = expected spilled passengers from fare classes 1 to c;

f(i) = the probability for the number of *i* fare class *c* requests;

 BL_c = booking limits for class *c*;

S = number of seats sold for the flight.

Spill Cost, SC_c[0], for the c fare classes is given by: $BL_{c}-S$ $SC_{c}[S] = \int_{i=0}^{\infty} f_{c}(i)SC_{c-1}[i+S]di + \int_{i=BL_{c}-S}^{\infty} f_{c}(i)\{fare_{c}*(i-(BL_{c}-S))+SC_{c-1}[BL_{c}]\}di,$ $SC_{0} = 0.$ $fare_{c} = \text{fare for fare class c.}$

Average Spill vs. Discount Ratio (Low Fare/High Fare)

Estimating the "average fare" of spill -- (spill fare)

- Simple mean of the fares?
- Weighted average of fares, weighted by the mean demand for each fare class?
- Or more complex?

Issues:

- If the Yield Management System works well, then most of the passengers spilled will be lower fare passengers.
- Spill fare is not constant at different demand factors
 - -- at low spill, most of the fare classes are involved
 - -- at high spill, lower classes are more affected by YM actions.

Average Spill Fare vs. Demand Factor

Comparison of Total Spill Calculations

- Method 1: Spill is estimated from the joint normal curve using the traditional spill formulas (state-of-the-practice)
- Method 2: Spill is <u>calculated</u> assuming lower fare classes book before higher fare classes.
- Method 3: Spill is <u>simulated</u> considering fare class booking patterns and booking limits.

Data Example: 7 fare class, business market, single leg, d=0.75...0.88

Average Spill vs. Demand Factor

Estimating Passenger Flows and Spill in the Presence of Yield Management SystemsSlide 11

-49-

Summary: Aggregating fare class information

- Spill estimates from the single joint probability function are inaccurate:
 - -- Joint demand curves do not carry information about fare class demands, relative fares, and booking patterns.
 - -- Effects of booking limits are not captured.

-51-

- Correct spill fares vary with demand factor and cannot be represented by a constant value.
 - The estimation biases can differ in direction and magnitude (no systematic bias).

Fundamental dichotomy of Airline Supply and Demand

- ¹ Supply Decisions (Fleet Assignment) are made on <u>flight leg basis.</u>
- u Demand is generated on an Origin-Destination (OD) basis
- ^u Aircraft flows and passenger flows are different, but overlap on the existing flight leg network.
- ^u Spill should be interpreted and estimated on an OD basis as well, but the problem is that for fleet assignment decisions spill should be leg-based.
 - Still flight legs are the focus.
 - Non-overlapping networks

-52-

- Observed passenger flows and spills on flight legs are only the decomposed projections of the OD passenger flows
- Different OD Passengers compete for the leg capacities

Calculating Spills in Networks -- Leg-Dependence

- Leg-Dependence
 - -- Passenger flows link legs together
 - -- Capacity constraint on a leg affects the "achievable traffic" on other legs

Unconstrained Demand vs. Achievable Traffic

Leg-Dependence Issues

- Leg-dependence occurs when:
 - -- Connecting origin destination (OD) demands are present
 - -- There is spill of connecting passengers due to "censoring effect" of capacity
- Network Connectivity
 - -- Dispersion of Censoring Effects
 - Censoring effect is distributed over many connecting downline legs
 - -- Concentration of Censoring Effects

Censoring effects on upline legs concentrate on the connecting leg

- Direction of leg-dependence effect propagation
 - -- Sequence of legs filling up

-- Fill Rate:
$$\overline{P}(Cap) = \int_{i=Cap}^{\infty} f(i)di$$

• Boundaries of leg-dependence effect propagation

Example: Leg-Dependence

Assumptions:

-- OD demands are independent and Normally distributed.

-- OD mix of load and spill is proportional to demands.

Example: Achievable Connecting OD Traffic on Leg 1

Capacity limit on Leg 2 (Cap₂=100) censors two OD demand flows proportionally w = (loc / loc + conn) * Cap

Achievable Traffic (Cap2=100seats) vs. Unconstrained Demand on Leg 1

Convolution Sum of Local Demand on Leg 1 and the Achievable Connecting OD Traffic

Difference in Spill Estimates

Cap1	Leg-Dependent Cap2=100	Leg-Independ. Traditional Method	Difference
90	4.03	9.07	5.04
95	2.37	6.77	4.4
100	1.27	4.9	3.63

• Traditional leg-independent method over-estimates spill in a leg-dependent network.

OD Mix of Spill is Also Affected

- If passenger demands are censored, then the OD mix of demand is affected
- Consequently, the actual spill fare will be affected as well
 - -- Actual spill fare is lower

Network Connectivity

-- Dispersion of Censoring Effects

Censoring effect is distributed over many connecting downline legs Substantial spill but insignificant leg-dependence effect in the network

-- Concentration of Censoring Effects

Censoring effects on feeding legs concentrate on the fed leg

Small spill on each leg but significant leg-dependence effect in the network

Consequences of Leg-Dependence

- Passenger Spill estimates are affected
 - -- Leg-independent (traditional) spill and fleet assignment approach overestimates spill by assuming unconstrained demand flows.
- Leg interdependence also affects the OD-mix of the spilled passengers
 - -- Fares of different OD's will vary, affecting the average fare of spilled passengers (spill fare)
- Spill Cost estimates are affected by leg interdependence
 - -- Overestimated Spill
 - -- Incorrect Spill fare

Effect of YM Systems on Leg-Dependence

(1) Traditional Fare Class YM System

- Aggregates demand on flight legs into booking classes by fare type (e.g., full fare vs. 14 days advance purchase)
- Leg-based Booking Limits for each booking class
- In Fare Class YM systems connecting and local demands are proportionally spilled -- no OD control over itineraries
 - -- Leg-dependence is a significant issue in spill and spill cost estimations
 - -- Fleet Assignment formulations should be reconsidered

I

Effect of YM Systems on Leg-Dependence

(2) Stratified Bucketing/Virtual Nesting

- Aggregates demand on flight legs into "value classes" according to the OD itinerary total fare.
- Preference given to longer haul connecting OD itineraries
- Local passengers in lower value classes are most likely to be spilled
- Higher revenue connecting OD demands receive greater availability -- limited OD control
 - -- Since mostly local demand is involved in spill, legdependence is not as critical
 - -- Leg-independent spill cost estimates may be used, but YM impacts are still important
 - -- Traditional Fleet Assignment formulations might be adequate

Conclusions

-64-

- Differences of traditional spill and spill cost estimates from actual are substantial when booking limits and booking patterns are not considered.
- The use of detailed Yield Management information improves the estimates significantly.
- Leg-dependence effects can also significantly influence the estimates of actual spill cost
 - -- leg-independent approaches overestimate actual spill
 - -- leg-independent approaches do not capture the actual OD mix of spill
 - -- incorrect spill fare estimates
 - Under different yield management systems, leg-dependence can have different impacts on OD passenger flows.

