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INTEGRATION OF ENGINEERING MODELS

IN COMPUTER-AIDED PRELIMINARY DESIGN

by

RONNIE M. LAJOIE

Abstract

The problems of the integration of engineering models in computer-aided preliminary

design are reviewed. This paper details the research, development, and testing of modi-

fications to Paper Airplane, a LISP-based computer program, designed to address these

integration problems. Paper Airplane integrates engineering models by treating them like

a set of simultaneous non-linear functions and numerically solving for them as such. The

original version of Paper Airplane could only handle engineering models represented by

single equations and simple LISP functions; that is, multiple-input single-output (MISO)

functions. The modifications to Paper Airplane were to allow it to handle engineering

models represented as complex LISP functions and external computer programs as well;

that is, multiple-input multiple-output (MIMO) functions. The research was divided

into three tasks: (1) to get Paper Airplane to communicate with an external computer

program (without changing the computer program), (2) to get Paper Airplane to numer-

ically solve a non-linear MIMO function, and (3) to get Paper Airplane to numerically

solve a set of simultaneous non-linear functions made up of MISO and MIMO functions.



Acknowledgments

I would like to acknowledge the contributions to this work of the following individuals,
and express to them my sincere gratitude and appreciation:

Dr. Antonio Elias, my first thesis advisor, for starting this wonderful project and for
giving me the enthusiasm to keep it going; Dr. Robert (Bob) Simpson, my second thesis
advisor, for picking up the pieces when Antonio had to leave and for never complaining;
Dr. Alan Mitchell, for guiding from afar and for keeping the research properly focused;
Boeing Aerospace, for funding this research and for giving me one good year of real
experience; Dr. Miller and Dr. Dudley, M.I.T. professors, for providing information
invaluable to this research; Dr. John Pararas and Lyman Hazelton, for knowing how to
do everything I 'ouldn't, and for explaining it to me so that I could; Mark Kolb and
Thanasis (Tom) Trikas, my colleagues, for their advice and assistance on everything from
research and homework to an occasional game of ROGUE or UNIVERSE; the creators
of IATEX and DEC-SPELL, for allowing me to sharpen my writing skills; Robert (Bob)
Bruen, for tolerating me and my wild cans of Diet Coke; Dave, Jim, Mick, Michele,
and Randy, my college chums, and Joanna, Barbara, Ruthanne, and Clark, for those
occasional bits of social life I could rarely afford.

I would especially like to thank Dr. Marc Whitlow, my roommate, for putting up
with me and my stupid jokes, and for laughing at them. Your company has restored my
faith in roommates.

Finally, I would like to thank my family, for their love and support throughout this
year and a half, and for their understanding that research and thesis writing takes prece-
dence over visits and Christmas shopping.

Paper Airplane logo designed by Mark Kolb.

RAJ.



Contents

Abstract i

Acknowledgments iii

1 Introduction 1

2 The Paper Airplane Code 7
2.1 The Definition of Paper Airplane . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Terminology of Paper Airplane . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Usage of Paper Airplane . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The MISO Design Set Benchmark . . . . . . . . . . . . . . . . . . . . . . 15
2.5 The Code of Paper Airplane . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 The External Code Interface 21
3.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 MIMO Design Functions 30
4.1 Simple MIMO Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Research . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . 30
4.1.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 General MIMO Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 The Numerical Solvers 44
5.1 The Design Function Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 The Loop Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Thoughts on Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . 57

EE P.A]



6 The Aerospaceplane Design Test 59
6.1 Research ........ ..................................... 59
6.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Summary and Conclusions 77
7.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A The Test Design Sets 81
A.1 The MISO Design Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 The XCODE Design Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.3 The MIMO Design Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B MISO Design Set Source File 85

C MISO Design Set Solution 92

D The "RUN-PROGRAM" Code 98

E Vector Equation Solving Code 100

F MIMO Design Set Solution 102

G The NASP Design Set 109

H NASP Aerodynamics Code 115

I NASP Performance Code 125

Glossary 136

Bibliography 143



List of Figures

2.1 Example design variable and design function declarations. . . . . . . . . . 12
2.2 Example tableau as it first appears. . . . . . . . . . . . . . . . . . . . . . 13
2.3 Example tableau after design set processing. . . . . . . . . . . . . . . . . . 16
2.4 The initial design point of the MISO Design Set benchmark . . . . . . . . 17
2.5 The computational agenda to find the MISO Design Set benchmark. . . . 19
2.6 The final design point of the MISO Design Set benchmark. . . . . . . . . 20

3.1 .Data passing technique used by Boeing's Preliminary Design Tool. . . . . 23
3.2 The SYS$CREPRC definition macro and test function. . . . . . . . . . . 24
3.3 The modified design function "DF-4." . . . . . . . . . . . . . . . . . . . . 26
3.4 Example display of Design Function Exerciser after processing. . . . . . . 28

4.1 The agenda for the solution to the design path of the MIMO Design Set. . 35
4.2 The initial design point for the "inverse engineering" problem. . . . . . . 40
4.3 The agenda for the solution to the "inverse engineering" problem. . . . . 42
4.4 The final design point for the "inverse engineering" problem. . . . . . . . 43

5.1 The Newton-Raphson technique for locating zeros. . . . . . . . . . . . . . 45
5.2 Comparison of methods with solution near the lower limit . . . . . . . . . 47
5.3 Comparison of methods with solution near the upper limit. . . . . . . . . 49
5.4 The logarithmic distribution method for solving loops. . . . . . . . . . . . 51
5.5 Comparison of methods for linear loop branches. . . . . . . . . . . . . . . 53
5.6 Branches of drag coefficient versus gross take-off weight. . . . . . . . . . . 54
5.7 Branches of minimum landing weight versus cruise velocity. . . . . . . . . 55
5.8 Comparison of methods for non-linear loop branches. . . . . . . . . . . . . 56

6.1 Geometry of the aerospaceplane. . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Drag Coefficient vs. Lift Coefficient. . . . . . . . . . . . . . . . . . . . . . 65
6.3 Lift-to-Drag Ratio vs. Lift Coefficient (150000 ft). . . . . . . . . . . . . . 66
6.4 Computational agenda for Second Stage testing. . . . . . . . . . . . . . . 70
6.5 Computational agenda for Third Stage testing. . . . . . . . . . . . . . . . 76

P.A]



List of Tables

A.1 Design Variables comprising the MISO Design Set. . . . . . . . . . . . . . 82

G.1 Geometry Design Variables comprising the NASP Design Set. . . . . . . . 110
G.2 Other Design Variables comprising the NASP Design Set. . . . . . . . . . 111

EE P.Aj.



Chapter 1

Introduction

In the manufacturing environment, after a product is built, it is run through a series

of tests: structural tests, acoustic tests, performance tests, thermal tests, safety tests, and

many others; this is called "Product Testing." In the engineering environment, before a

product is built, it is run through the same tests to decide whether or not the product

should be built; this is called "Preliminary Design." Preliminary design is what takes an

idea and possibly turns it into a blueprint for a product.

Representation of the Idea

Since the product is only an idea during preliminary design, an alternative representa-

tion of it must be found. This representation comes in the form of a mathematical model.

A mathematical model of a simple metal screw, for example, must contain information

on its geometric properties, its structural properties, its thermal properties and its elec-

trical properties. Attach this screw to a metal plate and the mathematical model must

not only include the aforementioned properties of both the screw and plate, but also the

interaction of those properties between the two. Attach this plate to an avionics box and

the mathematical model becomes very complex. Attach this avionics box to the cockpit

of a commercial jetliner and the mathematical model becomes extremely complex.

To simplify the mathematical model, it is separated into many groups of components,

or sub-systems, using a hierarchy similar to the one followed above. To simplify the

mathematical model even more, each component model is further separated into groups

according to its properties. Instead of one large and extremely complex mathematical

P.A.



CHAPTER 1. INTRODUCTION

model, preliminary design thus deals with many small and simpler sub-models. These
sub-models are commonly referred to as engineering models, since these are the types of
mathematical models an engineer usually deals with. Dividing the mathematical model
into many engineering models also has the advantage that some engineering models of

the idea may be common to other ideas already transformed into products.

The engineering models, depending upon on their own level of complexity, are phys-
ically represented by single equations, by sets of equations, and by computer programs.
They are stored on magnetic tape and hard disk, in textbooks and notebooks, and on
scraps of paper and piles of computer print-out.

The Problems with Engineering Models

In an ideal engineering environment,

1. The engineering models of an idea would be available in several different layers of
complexity, ranging from a conceptual level to an advanced level of design.

2. At each level of design, there would be engineering models of that level's complexity
to account for all parts of the proposed product and all of their properties. (Even
though a structural model of an aircraft wing at the preliminary design level rarely
includes the rivets and joint connections, the model should nevertheless account for
them, even if it means merely adding some structural efficiency factor.)

3. The information on the proposed product would be stored in one secure central
location and referenced by all the engineering models involved. This would insure
that, for example, all engineering models requiring geometry information would
acquire the same geometry information.

In the real engineering environment, however,

1. The engineering models of an idea are not always available in several different layers
of complexity. For example, thermal models at the conceptual design level usually
do not exist and their properties are usually ignored until the idea enters advanced
preliminary design.

2. At each level of design, there are not always engineering models of that level's
complexity to account for all parts of the proposed product and all of their proper-
ties. Instead, the missing engineering models and the information they contain are
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ignored (as mentioned above) or engineering models from more complex levels of

design are substituted for the nonexistent simpler ones. This could be worse than

ignorance since it brings unnecessary detail into the design at that level. It also can

lock the design prematurely before all the degrees of freedom that a simple level of

design has to offer are analyzed.

3. The information on the proposed product is scattered all over a company. The in-

formation resides in the company's main computer, in engineers' personal computer

files, on notepads on engineers' desks, and on blueprints on drafters' tables. The

time delay in acquiring needed information often results in an engineering model us-

ing assumed, and often conflicting, information. Wrong information can propagate

throughout the design before it is finally detected and, expensively, corrected.

Part of the problem has been the enormity of the task. To correct Problems 1 and 2,
more engineering models would have to be created; however, this would add to Problem 3.

Making sure that many engineering models, scattered throughout a large company, never

have conflicting information is an impossible job for a human being. Adding more hu-

man beings to the job requires one more human being above them to make sure that

they communicate with each other. Most companies cannot afford either the manpower,
money, or time to do this, thus business continues as usual.

A Computerized Solution

With the advent of smart computers and even smarter computer programmers, there

may finally be a cost-effective means to monitor and handle the information engineering

models require and produce and to insure that the design never has conflicting informa-

tion.

Recent developments in computer technology have created engineering workstations,
powerful cousins of personal computers. These new computers give the engineer the

power of a large computer on a desktop. This, of course, means nothing if the engineer

still has to write down the results or make a hard-copy to pass along design information.

Other recent developments in computer technology and in communications technology

have created very high speed networks that, once linked to several computers, provide

instant communication between them. Even now, networks linking computers speed data

across the country in a matter of minutes when it used to take days by mail and even by

person.
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Linking together engineering workstations is one thing, linking together engineers

and their engineering models is another. The former is a matter of computer hardware;

the latter, of computer software. The purpose of computer software is to do the same

thing a human could do only faster, and repeatedly without adding mistakes. High-

level computer programming languages, especially the object-oriented ones, now have

the capability to monitor and handle design information between engineering models

quickly and accurately. Computer databases now have the capability to house all the

design information in one secure location plus allow for fast information storage and

retrieval. A computer-based engineering model information sharing system (CEMISS) is

now a cost-effective prospect to the engineering community.

The Paper Airplane Project

The Paper Airplane Project is the first one of its kind to apply this CEMISS idea
to aerospace engineering. Although other computer programs have been developed that

can share information between similar engineering models, they have been limited to
certain types of products, such as general aviation aircraft [5] and naval airships [11], or
to certain types of properties, such as NASTRAN 1 and MATRIXx. 2 Neither group could
pass information on to any random engineering model. The goal of the Paper Airplane
Project is to do just that.

The project was begun by Dr. Antonio Elias [3], former professor of Aeronautics and
Astronautics at the Massachusetts Institute of Technology, in 1981 with a LISP-based
code that could solve a simple system of design equations. Prof. Elias, working together
with Mark Kolb ([7] and [8]), then a Master's candidate, later made Paper Airplane
a user-friendly interactive test-bed for general systems of linear and non-linear design
equations. Although Paper Airplane was designed with aerospace engineering in mind,
it was not designed for aerospace engineering applications only and therefore could be
used for any systems design work.

Paper Airplane thus linked engineering models, as long as each model was represented
by a single equation, a multiple-input single-output (MISO) function. Given a complete
set of these equations and the parameters they related, Paper Airplane could find nu-

'NASTRAN is a finite-element modeling and analysis program for dealing with the structural and thermal
properties of a component.

2MATRIXx is a mathematical modeling and analysis program for dealing with the dynamics and control
properties of a component.
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merical solutions whereby values assigned to the parameters would allow them to satisfy

all the equations.

Modifications to Paper Airplane

Although Paper Airplane worked well with equations, it could not work at all with

computer programs, and thus it did nothing to help the engineer having engineering

models represented by computer programs. Without such a capability, Paper Airplane

would remain an academic research tool and never graduate to a professional engineering

tool. The author joined the project to solve this problem, as he was returning to school

after working towards similar goals for Boeing Aerospace.

Simply, the objective was to make Paper Airplane work with computer programs, or

more generally, with any multiple-input multiple-output (MIMO) function. The research

and development was scheduled for the entire year of 1986. The author joined the project

in August 1985 and spent the rest of the year getting familiar with M.I.T., the Paper

Airplane Project, its staff, its history, and the Paper Airplane code itself. During this

period the plan of action for the research was laid out.

The research was initially divided into two parts:

1. Development of an external code interface capability to allow Paper Airplane to

pass information to and from a computer program as easily as passing information

to and from an internally-defined equation.

2. Development of a MIMO design function capability to allow Paper Airplane to

solve a multiple-input multiple-output function as easily as solving an equation or

other multiple-input single-output function.

The author's research at Boeing had already yielded a satisfactory method to solving

Part 1; indeed, a solution was found that required no internal changes to the Paper

Airplane code. Part 2 was a different matter completely. It required as many hours

of thought as hours of programming changes to the Paper Airplane code. The success

of the MIMO design function capability modification was due in a large part to the

advice received from Prof. Elias [4], Mark Kolb [9], and mathematics professor Richard

Dudley [2], and to the information found in a text on numerical methods [1].
One major outcome of this research has been the author's deeper appreciation of the

power and potential of mathematics applied to aerospace engineering.
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Outline to this Paper

The rest of this paper gives the details of the research that was required, and of some

of the research that was not, but was worth doing nevertheless.

Chapter 2 gives the reader an overview of Paper Airplane, and establishes the bench-

mark to which all modifications to Paper Airplane were compared.

Chapter 3 details the research, development, and testing of the external code interface

capability modification to Paper Airplane.

Chapter 4 details the research, development, and testing of the MIMO design function

capability modification to Paper Airplane, which included the creation of the

Paper Airplane MIMO Solver.

Chapter 5 details the modifications made to Paper Airplane's other Numerical Solvers,
the Design Function Solver and the Loop Solver, to improve their efficiency.

Chapter 6 details the creation and use of the NASP Design Set for the preliminary design

of a national aerospaceplane, which served as a major test of Paper Airplane's

modified capabilities.

Chapter 7 gives the reader a summary of the research and presents conclusions.



Chapter 2

The Paper Airplane Code

This chapter describes Paper Airplane, a computer program modified under this

research. The information that follows was taken from the Paper Airplane User's Manual

[10], written by the author as part of his research into the Paper Airplane Project. This

information has been updated to include the results of this research; therefore this chapter

is really a summary of the final product. New terms will appear in boldface where they

are defined. These terms also appear in the glossary at the end of this paper.

2.1 The Definition of Paper Airplane

Paper Airplane is a computer-aided Preliminary Design Tool (PDT); that is, a computer

program designed to aid an engineer in the design of an aircraft or any other system

capable of being described by a set of scalar parameters. Superficially, Paper Airplane is

a "simultaneous calculator"; that is, a calculator capable of determining the values of a

set of parameters satisfying a set of linear and non-linear simultaneous functions. In this

sense, Paper Airplane might be viewed as an "engineer's spreadsheet" program, similar to

TK!Solver [16]. But while TK!Solver can only handle simple algebraic expressions, Paper

Airplane can also handle complex multiple-input single-output (MISO) functions such

as numerical integrators, and complex multiple-input multiple-output (MIMO) functions

such as computer programs.

The Paper Airplane Project has focused on creating powerful computer abstractions

capable of representing many different elements of an engineer's design knowledge. The

long-term goal of this research is to develop a symbolic computational environment con-

P.A.
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taining all the elements that an aircraft or systems designer normally manipulates - in

his or her head, up until now.

2.2 The Terminology of Paper Airplane

In order to explain how Paper Airplane works, some basic terms need to be defined

first. (Author's note: Most of the terms below were defined long before the author joined

the project. Thus for the sake of continuity in Paper Airplane documentation, the author

did not change the terms themselves, but hopefully made their definitions more clear.)

design variable: is a scalar parameter, such as Vehicle Length or Vehicle Weight, whose

value uniquely determine part of the configuration of an aircraft, spacecraft, or

any other system. A design variable has a number of attributes associated with

it, such as its value, its dimensions, its order of magnitude, and the limits of its

value.

design function: is a relationship between design variables. A design function can range in

complexity from a simple algebraic equation to a very large and complex computer

program.

design set: is a set of certain design functions and the design variables those functions

relate towards the goal of solving a particular design problem.

source file: is a computer file containing the information on all of the design variables

and design functions to be loaded internally into a Paper Airplane design set.

loading: is a COMMON LISP term for reading and evaluating LISP code from a file into

main memory.

variable tableau: is a spreadsheet of information on the design set arranged on a computer

screen. This information includes a list of design variables and their current values,
units, and states.

variable state: is the condition of the value of a design variable. Variable states come in

the following three varieties, which are assigned to design variables according to

their initial letter.
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Initialized-value state: This indicates a design variable that has been given a known

value by the user. A design variable obtains state I whenever the user changes

its value, or when the user freezes it. I-state design variables, officially desig-

nated as base variables, will be referred to simply as knowns.

Guessed-value state: This indicates a design variable that has been given a trial

value by the user. A design variable obtains state G whenever the user floats

it. G-state design variables, officially designated as derived variables, will be

referred to simply as unknowns.

Computed-value state: This indicates a design variable that had been given a trial

value by the user, and was later given a known value by Paper Airplane. A

design variable obtains state C only when the user processes the design set;

and then only if Paper Airplane can find a solution which satisfies all the

design functions in the user's design set.

design point: is the values and states of all the design variables in a design set at any

stage in the design process.

design path: is the selection of certain design variables as knowns and the rest as un-

knowns; thereby setting up some implied path, or sequence of design functions,

for Paper Airplane to follow once values are provided for the design variables.

computational agenda: is the actual path, or sequence of design functions, to be evaluated

to find the values of the unknowns once given the initialized values for the knowns

and the guess values for the unknowns. The computational agenda is also called

the computational path. The computational agenda consists of a forced path and

loops.

forced path: is a sequence of perfectly constrained design functions, each of which can be

solved individually, but sequentially. The path is called "forced" since there is no

alternative but to solve the design functions in this sequence in order to compute

the values of their unknowns.

loop: is a sequence of perfectly constrained design functions, each of which computes

values required by other design functions in a closed loop. Loops are solved by

guessing the value of a forcing variable to compute two independent values of a loop

variable. When the two values converge, the values of all the unknowns involved

can be found.
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Agenda Building

Given a design path of design variables selected as knowns and unknowns, Paper

Airplane assembles its methodology for solution into a computational agenda. This

process is commonly referred to as agenda building. (For complete details on agenda

building, see [8].) The key to understanding agenda building is that it only involves the

knowns, the unknowns, and the design functions that use them. No design function is

evaluated and no numbers are produced. Each design function is merely examined to

find out what kind of design variables (knowns or unknowns) go in, and what kind come

out.

An iterative search is performed to find the design function with the least amount

of unknowns, whether they are going in or coming out. At any time, if the number

of unknowns of the design function is less than the number of values it computes, that

overconstrained design function is discarded and the unknowns involved are labeled "in-

consistent."

If the number of unknowns of the design function equals the number of values it

computes, however, the design function can be solved for using the forward computation

method, the reverse computation method, or (for MIMO design functions) a combination

of both. The design function is then labeled "used" and is placed as an agenda entry

into the forced path of the computational agenda. An agenda entry is merely the design

function and the unknowns to be solved for by it. The states of the unknowns are then

changed to C and the design variables are then treated as knowns. In this manner,

a design function that was initially underconstrained can become perfectly constrained

because of the solution of another design function.

When the search returns a design function whose number of unknowns is greater

than the number of values it computes (i.e., an underconstrained design function), the

forced path construction is ended and the loop construction begins. The choice of forcing

variable for a possible loop is the unknown most common to the remaining unused design

functions. The state of the forcing variable is temporarily set such that the search will

treat it is a known. As long as the search keeps returning perfectly constrained design

functions, a forced path of preliminary entries will be constructed. This construction stops

when an overconstrained or an underconstrained design function is returned.

If an overconstrained design function is returned, it is checked to see if it has a

computed unknown common to one of the design functions in the preliminary entries. If
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it does, then there are two design functions that can independently compute the value

of the same unknown, then called the loop variable; thus the loop can be closed. If it

doesn't however, then the overconstrained design function is discarded and its unknowns

are labeled "inconsistent." On the other hand, if an underconstrained design function is

returned, the loop can never be closed; thus a new forcing variable must be chosen.

The preliminary entries of any closed loop are organized into an initial path, two

branches, and a final path. The initial path is a sequence of perfectly constrained design

functions whose computed unknowns are required by both branches. The branches are

two independent sequences of perfectly constrained design functions for computing the

value of the loop variable. Lastly, the final path is a sequence of perfectly constrained

design functions whose unknowns can be solved for once the loop has converged.

Agenda building continues until all the design functions are used or discarded, or until

a loop construction failure occurs, when all possible forcing variables have been tried to

construct a loop and have failed. If all the design functions are used, Paper Airplane

should be then able to compute a unique numerical solution for any initial design point

obeying the design path. If design functions have been discarded, however, any numerical

solution found will have inconsistencies. On the other hand, if a loop construction failure

occurs, the computational agenda will be incomplete, and Paper Airplane will only be

able to find a partial numerical solution to any initial design path.

2.3 The Usage of Paper Airplane

A user of Paper Airplane must first gather the engineering knowledge he or she will

need and represent it as equations, functions, and/or computer programs. (A function is

an internal piece of code written in COMMON LISP; whereas a computer program is an

external piece of code usually not written in COMMON LISP.) Next, that information

must be coded as design variables and design functions into a source file; the format to

be followed is shown in Figure 2.1. The user then starts up Paper Airplane and loads

the source file into it.

Figure 2.2 shows the spreadsheet-like tableau a user may see once the source file is

loaded into a design set. The columns are for the design variable names, states, current

values, and current units. The name of the tableau appears at the top since a design set

can have more than one tableau (to better organize design set information).

The user selects the design path by changing design variable states to the best of his
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(pa-defvar WINGREFERENCEAREA
:category (geometry wing)
:documentation "The Reference Area of the Wing."
:TeX-name "$S_{ref}$"
:order-of-magnitude 261.0
:lower-value 220.0
:upper-value 300.0

:dimensions "12"
:default-units "ft2")

(pa-defun DF-1
:category weights

:computed-variables (GROSS-TAKE-OFFWEIGHT "lbf")
:input-variables ((PAYLOADWEIGHT "lbf")

(FUEL.WEIGHT "lbf")
(EMPTYWEIGHT-FRACTION ""))

:function-body (/ (+ PAYLOADWEIGHT FUEL.WEIGHT)
(- 1 EMPTYWEIGHTFRACTION))

:TeX-name "$W_{gto} {} = {} {{W_p + W.f} \\over {1 -fe}}$"

:documentation "Gross Take-off Weight Equation.")

Figure 2.1: Example design variable and design function declarations.
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CRUISE

-- >RANGE
CRUISEVELOCITY
TSFC
LIFT-TO-DRAGRATIO
GROSSTAKE-OFF..WEIGHT
MINLANDINGWEIGHT
TIMEONRESERVES

G 3000.0000 sm

G 565.0000 sm hr-1

G 0.8000 lb lbf-1 hr-1
G 15.0000
G 15000.0000 lbf
G 11000.0000 lbf
G 0.7500 hr

(PFI->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.2: Example tableau as it first appears.

CH APTER 2.
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or her knowledge. As long as the number of unknowns equals the total number of values

computed by all the design functions, Paper Airplane should then be able to build a

computational agenda to solve for all the unknowns. If the number of unknowns are less

than this total, as in an overconstrained problem, Paper Airplane would eventually come

across an overconstrained design function it could not solve for; and if the number of

unknowns are greater than this total, as in an underconstrained problem, Paper Airplane

would eventually come across an underconstrained design function it could not solve for

or a loop it could not close, and thus not solve either.

Once the design path is selected, the user then provides initialized values for the

knowns and guess values for the unknowns to define the initial design point of the design

set. The user then instructs Paper Airplane to process the design set to find the true

values for the unknowns.

Paper Airplane processes the design set in combinations of three techniques:

1. It may evaluate a design function directly, if all output values of the design func-

tion are unknown, and all input values are known. This one-time single-function

evaluation is called forward computation.

2. It may invert a design function, if a number of output values of the design function

are known, and the same number of input values are unknown. Paper Airplane

will attempt to numerically invert that design function by repeatedly evaluating it

in order to find the values of the unknowns. Almost always, this will be successful,
and the values of the unknowns will be obtained. This iterative single-function

evaluation is called reverse computation.

3. It may iterate a set of design functions in a loop, if those design functions form

a closed loop containing several interdependent unknowns. Paper Airplane will

repeatedly guess values for a chosen forcing variable until the two computed values

of a loop variable converge; thereby stabilizing the values of all the unknowns of the

design functions in the loop. This iterative multiple-function evaluation is called

loop computation.

After Paper Airplane builds the computational agenda to solve the design path, it

then uses numerical methods to find a numerical solution to the initial design point. If a

solution is found, Paper Airplane will update the values of the unknowns and make them

computed knowns, as shown in Figure 2.3. (Note that Paper Airplane also informs the

user when values obtained in the solution fall outside the recommended limits.)
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Now that the user has one solution, design variable values can be changed to form new

initial design points to find more solutions as part a trade study or design optimization.

(Automatic trade study and optimization features have yet to be incorporated into Paper

Airplane; however, they are matters under research.) Design variable states can also be

changed to form new design paths to find new computational agendas and lead to new

types of solutions, trade studies, and optimizations.

2.4 The MISO Design Set Benchmark

In order to test the future modifications to Paper Airplane, a benchmark needed to be

established. The design set used for this purpose was to have only MISO design functions

with none of them calling external codes. This MISO Design Set already existed as the

conceptual aircraft design set used for a tutorial in the Paper Airplane User's Manual

[101.

Appendix A contains a list of the 17 design variables and 7 design functions comprising

the MISO Design. Set. Appendix B contains the complete listing of the MISO Design

Set source file loaded by Paper Airplane. The benchmark test case would be for Paper

Airplane to compute the weights and aerodynamic properties of an aircraft given its

geometry and performance properties.

