
FLIGHT TRANSPORTATION LABORATORY REPORT R86-4

ROUTING PROBLEM WITH SERVICE CHOICES

by

BOON CHAI LEE

June 1986

(IL

I

FLIGHT TRANSPORTATION LABORATORY
REPORT R86-4

ROUTING PROBLEM WITH SERVICE
CHOICES

BY: BOON CHAI LEE

ROUTING PROBLEM WITH SERVICE CHOICES

by

BOON CHAI LEE

ABSTRACT

This thesis finds solutions to the routing problem with service choices which is formulated as

a capacitated minimum cost flow circulation problem with GUB constraints. The routing

problem with service choices is solved using a specialized GUB branch and bound algo-

rithm. Methods for node and GUB set selection are presented. A heuristic for finding good

feasible solutions to initiate the branch and bound using vehicle size cuts is also derived.

Furthermore, a network reduction scheme is formalized to reduce the size of the problem.

This reduction is applied between pairs of nodes whose ground arcs have infinite upper-

bounds. Initial experiments using the GUB branch and bound on several medium scale test

problems appear promising. A variable tracking scheme which updates the status of the

branching variables is included, which can be used to fully automate the branch and bound.

This work supports the use of LP based GUB branch and bound for solving combinatorial

problems with GUB constraints. Extensions to several related problems are also given.

Contents

1 Introduction 3

1.1 Routing Problem With Service Choices . 5

1.2 Mixed integer programs with GUB constraints 16

2 Literature Survey 20

2.1 Routing problem with time windows . 20

2.2 Survey of methods for integer programs with GUB constraints 23

3 Solution strategy for the routing problem with service choices 28

3.1 Limitations of Lagrangian and Benders Decomposition 30

3.2 Branch and bound on problems with GUB constraints 37

3.3 Improvements over the branch and bound 52

3.3.1 Solving LP with GUB constraints 52

3.3.2 Network aggregation . 54

3.3.3 Parametric search for feasible solutions 61

3.3.4 Objective cut enhancement . 66

4 Empirical Results and Implementation Issues 69

4.1 Results for solutions to routing problems with service choices 79

4.2 Implementation Related Issues . 85

5 Conclusion 90

5.1 Bxtensions. 90

5.2 Sum m ary . 93

A Branch and Bound 101

B Solving LP with GUB constraints 105

C Applying Lagrangian relaxation to solve the routing problem with service

choices 111

D Applying Benders method to solve the routing problem with service

cifoices 116

2

Chapter 1

Introduction

In recent years, there has been an abundance of research into vehicle routing [27),[8]

that has successfully utilized the techniques of mathematical programming and algorithmic

designs for computer implementation. However, most of the problems attempted ignored

the temporal restrictions placed on them in a practical setting. In this sense, vehicle routing

problems with temporal constraints have received only scattered attention, focusing on very

specialized problems.

The inherent complexity of vehicle routing, and vehicle routing over time in particular,

places great limitations on the methodologies used and the size of the problems considered.

Very often, vehicle routing problems are treated as substitutes for vehicle routing over time,

whereby vehicle routes are first obtained, and the schedule is constructed from the routes

found. Schedules are constructed based upon an improvement that seeks to improve inital

routings using a hybrid of savings-type (Clark-Wright) approach, coupled with insertions,

and/or intercharge heuristics[8]. The quality of this approach can be penalized by initial

bad solutions.

The vehicle routing problem addressed in this dissertation makes no provision that

vehicles have to start and end at the same depots. Thus, it considers multiple depots in the

routings. Moreover, it incorporates temporal constraints in the services that are routed. In

addition, the problems restrict the performance of at most one service out of each group

of services. This added restraint is why the problem is termed the routing problem with

service choices.

The routing problem with service choices can be formulated as a network flow problem

with side constraints. The network used is a schedule map composed from a set of given

services. In its general form, it can be used to solve a variety of problems that will be

described subsequently. In particular, the routing problem with time windows can be

modelled as a special instance of the routing problem with service choices. This application

will be pursued in depth since it arises in many practical situations. In most routing

problems, where departure times are allowed to span across a certain time window, a shift

in departure time enables a better utilization of vehicles. The proposed problem will attempt

to find departure times for services in an optimal set of markets. The routing problem with

service choices can also be used to model data communication transmission problems with

precedence relationships. These precedent constraints parallel the temporal considerations

imposed in routings on the schedule map.

The side constraints in the network based formulation constrict flow on bundles of ser-

vice arcs to at most one. As a result, they are often referred to as GUB constraints.

GUB(generalized upperbounding) constraints are also referred to as bundle constraints,

multiple choice constraints or specially ordered set(SOS) constraints. The term GUB con-

straints will be used. Flows along services contained in each GUB constraint are further

restricted to be integer. Such constraints appear in many formulations of practical prob-

lems, for instanace, multicommodity flow problems, resource allocation problems given fixed

budgets, and transportation problems where GUB constraints are used to model vehicle ca-

pacities, route length or choices of vehicle type. Although the knapsack problem with

multiple choice constraints has received some attention[1],[33], the same is not true for the

capacitated network flow problem with GUB constraints.

Thus, the routing problem with service choices is both of theoretical and practical

interest. The author is unaware of any work done on solving the capacitated minimum

cost circulation problem with GUB constraints, whose variables are restricted to take on

integer values. This thesis is an attempt to probe deeply into the structure of the routing

problem with service choices, and to recommend an effective approach to be used to solve

the problem optimally. The next section describes the routing problem with service choices.

1.1 Routing Problem With Service Choices

To motivate the description of the routing problem with service choices, the problem

is cast as a special aircraft routing problem. Given a cyclic schedule which consists of

a potential set of services and their expected benefits, partitioned into mutually exclusive

subsets, find the set of services to be offered that maximize total benefits such that, at most,

one service from each subset is used. In addition, find the number of vehicles required to

perform these services.

Each Service is defined by 3 attributes:

1. Time and place of departure.

2. Time and place of arrival.

3. Expected benefit for performing the service.(By convention, negative and positive

values refer to profit and expenses, respectively).

Only non-stop services are considered. The inclusion of multiple stop service only in-

creases the size complexity, but not the structure of the problem. In some instances, like

bulk or convoy type deliveries, the non-stop assumption appears reasonable. The assump-

tion of a homogeneous fleet is acceptable in cases where the market to be serviced is well

defined. For example, short haul trips may require vehicles of a specific size or type, or, the

nature of the goods being transported may place restrictions on the type of vehicle used.

The unique feature of this problem is that the same vehicle is not constrained to leave

and return to the same depot during the completion of a cyclic schedule. The only provision

is that the schedule be cyclic, which is typical in most delivery problems.

The inputs to the problem consist of a cyclic timetable of potential flight serivces between

stations. These are used to construct a schedule map, as shown in figure 1.1. The schedule

map consists of a vertical time axis which represents stations. Each axis contains event

nodes which indicate the arrival or departure time at a particular station. Event nodes are

connected by three kinds of directed arcs which model aircraft flows. These three kinds of

arcs are:

" Ground arcs, G, which join event nodes at the same station.

" Overnight or cycle arcs, K, which join the last event node of each station to the

earliest event node at the same station.

" Service arcs, S, which join event nodes between stations.

Service arcs represent flight services leaving one station at a specific time and arriving

at a ready time, which is the earliest time at which an aircraft is ready to depart.

In addition, there are capabilities associated with each arc zi, with lower bound Iii,

and upper bound uji. Typically, for service arcs (i,j) E S, lii = 0, uig = 1; for ground

and cycle arcs (i,j) E (G U K), Iii = 0 and uji = {maximum allowable number of aircraft

at a particular station}. Associated with each arc (i,j) is an expected per unit cost for

sending an aircraft along arc (i,j). For (i,j) E S,cii represents the expected benefit of

performing service (i, j) if ci, < 0, and the expense incurred for deadheading if cii > 0.

For (i,j) E G, cii denotes the per unit cost of idling an aircraft at a particular station.

Finally, for (i,j) E K,cij represents the ownership costs of using an aircraft for the cycle

period. Suppose that, ni , n2, -- ,n, represents mutually exclusive subsets of service choices

AO600

Time

ground
arc, G

AO.590

Cycle or
Overnight
A rc, K

U =c

C= daily rental
cost of aircraft

Schedule map

Service Arc, S
t = 0
U a I
C = value of service

Figure 1.1

containing more than one element. Let M = ni U n2 ... U n, , where M C S. Now, if A

and N are the arc set and node set, respectively, the routing problem with service choices

can be formulated as follows:

minimize E cij
(ij)EA

Ez : -Ezy; 0 V j EN (1.1)
iEN jEN

Z z;;i1 for w=1,---,v (1.2)
(i~j)En-

Iii 5 zi :5u;i V (i~j)E K u Gu(S -M) (1.3)

zXiE{0,1} V (ij)Enw, w=1,---,v (1.4)

Constraint (1.1) is the conservation of flow constraints. (1.2) restricts the choices of

services to, at most, one for each bundle. These constraints are called generalized upper

bounding (GUB) constraints. Hereafter, the term GUB constraints is used. (1.3) are the

capacity constraints on the arc not included in the GUB constraints (1.2). (1.4) ensures

that a service is either chosen (zx, = 1), or is not, (zxy = 0). Note, that if (1.2) and (1.4) are

satisfied, the remaining flows in A are integral since constraints (1.1) and (1.3) are totally

unimodular. Moreover, (1.2) includes only subsets of service choices containing more than

one element, that is In.I > 1, for w = 1,2,- - -, v. For (i,j) E (S - M), constraint (1.3)

takes the form 0 < z<i 5 1. That is, for these arcs, the integrality restrictions (1.4) need

not apply. Problem (P), when M = {0}, is known as the cyclic routing problem. This

is a capacitated minimum cost circulation problem which can be solved using an out-of-

kilter algorithm. Without loss of generality, assume that l4y = 0 for (i,j) E (S - M).

Observe that zig = 0 V (i,j) E A is always a feasible solution to (P). When l4y 5 0 for

some (ij) E (S - M), there is no guarantee that (P) has a feasible solution. To ensure

feasibility, the number of inbound service arcs should exceed outbound service arcs with

Iii #0, or the number of outbound service arcs should exceed inbound service arcs with

lij 0 at each city. If x!. V (i,j) E A is the optimal solution to (P), then the number of

aircraft used is given by

(ij)EK

Problem (P) can be extended to include the case where only Q aircraft are available by

appending the constraint E(ij)EK Xii zg Q. Note that the optimal solution to (P) consists

of a set of profitable integral cycle flows. For each cycle flow, the sum of benefits along

the service arcs must be greater than the costs of the ground and cycle arcs it includes.

Since the ground arc costs are typically much smaller than other costs, this essentially

means that a sequence of services is included only if the sum of its benefits exceed the

operational cost of the aircraft used in that period. Moreover, in the optimal solution to

(P), at least one ground arc from each city must contain a zero flow. Otherwise, a cycle

flow consisting of cycle and ground arcs can be removed to improve the solution, since

cij > 0 -V (ij) E K u G.

The routing problem with service choices can be applied to many practical situations,

a list of which are given below:

1. Modelling alternative pick-ups and deliveries based on availability coinciding at dif-

ferent times between pairs of cities.

2. Bundling arc flows can be used to enforce staffing or other budget requirements re-

stricting the servicing of all arcs in a bundle.

3. Assignment of, at most, one item to any given activity or sets of activities.

4. Modelling time window constraints.

Modelling routing problems with time windows

The material that follows focuses on how the routing problem with time windows, can

[0800
T :0 0930

lime

10900

Figure 1.2 Service arc with time window

be modelled as a special instance of the routing problem with service choices. The time

window for a service is the range of possible times for which the service can start. A given

service and its associated time window is depicted in figure 1.2. The availability of flexible

departure times for service results in better fleet utilization. For ease of exposition, the

service arcs are labelled by integers. Consider the example given in figure 1.3. With no

time windows for service, the schedule requires the use of two aircraft, assuming that all

services result in profitable cycle flows. One cycle includes services 1 and 4, and the other

2 and 3. With the inclusion of time windows, only one aircraft is required. In general, it is

not easy to identify such a profitable cycle. The problems created by the inclusion of the

continuous time window are best illustrated by figure 1.4. The partial schedule shows that

service 1 can connect to 2, and service 2 to service 3. However, this does not necessarily

imply that service 1 can be connected with service 3 through services 1 and 2, because the

earliest possible completion time for services 1 and 2 does not fall within the time window

of service 3. This is referred to as the time window connectivity problem. To alleviate this

problem, two formulations are presented.

Continuous time window model

The first includes the continuous time window given as follows. First, the original

Routing with time window

Time window connectivity problem

Figure 1.3

Figure 1.4

schedule map is transformed such that each service arc is replaced by a node. Denote this

set of nodes by E. Node i refers to service i. Let ti be the actual departure time for servcice

i, and [ai, b;] be its associated time window. Also let T;; be the connecting time between

service i and service j. T;, is given by:

0 if ay : ai + BLi < bi or ai 5 bi + BLi 5 bi
T= a - (b+ BL;) if ai + BL; < ai

00 otherwise

where BL; = total time needed to perform service i.

BL; includes the flying time and ground servicing time for service i. Ti; is zero if the

completion time of sevice i falls within the time window of service j. The value of T; for

the case where ai + BL, < a is shown in figure 1.5.

ai + BL,
ti

bi bi + BLj

Figure 1.5 Ti; for a + BL < a

An arc connects node i E E to j E E if ai +Tj :5 b,. Each cycle arc corresponding to a city

A is replaced by a pair of nodes sA, tA; connected by an arc (tA, sA). Let 0 = { set of nodes

SA } and D = { set of nodes tA }. An arc (i,j), i E 0, j E E is included if service j departs

from city i. Similarly, arc (i,j) for j E D, i E E is included if service i terminates at city j.

All arc upperbounds are set to 1 except those arcs connecting D to 0, which corresponds

to the bounds on the cycle arcs in the schedule map. For all j E E cij = cost of performing

service j. For j E D, cij = 0, and cij = cycle arc costs for i E D, j E 0. Figure 1.7

shows an example of a transformed network of the schedule map shown in figure 1.6, which

contains time windows. If A and N denote the arc and node set of the transformed network,

the routing problem with continuous time windows (PC), can be formulated as follows:

minimize cii z
(i,)EA

XZig-Ezy;=0 V jEN (1.5)
iEN 5EN

(PC)
li zy :5 ui V (i, j) E A (1.6)

zxj > 0 =;o t + T, ti V ij E E (1.7)

ai :5 ti5 bi V i E E (1.8)

Constraints (1.7) and (1.8) are scheduling or time related constraints which ensures that

the time window connectivity problem is resolved. The decision variables are zii, V (i, j) E

A and ti, V i E E. Notice that, ti, V i E E are continuous variables. Constraint (1.7), as

it stands, is non linear and can be replaced in linear form as follows:

Select Lii such that Ly > bi + Ti - ai. Constraint (1.7) is then equivalent to:

V (ij) E E t + Tiy - ti (1 - z11)Lq,
zij E {, 1}

To show this, assume that zi > 0, this implies that zij = 1 and the above is equivalent to

(1.7). For zxi = 0, the constraint above is trivially satisfied since t + T,, - tj 5 Li,.

Problem (PC) is thus a mixed integer programming problem. The simplified model

presented assumes that ground arc costs are zero. In general, the magnitude of the idling

or ground arc costs depend on the values of t for i E E. Moreover, the value of Tj is an

optimistic approximation of the connect time between services i and j.

Figure 1.6 Network with time windows

Transformed network of figure 1.6Figure 1.7

Discrete time window model

Next, another model for the routing problem with time windows is presented. It turns

out that in most practical situations, although the time windows given are continuous, there

exists only a finite number of acceptable departure times within each time window. This can

result, for instance, from slot allocations at airports. Moreover, the time required to perform

a service includes the block time and ground servicing time which can vary depending on

when the aircraft leaves and arrives. These problems, including others listed previously for

routing with continuous time windows, are resolved by discretizing the departures within a

given time window. This is shown in figure 1.8, where the time window is modelled by 3

departures. To ensure that at most one departure is used, a GUB constraint, z 2+z 34+zS 6

2

3 Z z12 + z34 + z5e 1
4

5 s,516 Z Z 3 4 , 5S E {0,1}

6

Figure 1.8 Discretizing the time window

1 is imposed, where z12, Z34, zs6 E {O, 1}. An additional feature of this model is that different

benefits can be assigned to each arc in the bundle. For example, the later departures might

offer slightly lower returns than the earlier ones.

This modelling of the routing problem with time window does not alter the formulation

of (P). But, in this specific instance, the n, for w = 1, V represents sets of service

arcs corresponding to discrete departures within a time window for service i. Moreover, all

arcs in a given set n. for W = 1, 2,.-., v connect nodes belonging to similar city pairs.

The modelling of time windows by discrete departures increases the problem size of (P).

At worst, the size of the problem is bounded as follows:

V

Number of arcs < 3 * Inw| + IKj
W=1

Number of nodes 5 2 * E Inw| + IKI
W=1

To get a flavor of the increase, assume that there are 500 services, modelled by 3 departures

per service over 20 cities. The number of arcs generated is at most 4520 and the number of

nodes is at least 3520. This means that the associated LP relaxation contains approximately

3520 rows and 4520 columns. This measures the worst case bound on the size of the problem

(P). Fortunately, the temporal structure of the network allows for problem size reductions

which are described in detail in Chapter 3. For the time being, it is adequate to note that if

a service window corresponding to a service does not intercept any other service window, or

is n< t intercepted itself, there is no reason to model it as a time bundle of service arcs. These

and other observations related to the network topology allow for substantial reduction in

the size of the problem.

1.2 Mixed integer programs with GUB constraints

Problem (P) belongs to the general class of network flow problems with side constraints.