Further Research

-65-

- Analyze the effects of leg-dependence in real airline networks
- Study the effects of different yield management systems on the OD passenger flows and on the leg-dependence problem
- Develop new approaches to efficiently estimate leg-dependent spill costs
- Incorporate leg-dependence into the Fleet Assignment formulations

Schedule Planning and Operations Control

Technologies for Surviving Competition in the Airline Industry

Dr. Dennis F. X. Mathaisel

Flight Transportation Laboratory Department of Aeronautics & Astronautics MIT

AGENDA

- 1. Overview of available models and computer packages for airline schedule planning and airline system operations control
 - 1.1 Strategic
 - 1.2 Tactical
 - 1.3 Operational
- 2. Systems Development: Approach
 - 2.1 General Strategies
 - 2.2 The Airline Scheduling Workstation (ASW)
 - 2.3 Two Stages of Development
- 3. Expected Benefits for an ASW
- 4. Summary and Conclusions

Strategic • Fleet Planning

- Fleet Assignment
- Network Optimization/Evaluation

Tactical • Airline Schedule Development

- Timetable Construction
- Traffic Allocation and Network Evaluation
- Aircraft Assignment
- Aircraft Routing
- Aircraft Swapping (Switch and Save)

Operational

- System Operations Control
 - Operations Manager
 - Irregular Operations
 - Crew Management
 - Flight Dispatch
 - Maintenance Recovery
 - Aircraft Situation Display
 - Ground Handling and Manpower Planning
 - Passenger Services
 - Catering

STRATEGIC

Fleet Planning - Cell

- Find optimal (maximum operating income) schedule of aircraft acquisition and retirements over a series of future years
- Use aggregate route/market clusters ("cells")
- Introduce financial parameters and constraints purchase vs. lease options
- Linear Programming techniques

STRATEGIC

Fleet Assignment – FA-4

- Uses large scale LP technique to find "best" allocation of available fleets to feasible, desirable aircraft routings on a network of services
- Maximize Operating Income
- Detailed schedule of departure/arrival times not considered
- Given:
 - O-D market demand function (not fixed)
 - Multi-stop routings
 - Limits on available daily fleet hours
 - Limits on onboard load factors achievable
 - limits on Max-Min desired daily market services
- Results
 - Routes to be flown
 - Frequency by type of aircraft
STRATEGIC

Network Evaluation and Competitive Analysis - TALLOC

- Simulation of an airline's competitive environment at the schedule level of detail
- Given
 - O-D demands
 - Schedules of your airline and your competition
 - Passenger behavior parameters
 - Costs and fares
- Results
 - Composition of onboard segment traffic
 - Market analysis
 - Profitability analysis

Airline Schedule Development - (ASD)

- Standalone or client-server architecture
- Multiple users
- Interactive graphics editor
- Unlimited number of aircraft, segments, rotations, stations
- Flexible setup, filtering, sorting, scaling
- Multiple windows
 - Lines of flying
 - Aircraft rotations
 - Station activity
 - Gate assignment
 - Timetable
 - Geographic map view
- Frequency-based and fully-dated schedules

ASD -- cont.

• Rule-based constraint checker

Crew requirements

Maintenance requirements

Operations (ground times, station continuity, curfews, etc.)

- Librarian: merging and splitting schedules
- Interfaces to existing algorithms
- Connection Generator (AUTOCONN)
- Automatic flight numbering
- Import and export functions: read and write data files to mainframe
- Interfaces to DBMS
- Printed reports
- Runs on any UNIX workstation or PC supporting UNIX

Timetable Construction – REDUCTA

- Shifts flights within a specified time window with the objective of increasing the efficiency of the schedule
- Given:
 - Set of services which must be flown
 - Time window for each service
 - Minimum turn times
 - Curfews
- Results:
 - Re-optimized time schedule for the services

<u>Timetable Construction – INSERT</u>

- Algorithm for building aircraft (or ground vehicle) itineraries based on the demand for service
- Builds routes and schedules through a sequential "insertion" of services into the system
- Structured decision rules
 - Choice of aircraft type
 - Hubbing decision rules
- More useful for charter operations than for scheduled services

<u>Traffic Allocation and Network Evaluation - TALLOC</u> <u>Given</u>

- Forecasts of O-D demands for all markets
- Schedules for your airline and your competition
- Passenger preference factors

<u>Results</u>

• Segment analysis

Composition of onboard segment traffic

• Market analysis

Services provided in each market and the traffic carried on each flight

Very detailed evaluation of a schedule in a competitive environment

- Simulates passenger booking process
- Links scheduling to revenue and capacity management

Thru - Flight Optimization Module

• Analyzes thru-flight vs. connecting flight possibilities

Aircraft Assignment

- Optimal assignment of aircraft types to a <u>fixed</u> schedule
- Uses very large scale integer linear programming techniques
- Constraints
 - Minimal set of crew constraints
 - Minimal set of maintenance constraints
- Integration with revenue management systems

Aircraft Routing - MRS

<u>Objective</u>

Find good set of turns between arrivals and departures at a station to form routings

<u>Given</u>

- Desire for through service in certain markets
- Maintenance operational constraints

<u>Output</u>

- Rotations, daily/weekly lines of flying
- Gate occupancies at station
- Routings to planned maintenance checks

Uses optimal tree-construction techniques, and forward and reverse tree search.

Switch and Save - SWITCH (David L. Johnson)

<u>Objective</u>

Maximize operating income by switching aircraft types to match capacity with demand

<u>Given</u>

- Set of scheduled services for any two fleet types with fixed operating times and known net operating income
- Aircraft operating costs

<u>Find</u>

 All possible ways of switching aircraft types and select the fleet assignment with maximum total profit

<u>Note</u>:

For planning purposes it is not necessary to specify the starting location of aircraft. They can be positioned at any station the planner chooses.

System Operations Control

- Operations Manager
- Irregular Operations
- Crew Management
- Flight Dispatch
- Maintenance Recovery
- Aircraft Situation Display

Ground Handling and Manpower Planning

Passenger Services

Catering

System Operations Control – ASC

- Flight following
- Real-time graphical user interface
- Embedded icons show the current status

Cancellations

Changes in ETA/ETD

Maintenance

Weather forecasts

Crew information

Passenger loads

Aircraft/airport status

Built-in "flagging" system for warnings

"What-if"

- Client-server architecture
- Multiple users

Systems Operations Control - cont.

- Flexible setup, filtering, sorting, scaling
- Marketing schedule display to compare planned and actual Imbedded icons
- Cancellations, changes in ETA/ETD, overfly, etc.
- Maintenance problems
- Weather forecasts
- Crew information
- Passenger loads
- Interactive graphics editor
- Modify ETAs/ĒTDs
- Swap equipment
- Cancellations
- Overfly or add additional stop
- Popup menus to edit mainframe transaction commands before transmission
- Popup menus to retrieve aircraft, station, flight information
- Messaging system
- Interactive "what-if": evaluate alternative plans
- Interfaces to existing algorithms
- Import and export functions: read and write data files to mainframe
- Printed reports

Resource Allocation and Manpower Planning - RAMPS (ADDAX)

- Assigns agents to ramp services
- Translates real-time operations information into the tasks required for each aircraft's movement
- Management policies and standards programmed into the system
- Includes ramp agent selection criteria and shift break schedules

Passenger Service Agent Allocation System - PSAAS (ADDAX)

- Monitors and assigns passenger service agents to tasks
- Based on real-time flight information, PSAAS matches agents to appropriate jobs throughout the day
- Management policies and standards programmed into the system
- Assignments based on:
 - Job classification
 - Skills
 - Time lapsed since last assignment
 - Travel time to assignments
 - Workload balancing