A design path was chosen so that the design set was perfectly constrained; that is,
so that the number of unknowns equaled the total number of values computed by all the

design functions; and then values were provided. The initial design point is shown in

Figure 2.4 which contains a list of the design variables, their states, and their values.

The design set was then processed. Appendix C contains the complete listing of the

documentation produced by Paper Airplane as it first built the computational agenda to

find the solution to the chosen design path and then found the numerical solution to the

initial design point. Figure 2.5 shows a brief summary of the computational agenda and

Figure 2.6 shows the final design point, the states and values of the design variables after

processing has been completed. (Note that the G-states of the unknowns have become

C-states.) This numerical solution established the benchmark to which all other initial

tests were compared.
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CRUISE

RANGE
-- >CRUISEVELOCITY

TSFC
LIFT-TO-DRAGRATIO
GROSS...TAKE-OFF.WEIGHT

MINLANDING.WEIGHT
TIMEONRESERVES

3000.0000 sm
565.0000 sm hr-1

0.8000 lb lbf-1 hr-1
15.0923

20279.2698 lbf above suggested upper value
15304.4805 lbf above suggested upper value

1.0000 hr

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:
Building agenda ... Agenda construction completed.
Processing forced path ...
Processing GROSSTAKE-OFFWEIGHT/DRAG_ COEFFICIENT loop ....

Figure 2.3: Example tableau after design set processing.

CHAPTER 2.
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LIST OF INTERNED VARIABLES

F T O.0.M. WT ST VARIABLE NAME CURRENT VALUE INCOMP'S
----------------------------------------------------------------------

8.0000
565.0000

13300.0000

0.0200
0.6000

4000.0000

15000.0000

15.0000

0.3000

11000.0000

0.8000

2200.0000
3000.0000

0.7500

0.8000

261.0000

0.0150

ASPECTRATIO

CRUISEVELOCITY

CRUISEWEIGHT

DRAGCOEFFICIENT
EMPTYWEIGHTFRACT

FUELWEIGHT

GROSSTAKE-OFFWEI

LIFT-TO-DRAGRATIO

LIFTCOEFFICIENT

MINLANDING.WEIGHT
OSWALDEFFICIENCY
PAYLOADWEIGHT
RANGE
TIMEONRESERVES
TSFC
WINGREFERENCEARE
ZERO-LIFTDRAGCOE

8.0000 sm
565.0000 sm hr-1

13300.0000 lbf

0.0200
0.5500

4000.0000 lbf

15000.0000 lbf

15.0000

0.3000

11000.0000 lbf

0.8000

2200.0000 lbf
3000.0000 sm

0.7500 hr
0.8000 lb lbf-1 hr-1

250.0000 ft2

0.0150

-- Pause--

Figure 2.4: The initial design point of the MISO Design Set benchmark.
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2.5 The Code of Paper Airplane

Paper Airplane is written in NIL, an object-oriented dialect of COMMON LISP, a

computer programming language best suited for handling information not necessarily

numerical. In this way, design variables, design functions, design sets, and computa-

tional agendas can be as easily represented as numerical arrays are represented in other

computer programming languages such as FORTRAN and PASCAL.

One special type of object used frequently in Paper Airplane programming is the

flavor, a powerful abstraction that allows for information storage and retrieval and data

communications, all in a hierarchical structure.

This author welcomed the opportunity to expand his computer programming skills

by using such a language to solve the MIMO design function and external code interface

capability problems. In fact, systems written in object-oriented computer programming

languages are the best candidates for the computer-based engineering model information-

sharing systems now required by the engineering community.
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AGENDA for design LASER

AGENDA ENTRY DESIGN VARIABLE COMPUTED BY DESIGN FUN DIRECTION

Forced Path

Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:

<NO ENTRIES>

Initial Path
Initial Path

Initial Path

Initial Path

Initial Path

Loop 1: Branch 1

Loop 1: Branch 2

Loop 1: Final Path

GROSSTAKE-FFWEI
MINLANDINGWEIGHT
LIFT-TO-DRAGRATIO
CRUISEWEIGHT

LIFTCOEFFICIENT

DRAGCOEFFICIENT

DRAG.COEFFICIENT

<NO ENTRIES>

-- Pause--

Figure 2.5: The computational agenda to find the MISO Design Set benchmark.

DF-1
DF-3
DF-4
DF-2
DF-6

DF-7

DF-5

FORWARD
FORWARD

*REVERSE*
FORWARD

FORWARD

FORWARD

*REVERSE*
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LIST OF INTERNED VARIABLES

F T 0.O.M. WT ST VARIABLE NAME CURRENT VALUE

8.0000
565.0000

13300.0000

0.0200
0.6000

4000.0000
15000.0000

15.0000

0.3000

11000.0000

0.8000

2200.0000
3000.0000

0.7500

0.8000
261.0000

0.0150

ASPECT-RATIO

CRUISEVELOCITY

CRUISEWEIGHT

DRAG-COEFFICIENT
EMPTY-WEIGHTFRACT

FUELWEIGHT
GROSS-TAKE-OFFWEI

LIFT-TO-DRAGRATIO
LIFT-COEFFICIENT
MINLANDINGWEIGHT
OSWALDEFFICIENCY
PAYLOADWEIGHT
RANGE
TIME_0N-RESERVES
TSFC
WINGREFERENCEARE
ZERO-LIFTDRAGCOE

8.0000 sm

565.0000 sm hr-1
14666.2540 lbf

0.0177
0.5500

5176.2540 lbf
16391.6713 lbf

13.1132

0.2315
11856.0726 lbf

0.8000

2200.0000 lbf
3000.0000 sm

0.7500 hr
0.8000 lb lbf-1 hr-1

250.0000 ft2
0.0150

-- Pause--

Figure 2.6: The final design point of the MISO Design Set benchmark.
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Chapter 3

The External Code Interface

This chapter describes the research, development, and testing of the incorporation of

the external code interface capability modification into Paper Airplane.

3.1 Research

An external code interface from one program to another allows both programs to share

information without the need for a human to manipulate input and output files. The

external code interface of Paper Airplane, a LISP-based code, allows it pass input in-

formation to a non-LISP-based external code (XCODE for short), execute the code, then

retrieve the output information - without user intervention. This capability greatly

expands the domain of information accessible to Paper Airplane.

The "New" Implementation of LISP

The first step in getting Paper Airplane to being able to execute external codes was

in getting a NIL function to execute a computer operating system command on a Digital

Equipment Corporation VAX/750 running VAX/VMS Version 3.7.

NIL, for "New Implementation of LISP," was actually an old implementation of LISP

and had recently become a dead language. Fortunately, NIL did have much in common

with COMMON LISP and the Paper Airplane programmers had taken much care to

insure that COMMON LISP was used wherever and whenever possible. One major

exception is Paper Airplane's use of flavors, currently not part of COMMON LISP, but

part of NIL and ZetaLISP, another COMMON LISP dialect (used by the LISP Machine

P. A.
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and the Texas Instruments Explorer). In fact, over 99.9% of the current code is compatible

with the Explorer.

NIL was developed by computer scientists at the Massachusetts Institute of Technol-

ogy; as such, it was not supported by the Digital Equipment Corporation and thus they

did not provide a library of internal system functions, such as the ones easily called by
VAX FORTRAN and VAX PASCAL.

This problem was identified and partially combated in 1983 by Dr. John Pararas [15],
a Flight Transportation Laboratory researcher, for his research into the improvement of
air traffic control systems. The NIL system communication package he created allows
NIL to execute VAX system functions but not VAX library functions. Because of this,
the external code interface research was steered away from using LIB$SPAWN, a VAX
library function that creates a monitored sub-process, and towards SYS$CREPRC, a
VAX system function that creates an unmonitored independent process.

The Influence of Preliminary Design Tool

While working for Boeing Aerospace, the author was involved in the Preliminary
Design Tool Development Project, a project very similar to the Paper Airplane Project.
One of the major issues addressed was how information would be passed to and from
external codes. It was decided early on that the external codes themselves would not be
modified in any way. This sacredness arose from several issues:

1. Users might no longer have trusted the results of a modified code.

2. The source code might not have been accessible, as was the case for most licensed
software.

3. The task of modifying every code would have been enormous.

To pass information to and from an external code therefore became a matter of
connecting to its standard input and output (I/0) channels. For most computer programs,
these come in two forms, file I/O and terminal I/O. Since terminal I/O can be easily
diverted to file I/O on most computer systems, it was decided to use ASCII data files
for all information passing. This technique, which would be adopted for use in creating
Paper Airplane's external code interface, is shown in Figure 3.1.

The technique shown can be explained as follows. Data is passed from the user to
the system where it is then formatted into one or more input files via the external code's
preprocessor. The system then executes the external code. The external code reads the
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USER

Figure 3.1: Data passing technique used by Boeing's Preliminary Design Tool.

CHAPTER 3.
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(defsyscall ($creprc sys$creprc)
(pidadr :out :bits)
(image :in :string :required)
(input :in :string)
(output :in :string)
(error :in :string)
(prvadr :in :bits)
(quota :in :bits)
(prcnam :in :string)
(baspri :in :long)
(uic :in :bits)
(mbxunt :in :word)
(stsflg :in :long))

Address of longword of PID
Maximum 63 characters COMMAND
Maximum 63 characters SYS$INPUT FILE
Maximum 63 characters SYS$OUTPUT FILE
Maximum 63 characters SYS$ERROR FILE
Address of 64-bit mask PRIVILEGES
Address of list of QUOTA values
Maximum 15 characters PROCESS NAME
Value of BASE PRIORITY 0-31
Value of UIC 0-31 (0=subprocess)
Mailbox Unit number
32-bit status flag

(defun execute-program (executable infile outfile errfile process)
(delete-file errfile nil)

($creprc image executable
input infile
output outfile
error errfile
prcnam process
baspri 4))

Figure 3.2: The SYS$CREPRC definition macro and test function.

data from the input file(s) and writes its data to one or more output files. The system
then reads the results from the output file(s) via the external code's postprocessor and
presents them to the user.

3.2 Development

To develop the NIL version of the Preliminary Design Tool's external code interface,
the author had to first develop a COMMON LISP function that could create a new
process on the system. As mentioned in the Research section, because of the limitations
of NIL, only VAX system functions could be called.

Figure 3.2 shows the NIL macro call function needed to define the SYS$CREPRC
command, plus "EXECUTE-PROGRAM," a COMMON LISP function to test it. Several
iterations were necessary in order to get all the ":bits" and ":word" declarations in the
right places; but eventually the tests proved successful.

Once tested and ready for use, the "EXECUTE-PROGRAM" function needed to be em-
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bedded into another function, "RUN-PROGRAM," that could write the input files, run the

program, somehow find out when the program terminated, and then read the output

files. Since the preprocessing and postprocessing of an external code's information would

be specific to each code, these would have to be functions just called by "RUN-PROGRAM."

The main problem, then, was in determining a method for finding out when the program

terminated, since the SYS$CREPRC command would only initiate the program and not

wait for it to complete.

A COMMON LISP function called "PROBE-FILE" will return "true" if it can open a

file and "false" if it cannot. Since a process can write to SYS$OUTPUT at any time,

a file receiving SYS$OUTPUT will always be locked as long as the process is running;

and a locked file cannot be opened by any other process. When the SYS$OUTPUT-

directed file is unlocked, therefore, the process has terminated. By continuously calling

"PROBE-FILE" on the SYS$OUTPUT-directed file, "RUN-PROGRAM" would immediately

know when the program had terminated. This kind of monitoring wastes CPU needed

by the executing program, however.

A NIL function called "SLEEP" puts the process to sleep for a number of seconds. If

the average execution time of the program could be computed, Paper Airplane could be

put to sleep for 80% of it, then begin monitoring and sleeping at intervals of 5% up to

some predetermined overtime allowance limit.

The final version of "RUN-PROGRAM," shown in Appendix D, combined all these tech-

niques into a user-friendly function that can be called by Paper Airplane from a user's

design function. "RUN-PROGRAM" calls the external code's preprocessor, executes the ex-

ternal code, waits for it for to terminate, then calls the external code's postprocessor.

3.3 Testing

To test the external code interface capability, the the Br~guet Range Equation was

turned into an extremely short FORTRAN program, as shown in Appendix A, and the

MISO Design Set design function "DF-4" was modified to call it, as shown in Figure 3.3.

This created what will be called the XCODE Design Set.

Since Paper Airplane allows the user to switch between several design sets during a

session, the original MISO Design Set was loaded in addition to the XCODE Design Set so

that processing time could be compared. In each run, the initial design point was set up

exactly as shown in Figure 2.4. The agenda for the solution to the corresponding design
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(pa-defun DF-4

:category (performance cruise)

:computed-variable (RANGE "sm")

:input-variables ((CRUISEVELOCITY "sm hr-i")

(TSFC "lb lbf-1 hr-1")
(LIFT-TO-DRAGRATIO "")

(GROSSTAKE-OFFWEIGHT "lbf")

(MIILANDINGWEIGHT "lbf"))
:inversion-intervals 6
:function-body

(progn
(range-preprocessor CRUISEVELOCITY TSFC LIFT-TO-DRAGRATIO

GROSSTAKE-OFFWEIGHT MINLANDINGWEIGHT)
(run-program :program-name 'range

:program-directory "sys$user: [ftl.rml.pa.xcode]"
:preprocessor nil
:postprocessor nil

:average-run-time I
:overtime-allowance 50)

(range-postprocessor))

:TeX-name "$R {} = {} {V{Cr} \\over {\\rm TSFC}} {L \\over D} \\log
\\bigl({W_{gto} \\over W_{l_{\\rm min}}} \\bigr)$"

:documentation "Breguet Range Equation.")

(defun range-preprocessor (WCR TSFC L/D W.GTO WMIN)
(delete-file "rml$xcod:range.in" nil)
(delete-file "rml$xcod:range.out" nil)
(let ((infile (open "rml$xcod:range.in" 'out)))
(unwind-protect

(progn
(format infile "~f~%~f~%f~%~f~f%" WCR TSFC L/D WGTO WMIN))

(close infile))))

(defun range-postprocessor ()
(let ((RANGE nil))

(with-open-file (outfile "rml$xcod:range.out")

(setq RANGE (read outfile))

RANGE)))

Figure 3.3: The modified design function "DF-4."
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path, as is shown in Figure 2.5, placed the design function "DF-4" in a loop. The agenda

also chose the reverse computation method to numerically invert the design function each

time it would be evaluated. In a sense, therefore, this would be a worst-case analysis of

the external code interface, since the external code would be run again and again in an

inversion loop within an iteration loop.

The MISO Design Set was solved in 90 seconds; the XCODE Design Set, however,

was solved in a shocking 54 minutes. The success of being able to communicate with

an external code and still converge exactly to the benchmark was overshadowed by the

failure of being able to do so quickly. Disturbed by this result, the MISO and XCODE

design functions were examined more closely using the Paper Airplane Design Function

Exerciser, a feature modified by the author to allow a single design function to be pro-

cessed in either forward or reverse directions (see Figure 3.4). This would give the time

to invert the function once and thus eliminate the outer loop.

The MISO design function was processed in 4 seconds (including screen-refresh); the

XCODE design function, in 78. The latter was again examined more closely and was

found to execute once every 4 seconds; thus each design function was evaluated 18 times.

Thinking that the 0.1% convergence criteria was responsible, it was relaxed to 1.0%, and

then to 10% - the processing time dropped only to 74 seconds. Clearly something was

wrong.

Modifications to the Numeric Processor

It turned out that nothing was "wrong," just inefficient. After examining the ways

in which Paper Airplane numerically solved both single design functions (via the Design

Function Solver) and loops of them (via the Loop Solver), it was found that both meth-

ods could be improved upon which could reduce processing time for all design functions,

whether calling external codes or not (see Chapter 5). What was surprising was the

magnitude of the improvements. By modifying the Design Function Solver, total pro-

cessing time was reduced by a factor greater than 4. By modifying the Loop Solver, total

processing time was further reduced by a factor of 6, making the total reduction a factor

of 25.

With the modifications in place, the MISO Design Set was solved almost instanta-

neously, and the XCODE Design Set in about 2 minutes, a much more reasonable time

frame. The external code interface was then both successful in getting data to and from

an external code and doing so quickly. Also, by adding the external code interface capa-
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Function DF-4 calculating I variable

Variable Name

CRUISEVELOCITY

TSFC
-- >LIFT-TO-DRAGRATI

GROSSTAKE-OFFWE
MINLANDINGWEIGH
RANGE

Test State/Value

I 565.0

I 0.8
C 13.6956960

I 15000.0
I 11000.0
I 3000.0

System State/Value

I 565.0

I 0.8
G 15.0

G 15000.0

G 11000.0

I 3000.0

Current Units

sm hr-1

lb lbf-1 hr-1

lbf
lbf
sm

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:
Function DF-4 has 5 base variables and I derived variable.
The function path is perfectly constrained.
Processing function DF-4 ...

Figure 3.4: Example display of Design Function Exerciser after processing.
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bility to Paper Airplane, inefficiencies in the Numerical Solvers that would have otherwise

gone unnoticed had been corrected making Paper Airplane, in general, 25 times more

efficient at solving problems.



Chapter 4

MIMO Design Functions

This chapter describes the research, development, and testing of the incorporation of

the MIMO design function capability modification into Paper Airplane. This task was

divided into two sub-tasks: the creation of a simple MIMO design function capability

and the creation of the general MIMO design function capability.

4.1 Simple MIMO Capability

This section details the research, development, and testing of the simple MIMO design

function capability.

4.1.1 Research

Simple MIMO capability would be one in which a multiple-input multiple-output

(MIMO) design function would be solved for in the same manner as for a multiple-input

single-output (MISO) design function. Specifically, this would mean one of two cases:

1. OUI-OKO: (zero unknown inputs, zero known outputs). In this case, no input value

to the design function is unknown and no output value is known (i.e., all input

values are known and all output values are unknown). For either MISO or MIMO

design function, the solution here is to use the forward computation method.

2. lUI-IKO: (one unknown input, one known output). In this case, one input value

to the design function is unknown and one output value is known (i.e., all but

one input values are known and all but one output values are unknown). For either

P.A.
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MISO or MIMO design function, the solution here is to use the reverse computation

method.

Since a MISO design function only computes one output value, these are all of its cases.

Odd cases such as OUI-1KO and 2UI-OKO cannot be solved by the forward or reverse

computation method since they are overconstrained and underconstrained, respectively.

An overconstrained design function cannot be solved for at all; an underconstrained

design function can be solved for, however, by the loop computation method if other
design functions are found that also involve the same unknowns.

For the general case of mUI-nKO, therefore, the MISO version of Paper Airplane

could solve for cases with n < 1. Cases with n > m would be overconstrained and cases
with n < m would be underconstrained. Simple MIMO capability would thus solve for
the set of cases with n = m < 1. General MIMO capability, discussed in the next section,
would solve for the set of cases with n = m > 2.

The reason why n must equal m for a perfectly constrained function is found in
mathematics. As long as the total number of unknowns in a functional relationship

equals the number of its output values, at least one solution can be found. If U is the
total number of unknowns, then n = m < 1 can also be written as U = 1, and n = m > 2
as U > 1.

Since the simple MIMO capability would use the already existing forward and reverse
computation methods to solve for its MIMO design functions, the research would con-
centrate on the incorporation of the MIMO design functions themselves into part of the
family of Paper Airplane objects. In order to do this, it became necessary to create a
new type of design function flavor, since, at that time, it was decided not to alter the
structure of the existing MISO design function flavor.

An Introduction to COMMON LISP Flavors

As mentioned in the Chapter 2, a flavor is a powerful LISP object that allows for
information storage and retrieval and data communications, all in a hierarchical structure.

A flavor, such as the MISO design function flavor (internally called a "DESIGN-
FUNCTION"), consists of many sub-flavors called mixins. The role of mixins is to set
up a hierarchy whereby higher-ordered flavors, although perhaps very different, could
use the same structure of attributes (called instance variables) and could call the same
flavor-specific functions (called methods).
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This mouthful can be better explained by an example. Take two higher-ordered

flavors, "BOEING-747" and "NORTHROP-F-20." Whatever attributes the two have in com-

mon could be assigned to a mixin called "AIRCRAFT." Instance variables of this sub-flavor

would include "WING-SPAN," "NOSE-LENGTH," and "AVIONICS -WEIGHT." Attributes not

common to both would be flavor-specific. For example, the "BOEING-747" flavor would

need an instance variable for "PASSENGER-CAPACITY" while the "NORTHROP-F-20" flavor

would need one for "AFTERBURNER-TYPE." Similarly, methods can be divided into com-

mon and non-common groups. Common methods would include ": TAKE-OFF," ": COME-

TO-HEADING," and ":CHANGE-ELEVATOR-ANGLE." Non-common methods would include

":TURN-ON-NO-SMOKING-LIGHT" for the "BOEING-747" and ":LAUNCH-MISSILE" for the

"NORTHROP-F-20."

The "AIRCRAFT" mixin may itself have a mixin called "VEHICLE" with instance vari-

ables such as "ENGINE-TYPE" and "FUEL-WEIGHT" and with methods such as ":START-

ENGINE" and ":CHECK-FUEL-GAUGE." And "VEHICLE may have a mixin called "OBJECT"

with instance variables such as "NAME and "LENGTH" and with methods such as ":MOVE"

and ":DESCRIBE-SELF."

This somewhat linear hierarchy is by no means the limit. For example, the "AIR-

CRAFT" mixin might have other mixins in addition to "VEHICLE" such as "AUTO-PILOT"

and "LANDING-GEAR." These mixins better organize the information contained by "AIR-

CRAFT."

What the user of flavors ends up with, therefore, is a tree-structured hierarchy of

information about an object and the tasks it can perform.

4.1.2 Development

Most of the development of the simple MIMO capability involved the creation of a

new MIMO design function flavor to be called a "MIMO," and its associated methods.

Both flavor structure and methods were "MIMO-ized" versions of those for the MISO

design function flavor "DESIGN-FUNCTION." The instance variables of "MIMO," grouped by

their mixins, are listed below:

* MIMO-DEFINITION-MIXIN

1. LISP-NAME

2. COMPUTED-VARIABLES

3. COMPUTED-TO-INTERNAL-CONVERSIONS
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4. INTERNAL-TO-INPUT-CONVERSIONS

" PA-FUNCTION-DEFINITION-MIXIN

1. EXPR

2. PARAMETER-LIST

" LIBRARY-INSTANTIATION

1. DEFINITION

" PA-OBJECT

1. NAME

2. TEX-NAME

3. DOCUMENTATION

"COMPUTED-VARIABLES" is the list of output design variables while "PARAMETER-LIST"

is the list of input design variables. The two "CONVERSIONS" instance variables convert

input and output variable values to and from the internal SI-standardized units, respec-

tively. "EXPR" is the body of the design function itself. Both "LISP-NAME" and "NAME"

are LISP symbols used for referencing the design function while "TEX-NAME" is a spe-

cial formatted version of the function name or body for use with IATEX, the document

processing package language with which this paper was prepared.

In addition to instance variables, the flavor "MIMO" also has many methods associated

with it. These can be grouped into the following categories:

" Library Incorporation and Information Methods

" Design Function Establishment and Processing Methods

" Design Set Incorporation and Processing Methods

The Library methods pertain to the incorporation of the MIMO design function into

the Paper Airplane Library, a storehouse of all the user's design variables and design

functions. The Design Function methods pertain to the establishment of the MIMO

design function as an individual design function and how it is solved for individually (i.e.,
using the forward and reverse computation methods). Finally, the Design Set methods

pertain to the incorporation of the MIMO design function into a design set and how it is

solved for in terms of agenda building and numerical processing.
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Most of the conversion of the "DESIGN-FUNCTION" methods into "MIMO" methods was

of the "copy & edit" type. More hard work than hard thinking was involved; both MISO

and MIMO design function flavors were very similar. They were so similar, in fact, that

the author finally convinced his colleagues that the two should be merged. This was done

between the creation of the simple and general MIMO capabilities.

4.1.3 Testing

To test the simple MIMO capability, the MISO Design Set design functions "DF-6"

and "DF-7" were merged to form the MIMO design function "Aerodynamics Package."

Another MIMO design function, "Geometry Package" was also added. This created

the need for an additional design variable, "WINGSPAN," as shown in Appendix A. This

created what will be called the MIMO Design Set.

The initial design point was set up almost exactly as shown in Figure 2.4; however,

the presence of "WINGSPAN" required a slightly different design path to be selected. To

properly constrain the design set, "OSWALDEFFICIENCY" was selected as an additional,

but calculable, unknown. The slightly different computational agenda (a forced path

existing where none had before) is shown in Figure 4.1. The rest of the results very closely

followed those shown in Appendix C and the computed solution was almost exactly the

same.

Paper Airplane then had a limited capability for dealing with MIMO design functions.

As a check that both the external code interface and simple MIMO design function

capabilities could work together, the design sets were merged (i.e., the MIMO Design

Set design function "DF-4" was replaced with that of the XCODE Design Set) and then

retested. As expected, the solution was almost exactly the same as that of the MISO

Design Set.

4.2 General MIMO Capability

This section details the research, development, and testing of the general MIMO

design function capability.

4.2.1 Research

General MIMO capability would be one in which a multiple-input multiple-output

(MIMO) design function would not be solved for in the same manner as for a multiple-
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AGENDA for design LASER

AGENDA ENTRY DESIGN VARIABLE COMPUTED BY DESIGN FUN DIRECTION

Forced Path
Forced Path

Loop
Loop
Loop
Loop

Initial Path
Initial Path
Initial Path
Initial Path

Loop 1: Branch 1
Loop 1: Branch 1

Loop 1: Branch2

Loop 1: Final Path

WINGSPAN
OSWALD.EFFICIENCY

FUELWEIGHT
MINLANDING_WEIGHT
LIFT-TO-DRAGRATIO
CRUISEWEIGHT

DRAGCOEFFICIENT
LIFT.COEFFICIENT

DRAG-COEFFICIENT

<NO ENTRIES>

Wing Geometry Package
Wing Geometry Package

DF-1
DF-3
DF-4
DF-2

Aerodynamics Package
Aerodynamics Package

DF-5

-- Pause--

Figure 4.1: The agenda for the solution to the design path of the MIMO Design Set.

*REVERSE*
*REVERSE*

*REVERSE*
FORWARD

*REVERSE*
FORWARD

FORWARD

FORWARD

*REVERSE*
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input single-output (MISO) design function. Referring back to the previous section,

this would mean the general case of mUI-nKO, and specifically the set of cases with

n = m > 2.

With the flavor structure of the MIMO design function already established, the general

MIMO capability had merely to add the necessary design function methods to solve for

the above stated cases. As this was a problem in numerical methods of mathematics, the

author visited the M.I.T. Mathematics Department and conversed with Prof. Richard

Dudley [21 who steered the author towards the proper reference material.

Of all the reference material examined, by far the most helpful was the text Ele-

mentary Numerical Analysi8: An Algorithmic Approach by S. D. Conte [1]. On page

217, Conte describes what would become the Vector Newton-Raphson Method of Paper

Airplane:

Algorithm 5.3: Newton's method for a system Given the system

f(c) = 0

of n equations and n unknowns, with f a vector valued function having smooth

components, and a first guess x(') for a solution of C of the system.

