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ABSTRACT

A review of methods of enumerating elementary cycles and circuits
is presented. For the directed planar graph, a geometric view of
circuit generation is introduced making use of the properties of dual
graphs. Given the set of elementary cycles or circuits, a particular
algorithm is recommended to generate all simple circuits. A simple
example accompanies each of the methods discussed. Some methods of
reducing the size of the graph but maintaining all circuits are
introduced. Worst-case bounds on computational time and space are also
given.

The problem of enumerating elementary circuits whose cost is less
than a certain fixed cost is solved by modifying an existing algorithm.
The cost of a circuit is the sum of the cost of the arcs forming the
circuit where arc costs are not restricted to be positive. Applications
of circuits with particular properties are suggested.
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Section 1

Introduction

The circuit enumeration problem is of theoretical as well as

practical interest. In the past years, we have seen a wide range of

researchers from many disciplines working on this topic. These areas

include, Mathematics [3], Computer Science [1,18,34,32], Medicine [25],

Transportation [9,21], and Engineering [19,36]. The reason is that many

problems can be represented as graphs. Furthermore, many problems have

a cyclic structure where the problem is to identify some or all of the

circuits or cycles in the graph.

In particular, this thesis addresses the problem of finding all

elementary circuits and cycles in a graph and suggests some related

applications. The areas we will be covering are represented in fig. 1.1.

In Section 2, we create four classes of methods of generating

elementary circuits. Every algorithm for generating elementary circuits

known thus far, belongs to one of the four methods; namely, the Cycle

Vector Space Methods; the Search and Backtrack Methods; the Connection

Matrix Methods, and the Directed Graph Transformation Methods. In

addition, we provide 6n algorithm for generating all simple cycles or

circuits given the set of all elementary cycles or circuits. If the

directed graph is planar, we introduce a method for enumerating all the

elementary circuits using the dual graphs.

Section 3 deals with an analysis of all the algorithms on circuit
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fig. 1.1 Structured approach to generating all cycles or circuits

and applications.



-8-

enumeration. Before comparing algorithms, the graphs are edited and

reduced. Several ways of reducing and editing graphs are given. There-

after, the running time and storage requirement of each algorithm is

given followed by a short discussion, and recommendations for the best

algorithms.

Since complete elementary circuit enumeration problems are known to

be difficult and intractable, we have, in section 4, identified a list

of circuits with particular properties which, honefully, greatly reduces

the number of circuits to be enumerated, followed by some suggested

applications that fit into our problem classification. An example would

be finding all elementary circuits that do not exceed a certain fixed

cost. (The cost of a circuit is the sum of the cost of all arcs in that

circuit).

In the final section, we summarize what we have done, and point to

some interesting areas of research.

For completion, we have included Appendices to find "strong components"

of a graph and a treatment of the problems of finding Eulerian and

Hamiltonian circuits.

1.1 Definitions

The terminologies used in graph theory have hitherto remained at the

discretion of the writer. Some writers choose an arc over an edge, a

link over a line, or a path over a chain, etc. Furthermore, there have

been additions to the glossary of terms used; for instance with flowers,

came blossoms, with spanning tree, came forest. Then there are branches
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and fronds and twigs, and so forth. As a result, there is a need in

this subsection to define certain terms that will be used throughout

this thesis. Many ambiguities would be clarified if the reader would

take a minute to browse through this subsection.

A graph G(V,E) is defined as a finite set of vertices V and edges E

which connects pairs of vertices. The number of vertices IV|=n and

edges IEj=e for a graph G(V,E). A directed graph has arcs which are

edges with directions associated with them. A directed graph is more

commonly represented by G(V,r) where V is the set of vertices and P is

the vertex operator, where for iEV, jEV, jE."(i) if an arc ij exists.

Two vertices are said to be adjacent if they are connected by a common

edge. Two edges with a common vertex are said to be adjacent.

A path is a directed or undirected sequence of edges or arcs where

the final vertex of one is the initial vertex of the next edge or arc.

A simple path is a path which does not use the same edge or arc more

than once. A simple cycle is a simple path where the initial and final

vertex coincide, and the edges contained in the path are assumed to be

undirected. A circuit is a directed version of a cycle. An elementary

path is a path which does not use the same vertex more than once. An

elementary cycle is an elementary path where the initial and final vertex

coincide. An elementary circuit is a directed version of an elementary

cycle. All elementary paths and cycles or circuits also must be simple.

Two elementary cycles or circuits are distinct if one is not a cyclic

permutation of the other. We refer to cycles or circuits that are

neither elementary nor simple as infinite cycles and circuits respectively.
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In this work, we will not be concerned with infinite cycles or circuits.

The length or cardinality of a path, cycle or circuit is the number

of edges or arcs appearing in it. A path of length k is called a k-path.

The same applies to cycles or circuits.

For a directed graph, the indegree and outdegree of a vertex is the

number of arcs terminating and originating at that vertex. The degree

of a vertex in an undirected graph is the number of arcs incident to it.

A vertex i is connected to j if there exists a path from i to j.

A connected undirected graph is one for which a path exists between every

pair of vertices. Similarly, a directed graph is connected if its

associated undirected graph is connected. Note there may not be a direct

path connecting all vertices in a directed graph. In our work, we shall

only be concerned with connected graphs.

A subgraphG(X,A) of a graph G(V,E) is a graph such that X C V and

A C-E. A tree of an undirected graph is a connected subgraph which has n

cycles. A spanning tree of a graph is a tree of the graph that contains

all the vertices.

Any other definitions that are necessary will be introduced

subsequently.

ed

0
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Section 2

Review of Circuit and Cycle Enumeration Methods

This section reviews the different methods for generation of the

elementary cycles/circuits in a graph. All algorithms known thus far

for enumerating elementary cycles/circuits can be classified into one of

the following methods:

2.1 Cycle Vector Space Methods.

2.2 Search and Backtrack Methods.

2.3 Connection Mlatrix Methods.

2.4 Directed Graph Transformation Methods.

The purpose here is to explore the underlying idea behind each of

these methods by referring to explicit algorithms.

Thereafter, we examine procedures for generation of all. the simple circuits

in a graph given the set of elementary circuits. An easy procedure to

do this is recommended.

Due to close associations of the Travelling Salesman and the Chinese

Postman Problem to the Hamiltonian and Eulerian circuit generation, we

have included a rather complete discussion on the enumeration of

Hamiltonian and Eulecian circuits in Appendix B. We have not included

the discussion in this section in order to reduce the amount of redundancy

since the enumeration of Hamiltonian and Eulecian circuits are special

cases of the cycle/circuit enumeration methods we will be dealing with

in this section.
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Finally, this section concludes by introducing a method of generating

all elementary circuits in a directed planar graph using vertex aggregation

of the associated dual graph.

2.1 Cycle Vector Space Methods

These methods apply to an undirected graph and finds all elementary

and/or simple cycles. Given an undirected graph G(V,E), a spanning tree

Tg is first constructed having n-l edges. Tg is not unique. The addition

to Tg of any edge in G (but not in Tg) will form a unique elementary

cycle. Every cycle formed in this way contains at least one edge not

found in another. The set of cycles formed by adding all edges in G

(but not in Tg) provides a basis for the vector space of all the simple

cycles in the graph. Since there are e edges in G and n-l edges in Tg,

the number of such cycles that will be formed is e-n+l. This is the

cyclomatic number of G, v(G). The v(G) cycles formed in this way are

known as a fundamental set of cycles

The derivation of the fundamental set of cycles is not difficult and

therefore, the reader is referred to Gotlieb and Corneil [15], Welch [36]

or Paton [25] for an algorithm for finding the fundamental set of cycles.

The algorithm of Gotlieb and Corneil [15] is slower than that of Welch [36]

but requires less storage for graphs with a large number of vertices.

The algorithm of Paton [25] on the other hand is compatible to Gotlieb

and Corneil [15] in terms of storage and to Welch [36] in terms of speed.

The author recommends the algorithm of Paton for finding the fundamental

set of cycles.
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Since the fundamental set of cycles is a basis of the vector space

for cycles, then any cycle in G not in D, can be formed by a linear

combination of cycles in (_ by the following convention.

Let every fundamental cycle 4)i, i=1,2,...v(G),be represented by an

e dimensional vecter where the jth element is 1 if the jth edge is part

of the cycle, and zero otherwise. The ring sum operation can be expressed

for vectors A and B as A + B= {xJxcAUB,AfB}. If the ring sum, @ ,is used

for mod 2 addition, any cycles in G not in , can be expressed as a ring

sum operation of fundamental cycle. The ring sum of 2 cycles is a cycle

or an edge disjoint union of cycles.I The edge disjoint union of cycles

means the union of cycles having no common edges. To generate all the

cycles in G, we need to consider all 2v (G)-v(G)-I combinations of

fundamental cycles. However, some of the combinations will be disjoint

cycles, but, if a given combination is disjoint one cannot disregard

other combinations containing it since the mod 2 addition of it and

another combination might produce a single cycle. Thus, one can simply

enumerate all possible cycles in the graph using this property of the

fundamental set of cycles found by selecting a spanning tree.

Gibbs [14] presented a corrected version of Welch's algorithm to

generate all the elementary cycles in the graph. The algorithm is

presented here as ALGORITHM 1 for completion.

We note that the set R generally remains smaller than Q which contains

all the linear combinations of fundamental cycles at the end. This is

more suitable for programming.

To illustrate the above method, an example is provided in Example 1.
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ALGORITHM 1. GIBB's algorithm for generating all elementary cycles

from the fundamental set of cycles.

Given a set of fundamental cycles 4 = { #1, 02, . u(G)

1. Set S = {0 1}, Q = {01}, R = 0, R* = 0, i = 2.

2. For all T in Q,

If T i ? f 0 place T * Oc into R,

If T 0 (D 0 place T $ @. into R*.

3. For all U and V in R, if U C V set R = R - { V}

and R* = R* U { V}.

4. Set S = S U R U { D }.

5. Set Q Q U R U R*U{ . Reset R =0 ; Reset R* =0.

6. Set i = i + 1. If i < u(G), go to 2. If i > u(G), STOP;

S consists of all the elemenatary cycles in the graph.

Note: T is any element of Q, i.e., it could be a cycle or an

edge disjoint union of cycles.

End of ALGORITHM 1
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Example 1. Generatin6g all elementary cycles using Cycle Vector Space

Methods.

Given: G,

We obtain the fundamental

i : Adding edge 1

3 : Adding edge 5

4

set of cycles :-

)2 : Adding edge 3

04 : Adding edge 8

2 13 5 167 8

G 1 l 1 0 1 0 0 0 0

02 0 1 1 1 0 0 0 0

G2 0 0 0 1 1 1 0 0

oD 4 0 0 0 0 0 1 1 1
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Obtaining all elementary cycles from the fundamental set using Gibb's

algorithm:

Iteraion Results Action

1 S =1, Q=4)i, R =, R*=$ (STEP 1)

2 0 1n 02 Z 0 => R = 01 0 4)2 (STEP 2)

3 S = 41, '01 e 4)2, )3 (STEP 4)

4 Q = 014,41 * 02, '2 , R = 0, R*= 0 (STEP 5)

5 i = 3, 3 < U(G) = 4 (STEP 6)

6 D1 (1 3 # 0
(41 0 42 ) (103 =0 R= 0IG43, 02 0 3 (STEP 2)

0 2 4'3 # R* = $1 0 $2 (D 3

7 S = $I, ( 1De 2 , (D1 (3, (2 )3 3 (STEP 4)

8 Q = 1 i, ' 1 e * 2 , 42, 01 1 3, (DI 1'2 P3,

02 1 (D3, 03. (STEP 5)

R =0, R*=0.

9 i = 4, 4 < u(G) = 4 (STEP 6)

10 41 lA (#4 /, 2 1 4 ) = 0,

(1 * 't2 )f)( 4  0, (1 i 4 2 * 43) A4 #4 ,

(01 15 # 3)(104 A 0, ((D2 S 'D3) 4 ,

D3 () 44 1 0. (STEP 2)

=> R = { $1 (D ( 3 a 4, i) G 4)2 N 4,

(D 2 $ 4) 3 4)4, 4)3 0 '44

R* = 4) D , (D - #P2 44, (2 4)4

11 In this case, we enter step 3,

(D3 S 4 CD 1  4 )2 9 '3 4 since

(0 0 0 1 1 0 1 1) (1 0 1 1 1 0 1 1 ) i.e.

(1 0 1 0 0 0 0 0 )U (0 0 0 1 1 0 1 1), therefore, (STEP 3)

R = { #1 e #)3 4 44, 2 D3 *4) 4, 4)3 $ 4)

R* = { i 4, $1 4)2 S 4, (D2 44,

1)1 02 t )3 0 4)4 1
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Iteration Results Act ion

12 S = $1, *i D 1 2, D2, i '1'S 3, 9 '2 f 'D3' (STEP 4)

43, (i I t 3 e 4, 4 2  1 ( 3 (D4,

(3 e 4)4, 24.

(STEP 5)

D3 (D e 9 01 4, (D1 e 2 4, * D2 (D4,

1D 4 +2 4)*3 4) 9 4, )4

R = 0, R* =

14 i = 5 5 > U(G) = 4. STOP. (STEP 6)

S in iteration 12 contains all the elementary cycles in the graph,

and Q in 13 all the linear combinations of the fundamental cycles.

********************** End of Example 1 *************************************



The edges are labeled from 1 to e=8. Tg is one of the spanning trees

of the graph G.

Example 1 illustrates the enumeration of all elementary cycles

from the fundamental set of cycles. However, the set of fundamental

cycle forms a basis for all the simple cycles of the graph as well.

These simple but non-elementary cycles can be found in set Q. One way

of obtaining these will be discussed in section 2.5.

Thus far, we have restricted our discussion to an undirected graph

only. For a directed graph, there are no equivalent fundamental sets

of circuits. Under the ring sum operation, + , cycles and edge disjoint

union of cycles in the undirected graph form a group. Every element of

this group can be expressed as a ring sum of some of the fundamental

cycles with respect to a spanning tree. However, there exists no binary

operation under which all circuits and edge disjoing unions of circuits

form a group, let alone a vecter space. (Narsingh Deo [10]). Cycle Vector

Space Methods are not applicable to a directed graph.

We note from the above discussion that the fundamental set of cycles

is central to cycle enumeration. In the discussion following we point

out two interesting relationships between the fundamental cycle matrix

and the cutset and incidence matrix. These relationships not only offer

better insight into the properties of the fundamental cycle set but also

application to other seemingly unrelated problems. A few definitions are

necessary before we proceed. The fundamental cutset2 matrix is defined

as an (n-1) x e matrix K = [ki1] where kj = 1 if edge j is part of

cutset k. and 0 otherwise. Similarly, and incidence matrix is defined
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as an n x e matrix B = [bij] where bij = 1 if vertex i is incident to

edge j and zero otherwise. We state the two relationships under theorems

one and two.

Theorem 1. The incidence matrix B and the transpose of the

fundamental cycle matrix PT are orthogonal, i.e.,B-.T =O.