<u>Catering Allocation Planning Equipment Routing -</u> <u>CAPERS</u> (ADDAX)

- Dispatches catering personnel to tasks
- Translates real-time flight information into the catering tasks required for each aircraft's movement
- Management policies and standards programmed into the system
- Monitors and tracks
 - Job skills for each employee
 - Daily rosters
 - Equipment availability
 - Loading dock schedules

- 2. Systems Development Approach
- 2.1 General Development Strategies
 - Involve schedulers at all development stages (there will be cultural and organizational shock)
 - Provide familiar systems and reports to ensure that the new system will not preclude doing certain schedule sub-processes by old methods
 - Expect changes in organization and procedures as workstation capabilities are perceived
 - Establish a local area network of workstations in scheduling area, capable of interfacing with the airline's existing mainframe system.
 - Develop transportable, modular, object-oriented code
 - Extendible
 - Easily supported
 - C, C++
 - Efficient data structures
 - Common graphical user interfaces to all subsystems
 - Common DBMS platforms
 - Common hardware platforms

2.2 The Airline Scheduling Workstation (ASW)

A Computer Tool for Airline Schedulers

- 1. Desk top Engineering Workstations running UNIX on a local area network interfaced with existing airline mainframe systems.
- 2. Large (19 inch), high-quality color displays with interactive, instantaneous, manipulation of schedule graphics information using a "mouse".
- 3. Object-oriented C programming to provide modular code, easily extendible to handle time-varying scheduling constraints, policies, etc., and to reduce programming support.

Two Stages of Development

<u>Stage 1 – Introduction of a Manual, Interactive Graphics</u> <u>Scheduling System</u>

- a) Provide computer graphic displays of schedule information
 - Instantaneously modifiable by mouse, global data base modification
 - Selectable screen data -- by fleet, station, time, schedule period
 - Save alternate solutions
 - Auditable differences
 - Memo pad for scheduler
 - Keyed to input data, and assumptions used
 - Automated search routines, etc. to minimize keyboard and mouse work
- b) Provide instantaneous error flagging (even if error occurs off-screen)
 - e.g., insufficient gates, flow imbalance, double crew layover, violation of turnaround or transit times, insufficient aircraft

Stage 1 -- cont.

- c) Integrate initial crew, gate, maintenance schedule planning with aircraft schedule planning
 - e.g., rough initial schedules for crews, gates, station personnel)
- d) Provide familiar printed reports and graphics for distribution around airline
- e) Provide interface to mainframe data system to maintain current scheduling processes
- f) Centralize data bases

Two Stages of Development

Stage 2 – Introduction to Automated Decision Support

- Algorithms to assist human schedulers optimize sub-problems
- Eliminate manual effort at certain steps of the process
- Broaden search for optimal or good solutions to scheduling sub-problems
- May introduce large scale optimization algorithms

Summary State-of-the-Art in Computerized Scheduling

Conclusions

- 1. We cannot create one analytical model which is adequate to describe mathematically the complete airline scheduling problem.
- 2. We can provide quick, accurate answers to many subproblems which occur in the complete scheduling process, but we need an environment which allows these techniques to be available to human schedulers. This environment is now available in the form of a network of computer workstations.
- 3. It is attractive to consider a single, integrated system to be used by various airline personnel as the scheduling process moves from initial planning to final execution.
- 4. People will remain an important part of the airline scheduling process. They are responsible for generating good schedules, and need "decision support" in their activities. There never will be a "fullyautomatic" scheduling system.
- 5. The desired approach is incremental introduction of computerized assistance via graphic workstations. The strategy should be to create evolutionary stages:

Stage 1 – Introduce the Scheduling Workstations Stage 2 – Introduce Automated Decision Support

<u>Summary</u> <u>State-of-the-Art in Computerized Scheduling -- cont.</u>

- 6. The scheduling process is not permanent
 - As time goes by the problems change, (perhaps temporarily), and the markets evolve, and there will be emphasis on different aspects. It will not be possible to create a completely automated decision maker which keeps up with changes.
- 7. As these tools are developed, they have their impact on the Scheduling Process
 - It will change in its flow of information, the sequence of processing will change, and eventually the airline's organizational structures will change. The introduction of computer automation must be adaptive to allow these changes to occur.
- 8. Every airline will have to develop its own automated scheduling system and manage the evolutionary impact on its operations. There is no single, turnkey solution to be provided by outsiders. A conceptual, long term plan is needed to direct the evolutionary effort and prevent building an incoherent set of sub-systems.

The Value of Revenue Management in a Competitive Airline Industry

John L. Wilson Peter P. Belobaba Flight Transportation Laboratory Massachusetts Institute of Technology

AGIFORS YM Study Group Meeting May 2, 1995

Questions

- In competitive setting, how does RM affect...
 - market revenues?
 - total loads and fare class distribution?
- How do carriers with different RM capabilities share these revenue benefits?

Outline of Presentation

- Terminology and simulation approach
- Experiment descriptions and findings for
 - Symmetric two path scenarios for one O-D pair
 - Dominant carrier scenarios for one O-D pair
 - Three-city scenarios
- Conclusions on the importance of competition in evaluation of RM benefits
- Model refinements and extensions

Simulation Terminology

- Sampling unit
 - observation: departure day
 - *trial*: series of observations
- Trip components
 - *flight leg*: nonstop departure at specified time
 - *market path*: set of legs comprising OD itinerary

Simulation Approach

- Forecasting causes correlation of observations within trial
 - self-fulfilling prophecy
 - need for repeated independent trials
- Pax types (2) vs. fare classes (4)
 - specify business & leisure pax type behavior
 - types may not book in "proper" classes

Symmetric Two Path Scenarios: Definition & Dimensions Tested

- Two competitors with one flight each at common departure time
- Unconstrained demand factor: 0.8 to 1.2
- Simple pick-up forecasting model
- Inventory control method combinations
 - First Come First Served (FCFS)
 - Expected Marginal Seat Revenue nested control: EMSRa vs. EMSRb

Revenue Impact by Carrier Under all RM Method Combinations Demand Factor = 0.9

-99-

-100-

Carrier Revenue Benefit Achievable Under Each EMSR Variant When Competitor Maintains FCFS Discipline Various Demand Factors

-101-

Symmetric Two Path Scenarios: Findings

- Evolution from FCFS/FCFS (DF = 0.9)
 - single RM innovator achieves:

higher revenuelower loadpartially at rival's expense

- after rival acquires RM capability:
 - no change in leader's revenue
 - total traffic balances & shifts toward Y class
- EMSRb marginally outperforms EMSRa

Single Market Dominant Carrier Scenarios: Dimensions Tested

- Degree of frequency superiority: 2 vs. 1
- Schedule separation of weak departure
 - overlap at peak
 - distinct at off peak
- Inventory control method permutations

-104-

Single Market Dominant Carrier Scenarios: Findings

- Both RM method pairing and schedule separation dramatically affect performance
- Dominant carrier benefits from captive market segment
 - if RM disadvantage: limits unit Q class dilution
 - if equal or better RM: redirects leisure pax to weak departure (especially in overlap)

Three-City Scenarios: Motivation

- Direct effects of path quality on pax choice
 - value of time by pax segment captured by Decision Window framework
 - attributed cost for path quality index (intrinsic disutility of connection)
- Multiple paths on a leg allow competition for capacity
Three-City Scenarios: Network and Base Schedules