For m = 0, 1, 2, . . . , until satisfied, do:

x(M+1) := X(m) _ f1( (M))-17( (m))

It can be shown that Newton's method converges to C provided x(O) is close

enough to C and provided the Jacobian ' of f is continuous and f'(C) is

invertible. . . .

To solve general cases of MIMO design functions, the number of unknown inputs must

equal the number of known outputs. Since the known inputs would never change and the

unknown outputs could be solved for later, the MIMO could be said to map a vector of

n input values, x, into a vector of n output values, y, or more concise, y = g(x).
To solve the problem y* = g(x*) via Newton's method, the equation would be rear-

ranged to the following

f( )=g(x*) - y* = 0

where, obviously, x* = C. The problem would then be reduced to continuously solving

the vector equation f'(x)Ax = Ay for Ax so that the guess vector x could be directed
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towards the solution x*. This would require use of matrix functions, and especially of a

matrix inversion algorithm to invert the Jacobian derivative matrix f'(x).

Although NIL did not contain matrix functions, John Pararas (the Flight Transporta-

tion Laboratory researcher who created the NIL system communications package) had

solved this problem as well. After getting familiar with the routines in the Pararas ma-

trix functions package, it was decided that they worked well enough to be used by Paper

Airplane to solve general cases of MIMO design functions.

4.2.2 Development

Some additional methods were written for the then merged MISO/MIMO flavor

"DESIGN-FUNCTION" to test the Vector Newton-Raphson Method on MIMO design func-

tion "DF-6" which computes CL and CD as a function of WCr, VCr, p, Sref, CD., c, and

AR. The methods called upon the Pararas matrix package. The test was then to find

the values of WC, and S,,f satisfying given values of CL and CD.

Although the Jacobian derivative matrix was properly set up, the matrix package

failed to invert it. The problem was that the determinant of the Jacobian was very close

to zero (about 10-13) and the inversion algorithm could not accurately handle numbers

of such magnitude. All other aspects of the matrix package (which included all vector

operations) worked perfectly. The problem was then in finding a better matrix inversion

algorithm.

Here again Conte's text provided the solution - a technique that yields the solution

to the vector equation Ax = b without requiring a need to compute the inverse of the

matrix A. The text explains why on page 166:

. . . we hasten to point out that there is usually no good reason for ever

calculating the inverse . . . whenever A- 1 is needed merely to calculate a

vector A-lb (as in solving Ax = b) or a matrix product A- 1 B, A- 1 should

never be calculated explicitly. Rather, the substitution Algorithm 4.4 should

be used to form these products. . . .

According to Conte, there was no need for the author to invert the Jacobian deriva-

tive matrix to solve for Ax. Instead, Algorithm 4.4 could be used. This algorithm,
which involves forward- and back-substitution, was written into the COMMON LISP

function "SOLVE-LU-FACTORIZATION" (shown in Appendix E). Another function, "GET-

LU-FACTORIZATION" (also shown in Appendix E) was created based upon a FORTRAN
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subroutine in the text on computing the LU-factorization of the matrix A. Both func-

tions were successfully tested against the matrix functions of a Hewlett-Packard 15-C

calculator. They were then successfully tested on solving the linear vector equation

f'(x)Ax = Ay for the change in the guess vector Ax based upon the error in the target

vector Ay and the function Jacobian f'(x). The guess vector x could then be steered

towards the solution x*.

The Damped Vector Newton-Raphson Method

During a debugging session, it was decided to incorporate a more fail-safe method

than just the Vector Newton-Raphson Method. Called the Damped Vector Newton-

Raphson Method, it was designed to keep the search for the solution from diverging by

continuously reducing the calculated change in the guess vector Ax until the new error

in the target vector Ay was smaller than the previous one. Conte's text describes it on

page 219:

Algorithm 5.4: Damped Newton's method for a system Given

the system f(C) = 0 of n equations and n unknowns, with f a vector-valued

function having smooth component functions, and a first guess x(0) for a

solution ( of'the system.

For m = 0, 1, 2, . . . , until satisfied, do:

h := -f(x())-lf(x(m))

i :=min j :0 j:5 jmaz, ||f(x(m)+h/2)|112 < ||f(x(m))|| 2

x(m+1) := x(m) + h/2i

with j.ma, chosen a priori, for example, jma, = 10.

where, for example, || v 112 would be the two-norm, or magnitude, of vector v. The

Damped Vector Newton-Raphson Method was incorporated into Paper Airplane and

became the Paper Airplane MIMO Solver. The general MIMO design function capability

was then ready for formal testing.

4.2.3 Testing

Before testing the general MIMO capability on an entire design set, it was decided to

use the Paper Airplane Function Exerciser and test it on a single MIMO design function.
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For this purpose a pure mathematical MIMO design function was created as follows:

(x, y, z) = f(a, b, c, d)

where a, b, c, and d were the input variables, and x, y, and z were the output variables.

x was the sum of the inputs, y was their product, and z was the square root of the sum

of their squares.

To test the function, values of the inputs were selected and the corresponding output

values were computed. Then, one output variable was set as known, and one input

variable as unknown (and its value was changed). Paper Airplane used the standard

MISO Solver to solve this problem, and the solution was quickly found. Then, two
output variables were set as known and two input variables as unknown, and the test was
repeated. Paper Airplane switched to the MIMO Solver as planned and the solution was
quickly found as well. Finally, on the basis of this success, three output variables were
set as known, and three input variables as unknown, and the test was repeated. Again,
Paper Airplane found the solution quickly using the MIMO Solver.

In further tests, guess values for the unknown input variables were set farther apart
from their solution values, and the MIMO Solver still converged upon the solution. After
going beyond one order of magnitude each way, some tests failed and some succeeded.
This should not be taken too seriously, however, since most engineers can guess a solution
to a problem to within one order of magnitude. (Most good engineers anyway!)

When known output values were selected randomly (so that the MIMO Solver could
compute the unknown input values), some tests succeeded and some failed. This is
understandable because some output value combinations probably had complex input
values as the exact solution, which Paper Airplane could not find. Paper Airplane should
have found the closest real solution, however; and with that in mind the MIMO Solver
was redesigned. More tests were conducted, and in the cases where the exact solutions
were complex, Paper Airplane successfully found the closest real solutions.

The MIMO Design Set Revisited

A more important practical test of the general MIMO capability would be to solve
a true MIMO design path from the MIMO Design Set in Appendix A. In this test,
aerodynamic and performance properties of an aircraft would be specified and weights and
geometry properties would be computed. This so-called "inverse engineering" problem
would decide the potential of Paper Airplane as an engineering tool.
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LIST OF INTERNED VARIABLES

F T 0.0.M.

T 8.0000

T 565.0000

T 13300.0000
T 0.0200

T 0.6000

T 4000.0000

T 15000.0000

T 15.0000

T 0.3000

T 11000.0000

T 0.8000

T 2200.0000
T 3000.0000k

T 0.7500

T 0.8000

T 261.0000

T 50.0000

T 0.0150

-- Pause--

WT ST VARIABLE NAME

ASPECTRATIO

CRUISEVELOCITY

CRUISEWEIGHT

DRAGCOEFFICIENT
EMPTYWEIGHTFRACT

FUELWEIGHT
GROSSTAKE-OFFWEI

LIFT-TO-DRAGRATIO

LIFTCOEFFICIENT

MINLANDINGWEIGHT

OSWALDEFFICIENCY

PAYLOADWEIGHT
RANGE
TIMEONRESERVES
TSFC

WINGREFERENCEARE
WINGSPAN

ZERO-LIFTDRAGCOE

CURRENT VALUE INCOMP'S

8.0000 sm

565.0000 sm hr-1
13300.0000 lbf

0.0180
0.5500

4000.0000 lbf

15000.0000 lbf

15.0000

0.2400

11000.0000 lbf

0.8000

2200.0000 lbf

3000.0000 sm
0.7500 hr
0.8000 lb lbf-1 hr-1

250.0000 ft2
50.0000 ft
0.0150

Figure 4.2: The initial design point for the "inverse engineering" problem.
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The initial design point for this test is shown in Figure 4.2. Appendix F contains a

complete listing of the documentation produced by Paper Airplane as it successfully built

a different computational agenda to find the solution to the chosen design path and then

successfully found a numerical solution to the initial design point. Figure 4.3 shows a brief

summary of the agenda. Note that the last loop involved two uses of the MIMO Solver.

Finally, Figure 4.4 shows the successful results of this "inverse engineering" problem, as

wing geometry was computed to match specified aerodynamic properties - albeit on a

primitive level.

Again, as a check that both the external code interface and general MIMO design

function capabilities could work together, the design sets were merged (i.e., the MIMO

Design Set design function "DF-4" was replaced with that of the XCODE Design Set)
and then retested. As expected, the solution to the "inverse engineering" problem was

converged upon exactly as before. Processing time for the MIMO Design Set was 7 sec-

onds, while processing time for the merged MIMO-XCODE Design Set was 74 seconds,

a very reasonable amount of time.

Overall, the MIMO Solver and external code interface performed satisfactorily in all

tests conducted thus far. The next major test would be the most practical yet, the design

of a national aerpspaceplane. Chapter 6 reveals the details of the creation and use of the

so called NASP Design Set. But first, Chapter 5, describes the modifications made to

Paper Airplane's other Numeric Solvers, the Design Function Solver and the Loop Solver.
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AGENDA for design LASER

AGENDA ENTRY DESIGN VARIABLE COMPUTED BY DESIGN FUN DIRECTION

Forced Path

Loop 1: Initial Path

Loop 1: Initial Path

Loop 1: Branch 1

Loop 1: Branch 2

Loop 1: Final Path

Loop 1: Final Path

Loop 2: Initial Path

Loop 2:
Loop 2:
Loop 2:
Loop 2:

Branch 1

Branch 1
Branch 2
Branch 2

LIFT-TO-DRAGRATIO

FUELWEIGHT

CRUISEWEIGHT

MINLANDINGWEIGHT

MINLANDINGWEIGHT

FUELWEIGHT
CRUISEWEIGHT

<NO ENTRIES>

OSWALDEFFICIENCY
WINGREFERENCEARE
OSWALDEFFICIENCY

WINGSPAN

DF-5

DF-1
DF-2

DF-4
DF-3

DF-1
DF-2

Aerodynamics Package

Aerodynamics Package

Wing Geometry Package

Wing Geometry Package

Loop 2: Final Path
--Pause--

<NO ENTRIES>

Figure 4.3: The agenda for the solution to the "inverse engineering" problem.

FORWARD

*REVERSE*
FORWARD

*REVERSE*
FORWARD

*REVERSE*
FORWARD

*REVERSE*

*REVERSE*
*REVERSE*
*REVERSE*
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LIST OF INTERNED VARIABLES

F T O.O.M. WT ST VARIABLE NAME CURRENT VALUE INCOMP'S

T 8.0000
T 565.0000

T 13300.0000

T 0.0200

T 0.6000

T 4000.0000

T 15000.0000

T 15.0000

T 0.3000
T 11000.0000

T 0.8000

T 2200.0000,

T 3000.0000

T 0.7500

T 0.8000
T 261.0000

T 50.0000

T 0.0150
--Pause--

ASPECTRATIO

CRUISE.VELOCITY

CRUISEWEIGHT

DRAGCOEFFICIENT
EMPTYWEIGHTFRACT

FUELWEIGHT
GROSSTAKE-OFFWEI
LIFT-TO-DRAGRATIO
LIFTCOEFFICIENT
MINLANDINGWEIGHT
OSWALDEFFICIENCY
PAYLOADWEIGHT

RANGE
TIMEONRESERVES
TSFC
WINGREFERENCEARE
WINGSPAN

ZERO-LIFTDRAGCOE

7.6518 sm
565.0000 sm hr-1

14223.0605 lbf

0.0180

0.5500

4941.6203 lbf

15870.2673 lbf

13.3333

0.2400
11540.2605 lbf

0.8000

2200.0000 lbf
3000.0000 sm

0.7500 hr
0.8000 lb lbf-1 hr-1

233.8814 ft2
42.3049 ft

0.0150

Figure 4.4: The final design point for the "inverse engineering" problem.



Chapter 5

The Numerical Solvers

This chapter describes the modifications made to the Paper Airplane Numerical

Solvers, created by Mark Kolb as part of his Master's thesis research [8]. His task was to

numerically solve a set of non-linear MISO design functions. Due to this non-linearity,

standard linear numerical techniques for solving systems of equations failed to come up

with solutions. His research developed non-linear numerical techniques that successfully

passed all tests, including those of the author. A method used to solve for individual de-

sign functions was incorporated into the Design Function Solver. A second method used

to solve for a loop of design functions was incorporated into the Loop Solver. Modifica-

tions became necessary when it was discovered that the methods had inefficiencies that

caused considerable delay in the processing of design functions calling external codes.

5.1 The Design Function Solver

The method used for the inversion of design functions is a modified Newton-Raphson

iteration. This is possible because all but one of the input values are known, thus the

problem can be reduced to the single-input single-output equation y = f(x). This type

of problem can be easily represented by a two-dimensional curve of y versus x. To solve

the problem y* = f(z*) via Newton's method (where y* is the desired value of y and

z* is the value of z that will yield it), the equation would be rearranged to the following:

y = g(x) = f(z) - y*

P.A.
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y

y = g(x)

X2 X1

Figure 5.1: The Newton-Raphson technique for locating zeros.

with

y = g(X*) = f(z*) - y* = 0

Guess values for the unknown x would produce points along the curve of y. The solution

x* would therefore be the intersection of the curve with the x-axis. The function derivative

9'(x) would be repeatedly taken to keep directing the next guess for x (starting with xo)

towards x*. This is shown in Figure 5.1.

According to the original method, before the Newton-Raphson iteration began, an

initial search was performed to find a guess value for x computing the point closest to

the solution x*. This was via the Logarithmic-Distribution Method developed for the

Loop Solver. The search space was divided logarithmically between the lower and upper

value limits of the unknown (the current value of the unknown was also included in the

search). The search then proceeded from the lower limit to the upper limit. After the

search, the search value z corresponding to the minimum computed value y was chosen to
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start the Newton-Raphson iteration. Once the iteration began, the design function was

then evaluated three times per iteration, once to compute the point at the guess value

and twice more for the calculation of the derivative of the curve at the computed point.

A large initial search space of 15 values was chosen so that the Newton-Raphson

iteration would begin at a search value as close to the solution as possible. Unfortunately,

this meant that every design function would have been evaluated at least 18 times -

even if the solution was reentered as the initial guess value. In terms of the XCODE

Design Set test from Chapter 3, this meant that the tested design function, which was

evaluated 18 times, actually converged after one iteration. The author decided it would

be better to relax the initial search and allow the Newton-Raphson method to do its job.

After discussing this with Mark Kolb, it was agreed to relax the number of search

values only for design functions calling external codes, but also to add a general check:

If any search value z computed a value y within 10% of the desired value y*, the search

would be stopped immediately and that search value x would then be used to begin the

Newton-Raphson iteration. It was also agreed to simplify the derivative calculation so

that it only required one function evaluation, since the derivative would still be accurate

enough to guide the unknown x. By also checking the current value of x first, the

minimum number of evaluations would drop from 18 to 1.

With these modifications in place, the XCODE Design Set test was redone. Both

MISO and XCODE design functions were again tested with the Design Function Exerciser

under this modified technique and both were solved after two iterations following a very

brief initial search. The MISO design function was processed in 3 seconds; the XCODE

design function, in 17 - a drop of 80% in processing time from its value before the

modifications. The MISO and XCODE Design Sets were reset back to their original

design paths and then reprocessed. Total processing time was reduced by a factor of 4.5,

dropping the MISO time from 90 seconds to 20, and the XCODE time from 54 minutes

to 12.

The Search-Outward Method and the Design Function Solver

Despite this success, the fact that design functions calling external codes required a

special check bothered the author, because this required adding another instance variable

to the "DESIGN-FUNCTION" flavor. So after putting it in, the author quickly decided to

take it out.

Instead, a different search method was incorporated. The Search-Outward Method,
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Ne0

S-0

- L-D

Wto (lb)
0 ---

8000 10000 W,*, 12000 14000 16000 18000 20000 22000

Figure 5.2: Comparison of methods with solution near the lower limit.

which was developed for use with the Loop Solver (see next section), replaced the

Logarithmic-Distribution Method. The Search-Outward Method searches from the cur-

rent value of the unknown x towards both upper and lower limits simultaneously, rather

than from the lower limit towards the upper limit. Starting at the current value has the

benefit of rewarding the user for a good initial guess. It also allows the Design Function

Solver to more quickly find the solution to a function inversion inside a loop iteration

since the next solution would not vary much from the previous one.

An inversion of the Br6guet Range Equation was chosen to compare the two methods,

a sample of which is shown in Figure 5.2. On the x-axis is the choice for the initial guess,

Wgto, as compared to the actual solution, W, 0 . On the y-axis is the number of design

function evaluations, N,0 , required to converge upon the solution W;10. (This includes the

design function evaluations required to perform Newton-Raphson iterations.) The dashed

curve (labeled "L-D") shows the number of function evaluations that the Logarithmic-

12 -

10

- - / -
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Distribution Method required to converge upon W;t, for each initial guess of Wto along

the x-axis. The solid curve (labeled "S-O") shows the same for Search-Outward Method.

When the initial guess Wt, was chosen randomly (i.e., on average), the Search-

Outward Method converged upon the solution W;t, about as fast as the Logarithmic-

Distribution Method did. (The area under each curve gives an indication of this.) On

the other hand, when the initial guess Wto approached the so7 ition W~*o, the Search-

Outward Method converged faster.

Since the Logarithmic-Distribution Method always started the search at the same

point, the number of design function evaluations Nv changed little outside the immediate

vicinity of the solution Wt,; and since this point was the lower limit, the number of design

function evaluations in this outer region rose as the solution tended towards the upper

limit. This is shown in Figure 5.3. In fact, with the solution near the upper limit, the

Search-Outward Method converged faster than the Logarithmic-Distribution Method for

almost all initial guesses Wgto. Figure 5.3 also shows that the Logarithmic-Distribution

Method required a very good initial guess while the Search-Outward Method required

only a fair guess.

The overall modifications to the Design Function Solver allowed to it converge upon

the solution to a design function inversion 4.5 times faster than before. While the Search-

Outward Method-did not improve performance when a random guess was made at the

solution to a design function inversion, it did improve performance greatly when a fair

guess was made, which would be the case when the design function was part of a loop.

The Search-Outward Method also got rid of the need to perform a special check on design

functions calling external codes, and thus the need for a new instance variable for the

"DESIGN-FUNCTION" flavor.

5.2 The Loop Solver

The technique used for solving a loop of interdependent design functions is an original

method. The loop is separated into two paths or branches. Each branch is a sequence of

design functions that form a single-input single-output function. A value is guessed for

the forcing variable and is fed into both branches, which then compute two values for the

loop variable. When the same value is computed by both branches, the loop is solved.

The two branches can be represented as two-dimensional curves with the forcing

variable as the ordinate and the loop variable as the abscissa. The solution to the loop is
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Figure 5.3: Comparison of methods with solution near the upper limit.
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then the value of the forcing variable at the intersection of the two curves. This is shown

in Figure 5.4, borrowed from [8].
Because the branches are generally nonlinear, a Simultaneous Newton-Raphson Method

was dropped in favor of the Logarithmic-Distribution Method, a pure logarithmically dis-

tributed search between the lower and upper limits of the forcing variable. After an initial

search over 10 values, the value producing the closest points would be used to compute

new boundaries to begin a new search over 4 values (including the boundaries). This

would be repeated until the points converged. This is also shown in Figure 5.4.

Unlike the problem of the Design Function Solver, the author did not dispute the need

for such a wide initial search spread for the Loop Solver; thus the number of search points

was not reduced. Also, since a Newton-Raphson iteration was not being performed, there

was no need to stop the search whenever the points came within 10% of each other. The

problems of the Loop Solver were in the needless reevaluation of the boundary points

and in the computationally expensive calculation of the derivatives of the two branches

to find out where the new boundaries were.

Since the solution is at an intersection of two curves then, during the search, whenever

the successive differences between two computed values change sign, the intersection

point, and thus the solution, would have just been crossed over. Since the solution

must then lie soniewhere between the current search value and the previous one, this

automatically would define the new search boundaries. Adding a cross-over detection

check would thus get rid of the need to calculate the derivatives of the branches. It would

also allow the current search to be terminated as soon as a cross-over was detected, and

allow a new search to begin immediately.

Once this modification was made to the Loop Solver code, the MISO and XCODE

Design Sets were reset back to their original design paths and then reprocessed. Total

processing time was further reduced by a factor of 2, dropping the MISO time from 20

seconds to 10, and the XCODE time from 12 minutes to 6.

The Search-Outward Method and the Loop Solver

Although the cross-over detection check solved the problem of computing new bound-

aries, it did not solve the problem of reevaluating the boundary points, which was need-

lessly doubling the computation time for all new searches. Another problem was that the

Logarithmic-Distribution Method of searching from the lower limit (or lower boundary)

towards the upper limit (or upper boundary) was not very efficient. Assuming the user
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Figure 5.4: The logarithmic distribution method for solving loops.
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could provide a fair initial guess at the solution, a better method would be to start the

search at that initial guess value and to spread the search outwards towards both upper

and lower limits simultaneously.

With this in mind, the Search-Outward Method was created and soon replaced the

Logarithmic-Distribution Method of the Loop Solver. For the initial search, "SEARCH-

OUTWARD" linearly divides the distance between the upper and lower limits into a region

of 10 spaces, which it then centers over the current value of the unknown, the initial

guess supplied by the user. The search starts at this initial guess value then alternates

proceeding towards the lower and upper limits. The previous search value and computed

values for each direction are stored for the cross-over detection check routine.

When a cross-over is detected, the new boundaries and their stored computed values

are sent to "SEARCH-BETWEEN" which decides from which boundary the new search should

begin. The information is then passed on to "SEARCH-FROM" which searches from one

boundary towards the other (without reevaluating the boundary points) until another

cross-over is detected to repeat the process. By using "SEARCH-BETWEEN," each new

search normally only requires one search value evaluation before proceeding on to a

narrower search over one-third the space. In this manner, the number of search value

evaluations has dropped from 4 for the Logarithmic-Distribution Method to 1 for the

Search-Outward Method.

The MISO Design Set benchmark was chosen to compare the two methods, the results

of which is shown in Figure 5.5. On the x-axis is the choice for the initial guess, Wgto, as

compared to the actual solution, W*,. On the y-axis is the number of branch evaluations,

Net, required to converge upon the solution. (One branch evaluation yields computed

values for both branches.)

The Logarithmic-Distribution Method required an average of 16 branch evaluations to

converge upon the solution. In fact, it almost always required 16 - 17 branch evaluations

because the initial search always started at the lower limit. Reentering the solution

still required 8 branch evaluations, and entering guess values very near the solution

required, for some unknown reason, more than 18. Meanwhile, the Search-Outward

Method required an average of 8 branch evaluations, half of the Logarithmic-Distribution

Method's, with less required as the initial guess approached the solution. (Reentering

the solution only required 2 branch evaluations.) Figure 5.5 shows that the Search-

Outward Method required only a fair guess at the solution for quick convergence, while

the Logarithmic-Distribution Method required the exact one.
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Curious about the shape of the curves of the branches, the author plotted them (as

shown in Figure 5.6) and, much to his embarrassment, found them to be two straight

lines. Thinking that a more non-linear test case would be more appropriate, a new design

path was chosen for the MISO Design Set so that the loop would involve a non-linear

branch sequence of design functions. The curves of the branches are shown in Figure 5.7

and the comparison between the two search methods involving these branches is shown

in Figure 5.8.

This new problem was so non-linear that it actually had two solutions, as shown

by the two intersection points in Figure 5.7. The dashed line in both Figures 5.7 and

5.8 defined the boundary between the two solutions. To the left of the boundary, all

initial guesses, VCR, should have fallen towards the first solution, VcR,; and to the right,
towards the second solution, V5R,.

As shown in Figure 5.8, the Logarithmic-Distribution Method required an average
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of 7 branch evaluations to converge upon a solution; however, since the Logarithmic-

Distribution Method always searched from the lower limit, it always converged upon the

first solution V R, - even when the second solution VCR2 was entered as the initial

guess. Therefore the real average to converging upon the second solution was infinity.

This major drawback of the Logarithmic-Distribution Method makes any implementation

of the Search-Outward Method worth while. Fortunately, though, the Search-Outward
Method performed better than the Logarithmic-Distribution Method. Not only did it
converge upon the solution it was supposed to, it also did it with an average of only 5
branch evaluations.

With the Search-Outward Method fully incorporated into the Loop Solver code, the
MISO and XCODE Design Sets were reset back to their original design paths and then
reprocessed. Total processing time was further reduced by almost a factor of 3, dropping
the MISO time from 10 seconds to 3, and the XCODE time from 6 minutes to 2. Overall,
the modifications to the Design Function Solver and to the Loop Solver have reduced
processing time by a factor of 25.

5.3 Thoughts on Numerical Methods

Throughout the development of the Paper Airplane Numerical Solvers (i.e., the Design
Function Solver, the Loop Solver, and the MIMO Solver), only two numerical methods
really have been applied - searching and taking the derivative.

Searching amounts to nothing more than guessing, taking mathematical potshots in
the dark with the hope of miraculously hitting upon the solution. This is the equivalent
of trying to find the top of Mount Everest by flying around Tibet in a bomber at 40000
feet (at night) and dropping bombs in order to find out the shortest time to an explosion.
The problem with this method is that one would need a lot of bombs in order to find the
top of Mount Everest in this manner.

Taking the derivative is slightly better, but has its own downfalls. Taking the deriva-
tive amounts to nothing more than feeling one's way around mathematical space with
the hope of coming across the solution. This is the equivalent of trying to find the top of
Mount Everest by driving around Tibet in a snowmobile (at night - during a blizzard)
and continuously climbing in order to reach the top. The problem with this method is
that the top reached may not be the top of Mount Everest. Indeed, Tibet has plenty
of other mountains one might climb by mistake. In mathematics, this is called reaching
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a local maximum. The downfall with this method is that discontinuities, like crevices

in a mountainside, can plunge you into a hole from which you can never escape. In

mathematics, this is called reaching a local minimum.

What one really needs is the mathematical equivalent of seeing. Anyone standing in

Tibet can just take one glance at the landscape and point to the top of Mount Everest.

There should be a mathematical equivalent operation to looking up and saying "Oh,
there it is."

The author has trivialized the problem somewhat, by using the top of the highest

mountain as the solution. A more general solution would be a lost mountain climber.

Any Search-and-Rescue operator knows of the difficulty in finding a lost climber; however,
he does not drop bombs from 40000 feet nor drives madly about in a snowmobile in order

to conduct the search. Instead, he uses a helicopter to get above the mountain and a

good pair of eyes to look down over it.

Mathematics needs a numerical method analogous to getting above the problem and

looking down over it. Since seeing is a parallel process, the numerical method should

involve guessing many values in a region simultaneously, a task best served by a good

parallel processor. Since seeing also involves scanning, the visual equivalent of taking the

derivative, the numerical method should also take derivatives as well. And since seeing

is an intelligent process, the numerical method should be able to intelligently combine

guessing with taking the derivative.

The Paper Airplane Numerical Solvers do combine guessing with taking the derivative;

although how intelligently will only be decided by how well it finds the solutions to

problems yet untried. The best piece of information a mathematician could provide

the user community at this time is the proper combination of guessing and taking the

derivative for solving numerical problems.