Theorem 2. The fundamental cycle matrix 4_ and the cutset

matrix KT are also orthogonal, i.e., D-KT = 0.

The two theorems can be shown easily by observing that:-

1. Each vertex in a cycle is incident with an even number of

edges in the cycle.

2. Each cycle cut by a cutset has an even number of edges in

common with the cutset.

Observe that all operations are done in mod. 2. Moveover, the

theorems are valid for any cycle and cutset matrices defined so long as

matrix multiplication rule is not violated. The fundamental cycle set

have been used to solve electrical circuit problems (see Christofides

[7]). In addition, from the max-flow-min-cut theorem for the maximum

flow problem, one would search for the min-cut by observing the

relationship between the fundamental cycles and the fundamental cutsets.

Note that this orthogonality relationship extends beyond the fundamental

sets to include all the cycles and cutsets in any given graph.

One of the drawbacks of the Cycle Vector Space Methods stem from

the fact that in most cases, the ratio of the number of nondegenerate

or valid cycles to the number of vectors goes asymptotically to zero
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as the number of vertices in the graph increases. The number of

vertices in the graph increases. The number of vectors is 2 )(G)- u(G) - 1

(excluding the basic cycles and the null elements). The ring sum, *,
taken on combinations of fundamental cycles thus produces many

degenerate cycles or edge disjoint unions of cycles. In fact, it is

shown in Mateti and Deo [23] that there are only four graphs having

all 2v(G) - 1 cycles, that is, every combination of fundamental cycles

produces a distinct cycle.

Algorithms which make use of this method were given by Welch [36],

Gibbs [14], Mateti and Deo [23], Maxwell and Reed [24], and Hsu and

Honkanen [17]. The discussion above attempts to capture the essence

of the Cycle Vector Space Methods.

2.2. Search and Backtrack Methods

The search and backtrack method applies to a directed graph only.

One such algorithm is presented here to introduce the main idea behind

the Search and Backtrack Methods.

The vertices of a directed graph are numbered 1 to JVI = n. The

algorithm generates all elementary paths P - {P(1),P(2),P(3),...P(k)}

where P(i) is the ith vertex in the k-path P and P(1) < P(i) for all

2 < i < k by starting from an arbitrary vertex P(l), choosing an arc

to extend to another vertex P(2) > P(l), and continuing in this way.

If the path cannot be extended any further, the procedure backs up

one vertex and chooses to extend to a different vertex. If P() is
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adjacent to P(k), the algorithm lists an elementary circuit

(P(l),P(2),... ,P(k),P(l)). This algorithm enumerates each elementary

circuit exactly once, since each circuit contains a unique "initial

vertex," P(O), and thus corresponds to a unique elementary path

starting from that vertex.

Given a directed graph, we first reduce the size of the graph by

eliminating vertices which cannot belong to any circuits. The process

is to remove any vertices on which no arcs terminate and all arcs

originating from these vertices. Similarly, all vertices in which no

arc originates, and any arcs terminating on these vertices are also

removed. This step is repeated until no such vertices remain. Then,

k parallel arcs are reduced to a single arc, but k circuits are later

listed if that particular arc forms part of any circuit. More

discussions on graph reduction will appear in Section 3.1. The reduced

directed subgraph G(V,r) is defined as a set of vertices V = (1,2,...n)

and an arc operator r(-) which operates on all elements of V; j c r(i)

if there exists an arc from i to j. Graph G(V,r) is an n x n array

G(i,j) (see Example 2).

The algorithm assigns integer values, 1,2,...,n to each of the vertices

in G. It utilizes two principal arrays in addition to G(i,j). The first,

P, is an n x 1 array, containing all the vertices in an elementary path.

The second is an nx n array, H, which is initially zeroed. H contains the

list of vertices "closed", to each vertex. Vertex j is "closed" to i when-

ever an arc from i to j has been previously considered. The algorithm
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basically involves elementary path building in array, P. We can now

explain the algorithmic process.

Search

Starting from an- "initial" vertex 1, a path is extended from

its end, one arc at a time such that:-

a. The extension vertex cannot be already in P.

b. The extension vertex value must be larger than the initial

vertex.

c. The extension vertex is not "closed" to the last vertex in

P. H contains the list of vertices closed to each vertex.

(Vertex closure will be discussed further under (Backtrack).)

(a) assures that an elementary path is being considered. (b) assures

that each circuit will be considered only once. (c) assures that each

elementary path is considered only once.

At some point, no vertices will be available for extension. We

test for a circuit by seeing whether there is an arc connecting the

last vertex of P to the first vertex. If there is, then a circuit

is reported. In any case, vertex closure occurs unless there is only

one vertex remaining in the path.P.

Backtrack

Vertex closure consists of three steps:

1. Enter the last vertex of P into the list in H for the next

to the last vertex in P.
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2. Clear the list in H for the last vertex.

3. Shorten P by one arc by eliminating the last vertex.

(1) assures that the path extension just performed will not be

repeated. (2) allows correct forward continuation from the last

vertex if it is reached by a different path in the future.

The extension and backtracking continues until the path has been

backed to the "initial" vertex 1. Then, the "initial" vertex is

advanced. This means that the first vertex is incremented by one;

H is cleared; and the extension process resumes. No paths, and

thus circuits containino vertex 1 will be considered again. All

circuits containing vertex 1 will have been found. The algorithm

continues to extend paths and advance the "initial" vertex sequentially

until P contains a path of one vertex, namely, vertex n. At this

point, the algorithm terminates. All elementary circuits have been

identified.

The algorithm discussed above, and the exact algorithm presented

in ALGORITHM 2 is attributed to Tiernan [34]. Example 2 illustrates

Tiernan's algorithm.

The author selected this algorithm by Tiernan [34] to introduce

the fundamental idea behind the Search and Backtrack Methods because

of its simplicity in exposition, and also because all the other Search

and Backtrack Methods develop upon the main idea that was introduced

by this algorithm. In Section 4.2., we will show how some slight

modifications of Tiernan's algorithm solves a specific problem. In
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ALGORITHM 2: An Algorithm for Enumerating all Elementary Circuits in

the Graph (Tiernan)

Bl. Initialize

Read N,G

P + 0

H +0

k + 1

P() + 1.

B2. Path Extension

Search G(P(k,j) for j = 1,2,...N such that the following three
conditions are satisfied:

(1) G(P(k),j) > P(l)

(2) G(P(k),j) I P

m = l,2,...N.

If this j is found, extend the path,

k -+- k + 1

P(k) + G(P(k - 1),j)

go to B2.

If no j meets the above conditions, the path cannot be extended.

(3) G(P(k),j) H(P(k),m),
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B3. Circuit Confirmation

If P(1) i G(P(k),j), j = 1,2,...N then no circuit has been
formed,

go to B4.

Otherwise a circuit is reported,

Print P.

B4. Vertex Closure

If K = 1, then all of the circuits containing vertex P(1) has
been considered.

o to B5.

Otherwise,

H(P(k),m) +- 0, m = 1,2,...N

For m such that H(P(k - 1),m) is the leftmost zero in the

P(K - 1) - the row of H,

H(P(k - 1),m) +- P(k)

P(k) +- 0

k +- k - 1

go to B2.

B5. Advance Initial Vertex

If P(l) = N then-

go to B6.

otherwise,

P(l) - P(1) + 1
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k +1

H +0

go to B2.

B6. Terminate

End of ALGORITHM 2
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Example 2.Circuit Enumeration using Tiernan's algorithm presented

in ALGORITHM 2.

2

1 2 0 0 0
3 0 0 0 0

3 G (V,') = 1 2 3 4 0
5 0 0 0 0
1 3 0 0 0

5 4

Note: The parallel arcs (5,1) have been replaced by a single arc (5,1).

P ACTIONS ON ATTAINED PATH

1 0 0 0 0 -81. Initialization.
1 2 0 0 0 B2. Path extension.
1 2 3 0 0 B2. Path extension.
1 2 3 4 0 B2. Path extension.
1 2 3 4 5 B2. No path extension. B3. Circuit reported, (1 2 3 4 5 1).

B4. Backtrack and vertex closure, H(4,1)<--5.
1 2 3 4 0 B2. No extension. B3. No circuit formed.

B4. Clear last vertex, H(4,1)<--O, Backtrack and vertex
closure H(3,1)<--4

1 2 3 0 0 B2. No extension. B3. Circuit reported, (1 2 3 1)
B4. Clear the last vertex, H(3,1)<--O, Backtrack and
vertex closure, H(2,1)<--3.

1 2 0 0 0 B2. No extension. B3. No circuit.
84. Clear last vertex, H(2,1)<--O, Backtrack and vertex
closure H(1,1)<--2

1 0 0 0 0 B2. No extension. B3. Circuit reported, (1 1)
B4. Cannot backtrack. B5. Advance vertex, i.e.
set P(1) = 2, Clear H.
Comment: All circuits containing vertex 1 have been

enumerated.
2 0 0 0 0 B2. Path extension.
2 3 0 0 0 B2. Path extension.
2 3 4 0 0 B2. Path extension.
2 3 4 5 0 82. No path extension. 83. No circuit found.

B4. Backtrack and vertex closure, H(4,1)<--5.
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2 3 4 0 0

2 3 0 0 0

2 0 0 0 0

0 0 0
4 0 0
4 5 0

3 4 0 0 0

3 0 0 0 0

4 0 0 0 0
4 5 0 0 0

4 0 0 0 0

5 0 0 0 0

B2. No extension. 83. No circuit formed. B4. Clear the
last vertex, H(4,1)<--0, Backtrack and vertex
closure, H(3,1)<--4.
B2. No path extension. B3. Circuit formed, (2 3 2)
B4. Clear last vertex, H(3,1)<--0, Backtrack and-vertex
closure H(2,1)<--3.
B2. No path extension. B3. No circuit formed.
B4..Cannot Backtrack. B5. Advance vertex, i.e.
set P(1) = 3. Clear H.
Comment: No circuit formed hereafter would contain

vertices 1 or 2.
B2. Path extension.
B2. Path extension.
B2. No path extension. B3. Circuit reported, (3 4 5 3).
B4. Backtrack and vertex closure, H(4,1)<--5.
B2. No path extension. B3. No circuit reported.
B4. Clear last vertex H(4,1)<--0, Backtrack and vertex
closure H(3,1)<--4.
B2. No path extension. B3. Circuit reported, (3 3).
B4. Cannot Backtrack. 85. Advance vertex, i.e. set
P(1) = 4. Clear H.
Comment: No circuits formed hereafter would contain

vertices 1, 2 or 3.
B2. Path extension.
32. No path extension. B3. No circuit found. B4. Backtrack
and vertex closure, H(4,1)<--5.
B2. No path extension. B3. No circuit formed. 84. Cannot
Backtrack. 85. Advance vertex, i.e. set P(1) = 5, Clear H.
Comment: No circuit formed hereafter would contain

vertices 1, 2, 3 or 4.
B2. No extension possible. B3. No circuit formed.
B4. Cannot Backtrack; all circuits containing P(i) = 5
have been found.
B6. Since P(1) =5; Terminate.
Comment: All circuits in the graph have been found.

Circuits founded are:-

2 1-circuits(self-loops), (1 1) and (3 3)
1 2-circuit, (2 3 2)
2 3-circuits, (1 2 3 1) and (3 4 5 3)
2 5-circuits, (1 2 3 4 5 1 )

************************** End of Example 2 *****************************
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the discussions following, some similar methods are highlighted.

An example provided by Tarjan [32] shows the inefficiency of the

above algorithm in the worst case. Weinblatt [35] provides an

algorithm that examines each arc of the graph only once. He uses a

recursive backtracking procedure to test combinations of subpaths from

old circuits to see if they result in new ones. Tarjan [32], however,

showed also that Weinblatt's algorithm does not have a running time

polynomial to the number of circuits in the given graph.

Taijan [32] uses Tiernan's backtracking procedure but also uses

a marking procedure to avoid unnecessary searches which help decrease

the size of the subset of paths that need to be generated considerably.

The running time of Tarjan's algorithm is shown to be polynomial to

the number of, circuits in the graph.

Johnson [18] and Szwarcfiter and Lauer [31] use improved pruning

methods over 'Tarjan's [32]. Their alaorithms have running times that

are also polynomial to the number of circuits in the graph, but are an

improvement over Tarjan's. In particular, Johnson's [18] algorithm

is shown to be asymptotically fastest (for a large graph).

The algorithms of Char [5] and Chan and Chang [4] use the set of

all permutations of vertices of the graph as the search space. Other

algorithms using the Search and Backtrack Methods have also been

presented by Berztiss [2], Roberts and Flores [29], Reed and Taijan [28]

and Ehrenfeucht et al. [12].
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2.3. Connection Matrix Methods

These methods make use of the properties of the connection matrix

of a directed graph to generate elementary paths as vertex sequences.

In our generation of elementary paths however, we would also be

generating simple and non-simple paths.3 The method eliminates all

simple (but non elementary) and non-simple paths as soon as they are

formed. It builds elementary paths one arc at a time and lists

circuits for each cardinality in increasing order.

Before proceeding to discuss the method, a simple but important

theorem is given. This theorem establishes the fundamental idea behind

the Connection Matrix Method. We state the theorem for the adja-

cency matrix, - but the idea can be easily extended to connection

matrix since the difference between the adjacency and connection

matrix is that the ij elements of the adjacency matrix are ones or

zeros depending on whether arc ij exists whereas theij elements in

the connection matrix tells us the number of arcs from vertex i to j,

A directed graph can be represented as an n x n adjacency matrix,

A = [(a)..] where (a)i. = 1 if arc ij exists and zero otherwise. Only

self loops would appear as a non zero element in the diagonal of A.

We state the theorem formally:

Theorem 3: The ij element of Ak is the number of paths of length

k, or "k-paths" from i to j.

Proof of this theorem can be found in Narsingh Deo [10].
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If a k-circuit (that is, of cardinality k) exists, there would

be a non-zero element in the diagonal of the Ak matrix. However, a

non zero element in the diagonal does not mean that a simple k circuit

exists. The reason for this is that when we take the product of the

adjacency matrices, infinite paths and/or circuits (that uses one or

more arcs repeatedly) are formed. One could extend this result to the

connection matrix, that is, the ij element for the matrix C1 (where

C1 is the connection matrix) equal to the number of paths of length

k from vertex i to j.

A method to resolve the problem outlined above is suggested by

Kamae [19]. This method breaks up circuit generation into three

stages: (1) path enumeration, (2) flower enumeration and (3) circuit

enumeration. We now proceed to discuss this method in more detail.