- Network structure
 - connecting longer haul market: A-C
 - two local (spoke) markets: A-B, B-C
- Carrier 1 offers one A-C nonstop and no local service
- Carrier 2 offers only connecting service in A-C constructed from local service

Three Market Scenarios: Preliminary Findings

- Local service carrier receives larger percentage revenue gains from RM control
- High local demand limits potential benefit of RM for both carriers
- Indirect revenue benefit for local service carrier when nonstop rival introduces control

Conclusions: RM in Competitive Environment

- Variable "first-mover" advantage
- Non-zero-sum revenue game
- Control pairings decide fate of spilled pax
- Benefits achievable with RM depend on ⇒rival's RM capability
 - demand, frequency, and network attributes

Research Extensions Under Current Project Plan

- Existing model
 - alternative forecasting systems
 - larger networks
- Enhanced reservation process model: cancellations, overbooking, no-shows
- Assessment of network-based RM methods

Human-Centered Automation of Air Traffic Control Operations in the Terminal Area

ASLOTS

A Decision Support System to Assist Controllers in the Final Approach and Landing Operations

Husni Idris Flight Transportation Laboratory MIT

ATC Operations in the Terminal Area:

- Upstream of entry points:
 - Flight management
 - Flow control
- Runway scheduling
- Approach path generation
- Conformance monitoring
- Hazard monitoring

6

٠

Automatic Rearward Shifting of Slots (ARS)

Example:

If an attempt is made to shift A rearwards, it cannot reach the limit of its feasible range because it must maintain a separation Sab from B; and when B reaches the limit of its range, A cannot be moved further and maintain separation from B. As B moves rearward, C is also moved since it is tight in the original spacing, but when B reaches its limit, C stops moving rearward and since there still is excess spacing from D, it turns out that D does not have to be shifted. The shift range shown to the controller will instantly show how far each aircraft can be shifted in any situation so that the complexity of the shifting need not be known.

ASLOTS: a human-centered automation system for terminal area operations

• Runway scheduling:

- Manual change of schedule within a limited range: moving the slot markers
- Manual resequencing of landings: moving the slot markers
- Manual insertion of takeoffs between landings: using the slot markers
- Automatic update of the schedule after a manual change: automatic rearward shifting
- Automatic update of the schedule after a centerline interception error: centerline adaptation

• Approach path generation:

- Automatic assignment of patterns
- Automatic approach path generation: providing cues for appropriate clearances
- Manual delivery of clearances following the automatic cues

- Conformance monitoring:
 - Automatic regeneration of the approach path after a conformance error
 - Automatic regeneration of the approach path after moving the slot marker

• Hazard monitoring:

 Automatic maintenance of the minimum separation between aircraft on the centerline: automatic rearward shifting and centerline adaptation

.

Level of automation between the human controller and the computer in path generation

.

Path Generation	Path Choice	Sending Clearances
Human controller	Human controller	Human controller sends
generates alternative	chooses path	clearances
\mathbf{paths}		
Computer generates	Human controller	Human controller sends
alternative paths	chooses path	clearances
Computer generates	Human controller	Human controller sends
and selects alterna-	chooses path	clearances
tive paths		
Computer gener-	Human controller	Human controller sends
ates and advises best	chooses path	clearances
paths		
Computer gener-	Human controller	Computer sends clearances
ates and advises best	chooses path	if human controller ok
paths		
Computer generates	Computer	computer sends clearances,
alternative paths	chooses path	if human controller gener-
	-	ates no veto
Computer generates	Computer	computer sends clearances,
alternative paths	chooses path	but must inform human controller
Computer generates	Computer	computer sends clearances,
alternative paths	chooses path	informs human controller if
		human controller asks
Computer generates	Computer	computer sends clearances,
alternative paths	chooses path	informs human controller if
		computer agrees
Computer generates	Computer	computer sends clearances
alternative paths	chooses path	

Two main design questions

4

• Allocation of tasks between the human controller and the ASLOTS automation: Should a task be automated or not?

•

• Given the tasks to be automated, how should the automation be implemented?

.

ŧ

.

•

Experiment main issues

- The reliability and robustness of the system
- The performance (efficiency) of the system
- The characteristics of the new work responsibilities of the air traffic controller
- The appropriate allocation of tasks between the air traffic controller and the computer under dynamic conditions
- The appropriate design of the graphical interface

•

Display -) Quit) Full View 1 Redraw) Rotate | Zoom in | Zoom Out |

Rotate)	Zoom In)	Zoom Out)	Full View)	(Redraw)	Display r)	Quit)	

Press F9 to start the simulation.

Developed by the Flight Transportation Laboratory, MIT, Cambridge, Massachusetts.

.

Figure 4.1: "Arrival-Trombone" Pattern

Figure 4.9: "Arrival-Direct-to-Base" Pattern

Figure 4.8: "Overhead-Trombone" Pattern

.

.

Figure 4.10: "Missed-Approach" Pattern

Figure 4.2: Air-space organization

Flexibility as an objective

• Choose the center of the solution set

.

Figure 4.4: Feasible region

.

ASLOTS' Path Generation

Automation of the conflict avoidance task

- Monitor the conflicts manually, with ASLOTS providing graphical tools such as path previews
- Automated conflict avoidance:

4

- Sadoune's generate-and-test scheme
- Integrate conflict avoidance as constraints in the path generation problem

Conflict avoidance as constraints in the path generation problem

 $\begin{array}{l} \mbox{if }t1<(L-x0)/v \\ \mbox{then either }t1<c1 \mbox{ or }t1>c2 \\ \mbox{where }c1 \mbox{ and }c2 \mbox{ are constants which depend on the path} \\ \mbox{parameters} \\ \mbox{if }t1>(L-x0)/v \end{array}$

then ...

Efficiency considerations

•

• Satisficing by using an approximation to the optimal solution

•

• Reducing the size of the problem by setting the duration of the latest segments to nominal values

Remaining tasks towards running experiments

- Complete the path generation and conflict avoidance automation
- Investigate the runway assignment and scheduling task and implement its automation (as possible)
- Design the graphical interface functions and tools along with the implementation of the main tasks
- Design the experiment(s) (addressing mainly the dynamic automation level issue)
- Perform experiments

FREIGHT MODE CHOICE: AIR VERSUS OCEAN TRANSPORT

MAY 19, 1995

RAYMOND A. AUSROTAS FLIGHT TRANSPORTATION LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LARGE ALL-CARGO AIRCRAFT SYSTEM

(LACAS)

SCOPE OF STUDY

<u>TASK 1</u>.

- A. ANALYZE CONTAINER SHIP SYSTEMS
 - SYSTEM OPERATION-INTERMODAL ISSUES-TRUCK, RAIL, SHIP
 - COSTS OF PROVIDING SERVICE
 - PRICE OF SERVICE
- B. ANALYZE FREIGHT FLOWS AROUND THE WORLD
 - VOLUME OF CARGO
 - TYPE OF CARGO CARRIED
 - ORIGIN AND DESTINATION OF CARGO

<u>TASK 2</u>.

IDENTIFY POTENTIAL DIVERSION OF CONTAINER FREIGHT TO A LARGE ALL-CARGO AIRCRAFT SYSTEM BY USING LOGISTICS MODEL

 MARKET SHARE ANALYSIS BASED ON VALUE OF CARGO, PERISHABILITY, AND COST OF ORDERING AND PROVIDING TRANSPORTATION SERVICES

FREIGHT MODE CHOICE:

4

.