-ww W-Nowift I



Chapter 6

The Aerospaceplane Design Test

This chapter describes the research, development, and testing of the NASP Design Set

created to perform a major test of Paper Airplane's new and modified capabilities - the

preliminary design of a national aerospaceplane (NASP). The NASP Design Set consisted

of 45 design variables and 26 design functions, including MISO design functions, MIMO

design functions, design functions calling external codes, and design functions calling

internal LISP functions.

6.1 Research

As in the real engineering world, the first order of business was to develop the re-

quirements of the vehicle. It was first decided that the national aerospaceplane to be

designed would be a commercial passenger vehicle; therefore, the trajectory would be a

simple climb, cruise, and descent. Next, it was decided that the vehicle would cruise at

Mach 6 at 150,000 feet and carry 200 passengers 6000 miles.

Since this was to be a practical engineering test of Paper Airplane's new and modified

capabilities, the NASP Design Test would require practical engineering design functions.

It was therefore decided that complex design functions for the weight, aerodynamic,

propulsion, and performance characteristics of the vehicle would be created, and that

simpler design functions for other characteristics (such as thermodynamic) would be

added later.

The obvious choice for the complex design functions were design functions calling

external FORTRAN codes. A quick search and inquiry revealed that no such codes were

EE P.A.
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available; therefore, they would have to be written from scratch. A search for information

led the author to Prof. Rene Miller [13], director of the M.I.T. Space Systems Laboratory.

Prof. Miller supplied several papers he had written on the subject of aerospaceplanes plus

a former student's Master's thesis from 1967. The thesis, "Aerospaceplane Optimization

and Performance Estimation" by James Martin [12], provided the author with a founda-

tion in which to build the NASP Design Set.

Martin's aerospaceplane was not a commercial passenger vehicle, however, but a

single-stage-to-orbit cargo transport; therefore, it did not cruise nor descend, but climb

continuously - and at speeds much greater than Mach 6. Because of this, it was decided

to retain only the vehicle's geometry (shown in Figure 6.1) and its propulsion charac-

teristics (a table of specific impulse as a function of Mach number), and to ignore its

aerodynamic characteristics (which concentrated on hypersonic flight), its weight charac-

teristics (which were weight fractions that could not be reverified), and its performance

characteristics (which concentrated on climb load factors and thermodynamics).

Aerodynamic Characteristics

All the information needed to define the aerodynamic characteristics of the aerospace-

plane was obtained from Fundamentals of Aircraft Design by Leland Nicolai [14]. Al-

though Nicolai's text does not cover hypersonic aerodynamics, the supersonic aerodynam-

ics could be extended out to Mach 6. Because the text is written for aircraft designers,
the aerodynamics is presented in equations, tables, and graphs. Where possible, the

graphs were reduced to equations that could be used by the aerodynamics code. For this

and other reasons, it was decided to tailor the aerodynamics code to the geometry at

hand (delta wing, sharp leading edges, double-wedge airfoil, etc.) instead of attempting

to make a general aerodynamics package.

Weight Characteristics

Nicolai's text was again used to define the weights characteristics of the aerospace-

plane. The equations Nicolai provides for computing the weights of aircraft substructures

are based upon historical data; since the national aerospaceplane would be a revolution-

ary design, the equations would therefore not apply. A different historical datum would

apply, however. Nicolai's text supplies a graph of the empty weight fraction of a vehicle

versus its gross weight at take-off. Although simple, this straight line curve represents
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the unchanging historical trend of hundreds of aircraft. As this line is not likely to change

very much in the near future, it was decided that the an empty weight fraction for the

aerospaceplane would be just about as accurate as any weight information other methods

could provide.

Assuming that the aerospaceplane would be about the size and weight of a Boeing

747, and using some information in Nicolai on Boeing's canceled SST, the empty weight

fraction was set at 0.40 (40%).

Performance Characteristics

The performance characteristics of the aerospaceplane were by far the most difficult

ones to define. In fact, the sole reason for continuous delays in creating the NASP Design
Set was due to problems in defining precisely what trajectory the aerospaceplane would

follow. The "simple" climb, cruise, and descent trajectory was not so simple after all. (It
should be pointed out that this problem extends out into the aerospace industry as well.)

Although Nicolai's text was again referenced, it only provided detailed performance

information for cruise conditions; which still left climb and descent undefined. Prelimi-
nary equations were developed so that the aerospaceplane would climb at a given angle,
cruise until it was almost out of fuel, then descend at another angle. The author went
to Prof. Miller (one of many visits) to verify the equations. Prof. Miller suggested a
boost-glide trajectory instead - a fast climb, a short cruise, and a long glide. Both climb
and descent would be at maximum lift-to-drag ratio.

At the same time, the author heard a lecture by a NASA Ames researcher on current
aerospaceplane research. He felt that the boost-glide trajectory was a military one, not
a commercial one. Once again without a clearly defined trajectory, the defining of the
performance characteristics came to a halt. A third opinion to break the tie was not found
until a month later during another lecture by a different aerospaceplane researcher, one

from Draper Laboratory. Not only did he agree with Prof. Miller on the boost-glide

trajectory, he also provided the author with the latest aerospaceplane propulsion data
from NASA - specific impulse charts which could be used to update the ones from
Martin's thesis.

Propulsion Characteristics

With the new propulsion data from NASA, the specific impulse tables were updated.
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Specific impulse, I,, is not thrust, T, however; but a measure of fuel consumption rate

rh since T = rhI,,. Therefore, the specific impulse could be used to compute the fuel

consumption rate only once the thrust was computed. An independent equation for

thrust was found in Mechanics and Thermodynamics of Propulsion by Hill and Peterson

[6]. The equation calculates the maximum thrust through an air-breathing engine; the

actual thrust would be less by some throttle factor k:

T = k Tmaz = k pVAf gI.,

where p is the air density, V is the flight velocity, A is the inlet capture area, f is the

fuel-to-air ratio, and g is gravity.

Since the inlet capture area could be computed from the geometry, the only unknown

was the fuel-to-air ratio. Using a method Hill's text provides to compute the Stoichomet-

ric fuel-to-air ratio of aviation fuel, the Stoichometric fuel-to-air ratio of liquid hydrogen,

the chosen fuel of the national aerospaceplane, was found to be 0.029. Since the ac-

tual fuel-to-air ratio is only slightly less than this number, it was decided to use the

Stoichometric fuel-to-air ratio for the actual fuel-to-air ratio.

With this last bit of information, the development of the NASP Design Set could

commence.

6.2 Development

The development of the NASP Design Set was in three stages, (1) creation of the

aerodynamics code, (2) creation of the performance code, and (3) creation of the rest of

the design set.

The Aerodynamics Code

Using the information gleaned from Nicolai, the author wrote a FORTRAN code to

compute lift coefficient, drag coefficient, and lift-to-drag ratio as a function of altitude,

Mach number, and angle of attack. The code was written for optimum performance.

Geometry and geometry-specific information are computed only once, altitude-specific

information is computed once for each altitude, Mach-number-specific information is

computed once for each Mach number at each altitude, etc. In the angle of attack loop,

only lift coefficient, drag coefficient, and lift-to-drag ratio are computed - all other values

are already defined. The final version of the aerodynamics code is listed in Appendix H.
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The code was compiled for debugging and was stepped through to make sure that

all values were being computed correctly. After the code was successfully debugged (a

process that did not take long), the code was run and successfully tested. This optimized
code computed the aerodynamics for 16 altitudes, 30 Mach numbers, and 30 angles of
attack in only 92 seconds - an average of 156 data points per second.

The results were plotted and shown to Prof. Miller and Prof. Simpson, who both

validated them. Some of the results are shown in Figures 6.2 and 6.3.

The Performance Code

Using information from Nicolai, Prof. Miller, and the author's past experience, the
author wrote a FORTRAN code to integrate the range of an aerospaceplane. The vehicle
takes-off and climbs until it reaches cruise altitude. It then continues to accelerate to
cruise Mach number and cruises until its fuel supply is down to reserves. It then descends
unpowered until it reaches the 50 foot runway altitude, and stops.

Inputs are cruise Mach and altitude, vehicle weight at take-off, fuel and fuel reserves
weights, wing reference area, inlet capture area, and fuel-to-air ratio. Other inputs are
the specific impulse and aerodynamics tables.

Using the boost-glide trajectory, the vehicle would climb at maximum thrust and
at maximum lift-to-drag ratio, cruise under equilibrium conditions, and descend again
at maximum lift-to-drag ratio. The code was compiled for debugging and was stepped
through to make sure that all values were being computed correctly. Under maximum
thrust, the initial acceleration was 200 times that of gravity. The author went back to
talk with Prof. Miller.

The problem was that the inlet capture area was too large. To scale it down, it would
have to be sized for cruise conditions. The climb trajectory was also wrong. The vehicle
should not climb at maximum lift-to-drag ratio, but under steady state conditions at a
given climb angle and a given acceleration.

Once two more inputs were added (climb angle and climb acceleration), the code was
again compiled and stepped through. The vehicle successfully climbed to cruise altitude,
but even during cruise it kept climbing. A control equation modifying equilibrium lift
was added to guide the desired climb angle to zero as the cruise altitude was approached.
This worked successfully and the vehicle climbed to cruise altitude, leveled off, and cruised
until its fuel supply dropped into its reserves. During descent, however, all hell broke
loose. The discrete transient switch from equilibrium flight to flying at maximum lift-to-
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drag ratio created tremendous phugoid oscillations that sent the vehicle plunging towards

the surface then shooting up into the sky. After the phugoid oscillations damped, the

vehicle successfully landed at Mach 0.26. Despite the successful landing, the author went

back to talk with Prof. Miller.

Prof. Miller explained that the vehicle should always be flying under equilibrium con-

ditions, which are normally designed for maximum lift-to-drag ratio flight. The descent

was changed to an equilibrium flight, but the vehicle would not descend. Instead, the

angle of attack compensated to keep the vehicle flying level as the Mach number dropped

subsonic. Problems in the code allowed the angle of attack to rise to ridiculous values.

That corrected, the descent was again modified to fly under equilibrium conditions until

the angle of attack reached that for maximum lift-to-drag ratio. At that point, the flight

would switch to flying at maximum lift-to-drag ratio, but hopefully would avoid major

phugoid problems.

After stepping through the code to correct any mistakes, the code was run from

take-off to landing. During descent, the vehicle continued to fly level, while its Mach

number fell, until its angle of attack reached that for maximum lift-to-drag ratio. Under

maximum lift-to-drag ratio flight, the vehicle descended to the surface with only minor

phugoid oscillations and landed, as before, at Mach 0.26.

The final version of the code is listed in Appendix I. Run time to read in all the data

and fly out the trajectory was less than two minutes.

The NASP Design Set

With the aerodynamics code and the performance code written, the NASP Design

Set could be created around them. The first two design functions written were, obviously,

the ones that called the codes. Several others were added to compute the geometry and

weights information needed by the codes.

A problem emerged with LISP during the creation of the external codes preprocessors

and postprocessors, which format the data for input and retrieve the formatted data

from the output, respectively. Due to LISP's poor formatted I/O capabilities, the author

was forced to write short FORTRAN codes to perform the required formatting tasks.

Instead of the design function calling one external code, it now had to call three. The

External Code Interface did not have to be modified in any way, however, since it was

already capable to handling unformatted data. The preprocessors and postprocessors

still ran quickly enough (a matter of seconds) that their processing time disappeared
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when compared to that of the main external code.

During the author's many discussions with Prof. Miller, it became apparent that

the aerospaceplane, using Martin's geometry, would not fly 6000 miles; therefore the

desired range was reduced to 5000 miles. For thermodynamic reasons, the cruise Mach

number was also reduced, to Mach 5. Finally, the cruise altitude was reduced to 120,000

feet because the original altitude of 150,000 feet is only required for the hypersonic

aerospaceplanes.

It was decided to keep the geometrical shape of the vehicle and to change only its

size. The scaling factors, shown in Figure 6.1, were added as design variables, and the
computation of the actual lengths was relegated to design functions.

A cabin was laid out to make sure that it could fit 200 people in the upper fuselage,
and all the fuel in the lower fuselage. Formulas were derived to compute the volume
in the lower fuselage and a factor of 0.9 was thrown in to allow for structure. Design
variables and design functions were then added to compute the distribution of passengers
and fuel aboard the vehicle. The weight of the fuel, therefore, depended on the volume
avialable to store it.

Finally, several design functions were added to compute the thermodynamic char-
acteristics of the vehicle. Specifically the design functions were to compute the nose
radius and wing-leading-edge radius required to withstand their respective stagnation
temperatures.

Appendix G contains the complete list of the design variables and design functions
comprising the NASP Design Set.

6.3 Testing

The testing of the NASP Design Set was performed in three stages. The first stage
was to use the Paper Airplane Function Exerciser and make sure that all the design
functions worked properly. The second stage was to have Paper Airplane compute the
range of the vehicle given a certain geometry. The third stage was to have Paper Airplane
compute the geometry of the vehicle to obtain a given range.

Since it was decided to fix the shape of the vehicle, the size could be determined by
one design variable; this was chosen to be the wing length. The second stage was then
reduced to computing the range of a vehicle corresponding to a given wing length. The
third stage was reduced to computing the vehicle's wing length to obtain a given range.
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First Stage

This stage yielded the time it would take to evaluate each design function individually.

This was most important for the two design functions calling external codes. Most of

the simple design functions ran successfully the first time; only a few required minor

corrections.

The preprocessors and postprocessors of both the aerodynamics code and the perfor-

mance code were tested and debugged before the design functions themselves were tested

from inside Paper Airplane. Therefore, the testing of the design functions calling these

external codes went smoothly. The average time to run the aerodynamics code from

within Paper Airplane was 50 seconds. A program to convert the aerodynamics data

to a form usable to the performance code required an addition 30 seconds. The average

time to run the performance code from with Paper Airplane was 100 seconds.

The results of a inlet sizing design function was used to update the value of the inlet

capture area required by the performance code. When the performance code was run,

however, the vehicle could not achieve enough thrust to climb to cruise altitude and

accelerate to cruise Mach number. The vehicle fell until it accelerated to its cruise Mach

number and then leveled off. Then, during descent, it dove straight into the ground at

supersonic speed. ,Needless to say, the range was much less than desired.

The death plunge was a problem with the maximum lift-to-drag ratio algorithm and

was corrected. The thrust problem was not as easy to correct. Since the latest version of

the code was properly controlling the required thrust, the maximum thrust limit could be

raised to keep from overconstraining it. This meant abandoning the concept of sizing the

inlet, thus also the inlet sizing design function and the special design variables and design

functions associated with it. Despite reservations, this was done. Since an inlet capture

area was still required by the performance code, it was equated to the cross-sectional area

bounded by the engine diameter. These changes did decrease processing time, however,

and allowed the vehicle to fly to its maximum range.

Second Stage

The design path was chosen so that all the unknown geometry values could be com-

puted once the wing length was specified. Once the geometry was known, the weights and

aerodynamics could be determined. Finally, once the geometry, weights, and aerodynam-

ics were known, the range could be computed. This design path should have produced
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AGENDA for design NASP

AGENDA ENTRY

Forced Path
Forced Path

Forced Path

Forced Path

Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path
Forced Path

DESIGN VARIABLE

AFTERBODYLENGTH

WINGSPAN

BODYDIAMETER
FOREBODYLENGTH

TAILLENGTH
ENGINEDIAMETER
PAYLOADWEIGHT

WINGREFERENCE.ARE
CRUISEVELOCITY
CRUISEAIRDENSITY
ENGINEFRACTION

ENGINELENGTH

FUELVOLUME
FUELWEIGHT

FUELRESERVES
TAILHEIGHT
INLET-CAPTUREAREA
MAXIMUMLIFT-COEFF
PAYLOADVOLUME
LEADINGEDGERADIU
NOSERADIUS
FUSELAGEVOLUME

COMPUTED BY DESIGN FUN DIRECTION

AFTERBODY-LENGTH-EQUATI
WING-SPAN-EQUATION
BODY-DIAMETER-EQUATION

FOREBODY-LENGTH-EQUATIO

TAIL-LENGTH-EQUATION

ENGINE-DIAMETER-EQUATIO

PAYLOAD-WEIGHT-EQUATION
REFERENCE-AREA-EQUATION

CRUISE-VELOCITY-FUNCTIO

CRUISE-DENSITY-FUNCTION
LENGTH-FRACTION-EQUATIO
ENGINE-LENGTH-EQUATION
FUEL-VOLUME-EQUATION
FUEL-WEIGHT-EQUATION

FUEL-RESERVES-EQUATION

TAIL-HEIGHT-EQUATION
CAPTURE-AREA-EQUATION

AERODYNAMICS-PROGRAM
PAYLOAD-VOLUME-EQUATION
WING-RADIUS-EQUATION
NOSE-RADIUS-EQUATION
FUSELAGE-VOLUME-EQUATIO

Loop 1: Initial Path

Loop 1: Branch I

Loop 1: Branch 2

Loop 1: Final Path
Loop 1: Final Path

Loop 1: Final Path

<NO ENTRIES>

VEHICLEEMPTY-WEIG GROSS-WEIGHT-EQUATION

VEHICLEEMPTY-WEIG EMPTY-WEIGHT-EQUATION

TIME-OF-FLIGHT
RANGE
PAYLOAD.WEIGHTFRA

PERFORMANCE-PROGRAM
PERFORMANCE-PROGRAM
PAYLOAD-FRACTION-EQUATI

*REVERSE*

FORWARD

FORWARD
FORWARD

FORWARD

Figure 6.4: Computational agenda for Second Stage testing.
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FORWARD

FORWARD

FORWARD

FORWARD

FORWARD
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FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD
FORWARD

FORWARD

FORWARD
FORWARD
FORWARD

FORWARD

FORWARD
FORWARD
FORWARD
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an agenda with one large forced path and no loops; therefore, the processing time would

be minimized. The actual computational agenda built by Paper Airplane to solve for all

the unknowns (shown in Figure 6.4) was just as intended. Except for one small loop, the

agenda is one large forced path.

Because of the number of design variables contained in the NASP Design Set, the

initial design point is listed below rather than put into a figure.

LIST OF INTERNED VARIABLES

F T O.O.M. WT ST VARIABLE NAME CURRENT VALUE INCOMP'S

0.2000
30.0000
40.0000
7.5000
0.5000

20.0000
0.0063

120000.0000

5.0000

5100.0000

0.4000

50.0000

0.1000
15.0000/

0.7000

105.0000
3200.0000

15000.0000

65000.0000
37700.0000
1000.0000

1.5000

75.0000
0.8300
6.0000

2500.0000

206.0000
16500.0000

47400.0000

47400.0000

5000.0000

0.6000

30.0000

22.0000

24.0000

AFTERBODYFRACTION

AFTERBODY-LENGTH

BODYDIAMETER

CABIN.HEIGHT

CLIMBACCELERATION

CLIMBANGLE
CRUISEAIRDENSITY

CRUISE.ALTITUDE

CRUISEMACH
CRUISEVELOCITY

EMPTYWEIGHT.FRACT
ENGINEDIAMETER
ENGINEFRACTION
ENGINELENGTH

FOREBODYFRACTION

FOREBODYLENGTH

FUEL.RESERVES
FUEL-VOLUME
FUELWEIGHT
FUSELAGEVOLUME
INLETCAPTUREAREA

LEADINGEDGERADIU

LEADINGEDGESWEEP

MAXIMUMLIFTCOEFF
NOSERADIUS
NOSETEMPERATURE
PASSENGER-CAPACITY
PAYLOADVOLUME
PAYLOAD-WEIGHT

PAYLOAD.WEIGHTFRA

RANGE
SEATINGFRACTION

SEATPITCH

SEATWIDTH
TAIL-HEIGHT

0.2000
30.0000 ft

40.0000 ft

7.5000 ft

0.5000 g
20.0000 deg
0.0063 kg m-3

120000.0000 ft

5.0000

5100.0000 ft s-1
0.4000

50.0000 ft

0.1000

15.0000 ft

0.7000

105.0000 ft

3200.0000 lb

15000.0000 ft3
65000.0000 lb
37700.0000 ft3
1000.0000 ft2

1.5000 in

75.0000 deg

0.8300

6.0000 in

2500.0000 R
206.0000

16500.0000 ft3

47400.0000 lb

0.3000

5000.0000 sm

0.6000

30.0000 in

22.0000 in

24.0000 ft

T

+ T
+ T

T

T

T

+ T
T

T

+ T
T

+ T
+ T
+ T

T

+ T
+ T
+ T
+ T
+ T
+ T
+ T

T
+ T
+ T

T
T

+ T
+ T
+ T

+ T
T
T
T

+ T
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30.0000
0.8000

100.0000
68000.0000
170000.0000
150.0000

6000.0000

80.0000

2500.0000

0.0300

TAILLENGTH
THICKNESSSTATION

TIMEOFFLIGHT
VEHICLEEMPTYWEIG
VEHICLEGROSS.WEIG

WINGLENGTH
WINGREFERENCEARE
WINGSPAN
WINGTEMPERATURE
WINGTHICKNESS

30.0000 ft
0.8000

100.0000 min
68000.0000 lb
170000.0000 lb
150.0000 ft

6000.0000 ft2

80.0000 ft
2500.0000 R

0.0300

The wing length was the default 150 feet. Paper Airplane processed the agenda and
computed the values for all of the unknowns. Processing time was about three minutes.

The value of the most important unknown, the range, was computed to be 2912 miles.

The design set was reprocessed using a wing length of 200 feet and, this time, the range
came out to be 5105 miles. Once more the design set was reprocessed using a wing length

of 190 feet and, this time, the range came out to be 4700 miles. A quick calculation gave

the desired wing length to be 197 feet. When the design set was reprocessed using this
value, the range came out to be 5007 miles, within 0.2% of the desired value. A summary

of the Second Stage testing is tabularized below.

With the solution found through educated guessing, it was then

Paper Airplane could find the solution by its own methods.

time to determine if

Third Stage

The only modification to the design path was that Range was changed from an un-
known to a known, and Wing Length was changed from a known to an unknown. By
doing so, however, the entire solution path would be reversed in a classic test of "inverse
engineering." This design path would produce one short forced path and one large loop,
with at least the performance code being processed in reversed; therefore, the processing
time would be maximized. The actual computational agenda built by Paper Airplane to

+ T
T

Wing Length Range Vehicle Gross Weight

(feet) (miles) (pounds)

150 2912 175,200

190 4700 340,400

197 5007 365,000

200 5105 381,900
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solve for all the unknowns (shown in Figure 6.5) was just as intended. The agenda is one

small forced path and one large loop.

The Second Stage final design point corresponding to the wing length of 200 feet

was chosen as the Third Stage initial design point for this "inverse engineering" test.

The only change was in setting the range to the desired 5000 miles. With the design

function calling the performance code being processed in reverse, it was determined that

the overall processing time would be much greater than the three minutes processing time

from Second Stage testing. Because of this, the allowable numerical error was raised from

the default 0.1% to 1.0%.

An error occurred in the performance code while Paper Airplane was reverse com-

puting the gross weight of the vehicle to obtained the desired range. It turned out that

because the fuel weight was a fixed computed known (its value having been determined

by the guessed vehicle size), the lower search values of the gross weight dipped too close

to that of the fuel weight and the performance code went unstable. To correct this prob-

lem, the lower and upper value limits of the vehicle gross weight design variable were

reduced to the values corresponding to the 190-foot wing length vehicle and the 200-foot

wing length vehicle, respectively. This was done using the Paper Airplane Design Set

Editor and did not involve changing the NASP Design Set source file; thus it was a legal,

and recommended, move. Also reduced were the lower and upper value limits of the

wing length design variable, so that the search for the desired wing length would remain

between 190 feet and 200 feet.

The initial design point was reset and the design set was reprocessed. Each search

value required ten minutes to compute its branch values. After 35 minutes, a solution

was successfully found. The desired wing length to carry the vehicle 5000 miles was 196.7

feet, very close to the educated guess value of 197 feet from Second Stage testing. The

final design point of this solution to the NASP "inverse engineering" problem is listed

below.

LIST OF INTERNED VARIABLES

F T O.O.M. WT ST VARIABLE NAME CURRENT VALUE INCOMP'S

T 0.2000 I AFTERBODYFRACTION 0.2000

+ T 30.0000 C AFTERBODYLENGTH 39.3333 ft

+ T 40.0000 C BODYDIAMETER 52.6967 ft

T 7.5000 I CABINHEIGHT 7.5000 ft

T 0.5000 I CLIMBACCELERATION 0.5000 g
T 20.0000 I CLIMBANGLE 20.0000 deg
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+ T
T
T

+ T
T

+ T
+ T
+ T

+ T
T

+ T
+ T

0.0063
120000.0000

5.0000
5100.0000

0.4000
50.0000
0.1000

15.0000

0.7000
105.0000

3200.0000

15000.0000
65000.0000
37700.0000

1000.0000
1.5000

75.0000
0.8300
6.0000

2500.0000
206.0000

16500.0000
47400.0000

T 47400.0000

+ T 5000.0000

T 0.6000/
T 30.0000
T 22.0000

+ T 24.0000

+ T 30.0000

T 0.8000
+ T 100.0000

+ T 68000.0000

+ T 170000.0000
T 150.0000

6000.0000
80.0000

2500.0000
T 0.0300

CRUISEAIRDENSITY
CRUISEALTITUDE
CRUISEMACH
CRUISEVELOCITY
EMPTYWEIGHTFRACT
ENGINEDIAMETER
ENGINEFRACTION
ENGINE-LENGTH

FOREBODYFRACTION
FOREBODYLENGTH

FUELRESERVES
FUELVOLUME
FUELWEIGHT
FUSELAGEVOLUME
INLETCAPTUREAREA
LEADINGEDGERADIU
LEADINGEDGESWEEP
MAXIMUMLIFTCOEFF
NOSERADIUS
NOSETEMPERATURE
PASSENGERCAPACITY
PAYLOADVOLUME
PAYLOADWEIGHT
PAYLOADWEIGHTFRA

RANGE
SEATINGFRACTION
SEATPITCH
SEATWIDTH
TAILHEIGHT
TAILLENGTH
THICKNESSSTATION
TIMEOFFLIGHT
VEHICLEEMPTYWEIG
VEHICLEGROSSWEIG
WINGLENGTH
WING-REFERENCEARE
WINGSPAN
WING-TEMPERATURE
WINGTHICKNESS

0.0063 kg m-3
120000.0000 ft

5.0000
5213.2546 ft s-1

0.4000
65.8708 ft
0.1000

19.6667 ft

0.7000
137.6667 ft

8525.3303 lb
39017.5300 ft3
170506.6059 lb
85786.1253 ft3

1703.9087 ft2
0.7643 in

75.0000 deg
0.8300
2.9530 in

2500.0000 R
206.0000

16952.0833 ft3
47380.0000 lb

0.1307

5000.0000 sm
0.6000

30.0000 in
22.0000 in
31.7701 ft
39.3333 ft
0.8000

105.0000 min
145053.1222 lb
362632.8055 lb

196.6667 ft
10363.6793 ft2

105.3933 ft
2500.0000 R

0.0300

A quick analysis verifies the results. The desired vehicle had a wing length of 197 ft
and a wing span of 105 ft, given a wing reference area of 10,360 ft2. With a vehicle gross
weight of 362,600 lb, the wing loading was 35 lb/ft 2, a reasonable number. The payload
fraction was only 13% of the vehicle gross weight, because of the large need for fuel (al-
most half the vehicle gross weight). Still, this is not unreasonable. The nose radius and
leading edge radius, though small, were as expected. The time of flight to fly 5000 miles

CHAPTER 6.