Define a connection matrix C1 = [(cl)ij] of a directed graph G

such that the ij element, (c ) equals to the number of arcs from

i to j in G.4 (Note that C1 is similar to the adjacency matrix

if there are no parallel arcs in G.) Next, define C j as a matrix

where,

(ci) = (c1 )ij if i / j

= 0 for i = j, where i,j = 1,2,...n

that is, Ci is the same matrix as C1 with self loops removed.
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Then, let C2 = C - Ci = (C')2 which means that each non zero

element in C2 indicates the number of 2-paths or 2-circuits. Next,

let C be the matrix C2 with no 2-circuits, i.e.,

(cs) = 0 if i = j

= (c2) ij otherwise

then, consider the matrix multiplication C - Ci where the elements

are:-

n
(c - cj). = (ci)ik (cjkj13 k= 1

Given these elements, we will generate elementary paths, circuits

and flowers. Suppose i / j, i / k and j / k, we have two cases:

Case 1

intermediate points
on 3-path from i to j.Case 2

3-path
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Whenever i = k or j = k, (c)ik - (ci)kj = 0, thus i / j implies

that (C - Ci)ij is equal to the number of 3-paths and 3-flowers from

i to j. Next, suppose i = j, then ( Ci)ij equals to the number of

3-circuits containing i.

The method by Kamae [19], for more general cases is stated is stated

in ALGORITHM 3.

Since all circuits must be of length lesser or equal to n, we

need to compute only up to matrix Zn*

We shall work on the same graph as used in section 2.2. to

illustrate the method that was discussed in Example 3.

At this point, we can make several observations. Note that there

is more than one way of obtaining the h-path connection matrix. We

have merely illustrated one way of doing so in our example. Kamae's

method chooses to eliminate non simple paths as the algorithm proceeds

instead of sorting paths at various points in the algorithm. Due to

this, Kamae's method is more favorable for computer implementation.

In general, different Connection Matrix Methods differ only in

the way they avoid generating the arc or vertex sequences that can

neither belong to paths nor circuits, i.e. non simple or infinite arc

sequences.

Other algorithms that belong to this class can be found in

Ponstein [26], Yau [37], Danielson [8] and Ardon and Malik [1]. In

particular, Ardon and Malik reduce the storage bound to 0(n2) by

finding circuits, using Boolean reduction, to an expression which
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ALGORITHM 3: Kamae's Algorithm for Generating All Elementary Circuits

Using Connection Matrix Method.

1. Path Enumeration

Def. 1. The element of an h-path connection matrix, Ch, of G is

defined by:

(ch)ij = number of h-paths from i to j if i / j

= number of h elementary circuits containing i

if i = j.

Def. 2. A proper h-path connection matrix CG of G is defined by:

(c ) = (ch)ij if i

= 0 if i =j

Def. 3. Let L be the set of all (h-t)-circuits and y be a

particular (h-t)-circuit belonging to set L. Then, an

(h-t) flower matrix Ch3t of G is defined by,

Ch,t = C (ht) , t > 1, h - t > 2

where (cy(hqt) )ij equals the number of t-paths from i to

j which do not touch y1 except at j if i y and j c p, and
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zero otherwise.

An (h,t)-flower is an h-flower which contains a t-path and an

(h-t)-circuit with only one vertex in common, that is the joint.

Cy(ht) then represents all (h,t)-flowers which contains y, since a

flower from i to j consists of a circuit i containing j and a path from

i to j not touching y except at j. Chst as defined above, is then the

sum of Cu h,t) over all (h-t)-circuits, (ch,t)ij then equals to the

number of (h,t)-flowers from i to j where j is the joint.

With this backtround, we are now able to state a theorem for Ch

(The connection matrix which counts h-paths and h-circuits).

Theorem 4.
h-2

Ch C h-1-Cl -I c ht > 3
t=1

h = C -C h = 2

h-2
ICht denotes the sum of the number of (h-t)-flowers where

t=L h
t = 1,...h-2. We are essentially removing all flowers each time we

try to find Ch. Note that for h = 2, no flowers can be formed therefore
h-2

the term I Ch t is not needed.
t=l

2. Flower Enumeration

Def. 4.

(j)qr =

= (c) otherwise
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that is, DI1 is a matrix of the graph G obtained from the connection

matrix by deleting all edges incident from vertices contained in

circuit p. D1, Dhj etc., are defined in parallel with C CG etc.

So with theorem 4 for connection matrices, we have,

Theorem 5:
t-2

Dt= D 1 -Di j- Dts t > 3
t - ~ s=1 ,

D" =DI' Dill t = 2t t-l 1

t-2
As in theorem 4, 1 Dt s denotes the flowers of length t, with

s=l t
circuits of length t-l and less (but not lesser than 2). We next

state another theorem which will be useful for obtaining the number of

flowers.

Theorem 6: Recall that - is a (h-t) circuit,

(D) = (c(ht)Iij if i p and j E yp

= 0 otherwise

From definition 4, for i ! 1 and j E y, (DI') is the number of

t-paths from i to j, not touchina yp except at j (since j has outdegree

0 for the graph defined by D '). Note that this corresponds to the

definition of (cy-(ht))ij.(See Def. 3). Hence, (cy,(ht))ij can be

determined from DO. This is desirable since by applying definition 5ta

and theorems 5 and 6 repeatedly, we can obtain DUto
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3. Circuit Generation

After obtaining ch, we would like to be able to list the circuits

as vertex sequences. We know that all h-circuits appear as a non zero

element in the diagonal of Ch. The following definition will help us.

Def. 5. A h-circuit matrix Zh is defined as,

(zh ij = (c,_ )ji (ci)ij 1 < i, j < n

Notice that since (c' ) equals to the number of (h-1) paths

from j to i, and (cj)~ equals the number of arcs from i to j,

(z hij is the number of h-circuits which contains an arc from i to j.

The difference between (z h ij and (ch)ij for i = j, is that the former

provides us with arcs belonging to a h-circuit (that is, a starting

point for listing our circuit, whereas the latter just tells us the

number of h-circuits containing a certain vertex.

Having obtained Zh, we list the h-circuits by making the first

non-zero element in the first non zero row, and list the first arc

belonging to the h-circuit. For example, pq, observe that p represents

the row and q, the column in which the non-zero element appears. Next,

we proceed to the qth row; search for the first (left most) non zero

element, and list the next arc in the h-circuit by reading off the

corresponding row and column, for instance qr. We proceed in this

manner, building an arc at a time until we return to the initial

vertex p. Note that we are guaranteed to return to p after connecting
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h arcs. The h-circuit is then pqr...p. In some instances, there might

exist more than one h-circuit or more than one that uses the same arc

many times. It is then necessary for us to do two things:-

1. After each h-circuit has been listed, we remove all arcs of

the h-circuit from the Zh matrix. This is accomplished as

follows:-

()i = (zh)ij - 1 V ij belonging to h--circuit listed

= (zh)ij otherwise

The resultant matrix Z contains the remainder of the

h-circuits of the graph.

2. We return to our procedure for listing h-circuits until

(z) = 0, for all i and j.

--------------- End of ALGORITHM 3 ------------------
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Example 3. Kamae's Algorithm Applied to Circuit Enumeration

Results Comments

C = C1 =

-1 1

0 0
1 1
0 0

2 0

1 0 0

1 1 0

0 0 1

1 0 0-

From C1, two 1-circuits, 1,1,3,3

are read off the diagonal

,0 0 1 0 0

1 1 0 1 0

0 0 0 0 1

-2 0 1 0 0-

By definition 1.

t

Ry definition 2.

3.

0 0 1 00 C2 = (C )2

1 1 0 1 0

C2= 0 1 1 0 1
2 0 1 0 0 By definition 1 and

1 3 0 1 0 theorem 4.

Ci' =
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Results

Z2 =

0 0 0~
1 0 0
0 0 0
0 0 0
0 0 0

From Z 2, a 2-circuit 232

is obtained.

Comments

From definition 5,

(z2)ij = (Cj) -(c')

e.g. (z2)2 3 = (ci) 3 2 -(Cj) 2 3 1

5.

0 1 0 0~ C is obtained from definition

1 0 0 1 0 2. At this point, we have a
- 0 1 0 0 1

2 -O 1 0 0 one 2-circuit. Let

1 3 0 1 0 y =2-circuit 232.

6.

01 0 00 We obtain D" by eliminating
0 0 0 0 0 rows 2 and 3 from C1

D = D = 0 0 0 0 0

1 D 0 0 0 0 1 i.e. by definition 4.

2 0 1 0 0
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Results Comments

7. From D ", we obtain by keeping

0 1 0 0 0 columns 2 and 3, and setting the

0 0 0 0 0 remainder columns to zero.

C = 0 0 0 0 0
C3,1  000(Theorem 6)

0 0 1 0 0 Note: CV(3 1) C3 1 since there

is only one 2-circuit.

8.

0 1 0 0 1

C-Cj = 2 0 2 0 0

1 3 0 1 0

0 1 3 0 1

9. From theorem 4,

S 0 0 01 C3 = ci-C - C3,1
C 3 = 2 0 2 0 0

1 3 0 1 0

0 1 2 0 1
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Results

10.

0 0
1 0
0 1
0 0
1 0

From z, we obtain the

3-circuits 1231 and 3453.

Comments

(z3)ij = (c ) .(cj) 

i.e. Definition 5.

Let v be the 3-circuit 1231

and X be the 3-circuit 3453.

11.1

-0 0 0 1 07~

2 0 0 0 0

1 3 0 0 0

0 1 2 0 0

By definition 2.

12. Since v is the 3-circuit 1231,

0 0 0 0 0~ we obtain D ' by removing rows
0000 0 1,2,3 from C1 .
0 0 0 0 0

0 0 0 0 1 (From theorem 6.)

20 10 0

Z3 =

C =
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Results

C (4 .1) =

Comments

0 0
0 0
0 0

0 0

1 0

We obtain cv(4 1 ) by keeping

columns 1,2,3, from D .

14. Since A = 3-circuit 3453,

01 0 00 we obtain D by removing

D D 0 0 0 0 0 rows 3,4,5 from C

0 0 0 0 0 (Again, Theorem 6)

0 0 0 0 0-

15. From D we obtain C

0 0 0 0 07 by keeping columns 3,4,5
0 01 0 0

CA(l)= 0 0 0 0 01 fromD.

0 0 0 0 0

0 0 0 0 0-

16. Hence,

0 0 0 0 0~

0 0 1 0 0 C4  = Cv 4 1) + C

C4 ,1  0 0 0 0 0

0 0 0 0 0

2 0 1 0 0 i.e. from definition 3 and

theorem 6.
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Results

17.

D = D =22

Comments

07

0

0

0

0

From DU , we obtain

D = (Di) -(D")

(Theorem 5)

18.
0 0 0 0 0~ Hence, we can find C4 ,2 from

00000 by returning columns 2 and

C4,2 3 0 0 0 0 0
0 0 1 0 0 3

0 2 0 0 0

19.

2 0 1 0 0
C -C= 0 2 0 0 0

0 1 3 0 0
2 2 1 2 0

20. From what has been obtained, we

2 0 0 0 0 get,

C4  C4 0 2 0 0 0 C= C' - C -
4 0 1 2 0 0 C4 3 'l 4,1 -C4,2

0 0 0 2 0 j(Theorem 4)

C4 = C since diagonal elements

of C4 are zero.



Comments

Since there are no 4-circuits.

22.
~~ 0 0 0 0 Now, for 3-circuit v,

0 0 0 0 0
D = D = 0 0 0 0 0 D

2 0 1 0 0 (Theorem 5)
0 0 0 0 0

23.
F0 0 1 0 0 And, for 3-circuit X,

O 0 0 0 0

D A= D = 0 0 0 0 0 D2X = D( DX

0 0 0 0 0

0 0 0 0 0_ (Theorem 5)

24.
'0

0

C 5v2 0
C5,2 = 0

2

0

07

0

0

0

01

The same way C4 51 was obtained.

Note however that we are doing this

for all 3-circuits now, i.e. v and

X (left as an exercise).

(Theorem 6 and Definition 3)

25. From D and
T~0 0 'O 0 0~

00 00 D~ D11=D 1'- (TheoremS5)0  0 0 0 0 3 3

D 0 0 0 0 0 Note: D = 0 because D has no
0 2 0 0 0 de 2

diagonal elements or no 2-circuit.

.'. D3 = D -D 1
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Results

21. C5,1 = [0]
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Results Comments

From D we obtain C5 3 by

keeping columns 2 and 3 corresponding

to 2-circuit p. (y = 2-circuit 2,3,2)

(Theorem 6)

27. -2 0 0 0 0~ 3

0 2 0 0 0 C5 = C4 -C - 1 C5,tt=1
C5 = 0 0 2 0 0

0 0 0 2 0 (By Theorem 4)

0 0 0 0 2

0o
0

0

2

0

There are two 5-circuits,

both of which are identical,

123451.

By definition 5,

(zS 5ij = (c4) -o(c )i

************* End of Example 3 *

26.

C593

28.

z5 =
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results from the permanent expansion of matrix M, where M = C + I and

C is the variable adjacency matrix and I, the identity matrix. A new

expansion, the "pseudopermanent," is defined by which the set of circuits

can be formed directly. An extension of the method to find Hamiltonian

circuits is also included. The method of Ardon and Malik offers

improvements over all the other Connection Matrix Methods since the

storage requirement is O(n2) as opposed to O(n(const)n) for the others.

We will mention more about the comparison between algorithms in

Section 3.

2.4. Directed Graph Transformation Method

A directed graph can be transformed into a "line graph" where

the properties of the "line graph" are useful for the purpose of

circuit enumeration. Given a directed graph G(V,E), where e. e E,

the associated "line graph", Q(G),is a graph where each arc in G

represents a vertex in Q and each two adjacent arcs in E form a

vertex sequence connected by an arc in Q(G), that is:
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e3

G

transforms to,

2(G)

The arc set of G is then the vertex set of Q. Each p-path of

G will correspond to a (p-1) path in £. However, each p-circuit

of G will correspond to a p-circuit in 2. There is a one-to-one

correspondence between circuits in G and Q. (See Cartwright and

Gleason [3] for proof.) The elegance of this method is that we will

be able to enumerate and delete the circuits in Q without disrupting

the cyclic nature of the original graph.
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The algorithm lists all self loop first and eliminates them for

G. For G, find (G) and enumerate, then delete all arcs which are

members of 2-circuits in Q(G). Let the resulting graph subgraph be

G1. We then proceed to find s(G ), enumerate, then delete all 3-circuits.

Note that Q(Gl) has only circuits of length greater or equal to 3.

Call the resulting subgraphs G2, find SI(G 2 ), and so on ... , until

Q(G ) for p< n-2 is empty. Example 4 will illustrate the method more

clearly.

The method outlined above relied on the one-to-one correspondence

between circuits in G and Q(G). It allows us to remove circuits as

they are formed until eventually none are left, at which point the

algorithm terminates. Observe that just as is the case of the

Connection Matrix Methods, all circuits of identical cardinality are

found simultaneously.

This method is well suited if the majority of the circuits in

the graph we are studying have a small cardinality. Alternatively,

we might be interested in circuits of a certain (small) cardinality,

or circuits that do not exceed a certain cardinality. The reason

for this is that whenever circuits are enumerated, they are also

removed, thus the size of the graph is quickly reduced, and

convergence might be faster as well. 6 No other method allows us

to remove circuits from the graph and test the resulting subgraph

for circuits.
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Example 4. Enumeration of circuits using Directed Graph Transformation

Method.