The side constraints are the GUB constraints which apply to arcs having bounds [0,11, and

whose flows are restricted to be integral. Besides the routing problem with service choices,

GUB constraints also appear in a wide variety of mixed integer programming problems. A

list of problems that can be modelled within the framework of mixed integer programming

problems with GUB constraints are shown next.

Consider the mixed integer programming problem with GUB constraints given as fol-

lows:

minimize E cjzq
i=1 j=1

v ni

E OEaz jj (5>) b (1.9)

MIPGUB i=1j=1

zig < 1 i= 1,2,---,V (1.10)
j=1

xiE{0,1} ;j=1,2,**,ni; for i= 1,2,---,V (1.11)

Here, b and ai3 for all i, j are m component vectors (bl, b2 ,. -, b'") and (a! -, a?,?-- a,

respectively. The decision variables Zxj indicate which item j is selected for task i. Some

problems that can be modelled as (MIPGUB) include:

A. Project Selection Problem.

The project selection problem can be stated as follows:

Given some clusters of potential projects, and the expected returns and resource

usages for each project, select at most one project from each cluster so as to

maximize the total expected return.

For this case, the investment decision variables

-i f 1 if project j is chosen from cluster i
z;; = ~0 otherwise

There are a total of ?1| nij projects which are partitioned into v clusters n1 ,n 2,---no,

from which at most one is to be selected. b", k = 1, 2, - - -m refers to the amount of the

kth budget or resource. a, k = 1,2,..m denotes the consumption of the k resource if

project j is included in cluster i. cii estimates the potential gain from selecting project j in

cluster i. Constraint (1.9) thus represents the resource or budget constraints, and (1.10) and

(1.11) are the choice constraints. This problem is also referred to as the multidimensional

knapsack problem with multiple choice constraints[l],[33). If j refers to an item and i to a

schedule, the above problem is referred to as the multi-item scheduling problem[34]. It was

also used to model menu-selections[31 and journal selection problem{18].

B. Special Crew Scheduling Problem

The special crew scheduling problem can be stated as follows:

Given some set of rotations, each containing a specific home base, find the

optimal assigmment of crew to rotation such that at most one crew can be

assigned to each city base.

To model this problem, assume that bk = 1, for k = 1,2,-- -m, corresponding to m flight

segments. Let,
1 if segment k is included in rotation j

ak = containing city i
0 otherwise

cost of assigning a crew to rotation j
= staying at city i.

The decision variables:

1 if a crew is assigned to rotation j
z= passing through city i

0 otherwise

A total of v cities are considered and ni for i = 1,2,--- v, represents the set of rotations

passing through city base i. Deadheading can be considered if constraint (1) takes on

inequality >.

In addition to the above problems, GUB constraints appear in linearization of nonlinear

functions[5], which convert an optimization problem with linear constraints and a nonlinear

objective function into a mixed integer programming problem with linear objective functions

and GUB constraints. Although these problems appear unrelated to the one addressed in

this thesis, much insight can be gained from studying experiences in solving these specially

structured problems, which closely relate to finding a solution strategy for (P). This thesis

contributes, in part, to solving mixed integer programming problems with GUB constraints.

18

The rest of this thesis is organized as follows, Chaper 2 presents a brief survey of ap-

proaches to solving routing problems that most closely resemble those addressed in this

dissertation. Since problem (P) falls within the class of mixed integer programming prob-

lems with GUB constraints, it is instructive to review some approaches used to solve such

problems. In Chapter 3, initial experiments with decomposition techniques used to solve

(P) are discussed, followed by a detailed description of a GUB branch and bound scheme

to solve (P). Chapter 4, contains examples and results for several test problems applying

the GUB branch and bound. It also includes a method of implementing the search aimed

at fully automating the branch and bound. Finally, the last chapter summarizes the lessons

gained from this exercise and recommends some extensions to certain related problems.

Chapter 2

Literature Survey

The previous chapter shows how the routing problem with service choices and time

window constraints can be cast as a network flow problem with GUB constraints. Section

2.1 presents a brief review on the work done towards solving the routing problem with

time window constraints. Since much insight can be drawn from experiences with solving

mixed integer programming problems with GUB constraints, a survey of solution techniques

dealing with GUB constraints is also included in Section 2.2. It is not known whether any

literature exists which deals explicitly with the integral network flow problem with GUB

constraints.

2.1 Routing problem with time windows

Solutions to the routing problem with time windows, as described in chapter 1, have

proven elusive due to the integrality requirement. It has been modelled, in various forms,

as large scale integer programs. In many cases, the LP relaxation was solved, and the

solutions judiciously rounded to produce feasible solutions. In general, however, rounding

off solutions to LP relaxation is unacceptable since they might not only be non-optimal,

but infeasible as well.

A variant of this problem, known as the minimum fleet sizing problem was solved by

Levin[26], where the routing problem with time windows is formulated as a bipartite maxi-

mum flow problem with GUB constraints. It was claimed, that for all large scale problems

solved, an integer solution was always found from the LP relaxation. However, a Land and

Doig branch and bound routine was included in case trouble arises. Levin[261 also showed

how the minimum fleet sizing problem with time window constraints can be reformulated

as a set covering problem. Unfortunately, this formulation incurs an explosion of integer

variables. Benbasett[7], experimented further with different set covering formulations dif-

fering only in the choice of the decision variables. In particular, the columns can represent

the set of service arcs, set of paths (which define sequences of connected services), or set

of cycles (which define closed paths, given that the schedule is cyclic). For medium size

problems, even the LP relaxation can contain thousands of rows, which makes it computa-

tionally prohibitive. For the routing problem with time windows as described in Chapter

1, the author has not always been fortunate in generating sufficiently large problems whose

LP relaxation returns integral solutions, even though in most cases, the LP solutions are

indeed integral.

Initial experiments were conducted by Simpson[32], Heldt[23], and Barkley[4], using

the network flow formulation with GUB constraints to solve the routing problem with

time window constraints. By ignoring the GUB constraints, or setting appropriate flow

bounds on all variables in the GUB constraint, the problem can be effectively solved using

an out-of-kilter algorithm. The strategy, then, was to search for the optimal solution by

parametrically controlling the upper bounds on the arcs in each GUB set. Unfortunately, the

rules for defining which arc in each GUB set to restrict in order to achieve good convergence

to an optimal solution, remains difficult. Another approach is to use the Dantzig Wolfe

decomposition, where the subproblem is a capacitated mimimum cost circulation problem.

A price is attached to each GUB constraint until the adjoined constraints of the master

problem are satisfied. If the optimal solution to the LP master problem is integer, then

the corresponding solution to the original problem is integer as well. Unfortunately, in

most cases, decomposition results in an optimal mix of integer subproblem solutions whose

combination need not be integer.

More recently, a new formulation of the minimum fleet sizing problem, with time window

constraints, was proposed by Desrosier[12}, whereby the departures within a time window

are not discretized. The problem considers one depot, and minimizes the total travel time.

A set of scheduling constraints are included to ensure that a sequence of services satisfies the

time window constraints. The problem is solved using a column generation approach where

the subproblem is a shortest path problem with time window constraints and a master set

covering problem. At each iteration, a shortest path problem with time window is solved

using dynamic programming, whose solution is used to generate a column for the master

problem. The problem is applied to a school bus scheduling problem containing a single

depot. In private communication, the subproblem solves quickly, since the number of ser-

vices in each shortest path remains small. It is unclear, whether the dynamic programming

algorithm for the special shortest path problem would be as efficient if the path selected at

each iteration contains many services. Moreover, as in most column generation approaches,

the solution is terminated upon reaching an acceptable bound.

The above presents a survey of problems most closely related to the routing problem

with time window constraints that is addressed in this dissertation. To date, the author

is not able to find any research done on the general routing problem with service choices.

It is unclear that the structure of the routing problem is fully understood. It is, thus, the

purpose of this dissertation to attempt to solve this problem, optimally, and in so doing,

gain further insights into the nature of the problem. The lessons are then useful as the basis

from which good heuristics can be derived.

Since the routing problem with service choices contains GUB constraints, it is instructive

to learn how other practitioners dealt with these structures, which appears in formulations

of many practical problems. The following discussion reviews some approaches to a varied

class of optimization problems with GUB constraints.

2.2 Survey of methods for integer programs with GUB con-
. straints

Solutions of mixed integer programming problems with GUB constraints can be divided

into 2 classes:

A) Cutting Plane Approach

B) Branch and Bound Approach

Cutting plane approach

The cutting plane approach was used by Healy[22], Glover[17], and Young[36]. Healy's

approach solves a succession of modified LP problems, designed so that solutions of the

corresponding LP converges to an optimal solution whereby only one variable is basic for

each GUB set. The underlying idea is that there are, implicit in the updated LP matrix,

a number of inequalities on the objective function, one for each GUB constraint, which

bounds the value of the optimal solution. These objective cuts are obtained by estimating

the bounds on the objective values, as the value of only one variable is increased to 1, and

all others to zero, in each GUB constraint. By recursively tightening such inequalities,

successive LP solutions can be driven to that choice of values for the 0-1 variables which

is the least damaging to the objective function. It was shown that the objective cuts thus

derived do not exclude any feasible solution. However, the convergence of this approach is

not established, although it has worked well when implemented together with a prescribed

terminating criteria.

Glover[17], derived a procedure that successively reduces the LP feasible region that

integer point .

LP o

CUT I

CUT 2

-loop. | I/

LP FEASIBLE REGION

Figure 2.1 Convexity Cut

does not contain integral solutions in its vicinity. This method is an extension of the hyper-

cylindrical cut procedure proposed by Young[36]. A convex region, R, is first constructed

which intersects the LP feasible region, including the LP optimal point. A set of points is

then derived from the intersection of R with the LP feasible region by moving along its edge

from the LP optimal. These points form a plane that cuts off the LP optimal, and parts of

the LP feasible region, without excluding any integral points. Such a plane is known as the

convexity cut. Figure 2.1 illustrates the idea geometrically. In this example, R is a sphere

that intersects all the integral points yielding Cut 2. Naturally, R could also be the convex

hull of the integral points surrounding the LP optimal, yielding Cut 1. Note that Cut 2 is

stronger than Cut 1.

The strength of the cut depends, therefore, on the region R. Glover describes how R is

obtained from the GUB constraint.

As yet, there is little empirical evidence to suggest that the cutting plane approaches

described converges satisfactorily for reasonably sized problems. Moreover, from an imple-

mentation viewpoint, the cut derivation can become computationally prohibitive.

Branch and Bound

Computationally, branch and bound approaches have fared much better in solving mixed

integer programming problems. This is the approach adopted by Forrest[14], Gauthier[16],

Mvert and Suhl[281, Bean[6], Sweeney and Murphy[34] and Glover and Mulvey[19], for

solving various applications of mixed integer programming problems with GUB constraints.

Forrest performed extensive tests on solving mixed integer programs, and also provided a

brief description on how to deal with GUB constraints based on ideas proposed by Beale and

Tomlin[5]. These exercises were performed using UMPIRE, which has since been renamed

SCIONIC. Gauthier[161 presents results for branch and bound using pseudo-costs, developed

for the IBM MPSX system. Unfortunately, the problems dealt with, in both cases, are

small and there is much indication that GUB branch and bound is still in its infant stages

of development.

Mvert and Suhl[28] stress the need to look more closely at GUB branch and bound. The

emphasis was to develop more efficient data handling of the problem, since it was observed

that most of these problems either contain an enormous amount of constraints, but whose

constraint matrix remains sparse, or relatively few constraints, with many integer variables

and a dense constraint matrix. The data handling incorporates measures to perform logical

testings during subproblem reoptimization.

Glover and Mulvey[19] presented an interesting solution technique aimed a solving net-

work flow problems with GUB constraints. Each subproblem at a node corresponds to a

transformed network flow problem. The solution of the transformed problem is optimal

only if the arc flows are equal to their bounds. Since this is unlikely, a branch and bound

procedure is used to ensure that this condition is satisfied. Penalties for subproblem opti-

mizations used in the branch and bound are also described. In general, the speed for solving

each subproblem at a node is usually offset by the weaker bound obtained by solving a net-

work flow relaxation. Moreover, the transformation, though clever, appears to require much

pre and post processing. No computational experiences are provided.

Sweeney and Murphy[34], and Bean[6] use the idea of Lagrangian relaxation to derive

and solve a restriction of the original problem, containing fewer GUB constraints and integer

variables. For each GUB constraint, the minimum value of the reduced cost in a set is

obtained from solving the LP relaxation which is used to guide the choices of variables to

keep in the restricted problems. All variables in the same GUB set having reduced costs that

do not fall within a prescribed bound of the minimum reduced cost value are then removed.

The resultant problem remains a mixed integer program, though smaller. Experiments

show that for large scale multi-item scheduling problem, solving the restricted problem is

often sufficient to yield acceptable solutions. Each candidate subproblem corresponding to

a node is solved as an LP.

Chang[9] presented a heuristic for solving this class of problem based on the pivot and

complement idea of Balas and Martin[2]. The key idea of pivot and complement is to observe

that the restriction that variables must take on values of 0 or 1 is equivalent to imposing that

the slacks in the coupling constraints(which are constraints containing variables belonging

to different GUB constraints) remain basic. If such is the case, the integer variables, being

non basic, must have values equal to their integral bounds of 0 or 1, depending on their

reduced costs. Chang[9] extended this idea to insist that in any feasible solution, only one

variable in each GUB constraint of the equality type must be nonzero. Initial experiments

indicate that such an emphasis is promising. However, the penalty on the optiinality of

such a heuristic solution remains uncertain.

In summary, the branch and bound method appears to offer the best potential for solving

the routing problem with service choices. Although many previous attempts have been made

to solve specific applications and generalizations of mixed integer programming problems,

with GUB constraints, every indication suggests that the branch and bound approach used

is still in its initial stages of development. Perhaps, this is because the major emphasis

thus far has been on solving the LP relaxations to the optimization problems, coupled by

judicious pertubation of the solution to integrality. In many problems this is acceptable

since the coupling constraints are soft. Unfortunately, it is unclear that the routing problem

with service choices exhibit such properties. In the next chapter, a GUB branch and bound

scheme is presented to solve the problems described.

Chapter 3

Solution strategy for the routing
problem with service choices

The formulation for the routing problem with service choices includes network struc-

tures with imbeded generalized upper bound constraints of the inequality type. The initial

attempt is to exploit the network based structures through the use of Lagrangian and Ben-

ders decomposition. In both cases, the subproblem reduces to a capacitated m. nimum cost

circulation problem which can be solved efficiently. Unfortunately, both procedures showed

poor convergence. In section 3.1, an outine of experiences using these two approaches is

summarized.

It turns out that the routing problem with service choices, (P) solved as an LP produces

integer solution in most cases. A major difficulty is generating problems which fail to yield

integer solutions to the LP relaxation. This observation prompted the use of a specialized

branch and bound search for the optimal solution. The main difference in this branch

and bound scheme is that branching is based on each GUB set as opposed to individual

variables. A detail description of the procedure follows in section 3.2.

Section 3.3 proposes ways in which the branch and bound can be enhanced. Specifically,

a network aggregation scheme is derived in order to reduce the size of the problem (P) and

conceivably the number of GUB sets and integer variables. The reduction scheme is shown

to be optimal if the upper bounds on the non service arcs for each city, do not vary. The LP

at each node can be solved more efficiently if the the G UB constraints are included implicitly.

In appendix B, a method to include the GUB constraints implicitly in the LP using similar

ideas proposed by Dantzig and Van Slyke[11] is included. Extensions based on similar

ideas can be found in Lasdon[24] and Chen and Saigal[10]. To prune the search, a method

for finding feasible solutions is described. This method resolves the LP parametrically by

varying the vehicle size. At each node, an objective cut is imposed whenever the objective

values of the remaining candidate problems, corresponding to unprocessed nodes, lies close

to that of the best feasible solution obtained.

To simplify the discussions which follow, the routing problem with service choices is

presented in a condensed matrix form (P) as follows:

minimize CX, + C,X, (3.1)

NX, + NX, = 0 (3.2)

P BX, < 1 (3.3)

0 - X, :5 U, (3.4)

X, E {0, 1} (3.5)

where (Nv,N,) is the node arc incidence matrix, and (3.2) is the conservation of flow

constraints. X. is the set of all bundle arcs. (XUX.) is the set of all arcs with (X , nX. = 0).

Constraint (3.3) denotes the set of GUB constraints of the ineaquality type. Note the B is

a matrix with at least two ones in each row and a single one along each column. U, refers

to the upper bounds on X,. 1 refers to a vector of ones, and z(*) equals to the objective

value of solving problem o. The LP relaxation of (P), (P0), is the problem (P) with the

constraints X, E {0, 1} replaced by X. > 0. Constraint (3.3) ensures that X, < 1. In this,

and all subsequent chapters, ; is used to refer to flows along arc i E (N2, , N,).

3.1 Limitations of Lagrangian and Benders Decomposition

This section reviews work done on the routing problem with service choices using La-

grangian and Benders decomposition. These approaches were tried since they exploit the

imbedded network structure of the problem. Although successful in solving some large scale

problems[13}, the convergence of both procedures is unsatisfactory when applied to the rout-

ing problem with service choices. In what follows, both procedures are briefly described',

and problem areas identified.

Lagrangian Relaxation

Observe that (P) with constraint (3.3) relaxed, is a capacitated minimum cost circulation

problem, since constraint (3.5) can be replaced by 0 < X, S 1 without affecting the solution.

The method attempts to find solutions to (P) by solving the above relaxation. However,

a solution to the relaxed problem need not be feasible, since the constraint (3.3) can be

violated. A penalty, incorporated in the objective, is used to discourage violation of the

relaxed constraints. A series of relaxations, using different penalties are solved, until a good

feasible solution is found. This is the emphasis of Lagrangian relaxation, so called, since

the subproblem is not strictly a relaxation of the original problem.