+ T
+ T
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was 105 minutes, which would allow passengers flying west to arrive before the time they

left. Although strange, this is one of the major economic problems the aerospace industry

is currently studying.

Despite many problems, the Aerospaceplane Design Test was a huge success. A

national aerospaceplane was designed to whisk 200 passengers 5000 miles in less than

two hours. After three months of intensive research and development, Paper Airplane

took only 35 minutes to find a solution to the given requirements.
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AGENDA for design NASP

AGENDA ENTRY

Forced Path

Forced Path

Forced Path
Forced Path

Forced Path
Forced Path
Forced Path

Loop 1:
Loop 1:

Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:
Loop 1:

Initial Path
Initial Path

Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path
Initial Path

Loop 1: Branch 1

Loop 1: Branch 2

Loop 1: Final Path

Loop 1: Final Path

DESIGN VARIABLE

CRUISEAIRDENSITY
CRUISEVELOCITY

PAYLOADWEIGHT

ENGINEFRACTION

PAYLOAD-VOLUME

LEADINGEDGERADIU

NOSERADIUS

AFTERBODYLENGTH
WINGSPAN

BODYDIAMETER

ENGINELENGTH

FOREBODYLENGTH

ENGINEDIAMETER

WINGREFERENCEARE
TAILLENGTH
FUELVOLUME
FUEL-WEIGHT

FUELRESERVES
TAILHEIGHT
INLET.CAPTUREAREA
MAXIMUMLIFTCOEFF
VEHICLEGROSSWEIG
TIMEOFFLIGHT

COMPUTED BY DESIGN FUN DIRECTION

CRUISE-DENSITY-FUNCTION
CRUISE-VELOCITY-FUNCTIO

PAYLOAD-WEIGHT-EQUATION

LENGTH-FRACTION-EQUATIO

PAYLOAD-VOLUME-EQUATION

WING-RADIUS-EQUATION

NOSE-RADIUS-EQUATION

AFTERBODY-LENGTH-EQUATI
WING-SPAN-EQUATION

BODY-DIAMETER-EQUATION

ENGINE-LENGTH-EQUATION

FOREBODY-LENGTH-EQUATIO

ENGINE-DIAMETER-EQUATIO
REFERENCE-AREA-EQUATION
TAIL-LENGTH-EQUATION
FUEL-VOLUME-EQUATION
FUEL-WEIGHT-EQUATION

FUEL-RESERVES-EQUATION
TAIL-HEIGHT-EQUATION
CAPTURE-AREA-EQUATION
AERODYNAMICS-PROGRAM
PERFORMANCE-PROGRAM
PERFORMANCE-PROGRAM

VEHICLEEMPTYWEIG GROSS-WEIGHT-EQUATION

VEHICLEEMPTYWEIG EMPTY-WEIGHT-EQUATION

PAYLOADWEIGHTFRA PAYLOAD-FRACTION-EQUATI
FUSELAGEVOLUME FUSELAGE-VOLUME-EQUATIO

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD

FORWARD
FORWARD

FORWARD

FORWARD
FORWARD

FORWARD

FORWARD

FORWARD
FORWARD
FORWARD
FORWARD

*REVERSE*
*REVERSE*

*REVERSE*

FORWARD

FORWARD

FORWARD

Figure 6.5: Computational agenda for Third Stage testing.



Chapter 7

Summary and Conclusions

This chapter summarizes the research discussed in the paper, then draws some con-

clusions about the work done thus far and the work that still needs to be done.

7.1 Summary

In preliminary design, a product idea is represented as a mathematical model; but,

because of its exfreme complexity, the mathematical model is necessarily broken apart

into many sub-models called engineering models.

In an ideal engineering environment, the engineering models would be available in

several different layers of complexity, they would account for all parts and properties of

the idea at each design level, and their information would be stored in one secure central

location. In the real engineering environment, however, enough engineering models just

don't exist, and the information of the ones that do exist is scattered all over a company.

Because of advances in computer technology and computer programming, a computer-

based engineering model information sharing system (CEMISS) is now a cost-effective

prospect to the engineering community. With its recent modifications, Paper Airplane, a

computer program modified under this research, can now be considered an early prototype

of such a CEMISS.

Paper Airplane integrates engineering models by treating them like a system of si-

multaneous non-linear functions and numerically solving them as such. Paper Airplane

separates the processing of finding a numerical solution into building a computational

agenda and computing the numerical solution. The Agenda Builder examines each func-

P. ,A.
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tion to find out which inputs and which outputs are known and which are unknown, then

figures out the proper sequence in which to evaluate the functions in order to solve for all

the unknowns. The Numerical Solvers then follow this agenda to find numerical values

for the unknowns once given initialized values for the knowns and guess values for the

unknowns.

The original version of Paper Airplane could only handle engineering models repre-
sented by equations and other MISO functions. The author's research was to expand
Paper Airplane's capabilities to handle engineering models represented by computer pro-
grams and other MIMO functions. In this way, Paper Airplane could graduate from
an academic research tool to a professional engineering tool. This research involved the
creation of an external code interface capability and a MIMO design function capability.

The external code interface capability was developed based upon research the author
performed at Boeing Aerospace. The external codes themselves were not modified, rather
Paper Airplane would mimic a human user of the code and communicate with it via
its standard input and output channels. The external code interface capability was
successfully testing on a design set calling an external FORTRAN code. Because of this
test, however, several inefficiencies with the Numerical Solvers were discovered and had
to be corrected.

The MIMO design function capability was developed based upon research previously
done by former M.I.T. professor Antonio Elias, creator of Paper Airplane, and by re-
search assistant Mark Kolb, and based upon information obtained from a text on nu-
merical methods. The final version of the MIMO design function capability is a vector
form of the Newton-Raphson iteration method. The MIMO design function capability
was successfully tested on an "inverse engineering" problem to compute the weights and
geometry characteristics of an aircraft given its aerodynamics and performance charac-
teristics.

The modifications required to improve the performance of the Numerical Solvers
dealt mainly with the implementation of the methods used, rather than the methods
themselves. Even so, total processing time was reduced by a factor of 25.

The design of a national aerospaceplane served as a major and first practical engi-
neering test of Paper Airplane's new and modified capabilities. The 26 design functions
included two calling external codes. The first code was a complex aerodynamics program
to compute aerodynamics tables for use with the second code, a complex performance
program to integrate the range of the vehicle. During testing, Paper Airplane success-
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fully computed values of range for different vehicle sizes. Then, a range was selected and

Paper Airplane successfully sized the vehicle to obtain that range. This major test of

Paper Airplane's "inverse-engineering" capabilities was performed in only 35 minutes. A

problem with LISP did show up during the creation of the design set, however. Because

of the poor formatted I/O capabilities of LISP, it became necessary to write short FOR-

TRAN codes to perform the data formatting required of each code's preprocessor and

postprocessor. This did not require any change to the Paper Airplane External Code

Interface, however, since it was successfully tested using unformatted data, as discussed

in Chapter 3.

7.2 Conclusions

The tests have proved that Paper Airplane can be a valuable tool to the engineer.

With the new and modified capabilities added by the author's research, Paper Airplane

has now graduated from an academic research tool to a professional engineering one.

Paper Airplane now has the capabilities to perform automatically many of the computer

tasks now performed manually by an engineer, such as setting up input files, executing

and monitoring codes, and converting output information to data required by another

code or by another engineer. Paper Airplane also has a user-friendly interface so that

the engineer with little programming knowledge can work it as easily as one with expert

knowledge. In these two regards, Paper Airplane has earned the status of an early

prototype of a CEMISS.

To make Paper Airplane reach the full status of a CEMISS, however, several more

capabilities still need to be added.

1. Paper Airplane will require the ability to perform automatic trade studies and

optimizations of design variables if it is to be of any value to the modern engineer.

Paper Airplane already has the ability to compute a "performance function" based

upon the weights applied to design variables. What it still needs is a general method

to minimize or maximize that performance function and to do it as efficiently as

possible.

2. Paper Airplane will require a database to house all the design information if it is

to properly integrate real engineering models. Paper Airplane just doesn't have

the memory to store all the information of a design. It needs a link to a database
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that can store and retrieve design information quickly and efficiently, so that an

engineer can acquire any information he or she requires when it is required.

3. Paper Airplane will require the ability to handle non-scalar design variables if it is

to handle real engineering models. Geometry information is sometimes best handled

in a drawing; and tabular information, in a graph. Paper Airplane will require the

ability to accept design information in this form as well as give it out.

4. Paper Airplane will require the ability to communicate with the computers best

suited for handling the engineering models. This will require a network interface

capability in addition to a modified external code interface.

5. Finally, Paper Airplane will require the ability to perform parallel processing of

tasks that can be parallel processed. Such an ability would greatly reduced the

processing time of numerical searching for the solution well beyond the factor of 25

already accomplished without it.

With all these new abilities, Paper Airplane would finally be considered a true CE-

MISS. Would this mean that engineers would lose their jobs? No way. Even with all

these capabilities, Paper Airplane would still be only a computational tool to the mod-

ern engineer. The key to finding a good numerical solution quickly is to start with a

good intelligent guess at it; such information would still only come from an engineer.

An expert system to teach Paper Airplane engineering is still a long, long way down the
road.



Appendix A

The Test Design Sets

This appendix lists the design variables and design functions used to test the modifi-

cations to Paper Airplane.

A.1 The MISO Design Set

The MISO Design Set is a set of multiple-input single-output design functions and the

design variables they relate. This design set, known to work well with Paper Airplane

before the modifications were added, served as a foundation for all other design sets,

except for the NASP Design Set discussed in Chapter 6.

Table A.1 summarizes the 17 design variables in the MISO Design Set, including its

traditional mathematical symbol, its name inside of Paper Airplane, and its definition -

all of which come straight out of the source file "MISO. SOU" listed in Appendix B.

The 7 design functions, which have been labeled simply DF-1 through DF-7, are

classical simple relationships which can be found in any book on aircraft design, such as

the ones by Torenbeek [17] and Nicolai [14].

DF-1: This is an equation for Gross Take-off Weight.

S - W fe

DF-2: This is a simple equation for Cruise Weight.

2
Wcr = Wgto - 2W

EE P.A.



Symbol Paper Airplane Name Definition

AR ASPECTRATIO Aspect Ratio of the Wing.

CD DRAG.COEFFICIENT The Drag Coefficient of the aircraft at Cruise.

CDO ZERO-LIFTDRAG.COEFF The Zero-lift Drag Coefficient of the aircraft.

CL LIFTCOEFFICIENT The Lift Coefficient of the aircraft at Cruise.

OSWALDEFFICIENCY The Oswald Efficiency of the Wing.

fe E4PTYWEIGHT-FRACTION The Empty (structural) Weight Fraction of the aircraft.

LID LIFT-TO-DRAGRATIO The Lift-to-Drag Ratio of the aircraft at Cruise.

R RANGE The Range of the aircraft.

Sref WINGREFERENCEAREA The Reference Area of the Wing.

TSFC TSFC The Thrust Specific Fuel Consumption of the Engines.

Tre, TIMEONRESERVES The Time Available using the aircraft's Fuel Reserves.

VC, CRUISEVELOCITY The Velocity of the aircraft at Cruise.

WCr CRUISEWEIGHT The Weight of the aircraft at Cruise.

Wf FUELWEIGHT The Weight of the aircraft's Fuel Supply.

Wto GROSSTAKE-OFFWEIGHT The Gross Weight of the aircraft at Take-off.

Wimin MIN-LANDINGWEIGHT The Minimum Weight of the aircraft at Landing.

W PAYLOAD-WEIGHT The Weight of the aircraft's Payload.

Table A.1: Design Variables comprising the MISO Design Set.
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DF-3: This is an equation for Minimum Landing Weight.

Wi1  = Wooe - RVCr W
" (R/VCr) + Tree

DF-4: This is a form of the famous Breguet Range Equation.

R VCr -log
TSFC D l W

DF-5: This is the definition of Lift-to-Drag Ratio.

L/D = CL
CD

DF-6: This is an equation for Lift Coefficient at Cruise.

CL = WCr

1/2pV),Srej

DF-7: This is an equation for Drag Coefficient at Cruise.

C2

CD = CDO + L
?r ARe

A.2 The XCODE Design Set

The XCODE Design Set is comprised of the same design variables comprising the

MISO Design Set and all but one of the design functions. "DF-4" was replaced with the

following short FORTRAN code:

program RANGE
C

real VCR, TSFC, LOVERD, W.GTO, WMIN, R
C

c begin

read(5,*) VCR, TSFC, LOVERD, WGTO, W.MIN
R = V-CR / TSFC * LOVERD * log( WGTO / WMIN )
write(6,*) R

end
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A.3 The MIMO Design Set

The MIMO Design Set is comprised of the same design variables comprising the

MISO Design Set plus one: "WINGSPAN," the span of the wing from tip to tip, with

mathematical symbol b.

The MIMO Design Set is also comprised of most of the same design functions com-

prising the MISO Design Set; however MISO design functions "DF-6" and "DF-7" have

been merged to form MIMO design function "Aerodynamics Package". Another MIMO

design function, "Geometry Package" has also been added.

Aerodynamics Package: This is the first MIMO, an equation for Lift Coefficient at

Cruise and an equation for Drag Coefficient at Cruise.

CL WCr
1/2pV',S e5

CD = CDO +A L
7r ARe

Geometry Package: This is the second MIMO, an equation for Wing Reference Area

and a simple equation for Oswald Efficiency.

Sref =
AR

e =0.8
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MISO Design Set Source File

AM410 Laser Executive Transport Aircraft
a

design experiment using Paper Airplane

and a
;; running example for the Paper Airplane User's Manual ;;

Conceptual Design Level

;futorial Design Set -- Number 1

CONSTANTS ;;;;;;;;

(defconstant *AIRDENSITY* 0.000738)
(defconstant *PI-D* 3.14159265)

slugs ft-3

DESIGN VARIABLES ;;;;;;;;;;;;;; ; ;;

(pa-defvar ASPECTRATIO
:category (geometry wing)
:documentation "Aspect Ratio
:TeX-name "$AR$"
:order-of-magnitude 8
:lower-value 5
:upper-value 20

:dimensions "I")

(pa-defvar DRAG.COEFFICIENT

of the Wing."

P.A.]
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:category aerodynamics

:documentation "The Drag Coefficient of the aircraft at Cruise."
:TeX-name "$C.D$"
:order-of-magnitude 0.02
:lower-value 0.01

:upper-value 0.04
:dimensions "")

ZERO-LIFTDRAGCOEFF

:category aerodynamics
:documentation "The Zero-lift Drag Coefficient of the aircraft."
:TeX-name "$C.{D_0}$"
:order-of-magnitude 0.0150
:lower-value 0.0100

:upper-value 0.0300
:dimensions "")

LIFTCOEFFICIENT
:category aerodynamics

:documentation "The Lift Coefficient of the aircraft at Cruise."
:TeX-name "$CL$"
:order-of-magnitude 0.3
:lower-value 0.1
:upper-value 0.5
:dimensions "")

OSWALDEFFICIENCY
:category (geometry wing)
:documentation "The Oswald Efficiency of the Wing."
:TeX-name "$\\epsilon$"
:order-of-magnitude 0.80
:lower-value 0.70
:upper-value 0.90
:dimensions "")

EMPTYWEIGHT.FRACTION

:category weights
:documentation "The Empty (structural) Weight Fraction of the aircraft."
:TeX-name "$fe$"
:order-of-magnitude 0.60
:lower-value 0.55
:upper-value 0.65
:dimensions "")

LIFT-TO-DRAGRATIO

:category aerodynamics
:documentation "The Lift-to-Drag Ratio of the aircraft at Cruise."
:TeX-name "$^L/_D$"
:order-of-magnitude 15
:lower-value 10

(pa-defvar

(pa-defvar

(pa-defvar

(pa-defvar

(pa-defvar
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:upper-value 20

:dimensions "")

(pa-defvar RANGE

:category (performance cruise)

:documentation "The Range of the aircraft."

:TeX-name "$R$"

:order-of-magnitude 3000

:lower-value 3000

:upper-value 3000

:dimensions "1"

:default-units "smi")

(pa-defvar

(pa-defvar

(pa-defvar

WINGREFERENCEAREA

:category (geometry wing)

:documentation "The Reference Area of the Wing."

:TeX-name "$S_{ref}$"
:order-of-magnitude 261.0

:lower-value 220.0

:upper-value 300.0

:dimensions "12"

:default-units "ft2")

TSFC

:category propulsion

:documentation "Thrust Specific Fuel Consumption of the engines."

:TeX-name "TSFC"
:ord'er-of-magnitude 0.8
:lower-value 0.8
:upper-value 0.8
:dimensions "Im f-1 t-1"

:default-units "lb lbf-1 hr-1")

TIMEONRESERVES
:category (performance cruise)
:documentation "The Time available using the aircraft's fuel reserves."
:TeX-name "$T_{res}$"
:order-of-magnitude 0.75
:lower-value 0.0
:upper-value 2.0
:dimensions "t"
:default-units "hr")

(pa-defvar CRUISEVELOCITY
:category (performance cruise)
:documentation "The Velocity of the aircraft at Cruise."
:TeX-name "$V_{Cr}$"

:order-of-magnitude 565.0
:lower-value 525.0
:upper-value 600.0

I -I --l"il-I
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:dimensions "1 t-1"
:default-units "sm hr-1")

(pa-defvar CRUISEWEIGHT
:category weights
:documentation "The Weight of the aircraft at Cruise."

:TeX-name "$W_{Cr}$"

:order-of-magnitude 13300

:lower-value 10000
:upper-value 20000
:dimensions "f"

:default-units "lbf")

(pa-defvar FUELWEIGHT
:category weights
:documentation "The Weight of the aircraft's Fuel Supply."

:TeX-name "$Wf$"

:order-of-magnitude 4000

:lower-value 2000

:upper-value 6000
:dimensions "f"

:default-units "lbf")

(pa-defvar

(pa-defvar

GROSS-TAKE-OFFWEIGHT
:category weights

:documentation "The Weight of the aircraft at Take-off."

:TeX-uame "$W_{gto}$"

:order-of-magnitude 15000

:lower-value 10000

:upper-value 20000
:dimensions "f"
:default-units "lbf ")

MINLANDINGWEIGHT
:category weights
:documentation "The Minimum Weight of the aircraft at Landing."
:TeX-name "$W_{l_{\\rm min}}$"

:order-of-magnitude 11000

:lower-value 6000

:upper-value 15000

:dimensions "f"

:default-units "lbf")

(pa-defvar PAYLOADWEIGHT

:category weights

:documentation "The Weight of the aircraft's Payload."
:TeX-name "$Wp$"

:order-of-magnitude 2200

:lower-value 2000
:upper-value 2400
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:dimensions "f"

:default-units "lbf ")

;;;; DESIGN FUNCTIONS;;;;;;;;;;;;;;

(pa-defun DF-1
:category weights
:computed-variable (GROSSTAKE-OFFWEIGHT "lbf")

:input-variables ((PAYLOADWEIGHT "lbf")

(FUELWEIGHT "lbf")
(EMPTYWEIGHTFRACTION ""))

:function-body (/ (+ PAYLOADWEIGHT FUELWEIGHT)

(- 1 EMPTYWEIGHTFRACTION))

:TeX-name "$W.{gto} {} = {} {{Wp + Wf} \\over {1 - e}}$"
:documentation "Gross Take-off Weight Equation.")

(pa-defun DF-2

:category weights
:computed-variable (CRUISEWEIGHT "lbf")

:input-variables ((GROSSTAKE-OFFWIEIGHT "lbf")

(FUELWEIGHT "lbf"))
:function-body (- GROSSTAKE-OFFWEIGHT (/ FUELWEIGHT 3.0))

:TeX-name "$W_{Cr} {} = {} W_{gto} - {2 \\over 3} W_f$"
:documentation "Cruise Weight Equation.")

(pa-defun DF-3

:category weights

:computed-variable (MINLANDINGWEIGHT "lbf")

:input-variables ((GROSSTAKE-OFFWEIGHT "lbf")

(FUELWEIGHT "lbf")

(RANGE "sm")
(CRUISEVELOCITY "sm hr-1")
(TIMEONRESERVES "hr"))

:function-body (let ((ENDURANCE (/ RANGE CRUISEVELOCITY)))
(- GROSS-TAKE-OFFWEIGHT

(* FUELWEIGHT
(/ ENDURANCE

(+ ENDURANCE TIMEONRESERVES)))))
:TeX-name "$W.{l_{min}} {} = {} W_{gto} - Wf

\\bigl[{{R/V_{Cr}} \\over

{({R/{V_{Cr})}} + T_{res}}} \\bigr]$"
:documentation "Minimum Landing Weight Equation.")

(pa-defun DF-4
:category (performance cruise)
:computed-variable (RANGE "sm")

:input-variables ((CRUISEVELOCITY "sm hr-1")
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(TSFC "lb lbf-1 hr-1")
(LIFT-TO-DRAGRATIO "")

(GROSSTAKE-OFFWEIGHT "lbf")
(MINLANDINGWEIGHT "lbf"))

:function-body (* (/ CRUISEVELOCITY TSFC)

LIFT-TO-DRAGRATIO
(log (/ GROSSTAKE-OFFWEIGHT MINLANDINGWEIGHT)))

:TeX-name "$R {} = {} {V_{Cr} \\over {\\rm TSFC}} {L \\over D} \\log
\\bigl({W_{gto} \\over W_{l_{\\rm min}}} \\bigr)$"

:documentation "Breguet Range Equation.")

(pa-defun DF-5
:category aerodynamics

:computed-variable (LIFT-TO-DRAGRATIO "")

:input-variables ((LIFTCOEFFICIENT "")

(DRAGCOEFFICIENT ""))

:function-body (/ LIFTCOEFFICIENT DRAGCOEFFICIENT)
:TeX-name "$^L/_D {} = {} {CL \\over CD}$"
:documentation "Lift-to-Drag Ratio Equation.")

(pa-defun DF-6

:category aerodynamics

:computed-variable (LIFT-COEFFICIENT "")

:input-variables ((CRUISEWEIGHT "lbf")
(FUELWEIGHT "lbf")
(CRUISEVELOCITY "ft s-i")
(WING_-REFERENCE_-AREA "ft2"))

:function-body (/ CRUISE-WEIGHT
(* 0.5 *AIRDENSITY* CRUISEVELOCITY

CRUISEVELOCITY WINGREFERENCEAREA))
:TeX-name "$C.L {} = {} {W_{Cr}

\\over {12 \\rho V.{Cr}^2 S_{ref}}}$"
:documentation "Lift Coefficient Equation.")

(pa-defun DF-7
:category aerodynamics
:computed-variable (DRAGCOEFFICIENT "")

:input-variables ((ZERO-LIFTDRAGCOEFF "")

(LIFT-COEFFICIENT "")

(ASPECTRATIO "")

(OSWALDEFFICIENCY ""))

:function-body (+ ZERO-LIFTDRAGCOEFF
(/ (* LIFT-COEFFICIENT LIFTCOEFFICIENT)

(* *PI-D* ASPECTRATIO OSWALDEFFICIENCY)))
:TeX-name "$CD {} = {} C-D_-0} + {CL*2 \\over {\\pi AR \\epsilon}}$"
:documentation "Drag Coefficient Equation.")
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; ; ; ; ; ; ;;;;;;; DESIGN SETS ;;;;;;;;;;;;;;;;;;;;;;

(pa-defset laser

:design-variables
(aspect-ratio lift-coefficient drag-coefficient lift-to-drag.ratio

gross-take-off-weight payload-weight fuel-weight
zero-lift-drag.coeff cruise-weight cruise-velocity
range tsfc oswald-efficiency min-landing-weight

empty-weight-fraction wing-reference-area

time-on-reserves)

:design-functions (df-1 df-2 df-3 df-4 df-5 df-6 df-7)

:tableaux
((aerodynamics

(WINGREFERENCEAREA "ft2")
(ASPECTRATIO "I')

(OSWALDEFFICIENCY "")
(LIFT-TO-DRAG.RATIO "")

(LIFTCOEFFICIENT "")

(DRAGCOEFFICIENT "")

(ZERO-LIFTDRAGCOEFF ""))
(cruise

(RANGE "sm")
(CRUISEVELOCITY "sm hr-1")

(TSFC "lb lbf-1 hr-1")

(LIFT-TO-DRAG.RATIO "")

(GROSSTAKE-OFFWEIGHT "lbf")
(MINLANDINGWEIGHT "lbf")
(TIMEONRESERVES "hr"))

(weights

(GROSSTAKE-OFFWEIGHT "lbf")

(PAYLOAD.WEIGHT "lbf")

(FUELWEIGHT "lbf")
(MINLANDINGWEIGHT "lbf")
(CRUISEWEIGHT "lbf")
(EMPTYWEIGHTFRACTION ""))))



Appendix C

MISO Design Set Solution

Processing design set LASER for RML

on Tuesday the fourth of February, 1986; 2:36:46 pm.

Building new agenda ...

FORCED-PATH CONSTRUCTION--
The function chosen for processing is DF-1,

with two trial-state guess-variables:

G -- GROSSTAKE-OFFWEIGHT

I -- PAYLOADWEIGHT

G -- FUELWEIGHT

I -- EMPTY-WEIGHTFRACTION

Equally good functions at this stage in processing are:

DF-7

FORCED-PATH for LASER's agenda completed.

LOOP CONSTRUCTION-- forcing variable

The variable chosen as the F-variable for this loop is

GROSSTAKE-OFFWEIGHT
which occurs four times in the remaining functions.
Other equally good variables at this stage in processing are:

FUELWEIGHT

LOOP CONSTRUCTION-- top entry

The function chosen for processing is DF-1,
with one trial-state guess-variable:

F -- GROSSTAKE-OFFWEIGHT

I -- PAYLOADWEIGHT

G -- FUELWEIGHT

P.A.



APPENDIX C. MISO DESIGN SET SOLUTION 93

I -- EMPTY.WEIGHTFRACTION

No other equally good functions.

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-3,
with one trial-state guess-variable:

G -- MINLANDINGWEIGHT
F -- GROSSTAKE-OFFWEIGHT

C -- FUELWEIGHT

I -- RANGE

I -- CRUISEVELOCITY

I -- TIMEONRESERVES

Equally good functions at this stage in processing are:
DF-2

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-4,
with one trial-state guess-variable:

I -- RANGE

I -- CRUISEVELOCITY

I -- TSFC

G -- LIFT-TO-DRAG.RATIO

F -- GROSSTAKE-OFFWEIGHT

C -- MINLANDINGWEIGHT

Equally good functions at this stage in processing are:
DF-2

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-2,
with one trial-state guess-variable:

G -- CRUISEWEIGHT

F -- GROSSTAKE-OFF.WEIGHT

C -- FUELWEIGHT

No other equally good functions.

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-6,
with one trial-state guess-variable:

G -- LIFT.COEFFICIENT

C -- CRUISEWEIGHT

C -- FUELWEIGHT

I -- CRUISE-VELOCITY

I -- WINGREFERENCEAREA

No other equally good functions.