AIR TRANSPORT VERSUS OCEAN TRANSPORT IN THE 1990's

Dale B. Lewis

December 1994

FTL Report 94-9

Flight Transportation Laboratory Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139
	Metric Tons	Metric Tons	Metric Tons	Air Tons
Trade	Ocean	Ocean	Air	cos % of
Area	All Cargo	Container	All Cargo	Ocean
World	867.000.000	117,000,000	4,224,045	3.6%
Europe		19,000,000	1,591,589	8.4%
Far East	1	45,000,000	1,232,549	2.7%
Other		53,000,000	1,399,907	2.6%

•••

.

-

.

•

and Office of International Aviation

•

.

.

.

.

, , , ,,,

11

.

. .

,

.

.

• 2 *

.

(

· · · · ·

٠

Ϊ,

Tranat	lant	le Trac	le			
Costs	per	single	ship	ond	Innual	basis.

.

.

.

Teu per	Rounattips	Cost Per	Yearly Cost	Miles per
Roundtrip	per Year	Roundtrip	per Ship	Crossing
1980	12.9	\$3,023,000	\$38,867,143	4625

•

ions per	Cost per	Cost per
eu	teu-mile	ton-mile
5	\$0.330	\$0.066
6	\$0.330	\$0.055
7	\$0.330	\$0.047
8	\$0.330	\$0.041
9	\$0.330	\$0.037
10	\$0.330	\$0.033
11	\$0.330	\$0.030
12	\$0.330	\$0.028
13	\$0.330	\$0.025
14	\$0.330	\$0.024
15	\$0.330	\$0.022

•

.

•

Transpacific Trade Costs per single ship on annual basis.

Teu per	Roundtrips	Cost Per	Yearly Cost	Miles per
Roundtrip	per Year	Roundtrip	per Ship	Crossing
4094	8.57	\$7.114.000	\$60,469,000	8275

•

Tons per	Cost per	Cost per
Teu	teu-mile	ton-mile
5	\$0.208	\$0.042
6	\$0.208	\$0.035
7	\$0.208	\$0.030
8	\$0.208	\$0.026
9	\$0.208	\$0.023
10	\$0.208	\$0.021
11	\$0.208	\$0.019
12	\$0.208	\$0.017
13	\$0.208	\$0.016
14	\$0.208	\$0 .015
15	\$0.208	\$0.014

Derived from Drewry Shipping Consultants, 1992

.

.

•

.

	(Nonbulk Produ	ucts)	// n
YEAR	Metric Tons	Dollars	Average
1992	(Thousands)	(Millions)	Value/lb.
Ocean	4,354	\$17.739	\$1.82
Air Cargo	415	\$36.032	\$38.76

.

. . . . • •

...

. .

•

· ·

•

.

•

.

.

	-	- · · ·							Cubic Value	Density
		ſ		Ocean			Alr		Ocean	Alr
U.N.	Density Pounds		Tons	Value Dollars	Value Dollars	Tons	Value Dollars	Value Dollars	Value Dollars	Value Dollars
Class	per foot	Commodity	(000s)	(Millions)	per lb.	(000s)	(Millions)	per lb.	per cu.ft.	per cu.ft.
		Leading Ocean Exports								
73	6	Road Motor Vehicles	182	\$1,501	\$3.70	6	\$148	\$11.10	\$22.20	\$66.60
71	33	Machinery General	108	\$1,397	\$5.80	26	\$1,310	\$22.50	\$191.40	\$742.50
57	36	War Material	17	\$675	\$17.20	2	\$272	\$66.70	\$619.20	\$2,401.20
86	27	Photo Supplies	33	\$670	\$8.90	4	\$181	\$19.50	\$240.30	\$526.50
71	20	Office Machinery	21	\$635	\$13.30	32	\$4,899	\$68.00	\$266.00	\$1,360.00
73	17	Scientific Instruments	18	\$502	\$12.70	17	\$2,508	\$65.30	\$215.90	\$1,110.1
71	33	Machinery for Special Ind.	37	\$453	\$5.50	6	\$313	\$23.10	\$181.50	\$762.3
72	21	Electrical Machinery	40	\$424	\$4.70	15	\$3,066	\$90.20	\$98.70	\$1,894.2
73	32	Gas Engines and Diesels	40	\$374	\$4.20	4	\$315	\$31.60	\$134.40	\$1,011.2
73	8	Aircraft and Parts	4	\$346	\$38.60	10	\$2,805	\$127.00	\$308.80	\$1,016.0
71	33	Metal Working Machinery	22	\$345	\$7.00	4	\$229	\$26.90	\$231.00	\$887.7
72	36	Electric Motors and Generators	19	\$298	\$6.90	12	\$1,118	\$39.90	\$248.40	\$1,436.4
89	33	Printed Matter	36	\$245	\$3.00	18	\$602	\$23.60	\$99.00	\$778.8
72	22	Telecommunications Apparatu	14 9	\$239	\$11.20	10	\$1,659	\$71.10	\$246.40	\$1,564.2
		TOTALS	586	\$8,104		16	5 \$19.425			

U.N. =United Nations Standard International Trade Classification Index Density is drawn from the U.N. table

1

4

-150-

i ì

	-								Cubic Value	Density
		ſ		Ocean			Air		Ocean	Alr
				Value	Value		Value	Value	Value	Value
J.N.	Density		Tons	Dollars	Dollars	Tons	Dollars	Dollars	Dollars	Dollars
Class	b/cu.ft	Commodity	(000s)	(Millions)	per lb.	(000s)	(Millions)	per lb.	per cu.ft.	per cu.ft
		Leading Air Exports							<u> </u>	
3	30	Fish and Fish Products	42	\$111	\$1.20	13	\$92	\$3.00	\$36.00	\$90.00
58	13	Plastic Materials	267	\$708	\$1.20	11	\$139	\$5.90	\$15.60	\$76.7
84	18	Clothing	20	\$188	\$4.20	9	\$307	\$14.50	\$75.60	\$261.0
54	21	Pharmaceuticals	16	\$201	\$5.40	9	\$1,572	\$80.30	\$113.40	\$1,686.3
64	20	Paper and Paperboard Mfgs.	40	\$99	\$1.10	9	\$33	\$1.70	\$22.00	\$34.0
65	16	Woven Fabrics (except cotton)	22	\$157	\$3.10	9	\$127	\$6.70	\$49.60	\$107.2
86	20	Sound Recorders	14	\$157	\$4.90	7	\$569	\$37.30	\$98.00	\$746.0
86	20	Electro-Medical Apparatus	2	\$102	\$18.30	6	\$1,350	\$76.00	\$366.00	\$1,520.0
64	32	Paper and Paperboard	100	\$159	\$0.70	6	\$13	\$1.00	\$22.40	\$32.0
73	32	Internal Combustion Engines	10	\$185	\$8.60	6	\$2,373	\$189.00	\$275.20	\$6,048.0
		TOTALS	533	\$2,067		85	\$6,575		· · · ·	1

-

•

.

¢

,

Density is drawn from the U.N. table

ı.