A price vector W > 0 corresponding to constraint (3.3) is selected to form the Lagrangian

subproblem (L(W)) defined as follows:

minimize C,X. + C,X. + W(BX, - 1)

L(W) - -W 1 + minimize C,X, + (C, + W B)Xs

subject to:

Constraints (3.2), (3.4), and 0 < X, 1 (3.6)

Equations (3.6) are the network flow constraints. The term W(BX, - 1) measures the

'see appendices C and D for detail developments

penalty incurred for relaxing (3.3). Since W(BX, - 1) 5 0, z(L(W)) < z(P) for all W > 0.

Thus, it is preferable to select W' > 0 such that

DL z(L(W*)) = max z(L(W))
w>0

This is the Lagrangian master(dual) problem. Solution in L(W) though integral, is not

necessarily feasible in (P). A solution in L(W*) which is feasible in (P), is optimal only

if W*(BX, - 1) = 0, where (X,,X;) is the solution of L(W*). In this case, the objective

function in L(W*) corresponds to (P). This is sometimes called the global optimality

condition31). If such is not the case, (z(P) - z(DL)) > 0, and this is known as the duality

gap. This means that even if the dual problem (DL) is solved, tiere might be a gap which

results from the discreteness of (P).

At iteration k, the procedure selects a Wk > 0 and solves L(T k). The solution (X,, X,)

is used to form an objective cut for the reduced master problem (SDL), which is solved to

update Wk. Problem (SDL) contains only a subset of constraints in (DL). This is then

used to modify the objective of L(W), which is resolved. The procedure iterates between

solving L(W) and (SDL) until z(SDL) = z(L(Wk)) for some k. For large problems, Wk is

updated using subgradient optimization[13) in lieu of the method just described.

It turns out that W* is equal to the optimal dual prices associated with the GUB

constraints (3.3) when the LP relaxation of (P) is solved. 2 This is referred to as the

integrality property and arises whenever the Lagrangian subproblem can be solved as an LP.

Moreover, z(P 0) = z(L(W*)) = z(DL), even though the solution to (P0), which is usually

fractional, might be different from the integral solution of L(W). In terms of objective

values then, solving (P) via Lagrangian relaxation offers no advantage over solving (PO).

Now, it is described how Lagrangian relaxation was implemented to solve the routing

problem with service choices. The value of W was updated using subgradient optimization.

2See appendix C

Starting at an initial value WO, a sequence {Wk} is generated by the rule,

wk+1 = wk +t(BX4 - 1)

where Xk is the optimal solution to L(Wk), and tk is a positive step size given by,

tt = At(ZUP - z(Wk))

IIBXf - 1112

where At is a scalar satisfying 0 < At 5 2, and z"P > z(DL).3 A value of Ao = 2 is

selected, and Ak is halved whenever z(DL) failed to improve after some fixed iterations.

Although it is convienient to select WO = 0, W0 is chosen as follows: as follows:

Let C' denote the cost vector associates with the variables of the ith GUB constraint.

Then, the i'h component of Wo is

(Wo)* = min c,,|
Y ci E C

Next, let z"P be the value of a feasible solution in (P). Since zUP > z(P 0), the implies that

z'P > z(DL) since z(DL) = z(PO). To obtain a feasible solution, select one arc from each

GUB set having the greatest contribution, and all the service arcs not belonging to any

bundle, and set the flows to one. To avoid infeasibilities, a check is made to ensure that

the sum of flows entering each city equals the flow leaving the same city. This is done by

resetting flows along some service arcs to zero. In most cases, this is not difficult to enforce,

and a feasible solution can be obtained quite easily. However, it is not possible to determine

the quality of the feasible solution so derived. Should the objective value of the feasible

solution be greater or equals to zero, the arcs are then judiciously interchanged to obtain

an improved solution.

Results from initial tests using Lagrangian relaxation, reveal that:
3The vector (BXt - 1) is known as the subgradient.

1. z(L(W)) does not converge satisfactorily, and appears erratic. Moreover, it is difficult

to know whether the subgradient has converged correctly. This means that the hope

of obtaining z(DL) appears slim.

2. The price vector Wh either produces infeasible solution to (P) because it under penal-

izes the relaxation of (3.3) or, (L(Wk)) yields a flow of zero when Wk is strengthened.

It is rather difficult to find the correct combination of weights that improve the solu-

tion to L(W).

Very often subgradient optimization is terminated prematurely whenever the solutions

corresponding to L(W) and (DL) seem to tail off. It is conceivable that z(DL) might never

be obtained. Furthermore, when the optimal dual price, W, obtained from solving (PO)

is used to solve L(W*), a flow value of zero is usually obtained. This occurs because in

most cases z(PO) = -1W*. Even if z(DL) is found, the duality gap remains to be resolved.

Resolution of duality gap forces the incorporation of methods that address the combinatorial

property of the problem in order to find the optimal solution. This issue is deferred because

it can be better addressed directly, as will be shown in section 3.2.

It is believed that Lagrangian relaxation cannot be effectly applied to problems which

exhibit the integrality property. For problems without the integrality property, the value of

the LP relaxation provides a lower bound for the Lagrangian subproblem(which is typically

a combinatorial problem). The effectiveness of using Lagrangian relaxation lies heavily in

the ability to find good solution to the combinatorial subproblem efficiently. It is only then,

that a bound better than that of the LP relaxation can be found. A list of problems which

confirm this observation is available in Fisher[13].

Benders Decomposition

Lagrangian relaxation decomposes the problem row-wise. It is sometimes referred to

as price directive decomposition. Consider next the decomposition of (P) column-wise,

sometimes known as resource directive decomposition. Given an allocation of flows on some

arcs (corresponding to allocating resources), which renders the problem (P) easy to solve,

the remaining flow patterns are found by solving the resultant subproblem. Note that

the subproblem need not be feasible. In any event, the result obtained from solving the

subproblem provides an objective bounding cut, called Benders cut, on the solutions of (P),

which is solved to obtain another set of flow allocations. The process continues until the

solution yielding the best allocation is found. This is the focus of Benders decomposition4,

formalized next in the context of (P), followed by a discussion of some experiments relating

to its use.

Let Q = {XIBX, 5 1 and X. E (0, 1}}. Select X, E Q and determine the remaining

flow in (P) by solving:

CX, + minimize CX,, (3.7)

R(X,) subject to: NX, = -NX, (3.8)

10 < X, < U, (3.9)
R(X,) is referred to as the Benders subproblem, and can be solved as a capacitated

minimum cost flow problem by imposing a flow of X, on X,. However, R(X,) need not be

feasible. This can occur when the flow selected in X, does not satisfy continuity conditions

at each city. Theoretically, as shown in appendix D, this possess no difficulty. Should the

solution to R(X,) be feasible, it is also feasible in (P) since R(X,) is a restricted problem

of (P). As such, z(P) 5 z(R(X,)) for all X, E Q. Thus it is ideal to select Xq which solves

the following problem:

RM z(R(X,)) min z(R(X,))
xpEQ

'A thourough description is given in appendix D

(RM) is known as the Benders master problem. It is an integer programming problem(with

one continuous variable) because of the constraints X, E Q. Note that z(P) = z(RM).

The procedure begins by selecting X, E Q, and solving R(X,). The solution to R(X,), is

used to derive a Benders cut, which is appended to (SRM), which is a relaxation of (RM)

containing a subset of its constraints. Thus, z(SRM) < z(RM) The enhanced problem

(SRM) is then solved to obtain an updated X,, which is used to resolve R(X,). This

procedure iterates between solving R(X,) and (SRM). Unfortunately, the size of (SRM)

grows rapidly and thus its solution time increases dramatically.

In this work, the LP relaxation of (SRM) is solved. Initially, the solution is rounded to

satisfy the constraints X, E Q. The variable in each GUB constraint having the smallest

integer infeasibility is set to 1. The integer of infeasibility for each variable is equal to its

residual value as it is forced to zero or one. The reason for doing so is that the feasibility

of (SRM) becomes increasingly difficult to verify as its size increases. In addition, some

flows in X, are reduced to zero to render R(X,) feasible. Feasibility in R(X,) is checked by

ensuring that flow conservation at each city is preserved. Such an X, is chosen, to provide

feasible solutions as the method progresses. To prevent cycling, a different X, is derived

during each pair of optimizations.

Tests based on the above procedure yield the following observations:

1. The values of R(X,) converge poorly and, in many cases, either do not improve or

return objective values greater than zero.

2. As the size of (SRM) increases it becomes increasingly time consuming to find a

feasible solution for R(X,). Moreover, the number of simplex iterations required to

reoptimized the restricted master problem increases.

Since z(SRM) is a lower bound of z(P), a feasible solution obtained from R(X,) is

35

within c of the optimal, where

z(R(X,)) - z(SRM)

z(SRM)

Both experiments with Lagrangian and Benders decomposition, showed unsatisfactory

convergence. In order to solve (P) optimally using Lagrangian relaxation, a method has

to be incorporated to resolve the duality gap, which results from the discrete property of

(P). With Benders decomposition, effective implementation depends heavily on finding

dominating or strong cuts, perhaps from the structure of (P) or its solutions, that makes

it possible to solve only a few master problems. It is believed however, that the basic issue

pertaining to the efficient solution of (P) lies in how well the GUB constraints are handled.

Fortunately, the LP relaxation, (P) of (P) yields integer solutions in many cases, and in the

next section it is described how this observation and the structure of the GUB constraints

can be combined to produce a special branch and bound that offers much potential for

addressing the optimality of (P).

3.2 Branch and bound on problems with GUB constraints

The previous section shows how Lagrangian and Benders decomposition is applied to

the routing problem with service choices. In order to resolve the duality gap and solve the

integer Benders master problem with GUB constraints, the discrete property of (P) needs

to be addressed. This section shows how the integrality of (P) can be effectively dealt with.

Specifically, a branch and bound scheme that utilizes the structure of the GUB constraints

is presented. A comparison is made between three different tree structures. The choice to

use branch and bound arises because, in most cases, (P) returns integral solutions and thus

solves (P) optimally. In fact, generating solutions that are non integer when (P) is solved,

remains a difficult problem. Although not handled implicitly in network flow programs,

efficient solutions to LP exist which incorporate the GUB constraints implicitly.5

A review for the general branch and bound is given in Appendix A. Terms used in the

descriptions that follow are also found in Appendix A. In this section, several choices of the

branch and bound tree are presented. It is shown how the existence of the GUB constraint

is instrumental in influencing the tree selection.

Consider three branch and bound trees, as shown in figure 3.1.

The trees are labelled as A, B, and C. For a given tree J, let J(i) denote node i of tree

J. For simplicity, assume that there is only one GUB set: X1 + z2 + z3 < 1. Trees A and C

are binary trees, whereas tree B is a variable tree. Tree A is used most commonly in single

variable branching. Trees B and C consider implicitly the GUB constraints. They rely on

the fact that, at most, one variable is basic at the optimal solution. For example, node

B(1) corresponds to solving (P) with constraint z3 < 1. Similarly, B(2), B(3) corresponds

to imposing z1 < 1 and z2 5 1, respectively. Next, consider tree C. C(1) represents the

subproblem with constraint z2 + z3 < 1 or zi = 0. C(2) considers the constraints z < 1

asee appendix B

Tree A

zi = X2= 0

Tree B

zi = 0

X2 =0

Tree C

Three possible tree structures for GUB branch and bound

z2 = z3 = 0

Figure 3.1

and C(3) and C(4) explore the cases z3 5 1 and z2 5 1, respectively. Observe that nodes

C(2), C(3) and C(4) correspond to B(2), B(1) and B(3). These terminal nodes exhaustively

consider all feasible solutions in (P). Although the constraints imposed at the terminal

nodes are zi 5 1 for all i, and of the inequality type, the solution is guaranteed to be

integer, since the optimization problem at each terminal node is a capacitated minimum

cost network circulation problem.

Notice that tree A contains 23 = 8 terminal nodes, whereas both tree B and C have 3

terminal nodes. In general, if there are n 0,1 variables, with v GUB sets each containing

ni , n2,--- , n, variables where E"=n, = n then tree A contains 2" leaf nodes, whereas

trees B and C contain '=1 n, nodes. For large n, 2" :> f",w1 n, nodes. Take n = 50,

and In,| = 2 for all i and v = 25, then 2" P 1.3 * 1015, whereas 225 P 3.6 * 107. Now if

In,| = 5 V w and v = 10, the number of terminal nodes is 510 % 9 * 10g. These analyses

show the worst case consideration for using any of the trees and is tantamount to a complete

enumeration of the solutions. It is not used as a yardstick to determine preference of one tree

structure over another. If there is any reason to suppose that the complete tree needs to be

processed, then it is inadvisable to use branch and bound. What is a more critical criteria

for tree selection is the expected number of nodes that will be generated in the process of

solving (P). Most general purpose codes use tree A, and a last-in-first-out (LIFO) scanning

of nodes that probes deep into the tree in order to find a feasible solution, leaving many

nodes to be fathomed even if a feasible solution found in the process is optimal.

However, what is more damaging, is that the single variable branch and bound fails to

restrict the problem enough to force integral solutions, especially for degenerate problems.

At the opposite extreme, tree B forces too many variables at a single branch to zero. This

is done at the expense of incurring more optimization problems at each level corresponding

to a GUB constraint. As a comparison between trees B and C, note that even though both

trees have 3 terminal nodes, C(1) might be fathomed and thus C(3) and C(4) need not be

evaluated. The issue then is how likely can nodes in lower levels of tree C be fathomed.

What appears promising for both trees B and C is that as the branch and bound progresses,

the feasibility of the GUB constraints are enforced incrementally. The choice of tree C allows

the determining of the partitions for the GUB variables into 2 mutually exclusive subsets

at each pair of branching. The size of these subsets can be controlled so that the resultant

subproblems produced by the branching provide sufficient improvements. Moreover, at each

live node, there are sufficient flexibilities to select any infeasible GUB set to effect branching.

Ideally, a particular GUB set is chosen whose partition penalizes the objective the least, but

provides enough restrictions to return feasible solutions. This is, of course, an issue that

needs to be addressed in more detail later. It suffices to note for the moment, that tree C

affords more flexibility. Moreover, since the LP relaxation (PO) has strong tendencies to

solve to integrality, it is believed that the chances of getting feasible solutions at subproblem

optimization remain favorable. Furthermore, from an implementation viewpoint, the binary

branching structure of tree C, is much easier to implement. This is especially so when n,

are different sizes, so that tree B has a different number of branches at each level eminating

from each node. All these observations encourage the use of tree C over B or A as the

branch and bound tree.

Relations between different tree structures

Before describing the details of the GUB branch and bound using tree C, it is shown

that tree C can be viewed as a generalization of trees A and B.

Consider first the relationship between trees C and A. First, rewrite the GUB constraint

as an equality by including a: :k to produce zI + z 2 + z + Slack = 1 , Slack > 0. Then,

the first level of A corresponds to the first level of C if the variables are partitioned by

setting first x1 = 0, then z2 = z3= Slack = 0. Note that, due to the special structure of

(P), the number of integer variables remains at 3.

The relationship between trees C and B is not as direct. Observe that SC(2) = SB()

and SC(3) = SB(1) and SC(4) = SB(S), where S' denotes the optimization problem at node

i.s That is, there is a one to one correspondence between the terminal nodes of C and B.

Thus, when each GUB constraint contains 2 integer variables, tree C corresponds to B. In

general, Tree C includes a series of more subproblems along the path from node 0.

GUB Branch and Bound

Having selected the tree structure C to use, the rules for node and GUB set selection

are now described. The efficiency of any branch and bound depends on the proper selection

of which node (subproblem) to evaluate next, and which GUB set to choose for branching.

Unfortunately, there is no optimal rule for node or set selection. In most cases, the choices

are guided by convergence considerations over when the branch and bound is applied to

actual problems. Branching on a GUB set involves partitioning the variables in the set

into 2 mutually exclusive and collectively exhaustive subsets, and setting the variables in

each subset to zero consecutively to form two resulting subproblems. The rules to effect the

partitioning of the variables in a given GUB set is described shortly.

Before presenting the algorithm, several terms need to be defined. zbet refers to the value

of the best feasible solution available, or the incumbent solution. Note that (X,, X,) = 0 is

always a feasible solution to (P), yielding zb"t = 0. A feasible solution is one that satisfies

the constraints in (P). Let L be the set of live nodes. The value of the LP optimization at

node k is denoted by zk. Thus, zo = z(P 0) is the solution at node 0. Other terms will be

defined as they arise. In what follows, the branch and bound is presented as Algorithm 1.

This is followed by a detailed description of each step in the algorithm.

'See appendix B.

Algorithm 1: GUB Branch and Bound for (P)

Step (0): Initialization

Solve the LP relaxation (PO) at node 0. If solution is feasible, stop. It is optimal.

Otherwise, include 0 in the list of live nodes: (L +- {0})

Step (1): Node Selection

Choose a candidate subproblem corresponding to node q such tht z, < zb"*. If no

such problem exists; (L is empty); stop. zbet is the optimal solution.

Step (2): GUB Set Selection

Select a GUB set p having more than one non-zero element in the candidate sub-

problem to branch on.

Step (SA): Branching

Create and solve the LP relaxation of 2 new subproblems corresponding to children

of node q, denoted as nodes q + 1, q + 2. Partition the variables not fixed at zero in

the GUB set p into 2 mutually exclusive subsets LL,, LR,. Subproblems q + 1, q +2

are obtained by setting variables in LL,, LR, to zero consecutively. Remove q from

the lists of live nodes. (L +- L - {g})

Step (SB): Bounding

Solving subproblems i = q + 1, q + 2 yields the following cases:

1. z; > zb"*: i is fathomed by bound, or feasibility. Go to 1.

2. z; < zbst": either

(a) Subproblem i is feasible.

Update incumbent: zbet +- zi. Fathom by feasibility. Go to 1.

(b) Subproblem i is infeasible.

Include i into list of live nodes: L +- L U {i} . Go to 1.

Step (2) parallels the variable selection phase in the single variable branch and bound.