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-7,
with one trial-state guess-variable:

G -- DRAGCOEFFICIENT

I -- ZERO-LIFTDRAG-COEFF
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C -- LIFTCOEFFICIENT

I -- ASPECTRATIO

I -- OSWALDEFFICIENCY

Equally good functions at this stage in processing are:
DF-5

LOOP CONSTRUCTION-- initial path

The function chosen for processing is DF-5,
with zero trial-state guess-variables:

C -- LIFT-TO-DRAGRATIO

C -- LIFTCOEFFICIENT

C -- DRAGCOEFFICIENT

No other equally good functions.

FORCED FUNCTION detected: DF-5

LOOPING VARIABLE chosen: DRAGCOEFFICIENT. (Forcing variable is GROSSTAKE-OFFWEIGHT.)
Transferring entry using DF-7 to calculate DRAG.COEFFICIENT to loop first branch ...
NO subsequent entries to transfer to second branch.

LOOP CONSTRUCTION-- forced function
Closing second branch with function DF-5, computing
loop variable DRAGCOEFFICIENT. Function variables are:

C -- LIFT-TO-DRAGRATIO

C -- LIFT.COEFFICIENT

L -- DRAGCOEFFICIENT

No other forced functions.
Reviewing loop branches and preliminary entries ...

LOOPS for LASER's agenda completed.

Beginning forced path computations ...

Forced path computations completed.

Beginning LOOP computation: GROSSTAKE-OFFWEIGHT forces DRAGCOEFFICIENT.
Searching for consistent value of forcing variable ...
Searching between 10000.00000

Considering search value:
First branch value:
Second branch value:

Difference:

Considering search value:

First branch value:
Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:

lbf and 20000.00000 lbf
GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

(zeroth level) ...
10000.00000 lbf

0.01606

0.00772

0.00834

10905.07733 lbf

0.01624

0.00912

0.00712

11892.07115 lbf

0.01646

0.01065

0.00581
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Considering search value:

First branch value:

Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:
Considering search value:

First branch value:

Second branch value:

Difference:
Considering search value:

First branch value:

Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:
Determining new search interval

Searching between 15422.10825
Considering search value:

First branch value:

Second branch value:

Difference:
Considering search value:

First branch value:

Second branch value:
Difference:

Considering search value:
First branch value:
Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:

Determining new search interval
Searching between 16339.15453

Considering search value:

First branch value:
Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:

GROSSTAKE-OFFWEIGH

DRAG-COEFFICIENT

DRAG.COEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH

DRAG-COEFFICIENT

DRAG.COEFFICIENT

GROSSTAKE-OFF.WEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT
DRAGCOEFFICIENT

lbf and 16817.92831 lbf
GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAG.COEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH
DRAGCOEFFICIENT
DRAGCOEFFICIENT

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

lbf and 16817.92831 lbf

GROSSTAKE-OFFWEIGH

DRAGCOEFFICIENT

DRAGCOEFFICIENT

GROSSTAKE-FFWEIGH

DRAG.COEFFICIENT
DRAGCOEFFICIENT

Determining new search interval ...

12968.39555 lbf

0.01671

0.01232

0.00440
14142.13562 lbf

0.01702
0.01414
0.00287

15000.00000 lbf

0.01725

0.01547

0.00179

15422.10825 lbf

0.01737

0.01614

0.00124
16817.92831 lbf

0.01780

0.01831

0.00051

(first level) ...
15422.10825 lbf

0.01737

0.01614

0.00124
15874.01052 lbf

0.01751

0.01685

0.00066
16339.15453 lbf

0.01765

0.01757

0.00008

16817.92831 lbf
0.01780

0.01831
0.00051

(second level) ...

16339.15453 lbf

0.01765

0.01757

0.00008

16497.21189 lbf
0.01770

0.01782

0.00012
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Searching between 16339.15453 lbf and 16497.21189 lbf (third level) ...
Considering search value: GROSSTAKE-OFF_WEIGH 16339.15453 lbf

First branch value: DRAGCOEFFICIENT 0.01765

Second branch value: DRAGCOEFFICIENT 0.01757

Difference:

Considering search value:

First branch value:

Second branch value:

Difference:

GROSSTAKE-OFF.WEIGH
DRAG.COEFFICIENT

DRAGCOEFFICIENT

0.00008
16391.67134 lbf

0.01767

0.01767

0.00000

Logarithmic distribution search has computed consistent value of 16391.67134 lbf

for forcing variable GROSSTAKE-OFFWEIGHT (search level depth of three).

Value chosen for forcing variable, GROSSTAKE-OFFWEIGHT: 16391.67134 lbf

Reverse computing FUELWEIGHT using function DF-1, based on

GROSSTAKE-OFFWEIGHT C 16391.671338 lbf

PAYLOADWEIGHT I 2200.000000 lbf

EMPTYWEIGHT-FRACTION I 0.550000

N-R iteration successful (one recursion).

Assigning 5176.252102294063 lbf to FUELWEIGHT.

Forward computing MINLANDINGWEIGHT using function DF-3, based on

GROSSTAKE-UFFWEIGHT C 16391.671338 lbf

FUELWEIGHT C 5176.252102 lbf

RANGE I 3000.000

CRUISEVELOCITY I 565.000

TIMEON.RESERVES I 0.750

Assigning 11856.0725631462 lbf to MINLANDINGWEIGHT.

000 sm
000 sm hr-1
000 hr

Reverse computing LIFT-TO-DRAGRATIO using function DF-4, based on

RANGE I 3000.000000 sm

CRUISEVELOCITY I 565.000000 sm hr-1

TSFC I 0.800000 lb lbf-1

GROSSTAKE-OFFWEIGHT

MINLANDINGWEIGHT

Ir-1

C 16391.671338 lbf

C 11856.072563 lbf

N-R iteration successful (one recursion).

Assigning 13.11316031091615 to LIFT-TO-DRAGRATIO.

Forward computing CRUISEWEIGHT using function DF-2, based on

GROSSTAKE-OFF.WEIGHT C 16391.671338 lbf

FUELWEIGHT C 5176.252102 lbf

Assigning 14666.2539709999 lbf to CRUISEWEIGHT.

Forward computing LIFTCOEFFICIENT using function DF-6, based on

CRUISE-WEIGHT C 14666.253971 lbf
FUELWEIGHT C 5176.252102 lbf

CRUISEVELOCITY I 565.000000 sm hr-1

WING.REFERENCEAREA I 250.000000 ft2

Assigning 0.231522438115427 to LIFT.COEFFICIENT.

Forward computing DRAGCOEFFICIENT using function DF-7, based on

ZERO-LIFT-DRAGCOEFF I 0.015000

LIFT-COEFFICIENT C 0.231522

ASPECTRATIO I 8.000000

OSWALDEFFICIENCY I 0.800000
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Assigning 1.7665976570380618e-02 to DRAGCOEFFICIENT.
Reverse computing DRAG.COEFFICIENT using function DF-5, based on

LIFT-TO-DRAGRATIO C 13.113160
LIFTCOEFFICIENT C 0.231522

N-R iteration successful (one recursion).
Assigning 1.76 65976570380618e-02 to DRAGCOEFFICIENT.

GROSSTAKE-OFFWEIGHT/DRAGCOEFFICIENT loop computations completed.



Appendix D

The "RUN-PROGRAM" Code

(defun run-program (&key

((:program-name progname) nil)

((:program-directory progdir) nil)

((:file-directory filedir) progdir)
(preprocessor (cat-name progname '-preprocessor))
(postprocessor (cat-name progname '-postprocessor))
(sys$input-file (string-append filedir progname ".in"))

(sys$output-file (string-append filedir progname ".out"))
(sys$error-file (string-append filedir progname ".err"))
((:monitor-file outfile) sys$output-file)

((:average-run-time runtime) 10) ; SECONDS
((:overtime-allowance overtime) 20) ; PERCENT
(verbose nil))

(let* ((steps 20) (maxcount (* (/ (+ 20 overtime) 100) steps)))
(if preprocessor (funcall preprocessor))
(when (execute-program

(string-append progdir progname) ; EXECUTABLE
sys$input-file sys$output-file sys$error-file ; FILES
(string progname)) ; PROCESS NAME

(if verbose (format t "~&Executing ~a ... " progname))

(sleep (* 0.8 runtime)) ; INITIAL WAIT
(do ((count 0 (+ count 1)))

((or (probe-file outfile) (probe-file sys$error-file)

(greaterp count maxcount))
(cond ((greaterp count maxcount) (program-time-overrun))

((probe-file sys$error-file) (program-error sys$error-file))
(t (if postprocessor (funcall postprocessor)))))

(if verbose (format t "~&Waiting for ~a to finish ... " progname))
(sleep (/ runtime steps)))))) ; MONITOR & WAIT

FE P.A.
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(defun program-error (error-file)
(with-open-file (errfile error-file)

(format t "2&a" ">>ERROR in program execution. Contents to follow.")
(print errfile)
(do ((errline (readline errfile) (readline errfile)))

((null errline))
(format t "~&~a" errline))

(print "All done")))

(defun program-time-overrun 0
(format t "2&a" ">>ERROR: program execution surpassed time limit."))



Appendix E

Vector Equation Solving Code

(defun solve-LU-factorization (matrix pivot-vector y-vector)

(let* ((dim (length y-vector)) (N (1- dim)) (sum 0.0)

(x-vector (make-array dim))

(pivot-point (aref pivot-vector 0)))

(setf (aref x-vector 0) (aref y-vector pivot-point))

(do ((row 1 (1+ row))) ((> row N)) ;;; FORWARD SUBSTITUTION

(setq sum 0.0)

(do ((col 0 (1+ col))) ((> col (- row 1)))

(setq sum (+ sum (* (aref matrix row col) (aref x-vector col)))))

(setq pivot-point (aref pivot-vector row))

(setf (aref x-vector row) (- (aref y-vector pivot-point) sum)))

(setf (aref x-vector N) (/ (aref x-vector N) (aref matrix N N)))

(do ((row (- N 1) (1- row))) ((< row 0)) ;;; BACKWARD SUBSTITUTION

(setq sum 0.0)

(do ((col (+ row 1) (1+ col))) ((> col N))

(setq sum (+ sum (* (aref matrix row col) (aref x-vector col)))))

(setf (aref x-vector row)
(/ (- (aref x-vector row) sum) (aref matrix row row))))

x-vector))

100
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(defun get-LU-factorization (matrix)

(let* ((dim (car (array-dimensions matrix)))

(N (- dim 1)) (new-col-max 0) (ratio 0)
(row-max 0) (col-max 0) (pivot-row 0) (temp nil)
(pivot-vector (make-array dim))
(row-max-vector (make-array dim)))

(dotimes (row dim) ;;; FIND RO'l-MAX-VECTOR
(setf (aref pivot-vector row) row)

(setq row-max 0)
(dotimes (col dim)

(setq row-max (max row-max (abs (aref matrix row col)))))
(if (= row-max 0) (return nil)

(setf (aref row-max-vector row) row-max)))
(dotimes (K N) ;;; FIND LU-FACTORIZATION

(setq col-max (/ (abs (aref matrix K K)) (aref row-max-vector K)))
(setq pivot-row K)
(do ((row (+ K 1) (1+ row))) ((> row N))

(setq new-col-max (/ (abs (aref matrix row K))
(aref row-max-vector row)))

(when (greaterp new-col-max col-max)
(setq col-max new-col-max)
(setq pivot-row row)))

(if (= col-max 0) (return nil))
(when (greaterp pivot-row K) ;;; INTERCHANGE INFORMATI

(setq temp (aref pivot-vector pivot-row)) ;;; SWITCH PIVOT ROWS
(setf (aref pivot-vector pivot-row) (aref pivot-vector K))
(setf (aref pivot-vector K) temp)
(setq tamp (aref row-max-vector pivot-row)) ;;; SWITCH ROW-MAX'S
(setf (aref row-max-vector pivot-row) (aref row-max-vector K))
(setf (aref row-max-vector K) temp)
(dotimes (col dim) ;;; SWITCH MATRIX ROWS

(setq temp (aref matrix pivot-row col))

(setf (aref matrix pivot-row col) (aref matrix K col))
(setf (aref matrix K col) temp)))

(do ((row (+ K 1) (1+ row))) ((> row N)) ;;; SIMPLIFY LOWER ROWS
(setf (aref matrix row K) (/ (aref matrix row K) (aref matrix K K)))
(setq ratio (aref matrix row K))
(do ((J (+ K 1) (1+ J))) ((> J N))

(setf (aref matrix row J)

(- (aref matrix row J) (* ratio (aref matrix K J)))))))
(if (zerop (aref matrix N N)) nil pivot-vector)))

ON
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Appendix F

MIMO Design Set Solution

Processing design set LASER for RML
on Thursday the eleventh of September, 1986; 5:37:26 pm.

Building new agenda ...

FORCED-PATH CONSTRUCTION--
The function chosen for processing is DF-5,
with zero extra. trial-state guess-variables:

G -- LIFT-TO-DRAGRATIO

I -- LIFTCOEFFICIENT

I -- DRAGCOEFFICIENT

No other equally good functions.

FORCED-PATH CONSTRUCTION--
The function chosen for processing is DF-1,
with one extra trial-state guess-variable:

G -- GROSSTAKE-OFFWEIGHT

I -- PAYLOADWEIGHT

G -- FUELWEIGHT

I -- EMPTYWEIGHTFRACTION

No other equally good functions.

FORCED-PATH for LATER's agenda completed.

LOOP CONSTRUCTION-- forcing variable

The variable chosen as the F-variable for this loop is

GROSSTAKE-OFFWEIGHT

which occurs four times in the remaining functions.
Other equally good variables at this stage in processing are:

FUELWEIGHT
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ASPECTRATIO

CRUISEWEIGHT

MINLANDINGWEIGHT

OSWALDEFFICIENCY
WINGREFERENCEAREA

WINGSPAN

LOOP CONSTRUCTION-- top entry

The function chosen for processing is DF-1,

with zero extras trial-state guess-variables:
F -- GROSSTAKE-OFFWEIGHT

I -- PAYLOADWEIGHT

G -- FUELWEIGHT

I -- EMPTYWEIGHTFRACTION

No other equally good functions.

LOOP CONSTRUCTION-- initial path
The function chosen for processing is DF-4,
with zero extra trial-state guess-variables:

I -- RANGE

I -- CRUISEVELOCITY

I -- TSFC

K -- LIFT-TO-DRAGRATIO

F -- GROSSTAKE-OFFWEIGHT

G -- MINLANDINGWEIGHT

No other equally good functions.

LOOP CONSTRUCTION-- initial path

The function chosen for processing is DF-3,

with minus one extra trial-state guess-variables:
C -- MINLANDINGWEIGHT

F -- GROSSTAKE-OFFWEIGHT

C -- FUELWEIGHT

I -- RANGE

I -- CRUISEVELOCITY

I -- TIMEONRESERVES

No other equally good functions.

FORCED FUNCTION detected: DF-3

LOOP CONSTRUCTION-- looping variable
The variable chosen as the L-variable for this loop is

MINLANDINGWEIGHT

The forcing variable is GROSSTAKE-OFFWEIGHT

Transferring entry using function DF-4
to calculate (MINLANDINGWEIGHT) to loop first branch ...
NO subsequent entries to transfer to second branch.

LOOP CONSTRUCTION-- forced function
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Closing second branch with function DF-3, computing

loop variable MINLANDINGWEIGHT. Function variables are:

L -- MINLANDING.WEIGHT

F -- GROSSTAKE-OFF.WEIGHT

C -- FUELWEIGHT

I -- RANGE

I -- CRUISEVELOCITY

I -- TIMEONRESERVES

No other forced functions.

Reviewing loop branches and preliminary entries ...
Transferring entry using DF-1 to compute

(FUEL-WEIGHT) to beginning of loop final entries.

LOOP CONSTRUCTION-- final path
The function chosen for processing is DF-2,

with zero trial-state guess-variables:

G -- CRUISEWEIGHT

F -- GROSSTAKE-OFFWEIGHT

C -- FUELWEIGHT

No other equally good functions.

LOOP CONSTRUCTION-- final path

The function chosen for processing is Aerodynamics Package,

with one trial-state guess-variable:

I -- LIFT.COEFFICIENT

I -- DRAGCOEFFICIENT

C -- CRUISEWEIGHT
I -- CRUISEVELOCITY

G -- WINGREFERENCEAREA

I -- ZERO-LIFTDRAGCOEFF

G -- ASPECTRATIO

G -- OSWALDEFFICIENCY

No other equally good functions.

LOOP CONSTRUCTION completed.

LOOP CONSTRUCTION-- forcing variable
The variable chosen as the F-variable for this loop is

ASPECTRATIO

which occurs two times in the remaining functions.

Other equally good variables at this stage in processing are:

OSWALDEFFICIENCY

WINGREFERENCEAREA
WINGSPAN

LOOP CONSTRUCTION-- top entry

The function chosen for processing is Aerodynamics Package,
with zero extras trial-state guess-variables:

I -- LIFTCOEFFICIENT
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I -- DRAGCOEFFICIENT

C -- CRUISEWEIGHT

I -- CRUISEVELOCITY

G -- WINGREFERENCEAREA

I -- ZERO-LIFTDRAG-COEFF

F -- ASPECTRATIO

G -- OSWALDEFFICIENCY

No other equally good functions.

LOOP CONSTRUCTION-- initial path
The function chosen for processing is Wing Geometry Package,
with minus one extra trial-state guess-variables:

C -- WING-REFERENCEAREA

C -- OSWALDEFFICIENCY

F -- ASPECTRATIO

G -- WINGSPAN

No other equally good functions.

FORCED FUNCTION detected: Wing Geometry Package

LOOP CONSTRUCTION-- looping variable
The variable chosen as the L-variable for this loop is

OSWALDEFFICIENCY
The forcing variable is ASPECTRATIO

Transferring entry using function Aerodynamics Package
to calculate (OSWALDEFFICIENCY WINGREFERENCEAREA) to loop first branch ...
NO subsequent 4ntries to transfer to second branch.

LOOP CONSTRUCTION-- forced function
Closing second branch with function Wing Geometry Package, computing
loop variable OSWALD.EFFICIENCY. Function variables are:

C -- WINGREFERENCEAREA

L -- OSWALDEFFICIENCY
F -- ASPECTRATIO

G -- WINGSPAN

No other forced functions.

Reviewing loop branches and preliminary entries ...

LOOP CONSTRUCTION completed.

LOOPS for LATER's agenda completed.

Agenda construction completed.

Beginning forced path computations ...

Forward computing (LIFT-TO-DRAGRATIO) using function DF-5, based on
LIFT.COEFFICIENT I 0.240000
DRAGCOEFFICIENT I 0.018000
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Assigning 13.33333333333333 to LIFT-TO-DRAGRATIO.

Forced path computations completed.

Beginning LOOP computation: GROSSTAKE-OFFWEIGHT forces MINLANDING.WEIGHT.

Searching for consistent value of forcing variable ...
Searching between 10000.0

Considering search value:

First branch value:

Second branch value:

Difference:

Considering search value:

First branch value:
Second branch value:

Difference:

Considering search value:

First branch value:

Second branch value:

Difference:

Determining new search interval
Searching between 15000.0 lbf

Considering search value:

First branch value:
Second branch value:

Difference:

lbf and 20000.0 lbf (zeroth level) ...
GROSSTAKE-OFFWEIGH

MINLANDINGWEIGHT
MINLANDINGWEIGHT

GROSS.TAKE-OFFWEIGH
MINLANDINGWEIGHT
MIN-LANDINGWEIGHT

GROSSTAKE-OFFWEIGH
MINLANDINGWEIGHT
MINLANDING.WEIGHT

15000.00000

10906.81660

11013.14348
106.32688

13750.00000

9998.81886
10256.02410

257.20523

16250.00000
11816.73465

11770.26287
46.47178

and 16250.0 lbf (first level) ...
GROSSTAKE-OFFWEIGH 15833.33333
MINLANDINGWEIGHT 11513.67062
MIN-LANDING_.EIGHT 11517.88974

4.21912

Search has found consistent value of 15833.33333 lbf for
forcing variable GROSSTAKE-OFFWEIGHT (search level depth of one).

Value chosen for forcing variable, GROSSTAKE-FFWEIGHT: 15833.33333

Reverse computing (FUELWEIGHT) using function DF-1, based on

GROSSTAKE-OFF.WEIGHT C 15833.333333 lbf

PAYLOADWEIGHT I 2200.000000 lbf

EMPTYWEIGHTFRACTION I 0.550000
N-R iteration successful (one recursion).

Assigning 4925.0 lbf to FUELWEIGHT.
Forward computing (CRUISEWEIGHT) using function DF-2, based on

GROSSTAKE-OFFWEIGHT C 15833.333333 lbf

FUELWEIGHT C 4925.000000 lbf
Assigning 14191.66666666667 lbf to CRUISEWEIGHT.

Reverse computing (MINLANDINGWEIGHT) using function DF-4, based on
RANGE I 3000.000000 sm
CRUISEVELOCITY I 565.000000 sm hr-1

TSFC I 0.800000 lb lbf-1 hr

LIFT-TO-DRAGRATIO K 13.333333

GROSSTAKE-OFFWEIGHT C 15833.333333 lbf

N-R iteration successful (two recursions).
Assigning 11513.62878778228 lbf to MINLANDINGWEIGHT.

Forward computing (MINLANDING.WEIGHT) using function DF-3, based on
GROSS.TAKE-FFWEIGHT C 15833.333333 lbf

FUELWEIGHT C 4925.000000 lbf

lbf
lbf
lbf
lbf
lbf
lbf
lbf
lbf
lbf
lbf
lbf
lbf

lbf
lbf
lbf
lbf

lbf

-1
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RANGE I 3000.000000 sm
CRUISEVELOCITY I 565.000000 sm hr-1
TIMEON_.RESERVES I 0.750000 hr

Assigning 11517.88974078131 lbf to MINLANDINGWEIGHT.
Reverse computing (FUELWEIGHT) using function DF-1, based on

GROSSTAKE-OFFWEIGHT C 15833.333333 lbf
PAYLOADWEIGHT I 2200.000000 lbf
EMPTYWEIGHT.FRACTION I 0.550000

N-R iteration successful (one recursion).
Assigning 4925.0 lbf to FUEL.WEIGHT.
Forward computing (CRUISE.WEIGHT) using function DF-2, based on

GROSSTAKE-OFFWEIGHT C 15833.333333 lbf
FUELWEIGHT C 4925.000000 lbf

Assigning 14191.66666666667 lbf to CRUISEWEIGHT.

GROSS_-TAKE-OFFWEIGHT/MINLANDI NGWEIGHT loop computations completed.

Beginning LOOP computation: ASPECTRATIO forces OSWALDEFFICIENCY.
Searching for consistent value of forcing variable ...
Searching between 5.0 and 20.0 (zeroth level) ...

Considering search value:
First branch value:
Second branch value:

Difference:

Considering search value:
First branch value:
Second branch value:

Difference:
Determining new search interval
Searching between 6.125 and
Considering search value:

First branch value:
Second branch value:

Difference:
Determining new search interval
Searching between 8.0 and
Considering search value:

First branch value:
Second branch value:

Difference:
Considering search value:

First branch value:
Second branch value:

Difference:
Determining new search interval
Searching between 7.5833333 and
Considering search value:

First branch value:
Second branch value:

Difference:

ASPECTRATIO 8.00000
OSWALDEFFICIENCY 0.76374
OSWALDEFFICIENCY 0.80000

0.03626
ASPECTRATIO 6.12500
OSWALDEFFICIENCY 0.99675
OSWALDEFFICIENCY 0.80000

0.19675

8.0 (first level) ...
ASPECTRATIO 7.37500
OSWALDEFFICIENCY 0.82797
OSWALDEFFICIENCY 0.80000

0.02797

7.375 (second level) ...
ASPECTRATIO 7.58333
OSWALDEFFICIENCY 0.80593
OSWALDEFFICIENCY 0.80000

0.00593
ASPECTRATIO 7.79167
OSWALDEFFICIENCY 0.78390
OSWALDEFFICIENCY 0.80000

0.01610

7.7916667 (third level) ...
ASPECTRATIO 7.65278
OSWALD.EFFICIENCY 0.80000
OSWALDEFFICIENCY 0.80000

0.00000
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Search has found consistent value of 7.65278 for

forcing variable ASPECTRATIO (search level depth of three).

Value chosen for forcing variable, ASPECTRATIO: 7.65278

Reverse computing (OSWALDEFFICIENCY WINGREFERENCE_-AREA) using function Aero-

dynamics Package, based on

LIFTCOEFFICIENT I 0.240000

DRAG.COEFFICIENT I 0.018000

CRUISE-WEIGHT C 14191.666667 lbf

CRUISE-VELOCITY I 565.000000 sm hr-1

ZERO-LIFTDRAGCOEFF I 0.015000

ASPECTRATIO C 7.652778

N-R iteration successful (one recursion).

Assigning 0.8 to OSWALDEFFICIENCY.

Assigning 233.3651792638083 ft2 to WINGREFERENCEAREA.
Reverse computing (WINGSPAN) using function Wing Geometry Package, based on

WINGREFERENCEAREA C 233.365179 ft2
ASPECTRATIO C 7.652778

N-R iteration successful (one recursion).

Assigning 42.26342770724547 ft to WINGSPAN.

Forward computing (OSWALDEFFICIENCY) using function Wing Geometry Package, based

on
ASPECTRATIO C 7.652778
WINGSPAN C 42.263428 ft

Assigning 0.8 to OSWALD.EFFICIENCY.

ASPECTRATIO/OSWALDEFFICIENCY loop computations completed.



Appendix G

The NASP Design Set

This appendix lists the design variables and design functions used to test the modifi-

cations to Paper Airplane via the preliminary design of a national aerospaceplane.

The NASP Design Set is a set of 26 MISO and MIMO design functions and the 45

design variables they relate. Table G.1 summarizes the 26 geometry design variables in

the NASP Design Set and Table G.2 summarizes the other 19 design variables. Included

in the tables, for each design variable, are its traditional mathematical symbol, its name

inside of Paper Airplane, and its definition.

The 26 design functions, which have been given more appropriate names than those

of the MISO Design Set, vary from simple geometrical relationships to complex aerody-

namics and performance computer programs. Three invaluable sources of information

that greatly helped in the formation of these design functions were [12], [13], and [14].

FOREBODY-LENGTH-EQUATION: This is an equation for Forebody Length.

IFB = fFB 1 W

AFTERBODY-LENGTH-EQUATION: This is an equation for Afterbody Length.

1AB = IAB iW

ENGINE-LENGTH-EQUATION: This is an equation for Engine Length.

1E = fE iW
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Symbol Paper Airplane Name Definition

INLETCAPTUREAREA

WINGSPAN

BODYDIAMETER

ENGINEDIAMETER

AFTERBODYFRACTION

ENGINEFRACTION

FOREBODYFRACTION

SEATINGFRACTION

CABINHEIGHT

TAIL-HEIGHT

AFTERBODYLENGTH

ENGINELENGTH

FOREBODYLENGTH

SEATPITCH

TAIL_/.ENGTH

WINGLENGTH

NOSERADIUS

LEADING.EDGE.RADIUS

WING...REFERENCEAREA

WING-THICKNESS

FUSELAGE-VOLUME

FUELVOLUME

PAYLOADVOLUME

SEATWIDTH

THICKNESSSTATION

LEADINGEDGE-SWEEP

The

The

The

The

The

The

The

The

The

The

The

The

The

The

The

The

The
The

The

The

The

The

The

The

The

The

Area of Air Captured by the Inlet.

largest Span of the Wing.