			<u> </u>	Value	Value	Cubic	Pounds	Cubic
N	Density		Tops	Dollars	Dollars	Feet	(000s)	Value
lass	blouft		(000s)	(Millions)	per lb.	(000s)		Density
71	20	Office Machinery	32	\$4,899	\$68.00	3.584	71.680	\$1,360
72	21	Flectrical Machinery	15	\$3.066	\$90.20	1,600	33,600	\$1,894
73	8	Aircraft and Parts	10	\$2,805	\$127.00	2,800	22,400	\$1,016
73	17	Scientific Instruments	17	\$2,508	\$65.30	2,240	38,080	\$1,110
73	32	Internal Combustion Engines	6	\$2,373	\$189.00	420	13,440	\$6,048
72	22	Telecommunications Apparatus	10	\$1,659	\$71.10	1,018	22,400	\$1,564
54	21	Pharmaceuticals	9	\$1,572	\$80.30	960	20,160	\$1,686
86	20	Electro-Medical Apparatus	6	\$1,350	\$76.00	672	13,440	\$1,520
71	33	Machinery General	26	\$1,310	\$22.50	1,765	58,240	\$743
72	36	Electric Motors and Generators	12	\$1,118	\$39.90	747	26,880	\$1,436
89	33	Printed Matter	18	\$602	\$23.60	1,222	40,320	\$779
86	20	Sound Recorders	7	\$569	\$37.30	784	15,680	\$746
73	32	Gas Engines and Diesels	4	\$315	\$31.60	280	8,960	\$1,011
71	33	Machinery for Special Ind.	6	\$313	\$23.10	407	13,440	\$762
84	18	Clothing	9	\$307	\$14.50	1,120	20,160	\$261
57	36	War Material		\$272	\$66.70	124	4,480	\$2,401
71	33	Metal Working Machinery		\$229	\$26.90	272	8,960	\$888
86	27	Photo Supplies		\$181	\$19.50	332	8,960	\$527
73	6	Road Motor Vehicles		5 \$148	\$11.10	2,240	13,440	\$67
<u>58</u>	13	Plastic Materials	1	1 \$139	\$5.90	1,895	24,640	\$77
65	16	Woven Fabrics (except cotton)		9 \$127	\$6.70	1,260	20,160	\$107
3	30	Fish and Fish Products	1	3 \$92	\$3.00	971	29,120	\$90
64	20	Paper and Paperboard Mfgs.		9 \$33	\$1.70	1,008	20,160	\$34
64	32	Paper and Paperboard		6 \$13	\$1.00	420	13,440	\$32
		•	251	\$26,000		28,141	562,240	1

FACTORS THAT CONTRIBUTE TO LOGISTICS COSTS

- 1) INTEREST CHARGES ON GOODS AWAITING SHIPMENT
- 2) INTEREST CHARGES ON GOODS IN TRANSIT
- 3) INTEREST CHARGES ON GOODS HELD AS SAFETY STOCK
- LOSS, DAMAGE OR DECAY OF GOODS BETWEEN MANUFACTURE AND SALE

,

- 5) COSTS OF ORDERING TRANSPORTATION SERVICES
- 6) COST OF TRANSPORTATION

Appendix E-1

Perishable Cost = $\left[(1 - Sal)^{*} (V * S)^{*} \left(\frac{T}{L} \right)^{4} \right]$ Perishable Cost = (Per Cent Loss in Value) * (Value of Product Shipped) * (Per Cent of Shelf Life spent InTransit) Origin Cost = $\left[\left(i*\frac{P}{365}\right)*(V)*\left(\frac{x}{2}\right)\right]$ Origin Cost = (Interest Rate per Period) * (Value per Container) * (One Half the Number of Containers per Shipment) In Transit Cost = $\left[(S * V) * \left(i * \frac{P}{365} \right) * \left(\frac{T}{P} \right) \right]$ InTransit Cost = (Value of Product Shipped) * (Interest Rate per Period) * (Trip Time in Days / Period Length) SafetyStock Cost = $\left[\left(i * \frac{P}{365}\right) * (V) * (k * \sigma) * \left(\frac{S}{P}\right)\right]$ Safety Stock Cost = (Interest Rate per Period) * (Value per Container) * (Protected Time) * (Containers Shipped per Day) Transport Cost = Quote from Transportation Provider Logistics Cost = Origin + InTransit + Safety Stock + Perishable Cost + TransportCost X = Shipment Size in Containers V = Value per Container i = Annual Inventory Interest Rate S = Period Demand in Containers T = Average Trip Time L =Shelf Life of Product σ = Standard Deviation of Trip Time in Days $k = Constant, multiplier for \sigma$ Sal = Salvage Value of Product in Per Cent Adapted From P = Demand Period in Days C.D. Martland, 1992 d = Industry or Commodity - specific decay parameter

Exhibit 7.2

Model Inp	ut
\$38.60 Value Per Pound	
8 Density of Stowage (lb/cu.ft.)	0
20% Annual Carrying Charge	Ocean
365 Demand Period (days)	\$1,733 Transport Cost/Container
8960000 Period Demand (lb)	25 Average I np I ime (days)
365 Shelf Life (days)	1 Std. Dev. of Trip Time (days)
40% Per Cent Salvage Value	1.7 Std. Deviations for Safety Stock
7.0 Air to Ocean Freight Price Ratio	52 Shipments per Demand Period
8 Perish/Decay parameter	
	Air
Container	\$12,131 Transportation Cost/Container
85% Container Space Used	4 Average Trip Time (days)
20 Container Length (ft)	0.5 Std. Dev. of Trip Time (days)
8 Container Width (ft)	1.7 Std. Deviations for Safety Stock
8 Container Height (ft)	104 Shipments per Demand Period
Per Air Ocean	Difference
Cont. \$13,347 \$7,294	(\$6,052.46)
Calculated Container Requirement	
1,120,000 Cubic ft. Annual Demand	1029 Containers Demand in Period
1.088.00 Cubic ft. Used per Container	\$335,974 Value per Container
8,704 Cargo Woht, per Cont, (lb)	\$345,856 Penod Value of Commodity (000s

.

52 Shipments per Demand	Period \$7,508,999 Annual Logistics Cost
19.8 Average Shipment Size)
\$0 Perishable Cost/Cont.	Per Container
\$646 Origin Inventory/Cont.	\$5,561 Interest & Perish Costs
\$4,602 In-Transit Inventory/Col	nt. \$1,733 Transportation Costs
\$313 Safety Stock/Cont.	\$7,294 Logistics Cost
\$1,733 Transportation Cost/Co	nt

104	Shipments per Demand Period	\$13,739,472 Annual Logistics Cost
9.9	Average Shipment Size	
\$0	Perishable Cost/Cont.	Per Container
\$323	Origin Inventory/Cont.	\$1,216 Interest & Perish Costs
\$736	In-Transit Inventory/Cont.	\$12,131 Transportation Costs
\$156	Safety Stock/Cont.	\$13,347 Logistics Cost
<u>\$130</u>	Transportation Cost/Cont	

•

Evhibit 7 3

<u> </u>	<u> </u>		Model Innu	ıt	
\$39.90	Value Pe	er Pound			
3	6 Density	of Stowage (lb	/cu.ft.)		
20%	Annual Carrying Charge				Ocean
36	Demand	Period (days))	\$1,733	Transport Cost/Container
42560000	Period D	emand (lb)		25	Average Trip Time (days)
36	5 Shelf Life	(days)		1	Std. Dev. of Trip Time (days)
40%	Per Cent	Salvage Value	Ð	1.7	Std. Deviations for Safety Stock
7.0	Air to Ocean Freight Price Ratio			52	Shipments per Demand Period
8	Perish/D	ecay paramete	r		
					Air
Container	<u>r</u>			\$12,131	Transportation Cost/Container
85%	Container Space Used			4	Average Trip Time (days)
20	Container Length (ft)			0.5	Std. Dev. of Trip Time (days)
	8 Container Width (ft)			1.7	Std. Deviations for Safety Stock
	8 Container Height (ft)		104 Shipments per Demand Period		
	Per	Air	Ocean	Difference	
	Cont.	\$17,787	\$27,602	\$9,815.52	
Calculated C	ontainer l	Requirement			
1,182,222	Cubic ft. A	Annual Deman	d	1087	Containers Demand in Period
1,088.00 Cubic ft. Used per Container			aner	<u>⊅1,562,803</u>	alue per Container

.