The rules adopted for node and GUB set selection for problem (P) are now shown. These

are Steps (1) and (2) of Algorithm 1.

Node Selection

Two methods for node selection are presented. The first is a hybrid approach which

combines the best objective criteria and the infeasibility set criteria. The second deals

explicitly with the case when a strong incumbent is available at some point in the branch

and bound, and the number of live nodes is large. Both methods are presented in what

follows

A. Best objective and Infeasibility set criteria

Initially, nodes were chosen based on a weighted measure of its objective value and

the number of infeasible GUB sets. Traditionally, the node with the greatest objective

value is chosen so that further restrictions would encourage fathoming through feasibility

or bounding. That is, if L is the set of live nodes, select node q E L such that

z, zg V k E L.

This is often referred to as the best objective criteria, and corresponds to a steepest de-

scent criteria. However, experiments by Forrest[14] and Gauthier[16 concluded that this

measure alone is unsatisfactory. It must be pointed out that some of the tests were done

on pathologically contrived problems for general mixed integer programs. For problem, (P)

however, the best objective criteria is used at the initial stages of node selection. Moreover,

the number of infeasible GUB constraints resulting from the LP solution at a node, (those

that contain fractional solutions) reflect its potential of yielding feasible solutions through

few subproblem optimizations. In rare cases, the number of infeasible GUB constraints

might be expected to increase initially. Subsequent optimizations are expected to reduce

the number of infeasibilities since GUB constraints are satisfied incrementally as the branch

and bound progresses. Thus, another rule for node selection is to select nodes having the

greatest number of infeasible GUB constraints. Specifically, if ek is the number of infeasible

GUB constraits corresponding to node k. Then node q E L is selected such that

0 q < O V k E L

This is called the infeasibility set criteria.

A useful choice for node selection is then to combine the best objective criteria with

the infeasibility set criteria. To this end, the best objective criteria is used initially until

the objective values for the live node show little variability. At this stage, the number of

infeasible GUB constraints differs only slightly. As the range of objective values for the live

nodes increases, the range ek shows much variation as well. It is not true, in general, that

the node with the largest zk has the smallest Ek. When the range of objective values reach

a prescribed limit, node selection is based on the infeasibility set criteria. In cases of ties,

the best objective criteria is reverted.

The above scheme can be summarized as a weighted measure of Zk and ek, where zk is

weighted more heavily during the initial phase and subsequently 8't during the branch and

bound.

The next topic deals directly with how to estimate the potential of each node in providing

solutions that are better than the incumbent. This is useful for problems that have a

large amount of live nodes. Processing all these nodes would be cost ineffective, if they

are projected to yield solutions that are unlikely to be better than the incumbent. The

procedure relies on the availability of a good incumbent solution. It is also used as the basis

for node selection when a good incumbent is available. This procedure is known as the Best

Projection(BP) Criteria, which is described next.

B. Best Projection Criteria

Let z = value of zi at node k.

Let Gk = set of variables in infeasible GUB constraint j at node k, and define the

infeasibility of GUB constraint j by

min x , 1 - max

Then the sum of integer infeasibility at node k is

at = E fi

for all infeasible GUB constraints j at node k. Since in any feasible solution at most one

variable can be basic with value one, the left terms7 measure the infeasibility in the case

where all variables are zero, and the right term provides an optimistic measure by forcing

the largest fractional variable to 1.

Consider the graph in figure 3.2, where horizontal axis, a, is the sum of integer infeasi-

bility and the vertical axis, z, is the LP objective value. A live node k E L, is represented

in figure 3.2 as a point (az, zk). Note that zk < 0 V k E L. Thus, (co, zo) is the point

corresponding to solutions of (PO), at node 0. Any feasible solution corresponding to node

v has a, = 0 and lies on the vertical axis. If A = (0, z(P)) corresponds to the optimal

solution, (P), then,

zo - z(P)

ao

is the expected degradation in zo per unit reduction in the sum of infeasibility from ao to

0. That is, y is a measure of the rate of expected degradation from the LP solution
7Because of the inequality, the left term is not necessarily one

A = (0, z(P)) B = (Cfk Zk)

zo 0 = (CO, zo)

Figure 3.2 Best projection criteria

to the optimal solution. If the expected degradation of problems corresponding to live nodes

is assumed to follow closely along the same gradient as OA, then, for a point B = (ag, zL),

the estimated integer solution obtained by reducing its sum of integer infeasibilities is 2k,

given by

4k = Zk +- a.

Geometrically, we project B to point C along the same gradient as OA. Thus, ideally,

node yEL is chosen where

2, = min{fk}
kEL

That is, the node with the best potential of yielding the smallest objective value. Unfortu-

natley, the optimal solution to (P), and thus point A, is unknown. Thus, A is replaced by

46

the incumbent solution, that is, point A = (0, za). It is crucial that zbea is a good ap-

proximation to z(P) or else, the gradient of OA will be too steep, thus incurring erroneous

estimations. Each time A is updated with a feasible solution yielding a better value, -y is also

changed. However, since the BP criteria is applied only when zbet is a good approximation

of z(P), few such changes are made.

Note that all points lie between z = zb"t and z = zo. Successive optimization from node

k follows a monotonically non-decreasing path from (at, zk) to the vertical axis z. Since 0

is a feasible solution to any subproblem, each node traces a path toward the vertical axis.

Points lying to the left of OA have greater potential of yielding a solution better than z

However, those points distributed around 0 should not be ruled out, since the BP scheme

is an approximation. Points lying to the right of OA and away from 0 offer lesser potential

of yielding better solutions than z"'. Thus, a heuristic, all nodes, k E L having values

i 2 (1 + e) * zbeat can be removed from L, where e > 0 is a prescribed value. Of the

remaining nodes, the one offering the best value Zv is chosen as the next node to evaluate.

However, if the remaining nodes in L do not show much variability in their Ze values, then

the BP criteria is not useful in projecting the difference in the potentials of the live nodes.

Under such conditions, the previous criteria is adopted.

Since it is imperative to know the quality of z beat it can be estimated as follows:

Let

z1,. = min{zk}
kEL

then, zb"t is within

I* 100)

of the optimal solution z(P).

The best projection criteria assumes that -y, the cost of removing one unit of infeasibility

remains constant irregardless of whether variables in the GUB set are set to take on values

of one or zero. The pseudocost criteria applied to the single variable branch and bound

(see Forrest[14 and Gauthier[16]), differs only in that it treats the degradation of objective

differently depending on whether a variable is scaled up to 1 or down to 0. Each variable

selected for branching has a up and down pseudocost corresponding to increasing or decreas-

ing its value to 1 or 0, respectively. The pseudocost of a variable is only determined when

it is chosen for branching and only after the pair of subproblem optimizations restricting

its value to one and zero are solved. Although the pseudocost criteria offers a better mea-

sure of the rate of degradation of the objective function empirically, the results reflect only

testings using single variable branch and bound. Incorporation of the pseodocosts for GUB

sets, (which is the analogy for single variable in the branch and bound), is less obvious and

robust. The dichotomy that results from partitions for GUB sets further clouds an accurate

estimation at each branching. As such, the pseudo cost criteria is not chosen.

In what follows, the GUB set selection is described. This relates to Step (3) of algorithm

1, and is analogous to choosing variables in the single variable branch and bound.

GUB Set Selection

Having chosen the live node q E L, the GUB set is chosen next to effect the branchings.

The GUB set is selected from the subset of infeasible GUB constraints containing more than

one basic variable at node q. This is analogous to selecting fractional variables to branch in

the single variable branch and bound. Branching on infeasible GUB constraints, in many

cases, reduces the total number of infeasible GUB constraints for the resultant problem.

This happens because the branching involves setting the flow of at least one variable to

zero. Based on this idea, the infeasible set was chosen which has the largest number of

basic variables. In cases where there is a tie, the GUB constraint having the largest range

of reduced costs over its set of non-basic variables is chosen. Reduced cost criteria is chosen

over the absolute cost criteria because it takes into account both the impact on the objective

function value and the feasibility. Unlike the single variable branch and bound, where the

variable with the greatest reduced cost is typically chosen as the next branching variable,

a measure must be adopted to reflect the reduced costs of all variables in the set. The

following definitions are useful.

Let,

Sri = reduced cost of variable xi at node q.

" fq = set of infeasible GUB sets with more than one nonzero element at node q.

Q = set of variables not fixed at zero belonging to GUB constraint i E Og.

Note, that if fq is empty, then the solution at subproblem node q is feasible, since at most

one variable is basic for each GUB constraint at node q.

Two modified reduced costs measure are proposed:

I. Average Absolute Reduced Cost Criteria

Let 6S be the average reduced cost of variables in GUB constraint j E flq. Evaluate:

zq |ZrEQ! Il
6 =I V j E Ogq

and select the GUB constraint p E flq, such that

6p > q V j E g.

The reduced costs are averaged since at most one variable takes on non-zero value for

any feasible solution.

II. Range of reduced cost criteria

Let T be the range of reduced costs for GUB constraint j E flO. Evaluate,

%P = max{r} - min {r} V j E RgZjEQ ' Z.EQ '

and select the GUB constraint p E flg such that

9Qq > , V j E Og

The reduced cost criteria attempts to measure the maximum differential effect that the GUB

variables have on the objective function and and the coupling network flow constraints.

Extensive experiments by Sweeney{341 using the reduced cost range criteria for multi-

item scheduling problems have worked very well. This is also the criteria chosen here.

In summary, the infeasible GUB set with the largest number of basic variables is chosen.

If a tie exists, the GUB set with the greatest range of reduced costs is selected.

GUB Set Partition

After selecting the GUB set p to effect branching, the variables are partitioned to form

two subsets LL,, LR, whereby nodes q + 1 and q +2 are formed.

Let the variables in GUB set p not fixed to zero be ordered such that, zi+X2+,.-. +Xm 5

1 where XI, z 2, ---*, z, are the basic (non-zero) variables corresponding to GUB constraints

p. Note that 2 < v < m.

Let r = [J,so that zI, z2,- , z, form 2 nonzero subsets D1 = {zizI - -, z,} and D2 =

{zr+1,z,+2, -,z,}. Also, let y = ["2-*-J and form 2 subsets D3 = {zr+1,zr+2, - - r+y}

and D4 = {Zr+y+,--- ,z.}. Then set LL, = DI U D4 and LR, = D2 U D3 . What

is done is to partition the GUB variables into 2 subsets such that each subset contains

about equal numbers of basic and nonbasic variables. This particular rule of partition is

selected to favour a balanced tree sturcture, and to distribute the restrictions evenly over

subsequent subproblem optimizations. In step (3), then, setting variables in LL to zero

results in reducing the GUB constraint p to E.iELR, zX 5 1. To enforce this constraint

to the problem at node q + 1, the upperbounds of variables z in LL, are set to 0. The

resultant LP is labelled as node q + 1. Similar arguments apply when variables in LR, are

set to zero to produce node q + 2.

This section presents and proposes a GUB branch and bound algorithm to solve the

routing problem with service choices. The basic issues relating to node and set partitions

are described in detail. In the next section, it is shown how the basic GUB branch and

bound can be enhanced, in order to improve its efficiency.

3.3 Improvements over the branch and bound

3.3.1 Solving LP with GUB constraints

In the previous section the GUB branch and bound algorithm was described in detail.

The optimization at each node is a special LP with GUB constraints. The efficiency for

solving the resultant LP at each node is an important one, and has received much attention.

In large, multi-item scheduling problems, with GUB constraints the integrality restriction is

usually relaxed and the continuous solution rounded to produce acceptable solutions based

on some prescribed set of rules. For such problems, the coupling constraints are soft, and

judicious rounding of fractional solutions will not cause unacceptable infeasiblities, see Las-

don[24]. Moreover, for many mixed integer programming problems with GUB constraints,

the solution of the LP relaxation provides a very tight bound. Thus, it is often cost effec-

tive to solve the LP relaxation. Facilities to handle these constraints effectively have been

studied by Dantzig and Van Slyke[11] and more recently by Grigoriadis(20], Hartman(21]

and Lasdon and Terjung[24]. Essentially, the basis for these special LP have a special struc-

ture that allows the pivoting to be done exclusively with a reduced basis of size equals to

the rank of the coupling constraint matrix. Appendix B describes how an LP with GUB

constraints can be solved efficiently by maintaining a basis of size equal to the conservation

of flow constraints, less one, since the node arc incidence matrix contains one redundant

constraint.

Due to the existence of GUB constraints in many practical problems, most sophisticated

computer codes now include an option to handle these constraints implicitly. In addition,

these codes incorporate features that deal explicitly with the sparsity of the constraint

matrix, which in our case is the node arc incidence matrix, in order to improve the overall

computational efficiency. Initial tests by Dantzig[1 1] reveal that solutions of problems where

the GUB constraints are included implicitly are of a magnitude 10 times faster than that

Code Name Organization Computer Date
Apex III Control Cyber 70/72,73,74,76 1975
FMPS Sperry-Univac Univac 1100 1976
Haverly-MIP Haverly Systems IBM 360/370,Univac 90/30 1970
MIP/370 IBM IBM 370 1974
MPS Honeywell Series 60 1973
Sciconic Scicon Univac 1100 1976
Tempo Burroughs B7000,B8000 1975
XDLA ICL 1900 series 1970

Table 3.1 Codes which incorporate GUB constraints. Source: Garfinkel[15].

using conventional codes. Further improvements are realized by Hartman[21].

Not all LP codes contain facilities to handle GUB constraints implicity. Table 3.1

includes a list of the more popular codes available that handle GUB constraints.

In addition, appendix B, includes a Dantzig-Wolfe decomposition procedure which solves

the LP relaxation (PO) by maintaining a basis equal to the size of tie number of GUB con-

straints. This is the general approach taken by Chen and Saigal[10]. However, a more

general problem for solving LP relaxations of network flow problems with side constraints

was solved. The Dantzig-Wolfe procedure iterates between solving a network flow subprob-

lem and a resource sharing master problem. It is not clear how this procedure compares

with the previous one. Details of the method were developed to provide an additional focus

on solving (PO). Based on the above observations, it is safe to infer that the LP with GUB

constraints at each node can be solved efficiently. In the next section, it is shown how the

problem size of (P) can be reduced based on its special structure. This leads to further

improvements in the computational efforts required to solve the LP relaxations.

3.3.2 Network aggregation

The previous section shows how the LP computation at each node can be performed

efficiently. In practice, the solution time for an LP increases approximately proportion-

ally with the number of variables, and proportionally with the square of the number of

constraints. Since the solution of (P) involves solving (P) and a series of related LP, it

is advantageous to reduce the size of (P). This section recommends a network reduction

scheme aimed at reducing the size of the (P). The reduction not only reduces the number

of rows(nodes) and columns(variables) of (P), but also the number of integer variables and

GUB constraints. This occurs since a resultant GUB constraint having only one variable

can be removed, with its variable upperbound set to one.

Given a schedule map, rules for aggregating nodes and removing arcs that exploit the

special structure of the network consist of 2 phases, node aggregation and arc removal.

Since node aggregation precedes arc removal, it is explained first in what follows.

Node Aggregation:

Let gi, g+i represent 2 nodes along the same city axis such that gi directly precedes

g,+1 . The following definitions are useful.

Departure Node: A node is a departure node if there is at least one service arc eminating

from it.

Arrival Node: A node is an arrival node if there is at least one service arc arriving into it.

Note that a node can be both a departure and arrival node.

Principle of Node Aggregation(POA):

A pair of nodes gi, g+ 1 connected by ground arc (gj,g+ 1) is aggregated if gi

and g9+1 do not represent departure and arrival nodes respectively, and the

upperbound on arc (g,g+ 1) is infinite.

Whenever a pair of nodes gi, g+ 1 is aggregated, the result is a single node gi+ 1 with the

arc connecting i to j removed as shown in figure 3.3.

Si-1

-

9i *

Figure 3.3

gi-l

gi+1

gi~+2

Node aggregation

If the upperbound along the ground arc is finite, the removal of the ground arc might

cause more flow than is allowed to pass through. In such a case, the aggregation can

result in infeasible solutions. This problem arises when the sum of the incoming flows

into node gi exceeds the upperbound on the ground arc (gi,gi+1). Conversely, if the nodes

being aggregated are connected by a ground arc with an infinite upperbound, the above

aggregation rule is optimal provided the ground arc cost removed is properly adjusted.

Typically, only few ground arcs belonging to each city have finite upperbounds. In order

to preserve feasibility, node aggregation is not performed between nodes connected by a

ground arc with a finite upperbound.

Since the ground arc removed has a cost associated with it, costs on adjacent arcs to

nodes gi or gi+i must be adjusted to reflect the exclusion. To show how arc costs are

adjusted, 2 cases are distinguished:

Case 1: gi Is not a departure node.

Then the cost along arc (gi, g9+1) is added to:

1. All incoming service arcs to gi

2. Non service are arriving at node g.

Case 2: gi Is a departure node.

The ground cost along arc (gi, gi+1) is added to:

1. All outgoing service arcs from gi+1-

2. Outgoing non service arc from node gi+1.

In case 1, all incoming services arcs to gi are redirected to 9i+1 and gi is removed. In

case 2, all outgoing arcs from node g+i is diverted to leave from 9; and 2i+1 is removed. The

resultant node is labelled g+1. The examples shown in figure 3.4, illustrate the aggregation.

Node aggregation for the entire network is described next. Cities are labelled j =

1,2,- -- ,K IK , and the number of event nodes at city j is Ii. Furthermore, the nodes are

ordered such that g; lies above 9i+1 for 1 = 1,2, - --, Ii-1. For each city, begin with the first

2 nodes gi, g+1, and determine if they can be aggregated based on the principle of node

aggregation. If so, the rules of aggregation as described above are applied. The resulting

node is relabelled gi+1. Next, explore the node pair gi+1, gi+2, and so on until all nodes are

considered. If node gi and gi+ 1 cannot be aggregated, proceed on with g+1 and 9+2- The

details of the node aggregation are shown in algorithm 2.