Iteration 1.

Convert G to Q(G)

Q(G)

List 2-circuit: e3 e4 e3 in (G).

Delete arcs (e3 ' e4) and (e4 , e3) from i(G).

The resulting subgraph is known as G

Iteration 2.

Transform G1 to Q(GI)

Q(G )



List 3-circuits: f1 f3 f2 1 e

f5 6 7 f5 (e4 e5 e6 e4) in £(G1)

Delete arcs (f1 , f3)9 (f3 ' f2) (f2 '

and (f7 , f5) from Q(G )

The resulting subgraph is now known as G2

Iteration 3.

Transform G2 to Q(G2

(f5 ' f6' (f6 f 7)

(EMPTY SET)

2(G2

No 4-circuits are found.

2(G2) = 0. This means that all the circuits have been enumerated.

Circuits found are:-

e3 e4  e3

e1  e2 e5 el

e4 e5 e6  e4

************************ End of Example 4 ****************************

(1 e2 e 5 e 1) and
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Cartwright and Gleason [3] have proposed a way of listing

circuits from the "line graph," after each transformation (and

reduction). However, we could also use the method outlined in Section

2.3 (Kamae's Method) to enumerate circuits of a given cardinality from

the "line graph." The problem still remains with manipulating such

huge sparse matrices, which would incur huge storage and elaborate

computations.

The transformation from a directed graph to a "line graph"

involves a simple logical relationship which could be further exploited.

Instead of representing the graph as an adjacency matrix, it could

also be represented by arc listing, or other methods that are less

storage incurring. Operations upon arc listings remain difficult

and unexplored and point to possible areas of research.

2.5. Obtaining All Simple Circuits from the Set of Elementary Circuits

In the preceding subsections, we have confined ourselves to'

enumerating elementary circuits. In this subsection, we shall

present an algorithm for generating all simple circuits, given the

set of elementary circuits obtained by any one of the methods discussed

in Sections 2.2 to 2.4. This algorithm is applicable to undirected

graphs as well, where we are interested in finding all the simple

cycles. We have taken the initiative here for two main reasons:
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i. The enumeration of all simple circuits from the original

graph is complex and as a result inefficient. Furthermore,

the number of elementary circuits found in a graph would

help us determine whether it would be wise to proceed with

the generation of all simple circuits. This is also because

the algorithm that we are about to propose has a worst case

time bound related to the number of elementary circuits.

ii. In some problems, the set of all simple circuits corresponds

to a feasible set of solutions for those problems. Additional

constraints placed on this set of feasible solutions yield

the optimum solution, if one exists. A typical problem would

be to list the cheapest simple circuit for each given

cardinality. After we have obtained this set of simple

circuits, we could then use it for dispatching of vehicles.

Other examples are best shown by figs. 2.1 and 2.2.

Figure 2.1 shows the relationships between simple circuits,

elementary circuits and Hamiltonian circuit. It also shows that all

solutions to the travelling salesman problem (TSP) are Hamiltonian

circuits. In fig. 2.2 , we notice that if an Eulerian circuit

exists, it corresponds to the solution for the Chinese postman

problem (CPP). An Eulerian circuit is a simple circuit that covers

all the arcs in the graph. Note that the solution for the CPP does

not have to be simple circuits though. (TSP and CPP are discussed

in more detail in Christofides [71.)
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fig. 2.1 Relationship between Elementary and Simple Circuits

fig. 2.2 Simple, Eulerian Circuits and CCP

cul ccccp
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The algorithm which we will present shortly is not meant to solve

some of these problems since other methods are available which are

more efficient, but rather to illustrate the scope of this endeavor.

The following is an outline of the method:

Let there be q elementary circuits in a given graph defined by

Si, where i = 1,2,...q. S. is an e-triple row vector where the jth

entry is 1 if the arc j is contained in the circuit, and zero

otherwise. We define S-.i Sk = $ for 1 < i, k < q if Si and Sk

contains no arc in common, otherwise Sinf Sk . Si nSk '

then the S. + Sk will not form a simple cycle. For example, if

S = (1,0,0,1), S2 = (1,0,0,0), S3 = (0,1,1,0), then Sf A s2 o and

S1 A S3 2 ( S3 = o. (One way to find out is to see if the addition

of two vectors contain any element with value greater than one.)

Now, if Sg A Sk = $, then Si + Sk would be an arc disjoint union

of elementary circuits or a simple but non-elementary circuit. Note

however, that if PCA Si = $, where P is a general circuit which may

have more than one circuit component. Specifically, P E M, where

M = {the set of all arc disjoint unions of elementary circuits or

an arc-disjoint union of elementary and simple circuits, or an

arc-disjoint union of simple circuits, or a simple but non-elementary

circuit}, then P + S. ' M. To distinguish whether P + Si is a

simple but non-elementary circuit, a few definitions are necessary.

We define V(S.) as an n-triple row vector (where n is the total

number of vertices in the graph) of circuit S. where the jth entry
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(column) is 1 if vertex j belongs to circuit S. and zero otherwise.

Next, we define the operation 0 , where: V(P) 0 V(S.) = sum of all

positive elements of {(V(P) + V(S)) - T}; T is an n-triple vector of

ones. This operation defines the number of vertex intersection at P

and S . We denote also the number of distinct element circuits in P

as xP. For example, let V(Sl) = (1,1,0,1,1), V(S2) = (0,1,0,0'0)'

V(S3) = (1,1,0,1,0). If P is S1 + S3, then V(P) = V(S1 ) + V(S3) 8
i.e. x = 2 and S = S2, then,

{(V(P) + V(S2) - t} = (2,3,0,2,1) - (1,1,,,l l) = (1,2,-1,1,0)

and

V(P) Q V(S2) = 1 + 2 + 1 = 4

Note that V(P) () V(S 2) > x .

Now, given that P /A S. = $, if also V(P) 0 V(Si) > x, then

P + S. forms a simple but non-elementary circuit. We claim here that

if xp circuits are joined together such that they do not share any

arc in common and they meet at least x times, then a simple but

non-elementary circuit is formed.

If, however, P () S. = $ and V(P) 0 V(S.) < xp, we must not

discard P + S. from further comparisons, since the addition of

(P + S) and another elementary circuit might form a simple but
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non-elementary circuit. (We store all these in set M in the following

ALGORITHM 4.)

But if at any point P11 Si A t, then any further comparisons,

that is, additions with P + S. can be eliminated since these

combinations can never form a simple circuit. This elimination rule

reduces the possible outcomes we need to consider, which otherwise

would be enormous.

The actual algorithm is presented in ALGORITHM 4.

In order to reduce the number of combinations that need to

be considered, it is better to order the circuits in the set of

elementary circuits with decreasing cardinality, that is, S1 is the

elementary circuit with the highest cardinality, followed by S2' S3'

etc. As usual, we include an example to complete our illustration.

We refer to the same graph used previously, and reproduced here for

convenience in Example 5.

It is important to mention here that in the worst-case the

algorithm requires 2q - 1 combinations, where a is the number of

elementary circuits. However, the worst case is highly unlikely

since this would mean that each combination would result in a distinct

simple circuit. In that case, by the ordering procedure that we

have recommended, the number of combinations that need to be

considered can be reduced. The amount of reduction would depend on

the nature of the set of elementary circuits. Even then, this

algorithm requires alot of computing time. We make every effort to
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ALGORITHM 4. Algorithm to Find all the Simple Circuits in a Graph

Given the Set of Elementary Circuits.

Let the set of elementary circuits be:-

S. ; i = 1,2,...q .

Initialize:

Separate:

Test for
Simple
Circuit

1 Set L = {S1}, M = {S} i = 2, I = J=

2 For each P in M

if P(\ Si = $, place P + Si in I; (P,Si) in J

Otherwise, continue until all p in M are considered.

3 M +- M U I U S.

4 For each pair (P,S.) in J

if V(P) () V(Si) < x p, set I +- I - {P + Si}

Otherwise continue until all pairs in J are

considered.

5 L -L U S U I

6 Reset I -+ ; Reset J -

7 Set i = i + 1. If i < q go to 2

otherwise, stop.

L contains all simple circuits in the graph.

End of ALGORITHM 4
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Example 5. Generating All Simple Circuits From the Set of Elementary

Circuits

Gi ve:i,

and,

Arcs

Elementary 1" 2 3 4 5 6 7 8 9 10 11 12Circuits

0 110 01 00 1 1 0 0

0 1 0 0 0 1 0 1 1 0 0

0 1 1 0 1 0 0 0 0 0 0 0

0 0

1 0

0 0

0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

S
1

S
3

S
4

S5

S
6
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Vertices

1 2 3 4 5

1 1 1 1 1

1 1 1 0 0

0 0 1 1 1

1 0 0 0 0

0 0 1 0 0

We have Si,

1. Set L = {Sl }

i = 1 .

M = {S} ' i = 2, I = 3, J = $.

2. S1 () S $, M + {S ,S21, L +- {S,S 2}, i = 3

3. S S3 n s , M + {S ,S2 'S3}, L +- {S1,S,S3 , i 4

4. S (2 S4  S2 = I 44 S3 + S a- {(S3 'S4

M + {S,S 2S 3 '4 S3 + S4}, since V(S3) ( V(S4) = 1 = xp ,

L + {S,S 2 S 3'S4 S3 + SQ}.

i =5

V(S1 )

V(S
2)

V(S3)

V(S
4)

V(S
5)

V (S6
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5. S 1 (I S5 = 4' S2 ) S5 = p' S3 (I $5 = 4. S 4O S= 5 (S3 +S 4 ) ( s5 =

I -{Sl + S5'S2 + S5'S3 + S55'4 + S5sS3 + S 4
+ S5 '

J - {(S1,S5)'(S2'S5)(S3'95)9(S4'55)9(s3 +49 5 '

M - {S, 3S2' S39S4' 3 + S4,S5'$1 + 35'2 + S5'S 3 + 55'S4 + S5'S3 + S4 + S5

Since, all except V(S4) D V(S5  < x = (2 in this case),

I + {S + S5'2 + S5'S3 + S5'S3 + S4 + S5

+S 5}1. iL - S S2 S3 S4 S + , = 6.

6. S= s6 'S 6 'S3 6 = 'S4n s6 = S5 n S6 =

(S3+S 4) () S6 =

(S3+ S5) flS 6 = 4

(S4+ S5) (1 s6 =

(S 4+ S5) () S6 =

82+35 6 ='

(3 + S 55 nS 6 = 4.

I -{S 1+ 6'S2+S6'S3 +S6'S4 + S6'S5 + S6 ,3 + S4

5 3+ S55+S 6'S4 +S55+S 6'1 3 +S4 +S55+S 6

J f(Sis ,6I'Is2' S 693 ' 3'6 '94's ' 6M 5'6 ' 6 S3 + S

(S2 + S5's6'S3 + S5',$6) '(4+ S5,S6) '(3 + S4+ S

M + S ,52 'S3 'S4 93 + 54 ,55'S1 + S5 'S2 + S5 S3+ S5 S4

S 1 + S 6'S2 + S6633+ 6' S4 + 6' S5 + S 6'S3 + S 4+ S 6'

S 2+ S55+ S 6' S3+ 55+ S 6'S4 + SS5+ S 6'S3 + S 4+ S55+ S

+ 6'1 + S5 + S6'$2 + S5 + SS'

, S 6)I'ISl + S5'S6I'

$5'3+ 4 + $5

S1+ S5 + 6'

6
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Since all except V(5) 0 V(6) and (V(4) + V(5)) 0 V(6) is not less

than xp,

I-I-{S5 + S6 'S 2 + S5 + S6}*

L - {S1,S2' 3'S4'S3 +S49 5'S1+ S5' 2 + S5'S 3 + S5' 3 + S4 + S5 9S1+ S6'

S2 + S6'S3 +S 6 '3 4 + S6'S3 + S4 + 56 9S1 + S5 + S6'92 + 35 + S6'

S3+5+S6'3+ s,+ S5+6}. i = 7. Since i > q. Stop.

L contains all the simple circuits of the graph.

End of Example 5 ***************
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reduce the kind of operations to include simple additions only.

Slight modifications of the algorithm could very effectively

search for the existence of an Eulerian circuit if one exists, or to

find the set of simple circuits that contains a specific number of

elementary circuits. Restrictions on the kind of simple circuits

we would be interested in is what makes the algorithm more appealing.

In the next subsection, we look at generation of elementary

cycles and circuits in a planar graph, and look at some complications

that arise.

2.6. Methods for Generating all Cycles and Circuits in a Planar Graph

The methods discussed thus far apply to all graphs. This sub-

section deals with a particular kind of graph - planar graphs. There

are certain properties that planar graphs have and this subsection

presents another perspective on circuit enumeration using these

properties.

Before proceeding, we would like to know how to recognize a

planar graph.9

A graph is planar if and only if it can be mapped onto the

surface of a sphere such that no two edges or arcs meet except at

the vertex or vertices, with which the edges or arcs are incident.

Fig. 2.3 shows some regular polygons and their representations

as planar graphs in fig. 2.4 . A face of a planar graph is an area

of the plane bounded by edges called contours which contains no

edges, arcs, or vertices. A finite face is a face where the area
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fig. 2.3 Some regular polygons
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fig. 2.4 Representations of polygons in fig. 2.3 as planar graphs
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bounded is finite and an infinite face has infinite area. A planar

graph then has an infinite face external to all edges. Two faces are

adjacent if they share a common edge, and every edge is part of

exactly two contours.

Another definition, more suitable for our purpose is presented

as theorem 7.

Theorem 7 (MacLane): The set of contours of the finite faces

of a planar undirected graph forms a basis of the cycle

subspace of the graph.

Proof: A cycle of a planar graph encircles one or more than

one face. The edges of a cycle are then equal to the

ring sum of the set of contours of the encircled

regions. Thus any cycle or edge disjoint union of

cycles can be expressed as a linear combination of the

contours of the finite faces. Moreover, no contour

of a finite region can be formed by a linear combination

of contours of other finite faces. This is because

the ring sum of the contours of two or more finite faces

is a cycle (or edge disjoint union of cycles) containing

those areas of the finite faces.

There are e - n + 1 finite faces and therefore the cycle basis

has rank equals to e n + 1 (which is also equal to the cyclomatic

number). Therefore, we can use the set of contours of the finite

faces in place of a fundamental set of cycles as the cycle basis and
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use the method of Section 2.1 (Cycle Vector Space Methods) to generate

all the elementary cycles in the graph.

To apply theorem 7 however, we need to first ensure that the

graph is planar and obtain a plane representation of the graph. This

problem is solved by Hoftcraft and Tarjan [16], requiring computation

time bounded by a polynomial in n.