52	Shipments per Demand Period	\$29,992,821	Annual Logistics Cost
20.9	Average Shipment Size		-
\$0	Perishable Cost/Cont.		Per Container
\$3,005	Origin Inventory/Cont.	\$25,869	Interest & Perish Costs
21,408	In-Transit Inventory/Cont.	\$1,733	Transportation Costs
\$1,456	Safety Stock/Cont.	\$27,602	Logistics Cost
\$1,733	Transportation Cost/Cont		-

104	Shipments per Demand Period	\$19,327,267	Annual Logistics Cost
10.4	Average Shipment Size		
\$0	Perishable Cost/Cont.		Per Container
\$1,503	Origin Inventory/Cont.	\$5,656	Interest & Perish Costs
\$3,425	In-Transit Inventory/Cont.	\$12,131	Transportation Costs
\$728	Safety Stock/Cont.	\$17,787	Logistics Cost
\$12,131	Transportation Cost/Cont		

Exhibit 7.4

Commodity:	Road Motor	Vehicles
------------	------------	----------

	_		Model Inp	ut.	
\$3.70	Value P	er Pound			
6	Density	of Stowage	(lb/cu.ft.)		Ocean
20%	Annual Carrying Charge			\$1,733	Transport Cost/Container
365	Demand Period (days)			25	Average Trip Time (days)
407680000	Period Demand (lb)			1	Std. Dev. of Trip Time (days)
365	Shelf Life (days)			1.7	Std. Deviations for Safety Stock
40%	Per Cent Salvage Value			52	Shipments per Demand Period
7.0	Air to Od	cean Freiaht	Price Ratio		
8	Perish/Decay parameter				Air
Container				\$12,131	Transportation Cost/Container
85%	Contain	er Space Us	ed	4	Average Trip Time (days)
20	Contain	er Lenath (ft)	0.5	Std. Dev. of Trip Time (days)
8	Contain	er Width (ff)	•	1.7	Std. Deviations for Safety Stock
8	8 Container Height (ff)			104	Shipments per Demand Period
·•					
	Per	Air	Ocean	Difference	
	TEU	\$12,218	\$2,133	(\$10,085.59)	

i

.

•

Calculated Container Requirement

67,946,667 Cubic ft. Annual Demand	62451 Containers Demand In Period
1088 Cubic ft. Used per Container	\$24,154 Value per Container
6,528 Cargo Wght. per Cont. (lb)	\$1,508,416 Period Value of Commodity (000s)

52 Sh	ipments per Demand Period	\$133,196,682	Annual Logistics Cost
1201.0 A	verage Shipment Size		
\$0 Pe	erishable Cost/Cont.		Per Container
\$46 01	rigin Inventory/Cont.	\$400	Interest & Perish Costs
\$331 In-	Transit Inventory/Cont.	\$1,733	Transportation Costs
\$22 So	rfety Stock/Cont.	\$2,133	Logistics Cost
1.733 Tro	insportation Cost/Cont		

0.5 Average Shipment Size		
50 Perishable Cost/Cont.		Per Container
23 Origin Inventory/Cont.	\$87	Interest & Perish Costs
53 In-Transit Inventory/Cont.	\$12,131	Transportation Costs
11 Safety Stock/Cont.	\$12,218	Logistics Cost
11 Safety Stock/Cont. 31 Transportation Cost/Cont	\$12,218	Logi

-157-

.

. . . .

Exhib# 7.5

		Model Inpu	nt i i i i i i i i i i i i i i i i i i i	
\$11.10 Value F	Per Pound	-		
6 Density	of Stowage	(lb/cu.ft.)		
20% Annual	Carrying Ch	arge		Ocean
365 Deman	d Period (d	Ξγs)	\$1,733	Transport Cost/Container
13440000 Period	Demand (lb)	•	25	Average Trip Time (days)
365 Shelf Lif	e (days)		1	Std. Dev. of Trip Time (days)
40% Per Cer	nt Salvage V	alue	1.7	Std. Deviations for Safety Stock
7.0 Air to O	cean Freight	t Price Ratio	52 Shipments per Demand Period	
6 Perish/C	ecav paran	neter		
	<i>,</i> .			Air
Container			\$12,131	Transportation Cost/Container
85% Container Space Used			4	Average Trip Time (days)
20 Contair	20 Container Length (ft)			Std. Dev. of Trip Time (days)
8 Contair	er Width (ff)		1.7 Std. Deviations for Safety St	Std. Deviations for Safety Stock
8 Contair	er Height (ff)		104 Shipments per Demand Perioc	
	1		D 141	
Per	Air	Ocean	Dimerence	
I TEU	S12.393	\$2,932	(\$9,460.78)	

.

Calculated Container Requirement

2,240,000 Cubic ft. Annual Demand	2059 Containers Demand In Period
1088 Cubic ft. Used per Container	\$72,461 Value per Container
6.528 Cargo Wght. per Cont. (lb)	\$149,184 Period Value of Commodity (000s)

DETAILED MODEL OUTPUT - OCEAN plus RAIL

.

52 Shipments per Demand Period	<u>\$6.037.425</u> Annual Logistics Cost
39.6 Average Shipment Size	
\$0 Perishable Cost/Cont.	Per Container
\$139 Origin Inventory/Cont.	\$1,199 Interest & Perish Costs
\$993 In-Transit Inventory/Cont.	\$1,733 Transportation Costs
\$67 Safety Stock/Cont.	\$2,932 Logistics Cost
\$1,733 Transportation Cost/Cont	

104 5	Shipments per Demand Period	\$25.515,496	Annual Logistics Cost
19.8	Average Shipment Size		-
\$0 F	Perishable Cost/Cont.		Per Container
\$70 0	Drigin Inventory/Cont.	\$262	Interest & Perish Costs
\$159	n-Transit Inventory/Cont.	\$12,131	Transportation Costs
\$34 5	Safety Stock/Cont.	\$12,393	Logistics Cost
12,131	ransportation Cost/Cont		•