I)' I

I

9'

<2

Case 1

/

4
/

I

1%

/
-

Case 2

Arrows show how the ground arc cost is transferred or added.

Figure 3.4 Node aggregation and arc costs adjustments

4/
I

I

4

pp- OF

.041

Algorithm 2: Network Node aggregation

Procedure: node aggregate

Begin;

Do while (j 5 |KI)

i +- 1

do while (i < I)

if ({ gi,gi+j }) satisfies { POA } then

AGGREGATE;

relabel new node gi+ 1 ;

else

i4-i+1

endif

end do;

j4j+1

end do;

End;

Arc removal

After node aggregation is completed, some service arcs in the transformed network can

dominate over other service arcs belonging to the same GUB constraints. A process to

reduce dominated service arcs is now explained. Let g. and g, be 2 nodes pertaining to

different cities. Furthermore, let A, denote the service arc set between g. and gy. For every

GUB constraint represented in A.., keep only one arc with similar orientation, belonging to

each GUB constraint, having the highest contribution, (break ties arbitrarily), and remove

all others belonging to the same set. This particular arc is said to dominate over subset

of arcs in the same GUB set, between the given pair of vertices. Algebraically, arcs in A.,

belonging to the GUB set have similar column vector in the constraint matrix, but with

possibly different cost coefficients. Note that the constraint X, < 1 is relaxed for the LP.

Arc removal is especially useful when applied to routing with time windows. For such

problems, service arcs for each GUB constraint are more closely clustered, and the chance

for extensive arc removal increases. In general routing problems with service choices, arc

removal might not be instrumental in reducing the size of the problem.

Worst case consideration for aggregation

Thus far, very little is said regarding how many operations the node aggregation and

arc removal scheme requires. In terms of nodes, the worst-case requirements for node

aggregation is:
IKI IKI

(Ji - 1), where Ji
i=1 -i=1

is the total number of nodes in the network. If |NI is the total number of nodes in the

network, the worst-case of the node aggregation requires |N|+|KJ, or O(INI) computations.

Arc removal requires comparisions for a total of INI(INJ - 1) =| N12 - |NJ, node pairs, and

thus an order of |N12 operations. The network aggregation scheme described is optimal.

In most cases, the number of ground arcs having infinite upperbounds far exceeds those

having finite upperbounds. Thus, the benefits of network aggregation far outweigh the

penalty incurred through pre and post processing, which results in a reduced problem size.

Network aggregation is applied on the network only once prior to branch and bound.

Even though reduction rules hold at each node, problem size reduction during branch and

bound is not advisable since the information pertaining to the LP at that node would be

lost.

Thus far, the improvements suggested deal explicitly with the efficiency of solving LP.

Measures for pruning the branch and bound search are considered next. Appendix A,

shows how a good feasible solution can be used to eliminate or fathom live nodes whose

objective value is greater. Therefore, it is desirable to find a good feasible solution in order

to initiate the search. However, the method for finding a feasible solution should not require

excessive computational time, and will, hopefully, utilizes the structure of the problem and

any information available. This is the path taken, which is described in what follows.

3.3.3 Parametric search for feasible solutions

This section describes a procedure for finding a good feasible solution by parametrically

altering the sum of the flows along the cycle arcs. The sum of cycle flows is equal to the

fleet size of (P).

The special structure of (P) restricts all flows to begin and end at the cycle arcs. Any

infeasible solution to (P) is decomposible into a set of cycle flows, where at least one such

cycle flow carries fractional values. These are consequences of the conservation of flow and

GUB constraints. Altering the bounds on cycle arcs can often result in drastic changes in

the flow patterns because these arcs behave like bottlenecks on the flows in the network.

Consequently, it is desirable to identify the appropriate cycle arc (arcs), and impose bounds

in such a manner as to bias a feasible flow. In so doing, the objective is penalized, and

the proper choice would be to alter bounds on those arcs that incur the least penalty. It is

difficult for any problem to identify these cycle arcs. Indiscriminate alteration of bounds on

some arbitrary cycle arcs penalizes the objective excessively. To circumvent this problem,

the sum of the cycle flows is bounded, instead, based on the solution provided by (P0). In

what follows, the method for finding feasible solutions is explained.

Let (ziz2, ... ,zb) C X, be the set of cycle arcs in (P) and (u1, u2,. ,ub) be its

corresponding upper bounds. Moreover, let (zO, zi, - , zO) be the flows along the cycle arc

corresponding to solutions of (PO). The sum of cycle flows of (PO) is F" = zO + +- --+z.

A graph of objective value z versus fleet size F (sum of cycle flows) is shown in figure 3.5,

where F"" = min (u + U2 + ... , +u , sum of the number of GUB constraints and service

arcs not belonging to any GUB constraints). The LP solution to (PO) is represented as

point D. Let i be integer value lying between, and including 0 and F"M2. Then, the optimal

solution to (P) is a point lying on one of the vertical axis F = i, 0 < i < F"", and

bounded by the region AEFB. Note that the sum of cycle flows cannot exceed F",. In

general, F0 need not be integral. The heuristic for finding a feasible solution comprises

2 phases, H1 and H2. H1 tries to find a feasible solution bounded by the region ACDB

by bounding the sum of cycle flows between F0 to 0. H2 tries to find a feasible solution

bounded by region CEFD by bounding the sum of cycle flows between FO to F"". The

feasible solution yielding the best objective from H1 or H2 is chosen as the best feasible

solution.

objective value

P FO' Fmaxfleet size

A Ie.| I E.

Figure 3.5

H2

D (F0, zo)

Graph of vehicle fleet size vs. objective value

For phases H1 and H2, let (zixz, -, z4) be the cycle flows when (PO) is solved with

the constraints zi + X2+ - + zb 5 p'. Beginning with i = 0, z'**P = 0, p' is obtained

progressively as shown in algorithms H1 and H2. In addition, let F = z + z + - - - + zS

be the sum of cycle flows at iteration i.

Algorithm H1: Finding a feasible solution yielding fleet size F 5 F0 .

Step (1): Determine pi

= [F-j if F'-' is fractional
F'- - 1 otherwise

If pi = 0, then the best feasible solution is given by (F, z) = (0,0), stop. Otherwise,

go to (2).

Step(2): Reoptimize (P)

Append the constraint zI + X2 + - + zX < pi to (PO) and resolve.1 If solution is

feasible; or its objective value greater than or equal to z'*P then stop. Otherwise,

i+-i+1. Go to (1).

Observe that as p' decreases, the objective values obtained in Step (2) increase mono-

tonically. Thus, the process is stopped whenever a feasible solution is found.

Finding a feasible solution whose sum of cycle flows exceeds F0, follows similar argu-

ments as those presented in Algorithm H1 with some slight modifications. F V i are defined

as before, starting with i = 1.

Algorithm H2: Finding a feasible solutions yielding fleet sizes F > F0

Step (1): Determine p'
[F-1] if F'-' is fractional
F'- 1+1 otherwise

if pi > F"', stop. No feasible solution if found.

Step (2): Reoptimize (PO)

Append the constraint p' < zI + z2 + - + zb to (PO) and resolve if solution is

feasible, or its objective value greater than or equal to z"*P, stop. A feasible solution

is found. Otherwise, i -- i + 1. Go to (1).

'Note that for i > 0, this involves changing the right hand side of p' parametrically.

In this case, as pi increases, the objective values obtained in solving the modified (PO)

increases monotonically. Thus the method is terminated when a feasible solution is found.

Unlike phase H1, there is no guarantee that a feasible solution can be found.

The method for finding a feasible solution alternates between phases H1 and H2, where

the objective value, z'**P, of a feasible solution in one phase is used as an additional termi-

nating criteria for the other. To illustrate this, suppose at some point z'*P is the objective

value of a feasible solution found in phase H2. Then, H2 is terminated, and H1 continued

until a feasible solution is found, the bounds on p' is violated in step (1), or an objective

value greater than z'*P is realized. Pursuing with H1 is futile since it cannot yield a better

objective value than the current one. If a feasible solution is found, the one having the

smaller objective value is retained. The best value obtained is labelled z,.

In both phases, p' need not change by one unit per iteration. It is conceivable that the

solution at Step (2) results in |p' - Fil > 1. The value of F"" provides the worst case

bound on the number of iterations required. In some cases, however, F"" can be better

estimated. The method described explores both phases since it is not possible, in general,

to know whether the best objective is served by using more or less vehicles. However, the

method is not expected to require excessive iterations, and it is often adequate to implement

phase H1 and H2 for p' values in the vicinity of F0 . The next paragraph explains why.

Typically, since the cycle arc costs are much larger, in general, than ground or service arc

costs, the optimal solution to (P) is satisfiable more often by a smaller set of integral cycle

flows than a larger one. As such, the solution is more likely to lie on a vertical axis on

or to the left of rF0]. Moreover, as p' increases in phase H2, many unprofitable cycle

flows having contributions greater than zero are formed. This means, that an objective

value greater than zero is quickly obtained, and phase H2 terminated. By comparison, the

penalty on the objective for flow boundings on phase H1 is less severe. It is likely too, that a

better feasible solution can be found using H1. Thus, this phase deserves to be implemented

in its entirety.

A good incumbent solution is extremely useful to drive the GUB branch and bound.

The computational efforts are more often justifiable. To alleviate extensive computations,

the above method uses the informations from the LP solution to (PO) and solves a series

of related problems parametrically. As such, it can be conveniently married to the GUB

branch and bound.

The objective in this last section is to implement a procedure to search for a feasible

solution effectively to initiate the GUB branch and bound. Varying flows along service

arcs in each GUB constraint is unlikely to work well since it places insufficient restrictions.

Moreover, enforcing feasibility on a GUB constraint by manipulating flows of its variables

is likely to result in infeasiblities on some other GUB constraint. Conversely, restrictions

placed on the sum of cycle flows, penalizes the objective enough to drastically alter the flow

patterns. Such restrictions and penalty discourages the formation of optimistic fractional

flow patterns.

This section relates to upper bounding on (P) prior to branch and bound. In the next

section, a method of lower bounding related optimization problem at each node is described.

3.3.4 Objective cut enhancement

This section deals explicitly with lower bounding the optimization problem at each

node of the branch and bound tree. A good lower bounding technique finds a better bound

than that obtained from solving the LP. Using such a bound can help fathom nodes whose

objective values are lesser than those of the incmbent solution. However, there is clearly

a tradeoff between computing a better bound at each node, and finding a good feasible

solution, so that the search can be effectively pruned.

A simple bounding at each node relates to the problem data, (C., C.) of (P). Given that

(C, C.) are integral, the objective value of (P) must also be integral. Thus, a fractional

LP objective value, zk, obtained at node k can be replaced by [zkl. A modified solution

can then be obtained by appending the objective cut C.X. + C,X, [zk] at node k, and

resolving. However, it is often unlikely that such a reoptimization is ever useful in improving

the bound significantly. Based on the special structure of (P), a method to obtain a better

lower bound at each node is presented next.

Let Vk be the sum of cycle flows z4 + zi + ---+ zk at node k, where z = flow value

of cycle arc z, at node k. If Vk is fractional, then 2 subproblems are solved by appending

constraints:

z+z2 - + zb < [VJ

and

z+z2+--+z Xb [VkJ+1

to (Pk), respectively. The minimum objective value, ik, obtained from these pairs of

subproblems optimization is used as a lower bound at node k. It means that the best feasible

solution at node k can yield objective values no smaller than P*. Therefore if the solution

yielding Pk is also feasible, then, node k is fathomed. the incumbent solution is updated only

if i is smaller. Consequently, any problem that are descendents of k cannot yield a feasible

solution whose objective value is better than Pk. Thus, all subproblems corresponding to

descendants of k are solved with an additional constraint, CX. + CX, > P. The right

hand side value of this objective cut can be modified whenever a new bound is obtained

during subsequent optimizations. Such a cut is not valid for subproblemns optimation at

nodes j where node j precedes node k or whenever node j does not lie in the same path

from node 0 to k. Incorporating such a lower bounding procedure means that the objective

cut has to be carefully monitored. Moreover, subproblem optimizations at each node can

be time consuming. Thus, this procedure is used discriminately. It is recommended that

this procedure be used only when the objective values of nearly all live nodes are close to

that of the incumbent.

The objective cut described is obtained -through solving subproblems generated by the

sum of cycle flows. In some cases, Vk is integral, although, zy, for i = 1,2,---, b, need

not. Let J C {1,2,... b} be the index of fractional zi. Then, for each i E J, a pair of

subproblems are solved by appending the constraints z 5 [j and [zkl < z to (Pk),

respectively. Let d, denote the minimum objective value obtained from solving these pair of

subproblems. Then, the lower bound of node k, is equal to the maxiE{d,}. The properties

of this solution are similar to those described earlier. In general, only a subset of arcs in J

are used since otherwise, the lower bounding method can become computationally costly.

The above procedures describe means for obtaining a lower bound at node k no worse

than that of zk. Such a bound is used to fathom live node. In some cases, fathoming occurs

because the best bound obtained corresponds to a feasible solution. Moreover, a better

bound P > zk can be used as an objective bounds for subproblems corresponding to nodes

that are descendants of k.

Chapter summary

In this chapter, it is shown that Lagrangian and Benders decomposition methods which

have worked well in some large scale problems failed to perform satisfactorily. To solve

(P) optimally, the integrality properties need to be addressed. To this end, a specialized

branch and bound procedure is suggested which incorporates the structure of the GUB

constraints. An LP relaxation is solved corresponding to each subproblem optimization at

a node. This is chosen since the LP relaxation is believed to provide a tight bound on the

subproblem optimization at each node. In addition, several schemes are presented which

help in reducing the problem size and pruning the search.

However, the success of any branch and bound scheme depends on its performance in

practical problems. Its efficiency also depends on how it is implemented. In the next chapter,

experiments on several test problems are described, and issues relating to implementation

are also presented.

Chapter 4

Empirical Results and
Implementation Issues

This chapter presents issues related to testing and implementation of the GUB branch

and bound algorithm described in the previous chapter.

In Section 4.1, two examples are given to provide insights into the characteristics of

the problem (P) that gives rise to fractional solutions. They reveal properties that helped

explain why most LP relaxations of (P) solve to integrality. Furthermore, they. provide

clues on how to generate interesting problems for which the GUB branch and bound can

be tested. A small example is then solved completely to illustrate the procedure described.

Thereafter, results from solutions to several medium scale problems related to routing with

service choices and routing time window constraints, are presented and discussed. These

problems were generated to conform as much as possible to medium scale real life problems,

and are solved interactively with LINDO as the LP support. The LP was solved using

LINDO because it provides sufficient flexibility and interactive capabilities.

Since the GUB branch and bound differs from conventional single variable branch and

bound, a method for implementing the branch and bound search is described in Section 4.2.

Such a method is used to fully automate the GUB branch and bound.

Two small examples

Before discussing results for tests on some medium size problems, two small examples

are given to provide flavor to the solutions of the LP relaxation, (PO). They reveal interest-

ing properties that provide clues as to when the LP relaxation is likely to return fractional

solutions. Both examples are special instances of routing problems with time window con-

straints. The first example relates to the case where the time window for each service is

large, and the second example considers the case where the time windows are tight.

Figure 4.1 shows a simple example of the routing problem with time windows containing

two potential services, modelled by choices (zI, z) and (z 2, z4). The GUB constraints are

zI + z3 < 1 and z2 + Z4 < 1. Note that the time window for zi is so large that it admits

another service arc z2 to fall within it with opposite orientation. The LP solution is -10.5,

given by a flow of 0.5 along cycle C1. Observe that C1 cortains at least one cycle arc, and

need not admit integral flow. The optimal solution is -5.0 with a flow of one along cycle C2.

This is verified by branching along arc z = 0 and z = 0 for GUB set zI + z i 1. Similar

results can be achieved by single variable branching along arc X3 = 0 and za = 1. However,

if the fractional flows occur in large cycles containing many arcs belonging to similar GUB

constraints, then restricting flow along a single variable might result in another cycle flow

that is fractional. GUB branch and bound limits flow along a subset of variables in a GUB

constraint and thus has a better chance of breaking infeasible cycle flows.

The next example, shown in figure 4.2, has small time windows for every service but,

nevertheless, has fractional LP solutions. The LP solution is given by flows along 2 cycles,

C3, and C4. Each cycle contains a flow of 0.5. The objective value is -7.5. However, note

that C3 has 2 cycle arcs zg and z21. This gives a sum of cycle flows equal to 1.5. To

search for a feasible solution, two problems are solved parametrically by first appending

the sum of cycle flow cut, z + z17 + z2 1 5 1, then zg + z17 + z2 > 2, to the original LP.

(a, c.)

a = arc z.

c.= contribution of arc za

C1 = {Ze, Zl, zSZ 2 , 1 , z, zIoZ4}

C2 = {zs, zS, Z 2 , 1 2, Z3, zIO}

Figure 4.1

) (-,1)

GUB constraints-

ZI + z 3 1

Z2 + Z4 _ 1.

Example of routing problem with large time windows.