The planar algorithm starts constructing the planar graph from

a planar subgraph (usually a cycle) of the given graph. Gradually,

the remaining edges are added to the selected planar subgraph, such

that no edges cross. The way to know this is by testing if the

number of edges and vertices satisfy Euler's condition, namely, if

e > 3n - 3, we know that the given graph is non planar. Hoftcroft

and Tarjan [16] uses the depth-first-search method (see Tarjan [33])

for their algorithm. The graph is also represented as an adjacency

list which incurs lesser storage and examination time. The program

is written in Algol and when tested on an arbitrary graph with 900

vertices, it requires less than 12 seconds of running time.

Having an algorithm for testing and representing planarity of

the graph, we now move on to introduce an algorithm that generates

all the elementary circuits in a directed planar graph. Before doing

so, we need to first acquaint ourselves with dual graphs.

Let D be the dual graph of a planar undirected graph G. For

each face in G, let there be a corresponding vertex in D. Also,

for each edge common to two adjacent faces in G, let there be a
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corresponding edge which joins the two vertices corresponding to

the adjacent faces, in D.

Every graph that is planar has a dual, and the dual of a dual

graph is the planar graph itself (Whitney). There is a one-to-one

correspondence between the number of edges in G and D. The contour of

a face in G corresponds to a cutset separating the corresponding

vertex from other vertices in D. But this corresponding set of

cutsets in D is a basis of the cutset subspace in D. From theorem 7,

we know that the set of contours of the finite faces is a basis of

the cycle subspace of G. Thus, there exists a one-to-one

correspondence between the vectors in the cycle subspace of a planar

graph and the vectors in the cutset space of its dual and vice versa.

As such, the problem of enumerating the cutsets of the dual graph is

equivalent of enumerating the cycles in the primal graph.

These statements apply to undirected planar graphs. We are now

ready to extend our understanding of dual graphs to generate all the

elementary circuits in a directed planar graph.

Given a directed planar graph Gd, construct the dual Dd as follows;

first, obtain the dual of the undirected version of the directed

graph. In addition, if an edge from a vertex in the dual intersects

a planar arc which is oriented in a clockwise direction around the

dual vertex, then the dual edge is directed outwards from it, otherwise,

it is directed inwards. Consider the example in fig. 2.5 . Note

that the graph, Gd in fig. 2.5 is similar to that in Example 2,
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except that we have removed the self loops.

fig. 2.5 Directed Graph Gd and its Dual Dd

/
I

I

' 4
/

------ Dual Graph, Dd'

Planar Graph, Gd.

We have labelled the faces in the planar directed graph Gd, F1,

F2, F3, F4, F5, F6, (where F6 is the infinite face) and the corresponding

vertices in the dual graph, Dd, Fi, F2, F3, F4, F5 and F6. In

general, we shall always label faces in the planar directed graph

and the vertices in the dual as F, = {FiF 2,...Fe-n+ 2 }, where Fe-n+2

is the infinite face.

The method for generating all evaluation circuits in a directed

planar graph is presented as a flowchart in fig. 2.6 and works
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fig.2.6 Flowchart on obtaing all elementary circuits in a directed

planar gaph, Gd, using the dual graph, Dd.
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stricly on the dual graph Dd. It consists of three main blocks:

I. Vertex aggregation,

II. Arc removal, and

III. Circuit test.

Vertex aggregation involves taking distinct combinations of

vertices in the dual that do not include vertex Fe-n+ 2. One of the

ways of taking distinct combinations from the e - n + 1 vertices has

been introduced by the algorithm in the previous subsection. For a

graph of e - n + 1 faces, we need to consider 2e-n+1 - 1 combinations.

For each combinations of x vertices, we have to ensure that we

remove at least x - 1 arcs following vertex aggregation. If this

condition is satisfied, then block II, "arc removal" has been

accomplished. For example, consider the dual graph:

F
2

after vertex

F aggregation FIF 2  F3F1 F3
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after arc removal,

F F2 F3

Vertex aggregation and arc removal obtains a dual of the planar

subgraph where those corresponding arcs are removed in the planar.

Each arc so removed is common to two adjacent faces. Each vertex

aggregation also forms a new dual vertex. If "arc removal" is

successfully accomplished, then we proceed with circuit testing in

block III.

Circuit testing involves vertex inspection. A circuit in the

directed planar graph corresponds to a vertex in the dual graph

with all incident arcs directed either inwards or outwards only.

Note, circuit testing is only performed if "arc removal" is

successful; that is, for x vertices aggregated, at least x - 1

arcs are removed.

Let us summarize our method. We start off with the dual graph,

Dd, and aggregate on the vertices corresponding to the finite faces in

the planar. Vertex aggregation is followed by "arc removal," which
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essentially removes the arcs that are common to the corresponding

faces associated with the vertices aggregated. With each vertex

aggregation we obtain a new dual vertex, and providing "arc removal"

is sucessful, we test to see if these combined faces (with common arcs

removed) form an elementary circuit; that is, if all incident arcs

are directed inwards or outwards from this new dual vertex, then we

have formed a new elementary circuit.

We now use the graph in fig. 2.5 as an example to illustrate

our method. The results are shown in Example 5. The example reveals

the limitation of this method. For e - n + 1 = 5, the number of

vertex aggregation that have to be considered is 25 - 1 = 31. Clearly,

as the number of faces increases, the number of vertex aggregation

increases exponentially. Note however, that the Cycle Vector Space

Method of Gibbs-Welch discussed in Section 2.1 also requires 2e n+ 1

combinations for comparisons in the worst case. Moreover, what we

have presented here is applicable to a directed graph, even though it

has to be planar. In essence, what we have really established is that

the vertices (excluding F e-n+2) in the dual planar graph forms a

basis for finding the directed elementary circuits in the planar graph.

Also, notice that, in most cases "arc removal" reduces the number of

aggregation to be considered enormously. Another way of viewing "arc

removal" is that the vertices that are aggregated must form connected

components. The test for connected components is available (see

Narsigh Deo [10]). Circuit testing via vertex inspection is done by
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Example 5. Generating Elementary Circuits in a Directed Planar Graph

Using the Dual

NsA: Not Applicable NC: Not Connected

Note: The procedure proceeds fron left to right for each vertex
aggregation.

Vertex Aggregation

F 1F3
F2 F3

F1F2F3

F2F4

F2F4

F3 F4

F1 F3 F4

F2 F3 F4

F1F2F3F4

Arc Removal

x: F ,F3 NC

x: F2 ,F3 NC

x: FF2,F3

x: FlF4

V/

x: F , 2, F4

x: F3,F4 NC

x: Fl,F3,F4

x: F2,F3,F4 NC

x: F1, F2, F3, F4 NC

Circuit Test

x

Circuit

F contours of
3 face F3

F 4 : contours of
face F4

F2F: contours of F2,F4 excluding
common arc

/: Passed x: Failed
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Vertex Aggregation

F 1

Arc Removal Circuit Test

x

Circuit

F1F5  x

F3F2F5  / x

F1F 3F 5  V x-

F2F 3F 5 / x-

13F5

F2F3F5 /X-

F1 F 2 F3 F5  / x

F4F5  x: F4,F5 NC NA -

F1F4Fc x: F ,F 4,F5 NC NA -

F2 F4 F5  x

F1F2F4F5 /X-F1F F NA F-

F3F5F5 x: F3,F 4,F5 NC NA

F1F3F4F5  x: F ,F3,F4,F5  NA -

F2F3F4F 5  / F2F3F4 F5 contours of

F2,F3,F4,F5 excluding

common arcs

F2F3F4F5  // FIF 2F3F4 F5: contours of

F1, F2, F3, F4, F5 excluding

common arcs

********** End of Example 5 ***********
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finding whether there is one incident arc orientated in the opposite

direction. The existence of one pair of opposite incident arcs in an

aggregated vertex is sufficient to establish that no circuit is formed.

Everything we have discussed thus far works well provided we can

easily obtain the dual from the planar graph. This remains a

difficult problem since there is no algebraic representation of a

face in the planar graph. As such, our ability to construct the dual

is restricted to working on the planar geometric representation of the

graph. Perhaps one way to facilitate this task is to keep track of

when the path added in Hoftcroft and Taijan's algorithm forms a closed

region. At that point we could then identify the dual vertex

associated with that face.

Another possibility is to construct the dual from the planar

displayed on the console of a computer terminal. We suspect that the

complications would very much depend on how well we are able to

represent our planar graph. In general, however, the planar graph

allows us to "stretch" and "pull" the graph in order that faces are

more easily identified.

It seems then that the choice of this method rests rather

heavily on how easy it is to obtain the dual graph from the planar.

This concludes our review and suggestions on circuit and cycle

enumeration methods.

In the next section, we compare some algorithms using the methods

we have just reviewed and provide some recommendations.
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Section 3

Analysis of Algorithms

In the previous section , we presented the methods for geration of

cycles or circuits10 in a graph. This section examines how one algorithm

compares with another in terms of running time and storage requirements

in the worst-case. Worst-case analysis is by no means indicative of the

efficiency of an algorithm for an actual real-life problem. However, it

does provide us with a means for comparison as well as an indication of

t.he limitations of the algorithm. In effect, the performance of each

algorithm depends strictly on the specific structure of each graph we

are working with.

This section starts with ways of reducing and editing the graph

without losing any cycle or circuit that belongs to the original graph.

These reductions and editions help make circuit generation a more realistic

and plausible choice as an approach to some problems where the problem of

circuit enumeration would be enormous and intractable in every sense of

the word.

Having reduced and edited the graph, we then proceed to compare the

worst-case performance -of all the algorithms that fall into the methods

we have discussed. Each of the authors referenced has been cited

previously. Worst-case analyses are done on graphs that have been reduced

and edited under the rules in section 3.1.

Thus far, the connection between directed and undirected graphs
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remains somewhat obscure. In the subsection following, we present a

method suggested by Ardon and Malik [1] for converting an undirected

graph to a directed graph but maintaining the one to one correspondence

between cycles in the undirected and circuits in the directed graph.

This method avoids having to enumerate each cycle twice in the corresponding

directed version of the undirected graph. It also presents an option for

enumerating cycles in an undirected graph using a directed circuit algorithm.

Finally, we suggest which algorithm is best in each of the methods

discussed and from those, which would we recommend in general.

3.1 Graph Reduction and Edition

The problem of enumerating cycles or circuits is almost always

intractable for an original graph before graph reduction and edition.

The reason for this is that all the algorithms that we have presented

are exponential to the size of the graph. Given a graph, it is possible

to apply a set of rules to the graph in order to reduce the size of the

graph in such a way that no cycles or circuits are omitted from the

original graph. Although this does not guarantee that the computational

problem can be reduced, it offers some improvements in most cases. More-

over, the reduced graph is not only smaller but more manageable and

suitable for the methods we have discussed. In fact, all algorithms work

better with the reduced graph. Furthermore, all algorithms for worst-case

analysis apply to graphs that are reduced and edited.

The rules for reducing and editing graphs are as follows:

1. Self loops can be enumerated first,afterwhich they need not
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be considered anymore since no other elementary circuit can

contain them. In algorithms that "grow" with e, we can reduce

e by the number of self-loops in the graph.

2. A set of p parallel edges or arcs can be replaced by a single

edge or arc. Thereafter, whenever a circuit is found that

contains this arc, p such circuits are enumerated. Again, this

reduces the size of e in the graph. Furthermore, parallel arcs

are not easily distinguishable in the search procedures as

discussed in section 2.2.

3. Vertices of both indegree and outdegree of one can be deleted

and replaced by a single arc or edge. This not only reduces

the number of arcs or edges and vertices in the final graph,

but also the cardinality of cycles or circuits. In

algorithms where cycles or circuits of small cardinality are

enumerated quickly and shortly after the start, this reduction

is extremely helpful.

4. Vertices of zero indegree or zero outdegree are deleted together

with their incident edges or arcs, because these cannot be part

of a cycle or circuit. This process is continued until no such

vertices remains. This way of pruning the graph can be

visualized as chopping off the "branches" that stick out from

the graph. As a result we have a more compact graph.

5. The classical "divide and conquer" rule: For a directed graph

with "strong components", it is possible to decompose the problem

into finding all the circuits for each "strong component."
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In appendix A, we show how "strong components" can be obtained

easily from a given graph. A maximal strongly connected subgraph

of a graph is defined as a strong component of the graph. A

subgraph is strongly connected if there is at least one directed

path from every vertex to every other vertex in the subgraph.

(See Christofides [7].) Thus, all circuits in a graph can be

found in the strong components of the graph and no circuit

exists which connects strong components. The usefulness and

importance of this decompostion cannot be overlooked in

enumerating elementary circuits in a graph. The strong components

are subgraphs that are small enough hopefully so that even though

our algorithms are exponential, we could generate all the

circuits in these strong components quickly. Otherwise, having

the strong components would tell us whether it would be wise to

proceed with circuit enumeration if all strong components are

large or, to enumerate all circuits from certain chosen strong

components.

The reduction process is helpful since it only has steps of the

order of (n+e).

3.2 Discussion of the Time and Space Bound of all Circuit and Cycle

Enumeration Algorithms

We can now turn to a comparison of the performance of these algorithms,

see table 1, where results from Matei and Deo [23] are presented.

Paths and circuits can be listed as edge, arc, or vertex sequences.
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Table 1. Upper Bounds on Time and Space for Elementary Circuits and

Cycle Generating Algorithms

Algorithm Used Time Bound Space Bound Method Used

Hsu and Honkanen n-22-p e-2" Cycle Vector Space

Mateti and Deo p2-22p 2 1

Maxwell and Reed n-22yp e-21

Rao and Murti eo-p. 2 p-n

Welch-Gibbs n-221 e-2

Berztiss n(const.)n n + e Search and Backtrack

Johnson (n + e)c n + e "

Ehrenfeucht n3 + n-e-c n + e
Read and Tarjan (n + e)c n + e

Szwarcfiter + Lauer (n + e)c n + e

Tarjan n-e-c n + e

Tiernan n(const.)n n + e

Weinblatt n(const.)n n-c

Ardon and Malik n(const.)n n2  Connection Matrix

Danielson n(const.)n n(const.)n 1

Kamae - n(const.)n

Ponstein - n(const.)n

Yau - n(const.)n

Cartwright + Gleason n(const.)n n(const.)n Directed Graph
Transformation

Note: n = number of vertices
e = number of edges or arcs
u = v(G) = cyclomatic number = e - n+ 1
c = number of elementary circuits.

Source: Mateti and Deo [23]
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Each vertex or arc (edge) counts as a unit of input. Space bounds or

bounds on computer storage required are measure as units of input.

Any operation on a vertex or edge (arc) counts as one time unit. For

instance, in the Search and Backtrack Methods, whenever a path is extended

to a vertex, we count that as one time unit. Time bounds for the algorithms

are given in terms of time units.

The results given in table 1 are worst-case bounds. The worst-case

graphs for different algorithms are in general different. It is also

inportant to note that the effectiveness of an algorithm is very much

graph dependent. For instance, it is easier to apply a cycle enumeration

algorithm to an undirected graph instead of a circuit enumeration algorithm.