Maximum Diameter of the Fuselage.

Diameter of the Engine Shroud Half-cylinder.

Fractional Length of the Afterbody Half-cone.

Fractional Length of the Engine Shroud.

Fractional Length of the Forebody Half-cone.

Fraction of Floor Space required by Seating.

Height of the Ceiling of the Cabin.

Height of each Vertical Tail.

Length of the Fuselage Afterbody Half-cone.

Length of the Engine Shroud Half-cylinder.

Length of the Fuselage Forebody Half-cone.

Forward Distance Between Passenger Seats.

Length of each Vertical Tail.

Length of the Wing and of the entire Fuselage.

Radius of the Nose of the Forebody.

Radius of the Leading Edge of the Wing.

Reference Area of the Wing.

Maximum Wing Thickness-to-Chord Ratio.

Volume of the vehicle's Fuselage.

Volume required by the vehicle's Fuel.

Volume required by the vehicle's Payload.

Width of a Passenger Seat.

Station of the Maximum Thickness-to-Chord Ratio.

Angular Sweepback of the Wing's Leading Edge.

Table G.1: Geometry Design Variables comprising the NASP Design Set.
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Symbol Paper Airplane Name Definition

CL_ MAXIMUMLIFCT-OEFF The Maximum Lift Coefficient of the vehicle.

fe EMPTYWEIGHTFRACTION The Empty Weight Fraction of the vehicle.

f, PAYLOADWEIGHT.FRACTION The Payload Weight Fraction of the vehicle.

HCR CRUISEALTITUDE The Altitude of the vehicle at Cruise.

McR CRUISEMACH The Mach Number of the vehicle at Cruise.

ne1 CLIMBACCELERATION The Maximum Climb Acceleration of the vehicle.

N, PASSENGERCAPACITY The Number of Passengers and Crew.

R RANGE The Range of the vehicle.

tf TIMEOFFLIGHT The Time of Flight to achieve the Range.

TN NOSETEMPERATURE The Stagnation Temperature on the Nose.

TW WINGTEMPERATURE The Stagnation Temperature on the Leading Edge.

VCR CRUISEVELOCITY The Velocity of the vehicle at Cruise.

we VEHICLE.EMPTYWEIGHT The Empty (structual) Weight of the vehicle.

Wf FUEL-WEIGHT The Weight of the vehicle's Fuel.

Wf, FUELRESERVES The Weight of the vehicle's Fuel Reserves.

Wgo VEHICLEGROSSWEIGHT The Gross Weight of the vehicle at Take-off.

W, PAYLOADWEIGHT The Weight of the vehicle's Payload.

PCR CRUISEAIRDENSITY The Density of the Air at Cruise.

CLIMBANGLE The Maximum Climb Angle of the vehicle.

Table G.2: Other Design Variables comprising the NASP Design Set.

111



APPENDIX G. THE NASP DESIGN SET

LENGTH-FRACTION-EQUATION: This is an equation for Engine Fraction.

fE = 1 - fFB - AB

WING-SPAN-EQUATION: This is an equation for Wing Span.

b = 2 iw/tanALE

REFERENCE-AREA-EQUATION: This is an equation for Wing Reference Area.

Sre5 = Lw b/2

CAPTURE-AREA-EQUATION: This is an equation for Inlet Capture Area.

AE
r 4
2 4

TAIL-LENGTH-EQUATION: This is an equation for Tail Length.

It = 1AB

TAIL-HEIGHT-EQUATION:

CT, is 0.09.

GROSS-WEIGHT-EQUATION:

EMPTY-WEIGHT-EQUATION:

This is an equation for Tail Height. The tail volume coefficient,

2CT b Sref

hT W - IT)IT

This is an equation for Vehicle Gross Weight.

W9 to = We +WP+Wf

This is an equation for Vehicle Empty Weight.

We = feWgto

PAYLOAD-WEIGHT-EQUATION: This is an equation for Payload Weight. Each passenger

weighs 170 lb and has baggage weighing 60 lb.

Wp = N, (170 lb +60 1b)

PAYLOAD-FRACTION-EQUATION: This is an equation for Payload Weight Fraction.

fp = WP/Wto
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FUEL-WEIGHT-EQUATION: This is an equation for Fuel Weight. The fuel density, pf, is

that for liquid hydrogen, 4.37 lb/ft3 .

W5 = p1 V

FUSELAGE-VOLUME-EQUATION: This is an equation for Fuselage Volume.

VB = lFB dB + AB dB + r1E dBVB 24 24 8

PAYLOAD-VOLUME-EQUATION: This is an equation for Payload Volume. Each passenger's

baggage takes up a volume of 25 fts.

Vp = Nphplpwp/f.+Np(25ft 3 )

BODY-DIAMETER-EQUATION: This is an equation for Body Diameter.

dB = b/2

ENGINE-DIAMETER-EQUATION: This is an equation for Engine Diameter.

dE = 1.25dB

CRUISE-DENSITYFUNCTION: This is an equation for Cruise Density. The density of air,

p, varies primarily with altitude.

PCR = P(HCR)

CRUISE-VELOCITY-FUNCTION: This is an equation for Cruise Velocity. The speed of

sound, a, varies primarily with altitude.

VCR = MCRa(HCR)

NOSE-RADIUS-EQUATION: This is an equation for Nose Radius. The emissitivity of tita-

nium, E, is 0.8. The Boltzmann constant, 0, is 0.481x10-12 BTU/ft 2 -s-OR.

RN = (15)z
eff

VCR )6 PcR
1000 TN

WING-RADIUS-EQUATION: This is an equation for Leading-Edge Radius.

= (15 )2
RwC=

(VCR ) 6

1000
PCR cos ALE
T W
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FUEL-RESERVES-EQUATION: This is an equation for Fuel Reserves. The reserved and
trapped fuel is 5% of the fuel weight.

Wfr = 0.05Wf

FUEL-VOLUME-EQUATION: This is an equation for Fuel Volume. This is the volume of the

lower fuselage that can hold fuel.

Vf = 0.9AB lE + dB -2h
whrdB

where

AB cos-
4 \dB)

(FB +

AERODYNAMICS-PROGRAM: This calls the Aerodynamics code.

CLmaz = AERO ((t/C)maz,xt/c,b,dB,IFBIAB, E,d E,hTIT)

PERFORMANCE-PROGRAM: This calls the Performance code. The propulsion and aerody-
namics data are global variables, not design variables.

(R,tj) = PERF (HcR, MCR,'c, inet) Sref, AE, CLmaz)Wgto, WS , Wr)

JAB)

4 p
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Appendix H

NASP Aerodynamics Code

program NASPAERODYNAMICS

c This program computes the aerodynamics of a national aerospaceplane (NASP)

c in terms of lift coefficient (CL) as a function of angle of attack (ALPHA)

c and Mach number (MACH), and in terms of drag coefficient (CD) as a

c function of angle of attack, Mach number, and altitude (ALTITUDE).

c The user provides the necessary geometry information concerning the NASP

c and the range'of altitudes, Mach numbers, and angles of attack to be

c analyzed and tabulated.

integer TAV, FB, AB, ENG, WING,
parameter (TAV = 1,

FB = 2,

AB = 3,
ENG = 4,

WING = 5,

TAIL = 6,

PI = 3.141592654)

integer

- NALT,
- NMACH,

- .NALPHA,

- H, M, A, LASTI

real
ALTITUDE, MINALT, DALT,

MACH, MINMACH, DMACH,

ALPHA, MIN-ALPHA, DALPHA,

ALPHARAD,

C.L(0:29,0:29), CL-max, CD,

TAIL
Subscript

3ubscript

Subscript
3ubscript
Subscript
Subscript

for the entire TAV
for TAV forebody

for TAV afterbody
for TAV engine
for TAV wing
for TAV tail

Number of Altitudes
Number of Mach Numbers
Number of Angles of Attack

Various indices

Altitude info (ft)

Mach number info

Angle of Attack info (deg)
Angle of Attack (rad)

Lift & Drag Coefficients
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+ CL.ALPHA, CLA09, CLA11, CLA13,
+ CD_0(6), CD_0-09, C-D_0_13,
+ KSUBSONIC, K_09, K_13, KTAV,
+ RHO.A-overMU

real
+ DBODY,

+ LENGTH(6),
+ SWET(6),

+ SEXP, SREF,

+ MAXT,

+ SMAX,

+ DELTAMAXT,
+ DELTALE, DELTALETAIL,
+ MAC, MACTAIL

real
+ BFACTOR,

+ BSFF,

+ ASFF,

+ WBLIF,

+ NLLF,
+ CDANC,
+ AR

Lift Curve Slopes (rad-1)

Zero-Lift Drag Coeffs

Drag-due-to-Lift Factors

Air Density * Speed of Sound
/ Air Viscosity (ft-1)

! Body Diameter (ft)
! Various lengths (ft)
! Various Wetted Areas (ft2)
! Exposed, Reference Area (ft)
! Max. thickness-to-chord ratio
! Max. Cross Sectional Area (ft2)
! Sweep of wing at MAXT
! Sweep of wing, tail leading edge
! Mean aero. chord of wing, tail

! Wave drag B-Factor
! Body Skin Friction Factor
! Airfoil Skin Friction Factor
! Wing Body Lift Interference Factor
! Non-Linear Lift Factor
! Afterbody Interference Drag
! Wing Aspect Ratio

common NALT, MINALT, DALT, N.MACH, MINMACH, DMACH,
+ NALPHA, MINALPHA, D.ALPHA, CL, CLALPHA, CLA09,
+ CLA11, CLA13, CD_0, C_D_0_09, CD_0_13, KSUBSONIC,
+ K 09, K_13, KTAV, RHO_A_overMU, LASTI,
+ DBODY, LENGTH, SWET, SEXP, SREF, MAX-T, SMAX,
+ DELTAMAXT, DELTA.LE, DELTALETAIL, MAC, MACJTAIL,
+ B.FACTOR, BSFF, ASFF, WBLIF, NLLF, CDANC, AR, MACH,
+ ALTITUDE, CL-max

c begin

LASTI = 1

call READTERMINALDATA
call GETGEOMETRY-INFO
write(6,10) CL-max

10 format(' Maximum lift coefficient is',F12.6,/)

do H = 0, NALT-1
ALTITUDE = MINALT + D-ALT * H

write(4,'(/A,F14.1)') ' Altitude (ft) - ', ALTITUDE
write(6,100) ALTITUDE

100 format(' Computing aerodynamics at', F12.1, ' ft')
call COMPUTEALTITUDEINFO

do M - 0, N.MACH-1
MACH - MINMACH + DMACH * M
write(4,'(A,F17.2)') ' Mach Number - ', MACH

I
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if ( MACH .eq. 0.0 ) MACH - 0.01
call COMPUTEMACH.INFO

write(4,'(A,F16.5)') ' Lift Curve Slope =', C_L_ALPHA

write(4,'(A,F18.5)') ' Zero-lift Drag =', CD.0(TAV)
write(4,'(A,F9.5)') ' Drag-due-to-Lift Factor =', K_TAV

write(4,*) ' Alpha CL CD L/D'

do A = 0, NALPHA-1

ALPHA = MINALPHA + DALPHA * A
ALPHARAD - ALPHA / 180.0 * PI

c Compute CL only for first altitude, but use it for all.

if ( H .eq. 0 ) then

if ( MACH .le. 0.9 ) then
C_L(AM) = (WBLIF * CLALPHA + NLLF * ALPHARAD)

+ * ALPHARAD * SEXP / SREF

else
C_L(A,M) = WBLIF * CLALPHA * ALPHARAD * SEXP /

+ SREF

endif

if ( C.L(A,M) .gt. CLmax ) C.L(A,M) = CL-max
endif

CD = C.D_0(TAV) + KTAV * CL(A,M)**2

write(4,200) ALPHA, CL(A,M), C.D, CL(A,M)/CD
200 f6rmat(F11.1,F11.5,F12.5,F11.3)

enddo
enddo

enddo

close(unit=3)
close(unit=4)

end

subroutine READTERMINALDATA

include 'COMMON.FOR'

real MAXALT, MAXMACH, MAXALPHA
character FILENAME*60

c begin
write(6,*) ' Enter the name of the geometry data input file.'
read(5,'(A)') FILENAME

open(unit-3, file-FILENAME, readonly, status-'OLD')

write(6,*) ' Enter the name of the aero data output file.'
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read(5,'(A)') FILENAME
open(unit=4, file=FILENAME, status='NEW')
write(4,*) ' ********* TAV AERODYNAMICS TABLES **********

write(6,*) ' Enter minimum, maximum, and number of ',
+ 'altitudes to be examined.'

read(5,*) MINALT, MAXALT, NALT
write(4,'(/A,I12)') ' Number of Altitudes =', N.ALT

if ( NALT .eq. 1 ) then
DALT = 0.0

else
DALT = (MAXALT - MINALT) / (NALT - 1)

endif

write(6,*) ' Enter minimum, maximum, and number of ',
+ 'Mach numbers to be examined.'

read(5,*) MINMACH, MAX-MACH, N.MACH
write(4,'(A,I9)') ' Number of Mach Numbers =', NMACH

if ( NMACH .eq. 1 ) then
DMACH = 0.0

else
DMACH = (MAX-MACH - MINMACH) / (NMACH - 1)

endif

write(67*) ' Enter minimum, maximum, and number of ',
+ 'angles of attack to be examined.'

read(5,*) MINALPHA, MAXALPHA, NALPHA
write(4,'(A,I5/)') ' Number of Angles of Attack =', N.ALPHA

if ( NALPHA .eq. 1 ) then
DALPHA = 0.0

else
DALPHA = (MAX-ALPHA - MINALPHA) / (NALPHA - 1)

endif

return
end

subroutine GETGEOMETRYINFO

include 'COMMON.FOR'

real
+ AREA(6), ! Various planar areas (ft+2)
+ XMAXT, ! X-station (x/c) of max. t/c
+ SPAN, I Wing span (ft)
+ D-ENG, I Engine section diameter (ft)
+ H-TAIL, ! Height of vertical tails (ft)
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+ LENTOBODY,
+ E

1 Body length-to-diameter ratio

I Oswald wing lift efficiency

c begin
read(3,'(///,20X,F1O.3,/,20X,F10.3)') MAXT, XMAXT
read(3,'(/,20X,F1O.3)') SPAN

read(3,'(/,20X,F1O.3,/,20X,F10.3)') DBODY, LENGTH(FB)

read(3,'(/,20X,F1O.3)') LENGTH(AB)

read(3,'(/,20X,F10.3,/,20X,F10.3)') DENG, LENGTH(ENG)

read(3,'(/,20X,F10.3,/,20X,F10.3)') HTAIL, LENGTH(TAIL)

LENGTH(WING) - LENGTH(FB) + LENGTH(ENG) + LENGTH(AB)
LENGTH(TAV) - LENGTH(WING)
SMAX - PI * DBODY**2 / 8.0
LEN-TOBODY - LENGTH(TAV) / D-BODY

AREA(FB) -
AREA(AB) -

AREA(ENG) =

AREA(WING) =

AREA(TAIL) -

SREF =

SEXP =

SWET(FB) -

SWET(AB) -

SWET(ENG) =

SWET(WING) -
S-WET(TAIL) -

LENGTH(FB) * DBODY / 2.0
LENGTH(AB) * DBODY / 2.0
LENGTH(ENG) * DENG
LENGTH(WING) * SPAN / 2.0
2.0 * LENGTH(TAIL) * HTAIL / 2.0 ! Two vertical tails

AREA(WING)
SREF - AREA(FB) - AREA(AB) - AREA(ENG)

PI * AREA(FB) *
sqrt( 1.0 + (D-BODY / LENGTH(FB))**2 )
PI * AREA(AB) *
sqrt( 1.0 + (DBODY / LENGTH(AB))**2 )
PI * AREA(ENG)

SREF + SEXP

2.0 * AREA(TAIL)

AR = SPAN**2 / AREA(WING)

MAC = 2.0 / 3.0 * LENGTH(WING)
MAC-TAIL = 2.0 / 3.0 * LENGTH(TAIL)
DELTALE = atan( LENGTH(WING) / (SPAN / 2.0) )
DELTALETAIL - atan( LENGTH(TAIL) / HTAIL )
DELTAMAXT - atan( LENGTH(WING) * (1.0 - XMAXT)

+ / (SPAN / 2.0))

BSFF - 1.0 + 60.0 / LENTOBODY**3 + 0.0025 * LEN-TOBODY
WBLIF - 1.0 + 12.0 * (D.BODY / SPAN)**2 ! Approximated

c CL.max and BFACTOR assume double wedge shaped airfoil.

CL.max - 0.83

BFACTOR - 1.0 / (XMAXT * (1.0 - XMAXT))

c E assumes Taper Ratio - 0, AR < 5, DELTALE > 60 deg.
E - 0.98 * (1.0 - (D.BODY / SPAN)**2)

c ASFF assumes XMAXT > 0.3.
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ASFF = 1.0 + 1.2 * MAXT + 100.0 * MAX-T**4

c NLLF assumes a delta wing with Taper Ratio - 0.
NLLF = 0.4 + 11.0 * exp( -1.0 * (AR + 2.0) ) ! Approximated

c CDANC assumes a pointed afterbody.
CDANC = 1.34 / (LENGTH(FB) / LENGTH(AB)) * ! Approximated

+ exp( -2.1 * LENGTH(ENG) / LENGTH(AB) ) /
+ (2.0 * LENGTH(AB) / D.ENG)**2

c KSUBSONIC assumes Taper Ratio = 0, sharped-nosed airfoil
KSUBSONIC = 1.0 / (PI * AR * E) + 0.16

CLA09 = 2.0 * PI * AR /
+ (2.0 + sqrt( 4.0 + AR**2 * (1.0 - 0.9**2)
+ * (1.0 + tan(DELTAMAXT)**2 / (1.0 - 0.9**2)) ))

CLA11 = 6.6 / tan(DELTALE) ! Approx.
CLA13 = ( 6.0 - 2.5 * ! Approx.

+ (sqrt(1.3**2 - 1.0) / tan(DELTALE) - 0.2) )
+ / tan(DELTALE)

return

end

real function wave-drag( BETA, DELTA )

c This functions computes the wave drag for sharpe-nosed
c double wedge shaped airfoils.

include 'COMMON.FOR'

real BETA, DELTA

c begin
if ( BETA .lt. tan(DELTA) ) then
wave-drag - BFACTOR / tan(DELTA) * MAXT**2

else

wave-drag = BFACTOR / BETA * MAXT**2
endif

return
end

subroutine COMPUTEALTITUDEINFO

include 'COMMON.FOR'

real ALTITUDES(28), RAMRATIOS(28),
+ RHO-A-overMU-ZERO,
+ RAM.RATIO ! at ALT
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integer I

parameter (RHO.A.over_MUZERO = 7100235.9)

real BETA, CFBODY, CF.WING, CF.TAIL, LSCF, DELTACD_0,
+ CCF, CDN2, FA, CDA, RATION, DELTA.N

ALTITUDES / 0.0,

25000.0, 30000.0,
50000.0, 55000.0,

80000.0, 82021.0,
110000.0, 120000.0,

RAM.RATIOS / 1.0,

0.4739, 0.4010,

0.16610, 0.13064,

0.03939, 0.03566,
0.008627, 0.005388,

5000.0,
35000.0,
60000.0,
85000.0,

130000.0,

0.8702,
0.3371,
0.10274,
0.03041,
0.003425,

10000.0,
36089.0,
65000.0,
90000.0,

140000.0,

0.7536,
0.3242,
0.08079,
0.02339,
0.002211,

15000.0, 20000.0,

40000.0, 45000.0,

70000.0, 75000.0,

95000.0, 100000.0,

150000.0 /

0.6492, 0.5563,
0.2687, 0.2113,
0.06353, 0.04996,

0.018090, 0.014063,

0.001449 /

c begin
I = LASTI

do while (( ALTITUDE .gt. ALTITUDES(I) ) .and. (I .le. 28))

= I +1
end do

if (ALTITUDE .EQ. ALTITUDES(I)) then

RAMRATIO - RAMRATIOS(I)
LASTI - I

else

RAMRATIO - exp( alog(RAMRATIOS(I-1)) +
+ (alog(RAMRATIOS(I)) - alog(RAMRATIOS(I-1)))
+ * (ALTITUDE - ALTITUDES(I-1))

+ / (ALTITUDES(I) - ALTITUDES(I-1)) )
LASTI - I - 1

endif

RHOA-overMU = RAMRATIO * RHOA-overMUZERO

c Transonic -- subsonic boundary Mach 0.9

MACH - 0.9

CFBODY - 0.074 / ( RHOA-overMU * MACH * LENGTH(TAV) )**0.2
CFWING = 0.074 / ( RHOA-overMU * MACH * MAC )**0.2
CF.TAIL - 0.074 / ( RHOA-overMU * MACH * MAC-TAIL )**0.2

LSCF = 0.4 * (1.0 + MACH**2)
CD_0(FB) - CFBODY * BSFF

C.D_0(AB) - CF.BODY * BSFF
C.D_0(ENG) - CF.BODY * BSFF
CD_0(WING) - CFWING * ASFF
CD_0(TAIL) - CFTAIL * ASFF

0.7 * cos(DELTAMAX-T)
S.WET(FB) / SREF
SWET(AB) / SREF

SWET(ENG) / SREF
SWET(WING) / SREF * LSCF
SWET(TAIL) / SREF

data
+

+

+

+

data
+

+

+

+
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DELTACD_0 = 0.0012 * 280.0 / SREF
CD_0_09 = CD.O(FB) + CD_0(AB) + CD_0(ENG) +

+ CD_0(WING) + C.D_0(TAIL) + DELTACD_0
K_09 = KSUBSONIC

c Transonic -- supersonic boundary Mach 1.3
c see subroutine COMPUTEMACH.INFO for design assumptions and notes.

MACH = 1.3

BETA = sqrt( MACH**2 - 1.0 )
CFBODY = 0.074 / ( RHOA-overMU * MACH * LENGTH(TAV) )**0.2
CFWING = 0.074 / C RHO.-AoverMU * MACH * MAC )**0.2
CFTAIL = 0.074 / ( RHOA_overMU * MACH * MACTAIL )**0.2

CCF = 1.0 / (1.0 + 0.144 * MACH**2)**0.65
CDN2 = ( 0.15 * LENGTH(FB) / (DBODY * BETA) + 0.6 ) /

+ ( (LENGTH(FB) / DBODY)**2 + 0.25 )

FA = LENGTH(AB) / DBODY
if (BETA .le. FA) then

CD-A = (0.505 + 0.29 * tan( PI/2.0 * (1.0 - BETA / FA) ))
+ / FA**2

else
CDA = (0.505 - 0.576 * (1.0 - F.A / BETA)**1.16) / FA**2

endif

CD-0(FB) = CF.BODY * CCF * SWET(FB) / SREF +
+ CDN2 * SMAX / SREF

CD_0(AB) = CFBODY * CCF * SWET(AB) / SREF +
+ (CDA + CDANC) * SMAX / SREF

CD_0(ENG) = CFBODY * CCF * SWET(ENG) / SREF
CD.O(WING) = CFWING * CCF * SWET(WING) / SREF +

+ wave-drag( BETA, DELTALE ) * SWET(WING)
+ / 2.0 / SREF

CDO(TAIL) = CFTAIL * CCF * S-WET(TAIL) / SREF +
+ wave-drag( BETA, DELTALE_TAIL ) * SWET(TAIL)
+ / 2.0 / SREF

DELTA_C_D_0 - 0.0016 * 280.0 / SREF
CD_0_13 CD_0(FB) + CD_0(AB) + CD_0(ENG) +

+ CD_0(WING) + CD_0(TAIL) + DELTAC.D_0

RATION = 1.16 - 6.26 * ( BETA / tan(DELTALE) - 0.43 )**3
DELTAN - RATION * (2.0 / (CLA09 + CLA11) - KSUBSONIC)
K_13 = 1.0 / CLA13 - DELTAN

return
end

subroutine COMPUTEMACHINFO
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include 'COMMON.FOR'

real
+ BETA,
+ CFBODY, CFWING, CFTAIL,
+ LSCF,
+ DELTACD_0,
+ CCF,
+ CDN2,
+ F.A,

+ CDA,

+ RATION, DELTA.N

c begin

BETA - sqrt( abs( 1.0 - MACH**2 )
CFBODY - 0.074 / ( RHOAoverMU
CFWING - 0.074 / ( RHOA-overMU
CFTAIL = 0.074 / RHOAoverMU

1 Mach Number Beta term

! Flat Plate Skin Friction Coeff.
! Lifting Surface Correlation Factor
! Miscellaneous Protuberance Drag
! Compressibility Correction Factor
! Forebody Wave Drag Factor
! Afterbody Fineness Ratio
! Afterbody Wave Drag Factor
! Leading-edge Suction Parameters

)
* MACH * LENGTH(TAV) )**0.2

* MACH * MAC )**0.2

* MACH * MAC-TAIL )**0.2

if ( MACH .le. 0.9 ) then
CLALPHA = 2.0 * PI * AR / (2.0 +

! SUBSONIC

sqrt( 4.0 + AR**2 * BETA**2 *
(1.0 + tan(DELTA.MAXT)**2 / BETA**2) ))

LSCF - 0.4 * (1.0 + MACH**2) + 0.7 * cos(DELTAMAXT) ! Approximated

C.D_0(FB) - CFBODY * BSFF * SWET(FB) / SREF
CD_0(AB) = CFBODY * BSFF * SWET(AB) / SREF
CDO(ENG) - CFBODY * BSFF * SWET(ENG) / SREF
CD.O(WING) - CF.WING * ASFF * SWET(WING) / SREF *

CD_0(TAIL) - CF.TAIL * ASFF * SWET(TAIL) / SREF
DELTA.CD_0 = 0.0012 * 280.0 / SREF
CDO(TAV) = C.D_0(FB) + C_D_0(AB) + CD_0(ENG) +

+ CDO(WING) + CD_0(TAIL) + DELTACD_0
K_TAV - KSUBSONIC

LSC

else if ( MACH .ge. 1.3 ) then

c CLALPHA assumes Taper Ratio - 0.
C.L.ALPHA - ( 6.0 - 2.5 * (BETA / tan(DELTALE) - 0.2) )

+ / tan(DELTALE)

F

! SUPERSONIC

! Approx.

CCF - 1.0 / (1.0 + 0.144 * MACH**2)**0.65

c CDN2 assumes a conical forebody. Approximated.

CD_N2 - ( 0.15 * LENGTH(FB) / (DBODY * BETA) + 0.6 ) /
+ ( (LENGTH(FB) / D.BODY)**2 + 0.25 )

c CDA assumes a conical non-truncated afterbody. Approximated.