As described previously, this is done because the sum of cycle flows must be integral. In

this case, the optimal solution is given by the addition of the latter cut. Moreover, it is

possible to conclude that such a solution is indeed optimal because the solution obtained

by adding the latter cut produces a feasible solution whose objective value is smaller than

that obtained by adding the first cut. To illustrate, the GUB branch and bound, however,

it will be assumed that no feasible solution is known. First, select the infeasible GUB set

for branching. Note, from figure 4.3a, that the infeasible GUB constraints are zI + z2 < 1,

(a7 Ca) A-
a = arc z.

c. = contribution of arc z,

(zi,z.}

24,1)

GUB constraints:

Zi + z2 < 1

z3 + X4 < 1

z5 + z6 i 1

z7 + zs 1

C3 = {zgzi, zI,18 z5,x is, 4 , z2 1, z 7 ,z, 1 1 z 2 z 2 , 0 z 6 }

C4 = {z, zzu,11 z, z , z3,Z z24}

Example of routing problem with tight time windowFigure 4.2

Z3 + z4 5 1, zs + z6 < 1, with two nonzero elements in each set. Note that all infeasible

GUB sets contain the same number of nonzero elements. Next, consider the range of reduced

costs for all infeasible GUB sets with more than one nonzero element to select that which

has the largest range of reduced costs. As it turns out, since all variables in the infeasible

GUB sets are basic, they have zero reduced costs. See figure 4.3a. This means that the

range of reduced cost is zero for every infeasible GUB set. To make it interesting, the set

X3 + X4 < 1, is selected and 2 LP corresponding to setting z3, then z4 equal to zero are

solved consecutively. These two subproblems are represented as nodes 1 and 2, in figure

4.4, with objective values -7.0 and -5.0, respectively. Node 2 is feasible and thus fathomed.

Referring to figure 4.3b, the infeasible GUB sets are Zi+z2 5 1 and zs +ze 5 1. Arbitrarily,

select z1+ z2 5 1 to effect to next branching. Two subproblems are solved by enforcing z1,

then x2 to zero, on the subproblem corresponding to node 1. Nodes 3 and 4 both return

feasible solutions with objective values of -7.0 and -4.0, respectively, and are thus fathomed.

The optimal solution is shown in figure 4.3c corresponding to node 3 in figure 4.4.

-7.5
0

X's= 0 z4 = 0

-70 1 2 -5.0

z = 0 2 = 0

-7.0 3 4 -4.0

Figure 4.4 Branch and bound tree for example of figure 4.2

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

-7.5ee00000

VALUE
0.50000
0.500000
6.500000
0.506600
*.500600
0.500000
1. 000eo0
0.0660060
*.566600
0.60000
9.50oe
6.500000
6.0000
e.000000o
*.e0000
0.500606
6.0000
6.5060
1.000000
6.000000
6.600060
0.500006
1. 06000
0.500000

REDUCED COST
6.000006
0.00000
0.60000
0.060006
6.000600
6.00000
0.000000
0.06006
0.00000
5.500000
6.000006
0.000009
i.00000
5.500000
6.500600
6.0000
3.50006
6.0000
0.000006
0.000000
6.0000
0.0000
0.000000
6.60000

Figure 4.3a Results of optimization at node 0

1)

VARIABLE
ARC6601
ARC6002
ARC6003
ARC6004
ARC0805
ARC6606
ARC9667
ARC9068
ARC0009
ARC0610
ARCS012
ARC013
ARC0014
ARC0816
ARC0017
ARC0018
ARC0019
ARC0020
ARC0021
ARC0O22
ARC6023
ARC0024
ARC911
ARC0915

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

-7.60N908

VALUE
6.50600
*.500

*.seeee
e. eeeee

e. 59eee"
S.90000
*.50006e

1. e0eee* .eeeeee
* .See060

*.s0eeee

6. so""os
e.seeeee
e.$eeoe

e.eeeees
i.5eeee
1.eeeee0

e.eeeee0.000006
e.eeeee

1 . ecoeeee
1 .00000
I . 0009

REDUCED COST
*.6e00
*.006000
-1.00000
*.6e6e96
*.0060
0.0eeeee
0.060600
*.60066
6.000000
6.000ee0
0.eeeeee
.06000

*.8eeeee
6.0e000
6.00066
6.0006
4.6eeee6
0.0000
e.eeeeee
e.eeeee
6.00000
e.eeee
0.00000
6.00000

Figure 4.3b Results of optimization at node 1

1)

VARIABLE
ARC061
ARC0e02
ARC9003
ARCSO4
ARCe0e5
ARCOOe6
ARCeee7
ARCee8
ARCeee9
ARCeele
ARC9e12
ARCee13
ARCee14
ARC8 6
ARC0O17
ARCSe18
ARCel9
ARC0e2e
ARC0O21
ARCOe22
ARCe023
ARCo24
ARCe11 i
ARCee15

LP OPTIMJMA FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

-7.e066660

VALUE
0.6000
1.60000
6.000609
1.06600
1 .6000
6.06660
I .6Soso0
0.00066
6.000
0.000006
6.00000
0.00000
0.000000e
6.0000
1.066666
1 006
6.866666
1.00006
1.00000
0.000066
*.606000
0. 666660
1. 60000
1.606606

REDUCED COST
6.600600

0.60000
6.600000
6.00000
0.000660
6.00000
6.00000
6.000000

0.000400
0.000000
4.9e9900
6.00000
0.000000
0.000000
6.0000

0.000000
0.000000
8.000000

6.606660

0.000660
0.600006

Figure 4.3c Results of optimization at node 3

1)

VARIABLE
ARC801
ARCO002
ARC0003
ARC0064
ARC605
ARC9ees
ARC0007
ARC6008
ARC099
ARC9010
ARCS012
ARC0613
ARC0814
ARC016
ARC0017
ARC6618
ARC0019
ARC0O20
ARC0621
ARCS922
ARC9923
ARC0024
ARC011
ARC615

Empirically, structures of the type in example 2 pose less problems than those of example

1. This is especially so as the problem gets large. However, the above examples reveal

some interesting characteristics of the problem. The reason that most problems solves to

integrality is due to the large disparity in cycle arc costs as compared to both ground and

service arc costs. That is, having a set of cycle flows with at least one profitable cycle,

including more than one arc from each GUB constraint, becomes rare when the cycle arc

costs are large. This would explain why Levin{26] in solving the minimum fleet sizing

problem (where the ground and service arc costs are zero, and GUB constraints are of the

equality type), failed to generate any large problem with non integer LP solutions. The

GUB branch and bound addresses this issue directly by selecting infeasible GUB sets to

branch, and attempts at reducing alternative fractional cycle flows.

The next observation relates to conditions under which the routing problem with service

choices is likely to return fractional LP solutions. This generalizes the properties of examples

1 and 2 and helps explain why, in general, routing problems with tight windows do not pose

severe problems. Moreover, it has helped tremendously in our ability to generate interesting

problems on which the GUB branch and bound can be tested. Any fractional solution is

decomposable into an overlay of fractional flows along a set of cycles. Moreover, at least

one of these cycles contain more than one arc belonging to the same GUB set. These are

consequences of the network flow and GUB constraints. Thus, an infeasible solution is more

likely to occur when the network is distributed in such a way as to permit an overlay of

fractional cycle flows. This occurs when the GUB variables are distributed in a manner

that makes it possible to form cycles containing more than one arc from the same GUB

constraint. This observation can be extended to include the case where each GUB constraint

consists of service arc variables distributed across the network, which is the general routing

problem with service choices. As suspected, this problem has a greater chance of yielding

fractional solutions since more cycles can be constructed to include more than one variable

from the same GUB constraint.

4.1 Results for solutions to routing problems with service
choices

LINDO[30] was chosen to solve the LP at each node because it provides sufficient flexi-

bility in a interactive environment. Specifically, it allows for parametrically:

" Adding/deleting rows/ from the current optimization.

" Setting upper bound on variables.

" Changing data on current formulation, for example, altering right hand side values

and signs of inequality constraints, and replacing direction of inequallity.

The disadvantages are that LINDO does not provide facilities to include GUB constraints

implicitly. This means that the LP basis is larger, and consequently the computational

time required will be longer. Moreover, it does not allow the current basis to be stored

easily. Therefore, the basis cannot be reinvoked when nodes are evaluated which do not

lie along the same path from 0. However, the purpose is to use the LP capabilities of

LINDO to test the convergence of the GUB branch and bound in terms of the number of

nodes generated. The total number of simplex iterations are also tabulated to provide an

approximate measure of the computational requirements. The process can be accelerated

using a more sophisticated LP code, if using LINDO shows good convvergence.

Before describing and discussing results on several test problems, the nature of the input

data is described. The input to (P) is a series of potential service arcs, where each service

contains the following information:

OC OT AC AT CIJ NG

where

OC: City of origin

OT: Time of origin

AC: Arrival city

AT: Time of Arrival

CIJ: Contribution (negative value for profit)

NG: GUB set which this service belongsi

The inputs are first transformed into a schedule map2 , and then preprocessed in MPSX

format for input into LINDO. The MPSX input format is chosen to allow for compatibility

since most efficient LP code accept this format. The preprocessing is not described since

little insight is gained by doing so. It is stressed, however, that for variables with NG = 0,

the upperbounds of that variable are included in the formulation, and set to 1. Otherwise,

the upperbounds need not be included.

Two classes of problems are generated and tested. They are:

A Routing with time windows (RTW)

where the service choices represent discrete departures over a given time window.

No restrictions are placed over the number of arcs posted for each time window

B Routing with service choices (RSC)

where the service choices form mutually exclusive subsets of arcs distributed among

the serivce arcs in the network

Three Class A problems are generated, RTWA, RTWB, RTWC. RTWA discretizes each

time window to contain 3 departures, where the first and last departures coincides with the

bounds of the time window and the third lies in the middle of the bound. RTWB differs with

RTWA only in size. For both problems, the time window is kept small. RTWC considers

the case where the size time window varies, and the number of departures posted varies

'For convenience, NG = 0 implies that the given arc does not belong to any GUB constraint.
2See Chapter 1

from 2 to 6. In general, more arcs are distributed across a much wider time window. In class

A problems, GUB variables from the same constraint are distributed between similiar city

pairs. Class B problems are a generalization of class A problems where GUB variables from

the same constraint need not include services between similiar city pairs. RSC belong to

Class B, where the number of arcs per GUB constraint varies from 2 to 6. The characteristics

of the four problems generated are summarized in table 4.1.

Every attempt has been made to ensure that the four problems generated reflect actual

medium scale problems. The schedule map for all 4 problems contain 3 cities, where the

service arcs lie between 0700 hr to 2200 hr in a 2400 hour period. This correspond to normal

hours of operations. Between this time period, the departures are dense and average more

than 4 per hour except between 2000 hr to 2200 hr. The ratio of cost coefficients between

cycle to service arcs ranges from 2 to 3. This is slightly unrealistic, but the intention here

is to underplay the dominance of the cycle arc contribution in order to force fractional LP

solutions. The ground arc cost C,9 corresponding to ground arc z; along city axis Q, is

calculated as

CTR * OQ

where

OQ = cycle arc cost corresponding to city Q.

TRq = range of time betwen the first and last time node along any given city axis Q.

t9 = range of time between the incident nodes connected to ground arc z along city Q.

That is, the ground arc cost is measured as a proportion of cycle arc cost, depending

on the time range it encompasses.

Table 4.1 contains the list of problems tested, with results shown in table 4.2. Many

other problems were generated whereby the LP relaxation solves to integrality. These are

uninteresting cases which will not be dealt with here.

Problem Rows Columns (0,1) Numbers of Variables
A Variables GUB Set Per GUB

RTWA 196 291 96 32 3(fixed)
RTWB 227 340 111 38 3(fixed)
RTWC 190 285 96 26 2-6
RSC 191 286 95 26 2-6

Table 4.1

Table 4.2

Problem Snmmary

Results for GUB Branch and Bound

Note:

ZLP = z(P 0), z* = z(p)

E = ZLP E2 =|1|

Values enclosed in parenthesis indicate the number of simplex iterations required.

= Value of feasible solutions obtained from using the sum of vehicle size constraints.

T= Total number of simplex iterations to find an optimal solution.

T2= Total number of simplex iterations to find a solution with 2 % of optimality.

Ni = Total number of nodes generated to find optimal solutions.

N2 = Total number of nodes generated to find solutions within 2 % of optimality.

I = Fraction of leaf nodes that are integer.

Problem ZLP Z zh E, E2 Ti T2 N, N2 I
RTWA -615 -609 -606 0.01 0.005 370 356 2 0 0.50

(347) (9)

RTWB -498 -493 -493 0.01 0.000 527 451 2 0 0.50
(378) (73)

RTWC -430 -410 -410 0.05 0.000 1400 664 54 10 0.40
(369) (26) _

RSC -588 -562 -502 0.15 0.110 3227 1526 52 20 0.38
- (329) (505)

In all 4 problems, the heuristic solution obtained by using vehicle size cuts produce

good solutions. In two problems, optimal solutions were obtained, though not verified.

However, in one case, RSC, the heuristic solution required more simplex iterations than

those required to solve to original LP. In general, the addition of new constraints, requires

the extension of the basis, and many more simplex iterations. Thus, it was chosen to

bound the variable to zero by setting a variable to zero rather than to include a constraint

setting the variable to zero. From the inititial tests, it appears that for problems with tight

time windows, like RTWA and RTWB, the GUB branch and bound is extremely effective.

This is expected, since branching reduces the formation of alternative fractional cycle flows

since variables belonging to similar GUB constraints are effectively removed. Moreover, the

number of cycles in the network containing more than one variable for such problems are

restricted. As expected, RTWC and RSC are more cumbersome, although the number of

nodes generated for problems of this size are not considered large. It is also key to emphasize

that a solution within 2% of the optimal requires the generation of only a fraction of the

total nodes. For large problems, it might be advisable to seek near optimal solutions using

the ideas developed in chapter 3. It is most interesting that for all the problems tested,

the number of leaf nodes which have integer solutions are at least 38% of total nodes. This

supports experience that these problems have strong tendencies to solve to integrality and

the GUB branch and bound is effective in finding feasible solutions. Although more than

50 nodes are generated for RTWC and RSC, the total number of simplex iterations, Ti

spent (which includes the initial LP solution and feasible search), is small. This results

from the fact that the number of iterations required to reoptimize the modified LP problem

at each node are small, that is on the order of less than 10% of that to solve the LP, on

the average. It is not surprising that of the four problems tested, RSC requires the most

iterations. This is because variables belonging to the same GUB constraints are distributed

across all service arcs. Breaking fractional cycle flows via GUB branch and bound has a

lesser effect on the potential of other cycles being formed with variables belonging to the

same GUB constraints.

The cost structures of the 4 problems tested are intentionally construed so that the LP

yields fractional solutions. This is achieved by enforcing less variation between the cycle

arc costs and the service arc costs, assuming that the ground arc costs are minimal in a

dense network. For most practical problems, the cycle arc cost is much more substantial

in comparison to other arc costs. In that event, the occurrance of fractional solutions can

usually be traced to some small subset of GUB constraints whose variables are responsible

for encouraging fractional solutions. For this case, it is recommended that those set of

GUB constraints are selected first to effect the branching at each node should they become

infeasible. This is sometimes referred to as priority based set selection. And in effect, GUB

set selections are modified to start with those having high priorities.

Initial tests using GUB branch aaid bound on problems with service choices appe Irs

promising. More tests are required to tailor the algorithm to meet real life applications.

In the next section, we describe the mechanics for automating the GUB branch and bound

search by keeping track of the variables that are being processed during branching and

backtracking are described.

4.2 Implementation Related Issues

Thus far, the GUB branch and bound is applied to test problems in a semi interactive

environment. Although is is useful to maintain some level of user interaction in a branch

and bound scheme, the basic search structure must be automated. The GUB branch and

bound differs from single variable branch and bound in that at least one variable is fixed

or freed during a branch or backtrack. As such, the usual tree tracking schemes cannot

be directly applied. In what follows, a procedure for tracking the branch and bound is

described to update the status of the variables that are fixed or free at each node. The

discussion assumes the use only one working basis.

Tracking the status of variables at each node

Balas introduced a clever method for the single variable branch and bound that stores

the branching information in a vector, whose size equals to the number of 0 - 1 variables.

This can be done because only one variable is processed along an arc. For the GUB branch

and bound, at least one variable must be processed along each arc. That is, at least one

variable might be set to zero or one during each branch or backtrack respectively. Thus,

the original scheme must be modified to accomodate this difference.

To highlight the issues involved in the tracking, consider the following example. For

simplicity, assume that only one GUB constraint, zI+z2+z 3 +z 4 < 1, is imposed. Initially,

the LP at node 0 is solved. Assume that node 0 is not fathomed. Two subproblems are

created corresponding to nodes 1 and 2 by setting zi = X2= 0 and z= z4= 0 respectively.

Suppose node 1 is evaluated next. This is done by fixing the variables z1 = X2= 0, and

reoptimizing. Fixing a variable means setting its upperbound to zero. To evaluate node 2,

z3 and z4 are fixed next, but zi, and z2 must be freed. Freeing a variable means setting

its upperbound to 1. Thus, it is important to know which variables are fixed and freed at

each node prior to optimizing. The other issue relates to GUB set partition, to form two

subproblems. At node 1, for instance, the GUB set selection phase selects the same GUB

set for partitioning. It is important to partition only those variables in the set that are

not fixed. Otherwise, redundant partitions can occur. Thus, knowing that zi = z2 = 0

are imposed at node 1, only z3 and z4 are left for partitioning. The following discussions

describe a method for resolving the problems.

At node k, an LP is solved. Node k is included in the list of live nodes if it is not

fathomed. The following information, derived at node k are stored:

Node k: ZI LLI LRI Lt

where

z = integer part of optimal LP value at node k.

" Li = list of variables fixed at zero at node k.

" LLk = List of additional variables to be fixed at zero when the left child of node k is

evaluated.

" LRk = List of additional variables to be fixed at zero when node the right child of

node k is evaluated.

Lk is used to ensure that LLk and LRk are created correctly as follows:

Let n; be the set of variables belonging to the GUB set i chosen at node k. Let Q = ni/LK

be the variables in the selected GUB set i, not fixed.3 Partition Q' into 2 subsets using

the methods described in the last chapter. One set is stored as LLk and the other as LR,

where LLk ULRk =Q', LLkfn LRk =0.

Note that subproblems corresponding to children of k differ from that at node k only

in the additional variables that are required to be fixed. These variables are found after
3For sets A, B, A/B = A - (A n B).

node k is solved, and included in sets LLk and LRk. LLk, LRk, and Lk are stored in order

to avoid recomputing node k later when it is selected as the live node to effect branching.