In addition, the choice of the algorithm depends also on the problem we

are interested in solving. An understanding of our input, or problem

is almost as important as choosing the algorithm itself. Some algorithms

that perform well for graphs of reasonable size might be very inefficient

for graphs that are small.

From table 1, note that the Search and Backtrack Methods require the

least storage. Other methods like the Vecter Space, Connection Matrix

or Directed Graph Transformation method store the input as an adjacency

matrix or slight variation thereof, instead of arc listings, or an

adjacency list. In addition to storing the information in a huge memory,

the examinations cannot stop without going through each element of the

matrix. In this sense, a huge storage incurs a penalty on the running

time as well

The Search and Backtrack Methods, thouqh not theoretically as elegant
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as the Cycle Vector Space or the Connection Matrix Methods, are very

suitable for computer implementation. Most of the algorithms in these

methods, for example Tarjan [32] and Johnson [18], uses what is known as

the "Depth-First-Search" Method, see Tarjan [33]. Depth-First-Search is

a procedure to search exhaustively without traversing any path twice.

Even though in general inferior, the Connection Matrix Method could

be used as effectively (and in some cases more so) to enumerate special

circuits like the Hamiltonian circuits, see Ardon and Malik [1],

Danielson [8] and Yau [37]. The main problem with the connection matrix

method is that it remains difficult to sort out the circuits in the

diagonal even if we are able to eliminate nonsimple paths. So, as long

as sorting remains difficult it is unlikely that the Connection Matrix

Methods would gain as much attention as the Search and Backtrack Methods.

Although the algorithm of Cartwright and Gleason [3] allows for

much flexibility in the way we enumerate circuits from line graphs, (see

Section 3.4) it suffers almost the same problems as faced by Connection

Matrix Method. Because of this, the Directed Graph Transformation Method

remains relatively unexplored; and their space and time bound exhibits

similarity with the Connection Matrix Method.

The Cycle Vector Space Methods consist actually of two distinct

phases. Phase one generates the fundamental set of cycles, and phase

two the elementary cycles of the graph. Different algorithms for

generating fundamental cycles differ in both storage and running time

capabilities. In Section 3.4 we recommend Paton 125]; however, this

need not be. As a result, the storage requirements showed slight
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fluctuations in the Cycle Vector Space Methods.

Before proceeding to compare algorithms individually, and making

recommendations, we would like to point out that though it is not possible

to use a Cycle Vector Space algorithm on a directed graph, without being

terribly inefficient, the transformation of an undirected graph to a

directed graph by Ardon and Malik [1] provides another option for enumera-

ting cycles, should we remain unsatisfied with the Cycle Vector Space

Methods. The following subsection discusses how this can be done cleverly.

3.3. Conversion of an Undirected Graph to a Directed Graph for Circuit

Enumeration

Having observed in Section 3,2 that the Search and Backtrack Methods

are generally faster than the Vector Space Methods (or for whatever

reasons), we might be interested in enumerating cycles using a circuit

enumeration algorithm. To do so, we have first to convert the

undirected graph to a directed graph. Representing each edge as two

arcs with opposing directions is inefficient since an edge in the

undirected graph corresponds to a 2-circuit in the equivalent directed

graph. We have to do better than that,

A method by Ardon and Malik [1] has been proposed so that we maintain

a one to one correspondence between cycles in the undirected graph G(VE)

and circuits in the equivalent directed graph G'(V',E'). Consider an

undirected graph with no parallel edges or self loops. An edge e..

connects vertices i to j. We denote this edge e.. E E as (e'.. and e!i )E'.

For a given cycle in G, there is a corresponding pair of directed circuits
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in G'. In other words, if there are e edges and c cycles in G, there

would be e + 2c circuits in G'. We could improve on this. If we remove

an arc e'. from G', all circuits in G' containing arc e!. would be

discarded. However, there now exists a one-to-one correspondence between

the cycles in G containing edge e1i = e and circuits in G' containing

e!. That is, by deleting e'., all cycles in G containing e or e

are equivalent to circuits in G' with e!. Once all cycles in G

containing e.. or e.. are found, the arc e'.. is removed from G' to form

a new subgraph. The remaining cycles in G are obtained from this

subgraph by the same procedure.

By repeating the procedure, a subset of circuits are found which

corresponds to all the cycles in the undirected graph. Since e is

finite, the number of subgraphs considered is also finite.

As an illustration, suppose we are interested in generating

elementary cycles in an undirected graph using the Search and Backtrack

Method discussed earlier. First, we transform G to G', then pick a

vertex i, and remove an arc incident to it, e'. Proceed by building a

path from i one arc at a time starting with e'.. Test for circuits by

Tiernan's [34] algorithm outlined in ALGORITHM 2, until we backtrack to

vertex i.' All cycles that contain edge e would have been enumerated.

Remove arc e!. and proceed as before from vertex j. When no arcs remain

in G', all cycles in G would be enumerated. Since Tiernan's [34]

algorithm finds circuits as a vertex sequence, all cycles are then

represented as vertex sequence as well.

The use of any Search and Backtrack Methods represent only one way

of enumerating cycles in G from circuits in G'. However, we could also
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apply the converted graph to the Connection Matrix Methods. This is done

by Ardon and Malik [1]. In fact, we could use any method for enumerating

circuits on the converted graph.

In the subsection that follows, we shall recommend which algorithm

to use for circuit enumeration and the rationale for the selection.

3.4 Recommendations

The selection of an algorithm to use for circuit enumeration should

be approached with much discretion. In general, the number of cycles

or circuits are enormous and happily, for most practical purposes, we

are only interested in generating cycles or circuits with particular

properties. For example, in a complete directed graph, where every vertex

is connected by an arc, there are n(n-1) arcs and the number of circuits

of length i is equal to (i)(i-l)!. Thus, the total number of circuits
n n

is I (n)(i-1)!. But I (n)(i-l)! > 2n -n -1; this means that the
i=2 - i=2

number of circuits grows with the exponential 2n for such graphs.

Like most problems then, it is essential to first understand and

"visualize" the nature of the problem. Though this is not always possible,

it would lead to substantial savings if we have an idea of what the

original graph looks like, and what we want to do with it (i.e.,do we

need to enumerate cycles or circuits?) Indeed, the selection of an

algorithm rests on such criteria alone. For instance if we have a complete

graph, to enumerate circuits in such a graph using any algorithm would

be impossible for large graphs. Also, we might be able to focus our

attention in a subgraph of the original graph and identify all circuits



-87-

in that subgraph without incurring huge penalty to the original problem.

First, we note that an algorithm which is superior theoretically

is not necessarily superior in practice. For instance, the simplex

method is still better for solving linear programming problems than

Khachiyan's algorithm even though the latter is polynomially bounded and

the former is not.

Also, suppose two algorithms a and ap solves a problem Q, where

ap is polynomially bounded and a is not. Then there is some family of

instances {Qn} of Q such that the running time of a on {Qn} increases

faster than the polynomial function of n, while the running time of ap

on {Qn} is bounded by some polynomial function f(n). For "large enough"

values of n, ap is guaranteed to run faster on Qn than a, and as n

increases, the discrepancy increases rapidly. This result is known as

an asymptotic result. But, how large is "large enough?" In lieu of this,

it is possible that the polynomial algorithm a might be preferable to ap

for all instances of Q.

Another point we like to make here is that polynomial boundedness

is pathologically contrived such that they represent the most perverse

problem instances in order to measure an algorithm's performance. Besides,

how likely are we in practice to encounter problem instances like those

in (On} that causes a to behave badly.11

Even so, since most polynomial-time algorithm for problems of

interest to Operations Research are both efficient in theory and practice,

a comparison on that basis would be beneficial.

Algorithms are compared under three criterias: worst-case performance,
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clarity and programmability.

For an undirected graph, the author recommends the Cycle Vector

Space Methods and in particular, the Welch-Gibbs 12 algorithm (with

Paton's [25] algorithm for finding the fundamental cycle set). Paton's

[25] algorithm has been shown to out perform other algorithms for finding

the fundamental cycle set. Althouah the Welch-Gibbs algorithm does not

perform any better or worse than the others in the same category, it

is clearly expounded and easily programmed. It has been programmed in

Fortran and checked for approximately 100 graphs of at most 25 vertices

each. On the CDC 6500, it took about two minutes to generate all cycles

of 25 12-point cubic graphs with the input in the form of a vertex

adjacency matrix for each graph.13

For a directed graph, Johnson's algorithm is recommended. Though

there are three other algorithms that are polynomially bounded (if the

number of circuits is polynomial), Johnson's [18] algorithm has been

shown to converge asymptotically fastest. The notion of asymptotic

convergence has been discussed previously. The program is written in

Algol and the running time for a graph of 80 vertices and 240 circuits

takes 4.46 seconds on IBM 370/168. The method of Johnson builds upon

the algorithm of Tiernan discussed in Section 2,2, but exploits the

added features and capabilities of the computer,

Since the search procedures are not all that complicated, one sugges-

tion would be to write the program for the algorithm in Assembler language,

which would improve on the running time. (The same suggestion applies to
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Welch-Gibbs algorithM.)

Though the Connection Matrix Methods incur huge storage requirements

and examination time (since each element must be scanned), it is

theoretically elegant and for a graph that is not sparse, it might be

easier to use since we are dealing only and strictly with matrix

manipulation in this method. For this category, Ardon and Malik [1] is

recommended. No results on computations are available, but the treatment

of circuit generation is not as elaborate as the others. Kamae's method

for instance requires that we keep every matrix until the algorithm stops.

The number of matrices fortunately does not depend on the size of the

graph.

We do not recomend Cartwright and Gleason [3 ] unless a better way

of extracting circuits from line graph is available.

One important point arises from the previous discussion.

The algorithms listed in table 1 seem to perform, in general better the

younger they were. This leads us to believe that theoretically, the

problems with circuit enumeration have reached a mature level but

computationally there remains room for improvement. The improvement in

computer technology has enhanced our ability to tackle these problems

more efficiently and indeed would alter the preference with which we

select our algorithm.

Now that we have recommended one algorithm for each method, the

question remains as to, "If I have to use one algorithm to enumerate

cycles or circuits which should I use?"

First determine whether the graph is directed or undirected. If
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directed, we recommend Johnson [18], otherwise Welch-Gibbs [14], with

Paton [25] for finding the fundamental cycle set. The reason should be

obvious from previous discussion. For generating all simple cycles or

circuits we recommend our algorithm. For a planar directed graph,

we still recommend Johnson instead of our algorithm since it remains

difficult to obtain the dual from the primal.

Let us now summarize our approach to the problem of enumerating all

elementary circuit or cycles in the graph:

The algorithms to solve for all elementary circuits or cycles in a

graph should be used only as a last resort for solving problems that

requires these circuits or cycles as feasible solutions since it is an

expensive and slow process. If there are no other options, then we should

first try to understand the structure of the problem in order to better

visualize the graph we are working with. In other words, we should decide

whether we could either reduce or reformulate the problem, or better still

could solving the problem on a partial graph provide us with meaninful

results?

If the graph we are working on is directed, use Johnson's algorithm,

otherwise, use Welch-Gibbs (with Paton [25] for finding the fundamental

cycle set).

The enumeration of all elementary cycles or circuits remains a costly

and difficult problem. It would be better if we could concern ourselves

with generating cycle or circuits with particular properties. This is the

topic of the next section which is more relevant from a practical viewpoint.
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Section 4

Applications of Circuit Enumeration

We now take a look not at the very expensive and time-consuming

task of enumerating all the circuits or cycles, but at more ,restricted

problems which find a particular subset of circuits in the graph and

suggest some applications pertaining to these classes of circuits. In

Section 2.5, we showed how all simple circuits or cycles could be

obtained from the set of elementary circuits. It is apparent that any

classification of elementary circuits with particular properties could

be extended to simple circuits as well. The same applies for an

undirected graph. For convenience, we shall work with elementary

circuits.

4.1. Elementary Circuits with Particular Properties

All classifications must have properties of vertices, arcs,

circuits or cost. (If in addition we associate a cost with each

vertex or arc.) An elementary circuit having n vertices must have n

arcs. Thus, finding circuits that pass through n arcs is equivalent

to finding circuits passing through n vertices.
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The restricted problems we have identified are:

Pl. Find all elementary circuits that pass through k specific

vertices.

P2. Find all elementary circuits that pass through k specific arcs.

P3. Find all elementary circuits that consist of p (or less than p)

arcs (vertices).

P4. Find all elementary circuits less than a given fixed cost

(with costs associated with arcs and/or vertices).

P5. Find a set of q disjoint elementary circuits which passes

through a set of k vertices.

P6. Elementary circuits that are cheaper than at least r other

circuits.

These six problems we have identified are mutually exclusive.

Many more problems would be formulated by considering combinations of

these six problems, Pl to P6. For example, if we consider P3 and P4,

we would define the problem of finding elementary circuits that

consist of p (or less than p) arcs (vertices) and less than a given

fixed cost. Furthermore, some actual practical problems are easily

associated with one or more restricted problems. In P6, if we set

r = 1, and solve P6 repeatedly, we would get the optimal or least cost

circuit in the graph. Remember that r could be set arbitrarily. P3

and P6 could define the travelling salesman problems, and finding the

Hamiltonian circuit would be a special case of P3 for p = n. Another

example is to find the optimal circuit in a doubly weighted graph
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(i.e. two costs are associated with each arc), see Dantzig et al.,[9]

and Lawler [21].

In case of simple circuits, we might be interested to identify

a simple circuit that consists of elementary circuits of cardinality

Z, with a common vertex.

Having proposed some restricted problems which find a particular

subset of circuits in the graph, we move on next to see how some

practical problems could fit into our classifications.

4.2. Some Suggested Applications

For Pl, we might be interested in locating a distribution depot

for serving a set of k cities (where the demand for a certain

good/service is higher) such that all cities are served by one cyclic

route. The assumption is that the demand is known and the cities are

connected. P1 provides us with all possible circuits (but not more than

we need) and choices of the location of the depot. Since the cities

are connected, we could partition the network into strong components,

where the set of k cities lies in one of these. We enumerate circuits

contained in this strong component. If no such circuit exists, then

the method would inform us. Otherwise, it would identify all such

circuits.

In addition, we could extend Pl to include cyclic production

scheduling and job scheduling. We denote the beginning of a

production run by a vertex, where an arc connects the job, represented
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as a vertex, that must be completed or required before another is

undertaken. We would then like to find all circuits that passes through

a fixed vertex (the beginning of the production process or job

assignment). Tiernan's [34] algorithm solves this problem, but we need

only to restrict ourselves to the first iteration of the algorithms;

namely, generating circuits that passes through vertex 1 where vertex 1

is the fixed starting vertex. (See Section 2.2.)

For P2, we might select the set of arcs with least penalty

(i.e. congestion, tolls or length). Our problem would be to dispath

vehicles from a depot, through these streets, such that they return

to the depot upon completion of the job. Note that we have imposed a

somewhat stringent condition that the vehicle should return to the

depot. To solve P2, we transform P2 to P1 by finding the "line graph"

associated with the original graph and represent the k specific arcs

as k specific vertices, then solve it as Pl.