FA - LENGTH(AB) / DBODY
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if (BETA .le. F.A) then
CDA = (0.505 + 0.29 * tan( PI/2.0 * (1.0 - BETA / FA) ))

+ / FA**2
else
CDA = (0.505 - 0.576 * (1.0 - FA / BETA)**1.16) / FA**2

endif

C.D_0(FB) = CFBODY * CCF * SWET(FB) / SREF +
+ CDN2 * SMAX / SREF

CD_0(AB) = CFBODY * CCF * SWET(AB) / S-REF +
+ (CDA + CDANC) * SMAX / SREF

C.D_0(ENG) = CFBODY * CCF * SWET(ENG) / SREF
CD_0(WING) = CFWING * CCF * SWET(WING) / SREF +

+ wave-drag( BETA, DELTALE ) * SWET(WING)
+ / 2.0 / SREF

CD_(TAIL) = CFTAIL * CCF * SWET(TAIL) / SREF +
+ wavedrag( BETA, DELTALETAIL ) * SWET(TAIL)
+ / 2.0 / SREF

DELTA_CD_0 = 0.0016 * 280.0 / SREF
C-D_0(TAV) = CD_0(FB) + CDO(AB) + CD_0(ENG) +

+ CD_0(WING) + CD_0(TAIL) + DELTACD_0

c RATION assumes Taper Ratio = 0, and very small LE radius. Approximated.
RATION = 1.16 - 6.26 * ( BETA / tan(DELTALE) - 0.43 )**3
DELTAN = RATION. * (2.0 / (CLA09 + CLA11) - K.SUBSONIC)
KTAV = 1.0 / CLALPHA - DELTAN

else ! TRANSONIC
if ( MACH .le. 1.1 ) then

CL.ALPHA = CLA09 + (CLA11 - CLA09) * (MACH - 0.9) /
+ (1.1 - 0.9)

else
CLALPHA = CLA13 + (CLA11 - CLA13) * (MACH - 1.3) /

+ (1.1 - 1.3)
endif

CD.O(TAV) = CD_0_09 + (CD_0_13 - CD_0.09) *
+ (MACH - 0.9) / (1.3 - 0.9)

KTAV - K_09 + (K_13 - K_09) * (MACH - 0.9) / (1.3 - 0.9)
endif

return
end
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NASP Performance Code

program NASPPERFORMANCE

c This program computes the performance of a national aerospaceplane

c (NASP) by performing a range integration. The trajectory to be used

c is a boost-glide-type climb, cruise, and descent, as follows:

c CLIMB: Climb at climb angle, GAMMAcl, under load factor acceleration

c of ncl until cruise altitude, Hcr, is reached.

c CRUISE: Continue to accelerate to cruise Mach number, Mcr, then cruise

c at Hcr and Mcr until fuel mass, mf, drops belows reserves, mfr.

c drops below the FUELRESERVES.

c DESCENT: Turn off engines, and continue to fly level until the angle

c of attack rises to that for maximum L/D. Fly a maximum L/D

c trajectory descent until the altitude, H, drops below the

c landing flare height, H_50.

parameter
+ (go - 9.80665,
+ Ro - 6375400.0,
+ H_50 - 15.24)

real
+

+

+

+

+-

+

+

et, dt,
H, Hcr, R,
M, Mcr, Vx, Vz, V,
axo, azo, n.cl, g,
L, D, T, Tmax,
my, mf, mfr,

+ Sref,

Earth 30 deg Gravity (m/s*2)
Earth 30 deg Radius (m)
Landing Flare Height (m)

Elapsed Time (s)

Altitudes, Range (m)
Mach numbers, Velocities (m/s)
Accelerations, gravity (m/s^2)
Lift, Drag, Thrust (N)
Vehicle Mass, Fuel Mass (kg)
Engine Fuel-to-Air Ratio
Wing Reference area (m^2)
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Aeng

ALPHA, GAMMA, GAMMA_cl,
CL, CLmax, C.D,

q

LIFTCOEFF(30,30),
DRAGCOEFF(30,30,10),

LIFT.TODRAG(30,30,10),

ATTACKANGLE(30),

MACHAERO(30),
ALTAERO(10),
SPECIFICIMPULSE(20), Isp,
MACHPROP(20),
SPEEDOF-SOUND(28), a,
AIRDENSITY(28), p,
ALTINFO(28)

integer

- nALT, nMACHa, nALPHA,
- nMACHp,
- Io, Jo

126

! Engine inlet area (m^2)

Angle of Attack, Climb Angle (deg)
Lift and Drag Coefficients

Dynamic Pressure (Pa)

Lift Coefficient Aero Matrix

Drag Coefficient Aero Matrix
Lift-to-Drag Ratio Aero Matrix
Attack Angle for Aero matrices (deg)
Mach Number for Aero matrices
Altitude for Aero matrices (ft)
Engine Specific Impulse (s)
Mach Number for Specific Impulse
Speed of Sound Table (m/s)
Atmospheric Density Table (kg/m^3)
Altitude for above tables (ft)

Size of Aerodynamics matrices
Size of Propulsion matrices
Saved ALPHA indices

logical FLY-EQUILIBRIUM

common

- et, H., Hcr, R, M, Mcr, Vx, Vz, V, axo, azo, Isp, GAMMA-cl,
- Tmax, g, L, D, T, my, mf, mfr, f, Sref, Aeng, ALPHA, GAMMA,
- LIFT-COEFF, DRAGCOEFF, LIFTTODRAG, ATTACK.ANGLE, n-cl,
- MACHAERO, ALT-AERO, SPECIFICIMPULSE, MACHPROP, CL-max,
- SPEEDOFSOUND, AIRDENSITY, ALTINFO, a, p, q, CL, CD,
- dt, nALT, nMACHa, nALPHA, nMACHp, Io, Jo, FLY-EQUILIBRIUM

integer i

data ALTINFO /
+ 0., 5000.,

+ 35000., 36089.,
+ 65000., 70000.,
+ 95000., 100000.,

10000.,
40000.,
75000.,

110000.,

15000., 20000.,
45000., 50000.,
80000., 82021.,

120000., 130000.,

25000.,
55000.,
85000.,

140000.,

feet
30000.,
60000.,
90000.,

150000. /

data SPEEDOFSOUND /
340.3, 334.4, 328.4,

11*295.1, 296.9, 300.0,
329.2, 334.7 /

322.2, 316.0, 309.7, 303.2, 296.5,
303.0, 306.0, 312.0, 317.8, 323.6,

data AIRDENSITY /
+ 1.2250, 1.0556, 0.9047, 0.7708, 0.6527, 0.5489, 0.4583, 0.3796,
+ 0.3639, 0.3016, 0.2372, 0.18645, 0.14663, 0.11532, 0.09069,
+ 0.07131, 0.05608, 0.04410, 0.04002, 0.03428, 0.02655, 0.02067,

m/s

kg/m^3

real
+

+

+

real
+

+

+

+

+

+

+

+

+

+

+

!
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+ 0.016170, 0.010040, 0.006344, 0.004076, 0.002658, 0.0017591 /

c begin
call INITIALIZE
call READDATA

open( unit=3, status='NEW', file='PERF.DAT' )

write(6,10)

write(3,10)

10 format (40X, 'AEROSPACEPLANE PERFORMANCE FLYOUT'/
+ 40X,'---------------------------------'//
+ ' TIME RANGE ALTITUDE MACH ALPHA GAMMA FUEL ',

+ WEIGHT Q CL CD L/D Isp THRUST '/
+ ' (secs) (s.mi.) (feet) (deg) (deg) (lb) ',
+ (lb) (psf) (sec) (lb) '/
+ ----- ---------- ---- ---------

+ c------ N-------- --------

call WRITEINFORMATION( 6 )
call WRITE-.INFORMATION( 3)

dt = 2

do while ( H .lt. Hcr )
i - 0
do while ((i .lt. 5) .and. ( H .lt. Hcr ))
calf CLIMB

i - i + 1
enddo

call WRITEINFORMATION( 3 )
enddo

call WRITEINFORMATION( 6 )

dt - 2

do while ( mf .gt. mfr )
i = 0
do while ((i .lt. 10) .and. ( mf .gt. mfr ))
call CRUISE

i - i + 1
enddo
call WRITE.INFORMATION( 3 )

enddo

call WRITEINFORMATION( 6 )

dt - 1

T - 0.0

FLYEQUILIBRIUM - .true.

do while ( H .gt. H_50 )
i - 0
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do while ((i .lt. 5) .and. ( H .gt. H_50 ))
call DESCEND

i = i + 1
enddo
call WRITEINFORMATION( 3 )

enddo

call WRITEINFORMATION( 6 )

close( unit=3 )
end

subroutine INITIALIZE

include 'COMMON.FOR'

c begin

et = 0.0

H = 0.0

R = 0.0

M - 0.1

Vx = 34.0

Vz = 0.0

V = 34.0
axo = 0.0

azo = 0.0

g = go
GAMMA = 0.0

CD 0.1

T = 1.0

return
end

subroutine READ-DATA

include 'COMMON.FOR'

integer i, j, k

logical SET

c begin

open( unit=3, status='OLD', READONLY, file='PERF.IN' )

read(3,10) Mcr, Hcr, GAMMAcl, ncl, Sref, Aeng, CL.max,
+ my, mf, mfr, f, nMACHp

10 format(/,2F10.2,//,2F10.3,//,3F10.4,//,3F10.2,//,F10.6,I10)

do i - 1, nMACHp

read(3,20) MACH.PROP(i), SPECIFICIMPULSE(i)
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20 format(2F10.2)
enddo

close( unit3 )
open( unit=3, status='OLD', READONLY, file='AERO.DAT' )

read(3,30) nALPHA, nMACHa, nALT

30 format(/,3110)

SET = .false.

do i = 1, nALPHA

read(3,*) ATTACKANGLECi)
if ( (ATTACKANGLE(i) .gt. 0.0) .and. (.not. SET) ) then
SET = .true.

Io = i + 1

Jo - i

endif

enddo

do i = 1, nMACHa

read(3,*) MACHAERO(i)

enddo

do i - 1, nALT

read(3,*) ALTAERO(i)

enddo

do j = 1, nMACHa

do i -- j, nALPHA

read(3,*) LIFTCOEFF(i,j)

enddo

enddo

do k - 1, nALT

do j = 1, nMACHa
do i - 1, nALPHA

read(3,*) DRAGCOEFF(i,j,k), LIFT-TO.DRAG(i,j,k)
enddo

enddo
enddo

close( unit-3 )
return

end

subroutine WRITEINFORMATION( iunit )

include 'COMMON.FOR'

real RANGE, ALTITUDE, FUEL, PSF, WEIGHT, LOD, THRUST

c begin
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RANGE = R / 1609.344
ALTITUDE = H / 0.3048

FUEL = mf / 0.45359237
WEIGHT = my / 0.45359237
PSF = q / 47.8802590

THRUST = T / 4.4482216152605

LOD = CL / CD

! Meters to Standard Miles
! Meters to Feet
! Kilograms to Pounds-mass
! Kilograms to Pounds-mass
! Pascals to Pounds/square-foot
! Newtons to Pounds-force

write(iunit,20) et, RANGE, ALTITUDE, M, ALPHA, GAMMA,
+ WEIGHT, PSF, CL, CD, LOD, Isp, THRUST

20 format( F8.0, F7.0, F10.1, F6.2, F7.2, F7.2, F8.0,
+ F10.1, F9.1, F8.4, F10.6, F7.3, F7.0, F10.1 )

return
end

subroutine CLIMB

real GAMMA-d

include 'COMMON.FOR'

c begin

call GET-DATA

if ( H .lt. H_50 ) then

C.L -0.8 * CL.max
L = G'L * q * Sref

else

L = my * g * cosd(GAMMA) - T * sind(ALPHA)

GAMMA-d GAMMA-cl * ( 1.0 - (H / Hcr)**4 )
L = L * C 1.0 + 10.0 * sind(GAMMA_d - GAMMA)

if C L .lt. 0.0 ) L = 0.0
CL = L / q / Sref

endif

! Take-off Rotation
! requires high CL

! Equilibrium Lift
1 GAMMA desired
! Maintain GAMMA-d

call FINDCL( CL )

CD = table_3D-lookup( 'LIN', DRAGCOEFF,
'GEO', ATTACK-ANGLE, 30, nALPHA, ALPHA,

'GEO', MACHAERO, 30, nMACHa, M,

'EXP', ALTAERO, 16, nALT, H/0.3048 )
D = q * CD * Sref -

T = ( D + my * g * (sind(GAMMA) + n-cl) ) / cosd(ALPHA)
if ( T .gt. Tmax ) T = Tmax
if C mf .eq. 0.0 ) T = 0.0

call FLY
return
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end

subroutine CRUISE

include 'COMMON.FOR'

integer i

c begin

call GETDATA

L = my * g * cosd(GAMMA) - T * sind(ALPHA)

L = L * ( 1.0 - 10.0 * sind(GAMMA) )
if ( L .1t. 0.0 ) L = 0.0

CL = L / q / Sref

! Equilibrium Lift
! Maintain Level Flight

if ( CL .gt. 0.8 * CLmax ) then

CL = 0.8 * CLmax

L = CL * q * Sref

endif

call FINDCL( CL )

CD = table_3D-lookup( 'LIN', DRAG.COEFF,
'GEO', ATTACKANGLE, 30, nALPHA, ALPHA,
'GEO', MACHAERO, 30, nMACHa, M,
'EXP', ALTAERO, 16, nALT, H/0.3048 )

D = C_D * q * Sref

T = D / cosd(ALPHA)

T - T * ( 1.0 + 3.0 * (Mcr - M) )
if C T .gt. Tmax ) T = Tmax
if C mf .eq. 0.0 ) T = 0.0

i = 0
do while ((i .lt. 2)

call FLY

i -i+ 1
enddo

return

end

subroutine DESCEND

include 'COMMON.FOR'

integer i

real ALPHA__max-lod

! Equilibrium Thrust
! Maintain Cruise Mach

.and. ( mf .gt. mfr ))

c begin



APPENDIX I. NASP PERFORMANCE CODE 132

call GET-DATA

call FINDMAXLOD

if ( FLYEQUILIBRIUM ) then

ALPHA-max-lod = ALPHA
L = my * g * cosd(GAMMA) Equilibrium Lift

C = L / q / Sref

if C CL .gt. 0.8 * CL.max ) then

CL = 0.8 * CL-max

L = CL * q * Sref

endif

call FIND-CL( CL )
if ( ALPHA .gt. ALPHAmax-lod ) then

FLYEQUILIBRIUM = .false.

ALPHA = ALPHA-max-lod

C-L = table_2D-lookup( 'LIN', LIFTCOEFF,
+ 'GED', ATTACKANGLE, 30, nALPHA, ALPHA,
+ 'GEO', MACHAERO, 30, nMACHa, M )

L = CL * q * Sref

endif

else ! FLY (L/D)max
CL = table_2D-lookup( 'LIN', LIFTCOEFF,

+ 'GEO', ATTACKANGLE, 30, nALPHA, ALPHA,
+ 'GEO', MACHAERO, 30, nMACHa, M )

L = CL * q * Sref

endif

CD - table_3D-lookup( 'LIN', DRAGCOEFF,
+ 'GEO', ATTACKANGLE, 30, nALPHA, ALPHA,
+ 'GEO', MACHAERO, 30, nMACHa, M,
+ 'EXP', ALT-AERO, 16, nALT, H/0.3048 )

D = C-D * q * Sref

i =0

do while ((i .lt. 2) .and. ( H .gt. H-50 ))
call FLY

i - i + 1
enddo

return

end

subroutine GET-DATA

include 'COMMON.FOR'

c begin

a - table.1d-lookup( 'LIN', SPEEDOFSOUND,
+ 'LIN', ALTINFO, 28, 28, H/0.3048 )
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p = table-id-lookup( 'LIN', AIRDENSITY,
+ 'EXP', ALTINFO, 28, 28, H/0.3048 )

q = 0.5 * p * V * V

M V / a

if C T .eq. 0.0 ) then
Isp = 0.0

else

Isp - tableild-lookup( 'LIN', SPECIFICIMPULSE,
+ 'LIN', MACHPROP, 20, nMACHp, M )

Tmax - p * V * Aeng * f * go * Isp

endif
end

subroutine FLY

include 'COMMON.FOR'

real an, at, ax, az, dVx, dVz, dR, dH, dmf

c begin
an - (T * sind(ALPHA)

at = (T * cosd(ALPHA)

ax = at * cosd(GAMMA)
az = at * sind(GAMMA)
if ( (az .lt. 0.0) .and

+ L - my * g * cosd(GAMMA)) / my
- D - my * g * sind(GAMMA)) / my
- an * sind(GAMMA)

+ an * cosd(GAMMA)

. (H .eq. 0.0) ) az = 0.0

dVx - (axo + ax) / 2.0 * dt
dVz - (azo + az) / 2.0 * dt

axo = ax

azo - az

dR = (Vx + dVx / 2.0) * dt
dH - (Vz + dVz / 2.0) * dt

Vx = Vx + dVx
Vz - Vz + dVz
V - sqrt( Vx *Vx + Vz * Vz)
GAMMA - atand( Vz / Vx )

H - H + dH
if (H .lt. 0.0) H - 0.0
R -R + dR * (Ro / (H + Ro))
g - go * (Ro / (H + Ro))**2

if C T .gt. 0.0 ) then
dmf - - T / go / Isp * dt
mf - mf + dmf
my - mv + dmf
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if (mf .lt. 0.0) then
my = my - mf

mf = 0.0

endif
endif

et = et + dt
end

subroutine FINDCL( CL )

include 'COMMON.FOR'

real ANG, CL, CLL, CLU, interpolate
integer J
logical PASTLIMIT

c begin
J = Jo - 2

CLU = -9.0

PASTLIMIT = .false.

do while ( (CLU .lt. CL) .and. (J .lt. nALPHA)
+ .and. (.not. PASTLIMIT) )

ANG = ATTACKANGLE( J )
CLL = CLU

CLU = table_2Dlookup( 'LIN', LIFTCOEFF,
+ /'GEO', ATTACKANGLE, 30, nALPHA, ANG,
+ 'GEO', MACHAERO, 30, nMACHa, M)

if CLU .eq. CLL ) PASTLIMIT - .true.
J=J +1

enddo

if ( PASTLIMIT ) then
ALPHA = ATTACKANGLE(J-2)

else
ALPHA = interpolate( CLL, CLU, ATTACK.ANGLE(J-2),

+ ATTACKANGLE(J-1), CL, 'GEO', 'LIN' )
endif

Jo = J - 2

return

end

subroutine FINDMAXLOD

include 'COMMON.FOR'

real LOD, LODMAX, ANG
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integer I

c begin
LOD = 0.1

LODMAX = 0.0

I = Io - 2

do while ( LOD .ge. LODMAX )
ANG = ATTACKANGLE( I )
LOD = table_3D-lookup( 'LIN', LIFTTODRAG,

+ 'GEG', ATTACKANGLE, 30, nALPHA, ANG,
+ 'GEG', MACH.AERO, 30, nMACHa, M,
+ 'EXP', ALTAERO, 16, nALT, H/0.3048 )

if ( LOD .gt. LODMAX ) LODMAX = LOD
=I + 1

enddo

ALPHA = ATTACKAANGLE( I-1 )

Io = I - 1

return

end
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agenda: is the common name for the computational agenda.

agenda building: is the process of determining how design functions will be used to find

a solution to a chosen design path of knowns and unknowns. Agenda building

does not involve any numerical methods since it does use the values of the design

variables, only their states.

agenda entry: is an entry into the computational agenda consisting of a perfectly con-

strained design function and the unknowns to be solved for using it.

base variable: is the official designation of an I-state design variable, commonly referred

to as a "known".

branch: is one of two independent sequences of perfectly constrained design functions for

computing the value of the loop variable to solve a loop.

C: is the letter assigned to the state of a design variable whose value has been com-

puted by Paper Airplane via processing.

C-state design variable: is a design variable whose value has been computed by Paper

Airplane.

CEMISS: is a Computer-based Engineering Model Information Sharing System.

computational agenda: is the actual path, or sequence of design functions, to be evaluated

to find the values of the unknowns once given the initialized values for the knowns

and the guess values for the unknowns. The computational agenda is also called

the computational path. The computational agenda consists of a forced path and

loops.
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computational path: is another name for the computational agenda.

Computed-value state: This indicates a design variable that had been given a trial value

by the user, and was later given a known value by Paper Airplane. A design

variable obtains state C only when the user processes the design set; and then

only if Paper Airplane can find a solution which satisfies all the design functions

in the user's design set.

computer program: is an external piece of code usually not written in COMMON LISP,
such as a FORTRAN or PASCAL program.

derived variable: is the official designation of a G-state design variable, commonly referred

to as an "unknown".

design function: is a relationship between design variables. A design function can range in

complexity from a simple algebraic equation to a very large and complex computer

program.

design path: is the selection of certain design variables as knowns and the rest as un-

knowns; thereby setting up some implied path, or sequence of design functions,
for Paper Airplane to follow once values are provided for the design variables.

design point: is the values and states of all the design variables in a design set at any

stage of the design process.

design set: is a set of certain design functions and the design variables those functions

relate towards the goal of solving a particular design problem.

design variable: is a scalar parameter, such as Vehicle Length or Vehicle Weight, whose

value uniquely determine part of the configuration of an aircraft, spacecraft, or

any other system. A design variable has a number of attributes associated with

it, such as its value, its dimensions, its order of magnitude, and the limits of its

value.

engineering mode: is a sub-model (reduced model) of a mathematical model describing

the structure and properties of an existing or proposed product.

external code interface: from one program to another allows both programs to share in-

formation without the need for a human to manipulate input and output files.
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final design point: is the numerical solution to the initial design point of a particular

design path. Specifically it is the states and values of the design variables after

processing has been completed.

final path: is a sequence of perfectly constrained design functions whose unknowns can

be solved for once a loop has been solved.

flavor: is a powerful LISP abstraction that allows for information storage and retrieval

and data communications, all in a hierarchical structure.

floating: is the act of changing the state of a design variable to G, thereby setting the

value of the design variable as guessed at and marking the design variable as an

unknown.

forced path: is a sequence of perfectly constrained design functions, each of which can

be solved individually, although sequentially. The path is called "forced" since

there is no alternative but to solve the design functions in this sequence in order

to compute the values of their unknowns.

forcing variable: is the design variable whose value is converged upon during the iteration

of a loop. The forcing variable is usually the design variable most common to all

the design'functions involved.

forward computation: is a one-time single-function evaluation that computes the values

of the output unknowns of a single design function by executing the function once

using the values of the input knowns.

freezing: is the act of changing the state of a design variable to I, thereby setting the

value of the design variable as initialized and marking the design variable as a

known.

function: is an internal piece of code written in COMMON LISP.

G: is the letter assigned to the state of a design variable whose value has been guessed

at by the user via floating.

G-state design variable: is a design variable whose value has been guessed at by the user.

Guessed-value state: This indicates a design variable that has been given a trial value by

the user. A design variable obtains state G whenever the user floats it. G-state
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design variables are officially designated as "derived variables" and are commonly

referred to simply as "unknowns".

I: is the letter assigned to the state of a design variable whose value has been initial-

ized by the user via freezing.

1/0: Input and output. The data passed to and from a computer program.

I-state design variable: is a design variable whose value has been initialized by the user.

initial design point: is the initial setting of the values of design variables according a par-
ticular design path. This consists of initialized values for the chosen knowns and

guess values for the chosen unknowns.

initial path: is a sequence of perfectly constrained design functions whose computed un-
knowns are required by both branches of a loop to solve that loop.

Initialized-value state: This indicates a design variable that has been given a known value
by the user. A design variable obtains state I whenever the user changes its value,
or when the user freezes it. I-state design variables are officially designated as
"base variables" and are commonly referred to simply as "knowns".

instance variable: "is a parameter that is an element of the structure of a flavor.

known: is the common name for an I-state design variable, officially designated as a
"base variable".

loading: is a COMMON LISP term for reading and evaluating LISP code from a file into
main memory.

loop: is a sequence of design functions, each of which computes values required by other
design functions in a closed loop. Loops are solved by guessing the value of a
forcing variable to compute two independent values of a loop variable. When the
two values converge, the values of all the unknowns involved can be found.

loop computation: is an iterative multiple-function evaluation that computes the values
of all the unknowns of a set of design functions by guessing values of a chosen
forcing variable until two independent values of a chosen loop variable converge.

loop variable: is the design variable whose two independently computed values determine
the convergence of a loop.
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method: is a function that is specifically associated with a flavor.

MIMO: Multiple-Input Multiple-Output. Loosely, a multiple-input multiple-output de-

sign function.

MIMO Design Set: is the design set used to test the MIMO design function solving ca-

pability enhancement to Paper Airplane. Several MISO design functions from the

MISO Design Set were merged to form MIMO design functions.

MISO: Multiple-Input Single-Output. Loosely, a multiple-input single-output design

function.

MISO Design Set: is the design set that serves as the foundation of all other design

sets, except for the NASP Design Set. The MISO Design Set contains 17 design

variables and 7 design functions and is used for the conceptual design of aircraft.

mixin: is a flavor that is an element of the structure of another flavor.

NASP Design Set: is the design set used to test the final version of the enhanced Paper

Airplane. The NASP Design Set is comprised of 12 design variables and 9 design

functions, including MISO and MIMO design functions and design functions call-

ing extern6l codes. The NASP Design Set is used for the preliminary design of a

national aerospaceplane.

NIL: the New Implementation of LISP, a dialect of COMMON LISP, and the program-

ming language in which Paper Airplane is written.

overconstrained: problem is one in which the number of unknowns is less than the number

of values computed by all the design functions (i.e., the number of user-specified

knowns is greater than that required). This can lead to design variables receiving

two or more incompatible values.

Paper Airplane: is the name of the code development at the Massachusetts Institute of

Technology to solve systems of linear and/or non-linear functions.

perfectly constrained: problem is one in which the number of unknowns equals the number

of values computed by all the design functions (i.e., the number of user-specified

knowns is the same as that required). This usually leads to design variables whose

values can be exactly determined.
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postprocessor: reads output values from the file(s) an external code normally writes to

and returns them to the system.

preliminary entries: is the initial sequence of perfectly constrained design functions created

while trying to construct a closed loop.

preprocessor: takes input values from the system and writes them out to the file(s) an

external code normally reads from.

processing: is the act of instructing Paper Airplane to attempt to compute the values of

all the unknowns of a design set.

reverse computation: is an iterative single-function evaluation that computes the values

of all the unknowns of a single design function by guessing values of the unknown

input variables until values of the known output variables converge with their

user-specified values.

source file: is a computer file containing the information on all of the design variables

and design functions to be loaded internally into a Paper Airplane design set.

state: is the common name for variable state.

TAV Design Set: is the former name of the NASP Design Set.

underconstrained: problem is one in which the number of unknowns is greater than the

number of values computed by all the design functions (i.e., the number of user-

specified knowns is less than that required). This can lead to design variables

whose values cannot be exactly determined.

unknown: is the common name for a G-state design variable, officially designated as a

"derived variable".

variable state: is the condition of the value of a design variable. Variable states come

in the following three varieties, which are assigned to design variables according

to their initial letter: Initialized-value state, Guessed-value state, and Computed-

value state.

variable tableau: is a spreadsheet of information on the design set arranged on a computer

screen. This information includes a list of design variables and their current values,
units, and states. 01
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XCODE: is an external code.

XCODE Design Set: is the design set used to test the external code interface capability

enhancement to Paper Airplane. One design function from the MISO Design Set

was modified to call a FORTRAN program to compute its value.
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