Thus, the variables fixed at left child and right child of node k, are obtained from Lt u LLk

and Lt u LRk, respectively. Having evaluated the child of node k, all information pertaining

to node k is purged to better manage the storage requirements.

The basic idea of the tracking scheme is simple. Consider the branch and bound subtree

in figure 4.5, where the arcs connecting nodes represent paths containing at least one node.

Assume that node j is the last node processed, and the next node evaluated is k. To solve

node k from j, the variables along path i to k are fixed; and those along path i to j are

freed.

current node

00variables fixed

e+,? next node

k

Figure 4.5 Variable tracking

In what follows, a method is described to effect this process without explicitly identifying

node i. Suppose Li represents the variables fixed at node j, which is the last node processed.

Let k be the next node solved. Lk includes variables that are fixed at node k. The variables

that must be freed at k (corresponding to those lying along path i to j) are included in

Ek = LILt = Li - (Li n) Lt). Assume that E = {0}.

To illustrate how these ideas are implemented, return to the previous example. Results

for 4 nodes only are shown. Let nodes 1 and 2 be the children of 0, and nodes 3 and 4 be

the children of node 1. The nodes are processed in the order 0, 1, 2, 3, 4. Since there is

only one GUB constraint ni = {zi, z2z 3, z 4}. The results are shown below.

Node 0: Variables fixed = Lo = {0}

Variables freed = Eo = {0}

Solve. QO = ni/Lo = {zi,z 2 ,z3,z4}

LLo = {Xi, z 2 }, LRo = {z3, z4}

Node 1 : Variables fixed = LI U LLo = {zi, z2} since node 1 is child of 0.

Variables freed = Ei = Lo/LI = {0}

Solve. Q1 = ni/Li = {z3, z 4 }

LLI = {zs}, LRi = {z4}

Node 2 : Variables fixed = L2 = Lo U LiRO = {z3, z4} since node 2 is a child of 0.

Variables freed = E2 = LI/L2 = {zi,z2}

Solve, Q2 = ni/L 2 = {zi, z2}

LL 2 = {zi}, LR 2 = {z 2}

Node 3 : Variables fixed = L = L, U LLI = {z 1 , X2, X3 } since node 3 is a child of node 1.

Variables freed = E3 = L 2/L 3 = {z 4}

Solve. Fathomed.

Node 4 : Variables fixed = L4 = Li U LRi = {X1, X2, X4}

Variables freed = E4 = L3/L4 = {z3}

Solve. Fathom.

The above discussion shows how the tracking scheme is accomplished by keeping a list of

variables that are fixed at each node. This list is derived by finding the partitions at each

subproblem optimization. The tracking can thus be easily incorporated into any branch

and bound procedure.

Chapter summary

In this chapter, the GUB branch and bound described in Chapter 3 is implemented on

a set of test problems. For problems where the service arcs are distributed in such a way

that few cycles can be traced containing more than one arc from the same GUB set, the

method appears to work very well. This is the case for the routing problem with small time

windows. The service arcs having fractional solutions more closely identify those bundle arcs

that cause the infeasibilities. In the more general case, the results are also encouraging,

since many nodes are fathomed through being feasible. As such, the GUB branch and

bound appears successful in breaking fractional cycle flows causing integral cycle flows to

be found. Because many feasible nodes are found in the branch and bound, the method can

be terminated prematurely to obtain good solutions. The efficiency of the GUB branch and

bound is aided by the good solutions obtained through the heuristic for generating feasible

solutions using fleet sizing cuts. However, it is felt though that the lower bounding objective

cut enhancement idea is not as effective in the preliminary stages of the branch and bound,

and only becomes effective when the objective values of the live nodes lie close to that of

the incumbent. In general, as the cycle arc costs dominate over other arc costs, the LP

solutions for these problems have strong tendencies to yield integer solutions. The results

obtained are far better than the ones obtained using decomposition methods described in

Section 3.1.

This thesis focuses on a specific routing problem with service choices formulated as a

network flow problem with GUB constraints. The next chapter considers extensions of the

basic routing problem with service choices and points to related areas of interest.

Chapter 5

Conclusion

The previous chapters show how the routing problem with service choices formulated

as network flow problems with GUB constraints can be effectively solved using the GUB

branch and bound. In this chapter, it is shown how the model can be extended to consider

routing problems with varying fleet types. Furthermore, several interesting extensions are

also included. This chapter concludes by summarizing the lessons and experiences gained

through this exercise.

5.1 Extensions

The routing problem considered in this thesis assumes a homogeneous fleet. In some

situations, this assumption is not adequate. It is shown here how the multi-fleet routing

problem can be formulated as a multicommodity flow problem with GUB constraints. Only

two types of vehicles are considered. The extension to the multi-fleet case can be easily

deduced. A new set of decision variables are now defined as follows:

Xk -11 if aircraft type k is used on arc (i, j)
i ~ 0 otherwise

Moreover, the constraints of the models are defined as:

U = Capacity of aircraft type k along arc (i,j)
C, = Per unit cost/benefit associated with sending aircraft k on arc (i,j)

Letting S be the set of service arcs, and N, A be the node and arc set, respectively. The

multi-fleet routing problem (MFP) is formulated as follows:

minimize (C .X?.+ (C?.X?
(ij)6A (ij)EA

E0V E N (5.
sEN .eN

?-Z - V j E N (5.
MFP 2 SEN iGN

1)

2)

"WAROMWAINNOFft-

k=1
Xk < 1V (i, j) E S (5.3)

0<Xk < Uk V (i, j) E (A - S), k = 1, 2 (5.4)

X E {0, 1} V (i, j) E S, k = 1, 2 (5.5)

Constraints (5.1) and (5.2) are the conservation of flow constraints. (5.3) enforces arc (i,j)

to be served by only 1 vehicle type, and (5.5) ensures the use of integral vehicles. The arc

capacities are represented by constraint (5.4). This problem is a simplification that does not

include service choice constraints. More appropriately, it considers the special case where

each service arc represents a service choice. Initial attempts to .olve this problem are given

by Sadiq[29] using decomposition methods. It is interesting to see how a GUB branch and

bound can be embedded in the decomposition to obtain good solutions.

Thus far, the arcs being bundled have upperbounds of 1. The above analysis is easily

extended to include bundling arcs having bounds greater than one. Since the bound on

the GUB set is 1, all variables with an upperbound greater than 1 are replaced by an

upperbound of one, because its flow is restricted to at most one by the GUB constraint.

The GUB constraints dealt with in this thesis belong to a broader class of constraints

of the form zi + z2 + -- -,+z 5 k, where k < m. It is interesting to develop an efficient

branching scheme for the case where k > 1. In some cases, like the special crew scheduling

problem described in Chapter 1, the number of crews stationed at each base might be

bounded by 5, for which case k = 5.

In what follows, a simple branch and bound scheme is described for handling constraints

Level 1

XS-o X420 X30 XWO

Level 2

X -0 4 S rso

Level 3

Figure 5.1 Alternative Tree For z1 + z2 + zs + Z4 + Z6 5 2

of the type zI + z2 + - - , 5 k, where k > 1. For simplicity, assume that only one such

constraint exists in problem (P). The method is described via a simple example given as

follows.

Suppose the given constraint is zI + z2 + Z3 + Z4 + zs 5 2. Then, all possible solutions

can be found by successively setting sets of three variables to zero. Since there are a total

of 5C 3 such sets, a tree can be constructed that has 6C 3 arcs where each arc restricts flow

on three variables to zero. 1 The terminal nodes are feasible since the above constraint,

with 3 variables set to zero, is redundant because all the variables have bounds [0,1] and

the network flow constraint is totally unimodular. Such a tree is somewhat restrictive,

containing nodes with a large number of adjacent arcs. A better tree representation is

given below in figure 5.1.

I"C, reads n choose r.

The characteristics of the tree above are listed as follows:

1. There are m - k levels.

2. At level j, the index of the last arc eminating from each node is m - k + j.

3. The index of the leftmost arc from each node is greater than the previous arc in the

same path by one.

Such a tree structure imposes less restrictions at each subproblem optimization and can

conceivably yield faster convergence. Note, however, that the arcs are ordered in a specific

manner so that the left subtrees are denser than the right ones. It is thus imperative to

select the appropriate variable as z so that setting its value to zero results in a good chance

of fathoming.

. The analysis above considers integer variables whose flow is bounded by [0,11. It is

interesting to find out how the routing problem with service choices, or the network flow

problem with GUB constraints bounded by k, can be solved if the integer variables they

contain are bounded by [0, ul for u > 1. It is unclear, at this point, how such problems can

be solved efficiently. There are reasons to believe, in some cases, that if u is large, rounding

off solutions to LP relaxations would not result in unacceptable infeasibilities.

5.2 Summary

The routing problem with service choices is modelled as a network flow problem with

side constraints. These constraints restrict flows on bundles of arcs having bounds [0,11 to

1. As such, they are often referred to as GUB constraints. The variables in these constraints

are further restricted to take on integral values.

Initial attempts to solve these problems utilized decomposition principles aimed at ex-

ploiting the network flow substructure. To this end, Lagrangian and Bender's decomposition

techniques were used. Unfortunately, the convergence results using these procedures were

far from satisfactory. Since the Lagrangian subproblem has the integrality property, the

best solution obtianed from the Lagrangian relaxation is, at best, as good as that provided

by the LP relaxation. Resolving the duality gap involves addressing the combinatorial

properties of the problem. In the case of Benders decomposition, the master problem is an

integer programming problem which contains GUB constraints. Thus, the computational

savings derived from solving the network flow subproblem is offset by the time required

to solve the master problem. Moreover, the time required to obtain approximate solutions

from the LP relaxation to the master problem increases drastically as the decomposition

progresses. What has become immediately obvious, is that in order to find the optimal

solution, the discreteness of (P) has to be addressed.

The GUB branch and bound was chosen to solve this problem for several reasons. Al-

though the inclusion of GUB constraints makes the problem theoretically intractable, the

LP relaxation solves to integrality for many problems generated. These were realized when

many routing problems with service choices are generated and solved. Thus, there are ample

reasons to believe that, in most cases, the LP relaxations provide a tight bound to the orig-

inal problem. The GUB branch and bound scheme was used because the GUB constraints

are implicitly satisfied as the branching progresses. It makes use of the property that, at

most, one variable in each GUB constraint is basic at any feasible or optimal solution.

This method offers tremendous savings over the single variable branch and bound in terms

of expected computational, as well as worst case performance. While each subproblem is

solved using conventional LP code, additional computational efficiency can be expected if

it is solved using a specialized LP code which handles GUB constraints implicitly. Much

research into solving LP with GUB constraints has resulted in tremendous improvements.

When the LP relaxations failed to yield integer solutions, the GUB branch and bound

is shown to do very well, for several medium sized problems. The results of these tests are

included in chapter 4. Problems which yield integer solutions to LP relaxations are not

included.

The success of the GUB branch and bound is closely related to the nature of the LP

solution. The LP solution, when infeasible, defines a set of cycle flows, at least one of which

is fractional. These are consequences of the conservation of flow and GUB constraints. It

is shown in Chapter 4, that the chances of obtaining infeasible solutions increases as the

integer arcs belonging to the same GUB constraints are distributed so that many cycles

can be easily formed which include arcs from the same set. GUB branching effectively

seeks to break these fractional cycle flows by forcing subsets of fractional variables in a

GUB set to zero, sequentially. Naturally, this might result in another set of infeasible cycle

flows. However, this has not occurred in most cases. This results from the fact that, in

many problems, only a small subset of arcs are responsible for encouraging an optimistic

fractional flow pattern. The GUB branch and bound is quick to identify these subsets, and

then purge them from the network.

The performance of the GUB branch and bound is measured by the number of nodes

generated to find the optimal solution. An estimate of the computational time requirements

can be deduced from the number of simplex iterations required. The efficiency of the branch

and bound is enhanced by a parametric heuristic procedure to find a good solution prior

to branch and bound. The heuristic relies on the idea that the cycle arcs behave like

bottlenecks on the flows through the network. As such, controlling the sum of cycle flows

provide enough penalty to enforce feasibility in many cases. As shown in Chapter 4, this

method is responsible for finding feasible solutions very close to the optimal.

In order to efficiently apply the GUB branch and bound on large scale routing problems

with service choices, the problem size needs to be reduced. In Chapter 3, a network aggre-

gation scheme is formalized to reduce the size of the problem. The aggregation exploits the

temporal properties of the schedule map network. Better lower bounding procedures are

also presented to help in pruning the search for an optimal solution in Chapter 3.

While the success with GUB branch and bound is demonstrated for specific problems in

routing problems with service choices, these experiences can provide useful clues to other

applications that can be formulated as network flow problems with GUB constraints. It

also adds to the list of attempts at solving network flow problems with side constraints and

mixed integer programming problems with GUB constraints.

Bibliography

[1] R. D. Armstrong, P. Sinha and A. Zoltners, The multiple choice nested knapsack model.

Management Sci. 28, 34-43 (1982).

[2] E. Balas and C. H. Martin, Pivot and complement-a heuristic for 0-1 programming.

Management Sci. 26, 86-96 (1980).

[3] J Balintfy and C. Blackburn, General purpose multiple choice programming. Graduate

school of Business Administration report, Tulane university (1979).

[4] R. Barkley, An optimal solution to an aircraft routing problem with multiple departure

times. M.I.T., S.M. thesis, (1968).

[5] E. M. L. Beale and J. A. Tomlin, Special facilities in a general mathematical system

for nonconvex problems using ordered sets of variables. Proc. Fifth Int. Conf. on 0.

R., 447-454.

[6] J. Bean, A Lagrangian algorithm for multiple choice integer programs. Ops.Res. 5,

1185-1193 (1984).

[7] D. Benbasset, Minimal aircraft flows in a schedule network with bundles. M.I.T., M.S.

thesis, (1970).

[8] L. Bodin, B. Golden, A. Assad and M. Ball, Routing and scheduling of vehicles and

crews. Computers and OR 10, (1983).

[9] S. G. Chang and D. W. Tcha, A heuristic for multiple choice programming. Comput.

Ops. Res. 12, 25-37 (1985).

[101 S. Chen and R. Saigal, A primal algorithm for solving a capacitated network flow

problem with additional linear constraints. Networks 7, 59-79 (1977).

[11] G. B. Dantzig and R. M. Van Slyke, Generalized upper bounding techniques. J. Com-

put. System Sci. 1, 213-226 (1967).

[12] J. Desrosier, F. Soumis, and M. Desrochers, Routing problem with time window by

column generation. Networks 4, 59-79 (1984).

[13] M. Fisher, The lagrangian relaxation method for solving integer programming prob-

lems. Management Sci. 27, 1-18 (1981).

[14] J. J. H. Forrest, J. P. H. Hirst and J. M. Tomlin, Practical solution of large mixed

integer programming problems with UMPIRE. Management Sci. 20, 736-773 (1974).

[15] R. S. Garfinkel, Branch and bound for integer programs. Combinatorial Optimization,

edited by N. Christofides, A. Mingozzi, P. Toth and C. Sandi, 1-20 (1978)

[16] J. Gauthier and G.Ribiere, Experiments in mixed integer linear programming using

psuedo-costs. Math. Program. 12, 26-47 (1977).

[17] F. Glover, Convexity cuts for multiple choice problems. Discrete Maths 6, 221-234

(1973).

[18] Glover and Klingman, Mathematical programming models and methods for the journal

selection problem. Ops.Res. 21, 144-155 (1973).

[19] F. Glover and J. Mulvey, Network relaxation and lower bound for multiple choice

problems. INFOR 20, 385-393 (1982).

[201 M. D. Grigoriadis, A dual generalized upper bounding technique. Management Sci. 5,

1-18 (1971).

[21] J. K. Hartman and L.S. Lasdon, A generalized upperbounding method for multicom-

modity flow problems. Networks 1, 333-354 (1972).

[22] W. C. Healy, Multiple choice programming. Ops.Res. 12, 122-138 (1964).

[23] R. Heldt, A solution algorithm for the aircraft routing problem with multiple departure

times. S.M. thesis, M.I.T. (1969).

[24] L. S. Lasdon and R. S. Terjung, An efficient algorithm for multi-item scheduling. Ops.

Res. 19, 998-1022 (1971).

[25] L. Lasdon, Optimization theory for large systems. (1970).

[26] A. Levin, Some fleet routing and scheduling problems for air transportation systems.

M.I.T., FTL report no R68-5, (1969).

[27] T. Magnanti, Combinatorial Optimization and vehicle fleet planning: Perspectives and

prospects. Networks 11, 179-213 (1981).

[28] P. Mevert and U. Suhl, Implicit enumeration with generalized upper bounds. Anns.

Discrete Maths 1, 392-402 (1977).

[29] G. Sadiq, Multifleet routing problem. M.I.T., M.S. thesis, (1978).

[30] L. Schrage, Linear Interactive Discrete Optimizer(LINDO). University of Chicago (1982).

[31] J. Shapiro, A survey of lagrangian techniques for discrete optimization. M.I.T., Tech-

nical Report no 133, OR Center (1977).

[32] R. Simpson, Scheduling and routing models for airline systems. M.I.T., FTL report

no. R68-3, (1969).

[33] P. Sinha and A. Zoltners, The multiple choice knapsack problem. Ops. Res. 27 (1973).

[34] D. J. Sweeney and R. A. Murphy, Branch and bound method for multi-item scheduling.

Ops. Res. 29, 853-864 (1981).

[35] J. A. Tomlin, An improved branch and bound method for integer programming. Ops.

Res. 19, 1070-1074 (1971).

[36] R. D. Young, Hypercylindrically-deducted cuts in zero-one integer programs. Ops.

Res. 19, 1393-1405 (1971).

100

Appendix A

Branch and Bound

This appendix presents a review of branch and bound for the minimization problem,

and defines related terms used in this thesis.