P3 could be solved more efficiently using the Connection Matrix

Method or Directed Graph Transformation Method, since it generates all

circuits of a given cardinality simultaneously. A simple scheduling

problem might insist that we do not visit more than p cities at a time.

For example, we might be interested in scheduling buses so that they

do not have more than p stops. Other constraints might be included

like the total trip length but this will be discussed later. Another

interesting problem involves finding Hamiltonian circuits. This

is discussed in detail in Appendix B (also included are Eulerian

circuits).



-95-

An interesting extension to P3 is P4, where the total cost of a

circuit is constrained to be less than a given time, or total trip

length or total cost of production. If we assign weights to all arcs

in the graph where weights can be negative (for example, if cost is a

positive factor, then profit would be negative and vice-versa), the

problem becomes, given a set of schedules or production strategies,

find the schedules or strategies which do not exceed a certain time

bound or do not exceed a certain variable cost. The algorithm for

solving this P4 where arc costs are non negative is given in ALGORITHM 5,

which is a modification of Tiernan's algorithm. We denote the fixed

cost as Q. If some arc costs are negative, we suggest two approaches

depending on the number of negative cost arcs:

Al. Divide the set of vertices into two disjoint sets. One

set is the vertices which have negative cost arcs incident

to them. Let this set contain n' elements, and the other

set of vertices with non neaative cost arcs incident contain

n" elements. Note that n = n' + n". Label the vertices

from the first set 1, 2,..., n' and the vertices in the

latter set n' + 1, n' + 2,..., n. Solve the first n' set

of vertices using Tiernan's algorithm to obtain all the

circuits. Note also that we need to use Tiernan's algorithm

only until the vertex n' is updated or incremented in B6.
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(see ALGORITHM2. No circuits formed after that would contain

vertices 1 to n' and its incident arcs (i.e. no negative cost

arcs would be considered again). Discard any circuits that

were found which exceeds cost Q. Using the modified

algorithm in Algorithm 5, we continue with finding circuits

which fall within the allowable cost. Observe that since the

subgraph considered in the latter problem has no negative cost

arcs, and once the path cost exceeds the fixed cost, we need

not proceed further to build circuit. This approach is

suitable if we have a small set of negative cost arcs, i.e.,

if n' is small.

A2. If most of the arc costs are negative, we propose a second

approach. First, we find the arc with the least cost, say - c.

We add an additional cost ct. to all arcs. Then whenever an

arc is extended in the path, we test to see if the total cost

of the path is less than Q + mc. where m is the cardinality

of the path (or circuit). The modification to Tiernan's

algorithm has to include the above cost test and an array that

keeps track of m, the cardinality of the path (i.e. everytime

we backtrack, m +- m - 1). In this case though, we enumerate

only circuits that fall below cost Q.

One example of a problem with negative cost arcs is the scheduling

of flights where some flights are profitable, i.e. with negative cost.

This happens whenever there is a high demand from point A to B but not
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ALGORITHM 5: Modified Tiernan's Algorithm - An algorithm for enumerating

all elementary circuits that does not exceed cost Q.

(All edge cost are assumed to be positive.)

Bl. Initialize

Read N, G, and C

P + 0

H + 0

k +I

P(l) + 1

T - 0

B2. Path extension

Search G(P(k),j) for j = l,2,...N such that the following four

conditions are satisfied:

1. G(P(k),j) > P(l)

2. G(P(k),j) I P

m = 1,2,.. .N

4. T + C(P(k),j) < Q

If this j is found, extend the path,

T + T + C(P(k),j)

k + k + 1

P(k) - G(P(k - 1),j)

go to B2.

If no j meets the above conditions, the path cannot be
extended.

3. G(P(k),j) I H('P(k),m),
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B3. Circuit confirmation

If P(1) G(P(kj), j = 1,2,...N or D = T + C(P(k),P( )) > Q,

then no circuit has been formed,

go to B4.

Otherwise a circuit is reported,

Print P, D.

B4. Vertex closure

If k = 1, then all of the circuits containing vertex P(l) has

been considered,

go to B5.

Otherwise,

H(P(k),m)-+ 0, m = 1,2,...N

For m such that H(P(k) - 1),m) is the leftmost zero in the

P(k - 1) - the row of H,

H(P(k - 1),m) +- P(k)

P(k) - 0

T +T- 1

k +k- 1

go to B2.
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B5. Advance initial vertex

If P(l) = N then

go to B6.

otherwise,

P(l) - P(l) + 1

k + 1

H +0

go to B2.

B6. Terminate

End of Algorithm 5
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from B to A. We would like to schedule flight routings that fall within

a certain operating cost. Perhaps this example is not complete since

the requirement that an aircraft returns to its homebase is not as

stringent. In the hub and spoke network structure though, this

requirement becomes more reasonable.

Instead of finding a single circuit that passes through k

vertices, P5 provides us with q disjoint elementary circuits, which

passes through k vertices. If we have q vehicles of different

capacities and/or specifications, we could dispatch each vehicle

to serve each circuit. This is a deviation from finding the single

least cost elementary circuit in the graph (TSP). In fact, it

might be more efficient and meaningful to serve several independent

disjoint tours instead of one single tour which could be too large

(in terms of cardinality). Besides, we might have more than one

vehicle (or server) at our disposal. We could easily identify disjoint

circuits since they will never share any vertex in common. In addition,

we could find one circuit that contains all k vertices.

Finally, P6 provides an order of the cost of each circuit. If

we let r = 1, and perform P6 repeatedly, we get an ordering of circuits

from most expensive to cheapest. This problem is of interest to us in

the same way the k-shortest path is for shortest path problems. It

allows us to settle for next, or next to next, etc., best circuit and

know how far away from the optimal we are. The reason for selecting

the second cheapest, instead of the cheapest circuit is often a
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judgemental one. Whereas the k-shortest path problem is solved, the

corresponding problem for circuits has not been attempted.

Combining restricted problems also define interesting areas of

applications.

Let us consider a simple problem which results from combining

Pl and P5. Suppose we are given an airline schedule map, and we try

to determine how to schedule a crew such that they return to have base

after a certain time period not exceeding Q hours. This problem is

analogous to scheduling of aircraft for maintenance at home base within

a time period. One problem then is to find all circuits that fall within

this constraint. But first let us understand what a schedule map is.

A particular schedule map is shown in fig. 4.1. The vertex

corresponding to the vertical axis are time vertices at a given city

(represented as vertical axis). The arcs connecting cities are called

service arcs. Ground arcs connect one time instant at a given city to

another time instant at the same city. Observe too, that in our

particular schedule map, only the home base, which can be any city, has

an overnight arc. For purpose of illustration, let A be the home base.

If we are interested in finding circuits that includes the home base

and that do not exceed 0 hours, then we should extend the schedule map

such that the vertical axis of the home base equals Q hours. We then

use the modified Tiernan's algorithm (Algorithm 5) to generate all

circuits that fall within this time limit Q. If we denote our home base

as vertex 1, then we only need to find circuits that pass through

vertex 1 only (i.e. no "advance vertex" is necessary).
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fig. 4.1 SchedulMa
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In the case where there are restrictions on routes or precedence

relationship for visiting one (or some) vertex before visiting another,

a graph transformation involving vertex splitting should be done prior

to carrying out the algorithm. Vertex cost could also be represented

on the arc between the split vertex.

The enumeration of all circuit and cycles have also been used to

solve subproblems. For example, the airline crew scheduling problem

uses the set of rotations as inputs. The set of rotations is obtained

from the set of elementary cycles. Another example is the subtours

in a tanker routing problem where the set of circuits represent the

feasible set for selecting the cheapest tour.
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Section 5

Summary

We have shown in section 2 how to enumerate all elementary cycles

or circuits from a graph. We have also shown how to obtain all simple

cycles or circuits from a given set of elementary cycles or circuits.

In addition, an approach using the dual graph to find all elementary

circuits in a directed planar graph is introduced in section 2.6.

Next, we compared the running time and storage requirements of

most cycle and circuit enumeration algorithms in table 1. We then

proceeded to make recommendations in section 3.4 based on these

computational results.

However, we have seen that even though, theoretically, we can

solve the circuit enumeration problem, it remains as one of those

problems which requires exponential time to solve. For instance, if

we are trying to find all the elementary cycles in the graph, given

that the graph contains 60 fundamental cycles; and that each operation

requires 1 micro second to compute, then to exhaustively consider all

possible combinations of fundamental cycles would require 260 - 60 - 1

micro seconds, which is about 366 centuries! Other algorithms are

polynomially bounded, but only if we know a priori that the number of

circuits is bounded. This is comforting, but knowing the number of
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circuits in a graph is not always possible. No one seems to have an

algorithm to do this.

In any case, if we need to find all elementary circuits or cycles

using any of the algorithms referred to in section 2, then we recommend

that the graph is first edited and reduced following the rules listed in

section 3.1. This would save us much computational time, or indicate

that the problem is too large for us to even try solving.

Where do we go from here?

We have isolated some circuit problems in Section 4.1 and suggested

applications in Section 4.2. Though these problems could be solved

using existing algorithms, and modifications, there are still room for

improvements. We recommend developing algorithms for problems listed in

Sections 4.1 and 4.2 and try to improve on computational efficiencies.

In addition, we might also try to find a subset of all cycles or

circuits (e.g. the fundamental set of cycles) in polynomial or

pseudo-polynomial time, then later to use this set as a surrogate for

all the cycles or circuits in the graph for further analysis if needed.

(Note that the subset of cycles provided by the fundamental set might

not be satisfactory for further analysis.) One other example of

finding subsets of all circuits would be to find all the circuits from

selected strong components that are smaller than a given size.

Finally, it would be interesting to be able to simply count the

number of elementary cycles or circuits in a graph efficiently. Having

this knowledge would allow us to use Johnson's [18] algorithm, which
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is polynomial to the number of circuits in the graph with more

confidence.

Though application of most algorithms are constrained by the

size of the problem, the ability to handle bigger and bigger problems

expands with the continuous improvement in the capabilities of the

computer and software as time goes on. Fortunately, problems do not

get larger and larger with time. In this sense, we continue to move

towards being able to solve practical problems which require cycle or

circuit enumeration.
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Footnotes

For the proof, the reader is referred to C.L. Liu [22].

2For a given spanning tree, the set of the n - 1 cutsets
corresponding to the n - 1 branches of the spanning tree is called the
set of fundamental cutsets relative to the spanning tree.

3A non-simple path uses an arc more than once. We have referred
to them as infinite paths in our definitions in Section 1.

4 (9)i denotes the ij element of matrix Cl, i.e. brackets
identify te elements of the matrix.

5A vertex sequence P is a flower if there exists a vertex j in P
such that the subsequence of P consisting of all vertices and arcs up
to j is a path, the subsequence of P consisting of all vertices and
arcs behind j, including j is a circuit containing more than one arc,
and that these subsequences have no vertices except j in common. The
vertex j is known as the "joint" vertex.

6Of course, if there are alot more circuits of higher cardinality,
convergence might still be slow, but in this case, the other methods
would not get around this problem any easier either.

7For a listing of the ways of graph representation, see
Narsingh Deo [10], pages 270 to 273.

8Note: V(P + Si) = V(P) + V(Si)
In particular, V(Sl + S3) = V(Sl) + V(S3)-

9For more definitions on planar graphs, see Harary [B5]. We
present definitions here that serve the discussion that follows.
There are several equivalent definitions of planar graphs.

10We refer to elemetary cycles and circuits in this section
unless otherwise specified.

11For further discussion on computational complexity, refer to
[87].

12Welch-Gibbs algorithm actually refers to Gibb's algorithm. But
Gibb's algorithm is merely a modification of Welch's.

13Gibb uses Gotlieb and Corneil 's algorithm for generating the
cycle set and we can expect tne running time to improve as well since
capabilities in computers have improved also.
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14The tanker routing problem have also been solved as a shortest

route problem. See Dantzig et al. [9] and Christofides [7].
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Appendix A

Method for Finding Strong Components (Christofides [7])

Let R = [r J be a reachability vertex where,

if vertex x. is reachable from vertex x

1, o

otherwise

and Q = [q..] be a reaching matrix where,

if vertex x. can reach vertex x.
q=

0, otherwise

Using our usual definition of r(-) and rl (-), we define R(x.) as

the set of vertices that can be reached from a given vertex x.

Specifically

R(x.) = {x.} U r(x.) U r2(x.) U.. .r (x.)

where r (x ) is the set of vertices which are reachable from vertex xi

along a path with cardinality P.
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We define Q(x.) similarly as the set of vertices which can reach

vertex x.. Therefore,

Q(xi) = {xi} U r~1 (xj) U V-2 (xi) U...U r~E(xi)

where r- 2 (xi) = (r l ~(xi)) etc.

Observe that Q = Rt, the transpose of the reachability matrix.

(Column xi of matrix Q can be found by setting q = 1 if x E Q(x),

and q.. = 0 otherwise.)

The set R(x.)CA Q(x ) is the set of vertices which are on at

least one path going from x to x . Thus the set R(x.) f Q(x.) is that

set of vertices that can reach and can be reached from xi and from

each other. Thus R(x.) n Q(x.) defines the vertices of the unique

strong component of G containing vertex xi. These vertices are then

removed from G to obtain the subgraph G' = <G - R(xi) f Q(xi)>. We

find another strong component containing x E G - R(xi) n Q(xi) in

the same way. This process is continued until all vertices in the

graph belongs to one component. See example in fig. A.l.

Alternatively, we could find the strong components of the graph

in fig. A.1 by taking the element by element multiplication of R and

Q, i.e. ROQ. The row x of the matrix ROQ contains 1 in those columns

of x. only if x. and x. are mutually reachable and 0 otherwise. Thus,

two vertices are in the same strong component if and only if their

corresponding rows (or columns) are identical. The vertices whose
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fig. A.1

R(x1 ) = {x1,x2 'x4 'x5x 6 'x7'x 8 'x9 x10}AQ(xl) X1 'X2 93 'X5 'X61

Therefore the strong component containing xi

{xl ,x2 'X5'x6}.

is {x4,x7,x9}, x

is R(xl)(\Q(xl) =

Similarly, the strong components containing vertices x7

8 is {x'1xin1' x1l is {x 11,x12,x13} and x3 is {x3}.
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corresponding rows contain an element of 1 under column x , then forms

the vertex set of the strong componentt containing x . By rearranging

rows and columns, we could obtain a block diagonal form of the matrix

R®Q such that each block corresponds to a strong component of G

containing only l's, see fig. A.2.

R Q =

xi x2 x5 x6 x8 x10 x4 X7 x9 1 x 12 x1 3

xlI

X 0
x6

8 x 00 0 0x10

x
4

X 7 0.00O
x
9

x 1
x20 0 0 0
x13

x3 00 0 1,

fig. A.2
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Appendix B

Eulerian and Hamiltonian Circuits and Cycles

Eulerian Cycles and Circuits

Given a nondirected (directed) connected s, graph G an Eulerian

cycle (circuit) is a simple cycle (circuit) which traverses every edge

of G once and only once. An s-graph differs from a graph in that there

may be as many as s edges connecting two vertices. We are interested

then to know under what conditions Eulerian cycles exist.