-•

•

... -

Exhibit 7.6

			Model Inpu	t	
\$14.50	/alue P	er Pound			
18/0	Density	of Stowage	(lb/cu.ft.)		
20% A		Carrying Ch	arge		Ocean
365 [Demano	d Period (da	σγs)	\$1,733	Transport Cost/Container
20160000 P	Period D)emand (lb)		25	Average Trip Time (days)
90 S	Shelf Life (davs)		1	Std. Dev. of Trip Time (days)	
40% P	Per Cent Salvage Value		1.7	Std. Deviations for Safety Stock	
7.0 A	Air to Ocean Freight Price Ratio		52	Shipments per Demand Period	
11P	Perish/D	ecav param	neter		-
النسب		, ,			Air
Container				\$12,131	Transportation Cost/Container
85% Container Space Used			ed	4	Average Trip Time (days)
20 Container Length (ff)			>	0.5	Std. Dev. of Trip Time (days)
8 Container Width (ff)				1.7	Std. Deviations for Safety Stock
8 Container Height (ff)			, [104	Shipments per Demand Period
6 10		U	•		
o jC					
0 C	Per	Air	Ocean	Difference	

•

Calculated Container Requirement

1,120,000 Cubic ft. Annual Demand	1029 Containers Demand In Period
1068 Cubic ft. Used per Container	\$283,968 Value per Container
19.584 Cargo Wght. per Cont. (lb)	\$292,320 Period Value of Commodity (000s)

DETAILED MODEL OUTPUT - OCEAN plus RAIL

52 Shipments per Demand Period	\$55,342,806 Annua	Logistics Cost
19.8 Average Shipment Size		
\$47,328 Perishable Cost/Cont.	Per Co	ntainer
\$546 Origin Inventory/Cont.	\$52,029 Interest	t & Perish Costs
\$3,890 In-Transit Inventory/Cont.	\$1,733 Transpo	ortation Costs
\$265 Safety Stock/Cont.	\$53,762 Logistic	:s Cost
\$1,733 Transportation Cost/Cont		

104 Shipments per Demand Period	\$21,340,921 Annual Logistics Cost
9.9 Average Shipment Size	
\$7,572 Perishable Cost/Cont.	Per Container
\$273 Orlain Inventory/Cont.	\$8,600 Interest & Perish Costs
\$622 In-Transit Inventory/Cont.	\$12,131 Transportation Costs
\$132 Safety Stock/Cont.	\$20,731 Logistics Cost
12,131 Transportation Cost/Cont	

-159-

.

.

.

EXAMPLES OF MAXIMUM AIR TRANSPORT COSTS (FOR VALUES OF \$10/LB. @ CURRENT LB/CU FT) SUPPORTED BY REDUCED INVENTORY COSTS

	OCEAN <u>COST</u>	AIR <u>PREMIUM</u>	COST/TEU <u>TOTAL</u>	CURRENT <u>AIR COST</u>
FAR EAST EXPORT	\$1,700	\$2,400	\$4,100	\$12,000
FAR EAST IMPORT	\$1,700	\$1,700	\$4,400	\$12,000
EUROPE EXPORT	\$1,400	\$2,200	\$3,600	\$ 9,800
EUROPE IMPORT	\$1,400	\$1,600	\$3,000	\$ 9, 800

Far East	Export	Import	Europe	Export	Import
Space Used	1088	1088	Space Used	1088	108
Tons/Teu	9.3	10.2	Tons/Teu	11.9	7.5
Lb/cu.ft.	17	19	Lb/cu.ft.	22	13.9
Value	C.V.D.	C.V.D.	Value	C.V.D.	C.V.D.
\$5	\$85	\$94	\$5	\$109	\$69
\$10	\$170	\$188	\$10	\$219	\$138
\$15	\$255	\$281	\$15	\$328	\$207
\$20	\$341	\$375	\$20	\$438	\$275
\$25	\$426	\$469	\$25	\$547	\$344
\$30	\$5121	\$562	\$30	\$656	\$414

Derived from unpublished MARAD sample data for 1992.

ADDITIONAL ADVANTAGES OF AIR FREIGHT (NOT QUANTIFIED BY LOGISTICS MODEL)

- LATER PRODUCTION OF GOODS BASED ON MORE ACCURATE DEMAND FORECAST (SPEED OF AIR TRANSPORT LEADS TO REDUCED COSTS FOR OBSOLETE/UNSALEABLE PRODUCTS)
- 2. REDUCTION IN DIRECT WAREHOUSING COST AS VOLUME BETWEEN SHIPMENTS DECLINES (DUE TO INCREASED TRANSPORTATION SERVICE FREQUENCY; POSSIBLE CONSOLIDATION OF INVENTORY AT CENTRAL LOCATION
- 3. USE FOR EMERGENCY SHIPMENTS
- 4. UNKNOWN LATENT DEMAND DUE TO:
 - NEW MARKETS BEING DEVELOPED (I.E. CUT FLOWERS, FRESH FISH
 - 2) REDUCED AIR TRANSPORTATION COSTS

-162-

• March 19, 2015. Welcome to America's newest port. The thriving complex was once an abandoned military base. Today it pulses to the rhythm of import and export. Here, tractor-trailers stream off a freeway spur that feeds the port's material-handling zone. There, great robotic gantries hoist containers from the trucks and swing them into their next mode of transportation. Elsewhere, the big rigs themselves wheel right into gaping cargo holds, while others, brightly splashed with Asian and Cyrillic markings, rumble out.

52

The activity recalls the bustle of Amsterdam or New Orleans. But the ocean lies a thousand miles away. This port sprawls in the nation's heartland—it's an airport dedicated to freight. Those cargo holds yawn not from ships but from monster planes that touch down, discharge containers, load up, check out, refuel and roar off again to destinations abroad.

Could such a vision—the freight business lifted from the seas to the skies—come to pass? Transportation researchers are preparing for that possibility. After

MIT Cooperative Program in Education and Research with PT Garuda Indonesia/University of Indonesia

FTL Annual Coop Meetings

Cambridge, MA Friday May 19, 1995

Michael Clarke Research Assistant

MIT/Industry Cooperative Research Program in Air Transportation

Presentation Outline

- Introduction
- Flight Transportation Laboratory Involvement in Educational Program
- Airline Operations Control System (AOCS)
- Revenue/Market Share Forecasting Study

Airline Operations Control System (AOCS)

Primary Objective

- Evaluation of the current operations control system and organizational structures at Garuda
- Create a cost-effective plan for implementing an improved AOCS system at the airline

Activities

- Review all data sources and operational information systems currently in use
- Analysis of current AOCS, identifying needs for improved analysis or systems, organizational structures, additional data sources
- Comprehensive review of the daily operations of the carrier, and divisions with the company directly related to operational issues

Forecasting Traffic at Garuda Indonesia

Revenue/Market Share Forecasting Study

PT Garuda Indonesia Corporate Planning

MIT Flight Transportation Laboratory

March 16, 1995

-166-

Primary Objective

• Determine methodology to generate robust models for forecasting demand, traffic, and revenue in a given origin-destination market

-167-

- Review and analyze all data sources currently available at GA for traffic and revenue
- Explore external data sources which could make further data available
- Given current and prospective data, create and test alternative forecasting models for a given market. Example : Tokyo Jakarta

Recommendations

-168-

Based on observations of the bureau of corporate planning at PT Garuda Indonesia, the following recommendations for improved work efficiency have been determined. Corporate planning should:

- Obtain data on the carrier's passnger traffic directly from station managers and establishment managers via the commercial department, instead of relying on external sources such as the airport authorities.
- Improve data collection and storage procedures, in order to reduce unnecessary work repetition.
- Develop a better working relationship with the information systems, reservation control, and commercial departments of the company.
- Establish a computer cluster/terminal dedicated to passenger traffic analysis and forecasting.