Definitions

1. A Search tree is an acyclic directed tree with a root node from which all nodes can

be reached via a unique path. Let 0 be the index of the root node.

2. Node j is referred to as a descendant of node i, if a path exists from i to j. A node

with no descendant node is called a terminal node.

3. A node i is called a parent of j if there is arc (i,j) which connects i to j. j is called

the child of i. Except for node 0, each node has a unique parent, but in general more

than one child.

4. For an optimization problem., F(.) denotes its feasible solutions.

5. For an optimization problem S', the optimal objective value is v'.

6. Let P' be a relaxation of S', whose optimal objective value is zi and z; < v". The

solution of P' need not be feasible in S.

Given an optimization problem, S, a series of problems SO, S,...,S are generated

such that they include all possible solutions of S, or F(S0) U F(S) --- ,uF(Sk) = F(S).

101

The optimal solution to S is the best solution found by solving Si for i = 0,1, ---, k. If

each optimization subproblem corresponds to a node in the search tree, then the tree is

referred to as a direct search tree. The direct search procedure involves evaluating all nodes

in the direct search tree in order to find the optimal solution. If, in addition, the children

of i determines a set of subproblems SI, j E child of i, such that F(S') 2 F(Si) and

Use child of Si = S' for all i, then the tree is referred to as a branch and bound tree. Each

of the arcs emanating from node i corresponds to a constraint restricting S' to a subproblem

S'. Although not necessary in many cases, S, j E child of i, is a partition of S'. The

collection of subproblems S' is known as a separation of S'. Note that F(S) = F(S0).

Finding the optimal solution in a branch and bound tree constitutes the discussion which

follows.

Finding The Optimal Solution In A Branch And Bound Tree

In general, the optimization problem S is difficuL to solve. As a result, S' is also

difficult. Thus, at each node i, a relaxation P' is solved instead. As an example, if S' is an

integer programming problem, P' can be selected as its LP relaxation. The following rules

relate to finding an optimal solution to S by solving a series of problems P' corresponding

to S' at node i. The subproblems S' generated, must ensure that solving P' finds a feasible

solution that is optimal in S . One way to effect this is to make sure that solving P' at the

terminal nodes finds all feasible solutions to S.

Let zba" be the best feasible solution known for S. zabe' is called the incumbent solution.

A node i is said to be fathomed if evaluating nodes j which are descendants of i, will not

yield a better solution than what is available. Node i is fathomed if:

1. Pi is feasible.

2. z; > zb"*.

102

If Pi is feasible, then all nodes j which are descendants of i, need not be evaluated

because zi = v' i vi for all j. vi < vi because F(S') 2 F(S'). zb"' is updated if z; < za"'.

Condition 2 includes the case when P' is infeasible. In this case, zj = oo. Furthermore,

if zj 2 zb"t, vi > zi and vi > z"*. Since any descendant node j yields vi > vi , they need

not be considered.

The set of nodes that are not fathomed are called the set of live nodes. A better

incumbent obtained through fathoming via condition 1 is used to fathom other nodes in

the set of live nodes. This process is called killing live nodes. The quality of the relaxation

or lower bounding determines how effective nodes can be killed.

Based on the information provided above, a branch and bound algorithm is provided as

follows:

Branch and Bound algorithm

Step (0): Initialization: Begin at live node 0, zbe"t ozo = -00. Go to Step (1).

Step (1): Select a live node i, if none, go to (6). If P" is solved, go to (2), else, go to (3).

Step (2): Branching: Choose a separation of Si which determines the childs of node i. Put

all childs of i in set of live nodes. Remove i from list of live nodes. Go to (1).

Step (3): Solve Pi. If P' is unbounded, v' = -oo go to (1). Otherwise go to (4).

Step (4): Fathoming (Condition 1). If solution to P' is not feasible in S', go to (5). Oth-

erwise, z; = vi and i is fathomed, remove i from list of live nodes. Let zbest

min{zbet, zi}. Go to (5).

Step (5): Fathoming (Condition 2). Any node i, such that z 2 zb"* is fathomed, remove i

from list of live nodes.

103

Step (6): Termination. If zbnt = oo, no solution exists. If zb"* < oo, feasible solution

corresponding to ze is optimal.

Issues Relating to Branch and Bound

The efficiency of the branch and bound depends on:

1. Node Selection (Step 1).

2. Branching (Step 2).

The live node selected should correspond to one that yields the greatest potential of

fathoming. Fathoming by condition 2 can result in an improved incumbent, whereby other

live nodes can be killed (Step 5). Branching at node i involves 2 steps, selecting the

appropriate restrictions for S', and forming subproblems based on such restrictions. For

example, in single variable 0,1 branch and bound, a fractional variable is selected, whereby

2 subproblems are created, one corresponding to setting the variable to zero, and the other

to one. Variable selection has significant impact on the efficiency of the branch and bound.

Extensive experiemental rules for node and variable selection for the single variable branch

and bound can be found in Forrest [14] and Gauthier [16].

104

Appendix B

Solving LP with GUB constraints

This appendix shows how the LP relaxation of the routing problem with service choices

can be solved efficiently.

Method of Dantzig And Van Slyke

For ease of exposition, consider the LP relaxation of the the routing problem with service

choices, ignoring the upperbounding on variables X, U.. The resultant problem is,

min CX,+CX,

N.X, + NX, = 0 (m rows)

BX, + Iy = 1 (p rows)

(X,X,, Y) > 0

after addition of slacks variables Y, to convert the G UB constraints to equality form. Here-

after, I refer to the identity matrix. Assume that there are m conservation of flow constraints

and p GUB constraints. The important thing to note is that each element in the last p rows

is zero or one, and each column of these rows contains at most one non-zero entity. Due

to this special structure, an (m+p) x (m+p) basis matrix B can be constructed so that a

p x p identity submatrix I appears in the lower right corner. R, Sand T have conformal

105

dimensions. That is, B can be written as:

R m rows
T I p rows

Now, solving the LP with the above basis matrix involves iteratively solving the following

2 systems of equations:

1. uB = Cs

2. Bd =a

where,

" CS , Ci. = cost coefficients of basic and nonbasic variables

" a = column of nonbasic matrix X

Equation 1 is used to establish optimality by finding the simplex multipliers u, and

checking for dual feasibility, uJV 5 Cj, for the given primal basis B.

Equation (2) is used to select the basic variable to leave, given that a non basic variable

corresponding to a is introduced. (2) expresses a in terms of the basis vectors, to find

weights d. It is also used to check for unboundedness of solutions. Typically, the matrix

B - is used to solve equations (1) and (2) and gets updated'. The main idea here is that

the working basis B-I is of size (p+m) x (p+m). In what follows, it is shown, how an m

x m working bais can be derived to find u and d.

Define a (p+m) x (p+m) lower triangular matrix L,

L = [! 0
I-T I

where I is a p x p identity matrix. Then,

BL = I~Z S]

IUB = CS : = B-'Cs
Bd = a => d = B~1 a

106

where Z = R - ST. Note that Z is a m x m matrix. It is now shown how Z-1 can be used

to derive u and d. For convenience, let (y', yP) denote the first m and last p components

of vector y.

Finding u

From equation 1:

uB=C8

= uBL = CBL

=(u, UP)]= ((C), (CB)P) [I

=> uZ = (CO)" - (CS)PT

U"S + UP = (CO)P

=> = [(Ca)" - (Cs)PTZ~'

up = (C)' - u"S 1

Thus, u = (ur, uP) can be calculated knowing Z-1.

Finding d .

To find d, first find w = (w", wP) by solving the following system of equations:

(BL)w =a (3)

Then, by substitution,

d = Lw (4)

since

Bd = a

107

Expanding equation (3):

iZ S w" a"'
O 1 WP aP

Zw" + Su? a"w[g= aP
wmi= Z~1[a" - SwPI
wP =a=

Now, Equation (4) implies that

d"=w"

dP wP - T w"

therefore,

d' = Z-1[a" - SwP|

dP = aP - T d*

Therefore, d = (d", dP) can be determined from Z-1. Note that since there is one redundant

constraint in the conservation of flow constraints, the size of the basis Z-1 is equal to the

number of nodes minus 1.

108

Method of Dantzig Wolfe

The following LP:

minCv,, + CX,

NX, + NX, = 0

BX, 5 1

0 5 X, 5 U.

o < X 2 < 1

is solved using Dantzig Wolfe decomposition, treating the network flow constraints:

NX, + NX, =0

0 5 X, :5 U,

0 -< X, < 1

as the subproblem constraints, and

BX, < 1

as the complicating constraints.

Suppose, K subproblem proposals {(X, Xe), , (Xf, X")} are available. (Xt,, X,)

for i = 1, 2, - , K, satisfies network flow constraints.

Before presenting the pair of subproblem and restricted master problem, a few terms

are defined.

Let,

Pi =C,,X +C.X: J = 1,2,---, K

S= B;X' i = 1, 2,- -,p

where B, denotes the it h row of B and p the number of rows in B. Then Pj denotes the

contribution of proposal J, and rf the consumption of the ith resource using proposal J.

109

The restricted master corresponding to K problem proposal is (DW)K expressed as:

min PJAJ Dual variables
J=1

K

Zre A 1 51 for i=1,2,---,p 1-li
(DW)K J=1 S

K

AXr = 1 OK
J=1

A. > 0 J = 1,2,---,K

where HV OK are dual variables corresponding to the ith resource constraint A, and the

convexity constraint, respectively. Given 1HK = (HliC, , -..., H,), the following subprob-

lem:
VK = min CX, + (C. - HKB)X.

NX, + NX, =0

(SP)K BX, 1

0 < X, :5 U,

0 < X, < 1

is solved as a capacitated minimum cost flow circulation problem The solution is (Xr+1, XS+1

If (vK > aK),then the solution is optimal. Otherwise, a new column, K + 1 is generated

from solution to (SP)K and appended to the restricted master problem, to get (DW)K+l,

which is then solved. The column generated is:

[PK+1, rf+1, r2, - 5 ,+

whose components are obtained as described previously. The process iterates until (VQ >

UQ) at iteration Q.

It is shown that the LP relaxation of the routing problem with service choices reduces

to solving a series of capacitated minimum cost flow circulation problems, and restricted

master LP problems having p rows where p = number of GUB constraints.

110

Appendix C

Applying Lagrangian relaxation to
solve the routing problem with
service choices

This appendix shows:

1. How the Lagrangian relaxation is applied to solve the routing problem with service

choices by relaxing the GUB constraints.

2. That the optimal dual variables of the Lagrangian dual corresponding to the La-

grangian relaxation above, is obtained by solving the LP relaxation of the routing

problem with service choices.

Solving the Routing problem with service choices using La-
grangian relaxation.

From section 3.1, the Lagrangian relaxation of the routing problem with service choices,

obtianed by pricing out the GUB constraints results in two problems:

111

The Lagrangian subproblem L(W):

z(L(W)) = min CX, + W(B + C.)X, - 1W

NX, + NX, = 0

0 - X, :5 U,

0:5 X, < 1

where, X, E {0, 1} is replaced by 0 5 X, < 1, without affecting the solution of L(W).

The Lagrangian dual(Master) problem (DL) is:

max z(L(W))
w>o

Since the feasible region of L(W) is bounded, let K = {(X,XI)|t = 1,2,- - ,T} be the

set of extreme points which encloses L(W). Then (DL) can be written as

max {CXt +W(B+C)X - 1W t = 1,2,... ,T}

Let A = CXt + W(B + C,)Xt - 1W , problem (DL) can be expressed as:

max A

A 5 C,t+W(B+ C,)Xi - 1W t =1,2, --- ,T

W > 0

whose decision variables are A and W. Since T is large, solving (DL) is difficult. (DL) can

be solved iteratively given a subset of extreme points J < T.

Given a subset of extreme points J, the resultant restricted master proble (DL)' is

solved1 :

max A

(DL)'{ A<CXt+W(B+ C,)Xt,-1W t=1,2,...,J

ILW > 0 t

'(DL)j corresponds to instances of (SDL) in chapter 3

112

The solution yields (AJ,W'). Given, W', L(W") is solved to yield z(L(W')) whose

solutions are (XJ+,X-+'). If z(L(W')) = A', the solution (X1',X'+') is optimal to

the Lagrangian relaxation. Otherwise, a constraint A < CXi+1 + W(B + C,)X-+1 - 1W

is appended to (DL)'. The process iterates by setting J +- J + 1. Note that the linear

constraints in (DL)' represent a lower envelope corresponding to intersections of linear

functions. The resultant function, L(W), is a concave and continuous but nondifferential.

As such, a psuedo gradient approach, called subgrdient optimization, can be used to find

W and A. For large problems, this approach is generally taken, and is described in section

3.1.

113

The optimal dual variables are found by solving the LP re-

laxation, (PO)

The LP relaxation of (P) is:

min C,X, + CX,

NX, + NX, = 0

BX, < 1

0 < X, : U,

0 5 X, < 1

Dual variables

Solving (P0) yields the following variables, II, ca, #1, #2 corresponding to the conservation

of flow constraints, the GUB constraints and the bounding costraints -X, 2 -U and

-X. - -1 respectively. Conversely, the dual variables can be found by solving the dual

problem of (P):

max - al - 1U,- #21

IIN, - #1 C,

UTN, - ctB - #2 C.

a, #13 #2 > 0

It is now shown that W = a solves (DL). Recall that (DL) is:

max z(L(W)) = max
w>o w>O

min C,,X,, +W(B + C,)X, - 1W

NX,u + NX, = 0

0 X, < U,

0 < X, < 1

114

Since, { } is an LP, the dual2 exits, and (DL) can be written as:

max - W1 - #1U, - #21

HN. -6 1 5 C
max
W>o UN, -. 2:5 C.+W B

i 02 > 0

max - W1 -,#1U, - #21

HN, - #61:5 C.

flN. -WB - 62:5 C,

W, #1 #2 0

Solving (DL) is thus equivalent to solving the-dual of (PO). The optimal value of W is

thus equals to a. Conversely, the optimal value of W = a can be obatined by solving (PO),

where a corresponds to the optimal dual variables of the GUB, or priced out, constraints.

This result always hold whenever the Lagrangian subproblem can be solved as an LP

without affecting its solution. This is known as the integrality property of the dual.

115

2Let IL,#IA be defined as before

Appendix D

Applying Benders method to solve
the routing problem with service
choices

This appendix shows how Benders decomposition is applied to solve the routing problem

with service choices.

From section 3.1, the Benders subproblem is R(X,) given by:

C,X, + min CX, Dual variables

NX, =-NX, IT

0 5 X, 5 U, #81

where Xp E Q = {X.IBX. 5 1 and X. E {0,1}}.

Since R(X,) is an LP, its dual, DR(Xp), is given by:

SC.X + max - H(NX,) - #,U,

DR(X,) HIN, - #1j < C,

1 >0
Note that if DR(X,) is infeasible, R(X,) is also infeasible since it is bounded. However,

since the feasibility of DR(X,) does not depend on X,, this means that for all X,, R(X,)

is infeasible, or (P) is infeasible. Conversely, if DR(X,) or R(X,) is feasible, then, a

feasible solution can be found given by (X,, X.) where X, = X, is the solution to R(X,) is

116

unbounded, then R(X,) is infeasible, from the duality theory. Let H = {(, I,)|N, -#81 <

C., # ; 0}, the feasible region of DR(Xp), consists of a finite number of extreme points,

y7, (1 = 1,2, ---, L) and extreme raysi Vm, (m = 1,2,... , M). Now, if for some X,, there

exists m such that v m b > 0, where I is the vector (-N.X, - U,), then the objective value

of DR(X,), hb for h E H is unbounded. Conversely, if the maximum of h x b for h E H is

unbounded, then for some X,, there is a ray V" such that vmb > 0.

Thus, to ensure that DR(X,) is not unbounded (which implies that (P) is infeasible, as

described before),

v"b < 0 M= 1,2,---,M

This provides the necessary and sufficient conditions on X, to permit feasible solutions to

the problem (P). Assuming that (P) is feasible, DR(X,) can be written as:

max y7b

0m <0 m=1,2,---,M

yII, Vmb are known as Benders cuts.

The Benders master program, (RM) can then be written as:

C,X, + max y I
mx

vb <0 m= 1,2,---,M

Letting

r = CX + max y
1=1,2,--, L

'Extreme rays of DR(X,) can be enumerated by finding all extreme rays of TIN. -i ; 0, >I 0. Extreme
rays can also be obtained from the nonbasic columns when DR(X,,) is solved, yielding an unbounded
solution.

117

problem (RM) can be rewritten as:

nun r

r > CIX, + yrb I =1,2, -- , L

0 -2 V"' m = 1,2,--., M

Note that X, E Q are integer constraints. This means that (RM) is an integer programming

problem with one continuous variable r. The Benders decomposition is described as follows:

Step 0 Ititialization. Select X, E Q and z6 (z'"""), arbitrarily large(small). Go to 1.

Step 1 Solve LP. Solve the LP:

max - fl(N.X,) - piU,

IN, - #1 : C,

1 > 0

This yields an optimal extreme point yl or extreme ray v'. If y' is obtained,

set z"O +- min{zU , CX, + y!b}. Go to 2.

Step 2 Solve IP. Solve the integer program.

mn r

r > CX, - yl'(NX,) - y2U, 1 = 1,2,---, A

0 2 v(NX,) - v'U,=12,-,

1 > BX,

X, E {0, 1}

where y = (yly) and v' = (v', v4) and A , B includes the number of ex-

treme points and rays found from Step 1. z"' +- objective value r, and X, +-

optimal value of X.. Go to 3.

118

Step 3 Termination test. If z'"mu < zli, go to Step 2. Otherwise, z'""" = zbg, and X, is

optimal. In this case, let the solution of R(X,) be X9, then, (X,, Xq) is the optimal

flow values with an objective vlaue of CX, + C.Xq.

119