Theorem 9: A connected, non directed s-graph G contains an

Eulerian cycle if and only if the number of vertices

of odd degree is zero.

Proof:

Necessity: Any Eulerian cycle must have one edge leaving a vertex and

a different edge arriving at the same vertex since edges can be

traversed only once. Hence, if G contains an Eulerian cycle, the

degrees of all vertices must be even.

Sufficiency: Let G have vertices of even degrees only. Starting

from a vertex vi we build a path comprising of edges that have not been

previously used, until we return to vertex v again. If all edges have

been used, then we would have formed an Eulerian cycle. Otherwise let

C1 denote the cycle we have first formed. Since G is connected, there

is at least one vertex vi E C1 where v. is ther terminal or initial

vertex of some edge, the subgraph obtained by removing C1 from G is
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a connected graph where the vertices have even degrees, since C1 uses

only an even number of edges incident to its vertices. Another cycle

can be generated using the same procedure as above starting from v.

on the subgraph. If all edges are used then let us denote the new

cycle by C2. A simple cycle C1 U C2 denotes an Eulerian cycle having

a common vertex at v .

If some edges are left then we find vk E C1 U C2 such that vk is

the terminal or initial vertex of an edge and repeat the process. We

do this until all edges are considered. The union of all the cycles

formed in this way corresponds to our Eulerian cycle. i

An important consideration is that G is connected. If not then

we would incur components of the graph which are not connected and

thus no Eulerian cycle can be formed that includes all the edges.

Collorary: A connected directed s graph G contains an Eulerian

circuit if and only if the indegree of a vertex is

equal to the outdegree of the same vertex for all

vertices in the graph.

If we represent an undirected graph by an adjacency matrix

A = [(a .)] where (a .) is the number of edges from i to j, if edges

(i,j) exist and 0 otherwise, the sum of the rows and columns of this

matrix would tell us the in degree and out degree of each vertex,

respectively. The sum of the i th row and i th column would denote the

degree of vertex i.

The method to obtain an Eulerian circuit is now explained - very

simple:
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Start from any vertex xi and select an edge to traverse such that

if deleted, the graph does not become two unconnected components.

Hamiltonian Cycles and Circuits

A Hamiltonian cycle (circuit) is an elementary cycle (circuit)

that contains all the vertices in the graph. Although the problem

resembles that of finding Eulerian cycles (circuits), it is very

different and only partial results for special classes of graphs

exist. Some special results are listed here for interest:

1. For a complete graph, where each vertex is connected to

every other vertices, there are an enormous number of

Hamiltonian cycles (circuits).

2. No bipartite graph having odd number of vertices possesses a

Hamiltonian cycle (circuit). A bipartite graph G(N,A) is one

where we could partition the set of N into N1 ,N2 such that

N1 U N2 = N and NI (I N2 = $ and no edges connect vertices

belonging to the same set of vertices, i.e. for (i,j) c A,

i c N., j E N2 or i E N2, j = N1. From this definition, we

know that every elementary cycle in a bipartite graph has an

even number of edges and hence is incident to an even number

of vertices.

3. By definition of strong connectivity, if a Hamiltonian cycle

(circuit) exists, then the graph is strongly connected. The

reverse is not true. If two strong circuits exist, then

Hamiltonian circuit cannot exist.



-116-

Given an undirected graph, a Hamiltonian cycle might or might not

exist. For the case of directed graphs we would expect the existence

of a Hamiltonian circuit to be rarer since orientation of edges also

needs to be taken into account. If we assign an edge cost of one unit

to every edge in the graph, then the elementary cycle (circuit) whose

cost is n would constitute a Hamiltonian cycle (circuit) i.e., if

there are n vertices in the graph, then there must be n edges forming

the Hamiltonian cycle (circuit). Using any of the methods discussed

in Section 2, we would be able to enumerate the Hamiltonian cycles

(circuits) if any exist. However, this would be rather tedious.

Thus far, two methods have been proposed that provide some

improvements over the enumerative methods discussed in Section 2. These

could be categorized under algebraic and enumerative procedures. These

methods determine whether any Hamiltonian circuits exist and if so, to

enumerate them. The algebraic method is based on the work by Yau [37],

Danielson [8] and Dhawan [11] and involves the generation of all

elementary paths by successive matrix manipulation. As such, it incurs

much storage since it would have to store all paths that might

conceivably form part of all Hamiltonian circuits.

The enumerative procedure considers one path at a time, which is

continuously extended'until such time as: either a Hamiltonian circuit

is formed, or it becomes apparent that this path will not lead to a

Hamiltonian circuit. The path is then modified to ensure that all

possibilities will be included and the search continues. This

procedure uses less storage and finds Hamiltonian circuits one at a
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time (as opposed to the first method which attempts to find all

Hamiltonian circuits at once). This method was suggested by Roberts

and Flores [29].

Method A: Algebraic Method

Define B = [b(i,j)] as an n x n matrix where b(i,j) = j if arc

(i,j) exists and zero otherwise. We define the internal vertex product

of a path as the sequence of vertices of the path excluding the initial

and terminal vertices. We next define B, = [b (i,j)] as an n x n

matrix where b9(i,j) is the sum of the internal vertex products of all

elementary paths of length k from i to j where i / j. Assume b(i,j) = 0

for all i and A as the adjacency matrix. The matrix multiplication

B-B = B' = [b (s,t)], where B9 (s,t) = Ik b(s,k)-b,(k,t).

B, ,(s,t) then is the sum of the inner products of all paths from s to

t of length k + 1. Since b (k,t) represents all elementary paths of

length k from k to t, non elementary paths can appear only when the

inner vertex product contains vertex s. Thus, if all terms containing

s are eliminated from B (st), we would get a matrix B = [b (st)]

where if we set all diagonal elements to 0, then B (s,t) gives us

all elementary paths of cardinality k + 1 from s to t. Having B,+l

we continue to take B-BQ,1 to get B Z 2 after the proper reduction, etc.,

until a matrix Bnl is generated. This matrix gives us all Hamiltonian

paths between pairs of vertices. We could then identify Hamiltonian

circuits from the paths of Bnl since we need only to see if an arc
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connects the terminal vertex to the initial vertex. Otherwise, we

could take B-Bnl to identify all Hamiltonian circuits from the non

zero diagonal elements. An example is provided in Appendix Bl.

A slight modification of the above method reduces both the storage

and running time. Since we are interested only in Hamiltonian circuits,

we could obtain this from the diagonal elements of the matrix B-B nl

We note here that since only the element B n(1,1) is needed, it is

necessary only to store the first column of B, and eliminating non

elementary elements we could obtain the first column of B .

Continuing, we could obtain the first column of B rl The matrix

multiplication B and the first column of B nl would give us the

required Hamiltonian circuit if any exists.

Method B: Enumerative Procedure

We shall first present the algorithm of Roberts and Flores and

then show how we could make improvements for graphs with more than 20

vertices.

Define a k x n matrix M = [mi ] where m i is the ith vertex

(xq say) for which an arc (x ,x q) exists in a graph G(V,r). The

vertices xq c T'(x ) are compacted to form entries in the jth column of

the M matrix. The number of rows k corresponds to the maximum

outdegree of a vertex. See Appendix B2.

Choose an initial vertex x . x1 is the first entry in set S

which represents a vertex sequence of elementary path. Build the path

by adding the first element (a say) in the x1 column to S. Proceed by
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extending the first feasible vertex in the ath column to S. A vertex

is feasible if it has not already been in S. Continue to extend the

path until no further extension is possible. Let S = {xSaab.c,...,xr-l' r *

Then either no vertex in column x r is feasible or the path has

cardinality n - 1. In the latter case, if there is an arc (x r'x )

then a Hamiltonian circuit is identified. Otherwise, no Hamiltonian

circuit can be formed using this path.

In any case, we backtrack. Backtracking involves removing xr

from S and adding the first feasible vertex below x r to S in column

xr-l. If no feasible vertex is formed, we backtrack further. The

algorithm terminates when x1 is the only element in S and backtracking

leaves S empty. All Hamiltonian circuits in the graph have been

identified. Consider the simple example in Appendix B2.

In our path extension two conditions would enable us to build a

path more effectively. Let us assume that at some point during the

search the path is given by S = {x1,x2 ... xr}, and the next vertex to

be included is x*/ S. Let the original directed graph be G(V,r), and

x be a vertex of the subgraph obtained by deleting all the vertices

in S from V.

1. If there exists a vertex x 6 V - S such that x e r(xr ), i.e.

(xr,x) exists, and !' 1(x) C S, i.e. the set of all vertices

with arcs directed towards x are contained in S, then the

extension vertex is x, i.e. next arc is (x r,x) where x=x. If a

different vertex is chosen, then any path formed subsequently

would not include x and therefore cannot be a Hamiltonian
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path. See fig. B.l.

2. If there exists a vertex x E V - S such that, x r ~(xl)

i.e. arc (xlx) does not exist, and r(x) C S U {x*}, for

some other vertex x*, i.e. set of vertices with arcs directed

from x must be contained in S or in {x*}, then x* cannot be

included as the next vertex in the path since no paths between

x and x1 would be possible. Another arc other than (xr

must be considered. (See fig. B.2.)

REST OF GRAPH REST OF GRAPH

xx
x*

S S

fig. B.1 fig. B.2

In the example of' Appendix B2, condition 1 arises at step 2 when

S = {a,b}. For vertex eV' (e) = {b} C S so that e must be the next

vertex. Steps 3 to 8 could be skipped.
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Given a weighted graph with cost associated with the arcs, the

general traveling salesman problem attempts to find the minimum cost

Hamiltonian cycle (circuit). For a discussion of the Traveling

Salesman problem the reader is referred to Christofides [7].

Although the improved version of Robert and Flores [29] procedure

would reduce running time by half for a randomly generated graph of

more than 20 vertices, another method is available for a large scale

graph which is superior. It reduces the graph by searching for paths

that cannot possibly belong to a Hamiltonian cycle or circuit. The

set of paths S considered in Roberts and Flores [29] does not

adequately consider the effects of path extension S on the remaining

portions of the graph. A detailed account of this reduction on the

graph so that Hamiltonian cycles (circuits) would be more effectively

searched is found in Christofides [7] and is called the Multi Path

method. Although the methods discussed thus far apply to directed

graphs, extension to the undirected case is also possible.

Relationship between Eulerian and Hamiltonian Cycles (Harary [B5])

For an undirected graph, the definitions of Eulerian and

Hamiltonian cycles permit us to establish a relationship between them.

We define a line graph of Gk of G as a graph having as many vertices

as there are edges in the graph G. An edge between two vertices of

G, exists if and only if the edges of G corresponding to these two

vertices are adjacent (i.e. incident to the same vertex in G).
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Consider the graph G and its corresponding line graph G in fig. B.3.

fig. B.3

6 5

G G

Note: Vertices in G and G, have even degree. (Eulerian cycle exists)

(1,2,5,4,8,3,6,7,1) is a Hamiltonian cycle in Gf.

It can be easily shown that: -

1. If G has a Eulerian cycle, the G_ has both Eulerian and

Hamiltonian cycles.

2. If G has a Hamiltonian cycle, then G. has a Hamiltonian cycle.

The converse of both statements are not true.
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Appendix B1

Enumeration of Hamiltonian Circuits Using the Algebraic Approach:

An Example (Christofides [7])

Given

a 0 1 0 0 0
b 1 0 1 0 0

c 0 0 0 0 1

d 1 0 1 0 0

e 0 0 0 1 1 0

Let B1 = A



a 0 b 0 0 0

b a 0 c 0 0

c 0 0 0 0 e

d a 0 c 0 0

e 0 0 0 d 0

a b c d e

a b 0 b 0 0

b 10 a 0 0 c

c 0 0 e 0

d 0 a 0 0 c

e d 0 d 0 0

a b c d e

a 0 0 0 0 bc

b 0 0 ab ce 0

c ed 0 ed 0 0

d 0 0 ab ce 0

da 0 0 dc

2-paths from i to j via

vertex listed in (i,j).

B2 is similar to B' with

elements underlined set to

zero.

3-paths from i to j via

vertex listed in (i,j).

P3 is similar to B with

elements underlined set to

zero. Note the entry for

paths from b to c contains

b once again and is eliminated

as non-elementary.
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= B-B1

B = 2

e O
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a b c d e

a 0 0 0 bce 0

b ced 0 0 0 abc

c 0 eda 0 0 0

d ced 0 0 0 abc

dabe O

4-paths from i to j via

vertex listed in (i,j).

B4 is similar to B4 with

elements underlined set

to zero.

B4 contains all the elementary 4-paths from i to j. A Hamiltonian

path is given by b4 (l,4), which is abced. Since from B, b(4,1) = a,

i.e., there is an arc from d to a, abceda is the required Hamiltonian

circuit.

B = B-B3 =
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Appendix B2

Enumeration of Hamiltonian Circuit Using Enumerative Procedure:

An Example (Christofides [7])

Given:

a

Eb1

M = 2
3

b c
c a
e d

f

a~
b
c

k is equal to 3 corresponding to the maximum outdegree of

vertex f.
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The search to find all Hamiltonian circuits now proceeds as follows:

(Vertex a is taken as the starting vertex.)

Set S

1. a

2. a,b

3. a,b,c

4. a,b,c,d

5. a,b,c,d,f

6. a,b,c,d

7. a,b,c

8. a,b

9. a,b,e

10. a,b,e,c

11. a,be,c,d

12. a,be,c,d,f

13. a,b,e,c,d

14. a,b,e,c

15. a,b,e

16. a,b,e,d

17. a,b,e,d,f

18. a,b,e,df,c

Notes

Add first feasible vertex in column a (i.e. vertex b)

Add first feasible vertex in column b (i.e. vertex c)

First vertex (a) in column c is infeasible (a E S),
add next vertex in column c (i.e. vertex d)

Add vertex f

No feasible vertex in column f exists. Backtrack.
Remove f from S. Close f in column d.

No feasible vertex in column d exists. Backtrack.
Remove d from S. Close d in column c.

Similar to case above. Backtrack. Remove c from
S. Close c in column b.

Add vertex e. Open all vertices.

Add vertex c

Add vertex d

Add vertex f

Hamiltonian path. Hamiltonian circuit can be
closed by arc(f,a). Backtrack

Backtrack

Backtrack

Add vertex d

Add vertex f

Add vertex c

Hamiltonian path. Circuit closed by arc(c,a).
Backtrack c is closed.
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Set S

a,b,e,d,f

a,b,e,d

a ,b,e

a,b

a

0

Notes

Backtrack f is closed.

Backtrack d is closed.

Backtrack e is closed.

Backtrack b is closed.

Backtrack

End of search.

19.

20.

21.

22.

23.

24.
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